Fate of outting and ith uitimate orfoath. Baited Stavel Forent service statiation (44) Zor Benton County chow that, in 1930, there wert 2088 people, or 25.3 per owat of the total population or the county, oxployed in forsuty, sw, and ploning fills and othor working induatrien.
Forsetry (Woods)..........................492
sew end planing mille..................... 614
Fursiture and wood working
indumtrien.......................................28
Totel.*....................................... 1020

The riture found thet in Februmry, 2036, there wat epproximately 675 men omployod in loczing end miling as those establimwante viaited. (The athore have been informed thet, frow Fobruary to the present time, April, 3 new nilie have bterted operwtion.) the fore-zoing deta indicete thet, al present, there are over 700 men oxployed in eaw and planing aill work in Benton County, or an inoresse of over geven per cent in this one pheat. It is protoble that there hut ulao been on inoresae in the other two phasem of the forent induntries, ithough it is 12kaly not to be so grwat.

The poogle direstiy ongloyed in logetng, miling. wood eatitng; planing, tol, are not, by any means, the only one influenoed by thie Induatry, ginee over 15 per cont of the total populetion of the oounty to working in
the forent ingustries, that por oent 11 kowite exorte a proportionte infiumoe on the othor locel industries and professions. 解ole ocomuntien heve been ontabliehed. chietiy becmut of the cownile and legetng activities in thit vicinity, sobeole and churohes have been orgenized and propertien equired. These propertien, as louts at the 2umber industry thrivem, mal contribute to the oentral tax fund.

The ourvival of the entive oounty a. anit in itecif hingel directiy on the two babio industriea, mericulture and forestry. Yot, each yemr the foreet iond is reduced by on amount equivient to opprcaxmately seven per cont of the cotel atand, wh with no proviaion for a future tinbor muppiy. in fow worde, uniesa repid cutling and hilling wo ourtelied soon, and if it continues et the mame rate we present, Benton Gounty, may be baxkrupt whin 26 yours tiae.

Aenonding to $0 . \mathbf{B}_{3} \mathrm{~F} . \mathrm{S}$. tatieties there are $3,136,409 \mathrm{M}$ board foet of standing timber in benton county. The mile now in the county are outting at rete of 365,000 boerd feet por dify, or, if they wore te ran stendily 300 aeys or the yeer, their totel eat in one year' time would equal approximetely $200,000,000$ board foot per year. At this rate, the oounty would be completely cut over--this includen bardwocde also-in bout is yeare' time.

LEGEND

FOXEST STHLSTLCS POK BENTON CODNTX, OHEOON

TAble I. Volume of Tinber by spectes for Each Ownershly cless in Thousand of moner Feet, Log scele, Scribner tule. Dete Corrected to Jmnuaryl. 2933

sote-In addition to tha spoies for which entinber Volume stithte gere obtained, Noble Fir, Silver Firs, end ponderose pine me knomn to ocsur in inconeequentiol guantities in this county.

FOREST STGTLSTICS FOK BENTON COUNTY, OREGON

 Fhod Inventoky phase of forest surveyTable L. Volume of Timber by Species for Ench Ornership In Thousands of Board Feet, Log Scale, Scribner Fule Data Corrected to Januery 1,1933

FROE INY WHOLY PHESE OF POFEST SUEVEx

 Clese in Thounand: of Board Feet, Log Scele, Semibner Fule, Dete Corroctna to Jnnumry 2. 2933

Sur-ikevestedsother Then iNationd				
vey :	Land :	Ntt. Por*	- roreat	Totel
Sym-1	Granta :	indian And	1Avallable:	For
	OAC Ete.t		- For	County
!	1	Lead Orente:	- cutting	
EA 1	- 353.6961	1841	$1-105 \times 9001$	184, 358
DE	340,985	892:	: 29.0901	943, 156
DG:	117.712:	1,628:	$: \quad 2,140:$	6654.485
TD:	- 41.3708	78:	$1-2-1$	178, 436
E㫛:	-34.795:	-1	$1-31073$	43,099
W近	- 3, ac7:	-1	t -1	4.408
C	1 $17.387:$	81	1 - 385	46.218
KC :	- - - -	-1	1 - -1	150
-	-18,481:	83:	1 1, 8E7t	121,280
EA:	- $783:$	3401	$1-2401$	5.294
00:	$\underline{-1}$	-1	$1-1$	300
EC ;	- :	-1	1- -1	1.500
Cx	- x^{2} 621	- 1	$1-1$	15.080
A31:	- - - 1	-1		800
	273.487:	8.801:	: 271.4051	3.136 .489

POHEST STATLSTICS FOF RENLON COUNTX OK OON

Table 2. Aree in sores of al Forest cover ryper, by Ownerehip clabess pita Corrected to Janumry 1 , ig3\%

Sur-:
Vey:
Iype: Tefinition of Iypee
No.:
t
E inonforest Land other than An roudurel

4 :csiongronel Acorest contalning geer 50 g goks or Hea.

 : pir ona ovar 80" pbit
32 indrdwoods: Ader, Mende. Ash and Cottonwood Frecom. 35 101d Cutoveres सot lestocked; Glear Cut erlot to 1850 36 lkecont Cutover i Cleor Cut Shoe Januery 1620
37:1Doforested Eurne Any Nonrestogkt furm, yot Gut ovor t Hotal

Teble 2. Aree in Acres of AL2 Forest Gower Sypen, by

Fable 2. Area in Acrea of All Forest cover Typer, by Dwnershif Gimene Data corrected to Jenumry $1.193 z$

The decilne of forest iand in Benton county oannot holp resulting in the follewing:

1. wore people out of work and on the rolle of reltef.
2. Lowered atandarde of Living beonuew of insurfietont tex incomot for menteninet of ehools, Mighway, to.
3. More tex colinquenclee beanue of the lowered velus of land.
4. Kigher tax rates on the remining lund.
B. Fosiure of many of the releted industries beonuse of a long of tupport frea forest workera and industrien.
5. An unetable papulation and trenilent inbor.
6. Ali peanibility of beleneed ecomomio end scolal mtrueture to mioh produntive fortht 2and and perament forest industrice tould contribute my be $100 t$.

Forest statiaties (45) mow thet, of the total 246,864 acres or county and privete Lend, In benton county, there were (1930) 86.643 acres, of $\mathbf{2 5 . 1}$ per cent, or tim delinquant land. A lerge mount of thle lent hee undoubtediy been abandoned after it was atripped of its only valut-the forest-mn the eounty must now aeves the burden of esrrying it. of eourse, every piece of property thet
goes tex delinquent han the effect of inortabing texex on remetaine property, whoh, in turn, ultimetely bringe obout more tax faliuret. Airtady tax burdent on some propertiss are very heavy. Proof of thic on well be demontireted by the one of fill owner number (56) who offered to sell forty ocref of lezed-over land to proapetive ouetoner for $\$ 40.00$. The gumtomer, fiter aving the required amount of money for purchase of the land, looked up the beck taxeg on mind land to find that they mounted to 642.00, or now then the vilue of the property.
keguletion is neomeary. conditione muoh an exist In Benton County todey ore probably aimiar throughout the paosfio worthwent, mand it ppears, from the forecoing dat: presented that immodinte reguintion ia imperetive. In the writere' opinion, however, the need for regulation In probmbly not os gremt is if manifested because the high mortelity of the mail milin wil2, in ance meare, ot - eurteliment to production. Probably, there if more preseing need for stabiliation of the Lutber induetrys henee pogulation end other indutries then there is for ourtailmant.
kidio rinaneed by 2 orte oompendes a manact. The
amil nili owned by the individual ie probebly not doing ae much toward depletion of our timber suppliee as thoae finenced by the apealators. Hoffman, U.S.F.s., steted (February $8 ; 2956$) that, at one time, there wat ges small

GOUNTY LANDS AGYNLAD BY TAX PORECLOSUFE PKI-
 1930 AND PRLOF TAXES. AS OF JUME 29. 1938

milis in the atate of zahington that werw financed by one lunber compeny liono. Thu me milis were moetiy electriondiy driven and enpable of producing 10,000 to 12,000 bomid feet of lumber per day, In mont obeen, Hofrmen eteted, devent wise wien not mode for myons conrected with the mill exeept the rinancier nimelf. Probably, it these mills wer controlled, there would be low overproduction and bother lumber grices. These wille undoubtediy contribute nuth to the hue and ary of overproduetion in the lumber industry.

The *xcest manurecturing enpectiy of the recific coont lumber induatry is nown by the weat coest Lumber Assoctetion muryeyt. In 2geg, when ocmomite condtions of the ocuntry wive normal or better, oniy 73 per oent or the alli capaity whe utilimed. Plant opeoity for the untire country is undoubtediy far nore in oxeen of needs then thet mown for the west come industry. senate Dosureat Number 18 (SE) miket the follewing atetement: "Overproduct1on, slao alted on on of the nost acrious probleme of the lumber snduntry, grow, in purt, out of an overiona of eturapege and forest iend, the conasquent finsnelel pressure to licutante, the dovdlopmant of exoesaive plant cophatity, and the burcen of high ond lergely fixed and inoscepeble gapital oole." potechen io rerulation. It it not akely the t control mesuras Will over be brought bout by legtaletion,
becsuee of the oonstitutional beokground. Ther is, however, pothiblisty of contrel through the educett on of the themer ownex to foreztry prections. This ann not be expected to be offective an long at the rolzeme conaitfons oxist:

1. Kxoeshive tax burdenin on timber cwners.
2. A. lond thers is so much uncertainiy of future mikete for ntwipsge.
3. As long ws conomid contitions are much thet thaber ownsre art presaed for imwitate onsh.
4. As long th the risk in cerrying the investment, due to firt, incecta, ma dimest is ap bigh.
\#oonuse of the aifriculty of coping with the above Atustions, 11 emtrol mesures must neceseerily be llow and time scnomalne:

Kilil to manicet. Littio neod be satd about this mase or the iumber industry in Benton ounty. Soven milis ape aituated direatiy on the railroad line, and the others haul their producte to the shipping point by mown of truck. is in hauling froen the woods to the xall. the traneportation or lumber from the mill to the alipping point is often oontracted. The oontract prite ranges from 1 , to 31.50 per thousand boapd reet.

Beanuse of lant of a tramway and the heavy preaip itation in the winter tine, one mil (1) is accoasible to a truck for hauling only in the suwer, The mill hat not been muning during the vinter monthe beouse of this ract. The operatore, hovever, plan beginning continuous operation and hauling all moducte out during the surater.

The prinoipal outiets for tho miling products in Benton Gounty are Moagett, Kings Valley, Mallonach, Oreonbervy station, wad Corvallas. probebly a larger number of milis ahip through Thompoon's establishment at Mlodgett than from any othor point. Thompson buys in rough, the prochucs of the manl milis and atacks the lumber. He planes that for whion he has orders and alape the rest rough. In buying material frow the manl mill, he is able to purohase it an ane grade. If part of the load is of a higher quallty, he an thua regrade the material and aell part of it ao highor guality products; hence recelve higher pride for the luber nold.

Stale of graducte. rhree mill ownere (11; 4, 20) tete thet they huve loeel merkete for pert of their menufoctured procuets ena fow othor ownerg elnin merket for Southern pacifio ties, Aelde from this, the entirt output of the nilla in Benton county in maid through brokert in zugent. Portlanc, and othor nearby large oxtion. Brokernge comismion rencte from atraght ree or 5.50 per 1000 beard feet old, to light per cent prose receipte. According to *uthorithe frow the U.S.F.S. Expmriment Station, the fee oherged by browers for the ache or producta is only
 ore shigged from that saedi nill ownere in lerge 204 s . The price sold to the mall mill owner for his product is the price of the lowet grades bought in the lot. After the shipment to the brower, the our is mionded ond ite contente regraded. (yph of the metini folin in crede oommanding bleg priees, mad, anoe this in gela for with the more conson aredes, the broker etota the "orean." hiay income that should sail intg the hands of the manufacturors. In fow worde, the broker in recetying comatasions eventer than eleht per cent or a straight ree of 4.50 per 2000 bomed fat old.

The mall ricil ownor, With his prowent ect-up, is ungbit to ayold auch losees through selea, beceste be lacks the comections for $5+10$ of bil procucta. I, B. tuno (13) zaikes the following atetementa regarding the ale of pro-

ducte of the manil will omer:

1. The avernge porthlile mill ownur doen not know how to grade the luwber he cuts.
2. Home not know how to stak and seston hie Lumber progeriz.
3. He does not know how to warket his preacta in compatition with the lerge manufncturer aperating in virgin timber.
subse stntamente sxplein furthor why themm mill

 anced, the owner cannot fford to gtore stook in the yarde or aell in transit.

The place of the mand mi22: After one hee read of many great short-cominge of tho mell mill. ite many inoffielencies, end the percentage of faliuree in the butinese venture, he wonders whether or not the smell mill should heve niohe to fill in the iumber inautry. Yet it does have definite and most indispeneible function.

There is no doubt in the author's mind but what the smail alli has come to stay, end that the deys of the lerge mill re limited. Nont of the mor acnenseble virgin timber hew been out out and cutting in beginning in the sesond growth etends. This is largely the reason why the ammil alli predominatos in eatern united stetes. Cutting is now concentrited on isoleted more ecesseble atands of second growth. The lerge silid, by resson of ita neavy equipment and large overhesd, cannot profitebly log these tiends--the writers have steted before that the small mill oun often log, miliz and put ite products on the market at aprice below whet the larger milis pay for loge at the pond.

The mall nili hae, for years, been puttine product on the market that is of lower quality end cheaper ermate then thet whioh the large mill will hendie. Meny of the foreign countries, and the people in thin country, oxcept in caesa of lumber for apeciel purposes, heve been educated to buy and utilize inle type of material. Preetically all of the materlal cut in benton County is in the
form of ties and bride piank, moet of which is shipped to the central pert of the Jnited states to be used in the construction of ohemp county structures, such es bricges, and form work. The sem type of meteriel ia used $2 a r g e i y$ also in the iareer federal projeote such ac the Boulder Den. A merket, then, hea been built up for this type of product and the ali mill is the only one thet can supply thin domand.

The amil mill perform the necesampy function of providing part time omployment for many who must otherwise, it limes, be in feopardy of afarvation. There are tpproximately 675 men directly mployed in 20 czing and milling work in Eenton County, and totel of about 2250 people dapendent upon part time work in the mall awmilis for livelinood. In this one respent alone; the amall mill hea function thet is . Lmost indiapensible.

The average wage pid the nill workere and leggera in Benton County is approximately $\$ 8.96$ per any. During times of stoady mun thin would amount to obout $\$ 2,000.00$ per day totel, or, on yearly besie, thie equale eproz-
 County by the mall mill owners.

3xGian via

MLLLS OF THE FUTUR思

One of the more up to date mills in Benton County.

Pomsibilities for milla of the future. Because the small mill has come to the Paciric Northwest to stay, steps ahould be mede toward its improvement as more efficient unit of production. These steps will probably eventually move in the direction of one of the three following types of mills:

1. Small electric mill, cireular or otherwise.
2. Swedish gang mill.
3. Portable band mill.

A brief summary of current ilterature on cech of the three wlll be given.

Eleotrio. Because of the nearnese to completion of the Bonneville Dam, and the posaibility of cheap electrical power, the amall electric mill will probsbly be the first to cone to the Pacific Northwest. W. S. Whitney (47) gives the following advantages for the electric mill:

1. Increased production.
2. Decreased shut-down for repairs.
3. Decreased power requiremente.
4. Decreased building and foundation costs.
5. Mor efficient arrangement and grouping of machinery.
6. Centralized power plant.
7. Elimination of shafting and belting.
B. Lowered inaurance chargea.
8. Deoreased pyroll.
9. Better quality of manurectured producte,
10. Decrease in mocidents to employses.
11. Lower cont of oid, waite, and auppiles.
12. Adeptablitity for futur expension.

It is quit likely that the electrifiontion or the small ammall will initiate aking in manufecturing coste and increse the marcin of profit to the mili owner. This will, undoubtediy, decreat the peroentage of amell mill fellures.

The Soandinevian gang gaw. Because of the initial expend ture for itg esteblimment, it will probebly never toke the place of the small mill we wnow it todey. Its uee in conjunction with the lareer band and cireuler milis, howover, would represent atep toward the iden, from both the sill owner's and forester's viempoints. Anyone failiar with the logeine of virgin gtende will realize the unsvoidable destruction to smill trees. By opereting this type of gang oww in congunction with bend milis, it wills in mont cepes; be posisible to log the smaller trees first, cut them on the zang sows, and then cut the lerger timbor. Since cioereutilng, at present. is considered the most fenseble of the silvicuiturni syetems to une in the Northwest Doughan Fir, the genc saw should incresse the margin of profit in logeing, end, by bringing bout oloser utilization, conalderably reduce the fire nezard.

The scandanavian canc saw will probably repreaent a lerge step forward in the prectice of intenaive silviculture in the Northwest, since its introduction should meke possible the utilization of the mall atook from menegement thinnings. Juch stook 1\%, ti present, considered by most alll owners at belng too will for procesting on the band or oiroular milla.

The ganc saw has beon officselily tested in the peeific sorthwest. Axel H, Oxholm (3) makes the following foints in sumpery of the teat made:
2. The sonc anw has ite principle mpiloetion in cutting loge $5-20$ inches in dameter.
8. It is not replecing the bend nill, but rether is utilizing timber they cennot profitably cut.
3. Loge 25 Incheo at the ton alameter and 24 feet In length on be passed through the mill in 90 seconde the. The mal euts 18 lec-foet per necond.
4. The mill has a $\mathbf{5 0 - 3 0 , 0 0 0}$ boerd feet output per day.
5. Lumber cones out very mooth and unirrom in size.
c. Surfecing on two aidea to get specified widh is oliminated as uniformity and smoothness are geined in aswing.
7. With the proper planing mill, leas than $1 / 38$ inah if token off the bourd in plening procese (each ilde) at compared with $1 / 8$ inch wateege in the bend sewed 1 umber.
3. The gang mill gives 50 to 60 per cent overrun on the saribner scale as compared to the 8-28 per oent ovarrin with ciroular eaw. Smill loge geve ereater overrun.
Q. Chesper costs of manure oturing than by any other mothod yet devised.
10. An entir gang mill on be establishat for 725,000.
21. Inexperienced man on moon learn to operate the mill.

The porteble band mil2. Especielly constructed for use in moll timber, the portable bend mownill would rind Its greatest utility in second growth Etands such es mo typtell of Bention Gounty, Like the soondinevion geng enw: the portinile band mill will probmbly repreeent a forward stey in silviculture by remen or tiemaking possible the uthismtion of much madil loge then cen be used in the oirouler mills or larger band type nills.

The rollowing is brier renume' of the reetures of the fortable bend mill as are given by E. D. oerver (18). The figurea given are the apeaifiestions for portable cead olil with medium output.

Width of naw blade, bout E 结 to 3 inches.
Thloknese of caw, bout $2 / 32$ of en inch. Thioknese of kerf, $2 / 16$ of an inch (aasint). Sew-teeth are apring att, not ewaged.

Welght of mill, bout 3 tons.
midth of enrriage. 36 to 48 inchet.
Horse power to operate, 8 to 80.
Output per day. 2500 to 3000 board feet.
Number of men to operate, 2 to 5.
Heximum ainacter of $10 g$ that oen be handied, sbout
30 inche
Approxinate cost, F.0.B. Fectory 8700.00 to
1,000.00.
The ocrriage is moved beek and forth with reck and pinion device opertted by hend. Likewise, the knees, dogs, and etworks on the carrisge are hand operated. A unique practice it that of edging the lumber on the upwerd motion side of the band sow. The lumber, while it is being edged, is held in pleoe with a clamp or by hend at the smell corriage is pubhed back and forth. These mills produce excelient $2 y$ manufncturea lumber if properly hendlea. The renilzation or iumber from oach \log is high becouse of the amall loes in enwduat and the close utilisation practioed. Compared with the cireular and band saws uaed in the united statee, which out and $5 / 32-1 n c h$ kerfe, the saving from thinner kerf alone would mount to
obout 24 per cent and eeven por cent reapectively.
Although the mill cen cut a \log as large te 30 inches, it appors that thif is aeldom done, most of the loga sewed belng less than 28 inches in diemeter.

A Lumber company, with large holdinge, hes petented - portable band cewalil that is nownted on flat cer built oscecially for the purpeas. The parts of the complete mill, eaoline engine, log loeder, 20 deck, rolls, carriage, saw, end sewdum conveyor, aro all ar the ser and no diementiling is nocesamy when the mill is moved from plece to plece. The nill hes 2 st-inch wheole and used 18 gunge (0.0450 inch) anw, bout 6 inches wide. The teoth of whioh ore aweged to owiath of $3 / 38$ of an inch. The aew and ospriage are fastened to the stesl frome of the railwey oer in proper mignoent: Logs are raised to the $20 g$ deok with an odinary chain conveyor. The mill contains no edger or trimmer. Ench log is turned an it in mawed, which regulte in somemy-edged lumber und sonequare edged. A tho lumber leaven the anw, it is lomded directiy on oer for heuling to the kilns for arying. After drying, the lumber is edged, trimed, and ripped, and is efther louded on bout for mipment or atored in large covered theds to gwit orders.

This mili requirea the laying of a light track so thet it can be moved easily. As now henciled, it in loofted in the woode and is moved often in order to out
dewn logeing expense. Five men ore required to operate this nill, and the output is from 10 to 18,000 boerd feet per day.

The designere of this portable band azwill have in mind mounting in on truck whee in for ue where it is not practleable to lay treck.

SECTION VIII
SUMEALI ANL CONCLUSLONB

Summary and Coneluntons. Preotically all of the lend being out over in Benton county is denuled whout provision for future use. Much of the land is to lie lale or go beck to the county for taxes.

Slash disposil on the land is by broadosat burning and much of the lend is burned over severnl times. This may posibily heve some offect upon etrean polution and the bsence of equetio ilfe.

Evon to the most cannul obeorver, inefficiency in many of the loceing and miling procesees is apparent. At the logeinf operation, this is most cleariy menifested in the distances of yarding logs, the methods of loeding 2oge on trucke or other mehines of trmangortation, end in the minimum ize of treo logged. In fev inetences, better oystoms of unioeding loge to the mill deck oould adventegeougly be employed.

Abmost half of the mille in the county ere without 108 ponds. Sawing loge unwashed not oniy euta down output, but aso, at limes, beanae of flying rooks and other forelgn meterlal fron the hendeaw, bringe about en accident hazard to the morkmen. In allls where log rollways ere employed for log otorage there is on occabional shutdown beause of broken logeing equipment or bed weather. \#11a with greater apace for atorege could, In e meaure, evert such shut-down. For this reason, the use of a log pond is very adventegeous.

In 11 but one case, $10 g 21 f t s$ are of the cmble drag type. The bidiway from the pond to the mill deck should be froperiy reinforced to void possible tie-up in production. A cheap and efficient reinforooment method consisting of railroed iront lata stas by alde parallel to the length of the slide hes been used in one mill.

Loge are, in most inatanoes, turned on the carriage by hand. In many eases, this in ecompensed by much lont motion and loss of time.
sone fille typiry anok of efficiency in that they have been poorly built en regerde ample roon for effective use of the mill mohinery. Such construction in three mill is a high potential accicent hazerd.

The doubie circuisr saw predominntes in Benton County, and it also serve as an edar saw. Such une of the hendvaw cute the output of the mill in helf and causes excessive wate in slabs and odelings, inmocuracy in widhe, end waney boards. This, no doubt, inoreeses output costs per 1000 bourd feet conaldarably.

Les: than one third of the Benton County mills have a market for by-productn, such elebwood end sawdust. Such wste is unualiz deposited in sone near-by creck and burned. Thic my possibly heve some offect upon quatic life in sone of the Benton County strea ms.

In one fourth of the alils in Eenton Sounty, power 1s inadequate for the proger functioning of the sewmill
machinory. This has the effects of aecreastng output per day and increasing the cost per 2000 board feet of 11 matorial sowed.

Over 50 per oent of the nill ombers in Benton County do not keep dequate cost records or realike the necesatty for such fractioe. They wre, in amy peving the way to rinencial disaster becnuse of this.

The average mill owner in not well versed in the cience of ir arying dunder in the yeride. He doea not realize the noccasity for sanitation and proper air circuletion. In most inatanoes in Eenton county, storace yarde ere not atiartactory from any point of view.

At least three fourths of the nill owners in the county work at som inportant job th the rill and leave the other phoses of logetng and milising without the proper euperviaion. This may, in some resects, ecoount for the great mount or inefrielency shown throughout the milling and logeing operetiona. Host mill ownera have not had the proger trining along the ilnea of the business which they seek to rollow.

The term "marginal $20 g^{\prime \prime}$ is torm of mystery to the everege manll mill owner. Any log large enough to make lumber of any size or type is considered es merchantable by the majority of mill owners. The mintmum loe cut in the county averagee below tweive inches in diameter end is probebly four or five inches amalier than the marginal
log. The small timber produces narrower withe, end the chesper gredes of lumber which er aso the most costly to produce.

In dealing with mall logs, it is importent to remember the following points:

1. Man depsetty is twice atgh with go-inch loge at with 8-inch.
R. It takes three tines an lonc to skid 1000 foet of 8-inch diametor logs the some mount in 80-lnch loge.
2. It requires four times an lonis to lond a or with 1000 reet of 10 -inch loge se to Lom 1000 feet of 20 -Inoh loge.
3. A cer $\quad 121$ haul three times much in yoluma of 80 -inoh logs as it 111 of logs 20 inches in diameter.
4. It requires twice an 2 ong to sam 1000 foet of lumber from loge with in g-inch diemeter - from 10 g which overage 20 inches in dinnter.

No tudies of moreinml loge have been made by ny mill owner in genton County.

The lorger majority of the amall nills thet start up are not auccess. Thie failure cen usually be treeed to inefficiency, under-financed conditions, end the reluctancy of the mill owner to know the linitations of his
plent.
The salil till owners have, in am comaunitios, been eiven the mame of "cont by day and liy by nighters" becnuse of the unscrupulous business dealinge of few indiviauiz. In some instences, will help resides under conditions that are nost squalid.

If 12 of the mile in Eenton County suryive, ond cutilig continues at its present reto, the county will be denuded of timber iand in leas then firteon year.
over 25 per cont of the populition or Benton County is maloyed in forestry.

The survival of the commatifes in sem pleces is lergely dependent upon the survivel of the forst induetries.

Forest industries are the repid docitine in Benton County, and thie deoline will uitimately leed to the fol10wings

1. Hor unemployment.
2. Lowered standard of ilving.
3. Hor tex delinquencles.
4. Greater tex burdens on remining industries.
\$. Faliure of related industries.
5. Unstable populations.
6. Loss of possibility of e belaneed econorale and necial atrueture.

Tax delinquency, even at present, is a great problem

In Eenton County. ihirt,-five per cent of the county end privetely owned linde re now tex dedinquent.
feculation is necessery but probably not se inperative stablisation or induatry and comanities. Mortality in the sman lilis will curtail production. The smell milis finenced by peculatore ore doing much to bring about overproduction.

Feotore efrecting ovexproduation ore overiond of stumpage and forent lend, financial preasure to liguidate, excessive plant ospacity, and high coste of operetion.

Fegulation is hampered by exceasive tex burdena, uncertain future otumpege priees, high riek, and the need for inmealnte eneh.
erecticeliy all of the mawed producte from Benton County are dieposed of through brokers. in meny instances. the broker reag complesion such ereater than is manifested by their comission fee. The amall mill owner is uneble to ayold these losses beouse of his leck of knowledge in grading product and his linitod finances whioh prohibit nis atoring lumber or soling in trensit.

The smell ammili, with 21 of ite mort-coninge, has a dofinite atche to fili in the lumber indutry. It 1s almost an indispensable unit of businese for the following reanons:

1. It can profitably \log and mill bodien of tim-
ber that tre tow anill for the large mill. 8. It must suppiy demand that has beon built uf for poorer erede of astorial.
2. It furnikhes part time mplogment for meny who Would otherwite be in jooparty of starvetion. The small mili has, undoubtediy, ome to the pecific Horthest to stay, and the more officient units of prom duction of the future will probebly be of thre types: The loctricaily driven mill, La Scandinavien gong type-to be uasd in confunction with the larger mille-end the portable band mill. The intter two neve their ereateat utility in their being able to manureture grofitably the smaler clameter loge.

SECTION D.
NTGOMUENDAE LONS

Fecomandations. In review or the subject mettar of the thests thue far presented, two facts of putatendIng loportance mentrest themselves:

1. Thot there is great need for efriolency in nill operation.
2. That. unless curtiliment of sowe type is applied soon to logelng millinég Benton County must prepere to mutfer the loss of her entire forest onterprise.

A short couree for loweers and alll owners. In

mot tate grlcultural schoola, short onursoa are fiven ennueliy to those gericulturist , deiry men, and poultry men tho wish to mtend. These ehort coursen are usumily of only few diyy' duration and cherelly are free of cherte. In the authora' mind, auch course as this onotild be eqven for the $3 i l l$ owners and logeers of the state who lob to ettond. It is quite pparent that inCfficiency ts lerge tector oontributing to the nigh mortality of mall mille. Ints inefficieney rises, not from un un illingese to do better; but beocuse the fyerege nill owner hod not hed the training to the inefficiency of his unt. At the tire many of the mill ownerg begen fornine their 2 tvinge by doing odd iobs around the sills or logelng operetions, merginel log Wab alnost an unheard of thing" These nen nave grown up with smell milis and "gypo" outfits, in an pomoshere to

Which these later developmente have not been introduced. Thus, many of them have remainad in ignorance of some of the newor dovelopmonts in rilliligg and logeting. True enough, litersture has been tallable on these subjects, but the varege layman dows not know the valve of auch ifteretur or where it is sumileble if he noes. As before ststed, the educetion of the verage manll will owner in Eenton County is little mor than thet of erammer echood instruction. For thit reson, ange pet of seientifio litereture mey be of suoh nature that he wlll not readliy understand tt.
wot mill owners welcomed the uthor to inspect their etmblishment and even took time out from work they were dolag to angwar questions. Many have stated that students wer welcone to vist their nills at eny time snd thet they were lways open for oucgentions for improvement. The vorege mall mill owner realized hie linited knowlede of his own bueiness. Several heve stated thet they felt thet only smal profit, if eny,wes realized from their amm logs, and they had no wey of knowing, other have maked the writer to make 108 studios on their operetions.

The authors fael thet should anort oourse ot oregon State College be given for locgers and lumbermen, the at tendence ould be high. Short courgea are given in stete collegen for horticulturists, poultry men, dairy
men, and Griculturista, sud it seome only logicsithat such action should be infliteted for the iumber induatry, one of the most importent of the peofic Northwest.

The course ahould consist of both lectures and preatical deaonstrations thong the lines of seving. fill construction and optition, lumber erading and sossoning, merginal loe determination, and verioue phases of the logcing industry. Smsit inefricienoles thet may orise in logetng and filling should be polnted out and the more lmproved aethods brought to light. If such course enould be initieted it might 60 far toward cutting the high mill mortailty and loss of payroll. It would undoubtediy lead to higher quality producte, and nore stebilized conamitien.

Indiviaunl student projecta in 20 gicing and milling. For econd recommendetion, the muthore should like to suciest that practical probloms of the mill ann and 20 g ger of the vioinity bout Corvalile, oregon, be woriced out by the forytry students of the college in oonnootion With their undergraunte work. Praction probleme attacked by atudenta at prosent are chtefiy long the innea of silviculture. These atadies ere invaluabie in themselves but more diversified universe would aive the ntudent ortater lnalght int? the forsatry aituetion as male.

Studies could weil be oonducted along the lines of
marcinal lof determintiont for mile of different, cepacilies end in veriety of coniltione, for exemple, a certain ty of topography, veriation in merege D.E.H. of stands, min methocs of logint. In efe yoers' time, with auch informetion sould be collected from thege studies, the sehool of forestry could, 故 knonledge of the tinber stand and topography of atven area, predict, with fair degree or necurncy, the lze of operation thst should log that ares, the method of loceing to use. and the probebly marsinal tree to lenve in the woods. such messures es these could pessibly spell the difference between profit and 1ose; hence the survivel of the manil mill.

Cooper tion is neecod in the andil anilis. In the opinion of the writers there is orying need for cooperetion mong mill mill owners. The old onsge "two heads are better than one" couid woll be gut to use by these men. Undoubtediy, they could be or greet assiatence to eech other in solving mall problems thet arisedaliy in logetng and alling.

A more intenstve form of cooperation could the the form of community ary kiln or cooperetive aies gency. The kiln, for exmale, could be locnted the comxinity shipptig point. sany of the aill owners object to such a setup, because they feel that the servicea of en expert are roquired for opereting the kiln. In the opinion of
the writers, the ordinary oonseientiou leyman oen learn to operete kiln if he obides by hid handbook and etiadies it carefully.

Ordinarily themall mill omer does not own his planer, ond, if he has planing done, sueh at is the ofse of eeveral mille in Eenton County, it it ot central dock, upually looated at the hipping point, Meterial taken to the lending could be aried, ereded, end pianed. Even if producte wer sold through brokers ffter thet, the practioe of "akiming the oream" as is the policy of nome
 -1minated. Drying and plantnes it ald with the producte of mill number 10, would undoubtediy yleld more uniform grade of msterial and such an would find e better merket thmen ta round by the everage mall mill product.
thet central anles agenoy is practioni hes been well demonatreted by mompeon's enteblifhment et Blodgett. All of the small mille of the viainity or glodgett ship their producte through hin. iar. Thompson has developed his own trede. He planes large portion of hie lumber, snd, becuuse of the quality producte he handies, finde a ready narket for all mierial he has for sale.

It would be great bencfit to the smanl will owners If they couid, in some way organtze and establieh central males agency of their own. Such organizetion and merkt atablishment would require conaldereble time and
and much atudy, and the chang of marketing through their own gency rather than through brokera would mecessarily be as gradual at the upbuilding of maricts for their products, but it it not at all imposesble. If a central sales organizution oould be orgenized in conjunction with a commitiy kiln and planer, it in quite poesible thet the combination could spell dollare in the pooket of the and mill owner och month; honot decrease the mortality in the emall millo.
fegulation of timber out in Benton County is needed. Thet there is need for reguiation of the timber out in Benton County is very obvious. It is quite likely that even if the sounty were covered with full stocking of fir on ell of ite lands auted to timbor erowing, there -ould be an inadequate supply for the continued operation of all of the smil wils now running.

If, by legislation, it would be possible to control the number of mille, and, if, by neyatem of permils besed upon the fitness of the milling aspirant, the government could atate who wae to $20 g$ ond mill given axea, the problom of cuttine oontrol would be satily olved. It Is not likely, however, that nuch legielation will be hed, for it is restraint of free trade: henoe on onoronohment upan constitutional righte.

Probably the only feaseble mens of maintaing a suetained timber apply in Benton Gounty it through the pri-
vate owner, and chle will never possible ang an the individul has no inducement for raising timber and is pressed for oesh. It is expeoting too nuoh of the private timber holder, ven if he is well-educated to forentry prections, to think that he wilk maintain his timberiand while losing money on it. Therefore on inducement of some type aust be offored. The rorest texation incuiry offer deforred timber tax ae boing the most feasmble remedy for the taxation problen. The prineipel points of thia plan are follows:

1. Land velue-taxed under ordinary property tax.
2. Timber vilue--tax doforred until inoome is received. Taxes necumule without interest -s charge galnat the property.
3. Any ineone received in used to pay the ouruleted thxes--the pmyment is limited to an mount equal to mpeoified percentage of the gross timber income. Fnis portion of the timber estmme thould be specified by law and be large enough to cover the acounulated toxes under the most unfevorabls conditions of income deferment. It will probably be 30 par cent or 40 per eent of the groas timber income .
4. The tete asume the burdon of finanaing tax
payments. It receives money from timber owners when they receive incomes from timber.

The deferred timber tex system, however, is not a remedy for the land owner whe needs cash bediy at a time before his timber is mature. He will sell at the firat offor rether than be in jeopardy of starvation. The probable solution, then, lies only in a lowering of governmentul costs, and betterment of general econonic conditions combined with system of educstion and the revegetation of denuded lends. The writers feel that delving into the first three parta of the solution is beyand the universe of their thesis and for minds of greater depth than theirs. Revegetation of denuded lands is treated olsowhere in this thesis.

บมี

Coologista have gathered information to prove.
tad Fercsers tate foms metten in the vunk of to tametre toee, liat the forest of the Lllametite Priley are a \cos t recont addtion to tho cover of this vast expanse of fortila aos. Lico tory of the wooks in twe history of the yorld, is, thet a ohow tive ago the ocem oxtended iniand for milo from ore the howe now 2ie. khells of the moluales ocmaon to the ooastal wators have been found in various plases in the illmatte drainage, The Paciflo Dorthvest is "Now country" in geolagio sonse. tho soli has hud but ahort tine in wheh to oulld fortility and to oover ita aurface with vegetation of he hicher typen. The Indians, too, the tholir pructiec of yearly burninf for vaxious reatons, hold bsok this waroh of vegetation. So it is that the "seeond Growth" of this Velley has come, within the last contuxy or lees.
thon the white nen ears to the volnity of Corvallia thew were fow treos of any sort. Along the etroans in the moist loontiong, willow, oothonvood ne the sompanion speciec were to bo found in narrow stripe and anall 1 aom lated stande; farthey up on the alopee of the foothile white onk in sonttered numbers was trytur to gain a footm hold. standing alone in gnorled treagth, on hiltops, In protected locations on the slope below, or sefe bestde
sone oool protecting streaz, the firat of the invaders from the Douglaz fir foreat fought to hold their ground. Baok tovard the backbone of the coast Mange and noross tho valley in the lowes wenches of the cannates, the
 Since the ooming of the white visn with hie lave
 trees that furnish fuel and lumber, the moogeny of the fow icolated ole efr, in this area, have arept dom the hillsides to oover the slopea wh a mantle of green. hare allowed to continue their alow progress these trees are sponding ou* Into ficlas and evon taidug abandoned homeateats and botton lands. Stands of fis ten to thirty inohos in alnoter aro now stanating on areas gained in the hast sixty to ofghty yeare. In some losalitiee thia swroad has been mowe gradual than in others. The oil, elevation, phyalography monany other factora have entered into the 14 fe patterns of the various sterds.
hor man ase he brought with him attiv, goats and shoep. lle pastured these mitals on the land whore Douglas fir grom. Later he fought the fire an $1 t$ enaroalied on his pastures. Bteep hilisides are even yot slashed off and burned to stike pasture for grasine antranis. Denudation of the hiliside usually reaulta in orosion of some intensity. later the twees boame large enough for
use and man began outting them in woleande quantitiea. His methoas of outting have on the mala, been very destructive to the strade of timber, and ezabh as aFotrt an manticod han wemultad in natithnte of mob-
 Porest. Sth the outcing out of the oadtern and touthern

 tho forest land. It is becaute of thit treat of eventa that the authosen hetw onbayiged upon the atudy of the Noxglan fir.

Problem: The purpose of this phase of the thosis is to prosent the fretore affeoting Douglas fir weproduction In as oroplete fow as poadivie and fron thle preatatation to drav consluaions which will oontxibute to the knowledge of the abitect so to allow row bottew syatom of man agenont, silvioultwmaliy, than is now in proctioe.

Previous to this time mary autions have touchea on various portions of the moblen of bouglao riv reproduetion. The poreat semvioe has compiled data down thw the yeaxe and several moxinent officinia have aomeributed to the 11 terature on the abloot. Usually, however, the Inves ighters ave onoamed with only one angle of our
study. T. T. Kunger, Leo Iakac, J. V. Hormann and many other foresters heve puliLuhed papers on Dougias

 it In ous wow, it tho Orogon 3tate sollegt averal stucents heve been interestod in the aubject and they also anve aompliec Intomathon valunte to ble stuay
 ing in their oontributions.

Beause of 11 : tation in thro, money, wn fold of otudy, we hav not corapletod the vorte as wo would have ithed. Hore sarple plote, branseate thru a dier vartety of sample areas, manged field of study, nowe amplete and detallod nothods of study would all have helped to mature ous fudgront san build our framework of material, however, 11 rilited of whe been, the offor ouv wort realising ite inadequacy and hoping that there 18 sote essenoe of truth in our conolusions.

- tudied ech logeting and miling operation in Benton county. wen our linoe through soms of the aroas and took seaple plote at recular intervale. Discussion of the factore with men in the rield and orftee was welconed and sought arter. Mranly with thif baokground we set to worit on the 12 terpate avalleble on the problem and on 11 terature pewtinent to the problec thougi not exactly ooinatdent whith inis liternture was briefed
and sompilea in reference volure. Aftes this labor 111 was completod we tiartoa on oup own interpretation of the frotors concemed. Ty nelyals of data aosumiated and frequent vererence to our briter with discuestons
 orit our diseertiocion.

A residual stand of young Douglas fir.
This operation has opened the crowns sufficiently
to induce erowth but not enough to injure the stand in any way. (Logged under direction of Prof. P. J. Starker of the Forest School) See also Flgure 15

Selective logeting done under guidance of
Prof. T. J. Stariker.

ALULGULNTRAL STUDY

Benton county presents a situation which is rather severe on the student making studies of a silvioultural nature. The milis for the last fow years have been doing very little, but at the present time they are expanding very rapidiy. The result is that there are nu erous amall logged areas, but very few areas large enough to furnish adequate sampling. Another factor that adds to the difficulty is that the milis move at short intervals of time, and it is hard to find where they have been, and so get the history of each area.

With the foregoing in mind we decided to study what areas we could by means of the sample plot method, and to supplement these atudies by observations at the different mill sites. This method has given a background With which we endeavored to properly interpret the work that has been done in this field previousiy. Silvioultural plots, to be of the greatest value, should be so looated that frequent studies over a long period of years may be made. In this way, data oan be accumulated whioh are precise and accurate. Not having the time or opportunity to do this, we are forced to supplement observations in the field by atudy of the more intensive work that has been done by other atudents and silviculturists.

The following series are sample areas selected because the history of each one is known, allowing for a better interpretation of the present vegetation.

411ev sociea.

On this atation we have an area heavily grased by
 Iy ouppliod by seed reee. A burn went thru the outting in 1982, and aince that tine 24 hat been free fro fire.

- rin IIne sorose the drainage, taling samplo plots, 6.6 feet in area, every flve chains.

Although our atwatee at this loostion are insueflotent to draw conolusions of any great vetitht, they do aeern to point to the fant thet bheep are very hamerna to peproduotion when in great excest. moy also point out the fact that to efequately reseed the nree an biundance or seed troes is neoesenyy.

304TIT X

YF

DATA SHEET FOR BENTON COUNTY MILLS

SILVICULTURAL STUDIES

Plot No.	1. Aspect 2.S1ope	Vegeta-tivaDesaription	Reproduction	Grazing	Soll Dosoription	Seed Trees
1	1. E 2.5%	B Fern Weeds Orass WIr1s	2 DF	Heavily grazed (sheep)	Burned olay	1 chain
2	$\begin{aligned} & 1 . \mathrm{NE} \\ & 2.10 \% \end{aligned}$	Hazel B Fern 8 Weeds Grass	5 DF	$\begin{aligned} & \text { Protect- } \\ & \text { ed by } \\ & \text { brush } \end{aligned}$	No duff " humus clay	1
3	1.S E 2.10\%	B Forn Grase Weeds	6 DF	$\begin{aligned} & \text { Lightly } \\ & \text { graged } \end{aligned}$	No duff " humus clay	\#
4	$\begin{aligned} & 1.3 \% \\ & 2.10 \% \end{aligned}$	B Fern Salal Grass Weeds	8 H	Lightly grazed	No duff " humus olay charcoal	$1{ }^{1}$
5	1.S.E 2.10\%	B Fern Veeds Grazs	1 DF	$\begin{aligned} & \text { Hghtly } \\ & \text { grazed } \end{aligned}$	No duff " humus olay:	$1{ }^{1}$
6	1.SE 2. 5%	B Fern Grass	None	Heavily grazed	ohar- coal No dufe " humus olay	1 \#
7		B Fern Grass (ivis "3traw berry	1 DF	$\begin{aligned} & \text { Heavily } \\ & \text { grazed } \end{aligned}$	oharcos 1 No duff " hurus clay	

DATA SHEET FOR BENTON COUNTY MILLS

SILVIOULTUNAL STUITS

$\begin{aligned} & \text { P1ot } \\ & \text { Ho. } \end{aligned}$	$\begin{aligned} & \text { 2. Aspeat } \\ & \text { 2. slope } \end{aligned}$	Vegeta－ tive De－ omiptio	Tonnem daction 1	Orasting	Sol 1 Deaterip－紋的	Seed Trees
8	$1.5:$ 2.10%	3 Foxn Bberfy teede 0uas	Wone	Rasvily grazed	thameond No duff W munua olyy	1 ghatn
9	$\begin{aligned} & 2.3 \% \\ & 8.20 \% \end{aligned}$	P Pown Theryy Oreas	Sone	Heavily Brased	Chareonl No dutt nurus olny	$1{ }^{3}$
10		F Fex Fooda Oraes	None	On trail Heavizy graned	No aufe hemata day	1 ＊
11	$\begin{aligned} & \text { 1. } 5 \\ & \text { 2. } 10 \% \end{aligned}$	F Fem Salal Orasa coda	6 \％${ }^{\text {F }}$	Proteot－ pa by tranh	No aurf ＂huwne day	1 ＊
12	$\begin{aligned} & 4.3 \\ & 2.10 \% \end{aligned}$	$\begin{aligned} & \text { Pemn } \\ & \text { srlad } \\ & \text { hrase } \\ & \text { reocs } \end{aligned}$	8 DP	proteot－ ed by braeh bose 	Wo duef ＂humua clay	1 ＂
23	$\begin{aligned} & 1.15 \\ & 2+158 \end{aligned}$	salal Grase Eeda	6 DF	Proteet－ od by bsaeh powe 	Ho duff ＂huraus azay	1 ＊
14	$\begin{aligned} & 1 . \mathrm{y} \\ & 9.20 \mathrm{E} \end{aligned}$	bern Pragis	Hone	LEthez brazed	Wo cures olay us	1 数

DATA SHEET FOR BENTON COUNTY MILLS STLUTOLLTHAAL

Hawley Seriea

3lach diaposal at the tation here demoribed it IImitod to "touahing it off," The reault is a partially burned area liternily aovered whth loge and charred de bris. One fire was aet off in the fall of 198s, another In the Pall of 1984, and the last me in the fall of 1988. These fires in all cases overlapped the preceding fire to at muoh as fifty per cent. Burning back over the previove yeara burn, they doatroyel any reproduction establi ehed In the meantime, and kilied a few mose soed tree left in the orlginal logring. The fires in time inaure the area of a loag have fight back to produativiby.

In laying out our plots, we aeleoted an aren bumed over in the fall of 195s. Vo had to change the oourse of our atudy trice to avold the reburns for we felt, that to get a repcesentative ampling of the 1983 fire area, ve would have to do tis.

The plote were taken every 2 ohains and were 6.0 foet square.

The axea was for the most part heavily grazed and the seedlings in many places showra aigna of having been aropped by the attle. Seed trees aro mowe than arple and the aite has moisture in surfloioncy, beling on a hillside fea by manerous seopares. The way the soedilings on thit mail portion of the area are
fichting to come back ahowe that with proper proteotion the ares would quickly be covered with another etand of Douglas rir.

DATA SHEET FOR BENTON COUNTY MILLS

SILVIOULTHAL STUDKES

110: No.	1. Aupect 2.slope	$\begin{aligned} & \text { Vegeta- } \\ & \text { tive } \\ & \text { bearin- } \\ & \text { tion } \end{aligned}$	7apwaduation	Orasing	$\begin{aligned} & \text { sol2 } \\ & \text { Deacrip } \\ & \text { tion } \end{aligned}$	Seed Treen
1	1. 2. 15		$\begin{array}{r} 2 \mathrm{~b} p \\ (1-\mathrm{arop} \\ \mathrm{pec}) \end{array}$	Reavizy erated (cosa)	Wo Gump hutue grave21y oLny	4 chach
2	$\begin{array}{ll} 1 . & 31 \\ \text { 2. } & 5 \pi \end{array}$	Orasas Secte 3 Pown Tasds	1 p	Leavily manded	To aut huxats olday	4 "
\$	1. 数 2. 10%	B Fown Thisties Orass	\#one	Heavily grased	Wo aure hwcus - 1ay	20
4	$\text { 2. } 11$ $\text { 2. } 15 \%$	F Fexn Diberyy W oherry niatias	None	Teavily grazed	To dufe * muryus gravalıy olay	3
5	$\begin{aligned} & 1 . \pi \\ & 2 \cdot 10 \% \end{aligned}$	B Pem 7hioryy Wahexwy 	None	Heavily greaed	No duef " hurat olay	4
6	$\begin{aligned} & 1.4 \\ & 2.10{ }^{2} \end{aligned}$	$\begin{aligned} & \text { B Porn } \\ & \text { Bboryy } \\ & \text { cohemyy } \\ & \text { mietien } \end{aligned}$	Wons	Heavily yrased	No dura * humua	5 \%
7	$\begin{aligned} & \text { 1. } 11 \\ & \text { 2. } 20 g \end{aligned}$	ALder Tnistles Brasa Moss	Vone	Heavily grazed	No dut " huvata 7arnoed Deqgying	4

DATA SHEET FOR BENTON COUNTY MILLS
aHy

$\begin{aligned} & \text { Plot } \\ & 10 . \end{aligned}$			7aremo cuction	brackum	3odx heorer 2 m tion	seed 学6es	
0	1．管 $\text { 2. } 20 \%$	$\begin{aligned} & \text { foovery } \\ & \text { Alder } \\ & \text { oos } \end{aligned}$	510	mothet－ ad by loge eto	Taxy or Bessying		AElns
9	$\text { 2. } 20 \%$	Uavthom 7Mathoa Grase Lese		Heavizy gresed	40 oupf ＊huxnue clay	3	＊
10	2． 11 2． sot	$\begin{aligned} & 3 P_{\text {gr }} \\ & \text { Toemry } \end{aligned}$	$\left(\begin{array}{c} 1 D v \\ \text { cropped) } \end{array}\right.$	ught2y grated	No durf ＂humas Gavolıy clay	5	＊
11	$\begin{aligned} & \text { 2. } 4 \\ & 2.40 \end{aligned}$	Vnaple Tbenwy R rewoed grans相	1 D		$\begin{aligned} & \text { No auts } \\ & \text { n hugat } \\ & \text { olny } \end{aligned}$	＊	＊
12	$\begin{aligned} & 1.12 \\ & 2.40 \end{aligned}$	13 Provn Dberwy Tuacle Oqnot 	Wran	$\begin{array}{r} \text { Heavily } \\ \text { giser } \end{array}$	$\begin{aligned} & \text { Wo tuxf } \\ & \text { muwn } \\ & \text { oluy } \end{aligned}$	2	$*$
15	1． 2.50%		＊	LA chtz 5resed	Theraon 2 76 axt ＂huntue	8	＊
14	1． H E． 30%	P Pom Whomey noncie \％oes Maple Fireweed	21 y	$\begin{aligned} & \text { Pooteet- } \\ & \text { od by } \\ & \text { loges } \end{aligned}$	\＄0 durf ＊hutue	5	＊

DATA SHEET FOR BENTON COUNTY MILLS

Burge serlos

These plote were takon in an area autwover in 1981 foe oordwood. The land Lies on the bank of a mall strean. It is falriy well shaded by the treea left after cutting and the ground wae out up by the operation. Slnoe there are oniy a fow aores in the traot the data are not very oonclualve but they were taiken beatuee there are so few places in the oounty mere one oan find Douglas fir land whioh has not been burned over and whioh has not been grased, the plote were taken 1 ohain apart and vere aix feet ilx inchee equare. The land has not been burned for at leant aixty years, whether beanuse of proteation or not, and the ground is in fine shape.

The area has a alight slope to the south and east and the moisture mobably is suffioiont, even for seedlinga, the yoar round. The reanlt has been aatiafastery in seodling survival and in the oourse of a few yearb a now stand should be olosed over the soli. The soedinge now on the plot have oome in alnoe 1951 and are there in aufficient numbers to edequately stook the area even Whout further atocking. That is asauming, of oouree, that grazing is not allowed in the near future and that fire wlll not enter.

DATA SHEET FOR BENTON COUNTY MILLS

21ot	1. Aapeat 2.31ope	Vogetative Dearnp-	nowso duction	Grasing	9041 Leacrip- tion	Seed Trees
1	1.28 2. 28	Itasel Ospray Crases reoda	Wne	Mone	110y Loom Some huxue	1 ohain
2	1. 5 E 2. 3\%	Hasel 5 Fern *Tberry Opans Teeds	$\begin{aligned} & 3 \mathrm{D} \mathrm{~F} \\ & 2^{*}-6^{5} \end{aligned}$	None	anay Loan	\%
8	1. 32 2. 0%	Dbexwy Hasel Ores ceeda	$\begin{aligned} & 10-1 \\ & 6^{\prime \prime} \end{aligned}$	Wone	clay 1oana	3
4	2. S $\text { 2. } 5^{4}$	Hasel Dberry Orean ceda	Wene	Mone	$\begin{aligned} & \text { nay } \\ & \text { loom } \end{aligned}$	2
5	2. 8 E 2. 5%	Bberyy ospray Drrape arase	None	None	$\begin{aligned} & \text { 3lay } \\ & \text { Lown } \end{aligned}$	1 *

Alsea Seriea

The thimer logged from this area was tracen ohierly from the matersheds of Yew and Alder areeke on the headwaters of the Aleea river. The topography on the land 10 rough, ranging uaually around 50 to 50 per sent. This ground has been burned over by fire upon two different cosacions. It is oovered by litter in only a few places and as yet the weeds, brush eto., do not oover it to suah an extent as to keop the acil frou eroaing. The Plrst large fire awopt through this area in 1927; the second one adied to the demolation with a reburn in 1932. From date colleoted by Rasmusen at Oomvellia, it may roadily be seen that tons of oarth from this burn mast have been awept into the aroeks by the heavy rains. The appearanoe of the ground bears out this conciuston.

The timber out ocnelated of Douglas fir, hemlook and oedar, and was saken off of the area by the high-lead met od. The ovidence of the logeling method oan be seen in places of continued orosion.

The remaining live seed trees are very few. They are not nearly adequate for the restooling of the area. As a reault, it iles siowiy reoupersting from the offeat of the burna. The vegetation now on the area is of no value to man but it may be of value in rebuilaing the
s011. The only way for a nev tand to beoone eatablished in the next one hundred years will be by the offorte of man.

1/1000 ase plots were taicon every five ohatin over this burn.

The ilne of pregreas wae caroas the anyona so an to give as oharratemistic a mempling as posibibe of the entire area.

DATA SHEET FOR BENTON COUNTY MILLS
SILVIOULTEAL s．0ロLES

Plot	1．Hapeat a．．1ope	Vegete－ tive Datorip－	7aprow cuotion	Grazing	3012 Deserny thon	seed Bread
1	$\begin{aligned} & 2.35 \\ & 2.30 \% \end{aligned}$	3 Fown velaz Herry Hamel	None	None	About 1＂of lit ter Mo mumas oxymple clay	5 ohaim
2	$\begin{aligned} & 1 . \mathrm{S}: \\ & 2.60 \% \end{aligned}$	$\begin{aligned} & \text { B Fown } \\ & \text { Salaz } \\ & \text { MBowry } \end{aligned}$	Nona	Hone	n	4
3	2． 2． 5%	Tberryy Preweed Thbervy Bxlcer bowny	$4{ }^{3}=8^{p}$	None	110 14． 6 ver No humue Ol yraple oluy	$1 \quad *$
4	1.7 2.30%	FIreweed Thowy Bbowyy DR1dev photyy violet	None	Mono	4	6
8	2． 1 2．20\％	B Foxn Whorry \％Somrez Thewry Hosa	$\begin{aligned} & 1 \mathrm{D} F \\ & 8^{\prime \prime} \end{aligned}$	None	Dexae 11tter oxympla olay	$4 \quad 3$
6	1．＊ 2.30%	Mervy Pireveod 5 Somrez Hose	Wone	Mona	童 ${ }^{*}$ 14tern 01ympla 012y	6 为
7	$\begin{aligned} & 1.53 \\ & 2.10 \end{aligned}$	B Pern Tberwy Dbewfy	Wone	Wone	4 114 ter OLymuta alay	\％

DATA SHEET FOR BENTON COUNTY MILLS

Plot Wo.	2. Anpeot 2.31ope	Vogetabve Donavip thon	Ropeoauation	Orasing	3012 Denarip	Seea Treen
-	$\begin{aligned} & \text { 1. } 3 \\ & \text { 2. } \mathbf{3} \mathbf{0} \end{aligned}$	B Pern Harreod Mbowy 7yodmase	Hono	Wone	No curf * humue	9 anain
0	$\begin{aligned} & \text { 1. } \frac{1}{3} \\ & 2.20 \% \end{aligned}$	Wbonyry 74neweer	*	\%	Ho durf nuwx thoh oharooal	
10	1. 3 $2 \cdot 40^{*}$	1 Parn Wberry Fh moweed B1 noknat "tuexyy	\%	3	Very 11 t tle 11.t50n No humue	
12	$\begin{aligned} & \text { 1. 鼠 } \\ & 2.30 \% \end{aligned}$	THoexyy T bumey Mreveod	*	*	1. 11 ttos No huxase	Bohaine
12	$\begin{aligned} & \text { 2. } \\ & \text { 2. } \mathrm{mO}^{3} \end{aligned}$	S Fewn Dolormats Tberyy 5Sonves	n	"	*) 11t ters No huma fuch ohareonl	6
18	1. ${ }^{1}$ 第 2.20%	$\begin{aligned} & \text { B Pern } \\ & \text { g } \\ & \text { Tberry } \\ & \text { BMdew } \\ & \text { berry } \end{aligned}$	*	*	sexne 11 tear inc Imana	7 *
14	$\begin{aligned} & 1 . \frac{4}{y} \\ & 8 . c o \end{aligned}$	*Taplo Tbovizy ssomerel 9P0:n	3	*	$\begin{aligned} & \text { Ge } 14.6- \\ & \text { tor } \\ & \text { Wo mumus } \end{aligned}$	6

DATA SHEET FOR BENTON COUNTY MILLS
SIEVIOLLTORAD BHWLES

plot no．	1．Aepect 2．1ope	Versta＊ 4．vo rgagut	靬aprom Huction	Oraming	sol． Desoryp 6 0 an	Secd ruced
16	$\begin{aligned} & 1 . \frac{10}{4} \\ & 2.10^{t} \end{aligned}$	$\begin{aligned} & \text { E Pown } \\ & \text { Prinevced } \\ & \text { kose } \end{aligned}$	None	None	lo duft ＂humas	2 onains
16	$\left\lvert\, \begin{aligned} & \text { 2. } n \\ & 2.20 \% \end{aligned}\right.$	寒 Fown Salñ Thincuua－ pin Tbemy	$\begin{aligned} & 3 \quad \mathrm{~B} \\ & 6^{*} \end{aligned}$	\％	No curf ${ }^{5}$ hurus	1 \％
27	$\begin{aligned} & 2.20 \\ & 2.0,3 \end{aligned}$	Duane pola etand	palas 6x6 av． $3^{\prime \prime}-6{ }^{2}$ diarsetan	\％	$\begin{aligned} & \text { 曋 hate } \\ & \text { Ro humax, } \end{aligned}$	$\%$

These plote were taken in an area logged over in 1914. The land hes been grased some, but very 1ightiy. It ia fenoed and oonsiats of two ridgen with ary gully between. There are quite a fov seed trees of Douglas fir and of whte rix monttered over the area so the seed scurce is comparatively ample. This 60 aores is the oniy logged ground in this partiouler valley, that had any extenaive moproduction on it. the rest of the land (seation after sestion) ia seeded to grase and is being hela in this subeclimax stage by fire and grasing of sheop and oattic.

This 60 aores stuatiod was logged by howeed. Being of a rathor loose graveliy etructure, the soli is likely to be doficient in motature. Hat it beon logged aarefully whth an iden to proteoting the soil from deterlorm etion, it no deubt would have had a nem atand, el ther of Douglas fir or white fir, by this time. As it was, the soll was openca up to the testructive astion of the elemente. The result was a rapid deocmposition of hurus and a lowering of the molature-holaing oapmelty. The bruah covering of the area ame in as the next atep in the succession. Aa soon as the soll ia buile up to a suffiaient strength and moisturo- holding enpacity, the next stage will move in aa elready ahom in the reproduo-
tion found in tho plote.
This area is in section $86, T .10$ s. . F. 7 \%., being a short diatanoe down the valley fren the 2argore mill ownod by hrlatonsen Brothers.

The plote vere taken evory ge ohains. The ilne of advanoo wae taken so as to offor at nearly a ropreentative sampling as posaible. These plots are slx foet six lzohes equase.

DATA SHEET FOR BENTON COUNTY MILLS

SILVIGU4THAL STCOL

Ples \＄0．	innapeet 2．31ope	Tesater部部 Nencorip	9ame－ mat 4 wn	Crang	$\cos 1$ Decerip－ tion	3604 meag
1	2． 1 范 2． 50 B		$\left\|\begin{array}{c} 8 \\ 10 \text { ywa } \\ 07 d \\ 1 / m y^{n} \end{array}\right\|$	Fory $25 t 20$	$\begin{gathered} \text { Bawe } \\ \left\lvert\, \begin{array}{c} \text { notend } \end{array}\right. \\ \text { sod } \end{gathered}$	2 anain
2	$\begin{aligned} & \text { 1. N } \mathrm{F} \\ & \text { 2. } 30^{*} \end{aligned}$	Ocrape BDerry rose	Fone	Tone	Tense mat of rance 1enves	10
3	$\begin{aligned} & 1.3 \mathrm{E} \\ & \text { 2. } \mathbf{3 0} \end{aligned}$	08pray Hasel 1otac	＊	＊	mooky neoorm powed IInbas． teto． mooly	10
4	$\begin{aligned} & \text { 1. } 5 \\ & \text { 2. } 30 \end{aligned}$	Sowe Sn2xI 7nge	4	＊	fell on deanam poned log	6 ＊
5	1．等 2． 208	$\begin{aligned} & \operatorname{San} 1 \\ & 7090 \\ & \text { ospray } \end{aligned}$	＊	＂	7ooly 4．4．te 11 党ter	$4 *$
6	1.7 $\text { 2. } 10 \%$	Vatavie Mosa Rose T bexwy Salaloo 0Apway	$\begin{aligned} & 3 D \\ & 4^{3}-3^{\prime} \\ & 1-10 \text { ywe } \\ & \text { old } \end{aligned}$	＊	Roolsy 5owe 	2
7	1．${ }^{2}$ 棦 2.10%	ytave 4．berwy 0arape OSpany	Yone	＊	8 cot 붕 nuens	1 1

H20 \％＂	1．apest Q．Mope	$\begin{aligned} & \text { Vogetm- } \\ & \text { vencrip- } \end{aligned}$	紫的prom 0uct 0 6a	Crating	$\begin{aligned} & \text { volı } \\ & \text { Dotardy } \\ & \text { tion } \end{aligned}$	cool Ineed
8	1．N 4 2.10%	Vinaple nommy 00wspe noss	Wone	Hone	soxua huwat	1 cisaln
0	2． 1 \％ $2,50 \mathrm{y}$	VIaple 4 beryy OOvapa totes	＊	＊	Moaly a02． 50 x 8 humat	$2 *$
10	1． N $e_{.} 500_{3}^{2}$	T berwy 0 OH ＋2po s 50m		Rabbit ansage	$\begin{gathered} \text { avaval1y } \\ \text { Iows } \\ 11.4 t o s \end{gathered}$	$1{ }^{1}$
11	2． $\text { 2. } 30,3$			None	Hxerus Wapla Loavea をravelı	$2{ }^{1}$
12	$\text { 1. } \mathrm{E}$ $2,20, k$	3 Bam Teed Mode Sincte 25＊	$\begin{aligned} & 5 \mathrm{p} \\ & \mathbf{2}^{*+}=6^{*} \\ & 1-10 \quad \mathrm{ym} \end{aligned}$	＊	Dena 14wb mooley 5 humas	Lowa than 2 chadn
23	2． E 2． 10 ．	$\begin{aligned} & \text { P bexwy } \\ & \text { B Pown } \end{aligned}$	Wone	\％	Donse数娄 taple 1envea	1 1
24	$\begin{aligned} & 1 . W \\ & 2.30 \% \end{aligned}$	7oae 2 berry 以ona		＊	$\begin{aligned} & \text { gevave21 } \\ & \text { con2 } \end{aligned}$	2 ohain

DATA SHEET FOR BENTON COUNTY MILLS
SLLVGULTUnAL STVロZ

F20t \％	2．Aopatas 2．Blope	Marcebam 41ve pogexim	Reyno－ chabsion	O2asing		seed 5ee．
15	2． 11 2.405	2 bexry 0 －xway Tota Home	需 	Tonse	Sumb hxeras	4 ohasns
16	2．$\quad 4$ 2． 30%	2 bexcy 0 Spray Rose 5 Fem tons		＊	Plat tisil on pile of decoayo－ clng breh	
17	1．等 2． 50%	Roee \＄Toxa	$\frac{1}{6} p$	＊	Rotena innto Leaves （acta hu－	4 4
18	1．${ }^{2}$ \％ $\text { 2. } 10 \%$	FOnTrant T bexry salut Onalas	$\begin{aligned} & 3^{n}-6 \\ & s^{\prime} \end{aligned}$	None	Laces 21．twer Sowe hxwna	3 ＊
19	$\begin{aligned} & \text { 2. } k \\ & \text { 2. } 20 \% \end{aligned}$	3 Fem salal T Pencyy THosery outuge	None	＊	Denete mat of docomprom alng brweh	6．${ }^{*}$
80	$\begin{aligned} & \text { 1. } 7 \\ & \text { 2. } 20 \% \end{aligned}$		＊	\＃	Dores buras	6 ohatns
21	$\begin{aligned} & \text { 2. } 18 \\ & 2.208 \end{aligned}$	0 0stapo 5 Pern 3 －3pway	$\begin{aligned} & 3 D F^{*} \\ & 2^{\prime \prime}-6^{\prime} \end{aligned}$	＊	Cravaliz poweras sol	5 5

DATA SHEET FOR BENTON COUNTY MILLS

Mot No.	$\begin{aligned} & 1.20 \operatorname{sact} \\ & 2.310 p 0 \end{aligned}$	$\begin{aligned} & \text { vanabam } \\ & \text { bva } \\ & \text { ogquy } \end{aligned}$	Thawom Cuat2on	On土exing	$\begin{aligned} & \text { sonk } \\ & \text { wosenty- } \\ & \text { bion } \end{aligned}$	Bead nuen
22	2. W $\text { 2. } 10 \%$	Th2at 5 Pex Rowa	3 D	Some	nowne hawisa	6 ohaln
28	1. 1 $\text { 2. } 10 \%$		1 DF	Sowa	Sors ดนมี arsas sod ceraval helay	\%

Desolation - a case for skeletal planting.

swayn xi

CHE EDAPHIG EAOTOR
3012. In Benton oousty, the roreat oolle are of residual origin and are derived frow igneous or evdinentany rooks. Bedrock in encountered at depthe of 6 to se inohes, and dothc ed rock fragmenta or boulders are numerous on the surface. Took onterop are oomm along the brenk and steeper mountsin aldes. Wall arean in the developed agricultural parte of the county, whith are unflt for agriculture beanute of thelr mallow ent rooky chaymator or steep and broken topography, are alao covered wh form ost in various tages of groyth and auccoasion.
roopt for the aroat (at the present timo oontinually growing) thich have been burned over, this lene 1 a heavily foreated win fir. The moil in theae arent ia unually olay or eley loers. Some areas are of Atken sily Glay loan, sose are of Helbourne hay loam, soce Nelbourne silty biay loan. Toward Mlodgete and forther up into the const tonme we have olympso hlay loam. The particlea of soil in these serles are very sine whom husus oontent 1a 1ow. Undor proper managenent, howover, the burue oontent raisea the size of the partiole allowing for botter eeration. However, the fineneac of the acil partiales 1s admable for retention and solvent action of water.

Benton Gounty lien in the Pacifie coast acti region. The residual solle are underlain by ther basalt, anclest te. dolerite, sandatone or shale. the anciatone fomstion ta quite oxtensave in the mestern part of the ocunty, whle
the basalt and other Igneous rocks bordes the fillam ette Valing. The ignoous rooke give mie to the Alicen, olympic, mad anoade series, and the aedimentary rooke to the sito Selbourne, and sariton oemios. (40)
soll texture not only exerts en important offoct upon the waser relationa but alab upon aowation and uyppiy of nutrienta. It mofoundiz arfocts the maplatery of the procosses of dosay of organic matter and ite rom lation to leaching. The nitrogen oontent of the soil, is, thererore, dosely related to its toxture. The totniminm oral olevontis noeded for tree growth raight be listed ae nitrogen, osloivm, potessivm, magneaium, iron, sulphur, and phospiocmus. The growing forest is a very economionl usor of these slemonts and finnily, whon the orop is harveated, the mount romoved in the merchantable loge ta etill walatively arall oven after 100 yeara aocurnlation, for tree bole contain relatively 14 ttle ash and nitregen, moat of it bew ing in twigs and leaves. Feranoh and twif mood contains from two six times as much potasium an bole mood,woight for vel ght, one to sever times as much lime, and fow to twenty tilos aw ruch phoaphoris aold. Furthermore, in our Pouglas fir forests, the cutting adde nowe then a single year's heaf orop to tho soll and those leave are Fioh in nitragenous and ash constituenta. the net loas over the entire rotation of our aoond growth Douglaw
fir 1s, annually oniy about 2 lbs. of nitrogen and patassium per year, 6 lbs , of calcium, and 1 lb . of phosphoric acid. (4) The remains of the forest, after cutting, go into the soil by a gradual process of deazy which spreada the benefits of the added minerals over a long period of time. The growing forest depends for its nutrition largely upen the mineralization of this litter.

Most of the humas material and the humification processes occur on top of the soll. As the process continues some of the soluble humus is leached into the topsoil, whioh 18 very porous and sbsorptive to depth of 4 inches or more. In Benton county, however, the prectice is to burn the slash resulting from cutting. What represents the accumulation of years is burned in a few minutes, Nature's method of reneving the soil is then partially thrown out of balance. The result is immediate enrichment of the soil in available nitrogen and ash materials. The long time result is impoverished soil and reduced tree growth. Studies indicate that one burn will not show appreaiable reduotion in growth but repeated burns most oertainly do.

Water Content. The water content of the forest soil 1s of great importance in reference to the minerals. All substances that enter plants do so in aolution. It serves as a medium of transport of food materials in the plant
itself. It keeps the cella turgid or atretohed, a condtion essential to their nomal functioning, it also prevents exaessive heating of the plant, acting as a buffer in absorbing the heat generated by multitudincus chemical aotions taking place in the plant.

The mount of soll molsture avallable to a trese is dependent partially on the mater-nolding capacity of the soil. A high water content of the soil may in part make up for dryness of the air.
mater is contained in the soil in three different ways: as ground or gravitational water, as caplllary water, and as hygroacoplc water.

Ground waton is the nawe applied to the water in the saturated zone of soll rock. Caplilaxy 1 s the second and most important form of water in the soll since it is this water that is most comonly avaliable to forest trees. It olings to the soll particles in a state of tension wioh just balancea gravity. (8) The rise of this water from the water table is not unlike that of trenosene in the wioks of oll 1amps. Hygroscopio water is thr maisture absorbed by the soil particlea from the atmosphere. (48). It is held so tenaciously by the soll colloids which coat the rock particles that it is unavallable to planta.

The retention of water is dependent on soil texture,
soil structure, amount of orgenic matter in the soil, and general atmospharic oonditions. Clay solls such as are found in Bonton county, will retain more moisture than sandy soil: a soll in good tilth, as a result of propon silvicultural management, 111 hold more water than a hard, conpact one; and, a soll with plenty of humus will retain more water than one in which there is little or no humus present. The amount of moisture retained in the soil has a profound affect on the development of the roots. So much in fact, that the growth of roots has been found to be inversely proportional to available water content of the soil. (19).

Soil Aeration. The amount of air space in aotls is from 35 to 50 per cent of their volume, and, when solls are in their best condition for the support of vegetation, about one-half of this space is fliled with watex, the other half with air. The omposition of soil air is different from that of the atmosphere, in that soil air usually contains a larger amount of water vapor, a higher nitrogen content, a lower oxygen content, and a larger amount of oarbondioxide.

Soil Temperature. Soll temperature affecta the rate of absorption of water, the germination of seeds, and the rate of growth of roots and all underground parts as well as the activities of micro-organisme. It is a great
aocelerator of all ohemical reactiona and effect many physical processes taking place in the soll. (9).

Soll Solutes. Soil solutes originate in the decaying humus, from dissolved rock particles, from baoterial aotion or from root exoretions. These solutes are present in the form of soluble salts of cartain elements. They go into solution with water and are subsequentiy taken up by plants as raw materials. Some of these solutes are those of nitrogen, sulphur, phosphorus, potassium, calcium, magnesium, iron chlorine, manganese, and boron.

A variation of certain amounts of these solutes will cause elther an acidity or alkalinity of the soli which, may or may not, be benefiolal to the tree. The exact ceuse of acidity in the sofl is not kown but it, always seems to occur where there is a dearth of oxygen.

FIGURE
 15

Desolation - a asse Pon alceletal planting.

SECTION XII
THE PHYSIOGRAFHIO FACTORS
slove. The orfeat af the engie of the alope is kim portant in move then no wivg. Mrst, it actemines, in relation to the hel解t of the tun, the ancle at phtoh the snozcont wayt 5 thithe the mround, and, thorefore, the mount ave Alatribution of ruct sat onemey moool wen by the not. hat this bat an efrect on the vocethation sover of a etven srea in plaginty hown by vartaston in the vogetation
 the sum is outh of the equato there is an advantage in aleposition of rudient cnerey to tha eruth slopes. In othar wnods the seme mount of wadinnt onerge must be sproal over move pround on the nowth slope then on the a uth bew
 north sinpen are therofor precorable in then southom
 the northesn lingta.

The ongle of slope also deteralnes the mownt and
 very toop alopes no outh ean rent, mon the mbatwatur for vecetation in necessamily beve pook. Milisides inditnod at aoderately toep ungle an meldox acourulate sny grot depth of sotl snd swe muan aubteet to eroston. It is naly on geatie nlopen ant on flat ground that oonstderable depth of soll on accutulate and undergo the changee characteriatio of mill development.

FIGURE 16

Bouglas and white fir slowly winning the area from the brush species. North slope.
slope or gradient may bo defined as the angle formed by the surfece of the soll whth the horizoctul. It indicates the relation of the surface of the aite to the horizon. a importaut afect is the control which it exerts on run-of mad drainage, and through these, upon the water content of toe soil. Another important effect is the control which it exerts through insolation on the temperature and roisture of the sarace anil. It also has sone influence upon light, intind, and indirectiy upon the distribution of snow. The depth of soll and water content variss alrost directly with the grodient when the other conditions are similar. Due to better drainage, forest growth as a whole 13 better on land having a modorate slope then on areas that are nearly or quite flat. Also humus does not decompose as rapidiy on flats. Thoderate slopes ano best for forest growth.

Earth Configuration. The configuration of the land surface, the direction in trend of the mountain chains, the nearness to the sea, are of great climatic significance. They var. largely determine the direction fom which the prevailing winds come, the humidity of the atmosphere e_{2} and the amount of precipitation. Dieferences in rock formations, such as the difference in inclination of the strata, cause differences in the vegetation, as they determine the soil, water supply and the location of springs. There is
also an effect on veretation as result of a difference in the angle and direction of stratification. Although the soll of valleys and dells is deeper, Ficher and more productive than that on ridges and on the shouldere of hills, forest vegetation growing thereon is more oxposed to dangers from frost, due to stmospheric arainage. hen the outmost rifge of a mountain mass is at right angles to the provailing winds, the interior ridges are protacted. On the other hand, when the prevaling winds blow parallel ith the ridges, they follow the valleys, and the adjacent slopes are protected.

Altitude. Geographic olimate is very much modified by altitude. The atmosphere becomes less dense as we ascend to higher levels. Beomuse of this, it is inoapable of absorioing and retaining as much heat. A fall of one degree 0 , in temperature, results from a rise of 300 feet in altitude. This lowering of the temperature is greatiy modified however by the configuration of the ground and by the air currents. Thus valleys, coves, and dells may be more exposed to denger from frosta than the adjacent slopes at oonsidorable higher elevation. Thus in the San Francisco mountains in Arizona, Douglas fir is often damaged by frost when planted in the yellow pine type at elevations much below its natural habitat. The reason for this is
that the air, chilled by night radiation, collects with Low basins which are closed to free atmospherle drainsge. Tender speoles should not be seoded or planted on suoh sites. They are more likely to succeed on the adjacent slopes.

Because of difference in growth in different altitudes, the forester should plant closer in the lower solls.

Trposure. The exposure of a particular site refons to Ita ampeot in th refevenoo to the polats of the compass. It influenses forest growth aleply whough the arreat upon temperature anc soll water. A slope exposed to the sun and ind often beans a diffexent vegetation fron ono less exposed to elthex. The mount of heat absorbed by the soll on a given site ceperas largely upon how neas to the vowticel are the ways of the aun that atrike it. In our latituce, the rays surike the soll muen mowe obliquely on north-facing slopes than on south-fraling slopes; hence the fomer reaelves muoh less heat than the lattow where the rays axe more nearly vartical. As greater heat accelerates evaporation from the soil, southem exposumes are also much dryer.

The south slope is wram and relatively dry. Exeept whon too dry, as in parts of southwestem Unlted states, humus disintegrater raplaly. The soll quickly drigs out,
the vegetation starts early, and is often exposed to late frosts. Fires are more destruotive than on north slopes. "

Many of the site factors, and partioularly the soll factors, are, in their duration and intensity of action, due to the phyaiographic nature of the site. Physiography, within a given climatic unit area, through its effect on local climate and soil, causes a variety of plant assemblages to develop, each of whioh has a more or less distinct physiognomy, as illustrated in the swamp forest, the dune forest, the river bottom foreat and the river bluff forest. The intimate relation which exists between the phyaiography of region and the groupings of its flora, is primarily due to the profound effect of physiographic form upon the water content and composition of the soll.

