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Line balancing is concerned with the optimal assignment of work

elements to individual operators in an assembly line of a mass pro-

ducing system.

This paper summarizes the assembly line balancing terminology,

the computational methods, and objective functions applicable to a wide

variety of assembly lines. Single and mixed-model situations for both

constant and variable work element times are examined.

A Back Tracking Method of Assembly Line Balancing (BALB) is

developed and programmed in FORTRAN IV, BALB, as a manual

procedure was able to find an optimal solution to problems that other

existing methods such as Helgeson and Birnie's positional weight

technique, could not yield. In general, BALB was also found to be

simple and more efficient than the heuristic methods by Tonge, Hoff-

man, Mansoor and Arcus.



The computer program, *BA.LB, accepts data for both single

and mixed-model ALB problems and considers both constant and vari-
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SINGLE AND MIXED-MODEL ASSEMBLY LINE BALANCING
METHODS FOR BOTH DETERMINISTIC AND NORMALLY

DISTRIBUTED WORK ELEMENT TIMES

I. INTRODUCTION

A. Assembly Line Balancing (ALB) Problem

Assembly line balancing is an important and challenging problem

facing industrial engineers in today's mass production oriented society.

A survey conducted in the United States by Lehman (1969) showed that

the task of assembly line balancing had been assigned to an industrial

engineer in more than one half of the companies responding to the sur-

vey. A basic characteristic of an assembly line is the movement of

individual work piece from one work station to another by means of an

assembly conveyor. The tasks required to complete the assembly of a

product are divided among the operators so that a given worker per-

forms the same set of operations to every work piece that passes him.

Assembly line balancing is a constrained combinatorial
optimization problem for which the constraints are in the
form of a precedence network. The problem can be briefly
described as the assignment of tasks' in the assembly of a
product to work stations in the line so to optimize a meas-
ure of efficiency (Roberts and Villa, 1970, p.361).

B. Historical Review

According to Kilbridge and Wester (1961, p. Z9 2),
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The first progressive assembly line was started at the
Ford Highland Park plant in 1913, and Henry Ford is prop-
erly credited for its invention. He combined the long known
principles of the division of labor, the fabrication of inter-
changeable parts, and the movement of product past fixed
work stations into the concept of assembly as a continuous
process.

Bryton (1954) by his master's thesis became the first person to

treat the line balancing problem in an analytical manner. The first

published analytical statement of the line balancing problem was by

Salveson (1955), who gave a thorough description of the problem with

respect to a practical assembly situation.

About 15 years of subsequent research by engineers and mathe-

maticians on this line balancing problem has resulted in a variety of

solution methods ranging from rigorous mathematical techniques to

heuristic routines, offering optimum to near optimum solutions. A

review of the existing literature revealed that almost every author who

tackled the problem used a different notation. These diversified nota-

tions run against all efforts to unify the theory of operations research.

An attempt has been made in this thesis to present a standard ALB

model. It is recognized, however, that certain model formulations

(e. g. , mixed-model assembly lines) will require additional nomencla-

ture which will be referred to in the later chapters of this thesis.

VanGigch (1965) and Ignall (1965) presented standard formulations of

the line balancing problem, but the former dealt with only five analyti-

cal approaches while the latter did not extend the formulation to
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mixed-models and variable work element times.

C. Recent Developments 

Earlier assembly lines were used to assemble identical products.

With the growing need to manufacture a variety of models to meet

customer demands, many assembly lines have now been transformed

to handle multi-model production schedules. When several models of

the same general product are assembled on the same conveyor line, it

is commonly called a mixed-model or multi-model assembly line.

Though much work has been carried out in the past on the methods

of single model line balancing, very little has been reported in the

literature with respect to mixed-model line balancing. Thomoponlos

(1967) and Roberts and Villa (1970) considered mixed-model line bal-

ancing problem assuming deterministic elemental times in the assem-

bly process. But in the real-world situations the elemental times of

an assembly process are independent and identically distributed ran-

dom variables approximated by the normal distribution. Practical

studies by Hicks and Young (1962) and Walker (1958) confirmed this

assumption. Based on this variability of work elemental times,

attempts have been made (e.g.,,Freemarr, David, 1968) to minimize the

total product cost associated in an assembly rather than to minimize

the direct labor cost, used in traditional approaches. Klein (1963)

proposed a method of balancing an assembly line using feasible linear
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sequences. He concluded saying

... It is unfortunate that at present an answer to the question
of practicability does not seem to be available, since there
apparently is no formula or prescription on hand to determine
the number of feasible orderings for a given problem (Klein,
1963, p. 281).	 -

This conjecture expressed by Klein has now been solved by Okamura

and Yamashina (1969) who succeeded first in developing an algorithm

to identify all distinct feasible sequences and then finding an optimal

sequence using Little et al. (1963) t s Branch and Bound Algorithm.

There are a limited number of computer programs developed by

major industries to suit their particular assembly situation, such as

Target Job Line Balancing (TJLB) by Cnossen (1967) used in Ford

Motor Company and commercial soft ware packages that are available

to the participants of the Advanced Assembly Methods (AAM) program

conducted by Illinois Institute of Technology Research Institute (IITRI,

1970).

D. Outline of the Thesis

In this thesis the definitions and terminology encountered in the

existing literature on line-balancing problem is followed by a standard

formulation of the problem. A Cause and Effect diagram has been

developed in Chapter II. This diagram gives a pictorial representa-

tion of the controllable factors and the stated objectives for a practi-

cal ALB procedure.
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Chapter III summarizes and illustrates the traditional analytical

and heuristic approaches applicable to single-model manufacturing

situations.

A Back Tracking Method of Assembly Line Balancing (BALB)

has been developed in Chapter IV to balance either single or mixed

model assembly lines for both deterministic and normally distributed

work element times. This method, programmed in FORTRAN IV,

attempts to find an optimal minimal station balance at the given cycle

time (production shift time in the case of a mixed-model line). If an

optimal solution is not obtained by this method at the given cycle time,

near optimal solutions can be attained either by incrementing the cycle

time by units of 1 or at an optional cycle time. The listing of the pro-

gram appears in the Appendix.

In Chapter V extensions of mixed-model ALB procedures is

made for variable work element times. A summary of the solution

algorithms developed for sequencing the various models on a mixed-

model assembly line is given at the end of Chapter V. The Table 1-1

at the end of this chapter gives the summary of the classifications for

ALB models.
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Chapter
Procedures Section

Traditional
	

Single
	 Minimize direct
	 Deterministic
	 Analytical

Model
	

labor cost
	 Heuristic	 III

Extensions Single
Model

Minimize direct	 For both deterministic

labor cost	 and normally distrib-
uted	 Heuristic

Minimize total	 D eterministic	 Heuristic

perturbation costs

IV-A

IV-B

IV-C

V-A

V-B

V-C   

Minimize total 	 Variable	 Search

production cost   

Mixed
Model

D eterministic	 Analytical

Minimize direct 	 & Heuristic

labor costs
Normally	 Analytical

distributed	 & Heuristic   

Minimize sequence Deterministic 	 Search

delay costs       

Table 1-1. Summary of classifications for ALB formulations.

Approaches Assembly Line

Objective
	 Work Element

Function
	 Times
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II. ALB MODEL FORMULATION

The development of different formulations of the ALB problem

has led to the conception of various terms and conventions by differ-

ent authors. It is felt that the elucidation of all the definitions and

terminology conceived by different authors is of much importance for

a standard formulation of the problem.

It is also realized that the objective of either minimizing a cycle

time for a given number of stations or minimizing the number of sta-

tions for a given cycle time has the same connotation of minimizing the

total idle time or the direct labor cost per unit assembled.

In the following pages a summary of the ALB terminology pre-

cedes the development of a cause and effect diagram and the standard

formulation of an ALB model to minimize the costs per unit assembled,

either of direct labor or of total production in the assembly process.

A. Definitions and Terminology

The definitions and terms encountered in a practical ALB pro-

cedure are summarized below and are arranged in an order of rele-

vance to the problem.

1. Assembly Process. The overall work that is to be accomp-

lished in a line production.

2. Work Element. A rational division of the total work content
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in an assembly process; an element is represented here by

u, where i is the identification number with the range

1 < i < n . The number n indicates the total number of

work elements required to complete a product assembly.

"Task" and "operation" are other terms sometimes used in

place of "work element".

3. Job. A job can be defined as an aggregate of tasks or work

elements. Some authors use the term "job" to mean "work

element" (e.	 Cnos se,n, 1967).

4. Work Station. A location on the assembly line where a given

amount of work is performed by an operator. Assembly line

work stations are generally manned by one operator. How-

ever on short runs an operator may man more than one

station, and on lines of large products (aircraft, autombile

etc. ) work stations are frequently manned by several oper-

ators.

The following four general types of stations are identified in

actual practice. They assume a limited range of movement of

the operators within their stations adopting the convention that

the conveyor line moves from left to right (Thomopoulos, 1967,

p. B-61).

a. closed station. In this station, the work must be per-
formed within the limits of the station. This happens,
for example, in pits or in paint booths where the
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assigned work cannot be accomplished outside the
station. The symbol, [], will represent a closed
station.

b. open station. In an open station the operator will be
allowed to move in either direction outside his station
up to some specified limits. The limits are neces-
sary to prevent him from either moving more than the
desirable distance away from his work station or from
entering a closed station. The symbol, ( ), will rep-
resent an open station.

c. closed-to-the-right and open-to-the-left station. This
station is a combination of the open and closed stations.
The symbol, ( 1, will represent this type of station.

d. closed-to-the-left and open-to-the-right station. This
station is also a combination of open and closed sta-
tions. The symbol, [ ) , will represent it.

5. Operator. An individual who does specific work assigned

upon the units of a product, during a progressive assembly

as they are conveyed through his work station.

6. Work Element Time. To each work element i will be

associated a performance time t.	 The sum of the per-

formance times of all the elements is the total work content

in each product being .assembled. The value of t i can be

either an integer or a positive fraction.. Most of the authors

treat t. as a deterministic time.
1

[According to Riggs (1970, p. 322)] the operation
times are far from constant in an actual production
line. Performance by human operators is continu-
ally modulated by enthusiasm, health, and social
conditions.
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The research by Hicks and Young (1962) and by Walker

(1959) show, moreover,' that the time an operator takes in

performing a task is an independent and identically distribut-

ed random variable and can be approximated by a normal

distribution.

Work Station Time. The actual amount of work, usually in

minutes assigned to a specific station on the assembly line

is termed as work station time. If t i 	the unit time of
1

the element i and Tk
 is the kth station time, then

ti  T < c where c is the cycle time defined below.
1— k

8. Cycle Time. Cycle time is the amount of time the product

spends at each work station on the line when the line is

moving at a standard pace (100 percent efficiency). It is the

amount of time elapsed between successive units as they

move down the line at a standard pace. The feasible cycle

time c with a particular line design (i. ., when a particular

group of elements are being assigned to stations) will satisfy

the inequality cL < c < cH where C I, = max.{t,} repre-

sents the lowest feasible cycle time and c H = maxk { Tk}

represents the highest feasible cycle time while T k =

t. , where JkiEJ1

the kth station. For mixed-model scheduling the time that

separates the launching of two consecutive unit5(either of

denotes the subsets of tasks aggregated at
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the same or of different models) on the main conveyor line

is termed as production cycle time.

9. Station Idle Time. This, is the amount of time an operator is

idle due to the difference between the cycle time and his

work station time. The symbol dk denotes the idle time at

the kth station,

10. Balance Delay. This is the amount of idle time on the line

due to the imperfect divisibility of assembly work between

stations. In practice those operators having s horte r

work assignments will not actually stand idle at the end of

each cycle but will work continuously at a slower pace. The

effect measured in terms of labor cost, however, is the

same as if they were idle part of the time and working at a

faster pace the rest of the time. The degree or the percent

of imbalance, called "balance delay", is the ratio between

the average idle time at'the stations and the maximum oper-

ator time (cycle time); i.

( C	 6)x100

where d = percent balance delay

c = cycle time for a particular production line design

= average station time

If an assembly is manned by k operators,then,
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n
kc -	 t.

kc - ICE1=1 
d = 100{	 ) = 100{	 }

kc	 kc

Subject to the condition (kc -
n

 t ) > 0
1=1 i

where t . , (1 = 1, 2, ••• , n) is the i-th elemental time and

n
E t. ,
i=1 1
given assembly process.

For a given value of c and total work content time E t. ,

there exists a minimum number of operators, m , given by
Et.

the bracket function	 where [ ]

> x . The maximum possible value of k is n , the total

number of work elements under study. nmin 
(not necessar-

ily equal to m ) will indicate the minimal value of the num-

ber of operators for a given minimal balance delay which

can be defined as

dmin =
100(n. c - E t.)mm i=i 1

n	 c
min

and this is a discrete function of cycle time c . The bal-

ance delay function tells what cycle time to select for a

given distribution of work elements and a given number of

operators.

11. Technical Division of Labor. The following four types of

costs have been identified with respect to the division of

the total work content time which is constant for a

= smallest integer
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tasks (Kilbridge and Wester, 1966, p. B-257).

a. imbalance-of-work cost. This results from the imperfect
divisibility of productive jobs. By nature the productive
jobs are not perfectly divisible, but in extending the divi-
sion of labor, these jobs must be subdivided into smaller
tasks. These sub-tasks must be assigned to separate
workers so that each worker has approximately the same
amount of work to do in a given time. For any given job,
the imbalance-of-work cost rises with the division of
labor until it is technically impossible to divide the task
further.

b. learning cost. This is the cost incurred by assembly
workers in learning to perform their tasks at an accept-
ably fast pace. In this context "learning" implies "group
learning" since all operators on the line must progress
at the same rate. When model changes are frequent and
employee turnover is high the learning costs may repre-
sent a considerable part of direct labor cost.

c. non-productive work cost. This cost is a derivative of
division of labor, Handling of product from worker to
worker, time spent in starting and stopping work on each
unit of product and the increased communications and
control necessitated by the interdependence of functions
represent this cost,

d. wage cost of skill. This relates the division of labor to
deskilling of work. As tasks become more specialized,
range of skills required to perform each is narrowed,
and the workers of general skill are no longer required.

In general, the imbalance of work and non-productive
work tend to increase with the division of labor, while
the cost of learning and wage cost of skill tend to de-
crease, The productivity, in a long run, however, may
suffer due to job specialization in product assemblies,

1 2. Feasible sequence. A feasible sequence is one that may be

performed in the indicated order without the prior comple-

tion of any other task. The generation of feasible sequences
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is the backbone of the assembly line scheduling problem.

If there are n tasks, they can be arranged in n! distinct

sequences. Because of precedence relations, only some of

these n! will be feasible. If there are r precedence re-

lations among the n tasks (r arrows on the directed graph)

then there are roughly n! / 2r distinct feasible sequences

(Ignall, 1965).

The approaches adopted by Held, et al. (1963) and

Klein (1963) reflect the importance of the generation of the

feasible sequences in the line balancing algorithms. Only

Okamura and Yamashina (1969) have succeeded in finding

the procedure for the generation of feasible linear sequences.

1 3. Feasible subset  . A feasible subset is a subset of n tasks

that can be executed in some order without the prior execu-

tion of any other tasks. We let J represent the subset of

operations aggregated at the kth station.

14. Smoothness index. A number used by Moodie and Young

(1965) to indicate the relative smoothness of a given assem-

bly line balance. It consists of the .square root of the sum

]mof the squares of the time deviations, 	 Z (dk ) 2	for each
k=1

of the stations in the balance from the maximum station

time. Ignall (1965, p. 25 2) points out that:
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an objective of minimizing idle time is superior
to the objective of minimizing "smoothness index"
since smoothness does not have the cost interpreta-
tion that idle time has.

15. Sub-assembly line. Some independent assembly works can

be performed either on the main assembly line or off the

main line. In Figure 4-5, the off-line coil subassembly is

enclosed in dotted lines. The sub-assembly lines can be

parallel and very near to the main line or they can be

situated completely in a different location and the semi-

assembled product brought to the main line.

In the on-line sub-assemblies, the assembly work is

usually done on the particular sub-assembly component by a

main line operator before the component is assembled onto

the product. For example, the sub-assembly of a carburetor

is done on the main line intended for engine dress up in an

automobile company (Figure 4-5).

16. Labor groups. An assembly line may consist of several

labor groups when a work performed in one labor group can-

not be performed in any other group. Each labor group is

comprised of work stations with one or more operators man-

ning each station. Each operator is assigned to only one

labor group.
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17. Production schedules. Production schedules are derived

from the demand forecast. By knowing a daily production

schedule of the units to be assembled on the conveyor line,

the cycle time is arrived at by the equation,

c = 1/production rate = 1 /(Q/T) = T/Q where

T = total productive time available/day, and

Q = number of units to be assembled in period T.

This value of c is used in balancing a single model assem-

bly line. A company manufacturing a variety of models of

the same general product will have a schedule for each model

to be assembled. If j(j = 1, 2, 3, ••• , J) represents the model

to be produced on the assembly line and N. the number of

units per model to be assembled in duration T , then the

total number of units to be assembled in period T is equal

to N E N.. The period T will be used as a basis of

balancing the mixed-model line(s).

18. Conveyor belt speed. If v represents the conveyor belt

speed then v = 1/c , where Q is the fixed length separat-

ing two consecutive units on the conveyor and c is the cycle

time.

19. Assembly line inefficiencies, Assembly stations are sub-

jected to four kinds of inefficiencies (Thomopoulos, 1967).
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With the assumption that the conveyor belt moves from left

to right, the inefficiencies are defined as follows:

a. idleness. This can occur in all four types of stations
mentioned earlier. It results when an operator is kept
idle waiting for work to enter the upstream limit of his
allowable work area.

b. work deficiency. This can occur in two types of stations,
open and open-to-the-left stations. It results when pro-
ducts flow through a station so slowly that the operator
is able to complete work on a product before the next
product has entered his station, and must leave his sta-
tion to the left to start assembly.

c. utility work. A utility work can occur in all four types of
stations. It results when products flow through an oper-
ator's downstream limit of his work area faster than he
can complete work on them. In this situation, one or
more utility workers may be assigned to the station to
assist the operator, so that the work on the product is
complete, or else the unfinished work is completed in a
touch-up station farther down the lines.

d. work congestion. This can occur in two types of stations,
open and open-to-the-right stations. It results when
products flow through a station faster than the operator
can complete work on them, forcing him to move out of
his station to the right.

20. Position restrictions. These consist of operator-product

and operator-line relationships, and each element on the

diagram must be coded (either by a letter, color or by a

geometrical code) to describe the restrictions imposed on it.

These are also known as Front and Back, Top and Bottom,

Right or Left restrictions. In Figure 4-5, R represents

that the element must be done on the right side of the
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conveyor, L represents that the element must be done on

the left side of the conveyor while E stands for either side.

21. Fixed facility (or locational) restrictions. Fixed facilities

imply machine tools, processes, testing facilities and index-

ing stations that are an integral part of the assembly line

and form immovable stations. Such restrictions decrease

the commutability of work elements and cause rigid order-

ing. These elements are identified on the precedence dia-

gram by placing an asterisk (for example, elements 36 and

40 in Figure 4-7). Additional comments must be made on

the data sheets about those elements. A schematic drawing

of the fixed facility location and a process flow chart giving

the details of this fixed facility usually accompany the pre-

cedence diagram.

22. Multi-option elements. Some elements that can be perform-

ed either on the sub-assembly or on the main line are called

multi-option elements. These are shown "boxed" rather

than circled to identify them as elements that appear twice

on the diagram.

23. Closely related elements. Sometimes two or more elements

are closely related, requiring that the performance of the

first element of the group be immediately followed by the

performance of the other elements. It would not be proper
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to combine these tasks into one, since it is possible to have

them performed by successive operations. Such a group is

denoted by enclosing it with a solid line. For instance, due

to safety reasons, the placement of the picture tube, ele-

ment 14, must immediately be followed by certain fastening

operations, elements 16 and 17 (Figure 2-1).

Figure 2-1. A part of the precedence diagram for
work elements on television line
(Prenting and Battaglin, 1964, p.210).

24. Target jobs. A list of target jobs were defined by Cnossen

(1967) to develop a heuristic method known as Target Job

Line Balancing (TJLB). These consist of:

a. the last job in a job set where the job set is defined as
one or more jobs related to, sub-assembly. Tasks 6,
16, 19 and 43 in Figure 4-5, correspond to this list.

b. the elements restricted by fixed facility. Tasks 36 and
40 in Figure 4-5, fall in this category.
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25. Minimum perturbation (Cnossen, 1967). Using the Target

Job list, heuristics were developed to minimize perturbation.

Minimization of perturbation is defined as the attempt to

prevent the relocation of relatively fixed facilities on the

assembly line, and to preserve as much as possible the exist-

ing work assignments of the assembly operations. This is an

important criterion for assembly lines where model changes

occur frequently.

26. Transferability and permutability of work elements. Trans-

ferability is the property of elements which can be moved

laterally from their stages (columns) to positions to their

right without disturbing the precedence restrictions in a

precedence diagram (Figure 3-11) constructed by Jackson

(1956)'s method. Permutability is the property of the ele-

ments which can be moved among themselves in any work

sequence without violating restrictions on precedence rela-

tions. Kilbridge and Wester (1961) exploited these two

properties of work elements for developing a heuristic

method of assembly line balancing.

27. Positional weight. This is a mere number obtained by add-

ing together the time values for the specific work element

and all work elements that must follow as defined in a pre-

cedence matrix. This is the criterion used in developing a
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heuristic method by Helgeson and Birnie (1961). The

criterion of three different types of positional weights;

1) linear positional weight, 2) logarithmic positional weight,

and 3) square positional weight, has been used to develop a

new balancing technique in this thesis (Chapter IV).

28. Trades and transfers. These are some of the heuristics

used by Tonge (1960) and Moodie and Young (1965) to shift

tasks between stations in an attempt to reduce idle time.

29. Chain and set (Tonge, 1960). A chain is a group of adjacent

elements whose relative order is completely determined,

each except the first having a single direct predecessor and

each except the last having a single direct follower (e. g. , set

vand element u15 
in Figure 3-6 a).

2

A set is a group of elements whose relative order is

completely unspecified, all having the same direct prede-

cessors and followers (e.g., elements u10
, u

11
, u

12 
from the

set v 2 in Figure 3-6a).

30. Bowl rule. According to Hillier and Boling (1966) the tra-

ditional rule stating that work should be distributed evenly

among the work stations is no longer considered the best

rule for all systems. They showed that for certain systems

a balancing rule which they call the "Bowl Rule", is in fact

an improvement over the equal balance. The bowl rule states
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that the end stations should have more work in terms of the

station times than the stations in the center of the conveyor

line. The term "bowl" depicts the shape of a curve obtained

with the station time on ordinate and the stations on abscissa.

31. Buffer inventory. Items located between work
stations as a float to lessen the impact of block-
ing. Such buffers of inventory can exist between
any or all stations (Freeman and Jucker, 1967,
p. 361)•

32. Blocking. A station is said to be blocked if work on the item

is complete but the item cannot pass to the next station be-

cause the operator is busy and no available space for in-

process inventory exists, or if the operator passes an item

to the next station but cannot receive a piece since the pre-

ceding station is busy and no available inventory exists from

which items can be drawn. This will occur in case of closed-

to-the-left stations mentioned earlier.

33. Paralleling (Freeman and Jueker, 1967). Paralleling implies

duplicating the facilities (machine tools etc. ). It may be

possible to increase output or reduce the number of opera-

tions required on a line by paralleling certain work stations.

34. Dynamic programming ALB model. Using Bellman's dynam-

ic programming method (1957) a mathematical solution pro-

cedure for line balancing problem was developed by Held

et 2.1. (1963). A rule conforming to the principle of optimality
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is used. It can be stated as, that an optimal sequence must

have the property that regardless of the route taken to enter

a particular state, the remaining decisions must constitute

an optimal sequence for leaving that state. To apply this

principle the precedence diagram must have one starting

node and one ending node.

35. Shortest route criterion. Gutjahr and Nemhauser (1964) and

Reiter (1969) treated the line balancing problem as a finite

and directed network with a source and sink to find the short-

est route between the two nodes. The shortest route indi-

cates the minimal number of arcs where each arc in the

directed network represents the idle time when going from

one state to the next. A state is defined as a collection of

elements feasible for a station assignment without the cycle

time constraint.

36. Inter-departure time. This is the time between successive

units coming off the end of an assembly line. This is equal

to the cycle time of the line for the deterministic elemental

times.

B. Precedence Diagram

The basic convention adopted to represent an assembly process

is the precedence graph. The data of the precedence graph when
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arranged in a matrix form is called a precedence matrix. The nota-

tions used for the construction of a precedence diagram and the related

terms are summarized below.

1. Precedence graph. The tasks are represented in a graph

along a path following the technological precedence restric-

tions. Precedence graph is also called by such other names

as "precedence diagram", "directed graph", etc, If a com-

modity has been manufactured, a precedence graph can be

constructed free from inconsistencies. Arrows are optional

in the preparation of this diagram1 but inclusion of arrows

will aid in identifying the relation between two tasks. When-

ever a task, a , must precede another task, b , the arrow is

drawn from a to b and is read as "a precedes b". If two

tasks are unordered with respect to each other, they are not

connected by a direct line (Figure 2- 2).

Figure 2-2. Illustration of precedence diagram
and diagramming notation.
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In Figure 2-2, note that a precedes b (apb) and a pre-

cedes c (apc) while b and c are unordered with respect

to each other. The basic purpose of a precedence diagram is

to convert the actual assembly line station into a diagram-

matic representation that completely describes the work

element for the purpose of balancing the line. PERT and

CPM basically employ the similar diagram. The prepara-

tion of a precedence diagram in an actual industrial situation

is thoroughly discussed by Prenting and Battaglin(1 9 64, p.201).

2. Diagramming notation. Every task or work element is

represented by a circle. The numbers inside the circle

identify the various elements of work and the numbers out-

side the circles (e.g., 4 above the circle a and 5 above b

in Figure 2- 2) refer to the corresponding time durations.

The connection between the circles is made either by an

arrow or a line to indicate the precedence relationship and

the numbers are assigned in an ascending order from left

to right as a path. This convention is commonly referred

as techological ordering.

3. Precedence matrix. This is a square matrix of zeros and

ones. The precedence diagram is represented in the form

of a matrix. Let P[	 be a matrix of zeros and ones.
Plj
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Then

Pii	 1 if ipj

if i and j are unordered

Pii	 -1 if jpi

4. Dual precedence matrices. To save storage space in a

computer, Moodie and Young (1965) split an nxn square

precedence matrix into two lists known as: 1) immediate

predecessor matrix (IP - matrix) and 2) immediate follower

matrix (IF - matrix). An IP-matrix is a list or an array

containing the immediate preceding elements of each individ-

ual element while an IF-matrix is a list or an array con

taining the immediate following elements of each individual

element. These two lists are referred to as dual preced-

ence matrices.

C. Cause and Effect Diagram

The cause and effect diagram is an aid to visualize the para-

meters of a system. This is a basic representation of a thought proc-

ess which precedes the design and synthesis of a system model. The

value of visualization is vivid in most of the pictorial representations

such as: Gantt charts, arrow networks, flow process charts and

control charts.
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[According to Inoue and Riggs (1971)] imposing
mathematical formulation of systems may challenge theor-
ists but often dismay practitioners. While we have need
for the sophisticated techniques of operations research,
systems engineering, and statistical inference, we first
need visual representations to help us identify and define
system problems.

A cause and effect diagram (Figure 2-3) is presented showing the

causes and effects involved in developing a practical solution method

for balancing the assembly lines. The construction of this diagram is

based on the steps given by Inoue and Riggs (1971). The problem

under investigation, " a practical ALB procedure" is enclosed in the

hexagonal symbol at the center. The main shafts to the left of the

symbol represent principal causes and to the right represent main

effects. Smaller arrows directed toward the major arrows relate

control parameters to cause factors or detail the results of the basic

effects.

D. Methodology

During the last sixteen years a number of models have been

formulated to solve the Assembly Line Balancing (ALB) problem.

Kilbridge and Wester (1962) and Ignall (1965) gave a good review of

the ALB literature. A recent review of assembly line balancing

algorithms made by Cauley (1968) includes an appendix for a bibli-

ography on ALB compiled by Lewin (1967). Most of the ALB models

assume deterministic elemental times and seek a solution that either
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minimizes the number of work stations or minimizes the total idle

time. Minimizing a cycle time is more appropriate in assembly line

situations where frequent changes in production schedules, product

mix, and product design often make obsolete a given assembly line

balance.

Both the classical formulations, either minimizing cycle time or

the number of stations, aim at the same general objective of minimiz-

ing the balance delay and thereby attaining a minimum direct tabor cost

per unit assembled. Freeman and Jucker (1967) and Moodie (1968)

remarked that traditional formulations to minimize the direct labor

cost were inadequate for an efficient assembly line scheduling system

and that a model to minimize the total production cost would be more

appropriate in real-world situations. Two such standard formulations

can be conceived:

1. Minimization of the direct labor cost per unit assembled.

2. Minimization of the total production cost per unit assembled.

Minimization of the direct labor cost. This can be either for a)

deterministic elemental times or b) variable elemental times. Let us

first examine the labor cost models in more detail.

a. Deterministic elemental time line balancing models. With

the terminology explained earlier, the formulations can be

interpreted mathematically as follows. Let
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represent the identification numbers for the
indivisible work elements u, to be assigned
for 1 < i < n

t, denote the deterministic work element time
1 (an integer or a fraction) of the i-th element.

J	 be the subset containing all tasks at the k-th
station.

Tk
 be the total time needed for the job at the k-th

station, where Tk = E ti	.
Jk

c denote the cycle time desired (time units per
unit of output).

= c} a script c represents the set of all realizable
cycle times.

Since the objective is to minimize labor cost, which is pro-

portional to the idle time in the assembly, we can write the

total idle time D as,

m

- Tk) = mc -	 (t.)

k=1	 k=1 ie

(2. 1)

= MC -
	 t.

1
i=1

In the Equation (2.1), due to the deterministic nature of the
n

elemental times, E t. = K = a constant	 So minimization
i=1 1

of D involves only the minimization of the product, mc,

D =

k

subject to:
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c - Tk —
> 0 for each k = 1,	 , m	 (2. 2)

If k is given, c can be minimized and vice versa. But a

more general measure of balance for a particular design (a

feasible set of grouping of work elements obeying the prece-

dence relations in a precedence diagram) of production line

and cycle time is given by a discrete delay function:

=	 x 100
	 (2. 3)

111C

A. necessary but not sufficient condition for
perfect balance (or zero balance delay) is that
me - t. = 0 , where m (the number of work

i=1 1

stations) is an integer (Kilbridge and Wester,
1961, p. 80).

Equation (2. 3) gives a more general measure of balance since It

gives the percentage underutilization of the resources on the

average and this figure can be used to compare the effective

utilization of different assembly lines at various locations.

The two standard formulations, thus, consist of minimiz-

ing (2. 1) and minimizing (2. 3), both subject to the constraint

(2. 2) over the set Co = {c } . The range of c is given by

	

c < c < c	 (2. 4)
t ax	 L — — H

The lower bound of c (cL
 = max) follows from the defini-

tion of the cycle time. The upper bound of c. (c H = E ti) is
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based on practical considerations. There is no sense in

allowing the cycle time to increase beyond the total work

content time. To defy the lower bound by allowing tmax > c

would necessitate the use of two or more lines or two or

more operators as parallel stations for the single task.

b. Variable elemental time line balancing model. Moodie (1964)

and Ramsing and Downing (1970) used variable time data to

balance the assembly lines. The fact that variability is a

factor in assembly line balancing was brought out by Buffa

(1961) in a study of pacing effects in production lines, Hicks

and Young (1962) reported a study which showed that the

elemental times are actually random variables approximated

by the normal distribution. Walker (1959) extended this

hypothesis further to claim that these variables (work ele-

ment times) are distributed normally, mutually independent

= their covariance:	 0 for i j (i and j are the

identification numbers for variable elements).

Assuming the normality and independence, the variance

of the sum of the elements which make up a station on an

assembly line is equal to the sum of the individual variances

of each element, i. e.

V T ) =	 V(ti) .

iEJ
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The normal curve theory can be used to determine the prob-

ability that the time to complete the work assigned to a work

station will exceed the cycle time.

T
k

Figure 2-4. Station time with normal variation.

From Figure 2-4, it can be seen that during a certain portion

of the time (the hatched area) a station time can exceed the

cycle time. This causes certain line inefficiencies including

work congestionwhich occurs when a station time exceeds

the cycle time. Penalty for work congestion can be assigned

by arriving at a cost rate for a particular probability of k

stations to exceed the cycle time c , The way of arriving at

a cost rate for this penalty is left entirely to the discretion

of the management. When the times are assumed to be ran-

dom variables, it has been shown by several authors (e. g. ,

Buffa, 1961 and Freeman, M. C., 1964) that inventory be-

tween stations can indeed improve the output rate of the
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assembly line. This model suffers from the disadvantage

of neglecting in-process inventory costs.

The balance delay criterion of deterministic times can

be modified to suit the normally distributed random times as

follows. In the deterministic case we have to minimize

m

d

(mc - Tk)

k=1   
Trl C

subject to

c- T > 0k —	 °

Since Tk is a random variable, normally distributed with a

mean Exp(Tk) and a standard deviation 6(Tk ) = JV(Tk ) ,

we can define the individual. station times with variability as,

Tk = Exp(Tk ) + Z^/V(Tk)

where Z , the standard normal deviate, obtained from the

statistical tables for a given value of probability of station

times to exceed the cycle time c . If we all ow the

individual station times Tk to exceed the cycle time c ,5

percent of the time, the multiplier, Z would be 1. 645, while

for 15 percent it is 1. 035. Thus the modified objective

function for the variable data is
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minimize

	

	 = [mc	 {Exp Tk	Z4V(T	 ))] I mc (2. 5)

k=1

Here,

Exp(T ) is the mean value of the sung of element times that

make up Tk , and

V(T) is the variance of this sum of element times at k-th

station.

If (x x 2, ••• , x.,	 are the normally distributed

work element times with means (t l , t 2, ••• , ti, •••t ) and' n

variance (v(t i ), v(t 2 ),	 v(t.), ••• , v(tn
)) , then by the

assumptions of normality and independence we have,

Exp(T ) = Exp Exp(x.

and

V(T)	 V(t.)

1E

If we let 6(Tk ) as the standard deviation of the k-th sta-

tion time given by ,4V(Tk) then substituting these values in

the Equation (2_5) we will have:



minimize d = [mc - + ZO-(Tk)}1/mc (2. 6)
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By writing	 = k 
+ ZU(Tk

) , Equation (2. 6) can be re-

written as

minimize d = [mc -	 mc	 (2.7)

k=1

Thus the line balancing solutions used for deterministic data

can be converted to handle the variable data by redefining

the Tk
 values. This general method holds good both for

single and mixed-model situations with the two different

interpretations of cycle time. In mixed-model lines the

method of balancing a line can be either on the basis of a

cycle time or a daily production time (Chapter V). Thus the

total labor cost = { mc - T
1 ) + (penalty cost due to work

k k
congestion based on the value of Z ).

Minimization of the total production cost per unit assembled.

Due to the variability of work station times, the desired cycle time

cannot be maintained throughout the production. The time between

successive items coming off the end of the line is a random variable.

In fact, one can view this as the interdeparture time
from a series queue, Unfortunately, a queueing theory
provides little insight into the behaviour of this random
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variable (except for very special distributions)(Freeman,
1968, p. 231).

In process inventory in between the stations avoids the blocking with an

added cost of inventory. In the determinisitc case the interdeparture

time is identical to the maximum station time, which is equal to the

cycle time. Minimization of the total cost per unit assembled subject

to the precedure relations complicates the line balancing model due to

the consideration of various costs. Mansoor and Ben-Tuvia (1966) gave

a procedure to find the best cycle tune, for. n station, ex fectly

balanced line with variable work station times but this optimum c ,

they seek minimizes only labor costs and hence is inadequate. Free-

man (1968) outlined a solution procedure with an objective function of

the form,

Total cost/unit = Labor cost/unit + Inventory cost/unit

+ facility cost/unit + Penalty cost/unit .

Detailed description of this model appears in Chapter IV.

The standard ALB model formulated in this chapter would help

to realize that the problem of balancing an assembly line is directly

related to the problem of minimizing the production costs per unit

assembled on a conveyor in any mass producing industry.
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III. TRADITIONAL SINGLE-MODEL ALB-MINIMIZATION
OF DIRECT LABOR COST-DETERMINISTIC

WORK ELEMENTAL TIMES

Line-balancing problems have received a great deal of
attention, perhaps more than the prevalence of assembly
lines warrants. Some techniques yield exact solutions for
the given assumptions. Others are designed to yield approx-
imate solutions based on practical considerations (Riggs,
1970, p. 320).

The traditional research on line balancing, however, had been

focused on developing solution procedures to minimize the total direct

cost associated with the total idle time along the line in the assembly

of a single-model or product. Though some authors (e.g.,Arcus, 1966)

had briefly mentioned the variability of the work element times and the

handling of several models of the same general product on a single

conveyor line, none of the traditional approaches gave a detailed des-

cription of a solution method.

A summary of both the analytical and heuristic procedures devel-

oped in the past and suitable for a single-model problem is made in

this chapter with illustrated examples. This summary will give an

insight into the various techniques developed earlier and aid in the

creation of new and better procedures suitable for both single and

mixed-model assembly lines.

Analytical Procedures 

The mathematical interpretation of a practical ALB problem is
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to minimize a function measuring the idle time which is defined over a

permutation of a group of work elements, the members of which are

subject to technologically determined precedence relations on their

permissible linear sequences.

Linear programming and dynamic programming are two major

techniques applied to this problem. Shortest route criterion was also

used by some authors to minimize the idle time for a given cycle time

in an ALB problem.

The following analytical models are presented with examples

and are arranged in a chronological order of their publications.

A. Linear Programming (L. P. ) Model (Salveson, 1955).

The first published analytical statement of the line balancing

problem was by Salveson who made use of deterministic time.

We assume determinism in the production rate function
(work standard) by using company experienced data on allow-
ances for normal stochastic perturbation in production
(Salveson, 1955, p. 18).

Our objective is to minimize total idle time f(t) in all the sta-

tions on the line. Using the notation defined in Chapter II, we have

t,(k))

(3.1)

k=1
	 iE k
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subject to the following conditions:

a. if any p.. = 1 (where P = [p..] is a precedence matrix of

zeros and ones) and kJk
 then jE(Jk or Jk

) where k pre-

cedes k r and the Jk
 are numbered in accordance with the

same rules (left to right) for numbering the task i .

x,	 = 1, i = 1, 2, 3, ••• , n

k=1

1 if task i is assigned to the k-th station
xik { 0 if task i is not assigned to the k-th station

xik t. < c for all k = 1, 2, 3, ••• ,m
—

iE k

However, minimizing cycle time for a given number of stations,

implies selecting xik of the tasks i for the k stations so as to

minimize the maximum total work time (cycle time) assigned to any

station,	 minimize

max { Tk = x. t. , k = 1, 2, •• ,m
ik 1

(3. 2)

i=1

subject to the restrictions (a) and (b) of Equation (3.1).

1. Linear programming formulation to minimize total idle

time. The following changes in the notation will allow us to

formulate an L. P. problem from an ALB problem. Let

B = b. be a candidate matrix of zeros and ones, indicating

c.
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the cell conditions, 0 if an element i is not assigned to

the j-th column (vector) and 1 if it is. Each column is

then a combination of certain specified elements and forms

a "candidate" for becoming a station. Each such combina-

tion will have a characteristic delay or idle time denoted by

d,

d. = bt . , j = 1, 2, —•
3.) 1

The problem then becomes:

minimize	 x .d.	 (3. 3)
3 J

subject to the following constraints.

a. b . . =	 i = 1, 2, —• n
1)

j=1

b. 0 < x. < 1 ; j = 1, 2, •-• m
—

b..t. < c ; j = 1, 2, ••• , m
13 1 —

The above restrictions define a convex subset of an m

dimensional space, each point in which is specified by an

m-tuple, (x1 , x 2 ••• x 
IT1 ) . 

The extrema of that convex sub-
"

subset are those m-tupOlei in which:



0, or
x. =	 for j = 1, 2,

J	 1
•• M
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ii) for which the restrictions in Equation (3.3)hold

iii) for every i there is exactly one x.b.. = 1 ,
J 1.3

all other x.b.. = 0 for thatij

A pre-enumerated matrix of feasible combinations is

needed for the above L. P. model and this matrix can be ex-

tremely large and computationally unfeasible. For example

9
in a 9 element problem we may have E 9

C
r 

combinations =
r=1

531 , while the number of feasible combinations may be re-

duced due to precedence and cycle time constraints.

By considering x. in the above L. P. model as a dis-

crete variable a combinational approach is adopted with the

following steps.

2. Steps for the combinational algorithm.

Step 1. Prepare a candidate matrix [B]. The candi-

date matrix will contain all the possible combinations of

elements subject to the cycle time and precedence require-

ments.

Step 2. Select a feasible solution. From the candidate

matrix select column d.(d. = c - E b..t.) with minimum idle
J	 1 13 1

time. Enter this column d. into a solution matrix S1 .

This should be continued until each row has one and only one

entry. The solution matrix now contains an initial feasible
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solution to the ALB problem (ie. E d. < c).

Step 3. Determining the optimum: compute the total

delay time (Ed.) for the feasible solution and carry out the

following checks.

a. If the E d < c , then it is the minimal station bal-

ance.

b. If the E d.	 , then alter the feasible solution by

removing certain candidates and entering another

combination of candidates such that all elements

are covered by the new combinations of candidates.

Compute the difference in idle time between the re-

jected candidates and the recently entered candi-

dates. Let

Ed. out - Ed. in

If Z < 0 , then the present solution is a better one,

If Z > 0 , then the proposed solution is a better

solution,

If Z > 0 , proceed to Step 4,

Step 4. To change the solution:

a. Select the combinations with the maximum positive

valued Z (or any arbitrarily selected tie).



u = description of work element i

= performance time of element
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b. Enter that combination of columns into the solution

matrix [ Si and delete from S all columns which

have a non-zero entry in any row in which the

selected column has a non-zero entry. This will

yield a new solution matrix S ,

c. Return to Step 3 and Step 4 in cycles until the cri-

terion in Step 3(a) or 3(b) is satisfied, (until all

possible combinations have been tried,or until one

considers that the solution he has is satisfactory).

Example:

5

Legend:

Figure 3-1. Precedence diagram of 9 work elements to
illustrate Salveson's model.
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Solution: Let the given cycle time = 10 minutes and

we have to minimize the number of work stations

subject to the cycle time constraint and the preced-

ence relations shown in Figure 3-1. Note all

t. <	 = 10
1—

48

1=1

k feasible = {(u.) t > (i)} + {(ui)1 ti = (i)}i
= {u4, u6 , u7, u9 } + {u , u5}

= 4 + 2 = 6

and

nz = minimum number of stations

48 I 	 [4.81 =5 .
10

The application of the several steps involved in the

combinatorial method is illustrated below to arrive

at the minimal station balance.



1	 1

2
	 1

3

4	 1

5	 1

6	 1	 1

1
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Step 1. Generation of candidate matrix [ B ] as shown in Table 3-1.

Table 3-1. Candidate matrix generated from Figure 3-1. 
j	 1	 2 3 4 5	 6	 7	 8 9 10 11 12 13 14 15 16 17 

d. 6 8 5 3 5 4	 2 7 2	 4	 0	 3	 3	 0	 0	 5	 0
3 

7	 1
	 1

8

9	 1

Step  2. From the candidate matrix [ B ] a solution matrix [ S ] is
listed in Table 3-2 with minimum dj values for candidates

selected.

Table 3- Z. Solution matrix obtained
from Table 3-1. 

j	 11	 14	 15	 17	 9
d,	 0	 0	 0	 0	 2
J 

	

1=1	 1

	

2	 1
3

	

4	 1
5
6
7
8
9 
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In the solution matrix SI , we have Ed = 2 < c = 10;

hence we arrive at the optimal (minimal station) balance for

the given value of cycle time. However , to illustrate the

other steps in the method, we can start with another feasible

solution in Table. 3- 3 , where Ed. = 22> c .

Table 3-3. Alternate feasible solution with Ed. = 22.
.3

j 11 14 7 9 4 8 2

d. 0 0 2 2 3 7 8

i=1 1

2
1

3

4 1

5 1

6 1

7

8 1

9

Step 3. Determining the optimum.

Step 3a. Does not apply here.

Step 3b. Alter the feasible solution by removing certain candidates
and entering another combination of candidates as shown in
Table 3-4.



Departing Entering

i	 j	 d.

2	 2	 8

7	 7	 2

i	 j	 d .

2,7	 17	 0

Ed. out=10
1 

Ed. i =0
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Table 3-4. Details of entering and departing
candidates to arrive at the altera-
tion #1. 

From Table 3-4, Z = Ed. out - Ed. in = 10.

Step 4. To change the solution.

Step 4a. Does not apply here.

Step 4b. Modify the alternate feasible solution with the alteration #1.
The modified solution appears' in Table 3-5.

Table 3-5. Summary of modified feasible solution
with alteration #1.

j 11 14 9 4 8 17

i 1,6 3,5 9 4 8 2,7

d. 0 0 2 3 7 0
J

From Table 3-5, 	 = 12> c, implying we have to proceed

further to obtain a minimal station balance.

Step 4c. By returning to Steps 3 and 4 we have to find alteration #2
as shown in Table 3-6.



Departing Entering

i	 j	 d.
J

4	 4	 3

8	 8	 7

j	 d.

4, 8	 15	 0

Ed. out=10
J 

Zd. i =0
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Table 3-6. Details of entering and departing
candidates to arrive at the altera-
tion #2. 

From Table 3-6, Z = 10 0 = 10. At this stage, the modi-

fied feasible solution will have 5 stations with candidates 9,

11, 14, 15, 17 and Ed . = 2 < c , which tallies with the earlier

result. Thus it took two transformations to arrive at the

optimal station balance.

B. Dynamic Programming Algoithm (Jackson, 1956).

An exhaustive and enumerative algorithm based on dynamic pro-

gramming technique is given by Jackson. This algorithm, if carried

to completion, finds an optimal solution. The algorithm enumerates

feasible first-station assignments of elements, then for each first-

station assignment, the feasible second-station assignments, and so

forth, until all the feasible station assignments have been listed.

Optimal station assignment is selected from this list. Jackson pre-

sents a convenient method of drawing the precedence diagram to suit

his algorithm.
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The following steps explain the diagramming method. It starts

with Step 1 and ends after the completion of the first step in which all

operations have appeared on the diagram.

Step 1: In column 1, on the left side of a page, list all opera.;
tions which need not follow any operation.

Step n(a), n > 2: In column n , to the right of column (n-1), list
all operations not already on the diagram,
which need not follow any operation which is
not already on the diagram.

Step n(b): Draw all arrows from operations in column (n-1) to
operations in column n which must follow them.
Repeat this procedure, replacing column (n-1) by
column (n-2), (n-3), ••• , 1, successively; except that
no arrow is drawn from one operation to another if it
is possible to follow arrows "already drawn from the
first operation to the second (Jackson, 1956, p. 263).

The enumeration method given by Jackson can be divided into two

routines, namely, the MAIN ROUTINE and the SUBROUTINE as des-

cribed below.

SUBROUTINE: This is a set of rules for enumerating certain

possible assignments to the first station. It's use is further extended

to enumerate several possible "next" assignments when a certain

sequence of sets is considered for assignment to the first few stations.

Given a sequence { X(1),	 X(n-l), whe r e each X(i) is a
set of operations,. the

"collection of next assignments after f X(1), • .7, X(n-1)}

is the Collection of sets of operations obtained as follows:

Rule I. Delete from the diagrammatic representa-
tion of the line balancing problem all operations in the
sequence f X(1), •	 X(n-1)} and all arrows emanating
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from these operations.

Rule 2. List all sets X of operations on the dia-
gram, obtained by Rule 1 such that:

2(a). If a given operation is in X, so is every
operation from which an arrow leads to
the given operation.

2(b). The sum of the performance times for the
operations in X is not greater than the
upper limit on the cycle time.

2(c). No operation can be added to X without
violating 2(a) or 2(b).

Rule 3. (can be omitted, but often at the cost of
a substantially enlarged enumerations. ) Successively
cross off the list of Rule 2 sets X for which there is
another set Y on the list (still not crossed off), such
that:

3(a). There is just one operation x in X which
is not also in Y.

3(b). There is some operation y in Y, which is
not in X , which has performance time at
least as great as that of x , and such that
arrows can be followed from y to any
operation z for which there is an arrow
from x to z (Jackson, 1956, p. 265-266).

The subroutine ends when there are no more sets that can be

crossed off by Rule 3.

MAIN ROUTINE: The following steps illustrate this procedure.

Step 1(a). Construct the collection of next assign-
ments after { (I)} , where cl) is the empty set. Here
Rules 2 and 3 of the SUBROUTINE are used to arrive at
all the possible assignments to station 1.
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Step 1(b). Write List 1, the list of sequences {X(1)}
of a single set of operations with X(1) in the collection
obtained in Step 1(a).

Step n(a), n > 2. For each sequence IX(1),	 , X(n-1)}
of sets of operation on list (n-1), construct the collection of
next assignments after {X(1), ••• , X(n-1)}.

Step n(b). Write list n(b), the list of sequences
{X(1), , X(n-1), X(n)}, with {X(1), ••• , X(n-1)} on
list (n-1) and X(n) in the collection of next assign-
ments after {X(1), ••• , X(n-1)}•

Step n(c). Obtain list n from list n(b), by success-
ively crossing off sequences f Y(1), ••• , Y(n)} on the list
(still not crossed off); such that each operation included in
any X(i) is included in some Y(j) (there may be opera-
tions included in some Y(i) which are not in any X(i))
(Jackson, 1956, p. 266-267).

Step n is completed and thus the main routine ends when no

more sequences can be crossed off by step n(c).

Mathematical Justification: Let

A = finite set of all required operations.

m = number of stations.

t(a) = performance time for element a .

T = upper limit on the cycle time

apb imply a precedes b .

If we have a set A , partially ordered by relation p with a positive

valued function t on A , and number T > max { t(a)} over a EA ;

the ALB problem can be expressed as

minimize m over the partitions A(I), A(2), ••• , A(m) of A
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such that,

1. If apb , aEA(k) and bE A(1)„ then k <

2. E t(a) < T , for I = 1, 2, ••• , m
acA(I )

The set of partitions or stations satisfying (1) and (2) depends upon

A, p, and the function t/T Thus an ALB problem can be repre-

sented by (A, p, t/T) . The corresponding minimum value of m will

be denoted by

m(A, p, t/T)

LEMMA 1. A necessary and sufficient conditon that there
be a partition A(1), A(2), ••• , A(m) of A, satisfying (1)
and (2) and with A(1) = B, where B is a subet of A , is
that

3. If apb and bEB then aEB

4. E t(b) < T
beB

(Jackson, 1956, p. 271).

If B is any such subset, then the least value of m for any

such partition will be equal to 1 + m(A - B, p, t/T) . Thus it would

be possible to choose a subset B , satisfying the conditions in (3) and

(4) so as to minimize, the function m(A-B, p, t/T). This method re-

sewbles a Dynamic Programming approach.

To minimize the function m(A-B, p, t/T) the SUBROUTINE

discussed earlier was used and its usage was mathematically justified



by the following theorem.

THEOREM. Consider two ALB problems (A, p, t/T) and
(B, (1), u/U). Suppose there is a single valued mapping k:
A B such that for a and a' in A , and 1303 we have,

apa' -.1c(a)qk(a 1 ) and

Then

t( a)	 u(b)

k(a)=b

m(A, p, t/ T) < m(B, q, u/ U)

Proof If B(1), B(2),	 , B(m) is a partition of B which
satisfies (1) and (2) above (with A, t, and T replaced by
B, q, u, and U respectively) then a partition of A satisfying
(1) and (2) is obtained by assigning to A(1) precisely those
aEA for which k(a)03(1) (Jackson, 1956, p. 271).

Example:

Figure 3-2. Precedence diagram of 9 work elements
to illustrate Jackson's enumeration
method.

54
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Solution:

Figure 3-2 is constructed using Jackson's method of construct-

ing precedence diagram. The example is solved using the steps given

earlier, The sets in curly brackets shown below indicate that they are

ordered sets and are obtained by Rule 2 of the SUBROUTINE, The

sets in square brackets are those which form two set sequences which

are eliminated by Step 2( ),

Step 1 a b: u1U2' Ulu6

Step 2:	 {u1 u 2}: u3u5' u6

{uu}: uu uu
1 6	 2	 2 7'

Step 3:	 {uiu2, u3u5}: u4[u6]

ful u 2, u6 }: [u3u5],

u u
2 3

{u 1 u6, u
2
u

7
}: u3u5, u 3u8,

{u i u6 , u 2u5 }: [u3], [u7]

Step 4:	 u u , u4}: [u6 ], [u7]

{u 1 u6, u 2u7, u3
u5
}: u4u8

u u
5 8

luiu6' 
u 2u7, u3u8}: [us ], [u4]

ful u6, u2u7 u u }: u4
u

8
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{ulu6,u2 7 , u u8
 }: [u	 [u41u	 5	 4

{u 1 u6, u 2u7, u5
u

8
}:

Step 5: This step is shown in Table 3-7.

Table 3-7. Summary of station assignments at the
end of Jackson's enumeration method. 

1
u u

1	 6
U U

2 7
u u

3 5 u4u8

E ti
ieJk

d
k

k

10

0

1

10

0

10

0

10

0

4

42

5

E	 = Z < 10 implying an optimal solution for the

given cycle time of c = 10 minutes.

C. Integer Linear Programming Model (Bowman, 1960 and White,
1961).

Two different linear-programming formulations (known as first

linear program and second linear program) were developed to the ALB

problem. The first of the two formulations by Bowman (1960) was re-

formed by. White (1961) who adopted Kronecker delta functions.

The two different formulations of Bowman and the reformation by

White are illustrated below using the precedence diagram, in Figure

3-3.
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Figure 3-3. Precedence diagram of 8 work elements to
illustrate Bowman's L. P. Formulations
(source Bowman, 1960, p. 385).

Referring to Figure 3-3, let

= time required to perform job i = 1, 2, .•• , 8

e = cycle time = 20 time units

A. = number of time units devoted to operation 11. of
1	 1

station A

For convenience, Bowman considers 7 work stations as an upper limit

to this problem. The seven possible stations are identified by the

letters A, B, C, D, E, F and G.

First Linear Program

a. To assure that none of the stations are overloaded, the

following set of constraints (3.4) is developed, i. e.
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A + A + A + ••• + A8 < 20
1	 2	 3

B + B + B +	 + B 8 < 20
1	 2	 3

•

•

G + G + G + •••• G 8 < 20
1	 2	 3	 8

(3. 4)

b. To make sure that each operation is performed, the set of

constraints (3.5) is developed.

A l + B 1
 + C 1

 + ••• + G = 111

A
2
 + B

2
 + C 2

 + ••• +G 2 = 17

A + B + C + •••• + G = 10 0
8	 8	 8	 8

c. The following set of constraints (3. 6) includes integer vari-

ables of the form A • I which must take the values zero or
1

one.

1 	 + A i 1 = 1; 1 	 + B 1 I = 1;	
1 r,
11 –1 +G11 = 1;

+ A I= 1;	 B +B I= ; ••• ---7.71 G 2 +G 2I = 1;
1 7	 2	 1 7

(3. 6)

1 	 1
; —10

B 2 
+ B

2
1 = ;	 G + G8I

751 A + A = 1

The basic purpose of the constraint set (3. 6) is to

assure that the operations are not split between stations, in

other words, that they are assigned to only one station. For

(3. 5)
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instance, the constraint on A l
 insists that it takes the

value of either eleven or zero, considering that A l
 I must

take the value of either zero or one.

d. The following set of constraints (3. 7) assures proper order-

ing.

• —B < —1 A + —
1 B ;A 2	 1	 1

17	 11	 17 2 — 11 1	 11

1	 1C < — A 1 
B + c

17 2 — 11	 11 1	 11 l'
(3.7)

1—G3	 7
<

1 1	 1 1+ — D 1+——A
12	 5

+— B5 +—C
12	 5	 12	 5 12	 5 12

The first constraint for instance assures operation 1 precedes

operation 2 on the line.

The objective function of this linear program is

minimize Z = 1 (E 7 + E 8
) + 14(F 7 + F 8

) + 196(G + G 8 ) )
7	 8

The purpose of this objective function is to make
later stations exceedingly costly, pushing the operations
as far forward as is physically possible. Stations A
through D must certainly be used and need assume no
cost. Only operations with no succeeding operations in
an ordering need positive costs in the objective function,

e., they may be the last on the line. The nature of
cost explosion, 1, 14, 196 is to make one unit of later
assignment more costly than the sum of all preceding
station assignments [14 > 3 + 10, 196 > 3(14) + 10(14) +
10 + 3] (Bowman, 1960, p. 387).
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Reformation of the First Linear Program Formulation by White 

Consider the fact that each of the variables . A. i is discrete; for

instance, A is either eleven or zero, depending upon whether we do
1

operation u , at station A or not. Using Kronecker deltas the 3rd
1

set of constraints of Bowman's First Linear Program can be elimin-

ated along with his "special integer variables".

Let

= 1 if we do operation i at station A and

5	 = 0 otherwise.

Then 11 5is the number of time units devoted to operation 1 at
1

station A. Using this notation Bowman's first set of constraints

becomes

116A1
 + 17 5A2	 A6.	 + 5	 +••• + 10 5A8 < 20

.	 6A 	 —

11 6 B1 + 17	 + 9 5	 + 5 5	 +	 + 10 5	 < 20
B2	 B	 B8 —

•
•
•

(3. 8)

11	 + 175	 + 6	 + 5 6 G4 + •••• +105 G < 20
G1	 G2

The second set of constraints can be modified by dividing out the

common factor of the time required to do each operation.
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We get

5 + 5 + 
6

+ ••• + 5
Al B1 CI G1

5 + 5 + 5 + ••• + 5
A2 B2 C2 G2

•
•

6 + 5 + ••• +
A8 B8 C8 G8

= 1

(3. 9)

= 1

This set of constraints (3. 9) not only assures that each operation is

performed but also guarantees that the operations are not split between

stations. Further, it assumes that each variable must be either zero

or one in any integer solution, thus eliminating Bowman's 3rd set of

constraints. Bowman's last set of constraints remains same as given

earlier. The objective function is refined as to minimize,

Z = 1(35	 +105E7
E +14(35:F7 +106F ) + 196(36G7 +105G8)

where the cost coefficients 1, 14, 196 imply the same logic stated

earlier. The advantage of White's approach is that the number of

constraints and variables to be handled will be reduced.

For example, this approach reduces Bowman's
problem from 135 constraint equations (or inequalities)
with 112 variables, not counting slacks, to a problem
with 71 constraint equations (or inequalities) with 56
variables, not counting slacks and also we have a zero-
one integer programming problem which can be solved
using Gomory (1958)'s "cutting plane approach" (White,
1961, p. 276).
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Bowman's Second Linear Programming Formulation

Referring to the precedence diagram of Figure 3-3, one of the

feasible sequences is given by

u ->	 -1-11	 u
4	u52	 3	

u
6	u

7	u81 

Let x, be the time at which the element ui will be started.
1

a. To preserve ordering the constraint set	 is developed.

x>x+t	 x>x+t,•••,x8?-
x7

+t7 	
(3.10)

2 — 1	 3

where t1 , t 2, t 3 , °•• , t7 are the execution times of each

job in the sequence given.

b. To avoid interference, 1. e., one work element must be

completed before the next one starts, constraint set (3.11)'

is formed.

	

+ w [Et. + t	 > t
a	 1	 2 — 2

(x - x ) + (1 -	 [Et. + t	 t
2	 1	 1	 1

- x3 ) + wp [Eti + t31

- x2) + (1 - wp )[Eti + t21

- x8
) + w [E t. + t	 > t8Y	 8

(x8
 - x7

) + (1 -[E t. + t	 >	 and
Y	 1   

(3. 11)
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w —
> 1, w > 1, ••• , w	 > 1

R	 v

The constraint set (3.11) impliecil that the variables w«,
a

••• , w will take integer values of 0 or 1.

c. To assure that no station is overloaded and that the work

elements be wholly assigned to one station, the constraint

set (3. 1 2) is written:

x + t < cV + c; x > cV
1	 l —	 a	 1 —	 a

x + t < cV + c; x > cV
2	 2 	 P.	 2

•

x8
 + t 8 < cV + c; x > cV

(3.12)

Va
, V ,	 , V will take integer values from zero to m-1

where m is the number of stations to which jobs will be

assigned and c is the cycle time.

Constraints (3.12)insure that each job will be assigned

to stations according to times as shown in Table 3-8.

Table 3-8. Time allocations for assembly line
stations. 

Station	 A	 B	 C	 D	 E

Time	 0-c	 c- 2c	 2c-3c	 3c-4c	 4c-5c

For instance, when V. 0 , the work element u 1
 will be

a 

performed within the first station.
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d. The following constraint set (3.13) assures that X T , the

total completion time for the last work element in the

sequence will be at least as large as the starting time for

the last jobs in the sequence plus their execution times.

XT 	x t
T — 8	 8

(3.13)

X > x tT — 7 7

e. The objective function now becomes

minimize Z = X

This second linear program for the same problem uses 33

constraint equations (inequalities) with 8 variables plus 15 special

integer variables, plus the variable X T which equals 24 variables

not counting slacks. This is a considerable improvement over the

first linear program which requires 1 35 inequalities and 11 2 variables.

Due to the excessive amount of computation involved, no example

problem has been worked out here for illustration.

D. Dynamic Programming Model (Held, et al. , 1963).

A generalized dynamic programming formulation of the ALB

problem was made by Held et al. (1935). This model is formulated

with the objective of minimizing the number of work stations for a

given cycle time. The problem of minimizing idle time as per

T
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Equation (2. 2)) is equivalent to minimizing the number of work stations

for a given c .

An ALB problem is characterized by the set of jobs {u1 , u ••••"2 

u} , to be assigned, their execution times, { t 1 , t 2, t 3 ,	 , to}, the
n 

cycle time c , and partial ordering p expressing the precedence

relations among the jobs.

A subset of tasks S = {u. ,u. , u. , ••• , u.	 } is feasible if
1 1	

1 2 1 3	
1 n(S)

u S.E	 and u . pu. imply that u.e S . Similarly a sequence 0
1

(u, ,u.	 u. ,° •• ,u. ) is feasible if for 1 < q < n( g ) , fu,	 u, , •••
1 1	

1
2 1 3

i 	1 1	12In

u , is a feasible set. Associated with each feasible sequence 0-
'

there is a particular assignment of tasks to work stations known as

induced assignments, which satisfies the cycle time constraint. The

problem is stated as

.... minimizing the number of work stations to
accomplish the feasible sequences, by assigning as many
jobs as possible to the first work station, as many as
possible from the beginning of the remaining sub-sequence
to the second sub-station and so on, subject to c - T > 0k
(Held et al. , 1964, p. 444).

However, the Jackson's (1956) algorithm and the dynamic pro-

gramming model of Held et al. are principally the same except for

the generalization made by Held et al. The same example given under

Jackson's dynamic programming would suffice to explain this model.



a.. =
13

k=j	 k=j

if c -	 t_ > 0

k=i	 k=i

= M (abritrarily large) if c -

(i = 2, 3, ••• , n)

otherwiseM

< 0

. 15)

and for i > j
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E. Assignment Model (Klein, 1963) 

The ALB problem with a fixed value of cycle time c can be

shown equivalent to an assignment type problem using the same term-

inology described earlier, which we shall repeat for easy reference.

We have

- Tk
)

subject to the constraints

and

k=1

c - T	 >k

t	 < c <
max —	 —

0

i=1

(3.14)

Reformulate the problem as below:

Define an n x n matrix with entries a.. , where for i < j13

minimize



Now the problem is to minimize the linear form
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=S(x,••• , x)
11	 nn

Subject to the constraints

Ox. =	 1
1j

i=1

x..a.
13 ij

i=1

(i, j =	 1,

(J = 1, 2,

(i = 1, 2,

2,

3,

3,

°–

•– ,n)

••• , n)

(3.16)

This reverts to an assignment problem, which is another formulation

of the linear programming problem where variables have to take inte-

ger value forms. It is therefore related to the formulation proposed

by Bowman.

The elements of the cost matrix can be interpreted as
follows. If °

k=j
i <j and c-E t > 0

k=i k

then a.. is the idle associated with a station to which
13

successive operations i through j have been assigned. If

k=j
c - E t < 0 ,

k=i k

the station time associated with the assignment exceeds
the cycle time; since such an assignment is infeasible,
a.. is set equal to M to force the associated variable
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x.. to be equal to zero. When i > j , the aij 's have no

physical interpretation. If a variable x.

	

	 (associated
i-1

with element a i,	 = 0) is equal to one, it is interpreted

as a dummy variable and ignored. The remaining ele-
ments (set equal to M ) are included to "fill out" the
matrix; the associated variables will always be zero in
a solution to the problem (Klein, 1963, p. 278).

The steps for the algorithm proposed by Klein are as follows:

Step 1. Generate all possible orderings for the given work

elements subject to the precedence constraints.

Step 2. For a range of possible cycle times, within the limita-

tions imposed from below the largest work element

(t ax
), generate the n x n matrix of values alj
m 

according to the constraint set (3. 15).

Step 3. Find the optimal assignment by the regular assignment

method or by inspection of the a • . matrix.

The key to the algorithm is the Step 1, e. , to generate feasible

sequences from a precedence diagram. Klein remarked that apparent-

ly there is no formula or prescription on hand to determine the number

of feasible sequences for a given problem, However, the research by

Okamura and Yarnashin.a (1969) gives a promising answer to the ques-

tion of generating feasible linear sequences.
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Example:

Figure 3-4. Precedence diagram to illustrate
Klein' s as signment model.

Solution:

Step . Since it is not possible to illustrate for all feasible

sequences, let us consider one feasible sequence,

(u	 u2 u	 u	 u9 u6 u5	u7 u8
) in

3	 2	 1

Figure 3-4.

Step 2. Generate the a.. matrix as shown in Table 3-9
13

subject to the constraint (3.1.5) for a given cycle time,

c = 0.9 time units. In the Table 3-9, note

a
ll 

= a	 = c -	 = 0.9 - 0.5 = 0.4
u3, u3	 3

a
23 

= a	 which implies the idle time associated
u u

2' u1
with a station if the operations u through u in the2	 1

specified feasible ordering are assigned to that station =
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Table 3-9.	 nxn matrix showing a .	entries for a specified feasible sequence u -u -u -u -u -u -u3	 2	 1	 4	 9	 6	 5
u -u	 and a cycle time c = O. 9 time units.

7	 8

2 3 4 5 6 7 9
J --t•

u
3

u2 u
1

u
4

u
9

u
6

u
5

u
7i 1

u .
.i 1=1 a

1
a ll a 1212 13

a 14 a1 5 16 17 18 19
u3

0..3 0 M M M M M M M

2

3

u2

u
l

a21
M

a31

aa22
0.5

a32

a23

0.2

a33

a24

M

a34

a25
M

a
35

a26
M

a36

a27
M

a37

a28
M

a 38

a29
M

a
39

M M 0.4 0.1 0 M M M M

4

5

u
4

a41
M

a 51

a
42

M

a52

a43
M

a 53

a44
0.4

aS4

a45
0.3

a55

a46
0

a56

a47
M

a
57

a48
M

a58

a49
M

a59

M M M M 0.8 0. 4 0 M M

6
a61 a62

a
63

a
64

a65
a66 67a67

a
69

6 M M M M M 0.5 0.1 M M

7 u5
a

71
M

an
M

a73
M

a
74
M

a75
M

a76
M

a77
0.5

a
78
0

a 79
M

8
a

8
M

a
82

M

a
83
M

a84
M

a85
M

a86
M

a
87
M

a
88

0.4

a
89

9 a 91
M

a92
M

a93
M

a94
M

a9595
M

96
M

a
97

M

a
98

M

a 99
0.3
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c - (t 2 + t
1
 ) = 0. 9 - (0. 4 + 0. 3) = 0. 2. Similarly

a	 = 
au
	 = c - t

1
 + t

4
 = 0. 9 - (0. 3 + 0. 5) = O. 1

34 u u4

a35 = a__ ,	 = c - (t 1 +t4+t9 ) = 0. 9 - (0. 3+0. 5+0. 1) = 0au 
u9

a36 = auu = c (t1+t4+t9+t6)
l'' 6

= 0. 9 - (0. 3 +0. 5 +0. 1 +0. 4) = -0. 4 ) hence a
36 

is

assigned a big value M • Continue this for other

entries in the matrix (a..). However, for all

(i = 1, 2, ••• , n) , the cells a. 	 are assigned a
1, i-1

value equal to M instead of zero, as required in the

constraint set (3.15). This is to avoid confusion in

selecting a minimum feasible cell from the matrix.

Step 3. To get the optimal solution (minimum number of sta-

tions for the given value of c = 0. 9), select the mini-

mum element in row 1 , which is a l 2 = 0 , to imply

operations u
3
 through u are assigned to the station

2

1. Cancel these two elements u 3
 and u

2
 from the

sequence specified. Also cancel the corresponding

rows and columns in the matrix, i. e. , rows 1 and 2 and

columns 1 and 2. Then we will have the remaining

sequence (u
1 	u4 u9 u

6 u	
u

7	
u8 ). Here

5

u corresponds to row 3 in the matrix. So the mini-
1

mum element in the row 3 of the reduced matrix will be
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a35 
= 0 , indicating an assignment of operations u 1

through u9 (i. e. ,u1 ,u4, u8) to the station 2. Now

cancelling rows 3, 4, 5 and columns 3, 4, 5 we have

another reduced matrix, with the remaining feasible

sequence (u	 u5 u7 u8
) The minimum element

6	 5	 7

in the row 6 is a = 0. 1 thus combining u 6
 and u567	 "	

,

as the station 3. By reducing the matrix further and

doing the similar operations we find that a 88 = 0. 4

and a99 = 0. 3 thus implying station 4 consists of

element u7
 only, while u8

 alone fills the station 5.

Table 3-10 summarizes the grouping of the tasks into

stations.

Table 3-10. Summary of the assignment of tasks to
stations by Klein's assignment model. 

Work Station	 Station Time	 Station Idle	 Tasks
Time

0.90 0. 0 u3'	 2

2 0.90 0. 0 u	 u
1'	 4'	 9

3 0. 80 0. 1 u6' u5

0.50 0. 4 u7

5 0. 60 0. 3
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An alternate method of arriving at a minimal station balance from a

specified feasible sequence can be described in the following steps.

Let the order under consideration be (1, 2, 3, ••• , n), with a fixed

value of c , to minimize the number of stations.

Step 1. Assign the first S operations to the first station where

S satisfies the relation,

i=S	 i=S+1

ti < c	 t.
—	 1

i=1	 i=1

Step 2. Continue (a) with successive groups of operations until

all have been assigned. The number of stations will be

minimum at the end of step 2.

Thus if we can enumerate all feasible sequences for the given

problem, we can find the minimal station balance for each sequence

and then select that station balance which has the least idle time,

F. Shortest Route Model (Gutjahr and Nemhauser, 1964)

Klein (1963) indicated how a shortest route problem can be

formulated as an ALB problem. However, a more thorough presenta-

tion was made by Gutjahr and Nemhauser. The shortest route problem

is a special case of general network flow theory.

The steps for the shortest route algorithm are as follows:
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Step 1. Generate all feasible ordered sets called states. The

state S. corresponds to node
	 i = 0, 1, 2, ••• , r .

A state is a collection of work elements
that can be processed without prior completion
of any other work elements and in any order
that satisfies the procedure relations (Gutjahr
and Nemhauser, 1964, p. 309).

Note: S = empty set and S r
 = a set containing all the

elements of the precedence diagram. Each state

number S. is assigned a number equal to the sum

of the processing times of the individual elements

in the state, 1. e.,

t(S
	 = 0

and

t(S.) =

XES,
1

x represents the work elements contained in the

state S.. Here the generation of states is inde-

pendent of the cycle time.

Step 2. Given a cycle time c (one value in the whole range to

be considered), construct a network using the states

generated in ste p 1 as nodes , with state ].S. correspond-

ing to the node i . In the network there is a directed

arc (ij) from nodes i to j and only if S i  S. and
1
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t(S. - S.) < c	 Each directed arc (ij) is assigned a
J	 1 

distance c - t(S i ) - t(S i )) , which represents the total

delay time for the corresponding assignment. The net-

work construction starts with the state 0 , and generat-

ing all arcs from it. There is an arc from 0 to i if

t(S i ) < c . Thus the first set of arcs from it spans all

nodes from which the state time is less than or equal

to the cycle time. The nodes reached with this step

are called first nodes,

Step 3. From every first state or node construct all arcs ij .

There is an arc from node i to node j , if 5i c S.

t(S.) - t(S.) < c .
J	 1 —

Step 4. Repeat Step 3 until the last node r is reached for the

first time. Thus the construction of arcs is completed.

The minimum number of arcs required to span the

nodes 0 to r corresponds to the minimum number

of work stations to balance the line.

Step 5. To identify the states on the shortest route, determine

the states which are spanned by the arcs (0, i) , (i, j),

•••, (r-2, r-1), ( r -1, r).

In brief the algorithm consists of

a. generating all feasible states

b. constructing the network N with the states generated in (a)
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as nodes.

c. finding shortest route through the network based on an

algorithm given by Dantzig (1960).

Example: Consider the same example used by Bowman (1960))

Figure 3-3.

Solution:

Table 3-11 summarizes all the states generated from Figure 3-3,

while Table 3-1 2 shows the calculation of shortest route for a given

value of c 20. Figure 3-5 is drawn from Tables 3-11 and 3-12.

Referring to Figure 3-5 and starting at node 0 (state number 0),

node 1 can be reached with one arc. Then from node 1, node 2 can

be reached with 2 arcs from node 0 . This procedure is carried out

until node 15 (the destination node consisting of all work elements) is

reached for the first time. It is reached for the first time from node

10 with a path containing 5 arcs. Thus the elements in S 15 
- S10

(4,5,7) constitute an optimal 5th station assignment. Similarly since

node 10 is reached from node 3, the elements in S 10 - S 3 (6, 8) con-

stitute the 4th station optimal assignment. The other assignments

are obtained in this way and are given in Table 3-13.
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Table 3-11. Generation of states for the precedence diagram in
Figure 3-3.

Stage

Marked
Element	 State
Numbers	 Number

State Element
Numbers

State
Time

Unmarked
Element
Number s

0

1

2

3

4

5

1

2

3,4

5,6

7,8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Empty set

1

1, 2

1, 2, 3

1, 2,4

1, 2, 3, 4

1, 2, 3, 6

1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 4, 5,

1, 2, 3, 6, 8

1, 2, 3, 4, 5,

1, 2, 3, 4, 6

1, 2, 3, 4, 5,

1, 2, 3, 4, 5,

1, 2, 3, 4, 5,

6

7

8

6,

6,

6,

7

8

7, 8

0

11

28

37

33

42

45

54

50

62

55

57

60

65

72

75

1

2

3, 4

6

*
5

5, 6

8

7

8

7, 8

-

-

-

-

-

-

* Task 5 can not be done unless task 3 is done.
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Table 3-1 2. Shortest route calculation.

Minimum Total Number
	 Node	 Node Numbers in the Next

of Arcs to Nodes
	 Number	 Stage to Which Arcs are

Spread from the Node
Number in Column II.

(I)
	 (II) 

	

0
	 0

	 0

	

1
	 1

	 2

	

2
	 2

	 3, 4, 5, 6

	

3
	 3

	 7, 8, 10,11

4

5

1 2, 13

	

4
	 14

8

9

10

11

12

13

15

In Table 3-5, if we start at node 15 in column III, we reach node 0 via

nodes 10, 3, 2,1 in the shortest way. So this indicates the shortest

path (0 --* 1	 2	 3 -> 10 -> 15) shown in double line in Figure 3-5.
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57
	 74

Legend: 
	  shortest route

b = maximum state time allowed to reach that state [t(S . ) + c]

a = node or state number

c = state times of node a = sum of times of tasks included in the node

a = t(S.)

Figure 3-5. Shortest route through network according to
Gutjalu.-Nemhauser's algorithm.
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Table 3-13. Results of station assignments by Gutjahr-Nemhauser
Algorithm. 

Work Elements	 Station

Arc	 Nodes	 Spanned by Arc	 Station	 Idle

Number	 Spanned by Arc	 (S. - S.)	 Time	 Time
1	 3. 

11 91 S
1' 

S
O

S 2, S1 u
2

17 3

113 S
2

S
3' 3

4 S
10' 

S
3 u6' u8

18 2

5 S
15' 

S
10 u4' u5'

20

Heuristic Approaches

The computational difficulty of using an analytical approach,

even for a smaller size problem, had lead to the development of

heuristic procedures to solve the combinatorial ALB problem.

Heuristic procedures involve simple rules based on intuition and

judgement. These rules are easily programmable on a digital com-

puter. Also, additional constraints such as positional and zoning

restrictions can be added easily. The acronym HALB is used to

indicate heuristic method of balancing assembly lines.

The first HALB was developed by Tonge (1960). Later several

authors developed heuristic methods based on different criteria.

Mastor (1966) made a comparative study of the ALB techniques and

suggested that COMSOAL developed by Arcus (1966) was an effective
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method to solve large size problems. However, COMSOAL does not

guarantee an optimum solution and, moreover, employs numerous

heuristics and weighting rules.

The existing heuristic methods are illustrated in the following

pages in the unified terminology (Chapter II) with example. The

models are arranged in a chronological order of their publication.

A. Aggregation of Groups of Elements (Tonge, 1960) 

The heuristic method developed by Tonge involves three phases

and employs various heuristics based on grouping of work elements.

The different phases are summarized as follows:

Phase 1. This phase constructs a hierarchy of increasingly

simpler line balancing problems, by aggregating

groups of elements into a single compound element.

Each of these compound elements is in itself a mem-

ber of this same class of line balancing problems.

This is because each compound element is composed

of elements requiring a given elemental time and

among whom precedence relations exist. To accomp-

lish phase 1 of the solution method, three types of

compound elements are defined. They are:

1. Chain. A group of adjacent elements
whose relative order is completely deter-
mined, and each except the first having a
single direct-predecessor and each except
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the last having a single direct follower,
can be replaced by a compound ele-
ment called a "chain".

2. Set. A group of elements whose rela-
tive order is completely unspecified,
all having the same direct predecess-
ors and followers, can be replaced by
a single compound element called a
"set".

3. Z. A Z is a group of four elements
with two front elements having com-
mon predecessors and the other two
back elements having common followers.
The single direct follower of one front
element is one of the back elements;
the two direct followers of the front
element are the back elements. The
back elements have no predecessors
(Tonge, 1960, p. 27-28).

Figure 3-6 shows the three types of compound elements defined

with respect to the 21 element problem in Figure 3-11. Given an

assembly of elements with a single front element, the procedure

attempts to create a "Chain". Given an assemblage of elements with

several front elements, the procedure attempts to create a "Set" if

possible or a "Z" otherwise. Phase 1 is to be carried out only once

for' a given problem.

Phase 2. This phase solves a simple line balancing problem

(with a small number of compound elements) by (1)

assigning groups of available workmen (work stations)

to elements and then (2) taking as subproblems those

compound elements (simple problems in themselves)
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Figure 3-6b. Tree diagram repre-
sentation of set and
chain relations.

Figure 3-6a. Illustration of set and chain. 

Figure 3-6c. Illustration of Z-
aggregation.

44

Figure 3-6d. Tree diagram representation
of Z- aggregation.

Figure 3-6. Illustration of set, chain and Z-aggregations.
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which have been assigned more than one man. The

inputs to phase 2 are the problem hierarchy as devel-

oped in phase 1, a cycle time determined by the pro-

duction rate, and a "percent usable time" supplied as

a guide to set and accept the potential work stations.

Phase 2 uses five regrouping heuristics, namely, (a)

Direct Transfer, (b) Trading, (c) Sequential Group-

ing. (d) Complete Grouping and (e) Exhaustive Group-

ing. These are thoroughly discussed by Tonge (1960,

1961).

Phase	 This phase attempts to even the distribution of work

among the work stations by repeatedly reducing the

time requirement of the largest work station. The

output of the second phase and a cycle time would be

the inputs to this phase. This phase minimizes the

cycle time directly by using the five regrouping

heuristics used by phase 2.

Example:

Consider the 11 element problem in Figure 3-7. The tree dia-

gram in Figure 3-8 is constructed using phase 1. Note that the groups

that make up a chain must be performed from left to right. This does

not apply to the groups that make up a set. For exampel C 2 is made
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 013
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Figure 3-7. Precedence diagram for 11 elements to illustrate Tonge (1960)'s

heuristic method.

Figure 3-8. A tree diagram of compound elements for 11 element problem.
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up of two groups S 1 and C1 (Refer Figure 3-8). This indicates that

S1 precedes C1 . The set S 2 is made up of C 3 and C 2 but this

does not imply that C 3 precedes C 2 . C4 is made up of ul , S2

and u11 . Thus u1 precedes S 2 and S 2 in turn precedes u11

This precedence relation applies to u 7
 and u

8
 for C1 and u 2, u6,

u
8
 and u

10 
for C as well.

3

Now phase 2 is to be applied. For this we need a cycle time.

46
Let c 10 minutes and E = 46. 	 (integer) = [ 10 ] = 5. Starting

at the top of the tree diagram of Figure 3-8, we note that C4
 is the

topmost group and it is a chain. So to observe the precedence rela-

tion_ elements must be picked from left. u 1
 requires 6 minutes and

there are 4 left. S 2
 is too big, so its components C 2

 and C 3
 are

examined. They are also too big. Since S 2
 is a set, C 3

 is arbitrar-

ily tried. It is found that u and u 6 fill up the first station. Hence,
2

the set {u1,
 u

2, u
6
} makes up the first station.

Now the attack is from the rear, and the tasks are assigned to

the last station. Working from back of C u is inserted first.4'	 1 1

Again the components of S 2
 are examined. This time C 2

 is tried

first. Since C 2 is a chain, and because we are assigning to the last

station C must be tried first to comply with the precedence relations.
1

Working from the back of C 1 , u9 is assigned leaving 1 free minute

in the station. The element u7
 will not fit due to precedence viola-

tions. Going back up the tree S 1
 can not be tried since C 1

 is not
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completely assigned. But C 3 can be tried since S 2
 is a set. Work-

ing backwards from C 3 , u10 is too big and hence we stop the search.

At this point the last station consists of u and u 	 (Figure 3-9).
9	 11

Figure 3-9. Tree diagram after partial application of
phase 2 of Tonge l s heuristic method.

Now an attempt is made to assign the tasks in S 2
 to the three

remaining stations. We start at the top of the modified diagram

(Figure 3-9). Since 5 2
 is at the top, choose C 3

 arbitrarily. The

element u
8
 requires 6 minutes, so there are 4 minutes left out.

Work element u10 
is too big while either u 3

 or u4
 also do not fit
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for u8
 However, the set {u8, u5

} can be accommodated at station

2 leaving 3 minutes of slack time. Now the assignment of all but one

station can be attained by proceeding from the rear of Se. , u 72

is selected. The set S is too big, while u4
 fits leaving zero idle

1

time. So station 4 will contain the set of elements {u 10, u3
}	 The

tree at the end of phase 2 (Figure 3-10) shows that the assignments

are complete at this stage.

Figure 3-10. Tree diagram at the end of phase 2
of Tonge's procedure.

B. Transferability and Permutability of Work Elements (Kilbridge
and Wester, 1961) 

A heuristic method of ALB was developed by Kilbridge and

Wester using the method of Jackson (1956) in constructing a preced-

ence diagram. This method can be extended to most practical problems



89

by adding zoning and positional restrictions.

The basic heuristics used in this method are based on

1. The permutability of elements within each column. This is

the indifference of the order in which tasks in the same

column are performed.

2. The lateral transferability of work elements. The elements

can be moved between columns of precedence diagram.

The objective is to minimize the % balance delay, i. e. ,

(nc -
minimize	 d = 	 u x 100

nc

Example:

The 21-element problem shown in Figure 3-11 is solved by this

approach for a cycle time c = 20 minutes. The precedence diagram

in Figure 3-11 is constructed using the method of Jackson (1956).

Summary of the diagram appears in Table 3-14. Column C of the

Table 3-14 indicates the transferability of the elements.

Solution:

Since c = 20, and we have 21 as the cumulative time in column

III of the Table 3-14, we have to attempt the transferability heuristic

for the element u	 By shifting u2 to column III after u4 the
2	 2	 4

modified grouping of the elements is shown in Table 3-14a where

entries up to column V are shown and other entries which did not

change from the earlier Table 3-14, are not repeated.



Figure 3-11. Precedence diagram of 21 elements constructed as per Jackson's method to illustrate Kilbridge and Wester's HALL



Table 3-14. Tabular representation of work elements for 21 element problem to illustrate Kilbridge

and Wester's HALE.

Column Element Sum of
Cumulative

Number of Time Time durations
Units

Diagram Element Remarks Duration in Each Column Time
(F)

(B) (C) (D) (E)
(A)

I u
1

4 4 4

H u2(w. u21)
-> III to XI 3

u
3

9 12 16

IIIII
u4

5 5 21

IV u
21

.-). V to XII 7

V

u
5

u
6

9

4

16 37

u 8 12 49 

7

VI u8
7

u(w. 
14	 9

) -4. VII to XI 3 10 59 

5 64
VII

VIII u
10

1

11

u.12 1

u
13

(w. u
18, 

u
19

) to X 5 10 74

5 5 79

15

X u
16

3

u	 (w. u _)
18	 19

-4. to XI 8 87

XI u
17

13

u19 -4. to XII 2 15 102

XII u20
3 3 105

(w.ui) indicates with the element u . .
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Table 3-14a. Modified grouping of work elements obtained from
Table 3-14 for 21 element problem. 

(C)
	 (D)	 (E)	 (F)

4

III	 u4
	5

	 18
	 18

u
2
(w. u

21
	 - III to XI
	 3
	 3
	 21

IV	 21
	 -.V to XII	 7

u5
	9

	 16	 37

V	 u6
	 4

u7
	8

	 12	 49

(The remaining entries of Table 3-14 remain same. )

Now referring to column F of Table 3-14a, it is evident that the

cumulative sum of 38 will occur within the column V. We cannot

transfer u
2
 to column V. Since u 2

 is associated with u 21 
for a

transfer. So u, u	 and u5 must be placed under the station 2,
2	 21	 5

resulting in 1 unit of idle time. Similar heuristics will result in

another Table 3-14b.

From Table 3-14b, station 5 has only 13 time units resulting in

a maximum delay of 7 time units, while stations 2 and 3 have 19 time

units each with a delay of 1 time unit at each station. So to smoothen

out the station assignments, we can transfer u14 
to column X of the

diagram so that station 4 will have 15 time units as its work station 

(B)  
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Table 3-14b. Revised table obtained by Kilbridge and Wester's HALB
for 21 element problem for a cycle time c = 20 units of
time. 

F)
ti-1) ,- ,

I	 u	 4
1

gII	 u3

—	 —

_ _	 —	 — c

u4 III	 18	 18 i

4

2

IV	 u 21	
-..	 7	 4

u5	
A

19	 37 °I
0

V	 4
c

8	
.-.

_	 —

u8VI	 19	 5 6 ;

-)4	 3
u14 	 — — 

VII	 u  	 5

VIII	 u10	
1

u	 3
11 

	 ,

u
1 2	

1

1
u 3	-
	 5	 18	 74

IX5

X	

uit

u16
3

u18
->	 5	 13	 87

XI	 u	 17
17

u
19

XII	 u ,7n	 3	 18	 105

I,R---, 	
TI

0

tr
00
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time while the station 5 will have 16 units. With this small modifica-

tion the station assignments are shown in Table 3-15.

Table 3-15. Final solution of task assignments to work stations by Kilbridge and Wester's HALB for a

a cycle time  c = 20 minutes. 
Station
Number	 1	 2	 3	 4	 5	 6 

Tasks	 ui, u3, u4	u2, u21 , us	u u7,
 7' 

u8	u u u
9' 10' 11	

u	 u

	

14' 15	
u u
17' 19

u u
12' 13	 u16' u 18	 u20

StationTime	 18
	

19	 19	 15	 16	 18 

Since c 20 and	 = 105 , minimum number of stations (m ) =

105 = 6, which is the same as the result obtained in Table 3-15.
20

Remarks:

If this solution is implemented, the cycle time will be 19 times

units (in the steady state) instead of the given value of c = 20. The

balance delay is 1 2. 5% at c = 20 and 3% at c = 19. The cycle time of

20 will reduce the balance delay and increase the production rate in

case of increased demand schedule.

This heuristic approach is suitable for flexible production

schedules since it is easy to arrive at different station balances by

merely shifting the elements in the columns of the diagram.

C. Ranked positional Weight Technique (Helgeson and Birnie, 1961) 

This is a heuristic approach suitable for computer applications.

This method does not offer optimal solutions and is effective only when

the problem is formulated to minimize the number of work stations



1	 1	 1	 1	 1	 1	 1	 1

1	 1	 1	 0	 0	 0	 1

1	 0	 0	 0	 0	 1

0	 0	 0	 0	 1

0	 1

1	 1	 1

1u

u
1

u
2

u
3

u
5

7

4

2

5

7

5

6

3
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for a given cycle time. An alternate formulation with minimum cycle

time for a given number of work stations can be obtained by balancing

the assembly line over a wide range of cycle times. The positional

weight calculations are based on either a precedence diagram or a

precedence matrix.

Table 3-9 denotes the precedence matrix for the 9 element

problem shown in Figure 3-1. In this matrix entries are shown only

above the diagonal, where presence of 1 indicates "must precede"

and 0 an "unordered" relationship.

Table 3-16. Diagonal precedence matrix of 9 work elements problem
shown in Figure 3-1 to illustrate positional weight HALE.

Element
Time	 Element-* u1 u2	u4 u5

	 u7 u8
u8
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Positional Weight Calculations. This is done by adding together

the time values for the specific work element and all work elements

that must follow it as defined in the precedence matrix. This position-

al weight is labelled as "linear positional weight" (Linpow),

Linpow of u
2
 = (t

2
+ t 3

+t4+ t5 +t9
) = 2 + 5 + 7 + 5 + 8 = 27. This cal-

culation can be easily done by a computer using the precedence matrix

in Table 3-16. The listing of a computer program written in

FORTRAN-IV to calculate positional weights appears in the Appendix.

First, the positional weights are calculated and listed in the unsorted

Table 3-17. Then work elements are sorted and listed in their de-

scending order of positional weights (Table 3-18).

Table 3-17. Unsorted positional weight list.
Work	 Positional	 Immediate

Element	 Weight	 Precedence

u
1
	48	 -

u2	 27	 1

20	 1

u4
	15

u
5
	13

u6	25

u7	19

u
8
	11

8u9

u6

u
7

u ,u4,	 u8

•
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Table 3-18. Sorted positional weight list.
Work	 Positional	 Immediate

Element	 Weight	 Precedence 

u
1

48 -

u
2

27 u
1

u3
25 u

1

u4 20 u 2

u
5 19 u6

u6
15 u 3

u
7

13 u
2

11 u
7

8 114'
, u8

The following rules denote the heuristic method of assigning of

work elements to work stations assuming a given cycle time for the

ALB problem.

Rule 1. Select the work element with the highest positional
weight and assign it to the first work station [ all
t. < c ].—

Rule 	 Calculate the unassigned time for the work station
by calculating the cumulative times of all work
elements assigned to the station and subtract this
sum from the cycle time.

Rule 3, Select the work element with the next highest
positional weight and attempt to assign it to the
work station after making the following checks.

a. Check the list of already assigned work
elements. If the "immediate precedent"
work element has been assigned precedence
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will not be violated; proceed to rule 3-b,
otherwise proceed to rule 4.

b. Compare the work elemental time with the
unassigned time. If the work element time
is less than the work station unassigned
time, assign the work element and recal-
culate the unassigned time. If the work
unit time is greater than the unassigned
time proceed to rule 4.

Rule 4. Continue to select, check and assign if possible
until one of the two conditions has been met.

All work elements have been assigned

b. No unassigned work element remains
that can satisfy both the precedence
requirements and the "less than the
unassigned time" requirement.

Rule 5. Assign the unassigned work element with the highest
positional weight to the second work station and
proceed through the preceding rules in the same
manner.

Rule 6. Continue assigning work elements to work stations
until all work elements have been assigned. At
that time a solution to the balancing problem will
have been found (Helgeson and Birnie, 1961, p.
396).

Example:

Consider the problem of 9 work elements given in the prece-

dence matrix of Table 3-16. For a given cycle time of c = 10 min-

utes, the solution is obtained in the following Tables 3-19 through

3-19e. The column (7) shows whether an element is accepted or re-

jected. A rejection may be for two reasons: (1) the cumulative sta-

tion time is greater than the given cycle time (this is denoted by
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reject > c in the remarks), and (2) the particular element violates

precedence relations (denoted by p in the remarks). A square

around an entry in column (6) denotes that further assignment stopped

at that element and another work station must be started, The sum of

the times in all the enclosed squares give total delay in all the stations.

Table 3-19. Assignment to work station 1 by positional weight method. 

	

Positional	 Immediate	 Element	 Cumulative	 Unassigned

Element	 Weight	 Precedence	 Time	 Station Time	 Station Time	 Remarks

(1)	 (2)	 @)	 (4)	 (5)	 (6)	 (7) 

48	 4	 4	 6

	

27	 u l 	2
	 6

u6 	25	 u1	
12 6

u3 	20	 u2	 5	 11

u	 19	 u

u	 15

u5 	13	 u2	 5

	

11	 u7118

u9	8
	 u u4, 4' u8

Table 3-19a. Assignments to work station 2.

7

4

6

14 I
assign

assign

reject) c

reject %.",c

reject, p

reject, p

reject c

reject, p

reject, p

(1)	 (2)	 (3)	 (4)	 (5)	 (6)

u6	25 1

	

20	 2

15

u5	13

	

11	 7

	

8	 u8, u u5

(7) 

assign

reject > c

reject, p

reject > c

reject, p

reject, p

6	 6
	 I 4 I

5	 11

7

11

3



Table 3-19b. Assignments to work station 3.

(3)	 (4)	 (5)	 (6)	 (7)

u 2	5
	 assign

u6
	 8	 13	 reject > c

13	 reject > c

	

5	 10	 assign

Table 3-19c. Assignments to work station 4.

100

(1) (2)

u 3 20

u7 19

154
13

(1) (2) (3) (4) (5) (6)

u7

u8
129

19

15

11

8

u6
u 3
u7'

118,13.4' u5

8

15

(7)

assign

reject > c

reject, p

reject, p

Table 3-19d. Assignments to work station 5. 

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7) 

u4	15	 u6	 7	 7	 3	 as sign

u8	 11	 u7	 3	 10	 0 Iassign

Table 3-19e. Assignments to work station

(1)	 (2)	 (3)	 (4)	 (5)

8	 u ,u ,u	 8
7 4 5 

(6)	 (7)

assign
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The algorithm is ended at this stage since all work elements have been

as signed.

The summary of the assignments to work stations is in Table

3- 20.

Table 3-20. Summary of assignments to work stations by
Helgeson and Birnie's positional weight HALB
at a cycle time c = 10 . 

Station Number (k) 1 2 3 4 5 6

Tasks ul, ul' u2
u 3, u5 u

7 114, u8
u9

Station Time 6 6 10 8 10 8

Station Idle Time 4 4 0 2 0 2

6
Since E di_ = 1 2 > 10 implies the result is not optimal (not

k=1
minimal station) balance. The balance delay for this result is 20%.

However this approach is suitable for computer applications to arrive

at alternative solutions.

An alternative set of solutions, not necessarily an improve-

ment over the original set of solutions, can be obtained by the "inverse

positional weight" technique. The calculations for the inverse posi-

tional weights are made by summing the work element time with the

elemental times of all work elements indicating a 1 in the column of

the specified work element rather than in the row of the precedence

matrix.
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Using Table 3-1 6, the inverse positional weights are calculated

and the unsorted list is shown in Table 3-21 , while 3-22 is the sorted

list in descending order of inverse positional weights.

Table 3-21. Unsorted inverse positional weight list. 
Work	 Inverse Positional	 Immediate

Element	 Weight	 Precedence

9

u8

u
7

u6

u5

u4

u
3

2

48

21

18

10

11

18

11

6

4

u
9

u9

u
7



U U6' 2u5'5' 3u8, 
u4

62

Tasks

Station Time

Station Idle Time

(dk)

10	 8	 10	 8

0	 2	 0

103

Table 3-22. Sorted inverse positional weight list. 
Work	 Inverse Positional 	 Immediate

Element	 Weight	 Precedence

48

21
8

u7
	18	 u

8

u4
	18

11 u9
5

u 11	 u
43

u 10	 u
76

	6 	 u u3' 5

u 4	 u2' u61 

Following the same rules as described earlier, an alternative

grouping of elements is obtained in Table 3-23.

Table 3-23. Summary of an alternative assignment to work
stations by inverse positional weight method. 

Station Number (k) 6	 5	 4 2	 1  

2

Balance delay = 20% (no improvement)

Total delay = 12> c , 1. e. , not optimal.
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Thus, the inverse positional weight method also does not

guarantee an optimal solution.

D. Random Generation of Feasible Sequences (Arcus, 1966)

A Computer Method of Sequencing Operations for Assembly

Lines (COMSOAL) was developed by Arcus. It was based on the idea

of generating a large number of feasible sequences by Random Gener-

ator. Out of those one sequence is chosen which gives the fewest

stations, where each work station is loaded with tasks in the order of

the sequence. For example, a feasible sequence of tasks in the prob-

lem given in Figure 3-3, is u1
u 2 - u4 - u 3 - u5 - u6 - u8 - u7 .

The least number of work stations required for this sequence for a

given cycle time of c = 20 minutes is given and tasks being assigned to

stations as shown in Table 3-24.

Table 3-24. Summary of assignments of tasks to work stations. 

Station Number	 1	 2	 3	 4	 5 

Elements Assignedu u1	 u4, u3	 u5, u6	
u8, u7

Station Time	 11	 17	 14	 20	 13 

Determination of Sample Size for the Number of Feasible Sequences to
be Generated 

Let

N = number of feasible sequences (including replications)
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generated.

r = proportion of the universe of feasible sequences

which constitutes optimal sequences.

Then the probability that the first sequence generated is optimal

is r that that it will not is (1 -r). Thus the probability that none is

optimal is (1 -r)
N and probability that the optimal number is greater

than or equals P = 1 - (1-r)	 From this 1 - P = (1-r)
N.

Taking logarithms of both sides:

Log (1-P) = N• Log (1-r)

N = Log(1-P)/Log (1-r)

For example, if r = 0.001 about 4600 sequences (including replica-

tions) would be required to be 99 percent certain that at least one is

optimal. The problems encountered in the determination of N is in

identifying r and generating of feasible sequences randomly and

economically. Arcus claimed that the only economical generator was

a progressive selector of tasks from among those which have no un-

assigned preceding tasks. Assuming that no means of determining r

(or its process equivalent) is known, other than by the impractical

enumeration and evaluation of sequences, Arcus hypothesized that an

economic sample (say 1000 sequences), in the vast majority of lines

would contain at least one optimal sequence.
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Steps for the Generation of Feasible Sequences

The following steps are illustrated with the example in Figure

3-1 2 for a cycle time of c = 10 minutes.

Figure 3-1 2. Precedence diagram to illustrate
A.rcus's method of generating
feasible sequences.

Step 1. Represent each task and its immediate followers in the

precedence diagram either by a matrix or by a single

list, plus a list of row entry points. Call this list the

Initial List.

Initial List:

Task	 u
1	u2 u3

	u5 u6 u7

Immediate u u	 u
7
 NIL NIL

3' 4
Followers

Step 2. From one scan of the Initial List, place in another List

A for each task on the line, the total number of tasks

which immediately precede it in the precedence diagram.
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List A:

Task
	 u

1
	u4 u5 u6 u7

	

Total Number 0	 0
	 1	 1	 2	 1

of Immediate
Precedents

Step 3a. Referring to List A, place in a new List B all tasks with

0 against them in List A.

List B:	 Task

u1

2

Step 3b. Transfer to a third list, List C, those tasks in List B

which have elemental times no greater than the available

time.

List C:	 Task

Step 4. Select a task from List C randomly and assign it to the

first station. Calculate the slack units available. For

example, let us select the task (say) u2.

Step 5. Eliminate the selected task from List B and move all

tasks below the selected task up one position in List B.

List B:	 Task

(updated)	 ul
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Step 6. Scan the row of the selected task in the Initial List.

Note the tasks immediately following the selected task

and deduct 1 from the number associated with each in

List A.

List A:

Task	 u1 u	 u	 u7

	

1	 2	 3 u4 u5

Total Number
	 0
	 2	 1

of Preceding
Tasks

Step 7. Add to List B those tasks which (a) immediately follow

the selected task and (b) presently have a zero against

them in List A.

List B:	 Task

Repeat steps 3- b through 7 till all tasks have been

assigned.

In this procedure, the evaluation is progressive,
i. e., the available time is diminished as" each task is
generated and a task too large for remaining time be-
comes the first at the next station. As a sequence is
completed, the number of stations obtained in that
sequence is compared with that of the previous best
sequence. If there is an improvement, a new sequence
is stored and the old is discarded; thus there are never
more than two sequences in store at any time (Arcus,
1966, p. 264).

The steps 1 through 7 described above proceed by assigning
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probability to all the tasks that could come next. But this procedure

may not be successful for certain problems (for example for Kilbridge

and Wester (1960)'s 45 element problem. So to obtain an almost

optimal sequence, a weighting scheme with some additional rules is

given. The summary of the additional rules is as follows.

Rule 1. Weight tasks that fit in proportion to the
standard performance time. One effect of this rule is to
prefer large tasks early at each station and in the entire
sequence.

Rule 2. Weight tasks that fit in proportion to the
number of immediately following tasks plus 1. This
leads to tighter packing. By adding 1, it is ensured that
a task without followers will not be excluded.

Rule 3. Weight tasks that fit in proportion to the
number of immediately following tasks (which subse-
quently become available and fit, plus the number of
other tasks in the fit list (which subsequently fit) plus 1.
This rule favours small tasks unlike Rule 1,

Rule 4. Weight tasks that fit by 1 /X , where X
is equal to the total number of tasks to be performed
minus the number of all tasks which precede or follow
(immediately and subsequently) the task being considered.

Rule 5. Weight tasks that fit by 1/X' where X' is
equal to the total number of unassigned tasks minus 1 and
minus the number of all the tasks which follow the task
being considered.

Rule 6. Weight tasks that fit by the total number of
all following tasks plus 1.

Rule 7. Weight tasks that fit by the times of the
task and of all the following tasks.

Rule 8. Weight tasks that fit by the total number of
following tasks plus 1, divided by the number of levels,
which those following tasks occupy plus 1.
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Rule 9. Weight tasks that fit by the product of the
weights computed by Rules 1, 5, 6, 7 and 8 (Arcus, 1966,
p. 265-267).

For very large complex problems COMSOAL and
heuristic method of line balancing by Kilbridge and Wester
are probably the most effective (Buffa, 1968, p. 261).

E. Precedence Matrix Manipulation (Hoffman, 1963) 

By simple operations on a precedence matrix of zeros and ones,

optimal balances can be arrived by Hoffman's precedence matrix

method. This method can handle lines up to 99 tasks and has balanced

19 to 76 lines in 3 to 10 minutes on CDC-1604 computer. The differ-

ence between this technique and that of Helgeson and Birnier (1961),

is that the latter sums the times for all succeeding elements while the

former selects the elements on the basis of the total number of

succeeding elements. Generation of feasible sequences in a precedence

matrix is achieved by simple matrix operations considered by Hoff-

man (1959). If the immediate precedence matrix is called P , then

letting S = P + P
2 + P 3 + ••• + P

n , and as n tends to infinity, we

have	 Limit S - where I denotes the identity matrix.
n—>. co	 (I-P) ,

The elements of S are the number of paths from the task in

the row to the task in the column. Manipulating the matrix S , all

feasible sequences can be obtained. Hoffman (1963) proposes succes-

sive maximum elemental time method to the ALB problem and claims

that backward balancing usually does lead to optimal solutions if
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forward balancing does not for a specified feasible sequence.

Steps for the Algorithm

To illustrate the various steps proposed by Hoffman, an augu-

mented matrix has to be prepared first.

From the precedence diagram a precedence matrix, represent-

ing the immediate precedence relations, is made. Each column of

the matrix is summed and these sums form another row adjoined to

the bottom row of the matrix. A Code Number, say K 1 , is given to

this new row of the augmented matrix. Next the diagonal of the matrix

is labelled with any arbitrary value (D). The first code number, K1,

consists of n integers, n being the number of elements to be sched-

uled, at least one of which is zero. The elements heading the columns

in which there are zeros in K 1
 are candidates for the first position

in the list of feasible permutations and only those elements can be

candidates. The following steps describe the Hoffman's procedure.

Step 1. Search left to right in the Code number for a zero.

Step 2. Select the element which heads the column in which
the zero is located.

Step 3. Subtract the element's time from the cycle time
remaining.

Step 4. If the result of step 3 is positive go to step 5.

Step 4a. If the result of step 3 is negative go to step 6.
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Step 5. Subtract from the Code number the row corresponding
to the element selected and use this result as a new
Code number.

Step 6, Go to step 1 and start search one element to the
right of the one just selected and repeat steps 1
to 6 until all the columns have been examined,
then go to step 7.

Step 7. Subtract the remaining cycle time (the slack time)
of the present combination from the slack time of
the previous combination generated (if this is the
first, then subtract from the cycle time).

Step 8. If the result of step 7 is zero or negative go to
step 9.

Step 8a. If the result of step 7 is positive, then this set of
elements just generated becomes the new combin-
ation for this station. Go to step 10.

Step 9. Go back one Code number and go back to step 1,
starting one element to the right of the element
which had been selected from that Code number.
Repeat this procedure until the last column of
the first Code number has been tested; the result
is that the last combination generated by step 8
is the one having the maximum elemental time
for the station.

Step 10. Replace the first Code number with the last
Code number corresponding to the previous
result. This eliminates from further consider-
ation of the elements already selected.

Step 11. Repeat the previous steps until all the elements
have been assigned (Hoffman, 1963, p. 553-554).

Example:

Table 3-25 illustrates the solution procedure for a 9 element

problem, represented in a matrix form at the top of the table. It has

9! or 362,880 permutations of 9 elements. Hoffman's method reduced
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Table 3-25. Generation of feasible combinations for station assignments by Hoffman's procedure.
a)T.	 T.
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 -D [0 0 2 1 1 1 1 3] 2 3

0 D 0 1 0 0 0 0 0

K
3
 -D -D [0 1 1 1 1 1 3] 3 4

K
3
 -D -D 0 1 1 1 1 1 3

K
2
 -D 0 [0 2 1 1 1 1 3] 3 4

0 0 D 1 0 0 0 0 0

K
3
 -D 0 -D [ 1 1 1 1 1 3]

K
2
 -D 0 0 [ 2 1 3]

K	 01 [ 1 1 2 1 1 3]

K
3
 -D [ 0 -D 1 1 1 3] 2 3

0 D 0 1 0 0 0 0 0

-D -D [ -D 0 1 1 1 1 3] 4 5

0 0 0 D 1 1 1 0 0

K5 -D -D -D [ -D 0 0 0 1 3] 5 4

K
5
 -D -D -D -D 0 [ 0 0 1 3] 6 5
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0 0 0 0 0 0 D 0 1
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6

K
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K
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1 1,2,3

1,2 4,5,6

1, 2 4, 5, 6

6

1,3 7,8,9

1,3 4,5,6

10

10

5

7

2

2

2

1

1

1

1

0

9

9

7 2 1, 2, 3

2 2, 4 4, 5, 6

(-) 2, 4 4,;5, 6

(-) 2, 4 6

1 2, 4, 7 6

2, 4, 7 6

2, 4, 7 9

2,4,7
9**

and so on
* Assignment to station 1 is complete. 	 [ ] = range of search

** Assignment to station 2 is complete.
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this to 24 permissible combinations within the 11 precedence restric-

tions. Of these 6 are distinct and optimal combinations. The proced-

ure is illustrated only for the first 2 station assignments. Similar

steps when repeated gives a final result in Table 3-26. The total delay

in the line is 3 minutes less than c = 10. Thus, we arrived at a

minimal station balance with 4 stations.

Table 3-26. Summary of station assignments by
Hoffman's procedure. 

Station Number	 1	 2	 3	 4 

Element	 1, 3	 2, 4, 7	 5, 6	 8, 9

Station Time	 9	 9	 9	 10

Delay at Each	 1	 1	 1
Station 

F. Improvement on the Ranked Positional Weight Technique 
(Mansoor, 1964).

The additional rules and extensions, given by Mansoor (1964a,

I964b) improved the ranked positional weight technique originally

suggested by Helgeson and Birnie (1961). Mansoor approached the

problem with the objective of minimizing cycle time for a given num-

ber of work stations. This improved technique though offers optimal

solutions involves various heuristics and takes larger computational

time even for a smaller size problem.
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Analysis of the Problem

Using the same terminology as used in Chapter II, the maximum

possible number of work stations is limited by the maximum work

element time (tmax
) in the assembly process. i. e.,

kmax	
T  - a whole number rounded down to the

tmax	 lower integer.

e. g. If T = 185 and t	 = 45, then k	 = 185 - 4. 1 = 4 (rounded
max	 max 45

down to the lower integer). However, kmax 
can theoretically be

equal to n , the number of tasks in the precedence diagram. Assum-

ing the cycle time as an integer, the smallest is 'one unit

1 unit = 0.01 minute). The theoretical minimum cycle time for m work

stations is given by

C = T/m = p + (R /m)
1

where R is the remainder term and mp + R = T.

If R 0 , C must be rounded upwards to the next integer.
1

Perfect balance may be possible if R = 0 , while it is impossible

when R 0 . Thus at the first attempt in the procedure we use a

cycle time, C , which has (m-R) slack units if R 0 while zero
1

slack units if R = 0.

At the second attempt a new cycle time is given by

= Cl
 + 1
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which has (2m-R) slack units if R 0 and m slack units if R = 0 .

At the rth attempt, we use a cycle time

Cr
 = C + (r-1)

1

which has (r•m - R) slack units if R 0 and (r-1)m slack units

if R = 0. For example, when T = 48 and if it were possible to have

5 work stations, then the theoretical minimum cycle time = C 1 =

48/5 = 9 + 3/5 = 10 (rounded upwards) with 2 slack units. At the sec-

ond attempt, C 2 = C 1 +1 = 10 + 1 = 11 with 7 slack units.

Assignment Rules 

The set of rules given by Heigeson and Birnie (1961) are repro-

duced here for easy reference with the additional instructions (Rules

1, 6 and 7 ) and the extensions (Rules 9, 10 and 11) given by Mansoor

in his improved method. Minor modification was also suggested by

Mans oor to Rule 5.

Rule 1. Begin by selecting the lowest cycle time
corresponding to each of the number of work stations
possible. Record the slack units available.

Rule 2. Select the work unit with the highest posi-
tional weight and assign it to the first work station.

Rule 3. Calculate the unassigned time for the work
station by' calculating the cumulative time of all work units
assigned to the station and subtracting this sum from the
cycle time.

Rule 4. Select the work unit with the next highest
positional weight and attempt to assign it to the work
station after making the following checks.



a. Check the list of already assigned work units.
If the "immediate precedent" has not been assigned
proceed to Rule 5.

b. Compare the work unit time with the unassigned
time. If the work unit is less than the work sta-
tion unassigned time, assign the work unit and
recalculate the unassigned time. If the work unit
is greater than the unassigned time, proceed to
Rule 5.

Rule 5. Continue to select, check and assign if poss-
ible until one of the two conditions are met.

a. A combination is obtained when the remaining
unassigned time is less than, or equal to the
slack units available (proceed to Rule 8).

b. No unassigned work unit remains that can satis-
fy both the "precedence" and the "unassigned
time requirements (proceed to Rule 6).

Rule 6. Cancel each assigned work unit in turn,
starting with the one having the lowest positional weight
(i. e., the last one assigned and eventually work back)
and go through Rules 4 and 5 until either,

a. A combination is obtained where the remaining
unassigned time is less than or equals the slack
units available (proceed to Rule 8).

b. All combinations possible have unassigned times
in excess of the slack units available so that no
solution is possible (proceed to Rule 7).

Rule 7. Select a cycle time having one more suit
and go through Rule 2 onward (Mansoor, 1964a, p. 76-77).

The following rules are the extensions made in the year by

Mans oor (1964b).

Rule 8. Assign the unassigned work unit with the
highest positional weight to the second work station, and
proceed through the preceding rules in the same manner

117
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except when 6-b applies (proceed to Rule 9).

Rule 9. Rebalance the first work station with a
new combination of work units (apply Rule 6-a) and make
the following checks.

a. If rebalances are possible, renew attempt at
balancing the second work station (Rule 8) and
if successful, proceed to Rule 11; if unsuccess-
ful, proceed to Rule 10.

b. If rebalances are not possible, proceed to Rule
10.

Rule 10. Select a cycle time having one more unit
(i. e. , Rule 7) and go through Rule 2 onwards, starting
from the first work station. Repeat this procedure until
both stations are balanced at a minimum cycle time (pro-
ceed to Rule 11).

Rule 11. Continue assigning work units to work
stations until all work units have been assigned (extend
Rules 9 and 10 where appropriate, to cover three or more
stations). At that time a solution to the problem will have
been found (Mansoor, 1964b, p. 323).

Example:

Consider the problem given in the prcedence diagram of Figure

3-1. We have

= 48 minutes and t	 = 8 minutes.
max

Hence,

8 < cycle time < 48

The maximum number of theoretical work stations,

48
kmax	

— =
8max
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The solution to the example is illustrated in Table 3-20 for the mini-

mum cycle time of c = 8 and at the maximum number of work stations,

= 6. The terms "assign" and "reject" in column (9) and thekmax

"square around the unassigned time" in column (8) carry the same

meaning as indicated in ranked positional weight technique of Heigeson

and Birnie as explained earlier.

Cycle
Time

Work
Station

Slack
Units

Available
Work
Unit

Immediate
Precedence

Element
Time

Cumulative
Station	 Unassigned
Time	 Time

(1) (21 (3) (4) (5) (6) (7)	 (8)

8 I 0

u
l

4 4 4

u2 u
l

2

u3

u

112

u

5

7

u

6

u
4 3

u2 5
5

117

119 u u u
4' 5' 8

reject p &
goto Rule 6b

Note that all possible combinations have unassigned times in

excess of slack units available (units) and do not result in a possible

solution. We proceed to Rule 7.

Table 3-27. Illustration of improvement over positional weight technique at c = 8 and k = 6.

Remarks

(9)

assign

assign

reject , c

reject 7 c

reject, p

reject, p

reject >c

reject, p
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Table 3-27 continued. 
Slack	 Cumulative

Cycle	 Work	 Units	 Work Immediate Element 	 Station	 Unassigned
Time Station Available Unit Precedence	 Time	 Time	 Time	 Remarks

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9) 
9	 1	 6	 u l	4

	 4	 5	 assign

(8+1)

	

u2	ul	2
	 6	 13assign

	

u	 u	 6	 reject 7 c
6 

u2	5
	 reject 7 c

3

	

u7
	reject, p

	

u4	u3 	p
3

u2	5
	 reject "c

u	 reject, p
7

	u 9	u4' u5' u8	
reject, p &
goto Rule 8

5

6

3

10	 1	 12
(9+1)

u	 u2	53

u7	u	
86

u4	u
	 7
3

	

u2	5

u7	u6

u4

u2u5

8	 7

114,115' u8

4

u l
	2

u2	6

5

assign

reject, p

reject -7c

reject ,c

reject, p

reject, p

reject 'yc

reject, p

reject, p &
go to Rule 7

8	 assign

4	 assign

reject •c

reject c



1 21

Table 3-27 continued.
Slack	 Cumulative

Cycle	 Work	 Units	 Work Immediate Element	 Station
Time Station Available Unit Precedence	 Time	 Time

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)
10	 u

8
	u7

(9+1)
(continued)u9	 uu4, u5, 8

Unassigned
Time	 Remarks

(8)	 (9) 
reject, p

reject, p &
go to Rule 8

2	 3	
116
	 6	 6	 assign

The rest of the tasks have to be rejected either to cycle time

constraint or precedence violation; thus, leading us to Rule 8.

3

4

4

4

u3

u7

u4

u5

u
7

u2

u6

u3

u2

u
6

5

8

7

8

5

8

5 assign

reject 7c

reject ,c

assign & go
to Rule 8

assign

The rest of the tasks violate the cycle time or precedence re-

strictions.

5

6

We go to Rule 8.

u
4

u3

u
7

2u	 u	 u
9	 4'	 5'	 8

7

3

8

7

10

8

3 assign

assign & go
to Rule 8

assign &
terminate

Thus the total slack units (1 2) are distributed in the six stations and

this is a feasible minimum cycle time (c = 10) schedule for a maxi-

mum of six stations as summarized in Table 3-28.



u u5
 5u6u, u

1

6

20

114, u8	
u

9

10	 8	 10	 8

0	 2

Tasks

Station Time

Station Idle Time
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Table 3-28. Summary of minimum cycle time (c = 10)
schedule for a maximum number of work
stations (k = 6). 

Station Number 4	 5	 6 

Balance delay at c = 10 and k = 6 is found to be 20%. Since

the balance delay is very high, reject this schedule and attempt for a

better schedule. We can now try for the next possible number of

stations (1. e. , one unit below maximum selected) which is equal to

c = 5. Table 3-29 summarizes the results of the algorithm

48
when the number of stations (m) = 5 and c == 10.5

Table 3-29. Summary of minimum cycle time (c = 10)
schedule for a maximum number of work
stations equals 5. 

Station Number 1	 2 4	 5  

Tasks	 u1, u6	 u2,2' 7

Station Time	 10	 10	 10	 10

Station Idle Time	 0	 0	 0	 0

From Table 3-29, balance delay is 4%.

We can end the algorithm here or we can even attempt for an-

other solution when m = 4 and then opening up on the cycle time e. ,

	

u3, u5 	 13. 8	u

	

3' 5	 9
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48
when m = 4, c1 4= — = 1 2. Table 3-30 summarizes the results ob-

tained at m = 4 and c = 1 3. 1

Table 3-30. Summary of minimum cycle time schedule for
a maximum number of work stations. 

Station Number 1 2 3 4

Tasks u , u2, 
u6

u3, u7 114' u5 u8' u9

Station Time 1 2 13 1 2 11

Station Idle Time 1 0 1 2

From Table 3-30 balance delay

4
, x 100k=1 K 	 4 x 100 - 8. 33%.

4 x 1004 x 100

Thus the optimum result (minimum balance delay) is at m = 5 and

c = 10 for which balance delay is 4%.

Various traditional methods described in this chapter are applied

only to single-model assembly lines where performance times are

assumed to be deterministic.

A large amount of research and computational efforts have been

directed toward the solution of the ALB problem "perhaps more than

the prevalence of assembly line warrants" (Riggs, 1970). Recent

extensions of the single-deterministic models to variable elemental

times and mixed-model problem are more significant in their contri-

bution to practical assembly line problems. These extensions to be

1	 +1 = 12+1 = 13.



treated as a system with the global optimization objective shall be

described in the following chapters.
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IV. SINGLE MODEL ALB EXTENSIONS

The traditional methods employed for balancing single-model

assembly lines had the objective of minimizing only the direct labor

cost and assumed deterministic work element times. However, in an

actual assembly process, the work element times are seldom determin-

istic. An ALB procedure to consider this variability will be of prac-

tical value. In addition the inclusion of parallel stations and consider-

ation of in-process inventory between the work stations will necessi-

tate the formulation of a new model that has the objective of minimiz-

ing total production cost.

The earlier proposed ALB solution methods either
analytical or the heuristic have merits but none has the
advantage of simplicity (Kilbridge and Wester, 1961, p.

29 2).

The method developed by Kilbridge and Wester (1961) may be

simple but it lacks an algorithm. The only method developed for a

single-model ALB, considering the variability of work elements was a

heuristic model by Moodie (1964) consisting of two phases and many

cumbersome heuristics, mostly in phase 2.

A systematic and simple ALB procedure based on three different

positional weight criteria of a work element has been developed and

programmed in FORTRAN IV. The procedure described in this

chapter has both the advantages of being simple and algorithmic. It is

easily adaptable as a manual method or for a computer application.
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Also included in this chapter is the summary of the recent attempts to

minimize either the total production cost or the perturbation in ALB

problems.

A. Single-Model - Minimization of Direct Labor Cost for Both Deter-
ministic and Normally Distributed Elemental Times - Heuristic 
Approaches

The research by Hicks and Young (1962) and by Walker (1959)

has found that the work element times are actually independent and

identically distributed normal variates. Using these results Moodie

(1964, 1965) extended the single model ALB problem to normally dis-

tributed work element times. In the following sections Moodie's

heuristic method and the Back Tracking Method of Assembly Line

Balancing (BALB) developed in this thesis are explained with examples.

Successive Minimum Elemental Times and Interchangeability of Work 
Elements (Moodie and Young, 1965) 

This is a two phase heuristic procedure used to balance an

assembly line with either deterministic or normally distributed work

element times. Smoothness Index (S. I, ) is the criterion used to esti-

mate the degree of balance among the station times:

T	 - T ) 2 ;
max k

k=1
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where Tmax 
= maximum station time

Tk
 = total time in the k-th station.

A perfect balance will have a S. I. of zero. Moodie's two relation

matrices; viz. , IP-matrix and IF-matrix are to be prepared before

the application of the steps referred in this method.

Ste •s for the hase 1 of the .rocedure (station minimization):

Phase 1 systematically selects the successive maximum element times

available for assignment. This phase is programmed in FORTRAN IV

and is used to compare the results of this method and BALB as ex-

plained later.

Step 1. By scanning IP-matrix all the zero rows are noted.

The elemental times corresponding to each zero row

are arranged in a decreasing order of magnitude if

more than one element exist with zero rows. The ele-

ment with the highest performance time is selected and

assigned to the first station. Ties are resolved arbi-

trarily. The heuristics involved in this step are par-

tially carried out by the ZEROFIND and DEORSEQ in

the program listed in the Appendix.

Step 2. Note the element numbers in the row of the IF-matrix

which corresponds to the assigned element and go to the

rows of IP-matrix indicated by these numbers. Replace

the assigned element's identification number with a zero,
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This step is carried out by the subroutine ZIGZAG in

the program.

Step 3. The steps 1 and 2 are repeated and the elements are

assigned to the stations satisfying the restriction

t	 < T < c . When the IP-matrix contains all zeros
nax — k —

the problem has been solved. These checks are made

by the subroutine CHEK in the program.

Steps 1 through 3 usually will result in a minimal station balance
mZt.

satisfying the conditions E (c - Tk
) < c and m - [--11 . However,c

k=1
if this minimal station result is not possible for certain operating

conditions, 'incrementing the cycle time will aid in obtaining the min-

imal station balance. Another important observation is that often the

balance of phase 1, although requiring the minimum possible number

of stations, will have unequal amounts of station times alloted to each

of the stations and a higher smoothness index number. In such cases

phase 2 of the heuristic method attempts to distribute this idle time

equally to all stations through the mechanism of trades and transfers

of elements as allowed by precedence restrictions between the stations.

Steps for phase 2 of the procedure (smoothening of station assign-

ments and/or balance delay minimization). Phase 2 involves numer-

ous heuristics to trade or transfer some of the elements from an

overcrowded station to an under-utilized station. Interchangeability

of work elements is attempted wherever possible.



Step 1. Determine both the largest and smallest
station from the balance of phase 1.

Step 2. Call one-half the difference between these
two values GOAL.

[i. e. , (T	 -T	 )/(2) = GOAL]
max min

Step 3. Determine all single elements in Tmax
which are less than twice the value of
GOAL and will not violate precedence
restrictions if transferred to T rnin

Step 4. Determine all possible trades of single
elements from T ax 

for single elements
ma

from T in 
such that the reduction in

mi
and subsequent gain in T . willTmax

be less than 2xGOAL.

Step 5. Carry out the trade or transfer indicated
by the candidate with the smallest absolute
difference between itself and GOAL [ This
step is carried out after ranking the avail-
able candidates in the order of their close-
ness to GOAL].

Step 6. If no trade or transfer is possible, between
the largest and smallest stations, attempt
trades and transfers between the ranked
stations in the following order. One with
n (n-th ranked station has greatest amount
of idle time), n-1, ••• , 3, 2; 2 with n, n-1,
..• , 4, 3, ; 3 with n, n-1, ••• , 5, 4; 4 with n,
n-1,••• , 5, and so forth until the last com-
parison is between the station ranked n-1
and the station ranked n.

Step 7. If a trade or transfer is still not possible,
drop the restrictions imposed by the value
of GOAL and attempt, via the first six steps
to get a trade or transfer which will not
increase the value of any station beyond that
of the original cycle time (Moodie and Young,
1965, p. 25).
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Example:

Consider the problem of 9 work elements shown in Figure 4-1

where E t. is equal to 26 and the given value of c = 10 minutes.

Figure 4-1. Precedence diagram of 9 work elements.
to illustrate Moodie t s HALB.
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Solution:

From the Figure 4.1, the IP-matrix and the IF-matrix are pre-

pared and the data of the elemental times and their variances are in-

cluded for each element as shown in Table 4-1. The Table 4-2 sum-

marizes the results after the application of phase 1 procedure for a

cycle time of 10 minutes and for deterministic elemental times. Since

c = 10, the minimum number of stations m = 3 and this tallies with

the result in Table 4-2.

Table 4-1. Precedence matrices and data of elemental times and
variances to illustrate Moodie's HALB for a 9 element
problem. 

IP-Matrix Elemental IF-Matrix

FollowersElement
Number

Precedents Time
(t.)1

Variance
(V.)

1

Element
Number

1 0 0 0 2 0.5 1 3 5 0

2 0 0 0 2 0.8 2 4 0 0

3 1 0 0 3 1.1 3 0 0 0

4 2 0 0 3 1.2 4 5 6 7

5 1 4 0 1 0. 2 5 0 0 0

6 4 0 0 5 1.8 6 8 0 0

7 4 0 0 2 0. 2 7 8 9 0

8 6 3 1.0 8 0 0 0

9 7 0 0 5 1.5 9 0 0 0
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Table 4-2, Summary of results of phase 1 procedure of Moodie's
HALB for 9 work element problem without variance and
for	 c = 10 .

Station
Number

(k)

Element
Number

(i)

Element
Time
(t.)

1

Cumulative
Station Time

(Tk)

Station
Idle Time
(c - Tk)

1

1

1

2

2

4

4

4

2

4

2

7

9

8

1

3

2

3

5

2

5

3

2

3

1

2

5

10

2

7

10

2

5

6

8

5

0

8

3

5

4

denotes the station idle time at the end of grouping of tasks

The station assignments in Table 4-2 show that station 1 and 2

have a delay time of zero minutes and station 3 has a delay time of 4
m	 400

minutes. The balance delay is equal to (Z d i_ x100)/mc = 30 -
k=1 "

13. 3% and S. I. is equal to 016. 0 = 4. 0. Thus phase 1 gave a result

with a minimal station balance but not necessarily the minimum bal-

ance delay or the lowest smoothness index. To decrease the balance

delay and improve the smoothness of station assignments phase 2 is

applied. Three applications of phase 2 decision rules reduced the

smoothness index to 2. 82. The trades and transfers consisted of the
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following:

i) Trade u from station 2 for u from station 3
8	 1

ii) Trade u from station 3 for u9 from station 2
8

iii) Transfer u5
 from station 3 to station 2.

The alternate station balance with an improved S. I. of 2. 82

after the application of phase 2 is shown in Table 3-4.

Table 4-3. Summary of results of phase 2 procedure of Moodie's
HALB for 9 work element problem without variance
and for c= 10.   

Station	 Station
Time	 Idle Time

10	 0

Station	 Elements
Number	 Grouped

1 2' u4' u6  

uuuuu7, u5, 8 2

u3' u9
8 

Consideration of variability of work element times: Recalling

Equation (2-7) of the variable elemental time ALB model we have,

minimize	 me - T )/mc

k=1

where

= T'k
 + Z (Tk

)

and Z is the given standard normal deviate.

For Tk
 values to exceed c approximately 15% of the time Z = 1

(from table of areas under normal curve). When Z = 1, it implies
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that we can assume with 85% confidence, that all work assigned to an

assembly line will be completed within the cycle time provided. The

results of phase 1 solution of the 9 element problem with variance

included are shown in Table 4-4, for a value of Z = 1.

Table 4-4. Summary of results of phase 1 procedure of Moodie Is
HALB for 9 work element problem with variance for
c = 10	 and Z = 1 .

Station Element Element Cumulative
Station
Idle

Number Number Time Variance Station Time Time

(k) (1) i
(t) (V.)3. 

Tk
(e- Tk )

1 2 2.0 0.8 2.9 7.1

1 4 3. 0 1. 2 6. 4 3. 6

1 1 2.0 0.5 8. 6 1.4

1 5 1. 0 0. 2 9. 6 0. 4

2 6 5.0 1.8 6. 3 3.7
*

2 3 3.0 1.1 9.7 0.3

3 7 2.0 0.2 2.4 7.6

*

3 9 5.0 1.5 8.3 1.7

4 8 3.0 1.0 4.0 6.0

Indicates station idle time at the end of grouping of tasks

From Table 4-4, it can be observed that the same problem shown in

Figure 4-1 requires 4 stations when the variability of the elemental

times is introduced as compared to the original 3 station result under

deterministic elemental time assumption. The balance delay with the
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inclusion of variance = (8. 4 x100)/(4 x10) = 21%, and S. I. 6. 25, based

on the given value of C = 10. In Table 4-4, since T	 = T2 9. 7,
max 2

balance delay in steady state condition is given by,

d =(m x T	 )max
T } x100/(mx Tmax)

k=1

= {(4x 9. 7) - 31.6} x100/(4x9. 7) = 18.55% .

and

S.I.=	 (9. 7-9. 6) 2 +(9. 7-9.7) 2 + (9. 7-8. 3) 2 +(9. 7-40. )2

= 5. 87

Two applications of phase 2 decision rules reduced the smooth-

ness index to 1. 66. The heuristics consisted of the following:

i) Transfer u 3
 from station 2 to station 3

ii) Transfer u6
 from station 1 to station 2

The results of phase 2 are summarized in Table 4-5.

Station	 Elements	 Station	 Station

Number	 Grouped	 Time	 Idle Time

1 8.600	 0. 00U 2' u4' Il l

2	 u	 u	 7. 44	 1.16
5'	 6

3 8. 30	 0. 30
u7 ' u9

4	 u	 u	 7. 45	 1.15
3'	 8

Table 4-5. Summary of results of phase .2 procedure of Moodie's
HALB with variance for c = Tmax
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From Table 4-5, balance delay in steady state is given by

d = (2. 61 x100)/(4x 8. 6) = 7.5%

and

S. I. = 1. 66 .

This shows that there is about 350% improvement in the smoothness

index after the application of phase 2 to the earlier result in Table 4-4.

However, application of BALB with Linpows (Section B) will result in

the same solution shown in Table 4-5 in one iteration and at a lesser

time.

Back Tracing Method of Assembly Line Balancing (BALB)

Based on the different positional weights of a work element in a

precedence diagram, a new method of balancing the assembly lines is

developed in this thesis and has been programmed in FORTRAN IV.

This method gave optimal solutions to most of the example problems

considered by various authors. This method is more compact, more

systematic and less time consuming than the earlier heuristic

approaches. The computer program, *BALB, can accept data for both

single and mixed-model problems for either with or without variability

consideration.

This approach can be broadly classified under the Branch and

Bound technique. However, since there is no lower bound, the term
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"back tracking" or its equivalent, the term "branch and exclude" (used

by Lawler and Wood (1966)), would be more appropriate to describe

this approach.

Reeve and Thomas (1967) have developed a heuristic branch and

bound procedure for ALB problem but the criterion of a positional

weight is not used in their method.

For *BALB, the positional weights were calculated in the basis

of three criteria. They were (1) Linear positional weights (Linpow),

(2) Logarithmic positional weights(Logpows), and (3) Square positional

weights (Squarepows). By using the standard notation from Chapter II,

the calculations for the various positional weights can be mathematic-

ally expressed as follows:

1Linpow of an element number i = t. + 	 t
1	 x

XE F.1

Logpow of an element number i = log 2(ti ) + log

Squarepow of an element number i = t i +
	 t 2

xEF.1

where F. denotes all the elements following the element number i

For example, considering the Figure 4-2, the values of different

positional weights are shown in the Table 4-6. A computer program,
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*ALLPOW, in FORTRAN-IV has been written to calculate these posi-

tional weights after inputing the data of the followers of an element and

their corresponding times. The listing of the program is given in the

Appendix.

2

Figure 4-2. Precedence diagram of the
example problem to illustrate
the calculation of the positional
weights.

Table 4-6. Positional weights for the example problem.

Task	 Linpows	 Logpows (bits)	 Squarepows 

1 37 7. 323 27. 45

2 32 5. 908 24. 361

3 30 7. 645 30. 000

4 20 4. 323 20. 000

It is clear from the Table 4-6 that the ordering of the tasks can change

based on the criterion, i. e. , in Linpows task 1 is ranked the highest

while in Logpows and Squarepows, task 3 is ranked the highest. These

three were studied to find the most effective *BALB procedure for
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finding optimal or near optimal solutions to the ALB problem. The

steps for the *BALB are as follows:

Step 1. For a given cycle time c, calculate m , the minimum

feasible number of work stations:

t

i=1 	 Knowing c and m , find the

n
slack kunits available, i. e. , s.u. = m c - E t.i=1.

Step 2. Consider one of the three criteria developed for posi-

tional weights. List the tasks available for assignment,

and arrange them in a decreasing order of their posi-

tional weights. When the tasks are represented in a

tree diagram, each node corresponds to a task and tasks

are rearranged in the descending order of positional

weights from right to left (Figure 4-4). Ties are broken

arbitrarily.

Step 3. Select the task with the highest positional weight and

branch out by successively selecting the task with the

next positional weight in the list of available tasks.

Ties are again broken arbitrarily. The branching pro-

cedure is carried out till either

a. the assignment to the first work station is

complete subject to the cycle time constraint,
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or

b. the station time exceeds the given cycle time.

Step 4. When step 3-a occurs, the idle time of the assigned

station is to be subtracted from the available slack

units and the revised slack units should be noted. Then

repeat the steps 2 to 3 till the assignments to all the

m stations are complete with the slack units being

distributed among all the stations. When step 3-b

occurs, exclude this branch and back track to the node

ranked next to the starting node in the earlier branch.

Step 2 to 3 are repeated from that node.

Step 5. If the assignments to the m stations are not complete

even after the application of. steps 2 to 4, the cycle

time can be incremented arbitrarily by one or more

units and steps 1 to 4 are repeated till the minimum

station balance is obtained.

These steps are illustrated in the following example.

Example:

To demonstrate its value, *BALB is applied to a 9 and 21 work

element single model ALB problems. These are originally considered

by Moodie (1964, 1965) and represented by Figures 3-11 and 4-3,

respectively. The solution of these two problems are illustrated first

by phase 1 and phase 2 of Moodie f s HALB and then compared with
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solutions obtained by *BALB method using Linpows. The examples

are illustrated only for deterministic times and can easily be extended

to variable element times.

Legend:

 = work element i

a = element time (t i) of element number i

1 b = linear positional weight of element i

Figure 4-3. Precedence diagram for the 9 work element
problem to compare Moodie's HALB with
*BALB.
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Table 4-7. Moodie's dual procedure matrices and details of element
times and Linpows.

Element
Number IP-Matrix

Elemental Element
Number	 IF-MatrixTime Linpow

1 0	 0	 0 5 37 1 2 3 0

1 0 0 3 28 2 4 0 0

3 1 0 0 4 29 3 4 0 0

4 2 3 0 5 25 4 5 7 6

5 4 0 0 1 7 9 0

6 4 0 0 4 14 0

7 4 0 0 5 11

8 6 0 0 4 10 8 9 0 0

9 5 7 8 6 6 0 0

Application of phase 1 heuristics of Moodie (Section A-1 of this chapter)

to the 9 element problem results in a four station balance in Table 4-7

for a given cycle time c = 13. Since m 	 [(Zti/c)] = [37/3] = 3,

the cycle time is incremented by 1 to 14 and phase 1 is repeated. Now

a three station balance is obtained with a balance delay of 8.93% and a

smoothness index of 3.16. These two iterations are summarized in

Table 4-8.
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Table 4-8. Summary of results of phase 1 of Moodie's HALB for the
9 work element problem without element variability at
c = 13 . 

Cycle	 Station	 Element	 Cumulative	 Station Delay

Time	 Number	 Number	 Station Time	 Time

(k)	 (i)	 (Tk )	 (dk)

c=13

1

2

3

4

1, 3, 2

4, 7, 5

6, 8

9

12

11

8

6

1

2

5

7

c=14

1

2

3

1, 3, 2

4, 7, 6

8,5,9

12

14

11

2

0

3

Table 4-9. Summary of results of phase
2 of Moodie's HALB for the
9 work element problem. 

(k)	 (1)	 (T )

1 1, 3, 2 12 1

2 4, 8, 6 13

3 7, 5, 9 12 1

In order to reduce the balance delay and improve the smoothness

among the stations, we apply phase 2 of Moodie's HALB to the results

in Table 4-8. Since the maximum station time here is T 2
 = 14 and

the minimum is T = 11, step 2 of Moodie's phase 2 yields GOAL =
3

(T
2
 - T 3

)/2 = 1.50). A trade or transfer should be sought which in

creases the value of T 3
 by a value as close to 1.50 as possible and
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thereby reducing T 2
 by a like amount. Applying steps 3, 4, and 5 of

phase 2, it can be seen that the best candidate consists of a trade of

u
7
 from T 2

 for u
8
 from T	 Carrying out this trade reduces the

3 .

total idle time to a minimum of 2 minutes as illustrated in Table 4-9.

The balance delay is 5.13% and S. I. = 1. 41, which indicates an im-

provement of over 200% on S. I.

The same solution as obtained by Moodie by his phase 1 and

phase 2 heuristics is arrived at by *BALB more quickly and systemat-

ically without incrementing the cycle time, in Figure 4-4.

The effective use of *BALB when compared to Moodie's HALB

can be demonstrated by working out the 21 element problem in Figure

3-11. Table 4-10 illustrates the two phases of Moodie's method

applied to this problem and shows the improvement in the smoothness

index with each trade or transfer during the application of phase 2.

The same solution obtained by Moodie's heuristic method in 9 itera-

tions can be obtained in one iteration by the application of *BALB

(with Linpows) using the optimum cycle time of c = 21 minutes

(Figure 4-5). The optimum cycle time is obtained from the given

c = 25, as follows,



=1

Slack Units (S, U.) = m c - E t.
i=1 1

* denotes end of a station
assignment

= 14
k

(Exclude and go to u8)

145

Assign the rest of the tasks to the last station.

Figure 4-4, Illustration of BALB with Linpows for 9 element problem.
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Table 4-10. Illustration of Moodie's HALB for 21 element problem.

Remarks

at c = 25

phase 1:

S. I. =11. 26

phase 2
starts

max Tk=
24= c

S. I. =9. 0

max Tk
23 = c

S. I. =6, 5

max Tk =
23 = c

S, I. =5. 5

max Tk =
23 = c
S. I. =5. 1

Iteration
Number

Station
(k)

Station
Time

Tk

1 1, 3, 4, 2 21

2 5,7, 21 24

1 3 6, 8, 9, 13, 11, 10 23

4 14,1 2,15,18, 16,19 19

5 17, 20 16

1 1, 3, 4, 2 21

2 5,7, 21 24

2 3 6, 8, 9, 10,13 22

4 14,1 2, 15,18, 16,19,11 22

5 17,20 16

1 1, 3, 4, 2 21

2 5,7 17

3 3 6, 8, 9, 10, 13 22

4 14,1 2, 15,18, 16,19,11 22

5 17, 20, 21 23

1 1, 3, 4, 2 21

2 5, 7,14 20

4 3 6, 8, 9, 10,13 22

4 11,1 2, 15, 16,18, 19 19

5 17, 20, 21 23

1 1, 3, 4, 2 21

2 5,7,14 20

6, 8, 9, 13 21

4 11,1 2, 15, 16,18,19, 10 20

5 17, 20, 21 23



T

Remarks

max Tk=
24 = c

S. I. =7. 7

max Tk =
22 = c

S. I. =2. 6

max Tk =
22 = c

S. I. =2. 6

max Tk =
21 = c

S. I, =0

optimal
solution is
attained
after trans -
ferring 10
from T4

 to

3
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Table 4-10 continued.

Iteration
Number

Station
(k)

Element
(i)

Station
Time

Tk
1 1, 3, 4, 2 21

2 5,7,14 20

6 3 6, 8, 9, 1 3 21

4 11, 1 2, 15, 21, 18, 19,10 24

5 17, 20, 16 19

1 1, 3, 4, 2 21

2 5,7,14 20

7 3 6, 8, 9, 1 3 21

4 10, 11, 1 2, 15, 18, 21 22

5 17, 20, 16, 19 21

1 1, 3, 4, 2 21

2 5, 7, 6 21

8 3 14, 8, 9, 13 20

4 10, 11, 1 2, 15,18, 21 22

5 17, 20, 16, 19 21

1 1, 3, 4, 2 21

2 5, 7, 6 21

9 3 14, 8, 9, 13,10 21

4 11, 1 2, 15, 18, 21 21

5 17, 20, 16, 19 21



[105i=1 21
5c

then the optimum cycle time n

148

Since the elemental times are commonly given in integer values, the

value of c is approximated to the least integer greater than or equal

to the value within the bracket function.

The example problems used by other authors, i. e., the 8 ele

mental problem of Bowman (1960, p. 385), the 11 elemental problem

of Jackson (1956, p. 264) and Ignall (1965, p. 244), the 18 elemental

problem of Buffa (1961b, p. 421) and the 17 elemental problem of

Thomopoulos (1969, p. 348) and the 19 elemental problem of Thomo-

poulos (1970, p. 599), have been worked out by *BALB using Linpows.

It is found that in almost all the above cases with the sole exception of

17 work element problem (Figure 4-6) of Thomopoulos, the BALB

approach yielded at least as good a balance as has been obtained by

other methods (Chapter III) in less time and in two cases (problem in

Figure 3-1 and Figure 4-1) better line balances as compared to other

heuristic methods (e. g., Helgeson and Birnie T s positional weight

technique). For the mixed model problem' (Figure 4-6), *BALB

yielded only a near-optimal solution at a cycle time c = 464, resulting

1 For this problem cycle time equals the average work load per
operator and we need 3 operators.



Start
c = 21
k = 0
S.U.=0

= 27 (Exclude and
go to u2)
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Figure 4-5. Illustration of BALB with Linpows for 21 element problem.



Continue
c = 21
k = 1
S.U. =0
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Figure 4-5 continued.

= 21
k
k = 2

Continue
c = 21
k = 2
S. U. =

= 16



T = 22. 7 c

(Exclude)
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28
T = 24 c	 T

k
 = 22 > c

(Exclude)	 (Exclude)

7	 28

Tk =277c	 T 257c

(Exclude)	 (Exclude)

Since no more tasks are available for branching back track (or bounding occurs here)

to the main nodes and branch out from u21 
as follows:

= 22 7c
(Exclude)

T =21
k
k = 3

Figure 4-5 continued.



= 16
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k = 4

Assign the rest of the tasks to the last station.

Figure 4-5 end.
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Legend:
a

u = Label for work element ii 
a = Lime of element i

b = Linear positional weight of element i

Figure 4-6. Combined precedence diagram for 17 work elements for a mixed-
model line balancing problem (Source: Thomopoulos, 1968,

p. 348).

153
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in a 3 station balance, with a S. I. of 7. 399. All positional weight

criteria were equally effective (refer Appendix for computer output

using Linpows). The heuristic method of Kilbridge and Wester (1961)

gives an optimal solution for this problem at a cycle time of c = 461. 5

(maximum station time)resulting in a 3 station balance with a S. I. of

2. 236. However, phase 1 procedure of Moodie (1965)'s HALB fails to

give a 3 station balance till c has been incremented by units of one

to 473 (starting from 460). The Moodie's 13 iterations were reduced

by *BALB to only 5 iterations, with c incremented from 460 to 464

by units of one.

In general, all three criteria were found to be equally effective

and superior to other known methods. However, the application of

back tracking method (*BALB) with Logpows or Squarepows to the

problem in Figure 3-1 resulted in a five station optimal balance with-

out bounding to the main nodes with a CPU time of 14. 488 seconds

(includes compilation time) while it failed to give optimal solution with

Linpows (refer Appendix for computer output).

The ease of applying *BA.LB seems to warrant its being pre-

ferred over many other traditional ALB methods, which consist of

enormous and cumbersome heuristics.
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B. Minimization of Perturbation Costs with Deterministic Elemental
Times (Cnossen, 1967) 

The direct labor cost model of ALB is not applicable to many

assembly lines where the cost of reallocating and reassigning of tasks

on production lines outweighs the operating cost reduction through

either minimizing the number of stations or the idle time in the line.

Minimum perturbation ALB model attempts to minimize the relocation

of relatively fixed facilities on the assembly line and to maximize the

utilization of the existing skills of the assembly operators.

Cnossen (1967) developed a heuristic method, known as the Tar-

get Job Line Balancing (TJLB) techniques to minimize the perturbation

costs. Minimum perturbation is an important constraint, for example,

in automotive assembly line balancing because it is desirable to mini-

mize both the operator learning effect of a completely new, assignment

and the costly rearrangement of fixed facilities and stocks. The per-

turbation costs are incurred for each of the rebalances which frequent-

ly occur during the change of models on the assembly line.

Summary of Target Job Line Balancing: The TJLB heuristic

method requires three basic sets of information as input. They are:

i) Precedence relations between the jobs in the assembly line,

ii) Job time data for each job, and

iii) A list of the target jobs selected by the user.

The target job list as shown in Figure 4-7 is a unique input to provide



Figure 4-7.

R = right of line
L = left of line
* = fixed facility
E = either side

Cnossen, 1967).Precedence diagram of an engine dress up area in an automobile company (Source:
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the user with a considerable amount of control over the order of the

assembly assignment sequence. The target jobs are selected on the

basis of the following criteria:

i) The last job in each job set, for example, jobs 6, 16, 19 and

41 in Figure 4-7.

ii) Jobs which require fixed tools, immovable facilities or stock

supplies, for example, jobs 36 and 40 in Figure 4-7.

When target jobs have been selected for the entire assembly process,

they are placed in the target job list in the desired sequence of their

overall performance. The arrows joining the elements 6, 16, 19, 36,

41 and 40 in Figure 4-7 indicate this sequence.

Target Job Line Balancing Assignment Routines: The TJLB

heuristics use two assignment routines. The first assignment routine

generates the operator's basic assignment by systematically assigning

the target jobs and their predecessors. This is called The Basic

Assignment Routine as shown in Figure 4-8. When the first routine

cannot assign a job to an operator because of balancing restrictions,

a second assignment routine called The Close-Out Routine as shown in

Figure 4-9, is used to complete the operator's assignment. This

technique was implemented in Ford Motor Company in the year 1967

(Cnossen, 1967).



Start

Select first job in
TJ list

Is
job time larger
than available

time

Yes

Set operator available
time (O. A. T.) =
adjusted cycle time

Does
job meet all
restrictions
specified?

Select next job
in TJ list

Has
selected TJ

been adjusted

Yes

Assign job to operator

Select unassigned
predecessor

Are
all predecessors for
this job assigned?

Calculate new 0. A. T

A

Figure 4-8. Flow chart of basic assignment routine illustrating target job line balancing (Source: Cnossen, 1967).



Yes

Yes

This operator's assign-
ment is complete.
Begin next operator's
assignment by returning
to basic assignment
routine.

Find all available jobs
(unassigned jobs with all
predecessors assigned).

[

Delete jobs with job
times larger than O.A. T

Any
available jobs

with no relation
code.

Delete jobs that do not
meet all restrictions
specified.

No
Any

available jobs
remaining?

Assign the job with the
largest job time.

Calculate new O. A. T.

Any
available jobs

with same relation
code as last job

- assigned.

Remaining availabe jobs
have another relation code.

Figure 4. 9. Flow chart of close-out routine (Source: Cnossen, 1967).
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C. Single-Model Minimization of Total Production Cost with Random
Work Element Times (Freeman, D. R. , 1968) 

Although searching for solution techniques for the
deterministic problem is worthwhile, a broader and more
general problem exists and is receiving for too little atten-
tion (Freeman, D.R. , 1968, p. 231).

If the work element time is considered a random variable, the

work station time consisting of several work elements must also be

taken as a random variable. In such a case, the time variable between

successive items coming off the end of the conveyor line will also be

random. This can then be viewed as the stochastic interdeparture time

from a series queue. In a deterministic case, this interdeparture

time is equal to the maximum station time on the line. Several studies,

e. g. , Hillier and Boling, 1966, Barten Kenneth, 1962, Buffa, E. S. ,

1961, Freeman, M. C. , 1964, indicate that inventory between stations

can indeed improve the output rate from the assembly line where the

elemental times are random variables.

General Model: Here the objective is to minimize total produc-

tion cost per unit subject to the following constraints:

i) Each work element is assigned to at least one work station

ii) The precedence constraints are satisfied

iii) The average output rate attained is at least as great as the

desired output rate.
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time between successive items coming off the line, a

random variable

expected value of Y

quantity to be produced in period T

desired cycle time = T/Q

The objective function assumed by Freeman was of the form

Total cost/unit	 Labor cost/unit + Inventory cost/unit

+ Facility cost/unit + Penalty cost/unit

Labor Cost (LC): This cost is a function of the
number of stations in a balance, the mean output rate and
the assignment of elements to stations (if elements re-
quiring special skills demand higher rates, the assign-
ment of these to stations may necessitate different labor
rates at different stations).

Inventory Cost (IC): Allowing inventory build up
between stations to "buffer" the line results in costs by
increasing average inventory in process and additional
costs of storage.

Facility Cost (FC): This reflects the penalty assoc-
iated with duplicating facilities to permit parallel opera-
tions in the line.

Penalty Cost (PC): [Due to the random nature of
the interdeparture time (in variable elements case), the
desired production rate may not be achieved. Under-
production leads to overtime costs, while over-produc-
tion results in inventory costs. Thus a penalty is assumed
to penalize the system for failure to meet the desired out-
put rate] (Freeman, D. R. , 1968, p. 232).

The solution of the above model under very general conditions

was discussed by Freeman (1967) in his Ph. D. dessertation. A

Let

Y =

Y =

Q =

c =
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general total cost equation without allowing parallel stations and with

identical labor rates at each station is given by:

Total cost (TC) = LC + IC + PC

Assuming the conveyor line is balanced with m stations, the total

cost equation reduces to:

TC = mCLY	 Cf
Y	 + C - 2

i=2

where

C L
	labor cost in dollars per unit of time

penalty cost for failure to meet the desired output

rate (in dollars)

C f
 = cost of providing space for a unit of float in dollars

per unit of time

f.	 = provision for float before station i ; for i = 2, 3, --• , m

(station 1 is assumed to be preceded by an infinite bank).

In the total cost equation the term (c - Y)
2 denotes the assump-

tion of a quadratic loss for the penalty term. The mean output interval

	

=- is a function of the station times	 k 1, 2, 3,	 , m , the in-
Tk

ventory allowance between stations f f •••• f 	 and the nature of2, 3 ,	 I fm

the parameters of the density function on Tk

The behavior of Y- was studied by Freeman (1968) using simu-

lation (in ALGOL) for perfectly balanced stations each having times
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normally distributed with parameters p, and G . By varying 6

(iL /CT holding p, constant) one can study the effects of increased vari-

ability of station times. However for general purposes the interde-

parture time Y was assumed as the sum of productive time plus de-

lay caused by blocking effects, i. e.,

=	 (1 +A) =	 +µ A

where t is the fractional delay. A would be equal to zero in the

deterministic case where all station times are assumed equal to

A theoretical expression based on the ratio p./6 to calculate the values

of A was arrived by Freeman (1968, p. 233). The determination of

Y allows us to arrive at the total cost (TC) using this formulation,

Freeman (1968) contends that more work need to be done in the total

cost ALB model with the major focus on improving the predictive ex-

pression of Y and the output rate 1/Y and on emperical studies to

devise a generalized objective function.
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V. MIXED-MODEL ALB EXTENSIONS

The need for a mixed-model assembly line occurs in a plant

having several basic models of the same general product. Tradition-

ally each model could be produced intermittently in batches and kept in

finished goods inventory. Instead the company may decide to mix the

product models on the same conveyor line. When several models are

produced on the same conveyor line, it is commonly called a mixed-

model, a mixed-product or a multi-model assembly line. Automobile

industry, where the models differ, for example, by color, the number

of doors, the wheel base, or the type of engine, is a classic example

of this type of production. This situation can also be observed in

television, home appliance and farm equipment industries.

The advantages of mixed-model assembly are numerous:

i) it provides a continuous flow of each model,

ii) it reduces finished goods inventory

iii) it eliminates line changeover, and

iv) it provides greater flexibility in production.

However, mixed-model lines do present some serious problems such

as sequencing of models and scheduling of parts for various sub-

assemblies. Sahgal (1970) pointed out that the merits of mixed-model

lines are derived at the cost of efficiency and it is not uncommon to

find mixed-model lines where productivity is only 70% of capacity.
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According to Wester and Kilbridge (1964), the efficient utilization of

mixed-model lines requires the optimum solution of two separate but

related problems. They are:

i) the division of work between the operators, and

ii) the sequencing of models.

Line balancing is concerned with the former problem, which involves

apportioning the elements of assembly work for each model among the

operators on the line as evenly and compactly as possible. The latter

problem involves in determining the optimum ordering in the flow of

products to minimize the total inefficiency costs.

Grant (1962) was reported to be the first person to propose a

computerized solution to the mixed-model ALB problem. The funda-

mental concepts and the related problems of mixed-model lines were

presented by Thomopoulos (1966, 1967, 1969, 1970) and by Lehman

(1969).

A description of the mixed-model balancing and sequencing pro-

cedures and the extensions of mixed-model line balancing for variable

work elements is made in the following pages.

A. Minimization of Direct Labor Costs with Deterministic Work
Element Times

The traditional approaches considered the determinism in the

performance times of an operator in minimizing direct labor costs.
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Two criteria namely cycle time and production shift time were used

in balancing the mixed-model lines.

Cycle Time Basis 

The first mathematical formulation for a mixed-model ALB prob-

lem was presented by Roberts and Villa (1970). They developed two

models namely, integer programming model and shortest route model.

Problem Statement, Given J models each with its own prece-

dence constraints, assign the work elements to work stations so that:

i) each work element is assigned to exactly one work station

ii) the number of stations is the same for all models

iii) the technological restrictions are satisfied

iv) the work content of any station for any given model does not

exceed the cycle time, i. e. ,

T . <kj — j = 1, 2,-- J

k = 1, 2, ••• , m

(5. 1)

where. is the work content of station k for model j and
Tkj

c is the cycle time

v) total idle time in all the stations is minimized, i. e. ,

minimize D = - T .)kj
(5, 2)
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where N. is the number of units of model j to be assembled.

a. Integer (zero-one) programming model: Let

1 if task i is assigned to station k
{Xkij	 0 otherwise

t. = the time to perform the task i of model j

set of tasks of model j
3

For a given work content of a model and a given value of the

cycle time, there is a minimum number of stations which is

absolutely required for the assembly of that model. Let

m. denote the minimum number of stations for model j ,

where

ieI.

where [ x ] implies the smallest integer > x . Assume for

the present that the value of c and the work content of the

models are such that

m. = m ,
3

J = 1, 2,..., 3 (5, 3)

The objective is to minimize the number of stations. Since

it is known that the absolute minimum number of stations is

m , the problem can be viewed as minimizing the work

content of the stations that are allowed above the number m
*

.
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This must be done in such a way that, if the work content of
...,

a station k1
 (k1

 > m ) is zero, then,the work content of a

station k > k 1
 must also be zero and thus only k 1

 stations

will be needed. This implies that we should assign as much

of the work content as possible to the first m stations and

as little as possible to the stations after	 Hence the

Equation (5. 2) can be modified as:

minimize D =

M

X..t..
3.3

(5. 4)

i=1=
k=m +1	

j 1

The variable Wk
 makes an assignment to a station k 2

 less

favorable than the same assignment to station k 1
 when

k
1
 < k

2
. This requires Wk to be an increasing sequence

of positive number (1, 2,4, 6,16, etc) satisfying the relation,

k (m +1)= 2	 ; k = m +1, — , M .

where M = maximum possible number of work stations =

max {I.} . The solution of (5. 4) is constrained by the re-
J

strictions mentioned earlier in this section. The mathe-

matical representation of these restrictions are discussed

in detail by Roberts and Villa (1970).

However, the large number of variables and constraints
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makes this formulation a difficult undertaking even for

problems of modest size.

b. Shortest route model: The shortest route model of Gutjahr

and Nemhauser (1964) for single model ALB problem can be

extended to mixed-model ALB problem with considerable

increase in computations. For the mixed-model case the

shortest route model consists of developing a finite directed

network similar to Figure 3-5 in which the arcs represent

stations in the assembly line and the nodes (states) corre-

spond to the feasible groupings of elements from each pro-

duct. These groupsing are considered as possible station

assignments. The arc lengths in the network denote the idle

times within the stations. The optimization procedure con-

sists of selecting the shortest path in the network from the

starting node to the ending node in the network (this is

equivalent to finding the minimum number of arcs).

Generation of States or Nodes. A state consists of an ordered

set of work elements which form feasible (consistent with precedence

requirements) first station assignments (without regard to cycle time).

All states for each product, except for the empty set (1) , would be

generated as though that product were the only one to be assembled.

This results in a se t S . of states for each product j . The set of all
J

states for the multiproduct problem is then obtained from the Cartesian
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product of all S. ,	 e. ,

S ={S1 gs 2 ® S 3 ® .•• Si ,44)}	 (5.5)

An element in S , say T 1 , is given by

=	 sn}	 (5. 6)

where Sj1 is an element of S . for j = 1, ••• , J

If positional restrictions exist the states violating these restric-

tions are discarded. (The states generated become the nodes of the

network. ) The nodes are constructed starting from the empty state 0

and ended in the destination node r which consists of all elements for

all models.

Construction of Directed Arcs. There is a directed arc from

node (state) u to v if and only if

,s.	 s.v	 =	 2,
	 (5. 7)

and

t.. < c1j —

ie {S.v-S.u)
3	 3

j=1,2,..., J (5. 8)

Equations (5. 7) and (5. 8) allow us to make a network for a mixed-

model case and it is sufficient to find the shortest path from 0 to

r to arrive at the minimal station balance. However, it should be

noted that when 3 = 1, the original Gutjahr and Nemhauser algorithm
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is obtained.

Example:

To illustrate the shortest route formulation consider Figure 5-1

showing the precedence diagrams for two models. Here we shall

illustrate how the Gutjahr and Nemhauser's algorithm explained in

Chapter III can be used separately for the individual models to compare

the results with the solution obtained by Roberts and Villa when the

models are considered together.

Figure 5-la. Precedence diagram for model 1.

Figure 5-1b. Precedence diagram for model 2.

Figure 5-1. Precedence diagrams for model 1 and model
2 to illustrate shortest route model for
mixed-model case.
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Recalling the rules explained in Chapter III, the states (nodes)

generated for the model 1 are shown in Table 5-1.

Table 5-1. Generation of states for model 1,

	

Marked	 State	 State	 State	 Unmarked
Stage	 Elements	 Number	 Elements	 Time	 Elements 

2

3

4

NIL

2,4

3

0

2

3

4

5

6

7

7

1, 2

1, 4

1, 2,4

1, 2, 3

1, 4	 3

1, 2, 4,

1, 2, 3,

1, 2, 4,

3

5

3, 5

0

4

6

9

11

13

1

2, 4

3

5

NIL

Denotes rejection of a state due to precedence violation.

Assuming a cycle time c = 5 , a network is constructed for

model lr as in Figure 5-2. From the Figure 5-2, there are two short-

est routes (0-1-4-7 and 0-1-5-7) from the destination node 7 back

to the origination node 0 . Both solutions are equally good when the

objective is to minimize idle time for the model 1. The summary

of station assignments for both routes is in Table 5-2.



a = state or node number

b = sum of times of tasks in the state a

=- shortest route
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Figure 5-2. Network representation of nodes
for model 1.

Route 1 Route 2 Route 1 Route 2

4

4

5

4

4

1

1

0

1

1

Considering the model 2 and using similar procedure we will have

Table 5-3 for the generation of the states. Figure 5-3 denotes the

network.

Table 5-2. Summary of station assignments for the two shortest routes shown in Figure 5-2 for model 1

at c = 5. 
Nodes Spanned	 Work Elements	 Station

Arc	 Spanned by Arc	 Station Time	 Idle Time
Number	 by

	

Route 1	 Route 2 Route 1	 Route 2

1	 0, 1	 0, 1	 u
1

2	 1, 4	 1, 
u2' u4	 u2' u3

3	 4,7	 5,7	 u
3' u5	 u4' u5
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Table 5-3. Generation of states for model 2. 

	

Marked	 State	 State	 State	 Unmarked

Stage	 Elements	 Number	 Elements	 Time	 Elements

0

1

2

3

NIL

1, 2

3

4

0

1

2

3

4

4

4

5

(i)

1

2

1, 2

1, 3

2, 3

1, 2,

1, 2,

3

3, 4

0

2

3

5

9

13

1

3

4

NIL

a = state or node number

b = sum of times of tasks in the state a

shortest route

Figure 5-3. Network representation for model 2..

The elements to be assigned to each station are arrived at by

using the same rules as explained earlier. A summary is shown in

Table 5-4.
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Table 5-4. Summary of station assignments for the shortest route
shown in Figure 5-3, for model 2 at c = 5 . 

Arc	 Nodes Spanned	 Work Elements	 Station	 Station Idle

Number	 By Arc	 Spanned by Arc	 Time	 Time 

1	 0, 35	 0
ul' u2

2	 3, 4	 u3	4
	 1

3	 4, 5	 4	 1

Now consider the example with the shortest route formulation for mix-

ed models in the Equations (5. 5) through (5. 8). Referring to the pre-

cedence diagram of model 1 we have:

tll = 4 , t 21 = 2, tm	 3	 t41
	 2, t51 = 2,

and for model 2,

t
12 

= 2	 t	 =	 ,t	 = 4, t	 = 4.
22	 32	 42

The set of states for model 1, are given by

=	 {(l), (1, 2), (1, 4)01, 2, 3), (1, 2, 4), (1, 2, 3, 4), (1, 2, 3, 4, 5))

and for model 2,

S
2 =
	 {(1), (2), (1, 2), (1, 2, 3), (1, 2, 3, 4)).

From Equation (5„ 5)

S =	 [ (1), (1)1, [ (1), (2)1, [ (1), (1, 2)], [ (1, 2)], [ (1), (1, 2, 3)],

[ (1), (1, 2, 3, 4)] , ••• , [ (1, 2, 3), (1), ••• , [ (1, 2, 3, 4 5), (1, 2, 3, 4



176

Table 5-5 gives the complete list of all the states generated. A net-

work is constructed from Table 5-5 and is shown in Figure 5-4.

Table 5-5. Generation of states for models 1 and 2. 
State Element Numbers	 State Time

	

Node	 Model 1	 Model 2	 Model 1	 Model 2

	

(1)	 (2)	 (3)	 (4)	 (5)

	

0	 (P	 (I)	 0	 0

1	 (1)	 (1)	 4	 2

	

2	 (1)	 (2)	 4	 3

	

3	 (1)	 (1, 2)	 4	 5
(1, 2, 3)

	

4	 (1)	 4	 9

	

5	 (1)	 (1, 2, 3, 4)	 4	 13

	

6	 (1, 2)	 (1)	 6	 2

	

7	 (1, 2)	 (2)	 6	 3

	

8	 (1, 2)	 (1, 2)	 6	 5

	

9	 (1, 2)6	 9(1, 2, 3)

	

10	 (1, 2)	 (1, 2, 3, 4)	 6	 13

	

11	 (1, 4)	 (1)	 6	 2

	

12	 (1, 4)	 (2)	 6	 3

	

13	 (1, 4)	 (1, 2)	 6	 5

	

14	 (1, 4)	 (1, 2, 3)	 6	 9

	

15	 (1, 4)	 (1, 2, 3, 4)	 6	 13
16(1)	 9	 2(1, 2, 3)

	

17	 (1, 2, 3)	 (2)	 9	 3

	

18	 (1, 2, 3)	 (1, 2)	 9	 5

	

19	 (1, 2, 3)	 (1, 2, 3)	 9	 9

	

20	 (1, 2, 3)9	 13(1, 2, 3, 4)

	

21	 (1, 2, 4)	 (1)	 8	 2

	

22	 (1, 2, 4)	 (2)	 8	 3

	

23	 (1, 2, 4)	 (1, 2)	 8	 5

	

24	 (1, 2, 4)	 (1, 2, 3)	 8	 9
25(1, 2, 3, 4)	 8	 13(1, 2, 4)

	

26	 (1, 2, 3, 4)	 (1)	 11	 2

	

27	 (1, 2, 3, 4)	 (2)	 11	 3

28(1, 2)	 11	 5(1, 2, 3, 4)

	

29	 (1, 2, 3, 4)	 (1, 2, 3)	 11	 9

	

30	 (1, 2, 3, 4)	 (1, 2, 3, 4)	 11	 13

	

31	 (1, 2,3,4,5)	 (1)	 13	 2

	

32	 (1, 2, 3, 4,5)	 (2)	 13	 3

	

33	 (1, 2, 3, 4,5)	 (1, 2)	 13	 5

	

34	 (1, 2, 3, 4,5)	 (1, 2, 3)	 13	 9

35 =r	 (1, 2, 3, 4,5)	 (1, 2, 3, 4)	 13	 13 
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Figure 5-4. Network representation for models 1 and 2.

From the Figure 5-4, it can be seen that there are two shortest

routes 
2
,	 e., (44) -3-19-35) and (4) -3-24-35) and this agrees with the

result obtained when the models were considered independently.

The summary of station assignments for the two best routes is shown

in Table 5-6.

Table 5-6 shows that either route A or route B can give the

same total idle time of 2 for each model in the line. Both are equall y

good for selecting the station assignments when the objective is to

2 Roberts and Villa (1970) did not direct their attention to the
route (<1:. -3-24-35) in their solution.
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Table 5-6. Summary of station assignments for both the shortest
routes of models 1 and 2 at c = 5. 

Station	 Model 1 Tasks	 Model 2 Tasks 
Station	 Station Route	 Station

Route A	 Time	 Route B	 Time A&B	 Time 

1 1
4 u

1
4 u

l' u2

2 U
2' 

U
4

4 u	 u
2'	 3

5 u 3
4

u3, u4' u5
4 u4

4

minimize the total idle time in the line. However, the solution offered

by route 4 -3-19-35) will force the operators 1 and 2 to be trained

for the same task 2, while in the alternative solution from the route

4 -3-24-35), the task 2 must be performed by the operators 1 and 2

and the tasks 3 and 4 by the operators 2 and 3 . Thus the route

( -3-19-35) may be superior to the other route 4 -3-24-35) to cut the

3
costs of learning and parts stocking,

Production Shift Time Basi

A practical method of balancing a mixed-model line was first

suggested by Thomopoulos (1966 and 1967). He considered the total

schedule for a production shift and assigned work elements to opera-

tors on a shift basis rather than on a cycle time basis. This approach

3 This logic of ours- for the selection of route (41) -3-19-35) was
agreed by Roberts and Villa (1970) in their reply dated February 19,
1971, to our letter of January 26, 1971.
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eliminated certain possible additional costs which arose in the mathe-

matical formulation by Roberts and Villa (1970) for balancing a mixed-

model line on a cycle time basis.

Since an assembler is trained to perform a job
which requires some skill, it is desirable, if not im-
perative, to assign jobs of a specified class to one
operator or at most a small group of operators
(Thomopoulos, 1967, p. B-64).

For example, the installation of steering wheel in any automobile

should be assigned to one or, at most, a few operators sufficiently

familiar with this type of job. When the elements are assigned to a

station on a shift basis, the single-model ALB procedures are adapt-

able to mixed-model lines. This will assure that only one operator

will perform the same tasks on all units of all models thereby reducing

the costs of learning,parts stocking and confusion.

Example:

Consider the precedence diagrams for three different models

A, B and C in Figure 5-5. If these three models are to be assembled

on the same assembly line with a daily schedule of say 110, 60 and 50

units of A, B and C respectively, then we have a problem of assigning

the total work content of all the scheduled units to a minimum number

of operators subject to the condition that no operator will be assigned

a work content more than the available production time in a day. The

solution to this type of problem can be arrived at with the following

steps.
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Model A (110 units)
	

Model B (60 units)
	 Model C (50 units)

Figure 5-5. Precedence diagrams for 3 models.

51

Figure 5-6. Combined precedence diagram for all the 3 models
A, B and C .
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Step 1. Construct a combined precedence diagram (Figure 5-6

for the example problem).

Step 2. Prepare a table showing all the elemental times for

each model (Column II of Table 5-7) and the work con-

tent for each task per model (Column III of Table 5-7).

Step 3. Calculate the total work content for each task in a shift

(Column IV of Table 5-7).

Step 4. Calculate the average work load per operator and spec-

ify an upper and a lower limit. These limits are left

to the discretion of the management (usually an indus-

trial engineer). For the example problem the total work

content to complete 220 units of all models is 1, 236

minutes. Let the productive work time of an operator

be 450 minutes excluding 30 minutes of personal allow-

= 3 operators. Thus the average

r 1 236,
work load per operator will be L-I = 41 2 exactly.3

Let us specify the upper limit of this as say 420 and

the lower limit as 41 2. Now our problem is to assign

the total work content to each of the 3 operators such

that their station times will lie between 41 2 and 420.

If we can assign each operator exactly 41 2 minutes of

work satisfying the precedence restrictions and assuring

minimum of

ance from an eight hour shift time. Then we require a

r 1 236
L 450
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Table 5-7. Summary of work element times for the models A, B and C to produce quantities of 110,

60 and 50 respectively. 

I	 II	 III	 IV

Element	 Element Times	 Work Content Time	 Work Content of All

Number	 Per Model	 Per Model/Shift	 Models/Shift Element

Model
A

Model
B

Model
C

Model
A

Model
B

Model
C

1 0. 5 0. 0 1. 0 55 0 50 105

2 0.4 0. 8 1.2 44 48 60 152

3 0.0 0.2 0.4 0 12 20 32

4 0.4 0.0 0.0 44 0 0 44

5 0.2 0.2 0.2 22 12 10 44

6 0.2 0.0 0.0 22 0 0 22

7 0. 4 0. 5 0.6 44 30 30 104

8 0.0 0. 5 0, 5 0 30 25 55

9 0.4 0.3 0.2 44 18 10 72

10 0.0 0.0 0. 2 0 0 10 10

11 0.3 0.3 0.3 33 18 15 66

12 0.1 0.3 0.5 11 18 25 54

13 0, 1 0.0 0. 1 11 0 5 16

14 0.2 0. 2 0, 2 22 12 10 44

15 0.7 1.0 1.5 77 60 75 212

16 0.0 0.1 0.0 0 6 0 6

17 0. 5 0. 5 0.0 55 30 0 85

18 0.3 0.3 0.0 33 18 0 51

19 0.4 0.3 0.0 44 18 0 62

TOTALS 5. 1 5. 5 6. 9 561 330 345 1236
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that only one operator will perform the same tasks on

all models, then we would have obtained an ideal optimal

solution to the problem.

Step 5. Apply one of the earlier described procedures of single-

model ALB problem using the elemental times calcu-

lated in Step 3 above, and a cycle time c , where

41 2 <c < 420. In the example problem the times in

Column IV of Table 5-7 are considered, as if they were

the elemental times of a single-model problem whose

precedence diagram would be equivalent to the combined

precedence diagram of all the 3 models in Figure 5-6.

The BALB with Linpows is used to balance this mixed-

model line to obtain a minimal station balance at

c = 416 with a S. I. = 8. 602 (Table 5-8)

Table 5-8. Summary of the results of BALB for 19 element example
problem with deterministic work elements at c = 416
and S. I. = 8. 602. 

Station Number	 Tasks	 Station Time	 Station Delay

k	 (i)	 Tk	dk

2

2,1, 5, 4, 3, 6, 10

7,11, 8, 9,1 2,13,14

15, 17,19, 18, 16

409

411

416

7

5

However, Moodie's phase i procedure would give a minimal station

balance with S. I. = 9. 486 at c = 416 after 5 iterations starting at
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c = 41 2. It is not possible to obtain a minimal station balance at an

average work load of 41 2, 413, 414, and 415 due to the nature of work

element times. This fact is revealed by the failure of BALB to obtain

a 3 station balance at these values.

B. Minimization of Direct Labor Costs with Variable Work Element 

Times 

The earlier approaches of mixed-model balancing were limited

to deterministic work element times though in the actual assembly

process the elemental times are independent and identically distributed

normal variates. Extensions of mixed-model line balancing for vari-

able work elements is illustrated in this section.

Cycle Time Basis 

When the mixed-model line is balanced on the basis of a cycle

time, our objective will be to minimize the total idle time in all the

stations subject to the precedence and cycle time constraints. When

the work element times are deterministic, the objective will be to

minimize the delay function,

1\T.(c -	 .)

j=1 k=1
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subject to the condition	 T. <	 c ;	 j = 1, 2, ••• ,
J

k = 1, 2, ••• , m

whereN. is the number of units of model j and 	 is the work
Tkj

content of the station k for model j obtained by adding the determin-

istic performance times of all work elements grouped at the station k

for the model j

When we remove the assumptions of deterministic work element

times and consider them as normal variates (under the same assump-

tions made earlier to illustrate Moodie's (1965) heuristic method) our

objective function will be read a

minimize D = N {c - (Tkj
 + Z NTV(Tkj

)}

where	 TkjV(	 ) = variance of the random variable Tkj •

TkJ
= t,.	 +

lE I.

V(t..) ; j =	 1, 2,	 m 
1 j

ieI•
3

Z = standard normal deviate obtained
from the standard normal tables

For a given value of probability of station times to exceed the cycle

time c (e. g. , if we allow the individual values of Tkj 
to exceed the

cycle time, c 15% of the time, the, value of Z would be 1. 035),

J
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t.. = performance time of i-th element

on j-th model

V(t,.) = variance of t,1j

= set of work elements contained in the j-th
3

model

When we extend these concepts to the integer programming and short-

est route model of section A in this chapter, the Equations (5. 4) and

(5. 8) will be modified as follows:

M
	

J

minimize D' =	 W
k
	ft. + N/V(t..) }

ij
k=m-:+1 j=1

3

and

+
	 V(t„.)
	 < c; j = 1, 2, ••• , J

13
	 13

iEl }	
(5. 8)

and the symbol { } in the Equation (5. 8) denotes the set of all tasks

contained in the state {S. - S. } and Z is the standard normal
Jv	 ju

deviate for the given value of probability of station times to exceed

the cycle time.

Example:

Consider the example in Figure 5-1 by specifying some variance

values for the models as shown in Table 5-9 and Table 5-10.

lel.

(5. 4)
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Table 5-9. Data of elemental times and variance values for
model 1 to illustrate shortest route method. 

Element Number 1 2 3 4 5

Element Time 4 2 3 2 2

Variance	 1.00	 0. 25	 0. 50	 0. 30	 0. 30

Table 5-10. Data of elemental times and variance values
for model 2 to illustrate shortest route method.

Element Number	 1	 2

Element Time	 2	 3	 4	 4

Variance	 0. 4	 0. 6	 1. 0	 1. 0

The generation of states in Table 5-5 and the Equations (5. 7)

and (5. 8) lead to the following results in Table 5-11. The results are

obtained when Z = 1 (assuming that 15% of the time the station values

might exceed the cycle time) with the shortest route (0- 2- 23- 29-35)

being spanned by 4 acrs,

Table 5-11. Summary of station assignments for both models 1 and
model 2 with variability of work elements.

Number
Model 1

i	 Tk

Model 2

i	 Tk	dk

1 1 5. 00 0. 00 2 3. 77 1. 23

2,4 4.74 0. 26 1 2. 63 2. 37

3 3 3.70 1. 30 3 5. 00 0. 00

4 5 2. 54 2. 46 4 5. 00 O. 00
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Comparisons of results in Table 5-6 and Table 5-11 will indicate that

the consideration of variability does change the results. In Table 5-6

we obtained a 3 station balance while Table 5-7 indicates a 4 station

balance.

Production Shift Time Basis

When the daily production shift time is used as the basis for a

mixed-model ALB, certain assumptions must be made before it can be

converted into an equivalent single-model ALB problem.

Let us assume that a same kind of task when performed by the

same operator on different models will result in performance times

which are independent and identically distributed normal variates.

One might say that the results of earlier studies by Hicks and Young

(1962) could be extended to defend this assumption. However, this

might not be entirely justified since their research did not consider

the elemental times of the same kind of task by the same operator on

different products. The above assumption of normality for the distri-

bution of mean times taken on the same task on different models can

be supported by the central limit theorem.

Let x x	 , x be a random sample of size n
1' 2'	 n

drawn from any population with a mean p, and variance

0.2 . Then the distribution of (631-L-;:e	 (÷.Y--- approaches

the standard normal as n increases, The theorem
implies that the distribution of 57 is approximately normal
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with mean 11, and variance 6
2 for moderate or large

n (Guenther, 1965, p. 81).

Also the assumption of independence between the variates x 1 , x 2
,

has been used successfully in the past by Walker (1959). In••• , xn

MTM and other predetermined work measurement, time data have

usually assumed independence. The success of these usages in indus-

try seem to imply that x. (the performance time of the i-th task on

the j-th model) can be considered as an independent and identically

distributed normal variate with a mean	 (the expected time meas-

ured by stop watch study for the i-th task on the j-th model) and a

standard deviation G
ij 

, We can thus use the additive property of

normal variates to arrive at the mean work content of all models per

shift for any particular element (i. e. , the equivalent of the entries in

Column IV of Table 5-7 for deterministic work elements). The gen-

eral theorem of additivity for normal variates is stated as follows:

If x. (i = 1, 2, °•• , n) are independent normal variates
with mean m. and variance 0-2 , the variate Mc.x. is a

?normal variate with mean E c.m . and variance	 1C0-3.
where	 sere c. ,	are constants (Kapur and Saxena, 1961, p.
169).	

1

The variability consideration can now be included in the proced-

ure of mixed-model line balancing. Let

N.	 number of units to be assembled for the j-th model

x. . = performance time of i-th element on j-th model,
11

normal variate with mean t.. and variance Q 1
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t..	 . . = mean of x.. (note t . . = x.. for deterministic

	

3.)	 3.)	 13

case

	

G	 standard deviation of the random variable x.1jij 

	T.	 work content of all models per shift for the i-th

element

Then in a deterministic case

T1 	 for i = 1„2, 3,	 , n
j

j=1

and in a variable c a s e the value T i 	be a normal variate with a
1

mean T. = EN.x. =	 = equivalent of "SE. for a single-model; and
1	 j	 1j	 j	 ) 3.j	 1

variance V(T.) = EN.20 2 = equivalent of V(x.) for a single-model.
1	 j ij	 1

This will reduce the problem into an equivalent single-model problem

with variable work element times. Hence we can apply BALB (des-

cribed in Chapter IV) to solve this mixed-model problem by specify-

ing the average work load per operator in place of cycle time. Table

5-12 shows the data of the standard deviations assumed in the example

problem in Figure 5-5 . Table 5-13 summarizes the dual precedence

lists, values of T. , V(T . ) , and Linpows as an input data for BALB.

Application of BALB results in a 3 station balance at a cycle tine of

4

	

419 minutes.	 The smoothness index was 9, 34 as shown in Table 5-14.

4 This is the average work load per operator.
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The same problem was solved by Moodie's phase 1 method. It also

gave a 3 station balance (Table 5-15) but with a smoothness index of

1 3, 21 (to the second decimal) which was higher than what was obtained

by BALB. However, it should be realized now that consideration of

variability had changed the results of the deterministic elemental

problem by increasing the average load on the operator from a value of

416 to 419. Correspondingly, S. I. increased from 8. 60 to 9. 34.

These changes may be of practical interest in arriving at the devia-

tion of the shift time allowed in the assembly process and the criteria

of minimizing the direct labor costs.

Table 5-12. Data of the standard deviations of all 19 work elements for the 3 model example in

Figure 5-5. 

Number (i) 1 2 3 4 5 6 7 8
Element

0.01

0

0.02

0.008

0.015

0.030

0

0.005

0.008

0.007

0

0

0.006	 .

0.006

0.007

0.005

0

0

0.008

0.010

0.012

0

0.01

0.01

Model A (Q iA)

Model B( CY iB)

Model C ( 0. id

Table 5-12 continued.

Element Number (i) 9 10 11 12 13 14 15 16

Model A ( 0- jA)

Model B (Q 0)

Model C (Q ic)

0.006

0.004

0.003

0

0

0.005

0.004

0.004

0.003

0*

0.004

0.010

0.001

0

0.001

0.005

0.005

0.005

0.015

0.018

0.022

0

0.001

0

Table 5-12 continued.

Element Number (i) 17 18 19

Model A (Q jA)

Model B (Q iB)

Model C (Q ic)

0.012

0.010

0.004

0.004

0.005

0.003

* Assume that the element 12 is done by a machine for the Model A.
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Table 5-13. Data for the total work content and the , variance of each element for 19 element example.

Mean
Element Work
Number IP-List	 Content	 Variance	 Linpows	 IF-List

7.)	 V(T.)
1	 1

1 0	 0	 0	 105.0	 2, 2	 497.0	 6	 7	 0

2 0	 0	 0	 152,, 0	 3.8	 649.0	 7	 8	 9

3 0	 0	 0	 32.0	 .2	 332.0	 9	 10	 16

4 0	 0	 0	 44.0	 „6	 374.0	 11	 0	 0

5 0	 0	 0	 44.0	 .7	 374.0	 11	 0	 0

6 1	 0	 0	 22.0	 . 3	 22.0	 0	 0	 0

7 1	 2	 0	 104.0	 1.5	 371.5	 12	 0	 0

8 2	 0	 0	 55.0	 .6	 321.0	 12	 0	 0

9 3	 2	 0	 72.0	 . 5	 284.0	 15	 0	 0

10 3	 0	 0	 10.0	 . 1	 10.0	 0	 0	 0

11 4	 5	 0	 66.0	 .3	 330. 3	 13	 14	 16

12 7	 8	 0	 54, 0	 . 3	 266.0	 15	 0	 0

13 11	 0	 0	 16.0	 0	 163.0	 17	 0	 0

14 11	 0	 0	 44.0	 .5	 157.0	 19	 18	 0

15 9	 12	 0	 212.0	 5.1	 212.0	 0	 0	 0

16 3	 11	 0	 6.0	 0	 6.0	 0	 0	 0

17 13	 0	 0	 85.0	 2.1	 147.0	 19	 0	 0

18 14	 0	 0	 51.0	 .2	 51.0	 0	 0	 0

19 14	 17	 0	 62.0	 .3	 62.0	 0	 0	 0

Table 5-14. Summary of results with *BALB for 19 element example
problem with variability at c = 419 and S. I. = 9.34.

Station
Number Tasks

Station
Time

Station
Delay

1 2, 1, 5, 4, 3, 6, 10 411.81 7.19

2 7, 11, 8, 9, 12, 13, 14 412.92 6.08

3 15, 17, 19, 18, 16 418. 77 0. 23

Table 5-15. Summary of results with Moodie's phase 1 of the HALB
for 19 element example problem with variability at
c= 419 and S. I. = 13. 21.

Station
Number T asks

Station
Time

Station
Delay

1 2, 1, 7, 8 418. 85 0. 15

12, 5, 4, 11, 14,1$, 3,
9, 10

418.84 0. 16

6, 13, 17, 19, 16,15 405.79 13, 21
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C. Minimization of Sequence Delay Costs 

After balancing a mixed-model line, the next problem would be

to find in what sequence to launch the various models on the conveyor

line. The different models require different amounts of assembly

work causing an uneven distribution of work load among the individual

operators. This will result in various assembly line inefficiencies

such as work congestion, work deficiency, operator idleness or utility

work time. By assigning a penalty in cents per unit time associated

with each inefficiency, it is possible to compute the total cost of in-

efficiencies resulting from scheduling a unit of a given model in the

sequence. These penalty costs are commonly referred to as sequence

delay costs and our objective is to minimize these costs by an optimal

ordering of the flow of models.

Analysis of the Sequencing Problem

Using the notation of Section B of this chapter the minimum

number of operators, m , required to produce the given number of

units in time period T is given by:

111 t,.}/T (5.9)   

where the bracket function [x equals to the least integer > x



Then the average load per operator is
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T a
(5. 10)

sIf on the other hand, the N. 1 are not given, but the ratios of different

models f :f :f ••• , are known, the maximum production of each
1 2 3*

model in time period T with m operators is

m xTx f.
max N. -

.1
; j = 1, 2, ••• , (5.11)

We assume that the assembly work of each model can be evenly divid-

ed among the m M operators so that each operator works on a given

model for the same amount of time. This time deviation is commonly

termed as "model cyc le time", designated by c. 
and found by the

equation,

j = 1, 2,•••,,T

The model with the maximum total amount of assembly work will also

have the maximum model cycle time for a given m	 The maximum

model cycle time will be denoted by 0 , where

= max { c.)
3
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The weighted average of the model cycle time is denoted by p , where

J

(5. 1 2)

j=1

To illustrate the above concepts consider the example in Figure 5-5

where the numbers of units required per shift (say 450 minutes) for

the three modes A, B and C are:

NA
 = 110 , NB

 = 60 , NC
 = 50

Thus, the corresponding ratios are f 	 :f = 11:6:5	 The amounts
A B C

of assembly work, or work content times (in minutes) per unit of each

model (Table 5-6) are E t.A = 5.10 , E t.13 = 5.5 and E t.0 = 6. 90.
i	 i	 i

From Equation (5.9) the minimum number of operators m required

to satisfy the given production schedule in a 450 minutes working day =

r 110 x 5. 1 + 60 x5. 5 + 50 x6. 9 - [ 2.74] = 3 . Thus, the three
450

operators will suffice to perform the shift's work. The average load

per operator from Equation (5.10) is

1 236 - 41 2 minutes .
3

With the given production ratios 11:6:5 , the maximum production of

each model actually attainable with three operators in a 450 minute

work shift is,



max N . -
450. Ox3xf.

1 , j= A, B and C
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Thus,

(450x 3x11)
max N - 	 11 20

A	 11 x5.1 + 6x5. 5 + 5 x6. 9)

450x 3x6
max NB = 1 23. 6

max NC - 
450x 3x5	 55 .

1 23. 6

5.1
The model cycle times are given by	 C =	 - 1.7;

A 3

5. 5	 6. 9
c =	 1. 83 ; and c =	 - 2. 3. From Equation (5. 1 2), p =

B	 3	 C	 3

(11 x 1. 7 + 6 x1. 83 + 5 x 2. 3)1(22) = 1. 8718. The maximum model

cycle time = 8 = max 11. 7, 1. 83, 2. 	 = 2. 3. The summary of these

results is shown in Table 5-16.

Table 5-16. Summar  of results for the elements of sequencing.

Number of Units	 Model

Required	 Work Content	 Work Content	 Cycle

Per Shift	 Time/ Unit	 Time/Shift	 Time

561. 0 1.70

330. 0 1. 83

345. 0 2. 30

66

Model

A

	

110	 5. 1

	

60	 5, 5

	

50	 6. 9
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Sequencing Criteria

Wester and Kilbridge (1964) used the criteria of idle time of an.

operator and work congestion at a station to develop a solution proced-

ure for the sequencing. Later Thomopoulos (1966) generalized these

solutions based on one day's schedule and inefficiencies like idle time,

work congestion, work deficiency and utility work. Sahgal (1970) ex-

tended the general sequencing procedure of Thomopoulos by consider-

ing a weekly production schedule and including the shortage cost as

an additional inefficiency cost, which might appear due to demand

fluctuations and lack of finished goods inventory, Lehman (1969)

discussed the use of sequence delay, balance delay and the operator

learning as criteria in a sequencing procedure.

Sequencing Solutions 

The solution methods based on the interval of launching units on

a conveyor line was developed by Wester and Kilbridge. These two

procedures on variable and fixed rate launching are summarized below.

Variable rate launching: In this procedure the time between the

launching of successive units is considered to be proportional to the

total work content time of the units. This can be achieved by spacing

the units by a time interval equal to the model cycle time of the lead-

ing unit. If a unit of model A. is to be followed by a unit of model B,
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then the elapsed time between launchings of the two units is the model

cycle time of A.

As sumptions:

i) The assembly work on each model can be evenly divided among

the m operators.

ii) The conveyor moves at a constant speed given by

v = I/0 where k= maximum length of the conveyor

0 = maximum model cycle time

iii) The work stations are non-overlapping, 	 e. , the operator

k+1 can not start work on a given unit before operator

k (k = 1, 2, ••• , m
*-1) finishes his work on it.

Figure 5-7 illustrates the variable rate launching system, where

c denotes the model cycle time of the unit i launched while the sub-

scripts of c denote the order of launching of the units. From Figure

5-7 and with the assumption that the stations are non-overlapping the

following relations must be satisfied:

> c. ; i = 1, 2,—
— 1

Since

{c.} c {c.}
j

we have

T > c. ; j = 1, 2, ••• , J
J
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Work performed by operator 2

Work performed by operator 3

Operator cycle time, the maximum	 or the time separating the start of work on a given unit by two

consecutive operators on the line.

(i = 1, 2, ••• N) is the model cycle time of unit i (the subscript of c denotes the order of launching the

units

Figure 5-7. Variable rate launching.
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Hence

T > max{c.}

If T > max c. operator idle time will result. Therefore T o pt

max {c.} = A .
3
Line utilization increases with the overlapping of stations in this

type of launching and this is commonly observed in automotive indus-

try. The disadvantage in this type of system is that the scheduling of

multi-model components and integration with other production lines

will be difficult.

Fixed-rate launching: In this procedure,the consecutive units,

regardless of the model, are launched at regular time intervals.

minimize the work congestion and operator idleness we have to choose

the optimum fixed interval for lauching the units. Referring to Figure

5-8, the following results are obtained by Wester and Kilbridge (1964).

The	 .he operator cycle time T = max {c. }	 Also from lines 1 and 2

corresponding to units 1 and 2 in Figure 5-8,we have

Tr <

and from lines 1, 2 and 3 corresponding to units 1, 2 and 3, we have

c
2

Thus by induction



T

<	 	  T

111111111111MMUM

C

C
3
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T

riA/1,

Unit 1

Unit 2

Unit 3

Legend:
X	 Launching times

	  Work done by operator 1

Work done by operator 2

1717/27Z1 Work done by operator 3

TIME

T	 Operator cycle time, the maximum c , , or the time separating the start of work on a given unit by two

consecutive operators on the line.

c	 (i = 1, 2, ••• , N) is the model cycle time of unit i., 

Tr	
The production cycle time; the fixed time between two consecutive launchings.

Figure 5-8. Fixed rate launching.
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Nrr < (c 1
 + c 2 + c 3

 + ••• + cN
) where N =

Rewriting the above equation

Tr <

N.c.
3 J

N.

since for each c there are N. number of c.'s. 	 The above
1

(i can not be satisfied simultaneously unless the c. ( = 1, 2,

–•  N) are properly chosen. The proper selection will decide the

optimum sequencing with respect to operator idle time.

From the relation

Tr <

N c.
J

N.

if the strict inequality holds, then the units will appear on the line

prematurely and will cause congestion at various stations. Hence Tr

must equal (E Nc.)/(E N.) •
J	 3 3

The optimum conditions for fixed-rate launching are therefore
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N, c,
J

T
ot 

=	 = max {c.}
p 3

Since Tr , the time between any two consecutive launchings, is con-

stant and determines the production rate, it is called the production
E c.

cycle time. Since T > max {c.} = max {c 1.) and < 	  for

i = 1, 2, ••• ,N , we can conclude that

c •

< T since	 < max {c.} for i	 1, 2, ••• , N

The equality holds good if all model cycle times are equal. This is

the case when a single model is produced on the line. The single

model problem is a special, but trivial, case of mixed-model situa-

tion. Thus to prevent operator idle time, we need

ill <

	

	 ch
 where i = 1, 2,	 , N	 (5.13)

h=1

Our next criterion is to prevent work congestion in the line. This

can be achieved subject to the following conditions:

Tr opt

and



> c1

T + > c + c1	 2

T + 2Tr > c 1
 + c + c2	 3
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By induction,

T + (m-1)Tr > c 1 + c 2 + ••• + cN

Or

T + (i-1)Tr > 7. 11 2, "*° (5, 14)

h=1

The reason for these conditions is apparent from the Figure 5-8 and a

mathematical justification can be found in the Ph. D. dessertation of

Thomopoulos (1966).

The Equations (5. 13) and (5. 14) above must be satisfied to

minimize the sequence delay costs, i. e.,

ch
 - iTr < T (5.15)

In some cases, depending on the distribution of the
model cycle times, the above inequality can be satisfied.
But in many other cases this is not possible. Since avoid-
ing operator idle time is our primary objective, we shall
choose the c 	 to satisfy (5.13) (Wester and Kiibridge,
1964, p. 2547.

However, to minimize the work congestion, choose c h such

that the difference E ch
-iir is as small as possible at each step i of

h=1



205

the procedure. At certain steps it happens that the operator is forced

out of his work station in order to complete his assignment (for ex-

ample see units 6, 11 and 16 of Table 5-17. Fixed rate launching pro-

vides a uniform rate of production, is more adaptable to practical

situations, and is more suitable for computer application.

Example:

In Table 5-16, we have the set {N.} = {110, 60, 50} and the

greatest common divisor is 10. Then the quotient set {f.) = {11, 6,5}.

Hence the sequencing procedure can be simplified by applying the

earlier mentioned rules strictly to 11 A's, 6 B's and 5 C's (blocking

the unrequired models if necessary), and repeating the resulting se-

quence for 10 times to achieve the total scheduled production. Table

5-17 summarizes the sequencing.

Solution:

Table 5-17 summarizes the sequencing of units obtained by this

procedure.

The mixed-model line balancing and sequencing, the two most

recent extensions of the single-model assembly lines, have been dis-

cussed in this chapter. It must be pointed out that none of the re-

searchers above including the present author claim to have found the

optimum result for either balancing or sequencing problems.

However, the line balancing solutions discussed in this chapter

serve as the beginning stage for solving the mixed-model assembly
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Table 5-17. Cyclical sequencing of units,_ for the mixed-model problem by fixed rate launching.

Unit

Multiples of	 Model

Production Cycle	 Cycle	 i	 i
Time	 Model	 Time	 E c	 E c - i Tr

h	 h
( i) (i	 ) (J) (ci) h=1 h=1

1 1.8718 C 2.30 2.30 0.4282

2 3.7436 A 1.70 4.00 0.2564

3 5.6154 A 1.70 5, 70 0.0846

4 7. 4872 B 1. 83 7. 53 0.0428

5 9. 3590 B 1. 83 9. 36 O. 0010

*
6 11.2308 C 2.30 11.66 0.4292

7 13. 1026 A 1. 70 13. 36 0. 2574

8 14. 9744 A 1.70 15. 06 0.0856

9 16. 8462 B 1, 83 16. 89 0.0438

10 18.7180 B 1.83 18.72 0.0020

*
11 20. 5898 C 2.30 21.02 0.4302

12 22.4616 A 1.70 22.72 0.2584

13 24.3334 A 1.70 24.42 0.0866

14 26.2052 B 1.83 26.25 0.0448

15 28.0770 B 1.83 28.08 0.0030

*
16 29.9488 C 2.30 30.38 0.4312

17 31.8206 A 1.70 32.08 0. 2594

18 33.6924 A 1.70 33.78 0.0876

19 35. 5642 B 1.83 35.48 0.0458

20 37. 4360 B 1. 83 37. 18 0. 0040

21 39.3078 C 2.30 38.88 0.4322
*

22 41. 1796 A 1.70 41. 18 0.2614

Tr = 1. 8718, 0 = T = 2. 3, T - Tr = 0. 4282
* 

= For these units the operator will be forced out of his work station to complete his work.
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line problem. We hope future research will focus on some of the re-

lated problems such as the integration of inter-related subassembly

lines and the scheduling of the production of the multi-product com-

ponents.
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VI. DISCUSSIONS AND CONCLUSIONS

The present state of art of ALB models is summarized in Table

6-1. It includes our own contributions of a heuristic method, back

tracking method of assembly line balancing (Chapter IV, Section A), a

FORTRAN-IV computer program, *BALB (Appendix) for the heuristic

method andextensions of mixed-model ALB for variable work element

times (Chapter V-Section B). Though we have not yet completed the

testing of the efficiency of the program, evidences are accumulating

that its performance is in par, if not far superior, to that of existing

programs. It is expected to be further improved by eliminating phase

1 and separately writing the program for backtracking only. The re-

search on mixed-model ALB has only begun recently. The develop-

ment of *BALB and the extensions of mixed-model problem indicate

two of the several directions for future research. In Chapter V Section

C, only the deterministic mixed-model sequencing problems have been

discussed. Future research may also extend this to include the vari-

ability of work element times and incorporate the learning effect of

the operators.

A casual glance at Table 6-1 shows that an almost equal amount

of effort seem to have been devoted to the development of analytical

and heuristic solution methods for a single-model ALB problem.

Because of the computational difficulties associated with the
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combinatorial nature of the ALB problem, heuristic methods yielding

near optimal solutions seem, at least for the present, to outweigh

analytical methods in both the practicability and availability of comput-

er programs.

Since the establishment of feasible linear sequences is an im-

portant aspect of an ALB problem, the method developed by Okamura

and Yamashina (1969) for establishing linear sequences is expected to

become a very helpful tool in extending further research inALB problems.

In these days of rising inflation, the increase of productivity is a

very pressing engineering challenge. One solution is to apply systems

thinking to production and globally optimize assembly line productions.

The mere balancing of production lines may no longer produce adequate

increase in productivity. Rather, some of more fundamental questions

need be answered. First, why do we need a production conveyor line

when there is an alternative of job-shop type production? Second, how

susceptible is the cycle time to the discrepancies between the fore-

casted and actual demands? Third, how does an assembly line inter-

act with the operation of other manufacturing centers in an industry?

There have been a variety of techniques developed to solve the

traditional ALB problems. Sarcastically, we may say that there have

been "too many ways of cooking the same receipe.	 The true, and

more fundamental, problems may be closely related to, but untouched

by, the existing ALB models, To this skepticism, we can only answer
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that the continued research in related fields is the only approach

known today to find a new avenue into a large gain in productivity

research. Better and more efficient methods could slowly develop,

or suddenly lead to an entirely new view point that may answer some

of the fundamental ALB questions.

This thesis is hoped to serve not only as a practical guide to

solving immediate ALB problems by offering a digest of techniques

currently available but also to act as a milestone and a small guide-

post summarizing where we have been and pointing the new directions

we can now pursue.



Approach
Objective
Function

Assembly
Line Mode Analytical

Work Ele-
ment Times RemarksHeuristic

a m Prno-rn mm int"

ALB PROCEDURES 

Computer Application

Prnerr.3 trtmarl 11 OCC1  mrn1 x,ac 1 a raP rntviruit -

Extensions of back track-
ing algorithm on shift
time basis (Rao, 1971)

*BALB is used here by in-
putting the average work
content of an operator in
a shift as a cycle time

Extension of variability
of work elements to
Roberts & Villa models
(Rao, 1971) 

Minimize
Sequence D etermin-

istic

Programmed; no infor-
mation available

Fixed and variable rate
lauching

The software is available
at IITRI, Chicago, Ill.

Delay Cost

Table 6-1. Present state of art of ALB models.



21 2

BIBLIOGRAPHY

Arcus, Albert L. 1966, COMSOAL - A computer method of sequenc-
ing operations for assembly lines. The International Journal of
Production Research 4:259-277,

Barten, Kenneth, 1962. A queueing simulator for determining opti-
mum inventory levels in a sequential process. The Journal of
Industrial Engineering 13:245- 25 2.

Bowman, Edward H. 1960. Assembly line balancing by linear pro-
gramming. Operations Research 8:385-389.

Buffa, Elwood S. 1961a. Modern production management. New York,
John Wiley and Sons. 636 p.

1961b. Pacing effects in production lines. Journal
of Industrial Engineering 1 2:383-386,

	  1968. Production inventory systems: planning and
control, Homewood, Illinois, Richard D. Irwin. 457 p.

Cauley, John M. 1968. A review of assembly line balancing algor-
ithms, In: Proceedings of the 19th Annual Conference of the
American Institute of Industrial Engineers, Tampa, Florida,
1968, New York. p. 223-229.

Cnossen, J. L. 1967. A heuristic approach to assembly line balanc-
ing, In: Thirty-Second National Meeting of Operations Research
Society of America (ORSA), Chicago, November 1-3, 20 p. (Reprint)

Dantzig, George B. 1951. Maximization of a linear function of vari-
ables subject to linear inequalities. In: Activity Analysis of
Production and Allocation, ed. by T. C. Koopmans, New York,
John Wiley and Sons. ,(Cited in Bowman, 1960, p. 386).

1960, On the shortest route through a network,
Management Science 6:187-190,

Freeman, Michael C. 1964. The effects of breakdowns and inter-
storage on production line capacity. The Journal of Industrial
Engineering 15:194- 200.



213

Freeman, David R. and J. V. Jucker. 1967. The line balancing
problem. The Journal of Industrial Engineering 18:361-364.

Freeman, David R. 1968. A general line balancing model. In: Pro-
ceedings of the 19th Annual Conference of the American Institute of
Industrial Engineers, Tampa, Florida, 1968, New York.. p. 230-235.

Gomory, R. E. 1958. An algorithm for integer solutions to linear
programs. Princeton. (IBM Mathematics Research Project,
Technical Report No. 1)(Cited in White, 1961, p. 276).

Grant, S. 1962. Computer line balancing of mixed products. Evans-
ville, Indiana, Whirlpool Corporation, Evansville Division,
Industrial Engineering Department. (Cited in Sahgal, 1970, p. 21).

Guenther, William C. 1965. Concepts of mathematical statistics,
New York, McGraw-Hill. 353 p.

Gutjahr, Allan L. and G. L. Nemhauser. 1964. An algorithm for
the line balancing problem. Management Science 2:308-315.

Held, Michael, Richard M. Karp and Richard Shareshian. 1963.
Assembly line balancing - dynamic programming with preced-
ence constraints. Operations Research 2:442-459.

Helgeson, W. B. and D. P. Birnie. 1961. Assembly line balancing
using the ranked positional weight technique. Journal of Indus-
trial Engineering 12:394-398.

Hoffman, Thomas R. 1959. Generation of permutations and combina-
tions. Madison. (University of Wisconsin, Engineering Exper-
iment Station. Report No, 13). (Cited in Hoffman, 1963, p. 556).

	  1963. Assembly line balancing with a precedence
matrix, Management Science 9:551-563.

Hu, T. C. 1961. Parallel sequencing and assembly line problems.
Operations Research 6:841-848.

Ignall, Edward J. 1965. A review of assembly line balancing.
Journal of Industrial Engineering 16:244-254.

Inoue, Michael S. and J. L. Riggs. 1971. Cause and effect diagram:
An aid to system identification. Industrial Engineering Journal.
In press.



214

IIT Research Institute. 1970. How to cut manufacturing costs: An
introduction to advanced manufacturing methods program.
Chicago, 15 p.

Jackson, James R. 1956. A computing procedure for a line balanc-
ing problem. Management Science 2:261-271.

KapurJ. N. and H. C. Saxena. 1961. Mathematical statistics. 2d
ed. Delhi, India, S. Chand and Company. 455 p.

Kilbridge, Maurice D. and Leon Wester. 1961. A heuristic method
of assembly line balancing. The Journal of Industrial Engineer-
ing 1 2:29 2- 298.

1961. The balance delay problem. Management
Science 8:69-84.

1962. A review of analytical systems of line balanc-
ing. Operations Research 10:626-638.

	  1966. An economic model for the division of labor.
Management Science 1 2:255- 269.

Klein, Morton, 1963, On assembly line balancing. Operations Re-
search 11:29 2- 298.

Lawler, E. L. and D. E. Wood. 1966. Branch and bound methods:
A survey. Operations Research 14:699-719.

Lewin, D. E. 1967. Assembly line balancing and related topics.
Master t s thesis, Cambridge, Massachusetts Institute of Tech-

nology, Sloan School of Management. (Cited in Cauley, 1968, p. 227).

Lehman, Melvin. 1969. On criteria of assigning models to assembly
lines, The International Journal of Production Research 7:270-
285.

1969. What's going on in product assembly. Indus-
trial Engineering Journal, April. p 41-46.

Little, John D. C. , et al. 1963. Analgorithm for the travelling
salesman problem. Operations Research 11:97 2-989.

Mansoor, E. M. 1964a. Assembly line balancing: An improvement
on the ranked positional weight technique. The Journal of Indus-
trial Engineering 15:73-74.



215

Mansoor, E. M. 19641a. Author T s comments. The Journal of Indus-
trial Engineering 15:3 23.

Mansoor, E. M. and S. B. Tuvia, 1966. Optimizing balanced assem-
bly lines. The Journal of Industrial Engineering 17:1 26-1 31.

Mastor, A. A. 1966. An experimental investigation and comparitive
evaluation of production line balancing techniques. Ph. D. thesis
Los Angeles, University of California. 175 numb, leaves.

Moodie, C. L. 1964. A heuristic method of assembly line balancing
for assumptions of constant or variable work element times.
Ph.D., thesis. Lafayette, hid. , Purdue University, 199 numb, leaves.

	  1968. New directions in assembly line balancing. In:
Proceedings of 19th Annual Conference of the American Institute
of Industrial Engineers, Tampa, Florida, 1968, p. 236-242.

Moodie, C. L. and H. H. Young. 1965. A heuristic method of assem-
bly line balancing for assumptions of constant or variable work
element times. The Journal of Industrial Engineering 1 6:23--29.

Okamura, Kenjira and Hajime Yamashina. 1969. Establishment of
linear sequences. Tokyo. Kyoto University. Engineering
Faculty Memoirs. 31:307-331. (Reprint).

Prenting, Theodore 0. and Robert M. Ba/ttaglin. 1964. The prece-
dence diagram: A tool for analysis in assembly line balancing.
The Journal of Industrial Engineering 15:208-213.

Ramsing, Kenneth and Donald Downing. 1970. Assembly line balanc-
ing with variable element times. Industrial Engineering Journal,
January, p 41-43.

Reeve, Richard N. and W. H. Thomas. 1967. A heuristic branch and
bound technique for line balancing. In: Thirty-Second National
Meeting of the Operations Research Society of America (ORSA),
Chicago, November 1-3 18 p. (Reprint)

Reiter, Raymond. 1969. On assembly line balancing problems.
Operations Research 17:685-700.

Riggs, James L. 1970. Production systems: Planning, analysis and
control. New York, John Wiley and Sons. 604 p.



216

Roberts, Stephen D. and Carlos D. Villa. 1970. A multiproduct
assembly line - balancing problem. American Institute of Indus-
trial Engineers (AIIE), Transactions 2:361-364.

Sahgal, , Vijendra K. 1970. A mixed-model sequencing algorithm.
Master's thesis. Mississippi, Mississippi State College, De-
partment of Industrial Engineering. 113 numb, leaves.

Salveson, M. E. 1955. The assembly line balancing problem. The
Journal of Industrial Engineering. 6(3) p. 18-25.

Thomopoulos, Nick T. 1966. A sequencing procedure for multi-
model assembly lines. Ph. D. thesis. Chicago, Illinois Institute
of Technology, Department of Industrial Engineering. 174numb.
leaves.

1967. Line balancing sequencing for mixed-model
assembly. Management Science 14(2):B59-B75.

1968. Some analytical approaches to assembly line
problems. The Production Engineer, July, p. 345-351.

	  1969. The mixed-model learning curve. American
Institute of Industrial Engineers (AIIE), Transactions. 1:1 27-1 32.

	  1970. Mixed-model line balancing with smoothed
station assignments. Management Science 16:593-603.

Tonge, Fred M. 1960. Summary of a heuristic line balancing pro-
cedure. Management Science 7:21-39.

1961. A heuristic program for assembly line balanc-
ing. Englewood Cliffs, New Jersey, Prentice-Hall. 115 p.

Van Gigch, J. P. 1965. The assembly line balancing problem. The
case for a general optimizing theory: A review. Berkley,
University of California, Graduate School of Business Adminis-
tration. 26 numb. leaves.

Wester, Leon and M. D. Kilbridge. 1962. Heuristic line balancing -
A. case. The Journal of Industrial Engineering 1 3:1 39-149,



217

Wester, Leon and M. D. Kilbridge. 1964. The assembly line model-
mix sequencing problem. In: Proceedings of the 3rd Interna-
tional Conference on Operations Research, Paris, 1963. Paris,
Dunod. p 240-260. (Reprint)

White, William W. 1961, Comments on a paper by Bowman. Oper-
ations Research 9:274-276.



APPENDIX



218

APPENDIX

DETAILS OF *BALB

The program, *BALB, consists of two phases each being pro-

grammed separately but using common subroutines. The phase 1 is

based on Moodie's successive maximum elemental times and is used

to compare the results obtained by phase 2, the back tracking method.

The phase 1 tries to find minimal station balance for the given cycle

time and if this is not possible the cycle time is incremented in units

of 1 till the total delay in all stations of the assembly line is less than

or equal to the newly arrived cycle time. Phase 2 attempts to find

optimal or near optimal solutions based on positional weights. An

option is provided either to run phase 1 and phase 2 or phase 2 only.

The inputs to both the phases include the maximum number of rows

(M), the maximum number of columns (N) in the IP and IF matrices

and the cycle time.

The positional weights calculations are made separately by the

program, *ALLPOW listed later in this appendix, The precedence

relation matrices are stored in a separate data file which are read by

the main program using the CALL EQUIP statement. For mixed-

model problems production shift time is inputed as an equivalent cycle

time into the program. The data can be either of constant or variable
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elemental times.' The general outline of . the two phases and description

of the variables in the program is given in the following pages.
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Figure A-1. Flow chart for phase 1 of *BALB.
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LEGEND FOR *BALB

Variable	 Description

IR	 Array for rows of IP and IF matrices
E	 Array for elemental times of each element i
IP	 IP-matrix
MF	 IF-matrix
IPO	 IP-matrix copied into IPO
MFO	 MF-matrix copied into MFO
ICP	 IP-matrix copied into ICP
MAP	 IP-matrix copied at the main branch into MAP
CST	 Array of cumulative station times
ISR	 Rows corresponding to a cumulative station time

(CST) when arranged in decreasing order
IRR	 Rows which have all zeros in IP-matrix
EE	 Array of elemental times for the element numbers

of a zero row
PW	 Array of positional weights
PWZ	 Array of positional weights for the feasible tasks
VAR	 Array of variances of i
VARZ	 Variances of feasible tasks
SUMTI	 Sum of performance times; E t.3.
VASUM	 Sum of variances; Z Vi
TCST	 Sum of SUMTI and VASUM
DELASUM	 Sum of station delays
DOTI	 Decreasing order times
DOVA	 Decreasing ordered variances
STIME	 Station Time
IC	 Running index for main branch nodes
IS	 Maximum number of nodes available at main

branch
KD	 Running index in DOCST subroutine
K	 Station number
SLAKUNTS	 Slack units in a station *
MSTAR	 Minimum number of stations (m )
CACT	 Actual cycle time
COPT	 Optimum cycle time
KNEW	 Index for station increment
NBK	 Index for the nodes assigned in branching
NKB	 Indes for the nodes rejected in branching
NBLOK	 Array of nodes assigned
NKBLOK	 Array of nodes rejected
NBU	 Running index in the subbranches
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Variable	 Description

ESUM	 Total work content without variance
SUMTK	 Total work content in the assembly process with

variance
NBU2	 A variable used as a check in main branch nodes
ID	 An index to identify the first element assigned
DOCST	 Decreasing order cumulative station times
KD	 An index in the DOCST subroutine
NU	 Element with highest station time
KU	 An index used in ZIGZAG subroutine
D	 Station delay time
C	 Cycle time
M	 Number of rows in IP and IF matrices
N	 Number of columns in IP and IF matrices
X	 A. variable equals SUMTI or E(NU)

A variable equals VASUM or VAR(NU)



IFIN,.*BALB

MIST
000011	 PROGRAM BALB
00002(	 DIMENSION IRC100),E(100).1P(100,10).MF(100,10)
000031	 DIMENSION MAP(100.10,
000041	 DIMENSION IP0(100:10)oMF0(100•10/
00005f	 DIMENSION ISR(20):ES(20)
000061	 DIMENSION IRR(10)-pEE(20)
000071	 DIMENSION VAR(100),VAREC10).CST(20)
000081	 DIMENSION ICP(100.10)sNBLOK(20)sPW(100).PWZ(10)
00009i	 DIMENSION NKBLOK(20)
000101	 DIMENSION IBSR(10).EBS(10)
000111	 PRINT 9999'
000121 9999.FORMAT(' DO YOU WANT PHASE-182 OR PHASE..2•
00013i	 1•-ONLYiPHASE-462..12,PHASE•2
000141	 PHASE.TTYIN(2H70	 -
000151	 IF(PHASE.NEa)GOTO 9994
000161	 PRINT 9995 ' •-•
000171	 GOTO 9997
000181 9995 FORMATO -SOLUTION BY *FALB
600191 9994 PRINT 1007 	 -
000201 1807 FORMAT(' PHASE-1 AND PHASE-2 SOLUTION OF ALB PROBLEM•)
000211 9997 MaTTYINI4HROWSi4HUM■
000221	 ' Na TTYIN(4HCOLSs4HUMm-)
000231	 C1TTY112(4HCYCL.4HETMEA2H. )
006241	 IF(PHASE.E(1.2)COPT=C
000251C READ IPAND - MF MATRICES
00026i	 REWIND 37"
000271C READ DATA FILES.
000281	 D01001.1sM -
000291 100 READ(37.99)(1R(I).(IP(I.J).J.IoN).E(I).VARCl/oP11(1),
000301	 l(MF(1.0,JaliN)/
000311	 99-FORMAT(13,313.2F5.1.F6.1.313)
000321
000331	 ESUM.0: -
000341	 D010087.1.11
000351	 VARSUM=VARSUM+VAR(I)
000361 1008 ESUM-ESUM+E(I)
000371 '	 SUMTK.ESUM+SQRT(VARSUM)
000381	 CALL COPY01.14.1PsIPOoMF.MF01
000391C PRINT OUT - THE PROBLEM	 -
000401	 PRINT 1
000411	 1 FORMAT(' E(1)**P•MATRIX****T1I1**VAR(I)t#P11(1)**F..MATRIX**
").
000421	 D0102I=1414
000431 102 WRITE(617101)(IR(1).(IP(I.O...1.1.N).E(1),VAR(1).P2(1),
000441 - 101FtliJ3:J=1:10)
000451 101FORMAT(14.313,3F8.1.313)
000461	 ' IF(PHASE.E11.2)GOT09998 -
000471 1006 DELASUM-0. -"
000481 - 	SOSUM.O.
000491	 SUMTDifr:
000501	 ID=1--
00051;
08052f	

VASOM=0.
0.0.	 -

00053i
0	

TCST-0.
0054i K‘1	 -

000551 1000 CALL Z=OFIND(IP•MF.IR.IRR.E.ER.M,NANR.VAR•VARE..PW..PWZ)
00056i	 IF(NR1)1001,1002,1003
00057i 1002 SOMTI■SUMTI*EE(NR)-
000581	 VASUMOVASUM+VARZ(NR)
000591	 TOST=SUMTI+SORT(VASUM)
00060f	 IF(TCST.LE.C)80 TO 91'
000611C INCREASE STATION - ► '
00062;	 K-K+1
00063i	 SCISUM.SOSUM+D**2
000641	 SUMTDiEE(NR)
000651
000661	

VASUW.VARZ(NR)
TCST.SUMTI+SGRT(VASUM)

000671C NOTE STATION DELAY
000681	 DELASUMf.DELASUMFD
000691	 91 NU.IRRCNR,
000701	 IF(ID.87.1)GOTO 1009
000711	 NFNU=NO
00072i	 ID-ID+1
000731C. BLOCK-NU-ROW
000741 1009 D044.1.11
000751	 4 INNUsa).9999
00076i	 D.C■TCST-
000771
000781	

XAEE(NR)
YOVARZ(NR)

000791	 WRITE(61.95)KoNU.X.Y.TCST'D
000801	 95 FORMAT(2I5.4F10.2)-
00081i	 GOTO 1004
000821 1003 CALL DOCSICIRR.E&NR,IS,ISR.ES.VAREsSUMTIoVASUM)
00083;
000841	

CALL CHEKMISiISR.ESANU.KsTCST.C.DELASUM.SUMTI.VASUM,Es
IVAR.111.NFNUiSCISOM)"

000851C BLOCK NU ROW '
000861	 -D054-1.N_ -
800871 • 5 INNOsiD.9999
000881 1004 CALL ZIGZAG(NUPIP,MF.N)
000891	 GOTO 1000
000901C CHECK STATION DELAY TIME VS. CYCLE TIME
00091* /001 DELASUM=DELASUM+D
00092$	 SOSUM=SCISUM+0**2
000931	 SI=SORT(SOSUM)
000941C PRINT - OUT SMOOTHNESS INDEX
000951	 WRITE(61,9993)51
000961 9993 FORMATO'SMOOTHNESS INDEX IS•pF10.21
000971	 IF(DELASUM.LT.C)8070'1005
000981	 C=C+1	 - _	 •

000991	 WRITE(61,52)C
001001	 52 FORMAT(''ALTERNATE SOLUTION WHEN C.•,F5.)
001011	 CALL COPY(M.N.IPOpIPMFO,MF)
001021	 GOTO 1006	 '
001031 1005 MSTARifIC

224
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00104i	 CONTINUE
001051	 FMSTAR.MSTAR
00106:	 CACT.SUMTK/FMSTAR
00107i	 IN.CACT
00108;	 FN=IN
00109;	 /7(CCACT-FN).E61.0.)GOTO 35
00110(	 COFT.IN+I	 - --
001111	 GOTO
001121	 35 COPT=IN
00113;	 50 SUMTI.O.
001141	 VASUM.O.
00115:	 TCST.O.
00116i	 SLAKUNTS.FMSTAR*COPT•SUMTK
00117;	 KNEW.1
001181	 IC=0.
00119i	 MSTAR.FMSTAR
00120i	 WRITEC61,49)COPT,SLAKUNTS.MSTAR
001211	 49 FORMAT(''CYCLETIME. ',F6.E.. SLACK UNITS.'.F6.1... WHIN MSTA

.-

00I22: -	CALL COPYCM,No1P0s1P.MFO,MF)
00123±	 37 FORMATC2I5o4F10.2)
001241	 27 CALL ZEROFINBCIP,MFaIR,IRRsEsEE,M,NoNR,VAR,VARZ,PW,PUM)
001251	 !FCC/IA..15)38.39,40
001261	 39 SOMTI.SUMTI+EECNR)
001271	 VASUMiNASUM+VARECNR)
001281	 TCST.SUMT1+50RTCGASUM)
001291	 D.COPTTCST
001301	 NOmIRR(NR)
001311	 IF(D.LT.0.)GOTO 32
001321	 IF(17:GT:SLAKUNTS)GOTO 41
001331	 WRITEC61,37)KNEWi,NWEECNR)*VARZOIR)sTCST.D
00134±	 SLAKUNTS.SLAKUNTSD-
001351	 GOT043
001361	 41 WRITEC61,37)KNEW.NWEECNR)*WARECNR)sTCST,D
001371C BLOCK Nu-now FOR ASSINMENT
001381 43 D029J.IPN
00139i	 29 IPCNUi0.9999
001401	 CALL ZIGZAGCNU.IP,MF,N)
001411	 GOTO 27.
001110:8 CALLING SUBROUTINE FOR MAIN BRANCH
00143±	 40 CALL DEORPWZCIRRAR,IS,ISRsESAPWZ)
001441	 CALL COPYCMoN,11'.14APoMF.MF)
001451
001461	 28 NU.1SR(IC)
001471	 NBR=0
001481	 NKB.0
001491	 53 SUMTI.SUMTI+E(NU)
001501	 VASUM.VASUM+VARCNU,
001511	 TCST=SUMTI+SORTCVASUM)
001521	 D.COPT..TCST
001531	 IF(DeLT.0.)GOTO 44
001541	 IF(D:Gr:SLAKUNTS)GOT045
001551C CHECK IF-NEXT MAIN BRANCH AVAILABLE TCI).LE.D
001561	 IFCIC.E61.1S)GOT072	

.

001571	 1902.1SRC1C+19'
00158;	 IFIECNU2).GT.D/GOT072
001591	 G0T045
001601	 72 WRITEC61..37)KNEW,NWECNU),VAR(NU),TCST.D
001611	 KNEW.KNEW+1-
0016211	 SUMT1.0.
001631	 VASUM.0-;
001641	 TCST.0.-
001651	 SLAKUNTS.SLAKUNTSD
00166;	 DO2J.IAN-
001671	 2 IPCNI/..j).9999
001681	 CALL ZIGZAGCNU,IPpMFoN)
001691C UMBLOK ASSIGNED - BRANCH REJECTED ROWS
00170±	 D0681.1,NKB
001711	 0068,711-.11
00172i	 NRJR.NKBLOK(/)
001731	 68 IPCNRJR,J).ICP(NRJR,J)
001741	 G0T027
001751C PRESERVE EARLIER VALUES
00176;	 44 SUMTI.SUMTI-ECNU)
00177±	 VASUM.VASUM-NARCNU)
00178±
001791	 D./IC.07.15)001.070
00180i	 D066I.I.NBK
00181;	 D066J.1-oN
001821	 NL=NBLOKCI)
001831	 66 IPCNL.J/IICP(NL,J)
001841	 - CALL COPY/MoNoMAPolP/MF,MF)
00185±	 GOTO 28
001861	 45 WRITEC61.1137)KNEW.NWECNU).VARCNU),TCST.D
00187i	 NBK.NBK+1
00188±	 NBLOK(NBK).NU
00189i	 DO3J.I,N —
00190±	 ICP(NU.J).IPCNU,J)
001911	 3 11.01160.9999
001921C ASSIGN NU ROW
00193i	 CALL ZIGZAGCNU,IP.MF.N)
001941	 CALL ZEROFIND(IP,MF,IR,IRRsEpEE,M,NANR,VAR.VARZ.PW.PWZ)
001951	 1MR-1)64,65,46
001961	 64 SUMTI.O. 
001971	 VASUM60-:
00198i	 TCST.0.-
001991	 IC=IC+7
00200,C UNBLOCK THE BLOCKED ROWS
002011	 D048I.1,NBK
002021	 D048J.IiN
002031	 NL.NBLOKCI)
002041	 48 IPCNLaJ).ICPCNL.J)
002051	 CALL COPY(MsNoMAPiIP,MF,MF)
00206i	 GOT028' 
002071	 65 NU=IRRCNR)
00208i	 607053
002091C CALL SUBROUTINE FOR SUB-BRANCHING



226

002105	 46 CALL DEORPWECIRRoNR.TBS./BSR.EBS,PWZ)
002111D0321.1.IBS –
002120	 NBUGIBSWI)
00213i	 NU.ISRCIC/'
002141	 SUMTI=SOMTI+ECNBU)
002155	 VASUM.VASUM+VAR(NBU)
002165	 TCST.SUMTI+SORTCVASUM)
002170	 D.COPT-.TCST
002185	 .IF(D.LT.0.)130T063
002195 
002205	 IF1D.GT.SLAKUNTS)GOT045
0022110 CHECK IF NEXT AVAILABLE ELEMENTAL TIME.LE.D AT THIS STAGE
002225	 IF1I.EQ.IBS/GOT072
002235	 NBU2-GIBSR(1.11/
00224i	 IF0113112.6T.D/80T072
002255	 607045 –
00226$0 PRESERVE EARLIER VALUES
002275	 63 SUMTI.SUMTI–E(NBU)
002285	 VASUM■VASUM-.NAR5NBU)
002291	 NBK-NBK+1
00230i	 NBLOK(NBX).NBU
0023150 NOTE THE - ROWS - FOR UNBLOCKING AFTER ASSINGNMENT
002325	 NKB.NKB+1
002331	 NKBLOKCNKB)mNBU
002345C BLOCK NU ROW FOR SUB BRANCHES
002355
002361	 ICPCNSU,J).IP(NBU.J)
002375	 34 IPCNBU.J).9999	 '
002381	 32 CONTINUE -
002391	 IF(IC.20.0)GOT070
002405	 ICGIC*1
002415	 IFCIC.GTelS)GOTO70
002425	 00671■10N8K-
002435	 D06711Gli,N
002445	 NL.NDLOK(I)
002455	 67 IP(NL,J).ICP(NL,J)
002468	 - SUMTIk0:-
002474	 VASUMG0.;
002481	 TCST.0.–
002495	 CALL-COPY(MoN.MAP.IP0MF,MF)
002501
002511	 70 PRINT 71
002525	 71 FORMAT • PHASE-2 CAN NOT BE APPLIED TO THIS RESULT•)
002535	 ' PRINT 54
002545 54 FORMAT(' DO YOU WANT TO TRY AN OPTIONAL CYCLE TIME FOR•.
002551	 1'.PHASE=2?1 YES.I.N0.0')
002565	 OPTL.TTYIN(2H7.)
002571	 IF(OPTL.22.0.)G07038
002581	 COPT.TTYINr4HCPH2:28. )
002595 9998 FMSTAR.SUMTK/COPT - -
002601	 IN.FMSTAR
002615	 FN.IN
002621	 IF(CFMSTAR–FN).20.0.)GOT056
002631
002645	 GOT050-
002655	 56 FMSTAR=IN
002661	 ' G0T050--
00267f	 38 END
002685C
002691	 SUBROUTINE COPY(MoNsIP.IPO.MF.MFO)
00270i	 DIMENSION IP1100.10).IP0(100.10).MFC100.10),MF05100.10)
002711	 DIMENSION MAPC100,10)
002725	 D011.1■M
002731	 DOIJG1iN
002741	 IP0(1.U).1PCI,J)
002751	 1 MFO(/-.J).MF<IiJ)
002765 RETURN	 -
002774	 END
002785C
002795	 SUBROUTINE ZEROFINDC IP,MF. IR. IRR.E.EE.M.N,NR. VAR. VARZ.PW.
002801
002811	 'DIMENSION IP(100,10).MF(100.10).1R(100).E5100).IRRC5).EEC2
00282i	 10)
00283i	 DIMENSION VARC100),VARZ(10).PW(100),PWEC10)
002845	 NR.0 --
002855	 DOII.1.M
00286i	 DO2J-1.N
00287i	 IFCIP(I.J)071.2,1
0028E5	 2 CONTINUE
002891	 NR.NR+1
002905	 IRR(NR).IR(I)
002915	 EECNR)GE(I)-
002925	 VARZCNR)-VARCI)
002931	 PWECNR)GPWCI)
002945	 1 CONTINUE
00295i	 - RETURN
002965	 END
002975C
002985	 SUBROUTINE ZIOZAG(NUsIP,MFoN)
002995	 DIMENSION IP(100;10);MFt100,10)
003005	 D0104J.1,N	 –
00301:	 IFCMF(NU-,J)0)106,104,106
003024 106 KUGMFINII,J1–
003035	 D0105JN.I.N
003045	 IFLIP(SU.JN).EQ.NU/IPCKU.JN).0
003055 105 CONTINUE	 –
003065 104 CONTINUE
003075 	 RETURN
003081	 END
003094	 SUBROUTINE DOCST(IRR.22,NR,IS.ISR.ES.VARZ.SUMTI,VASUM)
003105	 DIMENSION IRRC107,2E(100),ISR520),ES(20).CSTC20),VARZ(10)
003115	 IS.0
003125	 810.0.
003131	 KD‘O –
003441C CONVERT ELEMENT TIMES TO STATION TIMES
003155	 D01071.1,NR
003165	 DOTI=SOMTI.E2C/)
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003175	 DOVA=VASUM+VAR2CI)
00318i	 STIME=DOTI+SORT(DOVA)
003195 107 CST5I1mSTIME
003205C ARRANGE CUMULATIVE STATION TIME IN DECREASE ORDER
003215 15 DOI2I=1*NR
00322i	 IPCBIG.GT.CSTCI))G0T012
003235	 IB=IRRYI)–.
00324:	 12=1
003255	 8IG=CSTCI)
00326:	 12 CONTINUE
003275	 IS=IS+1
003285	 1SRCIS)=IB
003295	 ESCIS)=BIG
003305	 CSTCIZ)=0.
003315	 –
003321	 ICD=ED.51
00333$	 IFOCD.LT.NR)GOT015
003345
00335:	 END
003361C
003375	 SUBROUTINE CHER(DoISAISR.ES,NU,KsTCST.CpDELASUMPSUMTI,
003385	 1VASUM,EoVARsIDoNFNU,SOSUM)
003391	 DIMENSION ISRC20),E5(20),VARC100).EC100)
003405	 D0941=1:15
003415	 IF5ES(1).LE.C)GOTO 93
003421	 94 CONTINUE– –
003434C INCREASE STATION 0
003445	 H=K+1
003455	 SCISUM=SGISUM+D**2
003461C NOTE STATION DELAY
003475	 DELASUM=DELASUM+D
003485C ASSIGN BIG - CANDIDATE TO NEW STATION
003491 NU–/SR(1)
00350:	 IFCID.GT.1)GOTO 1010
003515	 NFNU=NU – "
00352$	 ID=ID+1
003535C REVISE SUMTI
003541 1010-SUMTI=ECNU)
003555 '	 VASUM=VAR(NU)
003565	 TCST=SUMTI+SQRT(VASUN)
003574	 X=SUMTI
00358;
003595	 Y=VASUM
003605	 GOTO 9E
003611	 93 NU=ISR(I)
003625	 IFC/D.GT.1)GOT095
003635
003641	 10=14,1
003655C REVISE SUMTI VASUM
003665	 95 SUMTI=SUMTI+ECNU)
003675	 VASUM&VASUM+VARCNU)
00368i	 TOST=ESCI)
003691	 X=E(NU).
003705	 Y=VARCNU)
003715	 92 D=CTOST
003725	 WR/TEC61,96)(C,NU,X.Y,TCSTpD)
003731	 96 FORMATC2I5.4F10.2)
003745	 RETURN -	 –
003755	 END
003765C
003771	 SUBROUTINE DEORPWZCIRRoNR.IS,ISRJES*PWZ)
003785	 DIMENSION IRR(10).ISRC20)-,E5(20):PWEC20)
003795	 DIMENSION IBSRCIOI,EBS(IO)	 –
003801	 IS=0
00381i	 ED=0
003825	 BIG=0.
003831C ARRANGE POSITIONAL WEIGHTS IN DECREASING ORDER
003845	 15 00121.1.1*1
003855	 IFCBIG.GT.PWZ(/))GOT012
003861	 IB=IRFIr1).
003875	 IZ=I
003885	 BIG=PWZCI)
003891	 12 CONTINUE
003905	 15./5+1
00391i	 ISRCIS)=IB
00392i	 25512)19IG
00393;	 PWZCl2)=0;
003945	 BIG=0.	 –
003955	 ICD=RD4,1
003961	 IF(RD.LT.NR)GOTO 15
00397*	 RETURN –
003985	 END
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OLOADo*BALB

#ECIUIP;37=*DMIX1
OLOADo*BALB
RUN
RUN

DO YOU WANT PHASE-1&2 OR PHASE-2 ONLY.PHASE*1&2=12,PHASE *2 ONLY=2
1* 2
SOLUTION BY *BALB
ROWSUM*
COLSUMI
CYCLETME=
ECI)

1
2
3
4
5
6
7	 1
8	 3
9

10
11	 7
12	 4
13	 9
14	 9
IS	 10
16	 13
17	 12

CYCLETIM

5
7

*P-MAT

1
1

17
3-

464

35.0	 -
70.0
90.0
50;0
5070
7070
20;0

129.5
122:5
150.0
90.0
25.0

155.0
104.0
98.0
66.5
56.0

64.0 SLACK UNIT

IX****7(1)	 VAR(I)**PWCI)**F=MAT
393:0-	 7
428;0	 7
658.5	 7
1310 12
554.0	 9
574;0	 9
358.0 10 1
300.5 11	 1
504:0 13 1
24870 15
90.0	 0
81.0 17

277.5 16
226.5 16
98:0	 -0

122.5 17
56:0	 0

10.5 WHEN STAR=

IX**

3
1 90.00 -90.00 374;00
11 70700 160.00 304700

50.00 210.00 254.00
1 122.50 332:50 131.50
1 70.-00 402.50 61:50
1 35.00 437.50 26.50

20;00 457.50 6.50
2 8	 129;50 129.50 334:50
2 13	 155.:00 284.50 179.50
2 10	 150700 434.50 29.50
2 13	 155.00 155.00 309;00
2 8	 129.50 284750 179.50
2 10	 150.00 434:50 29:50
2 10	 150.00 150.00 314.00
2 8	 129.50 279.50 184;50
2 13	 155.00 434.50 29.50
2 14	 104.00 104.00 360.00
2 8	 129.50 233.50 230.50
2 13	 155.00 388.50 75.50
2 4	 50;00 438.50 25;50
2 12	 25.00 463.50 .50
3 10	 150;00 150.00 314:00
3 16	 66.50 216;50 247.50
3 15	 98700 314.50 149.50
3 11	 90.00 404.50 59.50
3 17	 56.00 460.50 3.50

END OF FORTRAN EXECUTION

#TIME
TIME 6.003 SECONDS MFDLKS 0 CFBLKS 0
fLOGOFF
TIME 6.117 SECONDS MFBLKS 0 COST $0.76
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OEQUIP.37.*DDTAL
ILOAD,*BALB
RUN
RUN
DO YOU WANT PHASE-1&2 OR PHASE-2 ONLY,PHASE .142.12PPHASE.2 ONLY.2
?. 12	 -

SOLUTION OF ALB PROBLEMPRASE-1 AND PHASE-2
ROWSUM. 9
COLSUM• 3
CYCLETNE.
ECI)**P-MAT

10
IX****T(I)**VAR(1)**P2(1)**F.MAT

7.4	 2 -
IX**

2 1 2.0 5.6 3
3 2 5.0 6:2 4
4 3 7.0 5.8 9
5 2 5.0 5.3 9
6 1 6.0 6.8 7
7 6 8.0 6.4 8
8 7 370 4.5 9
9 4 8.0 3.0 0

1 1 4.00 4.00 6.00
1 6 6.00 10700
2 7 8.00 8.00 2.00
2 2 2.00 10.00 0
3 5 5.00 5.00 5.00
3 3 5.00 10.00 0
4 4 7.00 7.00 3.00
4 8 3.00 10700 0
5 9 8.00 8.00 2.00

SMOOTHNESS INDEX IS	 2.0
CYCLETIME=	 10.0 SLACK UNITS	 2.0 WHEN MSTAR.	5

1	 1 4.00 4.00 6.00
1	 6 6700 10.00 0
2	 7 8.00 8.00 2.00
2	 2 2.00 10.00 0
3	 3 5.00 5.00 5.00
3	 5 5:00 10:00
4	 4 7.00 7.00 3.00
4	 8 3.00 10.00 - 0
5	 9 8.00 8700 2.00

END OF FORTRAN EXECUTION

OLOGOFF
TIME 4.922 SECONDS MFBLKS 0 COST $0.58

SIOSINSSOBSS
MARCH - 60'1971 4132 PM TERMINAL 041

_	 .

#20UIP..37.*DDTAI
#LOAD.*BALB -
RUN -
RUN
DOYOU WANT PHASE.182 OR PHASE-2 ONLY.PHASE . 142.12oPHASE.2 ONLY.2
7. 2
SOLUTION BY *BALB
ROWSUM. 9
COLSUM. 3
CYCLETME. 10
ECI)**P■MATRIX****T(I)**VAR(I)**PWCI)**F-MAT IX**

1	 0
2	 1
3	 2
4	 3
5	 2
6	 1
7	 6
8	 7
9	 4

CYCLETIM 10.0

4.0
2;0
5:0
7;0
5;0
6.0
8;0
3;0
8.0
SLACK UNIT

48.0	 2
27;0	 3
20;0	 4
15:0	 9
13:0	 9
25;0	 7
19:0	 8
11:0	 9
8:0	 0

.	 2.0 WHEN STAR= 5
1 1 - -4.00 - 4.00 6.00
1 2 2;00 6:00 4:00
1 6 6;00 6;00 4:00
1 2 2;00  8.00 2:00
2 3 5:00 5:00 5;00
2 5 5:00 10:00 -	 0
3 7 6;00 8;00 2.00
3 4 7;00 7:00 3:00

PHASE-2 CAN NOT'BE APPLIED T THIS RESULT
DO YOU WANT TO TRY AN OPTIONAL CYCLE TIME FOR PHASE-27. YES 1.140.0
7. 0

END OF FORTRAN EXECUTION

OLO6OFF
TIME - 4.408 SECONDS MFBLKS 0 COST $0.48
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WISS82.1118611
MARCH - 6. - 1971 3x17 PM TERMINAL 041

/EDIT

IFIN.*ALLPOW

MIST
000011C CALUCULATION OF 3 TYPES OF POSITIONAL WEIGHTS
00002;	 PROGRAM ALLPOW
000031	 DIMENSION 1FA(100.100)
00004i	 DIMENSION T(100)
000051C INPUT MAX. 0 OF TASKS AND TIME OF EACH TASK
00006:	 N.TTYIN(4HLIMT.2H. )
00007*	 D01001.1.0
000081 WRITE(61i101)1
00009*	 T(I).TTYIN(ARTI. )
00010; 101 FORMATO•ROW.145
00011iC "INPUT FOLLOWERS -OF EACH TASK(ROW)
000121C TYPE ZERO TOEND INPUT DATA OF A TASK
00013; 102 MF.TTYINC4HIF. 5
00014:	 IF(MF.E0.0)GOT0100
000151	 IFA(IiMF).1
000161	 G0T0102
000171 100 CONTINUE
00018tC ERROR CHECK FOR INPUT DATA
00019; 109 PRINT 105
000201 105 FORMAT(' ANY CHANGES IN DATA? YES.1.140.0')
00021f	 IERROR=TTYIN(2H7.0
00022t	 IF(IERROR.EQ.0)G0T0106
00023i	 1■7TYIN(4HROW.) 	 --
000241t	 00108.1.1.0
00025; 108 IFACI,J5.0
00026t	 T(I).TTYIN(4HTI. )
00027; 110 MF.TTYIN(AHIF. )
00028f	 IFCMF.E0.05GOT0109
000291	 IFAC/i/IFI.1-
000301	 GOT0110
000311C PRINT OUT TASK TIMES AND DIAGONAL PRECEDENCE MATRIX
00032* 106 D01041.1.0
000331 104 WRITE(61:103)(T(I).(IFACI,J),J.1.N))
00034*C LINPOWS
000351 - PRINT 90
00036; 90 FORMAT(' VALUES OF LIN POWS')
000371	 D0911.1;N
000361	 TSUMIT(I)
000391	 D092.1..1.N
000401	 IF(IFA(I.J).LE.0,007092
000411	 TSUM.,TSUM+T(3)–	 -
00042*	 92 CONTINUE	 -
00043*	 WRITE(61,93)/pTSUN
00044t	 91 CONTINUE- -
000451C LOG POWS
00046:	 PRINT 80
000471 80 FORMAT(' VALUES OF LOG POWS')
000481	 D0811.1.0
000491	 TSUM2■0-.
000501
00051f	 D082.1.1.0
000521	 IF(IFA(IsOoLE•0)GOT082
00053;	 TSUMI.TSUM14T(j)
00054; 82 CONTINUE
000551	 IF(TSUMI.EQ.05GOT083
000561	 TSUM2.1.443.(ALOG(TSUM1))
000578	 83 TSUM=ALOG(T(I))*(1.443)4.(TSUM2)
000581	 WRITE(61,94)liTSUM-
000591	 81 CONTINUE. - •
000601C SQUARE POWS
000611	 PRINT 70
00062t 70 FORMAT(' VALUES OF SQUARE POWS')
000631	 D0711.1.0
000641	 TSUM3■0:
000651	 D072J.1.0
000661	 IF(IFA(I.J).LE.0)GOT072
00067;	 TSUN3.TSUM3+T(J)**2
000681	 72 CONTINUE
000698	 TSUM.T(I)+SORT(TSUM3)
00070i	 WRITE(61.93)I.TSUM
000711	 71 CONTINUE.
00072t 103 FORMAT(F6.1.100I2)
000731	 93 FORMAT(' PVT - OF TASK".I3. • IS•oF10.3)
000741	 94 FORMAT(' PWT(IN	 OF- TASK', I3• • IV,. F10.3)
000751	 END	 -	 - •



SOSSINSOOMS4
MARCH 6: - 1971 3124 PM TERMINAL 041

FFORTRAN.I.*ALLPOW.R

NO ERRORS FOR ALLPOW

LINT- 4
ROW	 1
TI.. 5
IF. 2
IF. 3
IF. 4
IF. 0
ROW 2
TI- 2
IF. 4
IF. 3
IFS 0
ROW 3
TI. 10
IF. 4
IF.1 0
ROW 4
TI- 20
IF. 0
ANY CHANGES IN DATA? YES.1.20.0
?. 0	 -

5.0 0 1 I 1
2;0 0 0 1 1

1070 0 0 0 1
20;0 0 0 0 0

VALUES OF LIN POWS
PWT OF TASK 1 IS	 37.000
PWT OF TASK 2 IS	 32:000
PWT OF TASK 3 IS	 30;000
PWT OF TASK 4 IS	 20;000
VALUES OF LOG POWS
PWT<IN BITS) - OF TASK 1 IS	 7.323
PVT(IN BITS) OF TASK 2 IS	 5;908
PWTtIN BITS) OF TASK 3 IS	 7:645
PWTCIN BITS) OF TASK 4 IS 	 4;323
VALUES OF SQUARE POWS
PVT OF TASK 1 IS	 27.450
PWT OF TASK 2 IS	 24:361
PWT OF TASK 3 IS	 30:000
PWT OF TASK 4 IS	 20:000

END OF FORTRAN EXECUTION

IPLOGOFF
TIME - 4:203 SECONDS MFBLKS 4 COST $0.42
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