

Column Time Warping with Neighborhood Distortion Cost

by

Brennan Mark Kucey

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science

(Honors Associate)

Presented September 3, 2014

Commencement June 2015

AN ABSTRACT OF THE THESIS OF

Brennan Mark Kucey for the degree of Honors Baccalaureate of Science in Computer

Science presented on September 3, 2014. Title: Column Time Warping with

Neighborhood Distortion Cost.

Abstract approved: __

Thomas Dietterich

 The Cornell Laboratory of Ornithology coordinates the eBird Project in which

volunteer bird watchers participate in a checklist program. Each time they go bird

watching, they fill out a checklist of the number of birds of each species that they saw

and upload it to a web site. This information has been used to fit models of the spatial

distribution of each species of bird on a daily basis. One model pools data from many

years; it provides a summary of the typical timing of bird migration each year. A second

model describes the locations of the birds for each year separately. One important

problem is to visualize, for each year, whether the birds are “ahead” or “behind” their

typical migration timing. To do this, an algorithm was developed for “warping” the

spatio-temporal distribution of the birds for a single year so that it matched the average

spatio-temporal distribution. The algorithm only solves the problem approximately. The

goal of this thesis was to understand the computation complexity of this time warping

problem and to relate it to other known algorithms. Our analysis suggests, but does not

prove, that the spatio-temporal time warping problem is computationally intractable (NP-

Hard).

Key Words: Time Warping, Bird Migrations, Migration Analysis

Corresponding e-mail address: kuceyb@lifetime.oregonstate.edu

©Copyright by Brennan Mark Kucey

September 3, 2014

All Rights Reserved

Column Time Warping with Neighborhood Distortion Cost

by

Brennan Mark Kucey

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Degree Science in Computer Science

(Honors Associate)

Presented September 3, 2014

Commencement June 2015

Honors Baccalaureate of Science in Computer Science project of Brennan Mark Kucey

presented on September 3, 2014.

APPROVED:

Thomas Dietterich, Mentor, representing the School of Electrical Engineering and

Computer Science

Glencora Borradaile, Committee Member, representing the School of Electrical

Engineering and Computer Science

Alan Fern, Committee Member, representing the School of Electrical Engineering and

Computer Science

Toni Doolen, Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon

State University, University Honors College. My signature below authorizes release of

my project to any reader upon request.

Brennan Mark Kucey, Author

Acknowledgements

I would like to thank my mentor, Dr. Dietterich, for guiding me throughout the thesis process.

This work would not have been possible without his kind and patient help.

I thank Dr. Borradaile and Dr. Fern for being on my committee and sharing their expertise.

Thanks to Liping Liu for sharing his work on the problem and clarifications.

Lastly, I would like to thank my family for their support during my time at Oregon State

University and the thesis process.

This material is based upon work supported by the National Science Foundation under Grant No.

0832804. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the views of the National Science

Foundation.

Table of Contents

1 Introduction .. 1

1.1 Background Motivation ... 1

1.2 Thesis Scope .. 1

1.3 Thesis Organization ... 1

2 Column Time Warping with Neighborhood Distortion Cost ... 2

2.1 Formulation from Bird Migration .. 2

2.2 Definition ... 3

2.2.1 Input ... 3

2.2.2 Output .. 3

2.2.3 Cost Functions ... 4

2.2.4 Problem Statement ... 6

2.3 Within NP .. 7

3 Counter Example Against P ... 7

3.1 Half Mine ... 7

3.1.1 Construction of A ... 7

3.1.2 Construction of B ... 7

3.1.3 Optimal Alignment .. 9

3.1.4 Ordering of Examples .. 10

3.1.5 0-Alignment to Individual Smoothing ... 11

3.1.6 Column DTW to Individual Smoothing ... 14

3.1.7 Column DTW to Column Smoothing .. 17

3.1.8 Multiple Smoothing ... 19

3.1.9 Divide and Conquer ... 21

3.2 Minefield ensures no optimizations ... 22

3.2.1 Forcing Smoothing from Outside Mines Inwards .. 23

3.2.2 Unknowable Optimal Side ... 23

4 Conclusion ... 23

5 Bibliography .. 24

6 Appendix .. 26

List of Figures

1 Example Sequence Alignment .. 4

2 Neighborhood Distortion Cost Example ... 6

3 Half-Mine: A Matrix Construction ... 8

4 Half-Mine: B Matrix Construction ... 9

5 Half-Mine: Optimal Alignment .. 10

6 Individual Smoothing Pseudocode ... 12

7 Half-Mine: 0-Assignment and Individual Smoothing After One Iteration 13

8 Half-Mine: 0-Assignment to Individual Smoothing Results .. 13

9 Column DTW To Individual Smoothing Pseudocode .. 14

10 Column DTW Pseudocode ... 15

11 Example Column Dynamic Time Warp .. 16

12 Half-Mine: Column DTW to Individual Smoothing Results .. 16

13 Column DTW to Column Smoothing Pseudocode ... 17

14 Context DTW Pseudocode .. 18

15 Half-Mine: Column DTW to Column Smoothing Results ... 19

16 Column DTW to Multiple Smoothing Pseudocode .. 20

17 Recursive Context DTW ... 20

18 All Alignments Pseudocode .. 21

19 Half-Mine: Divide And Conquer Results ... 22

20 Minefield ... 23

List of Appendix Figures

1 3-SAT Wire A Part ... 27

2 3-SAT Wire B Part.. 27

3 3-SAT Wire Fork .. 28

4 3-SAT OR Gate Part B ... 28

5 3-SAT OR Gate .. 29

1

1 Introduction

1.1 Background Motivation
An important part of conservation management is to understand the animals in the area of

concern. Of the animals to observe in North America, some of the easiest species to detect are

birds. Many birds migrate annually, making them easily detectable during that time.

Observations of these annual migration patterns could produce insight into how human

populations negatively affect neighboring animal populations.

The eBird project is a community of volunteer bird observers reporting their sightings to the

eBird website. This provides some sparse data to work with, but much more is needed to track

the annual migrations of birds in North America. Using the ebird data, the STEM modelling

project, headed by Dr. Daniel Fink of Cornell Lab of Ornithology, interpolates these sightings to

provide approximations of bird migrations in locations across the United States where no

observations were made.

To observe these bird species over time, we can look at each species’ annual migration. For each

bird species, we can compare the annual migration data of one year with the data averaged over

several years to see when and where the birds fall behind or advance ahead of their normal annual

migration schedule. The map of the US can be divided up into cells. For each cell, the birds will

start being observed at some point and cease being observed at some later point. For each cell in

the map, they may appear sooner or later than in previous years. This restriction prevents us from

using previously-developed time warping algorithms and forces us to create our own problem

definition: the problem of Column Time Warping with Neighborhood Distortion Cost.

1.2 Thesis Scope
The scope of this thesis is to evaluate the tractability of the Column Dynamic Time Warping with

Neighborhood Distortion Cost problem. Evaluating the tractability of the problem determines

whether the problem is difficult enough to necessitate the use of heuristics (approximation

algorithms). If the problem is found to be intractable (NP-HARD), then heuristics will be

necessary to solve the problem within a reasonable amount of time. Alternatively, if the problem

is found to be tractable (PTIME), then an exact algorithm will work.

1.3 Thesis Organization
To analyze the problem, the second section of this thesis formalizes the Column Dynamic Time

Warping with Neighborhood Distortion Cost problem in detail. The third section gives evidence

of the problem not being in P. The fourth section discusses the implications of this work in

relation to the theoretical computer science field. The appendix shows an attempt at a PLANAR

3-SAT reduction for proving the problem to be NP-HARD.

2

2 Column Time Warping with Neighborhood Distortion Cost

2.1 Formulation from Bird Migration
Bird migrations for each species of concern are described in eBird using a series of observations

with the following information: latitude, longitude, time, and bird count. To see where and when

birds are behind or ahead of their normal migration schedule, we compare two different annual

migration years with an alignment. To align a bird species’ annual migration of one year, A, to

another year, B, is to match every observation in A to an observation in B. A match between two

observations represents the relationship that the birds observed in the observation in B are

roughly the same birds as observed in the observation in A. These two observations happened at

approximately the same stage of the birds’ annual migration at different years. This is considered

an alignment problem, and the terms “matching” and “alignment” are used interchangeably. The

amount of precision of latitude and longitude makes it difficult to match two observations from

different years because it is too specific for our sparse data. The odds of two observations at the

same latitude, longitude pair is small.

To reduce the precision of observations, we produce a discretized representation of the annual

migrations into a three dimensional array. The geographical map of interest is divided into a

matrix of cells, taking place of latitude and longitude. The time component is represented as an

integer day. Then, each cell has the percent chance of an observer spotting a bird of the species

of interest.

The percentages are calculated as follows. First, a STEM model is created using the checklists

(forms to fill out) recorded from bird observations. The STEM model takes as input latitude,

longitude, and date, then outputs the percent chance that an observer at that time and location

would observe a bird of a specified species. The date component discretizes time, leaving

latitude and longitude for discretizing into cells of the geographic matrix. Second, a large set of

points called the spatial random dataset (SRD) that was defined was spread across the geographic

map for sampling of the STEM model. Each cell on a given day holds its respective percent

chance of an observer within a cell seeing the specified bird species is calculated as the average

of the STEM values of the SRD points within that cell.

The three dimensional representation of each species’ annual bird migration appears similar to

other alignment problems. Star Alignment, Tree Alignment, and Multiple Alignment could not

be reduced to the Column Time Warp with Neighborhood Distortion Cost problem (Elias 2003).

Three Dimensional Time Warping is a very similar problem (Mardziel 2004). The main principle

that makes this problem different from other well documented alignment problems is that in any

given cell, birds tend to enter at the same time each year. The importance of this alignment

problem is to notice, in any given cell, the variations of these arrival times. This means that any

observation within a cell can only be “matched” or aligned with other observations within the

same cell. This allows for the alignment of birds within a cell at a specified time to birds from a

previous year within the same cell to be interpreted as the birds being ahead of or behind their

regular migration schedule. For example, within one cell, if day 144 of the year 2010 is aligned

with day 146 of the year 2009, then the interpretation is in the year 2010 the birds within that cell

on day 144 were two days ahead of the migration schedule of 2009. It is important to note that in

this context the terms “align”, “match”, and “map” have the same meaning.

3

2.2 Definition
The problem of Column Time Warping with Neighborhood Distortion Cost concerns the

alignment of two inputs (annual migration data), A and B, such that the alignment cost from

elements of A to elements of B is minimized.

2.2.1 Input

A and B are two dimensional matrices of sequences with matching dimensions and lengths,

 and . All sequences of A and B have a length of . These sequences have elements with

real value numbers (the species observation probability). To access a single sequence, we use the

notation A(row,column), where row is in , column is in . To access a specific element, we use the

notation A(row,column)[index], where index is within . All elements of the sequences have real

values. Mathematically,

 , and likewise for B.

The dimensions N and M are for the latitude index and longitude index space. The L sequence

length is the time component, holding the number of days considered for the annual migration.

For example, A(3,4)[20] = 5 10
-4

 means that on day 20 of the considered migration period, the

bird observation probability in cell c (3,4) is

2.2.2 Output

The output of this problem is an alignment function f. The function, similar to the input, is a two-

dimensional matrix of sequences, matching the dimensions of inputs A and B. The sequences

have elements of integer value. The notation for accessing of each sequence and element is the

same as the inputs A and B. Mathematically,

 .

This function f represents the alignment of A onto B. The alignment of each pair of sequences

A(x,y) and B(x,y) is represented with f(x,y).

Each element in f(x,y) represents the matching of its corresponding element in A(x,y) to an element

in B(x,y). For example, f(3,4)[5] = 6 means A(3,4)[5] is aligned to B(3,4)[6]. According to Time

Warping, the alignment of one element cannot reach further than its neighbors in the sequence,

because warping is compression and expansion, without flipping (Gusfield 2007). In other

words, during spring migration, the birds must continue flying North; they are not allowed to

reverse direction. The Warping Restriction is, mathematically,

 | | .

As a running example, we will use the following example:

4

Sequence A

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

5

6

5

5

12

5

↓ ↙

↙

↙

↙

↓ ↓

5

5

6

10

5

5

B[0]

B[1]

B[2]

B[3]

B[4]

B[5]

Sequence B

1 Example Sequence Alignment

2.2.3 Cost Functions

To rank the optimality of alignments, they are compared according to the negative sum of three

cost functions associated with this problem. The first two are the matching cost and skipping cost

associated with aligning two sequences, and the third is a neighborhood distortion cost. These

costs are closely related to the costs of a paper by Keysers and Unger (2003). To calculate the

total cost of an alignment, we sum the cost each element incurs according to these three cost

functions. This is done by inspecting each element.

2.2.3.1 Matching Cost

The alignment of element A(x,y) to element B(x,y) incurs the cost

 () | |.

It is the absolute value of the elements’ difference. When the elements have the same value, no

cost is incurred. However, when they differ, this difference is counted towards the cost. This

makes the optimal alignment lean towards matching elements of similar value.

For example, in the Example Sequence Alignment above, aligning A[2] with B[1] has no

matching cost because they are both the same value. Matching A[4] to B[3] incurs a cost of 2.

2.2.3.2 Skipping cost

The skipping cost considers an alignment between two sequences represented with f(x,y). The

skipping cost is

 () ∑ | | ‖ ‖ .

Note that with the Warping Restriction

 | |

the difference

within the skipping cost will always be nonnegative.

This function penalizes deviations from the identity mapping function, fi(x)=x. These deviations

are sensed according to sequential neighbors. Using the Example Sequence Alignment on page 4,

A[2] aligning to B[1] incurs no cost, because its sequential neighbors A[0] and A[2] both align to

5

the left also. A[0] incurs a cost of 1, because it differs with its neighbor A[1]’s alignment arrow

by 1. The same applies to A[4].

2.2.3.3 Neighbor Distortion Cost

During migration, we do expect that the behavior of birds in spatially-neighboring cells should be

similar. Hence, we do not expect that birds in one cell will be 5 days ahead of schedule, while

birds in a neighboring cell will be 6 days behind. To constrain the matching, we introduce a

neighbor distortion cost. This cost is also concerned with the alignment function, f. It takes the

absolute difference of each element of f and its eight neighboring sequences. These differences

are summed together for the total neighborhood distortion cost. Mathematically, with an element

 and any of its nonsequential neighbors { } { }

{ }, their distortion cost is

 (()) | () |

Note that the cost between two neighboring elements will be counted once, not twice.

Ideally, each element of f would have the same alignment value as each of its eight nonsequential

neighbors (t1 = t2). The differences between these neighbors are distortion from the ideal. This

cost penalizes alignment functions for distortion between neighboring sequences.

For example, consider the Neighborhood Distortion Cost Example on page 6. The element of 5 is

compared to 4 of its 8 neighbors. This is how the cost is calculated when summing the inspected

distortion cost each element, one at a time. Note that to prevent double-counting, the distortion

costs that 5 incurs with its other neighbors 8,2,3, and 8 will be added during the inspection of

each of those neighbors.

6

2

3

8

15

8

5 → 6

16

↙ ↓ ↘

6

4

5

18

11

10

12

14

Calculation of
Neighborhood Distortion

Cost of 5:

1+0+1+1=3
2 Neighborhood Distortion Cost Example

2.2.4 Problem Statement

Now that the input, output, and cost functions have been described, we can now have a formal

problem statement.

2.2.4.1 Instance

The problem starts out with a pair of three dimensional arrays, A and B, holding real values.

2.2.4.2 Solution

The answer to our problem is a mapping function, f, that maps each element of A to an element of

B. It takes the form

That is, for each sequence Axy, f assigns every element in Axy an element in Bxy while following

the warping constraint.

2.2.4.3 Measure

The cost of the assignments is the sum of the matching costs of every element of A to the

elements in B, the skipping costs between these assignments and the sum of the neighbor

distortion costs between these assignments. Mathematically, the cost is

 (x,y) M (x,y,z) (x 1,y 1,z),(x,y 1,z),
(i, j,z) N M z

(x 1,y 1,z),(x 1,y,z)

(A [z],B [f [z]])

(A,B, f) (f) (f [z], f [z])

m xy xy xy

s xy n xy ij
N N M L

c

c c c

where cm is the matching cost function, cs is the skipping cost function, and cn is the neighborhood

distortion cost function.

7

2.2.4.4 Goal

Find f, the assignments for each element of A, to minimize the total cost.

2.3 Within NP
Given the problem definition, it can be shown that the Column Time Warp with Neighborhood

Distortion Cost problem is in NP. An NP problem requires the solution be verifiable in

polynomial time. The question of whether a mapping function f satisfies, for a give c’,

is evaluated in polynomial time because the cost function iterates over the output once. This

means that the Column Time Warp with Neighborhood Distortion Cost problem is in NP.

3 Counter Example Against P
Here we introduce an instance of the alignment problem that we claim cannot be optimized in P

time. We align the elements of A onto the elements of B. To simplify the problem for

illustration, a two dimensional version of the Column Time Warping with Neighborhood

Distortion Cost problem will be presented. Instead of a two dimensional matrix of sequences, a

one dimensional array of sequences will be used. The matching and skipping cost functions will

remain unchanged because they are costs of aligning sequences. The neighborhood distortion

cost will change to only include two nonsequential neighbors instead of eight. The difficulty of

reducing the neighborhood distortion cost is present in both problem versions.

For the sake of the example, we use a different index system. We will use sequences of length

ten. The indices will range from -4 to 5. This will help distinguish the globally optimal

alignment (negative) from the locally optimal alignment (positive).

First we consider the construction of a problem instance, the half mine that discourages P

algorithms. The half mine will be mirrored on its right side to create a full mine. Putting full

mines next to each other will create a minefield problem instance. In the minefield problem

instance, whenever an algorithm wants to inspect one element or sequence at a time, it will

approach a full mine from the outside and continue inwards. This approach of starting from the

outside and inspecting inwards and the symmetry of the full mine allows us to inspect the half

mine knowing that every approach will start from the outside (the left) and continue inwards (to

the right).

3.1 Half Mine

3.1.1 Construction of A

We construct each column of A as a sequence of zeroes with value 100 at index 0. This sequence

has the appearance of 0,0,0,0,100,0,0,0,0,0. Remember, we are using a different index system for

this example, so 0 is close to the middle. This sequence is repeated 10 times.

3.1.2 Construction of B

We construct each column of B as a sequence of zeroes with some values specified in the sparse

format {index:value}. For example, {-3:100, 1:25, 2:100} evaluates to 0,100,0,0,0,25,100,0,0,0.

8

The matrix B contains the following sequences:

{-2:100,0:100}

{-3:100,1:100}

{-3:100,1:25,2:100}

{-3:100,1:25,2:50,3:100}

{-3:100,1:25,2:50,3:75,4:100}.

The last sequence is repeated 5 times, but can be repeated more times to create a more drastic

difference in alignment costs with different approaches. These constructions are visualized with

the following graphs.

3 Half-Mine: A Matrix Construction

9

4 Half-Mine: B Matrix Construction

3.1.3 Optimal Alignment

The optimal alignment of A onto B is aligning the line within A (all Ax[0]) to the lower line

segments in B. The matching costs have been set such that matching line segments is necessary,

and the neighbor distortion costs are a secondary concern during alignment. However, since

matching the line segments in A to one of the two lines in B is necessary for any local minimum

in the alignment cost, the neighborhood distortion costs will determine which minimum

alignment cost is optimal. To keep the neighborhood distortion costs minimal, aligning the A line

to the lower B line will have each Ac[0] aligned to Bc[-3] ({ }) except for

A0[0] aligning with B0[-2] ().

10

5 Half-Mine: Optimal Alignment

3.1.4 Ordering of Examples

The half mine is an array of sequences and can be seen as having two dimensions. Each Ac[i]

element is aligned, according to its corresponding fc[i], to a Bc[i] element. The first dimension, i,

is along the sequence, and the second dimension, c, is along the array. During some P time

algorithms, each element in A will be visited to determine the best B element to match it to and

record that in f. Some P time algorithms will take the approach to visiting each element by only

travelling along one dimension at a time (besides divide and conquer). These dimensions and the

different approaches within each dimension lead to the order of the examples.

The P time algorithm can approach the problem iterating over each sequence first, and the array

second. This can be seen as assigning f0[5], then f0[4], etc. then f1[5], f1[4], etc. This is called

smoothing, as it helps to smooth out the alignments to reduce the neighborhood distortion cost.

During its visit to each sequence, we consider three different methods for creating the best

alignment for that sequence. The first is to look at each element of the sequence, one at a time,

and decide the best alignment for it; this is the Individual Smoothing method. The second is a

slight modification of Dynamic Time Warping (Gusfield 2007), which we call the Column

Smoothing method. Here a whole sequence alignment is done at once and the visiting order

becomes f0, f1, etc. The last is the Multiple Smoothing method, were the alignment of the

sequence considers all the possible alignments of the neighboring sequences in a lookahead.

In the second approach, a P time algorithm approaches the problem along the array dimension,

visiting the first element of every sequence in order, then the second, etc. The f values are

assigned in the order f0[0], f1[0], etc. This is very similar to Individual Smoothing. This

approach is not considered in this paper.

11

Before the process of smoothing, some P time algorithms can try greedily creating the best

alignment for each sequence, but not the problem as a whole in consideration of neighborhood

distortion cost. Then it can begin smoothing to lower the neighborhood distortion cost through

Smoothing. This method is Column DTW (Dynamic Time Warp). In cases where Column DTW

is not used before Smoothing, then 0-Assignment will be used beforehand. 0-Assignment is

The following table shows the order of the examples. The distinction between starting with a 0-

Alignment and Column Time Warp is made between the first two examples. The distinction

shows that starting with Column DTW is best, so 0-Assignment with Column Smoothing is not

shown.

 0-Assignment Column DTW

Individual Smoothing 1 2

Column Smoothing X 3

Multiple Smoothing 4 4

Divide and conquer is a popular P time algorithm technique, but we will show an example of that

technique not working for this problem.

3.1.5 0-Alignment to Individual Smoothing

This algorithm starts with a 0-Assignment for . Then it attempts to smooth out the

neighborhood distortion costs. To do this, it visits every element of every sequence. During the

visit to an element, it reconsider our assignment with the options of moving our alignment

either upwards or downwards () while still constrained by the neighbors according to the

Warping Restriction (‖ ‖). Only a change of one is considered, because

it is the smallest nonzero number. Larger ranges of considered values are used in Column

Smoothing. We reassign with the lowest cost value according to the cost function .

The pseudocode follows this paragraph. Please note that this pseudocode is meant for this

reduced 2D problem version and can easily be modified to 3D with the inclusion of an N loop

inside the C loop.

12

Smoothing(A,B,f){

 /* repeat smoothing until no further

 cost reductions can be made*/

 while(fPrev != f){
 /* analyze each column, in order */

 for(c=0; c<C; c++){
 /* analyze each element of the sequence */

 for(i=0; i<I; i++){
 possible_alignments =

{fm[l]-1, fm[l],fm[l]+1}
 ∩ {N |(f(m-1) < N) ˄ (N < f(m+1))}

 foreach p in possible_alignments{
 /* make new possible alignment*/

fTry = f
 fTryc[l] = p
 /* store alignment cost*/

 p_cost = c(A,B,fTry)
 add (p_cost,fTry) to possible_costs

}

 }

 fm[l] = fTry of lowest p_cost in possible_costs
 fPrev = f

 }

 }

}

6 Individual Smoothing Pseudocode

Smoothing from left to right, the horizontal line in A catches the front of our ramp in B. On the

significant line in A, the first match considered is for A0[0]. The matches considered are to B0[-

1], B0[0], and B0[1]. Note that B0[-2] would have been the optimal alignment, but it was not a

match being considered, because it was out of range.

Now A0[0] has 0 displacement cost as it aligns with B0[0], beginning a cost decline into a

suboptimal local minimum. On the next significant alignment, A1[0] considers B1[-1], B1[0], and

B1[1] for matches. It has to choose B1[1] to reduce significant matching costs. As we progress

across, each Ac[0] chooses Bc[1] to reduce significant matching costs as they are drawn along the

matching cost gradient.

13

7 Half-Mine: 0-Assignment and Individual Smoothing After One Iteration

On the next iteration, A0[0] and A1[0] both maintain their alignments to avoid significant

matching costs. A2[0], currently matched with B2[1], now considers and aligns with B2[2] to

reduce significant matching costs. As we progress, each Ac[0] matches with Bc[2], furthering the

A line alignment along the B gradient.

Upon further iterations, A3[0] matches with B3[3], and all line points after and including A4[0]

align with their respective Bc[4]. The neighborhood distortion cost during the ramp up on A0[0]

to A4[0] is greater than the neighborhood distortion cost of the optimal alignment. This is not the

optimal alignment, and once the local minimum cost is reached, further iterations of smoothing

bring no changes to the alignment.

8 Half-Mine: 0-Assignment to Individual Smoothing Results

14

3.1.6 Column DTW to Individual Smoothing

Now we consider individually time warping each Ac onto Bc, and then smoothing out the

alignments afterwards. This is very similar to the previous problem. This approach first applies

DTW to each sequence individually before smoothing. The pseudocode follows this paragraph.

Please note the pseudocode is meant for this 2D example and can easily be modified for the 3D

version with the inclusion of another loop along with the m for loop.

ColumnDTWwithIndividualSmoothing(A,B){

 /* greedily align each sequence */

 for(c=0; c<C; c++){

 fc = DTW(Ac,Bc)
 }

 /* Apply Smoothing */

f = smoothing(A,B,f)

 return f

}

9 Column DTW To Individual Smoothing Pseudocode

For this problem, Dynamic Time Warping is done differently. In traditional time warping, both

elements in A and B can be skipped. In the Column Time Warping with Neighborhood

Distortion Cost problem, only elements of B can be skipped, and the matching cost of every A

element is calculated. In the example, sequence A is {5,6,5,5,12,5} and sequence B is

{5,5,6,10,5,5}. The pseudocode following this paragraph is used.

15

/* Aligning two sequences X and Y */

DTW(X,Y){

 DTW = malloc(|X|,|Y|,{arrow,cost})

 //init border

 DTW[0][0].cost = 0

 /* cannot align any A element with nothing

for n:1 to N

 DTW[n][0] = infinity

 /* the cumulative skip cost of skipping to B[m]*/

for m:1 to M

 DTW[0][m].cost = m

 for n:1 to N{

 for m:1 to M{

 DTW[n][m] = min{

 // skipping Y[m-1]

 (left, 1 //skip cost

 + DTW[n][m-1].cost //previous cost

),

 // aligning X[n] to Y[m]

 (diag, DTW[n-1][m-1].cost //previous cost

 + cm(X[n],Y[m]) //matching cost
),

 // aligning X[n-1] and X[n] to Y[m]

 (up, 1 //skip cost

 + DTW[n-1][m] //previous cost

 + cm(X[n],BX[m]) //matching cost
)

 }

} }

 /* retrace for alignment */

answer = {}

 while(n != 1 && m != 1){

 thisArrow = DTW[n][m].arrow

 answer.addToFront(thisArrow)

 if(thisArrow == up){

 n = n-1

 }

 if(thisArrow == diag){

 n = n-1

 m = m-1

 }

 if(thisArrow == left){

 m = m-1

 } }

 return answer

}

10 Column DTW Pseudocode

16

0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6

↑ ↖ ↖ ↖ ↖ ↖ ↖

∞ 0 ← 1 ← 2 ← 3 ← 4 ← 5

↑ ↑ ↖ ↖

∞ 2 1 1 ← 2 ← 3 ← 4

↑ ↑ ↖ ↑ ↖ ↖ ↖

∞ 3 2 2 ← 3 2 ← 3

↑ ↑ ↖ ↑ ↖ ↖ ↑ ↖

∞ 4 3 3 ← 4 3 2

↑ ↑ ↖ ↑ ↖ ↖

∞ 12 11 9 5 ← 6 ← 7

↑ ↑ ↖ ↑ ↑ ↑ ↖ ↖

∞ 13 12 11 11 5 ← 6

Se
q

u
e

n
ce

 A

5

6

5

5

12

5

Sequence B

5 5 6 10 5 5

11 Example Column Dynamic Time Warp

The Column DTW applied to the half mine will result in aligning each Ac[0] to the closest line

segment in B. The output alignment is the following: A0[0] to B0[0], A1[0] to B1[1], A2[0] to

B2[2], A3[0] to B3[-3], A4[0] to B4[-3], and all other A[0] to B[-3].

When smoothing, no Ac[0] can change its alignment to one above or one below because that

could incur significant matching costs. This results in a local minimum of the alignment cost, but

it is suboptimal.

12 Half-Mine: Column DTW to Individual Smoothing Results

17

3.1.7 Column DTW to Column Smoothing

Another approach to stop aligning error from Column DTW to Smoothing is to, during

smoothing, consider new alignments for all the elements of a sequence. This reconsideration of

aligning all elements in a sequence is effectively a DTW with modifications to account for the

neighborhood distortion cost. This is described with the following pseudocode. Column

Smoothing is done with DTW with minor edits to bring the skipping and neighborhood distortion

costs into consideration. The function cnall calculates the neighborhood distortion cost for one

element. Note that this is for the 2D version of the problem, but minor edits will give the full 3D

algorithm.

ColumnDTWtoColumnSmoothing(A,B){

 for(c=0; c<C; c++){

 fc = DTW(Ac, Bc)
 }

 /* Column Smoothing */

while(fPrev != f){

 for(c=0; c<C; c++){

 fc = contextDTW(A,B,f,c)
 }

 fPrev = f

 }

 return f

}

13 Column DTW to Column Smoothing Pseudocode

18

/* Align AX with BX with consideration to the current alignment f */
contextDTW(A,B,f,X){

 N = |A| ; M = |AN|
 DTW = malloc(N+1,M+1,{arrow,cost})

 /* init border */

 DTW[0][0].cost = 0

for n:1 to N /* cannot align A elements with nothing */

 DTW[n][0].cost = infinity

for m:1 to M /* skip cost of aligning A[1] to B[m]*/

 DTW[0][m].cost = m

 /* fill in the DTW table */

 for n:1 to N{

 for m:1 to M{

 DTW[n][m] = min{

 // skipping Y[m-1]

 (left, 1 + DTW[n][m-1].cost),

 // aligning AX[n] to BX[m]
 (diag, DTW[n-1][m-1].cost

+ cm(AX[n],BX[m])
+ cnall(n,m,f,X)),

 // aligning AX[n-1] and AX[n] to BX[m]
 (up, 1 + DTW[n-1][m]

+ cm(AX[n],BX[m])
+ cnall(n,m,f,X))

} } }

 /* retrace for alignment */

answer = {}

 while(n != 1 && m != 1){

 thisArrow = DTW[n][m].arrow

 answer.addToFront(thisArrow)

 if(thisArrow == up){

 n = n-1

 }

 if(thisArrow == diag){

 n = n-1

 m = m-1

 }

 if(thisArrow == left){

 m = m-1

 } }

 return answer

}

/* calculate the neighborhood distortion cost */

Cnall(n,m,f,X){
 sum = 0

 for d: -1 to 1{

 if (d != 0) && (d + X >= 0) && (d + X < f.sequence_length){

 sum += cn(m-n, f(d+X)[n])
 } }

 return sum

}

14 Context DTW Pseudocode

19

The case for Column DTW to Column Smoothing will require the construction of a different

problem instance. Consider a problem of aligning A and a new B. B will be constructed with the

following sequences:

{-4:100},{-3:100, 2:100}, {-3:100, 3:100}, {-3:100, 2:100}, {-4:100}.

15 Half-Mine: Column DTW to Column Smoothing Results

With DTW, A0[0] and A4[0] align to B0[-4] and B4[-4], respectively. A1[0] and A3[0] will align

with B1[2] and B3[2], respectively. A2[0] will align with B2[3]. These alignments occur because

they are the closest to A[0]. During the smoothing phase, we look at the elements in turn. A0[0]

is stuck with its current alignment, because there are no other line segments to align with. A1[0]

considers moving to B1[-3] only because that is the only other match with a line segment.

However, since its neighbors A1[0] and A3[0] have alignment displacements of -4 and 2 (both

have absolute values beyond 1 and have different polarity), the neighborhood distortion cost will

remain constant regardless of a switch. |2-A1[0]|+|-4 – A1[0]| = 6 for both f1[0] = 1 and -3.

Therefore, A1[0] won’t change. Next up for consideration is A2[0]. Currently f2[0] =2, and has

neighbors f1[0]=1 and f3[0]= 1. The only other spot A2[0] can consider moving to is -3, but that

will increase the neighborhood distortion cost, so the move is not made. The considerations have

crossed the symmetry found in this alignment problem, so the smoothing process is continued

with the remaining sequences and no realignments are made. The optimal alignment is to align

with -4 for A0[0] and A4[0], and -3 for A1[0], A2[0], and A3[0].

3.1.8 Multiple Smoothing

One approach to stop the smoothing error is to use a lookahead during consideration of realigning

each element. Considering the half mine problem, a lookahead of 3 would ensure that Column

DTW to Multiple Smoothing would obtain the optimal alignment. However, the necessary

lookahead is proportional to the problem size. Scaling the half mine to twice the dimensions

would require twice the lookahead, so the necessary lookahead is O(n). The lookahead space

would then become exponential and no longer leads to a P time algorithm. Following this

20

paragraph is the Column DTW to Multiple Smoothing pseudocode. The Multiple Smoothing is

done with the function contextRDTW (context recursive dynamic time warp). It takes as input A,

B, the current alignment, the column it is to work on, and the amount of lookahead space left.

The All Alignments function produces every possible alignment between two sequences

according to their lengths. Minor changes can make it suitable for 3D problems.

ColumnDTWtoMultipleSmoothing(A,B,lookahead){

 for(c=0; c<C; c++){

 fc = DTW(Ac, Bc)

 }

 while(fPrev != f){

 for(c=0; c<C; c++){

 fc = contextRDTW(A,B,f,c,lookahead)

 }

 fPrev = f

 }

}

16 Column DTW to Multiple Smoothing Pseudocode

contextRDTW(A,B,f,c,lookahead){

 if(lookahead == 0){

 return contextDTW(A,B,f,c)

 }

 every_possible_alignment = allAlignmnts(||Ac||,||Bc||)
 minCost = infinity

 fMin = null

for fNew in every_possible_alignment{

 possible_next_f = contextRDTW(A,B,fnew,c+1,lookahead-1)

 if(c(A,B,possible_next_f) < minCost){

 fMin = possible_next_f

 minCost = c(A,B,possible_next_f)

}

 }

 return fMin

}

17 Recursive Context DTW

21

allAlignments(N,M){

 answers = {}

 //catch the 2X2 case

 if(N==2) && (M==2){

 return {left:up, diag, up:left}

 }

 //catch the wall

 if(N == 1){

 for(m=1; m<M; m++){

 answer = left:answer

 }

 return answer

 }

 //catch other wall

 if(M == 1){

 for(n=1; n<N; n++){

 answer = up:answer

 }

 return answer

 }

 //first align left

 foreach fNew in allAlignments(N,M-1){

 add left:fNew to answer

 }

 //first align diag

 foreach fNew in allAlignments(N-1,M-1){

 add diag:fNew to answer

 }

 //first align up

 foreach fNew in allAlignments(N-1,M){

 add up:fNew to answer

 }

 return answer

}

18 All Alignments Pseudocode

3.1.9 Divide and Conquer

The divide and conquer method is a common technique for dividing up an algorithm into smaller

pieces and then combining them together to form an answer for the complete problem. With

divide and conquer, splitting the problem up such that the sequences are divided won’t work, as

each sequence has the Warping Restriction. This restriction keeps elements in a subsequence of

22

A from aligning with B subsequences reserved for other A subsequences. This can keep the

algorithm from finding the optimal alignment as this restricted alignment could be optimal.

Dividing the set of sequences by dividing the array into smaller groups of sequences and then

combining them together would be more feasible. However, consider dividing the problem into

sequence pairs, aligning those pairs, and combining them together. With this approach applied to

our half mine with an extra blank sequence pair at the left (we call these A-1 and B-1) and take

away one A and B sequence from the right (still resulting in 10 sequences in A to align with 10

sequences in B). Pairing off gives the pairs A-1 and A0, A1 and A2, A3 and A4, and the remaining,

identical pairs on the right. Using this approach, we would get the same alignment as the Column

DTW to Individual Smoothing approach, which is suboptimal.

19 Half-Mine: Divide And Conquer Results

3.2 Minefield ensures no optimizations
Now we consider the creation of a ‘mine’ that undermines the mechanics of approaches to the

problem to consistently produce suboptimal results. A mine is created with mirroring a half mine

on the right side to create a full mine. A trivial number of mines can then be laid to the right,

with two blank sequences in A and B separating these mines. This collection of mines can be

referred to a minefield.

23

20 Minefield

3.2.1 Forcing Smoothing from Outside Mines Inwards

With one mine, doing a Column DTW to Column Smoothing with starting the smoothing from

the inside (along the optimal alignment) could smooth the suboptimal alignments to the optimal

with Column Smoothing However, with a trivial number of mines in a minefield, the inside of

any mine cannot be determined before run time. This forces the smoothing process to start from

outside the mines and move inward.

3.2.2 Unknowable Optimal Side

Looking at the single mine, one approach could be to align all elements of every sequence to

Bc[0], and then smooth outward. This would cause the smoothing to align Ac[0] to the optimal

alignment. In a minefield, with mines all centered on the same Ac[0], but with some mines

flipped over the Ac[0] axis, some mines will have their optimal alignment on the top. Therefore,

this technique cannot work for minefields.

4 Conclusion
This thesis has shown evidence of the Column Time Warp with Neighborhood Distortion Cost

problem not residing within the set of P problems. This is not a proof, but it does suggest that if

there is a polynomial-time algorithm, it will need to be based on principles other than iterative

greedy scans or column wise divide-and-conquer. Only a full proof can definitively say which

problem hardness class holds this problem. The question of whether or not all problems of NP

are problems of P is still an open question in the computational community, so no full proof of

this kind has ever been produced (Fortnow 2009). More work needs to be done to prove the

Column Time Warp with Neighborhood Distortion Cost problem’s relation to the class of P

problems.

24

5 Bibliography
Elias, I. (2003). Settling the intractability of multiple alignment (pp. 352-363). Springer Berlin

Heidelberg.

Keysers, D., & Unger, W. (2003). Elastic image matching is np-complete. Pattern Recognition

Letters, 24(1-3), 2-3.

Fortnow, L. (2009, September). The status of the p versus np problem. Communications of the

ACM, 52(9), 78-86.

Gusfield, D. (2007). Core string edits, alignments, and dynamic programming. In Algorithms on

strings, trees, and sequences; computer science and computational biology (p. 216). New

York, NY: Cambridge University Press.

Mardziel, P. (2004). Improved two-dimensional warping. Electronic Projects - Worcester

Polytechnic Institute.

25

Appendix

26

6 Appendix: Planar 3-SAT Reduction Attempt
A popular proof of NP-COMPLETENESS is a reduction from 3-SAT (Garey 1979). This

appendix shows an attempt at a reduction, but lacks an inversion gate to make the 3-SAT

reduction possible. The reduction is from the Column Time Warp with Neighborhood Distortion

Cost problem as defined in Error! Reference source not found. Error! Reference source not

found. on page Error! Bookmark not defined..

The reduction here will follow closely with the reduction shown in the paper by Keysers and

Unger (Keysers 2003). The construction of a Planar 3-SAT problem instance within a Column

Time Warping with Neighborhood Distortion Cost problem takes the approach of a bipartite

graph, with one independent set for the variables, and the other set for the clauses. There is an

edge between a variable node and an edge node if the variable is used within the clause. The

edges are instantiated with wires to hold either a 1 state or a 0 state. These wires run between

variable gates and clause gates. The only restriction on the placement of the independent sets is

they cannot occupy the same sequences, leaving the two dimensions of the matrix to lay out the

Planar 3-SAT. The wires and gates will be constructed with parts in the input A, and

corresponding parts in input B. The state of each wire and gate is represented by the alignment of

its part A in input A onto its part B in input B.

To describe each of the wires and gates, only two dimensions are shown at a time in the figures.

The figures show a series of sequences along one dimension. Each wire and gate will incur a

minimal alignment cost as part of its operation, so an account is made of the minimal alignment

cost. An indicator of no satisfiability is when no alignment exists under the minimal alignment

cost account. However, inspecting the alignment of each sequence (in polynomial time) is still

necessary. There can be improper alignments under the minimal alignment cost account.

Wires
The wires are to transfer a signal, either a true or false value. This two state component depicts

its signal according to the alignment of its part A onto its part B. The wire’s part A and part B are

depicted below. Unless specified, each element has a value of zero. Each sequence along the

wire holds either a true state or a false state. The true state is when the 1 million valued element

in part A aligns with the upper 1 million valued element in part B. False is when part A aligns

downward. To reduce the matching cost, part A must align every sequences 1M element to one

of the 1M elements in B, creating the bistability. To propagate this signal through the whole

wire, each sequence in the wire must align the same as its neighbor. This is accomplished

through the neighborhood distortion cost. Any difference in alignment between neighbors incurs

a distortion cost, forcing the neighbors to have the same alignment, propagating the signal. While

1M is used for illustration, the real cost would be a function of the problem size. It would rather

have a function value of 100*N
6
. The distance between the 1M elements in part B would also

need to be a function of the problem size; 100*N
2
 would work.

27

While the wire is constructed, an account of the minimal alignment cost is taken. Both minimal

alignments have the same cost, so for each sequence a constant amount is added to the minimal

alignment cost account.

1 3-SAT Wire A Part

2 3-SAT Wire B Part

The wires are needed to carry the true/false value from the variable component to each of the

clauses according to the bipartite graph. To carry the truth value to different clauses, the wire

must fork. To accomplish this, the wire forks in a T shape. With the figures for parts A and B

making the top of the T, another wire would stem out perpendicularly (see figure on next page).

It travels along a different dimension of the matrix.

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

El
e

m
e

n
t

In
d

e
x

(T
im

e
)

Sequence Number (Space)

3-SAT Wire A Part

1M

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

El
e

m
e

n
t

In
d

e
x

(T
im

e
)

Sequence Number (Space)

3-SAT Wire B Part

1M

1M

28

3 3-SAT Wire Fork

Each of the black boxes is a sequence used for the wire. The two dimensions of the T are the two dimensions of

the matrix.

NOR Gates
NOR gates are used to construct the clause gates. Any digital logic can be designed with NOR

gates. The output wire of a clause gate can be set to only allow for holding a true value by

eliminating the series of 1M values that make false values possible in part B. This forces the

clause gate to find a satisfactory assignment for its variables, or it will incur large distortion costs

to signal the clause unsatisfied.

OR Gate

An OR gate gives a value of true when either of its inputs are true. Its construction can be

thought of as a crimping the wire’s part B, as depicted below. OR gates have the same part A as

wires. The inputs are the wires at the side of the OR gate, and the output wire is perpendicular

(not seen in figure). As with every other sequence in the wire, the middle sequence’s part A has

to align its 1M element either upwards or downwards for a true or false value, respectively.

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8

El
e

m
e

n
t

In
d

e
x

(T
im

e
)

Sequene Number (Space)

3-SAT OR Gate Part B

1M

1M

29

4 3-SAT OR Gate Part B

There are four input signal combinations that can be represented as three: both positive, both

negative, and conflicting. When both inputs are positive, the OR gate sequence aligns upwards to

reduce neighborhood distortion cost. When both inputs are negative, the OR gate sequence aligns

downwards to reduce alignment distortion cost. When the inputs conflict (one positive, one

negative) the OR gate sequence will have equal distortion cost for either alignment, but to reduce

skipping costs will align upwards.

The output of the OR sequence is another wire branching out perpendicular to the inputs (see

figure below). The output wire is susceptible to distortion costs between the input wires, but that

won’t change the output wire’s true/false value from matching the OR gate. When both inputs

are the same, the output will match the inputs. When the inputs conflict, the output will have

equal distortion cost from them for both its true and false alignments. However, the OR gate will

be the tie breaker, making the output wire match its own value.

5 3-SAT OR Gate

Each of the black boxes and the OR represent a sequence used in the OR gate. The two dimensions of the figure

are the two dimensions of the matrix that holds the sequences. The two inputs and OR sequence are depicted in

the previous figure. The output runs perpendicularly to the inputs.

As with the wires, the OR gate incurs a minimal alignment cost. The highest alignment cost is

when the inputs oppose each other and the output is one. This amount is added to the minimal

alignment cost account, once each OR gate.

Inverter

This is the missing component of the Planar 3-SAT reduction. The nature of the distortion cost

lends itself towards making the values more uniform, helping the wires propagate values and the

OR gate function, but threatens the creation of an inverter.

The variable gates depend on the Inverter. If both the variable and inverted variable are used in

the clauses, then an inverter connects the variable wires and inverts the signal for the inverted

variable wires.

Input

OR Output

Input

