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AN ALGORITHM FOR DETERMINING THE CONVEX HULL 
OF N POINTS IN 3 -SPACE 

Chapter 1 

INTRODUCTION 

Given a set of N distinct points in 3 -space there 

exists a unique convex hull determined by these N points. 

The purpose of this paper is (1) to determine which of the 

given N points are vertices of the convex hull and (2) to 

obtain an equation for each supporting plane of the convex 

hull, or if the given N points are coplanar, an equation 

of the plane containing the given N points and equations 

for each supporting line. In particular if the given N 

points are collinear, we determine equations of the line 

containing the given N points and in this case the vertices 

are the two endpoints of the line segment containing the 

given N points. 

The following discussion assumes the reader is 

familiar with the basic fundamentals of analytic geometry 

and the concepts of elementary set theory. A familiarity 

with the 1962 version of 1620 Fortran as described in the 

IBM 1620 Reference Manual (1962 edition,-C26-5619-0) is 

assumed in Chapter 5. However a knowledge of Fortran is 
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not essential for any other chapter. 

Balinski (3) describes a method for finding all ver- 

tices of a convex polyhedral set defined by a system of 

linear inequalities based on a variation of the simplex 

method. Another procedure, the double description method 

proposed by Motzkin, Raiffa, Thompson and Thrall (10), 

builds up the convex hull by introducing the half spaces 

given by the linear inequalities one at a time. 

Both of these methods for determining the vertices of 

a convex hull begin with a given set of linear inequali- 

ties. The method we propose begins with a set of N 

distinct points and obtains the vertices and supporting 

planes (or lines) of the convex hull determined by these 

N points. 

In Chapter 2 we suggest several methods for deter- 

mining the convex hull from a given set of N distinct 

points and describe in general the method adopted, explain- 

ing the basic idea behind it. Chapter 3 contains a de- 

tailed description of the steps the computer follows in 

determining a convex hull. Theorems supporting the 

algorithm are contained in Chapter 4. No attempt has been 

made to prove each statement in the algorithm. Since the 

main purpose of the paper is to develop a computationally 

.. 
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feasible procedure for determining the convex hull of a 

given set of N distinct points the only proofs included 

are for those statements that are not inituitively obvious 

and hence require some justification. In the 3- dimensional 

case many proofs are omitted since they closely parallel 

the corresponding proofs in 2 ®space, Chapter 5 contains 

three 1620 Fortran programs for obtaining the vertices 

and supporting planes (or lines) of the convex hull deter- 

mined by a set of N distinct points. For the 1620 with 

40,000 digits of storage the maximum value for N is 51. 

Also included in Chapter 5 is a general flow chart for 

each Fortran program. These programs have been tested on 

approximately 70 examples. For all but two of these 

examples the convex hull was successfully determined. The 

two unsuccessful attempts to determine the convex hull 

were not due to an error, or errors, in the programs but 

rather to the limitations of the computer. These limita- 

tions and possible modifications to the computer procedure, 

as described in Chapter 3, are discussed in Chapter 7. Six 

examples are included in Chapter 6 to illustrate the pos- 

sible output from the programs in Chapter 5. 

.. 
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Chapter 2 

PRELIMINARY REMARKS 

Before we can give a formal definition of a convex 

hull we must first establish what we mean by a convex 

combination. A convex combination of a finite number of 

points P1,..,PN is defined as a point P with coordinates 

x, y and z such that 

N 

x 
:?/LiXis 
i=1 

i = l, . . ,N, 

N 

Y= 
i=1 

and /j,(i= 1. 

i=1 

N 

z L(izi , where 

i=1 

We define the convex hull of a finite number of 

points P1,..,PN to be the set of all convex combinations 

of P1,..,PN (5, p. 208). 

We will refer to a given point in two ways; as the 

point Pi, 1 "5. i N, or by specifying its coordinates 

(xi,yi,zi), 1 i = It will be clear from the context 

whether we mean the i -th point determined by the coordi- 

nates (xi,yi,zi), 1 Ç i N, or whether we are referring 

to the coordinates themselves. 

We now define what we mean by a supporting plane of 

N 

gi? 0, 

N. 

°_ 
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the convex hull of a given set of N points in 3- space. 

The equation Akx + Bky + Ckz +.Dk = 0 is the equation of a 

supporting plane if there exist at least three noncollinear 

points P1, 
-P2 

and P3 among the given N such that 

Akxi.+ 
k 

Bkyi 
k 

+ C z. 
k + D = 0, = 1,2,3 

i i i 

and if either 

Akxa 
a 

+ Bkya + Ckza + Dk ? 0, for all a where 

1 a N, 

or 
-Akxa + Bkya + Ckza + 0, for all a where 

1 a 

Similarly Akx + Bky + Ck = 0 is the equation of a sup.... 

porting line of the convex hull of a given set of N points 

in 2 -space if there exist at least two distinct points P1 

and P2 among the given N points such that 

Akxi + Bkyi + Ck = 0, i = 1,2, 

and if either 

Akxa + Bkya + C , for all a where 1 a -=N, 

Akxa + Bkya + Ck -=0, for all a where 1-.a.tN., 

:In 3 -space a point Pi, 1 = i N, is a vertex of the 

convex hull determined by the given N points iff. there do 

i 

s -c 

= N. 

or 

° 



not exist points P1 and P2 in the set such that 

xi = ( ], - ) )(1 + 
011/4x2 

yi = (1 

zi 

- 1)y1 ® 1172, 

Z1 AZ2, o 

Similarly in 2 -space the point Pi, 1 f i N, is a 

vertex of the convex hull determined by the given N points 

iff . there do not exist points Pi and P2 in the set such 

xi (1 - ;()x1 + )(x2, 

-À)y1 + Ay2a 0 1 - l. 
If N is relatively small there are a number of ap- 

parent ways to determine the convex hull, that is the 

vertices and supporting planes (or lines) of the convex 

hull. One possibility, if the given N points are not co- 

planar, would be to determine an equation for each plane 

that contains three distinct noncollinear points from the 

given set of N points. Then by substituting the coordi- 

nates of each of the N points into the left member of 

each of the above equations we can easily see which of 

these equations are equations of supporting planes. 

If the given N points are coplanar we could obtain 

an equation for each line containing two distinct points 

from the given set of N points and then determine by 

= (1 - ,l) - 

6 

= 

yi = (1 
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substitution which of the equations are equations of sup- 

porting lines. These methods, while quite useful for 

small N, become increasingly impractical as N increases. 

Another possibility for N noncoplanar points would be 

to first determine an equation Akx + Bky + Ckz + Dk = 0 

containing at least one given point and such that 

Akxi + Bkyi + Ckzi + DkÇ 0, for all i where 

or 

Akxi + Bkyi + Ckzi + Dk y 0, for all i where 

We then, if necessary, rotate the plane determined by the 

above equation about a line containing a given point until 

it contains a second given point. Then, if necessary, ro- 

tate the plane about the line determined by these two 

given points until it contains a third given point not col- 

linear with the first two. By systematic rotations of this 

type the convex hull could be determined. If the given N 

points are coplanar we would use lines instead of planes 

and proceed in the same manner. 

It seems however that it would be advantageous, if 

N is large, to eliminate as soon as possible any point 

that is not a vertex, if this could be readily determined. 

The algorithm described in the following pages was 

1 '5 i = N, 

1 i N. ° = 
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developed with this idea in mind. 

The method involves obtaining a sequence of convex 

hulls determined by certain subsets of the original set of 

N points. We refer to these convex hulls as H1,..,Hf, 

where Hf, which we will refer to as the final convex hull, 

is the convex hull of the given N points. Each convex hull 

is an approximation to the final convex hull. The convex 

hull, Hj +l, where 1 °j +l f, being a better approximation 

to the final convex hull than H. 

If P is a point of Hi, j = 1,..,f -1, then P is a 

point of Hj +1, i.e., Hj +1, where 1 Ç j + 1 n f, contains 

H1,..,Hj. Hence if a given point is contained in Hj but 

is not a vertex of Hi we may eliminate it as .a possible 

vertex of the final convex hull, Hf. 

Generally speaking we determine H1 and then check to 

see if any of the given N points other than the vertices 

of Hl are contained in H1. If there are any we eliminate 

them and let N1 be the number of points remaining. We 

then check H1 to see if it is the final convex hull. If 

not we determine a new convex hull H2 and then check to 

see if any of the given N points other than the vertices 

of H2 are contained in H2. We continue in this manner ob- 

taining successive hulls and eliminating points :if 

. 
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possible until after a finite number of approximations we 

obtain the final convex hull. 
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Chapter 3 

COMPUTER PROCEDURE 

The following is a : general description of the com- 

puter procedure for determining the convex hull of a given 

set of N distinct points. If the convex hull is deter- 

mined by hand the same procedure can be followed, but in 

many cases on inspection of the data shortcuts in the pro- 

cedure will become evident. The procedure is applicable 

for all positive values of N. However since the convex 

hull is trivial if 11-=3 we will assume in the following 

discussion that N2t3. The maximum value for N depends of 

course on the computer. For the IBM 1620 with 40,000 

storage positions the maximum value for N is 51. 

We begin by determining the following six points from 

the given set of N points: 

(XQx,yQx,z9,:x), where xxx "xi, i = 1,..,N; 

(xsx.ysx,zsx), where xsx xi, i 

(xxy,yy,zy), where 
yQY yi, i = 1,..,N; 

(xsy,ysy,zsy), where ysy _ yi, i = 

(xQZ,yQz,zQz) , where zQz 

(xsz,Ysz,zsz), where zsz _ zi. 

= 
,.,N, 

- 1, ,N- 

: 

fi 

; z i 

i 

= 1,..,N; 

1,..,N; 
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We will on occasion refer to these points as PQx° Psx° 

PAy,,Psy, 
Piz, -PSZ respectively, rather than by specifying 

their coordinates. Let Q be the set of points Psx, Psx° 

Ply° Psy °`PQz, "PsZ° We could let H1 be the convex hull 

determined by the points in Q It appears at first 

glance that this would be a good choice for our first ap- 

proximation. On further investigation however we find 

that many times it would not be For instance the points 

in Q may be coplanar even though the given N points are 
not For a proof of this statement see Theorem 4.1. In 

cases like this the convex hull of the six points in 

is not a good approximation to the final convex hull. 

Even if the points in Q are not coplanar a polyhe- 

dron with these six points as vertices is not necessarily 

a convex polyhedron. For a proof of this statement see 

Theorem 4.2. A primary disadvantage of using a polyhedron 

that is not convex is that it is not easily determined 

which, if any, of the given points are inside. 

While we are interested in making a good choice for 

H1, the first approximating convex hull, we must keep in 

mind the amount of effort expended in obtaining it. We 

therefore satisfy ourselves with a first approximation 

that is not as good as the convex hull determined by all 

. 

Q 

. 

. 
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of the points in Q but one that requires less effort to 
obtain. We obtain our first approximation in the follow- 

ing manner. 

First we check to see if xRx = xsx. If xsx / xsx we 

reorder the given points, if necessary, so that PQx is the 

first point and Psx is the second point. In general the 

k -th point will be the point Pk with coordinates xk, yk 

and zk. Using the equation 

(3.1) (y2 - Y1)x + ( 

(y1 
- y2)x1 T 00 

and the equation 

® 2)Y + (x2 - x1)y1 

(3.2) (z2 _ zl) x+ (xl m x2) z+ (x2 
® xl) z1 

+ (zl z2)xl = 0, 

we determine equations of the line containing P1 and P2 

(5, p. 82). If x2x =xsx we check to see if yQy=ysy. If 

yQyy 
we reorder the given points, if necessary, so 

s 

that Ply is the first point and Psy is the second point. 

Using the equation (3.1) and the equation 

(3.3) (z2 
® zl)y + (y1 ® y2) z + (y2 

-y) zl 

+ (z1 - z2)y1 = 0, 

we determine equations of the line containing P1 and P2. 

+ 

Y 

- 



13 

If xQX =xsX and yAy =ysy we know that 
zAZ #zsz since the given 

N points are distinct and we are assuming N 3. Hence if 

xRx =xsx and yAY ==ysy we reorder the given points, if neces- 

sary, so that Plz is the first point and Psz is the second 

point. Using equations (3.2) and(3.3) we determine equa- 

tions of the line containing P1 and P2. 

We now check to see .if the given N points are col- 

linear. We do this by substituting the coordinates of the 

points P1,..'PN into the left member of each of the two 

equations determined above noting the value obtained in 

each case. If all the values obtained are zero the given 

N points are collinear (5, p. 82). 

If the given N points are collinear the two points 

Pl and P2 are the endpoints of the line segment containing 

the given N points and the convex hull has been determined. 

The proof of this statement is not included but is 

straightforward using the definitions for a convex combi- 

nation and a convex hull. 

If the given N points are not collinear we need a 

third point to use with P1 and P2. For our third point we 

choose a point Pk, l k N, such that the perpendicular 

distance between the point Pk and the line containing the 

: 

: 

° 
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two points 131 and P2 is greater than or equal to the per- 

pendicular distance between the line containing the two 

points Pl and P2 and any other given point Pi, lni".fN. 

We do this in the following manner. For each point 

Pi, i = 

equation 

1,..,N, we determine the value Vi given by the 

2 
Vi = [(y2 yi)(z2 - z1) - (z2 zi)(y2 y1)] 

2 
+ Rz2 z1) (x2 xl) - (x2 - xi) (z2 z1)] 

[(x2 - 
xl) (y2 

- 
y1) 

- (Y2 - Yi)(x2 
x1)] 

2 

where (x1,y1,z1) and (x2,y2,z2) are the points P1 and P2. 

From the values V1,..,Vm we pick a value Vk satisfying the 

condition Vk j = 1,..,N. We use the point Pk as our 

third point. See Theorem 4.3 for proof of the statement 

that the perpendicular distance between the point Pk and 

the line containing the points P1 and P2 is greater than 

or equal to the perpendicular distance between the line 

containing ;P1 and P2 and any other given point. 

We now reorder the given .N points, if necessary, so 

that the k -th point becomes the third point and the third 

point becomes the k -th point. 

In general to determine the coefficients of an equa- 

tion containing three noncollinear points Pi, Pi and Pk 

- - - 

- - 

+ - 
a 

V., 

- 

° 

: 
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we use the equations 

A = yizj + yjzk + ZiYk - Ykzj - Yizk 
- 

Yj.Zi' 

B = xkzj + xizk + xjzi- xizj - xjzk - xkzi, 

(3.4) 
C = xiyj + xjYk + Yixk - YjXk - XiYk - XjYi, 

D = xkyjzi + ykzjxi + xjyzk - xjykzi - yizjxk, 

- xiYjzk, 

where the equation of the plane is in the form Ax + By + 

Cz + D = 0 (5, p. in). 

Using the above equations determine the coefficients 

of the equation Aox + Boy + Coz + Do = 0 containing the 

points P1, P2 and P3. The given N points are coplanar if 

and only if Aoxi + Boyi + Cozi + Do = O, i = 1,..,N 

(8, p.262). 

The procedure for determining the convex hull has so 

far been the same for the coplanar case and the noncoplanar 

case. - Hereafter however it varies slightly, the procedure 

for the noncoplanar case being more involved. We consider 

first the coplanar case. 

To simplify the procedure we project the given N 

points onto a coordinate plane Acx + Boy + Ccz + Do = 0 

satisfying the condition 

AA 
c 

+ BoBo + 
c + # 0 
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The point Pk, _1.;_N, is a vertex of the convex hull 

determined by the points P1,..,PN if and only if the pro- 

jection point corresponding to Pk is a vertex of the con- 

vex hull determined by the projection points corresponding 

to P1,..,PN. For proof of this statement see Theorem 4.4. 

Therefore we need not determine the convex hull of the 

points Pl,..,PN but may instead determine the convex hull 

of the projection of these points onto an appropriate co- 

ordinate plane. 

The choice of which coordinate plane to use is 

arbitrary as long as we satisfy the condition AoAc + . B B 
o c o c 

+ CoCc # O. If this condition is not satisfied the plane 

containing the given N points is perpendicular to the 

coordinate plane chosen and the resulting projection is 

a line segment (11, p. 234). If we project the given N 

points onto a coordinate plane we are in effect setting 

one of the x, y or z coordinates equal to zero. We then 

have only two coordinates to work with which simplifies 

the procedure. 

To satisfy the condition AoAc + BoBc + CoCc / O we 

first check to see if Ao = O. If Ao / 0 we project the 

given N points onto the y -z plane. If Ao = 0 we check to 

see if Bo = O. If Ao = 0 and Bo / 0 we project the 
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given N points onto the x -z plane and if Ao = 0 and Bo = 0 

we -- project the given N points onto the x -y plane. 

For convenience we will refer to the coordinate plane 

onto which we have projected the given N points as the x -y 

plane, where the point (xi,yi) is the projection of the 

point -(xi,yi,z1),.i 1,0.,N, onto the x-y plane. -Here- 

after, in discussing the coplanar case, when we refer to 

one of the given N points we will be referring to the pro- 

jection of that point onto the x-y plane unless otherwise 

specified. 

Suppose that we have a convex hull H with supporting 

lines Aix + Biy + -Ci = 0, i = 1,..,k, and vertices 

P1,..;Pj. Suppose further that the equations have been 

normalized so that . if -Pm is a vertex of -H and 

Aixm + Biym 
+ Ci 

then 

Aix + Biym +CiO. 

We define the inside of H to be the set of all point 

satisfying the condition 

Aixu + Biyu + Ci e O, i = 1,..,k. 

We define the outside of H to be the set of all 

points Fu satisfying the condition 

= 

m 

Pu 

: 0 
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-Aixu Biyu 

for at least one value of i where 1:Eiffk. 

We define the boundary of H to be the set of all 

points P satisfying the condition u 

Aixu Biyu Ci If. 
u lu 

with equality holding for at least one value of i where 

1 k. 

Points that are inside H we shall call inside points, 

points that are outside H we shall call outside points and 

points on the boundary of H we shall call boundary points 

(6, p. 201), (2, p. 38) and (11, p. 110). From the 

definition of a boundary point and the definition of a 

vertex it follows that all vertices are boundary points 

but not all boundary points are vertices. 

The points of H will be the set of all inside points 

of H and the set of all boundary points of H, i.e., the 

point m is a point of H if and only if 

A.x By CO, i = m im 

We call the convex hull determined by the points PI, 

P2 and P3, H1. None of the vertices of the final convex 

hull are inside H1. The proof of this statement is not 

included but it follows immediately from the fact that a 

+ + Ci - 0, 

+ + 0, i = 1,..,k, 

Pm 

+ + 1, . . ,k. 
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point inside H1 can be expressed as a convex combination 

of the points Pl, P2 and P3 (6,-pe 218-19). Thus if any 

of the given N points are inside H1 we may eliminate these 

points as potential vertices of the final convex hull. 

To determine if any of the points P4,..,PN are inside 

H1 we first determine the point C with coordinates c1 and 

c2 where 

c1 

c2 

= 

= 

(x1 + x2 

(yl + Y2 

+ x3)/3, 

+ y3)/3. 

The point C is inside H10 The proof of this statement is 

not included but it is easily obtained on substituting 

(x1 + -x2 + x3)/3 for x and (yl + y2 + y3)/3 for y in each 

of the equations of the supporting lines of H1. 

In general to determine an equation of the line con- 

taining the points Pk and Pm we will use the equation 

(3.5) (yk y )x + (xm - xi)y + (xk xm)ym 

+ (.yrn yk)xm = 0 (5,p.22). 

Using the above equation determine an equation of the line 

containing the points P1 and P2, an equation of the line 

containing the points P1 and P3 and an equation of the 

line containing the points P2 and P3. Each of these equa- 

tions is an equation of a supporting line of H1. Now 

- - 

- 

- 
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substitute the coordinates of the point C into the left 

member of each of the equations obtained above and in each 

case if the value obtained is positive multiply the equa- 

tion through by (-1). The point C is not contained in any 

of the lines determined by the above equations and hence 

the value obtained will be either positive or negative. 

We will refer to the three equations obtained above as the 

equations Aix + Biy + Ci = 0, i = 1,2,3. In general we 

will use the symbol NE to denote the number of equations 

of supporting lines that we have. For H 
19 

NE = 

It is perhaps worthwhile to say a word about the 

notation we are introducing. In most cases this is the 

same notation used in the Fortran programs in Chapter 5. 

The use of descriptive symbols in programming is quite 

justifiable, and we introduce these symbols here to 

simplify the study of Chapter 5. 

After we have so to speak normalized the equations 

Aix + Biy + Ci= 0, i = 1,2,3, so that Aici + Bic2 + 

i = 1,2,3, we will refer to a point Pk as an inside point 

with respect to the line if Aixk + Biyk + Ci-c0 and an 

outside point with respect to the line if Aixk + Biyk + 

C =-0. 

We eliminate the inside points of H1 if any, as 

3. 

0, 

, 
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possible vertices of the final convex hull and let N1 be 

the number of given N points still to be considered as 

possible vertices of the final convex hull (NifIN). 

We now substitute the coordinates of the points Pk, 

k = 1,..,N1, into the left member of the equation Aix + 

BlY -C1 = 0, letting Uk be the value obtained in each 

case. If Uk 0, k = 1,..,Ni, then, by definition, the 

line determined by Aix + Biy + C1 = 0 is the equation of a 

supporting line of the final convex hull. If the line 

determined by Aix + Biy + C1 = 0 is a supporting line we 

proceed in the same manner to determine if the equations 

Aix + Biy + Ci = O, i = 2,3, are equations of supporting 

lines. If each of the equations Aix + Biy + Ci = 0, i = 

1,2,3, is an equation of a supporting line of the given 

N points the final convex hull has been determined. For 

proof of this statement see Theorem 4,5. 

Suppose now that one of the above equations is not 

an equation of a supporting line of the given N points. 

We will refer to this equation as equation NETC, 

NETC f2NE. (Number of Equation To be Checked) From the 

values Uk, k = obtained by substituting the co- 

ordinates of the points P ..,PN into the left member of 
1 

+ 

It 

1 

1,..,N1, 
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the equation NETC, we determine a value Um such that Um 

Uk, k = 1,..,N1. The point Pm corresponding to the 

value Um is an outside point with respect to the plane 

determined by equation NETC. The perpendicular distance 

between the line determined by the equation NETC and the 

point Pm is greater than or equal to the perpendicular 

distance between the line determined by the equation NETC 

and any other given point Pk, 1 fE k fE N1, that is an out- 

side point with respect to the line determined by equation 

NETC. For proof of this statement see Theorem 4.6. We 

use the point Pm as a vertex for our second approximation 

to the final convex hull. We call this second approxima- 

tion H2. 

We reorder the given N1 points, if necessary, so that 

the m -th point becomes the fourth point and the fourth 

point becomes the m -th point. The points P1, P2 and P3 

were the vertices of H1. We will use the symbol NV to 

denote the number of given points used as vertices thus 

far, i.e., for -H1., NV = 3 and for H2, NV . = 4. Thus after 

we reorder the points we may refer to the point P4 as the 

point PNV. 

Let -NETC and NNNETC be the vertices of I used to 
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determine the equation NETC. -Using equation (3.5) deter- 

mine an equation of the line containing the point MNIETC 

and the point PNV and an equation of the line containing 

the point NNNETC and the point PNV. Now normalize each of 

the above equations and call them equations 4 and 5 

respectively. H2 will have the same supporting lines as 

H1 with the exception that the supporting line determined 

by the equation NETC will be replaced by the supporting 

lines determined by equations 4 and 5. We now reorder the 

equations eliminating equation NETC, i.e., the (i + 1) -st 

equation replaces the i -th equation, i = NETC,..,4. I.n 

general when we say we reorder the equations 1,..,NE re- 

moving equation k we mean that the (i + 1) -st equation 

replaces the i -th equation i = k,..,NE -1. We now have 

NE Hull H2 is the convex hull of the points P1.,..,P4. 

For proof of this statement see Theorem 4.5. We continue 

with H2 as we did with H1 checking to see if any of the 

points Pk, k = NV +1,..,N1, are inside H2. 

In general let H., J= 2,..,f, be the j-th approxima- 

tion to the final convex hull which we call Hf, where 1 

f. We first check Hi to eliminate inside points, 

if any, in the same manner as for H1 and let Nj be the 

= 4. 

j N 
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number of given N points still under consideration. 

(Nj N..., N) 

We now substitute the coordinates of the points Pk, 

k-=1,..,Niintotheleftmemberoftheequationx 

BNETCy CNETC C), 
1 NETC =: NE, letting Uk be the 

value obtained in each case. 

The index NETC takes on the values 1,..,NE where the 

initialvalueof-NETCfor-11.1 j f, is the last value 

of NETC for H1 This follows from the fact that the 

equations 1,..,NETC-1 have already been determined to be 

equations of supporting lines of the final convex hull and 

need not be checked for each successive hull determined. 

If Uk 0, k = the line determined by equa- 

tion NETC is, by definition, an equation of a supporting 

line of the final convex hull. If the line determined by 

the equation NETC is a supporting line we check to see if 

NE =-NETC. If it is we increase NETC by one and check 

equation NETC to see if it is the equation of a supporting 

line in the same manner as for equation NETC -1. We con- 

tinue checking for supporting lines , until either (1) NE 

NETC or (2) for some value of NETC the equation NETC is 

not the equation of a supporting line, i.e., there is 

at least one point Pk for which the value Uk O. In 

= 

+ + 

< 

= 1,..,N., 

= 

= 

= 
7 
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this case we determine a new vertex Pm corresponding to 

the value Um where Um Uk k = 1,..,Ni. We then add one 

to NV and reorder the points, if necessary, so that the 

m -th point becomes the NV -th point, and the NV -th point 

becomes the m -th point. Now using equation (3.5) determine 

the equation +1 containing the points MMNETC and P 

the equation NE +2 containing the points NNNETC and PNV° 

We then normalize each of the above equations, and reorder 

the equations 1,..,NE +2 removing equation NETC. We have 

added two equations and eliminated one, thus we add one to 

NE. We now increase j by one and start over again check- 

ing H. for inside points in the same manner as for Hj_i. 

Jij is the convex hull determined by the points Pl, 

For proof of this statement see Theorem 4.5. We continue 

in the above manner obtaining successive approximations to 

the final convex hull until after a finite number of steps 

we have NE = NETC. Clearly this process comes to an end 

in a finite number of steps since we can add another 

vertex at most N -3 times. If NE = NETC all of the sup- 

porting lines of the final convex hull have been deter- 

mined and this hull, Hf, is the convex hull of the given 

N points. For proof of this statement see Theorem 4.5. 

Once we have NE = NETC we check to see if Nf 

and NV 

J J 

NV. 

° 

=. 
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If it is the points PNV +l ,..,PN 
f 

are boundary points of 

the final convex hullo This follows from the fact that 

the inside points have been eliminated and the vertices are 

among the points Pl'''oPNV° Not all of the points P1,.., 

PNV are necessarily vertices of the final convex hullo 

Each point was a vertex for one or more of the approxima- 

tions to the final convex hull but a point Pl,..oP may 

be contained in only one supporting line of Hf, 

To determine which of the points P1. 0PN are ver- 

tices we substitute the coordinates of the points P1,.., 

PNV into the left member of each of the equations Akx + 

Bky + Ck= 0, k = 1,..,NE. For each equation Akx + Bky + 

Ck = 0, 1 = k 1.ENE, that Pi, 1 NV, satisfies we 

check to see if the point Pi is either of the points NNk k 

or MMk, if it is we are not interested in it since we are 

only interested in determining if there is a point Pi, 

1 : i = NV satisfying the equation Akx + Bky + Ck = 0 

other than the two points NNk and MMk. Hence if Pi is 

either of the points NNk or MMk we check to see if NV i. 

If NV i we increase i by one and continue checking. If 

the point Pi is neither of the points NNk or MMk we check 

to see which of the three points Pi, NNk or MMk is con- 

tained in the line segment determined by the other two. 

n i f. 

> 
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We do this in the following way. Using the formula 

for the distance Di between the points pd and Pe we e 

determine the distance D1 between the points NNk and MMk, 

the distance D2 between the points MMk and Pi and the dis- 

tance D3 between the points NNk and Pi (9, p. 33). We 

then determine the value of D 
1 

+ D2 
2 

- D3. If the value 

obtained is zero the point MMk is not a vertex of the 

final convex hull since it is contained in the line seg- 

ment determined by Pi and NNk (9, p. 29). If the value 

obtained is not zero we determine the value of D1 + D3 

D2. If this value is zero the point NNk is not a vertex 

of the final convex hull since it is contained in the line 

segment determined by MMk and Pi. If D1 + D2 - D3 X 0 and 

-Di + D3 - D2 X 0 the point 

convex hull since it is contained * 

is not a vertex of the final 

in the line segment 

determined by MMk and NNk. 

Once we determine which of the points Pi, MMk or NNk 

is not a vertex we reorder the points _Pl, 
e 
eliminat- '''PNV 

ing that point and at the same time we subtract one from 

NV. 

We want to have only one equation of each supporting 

D. xd) 2+ (Ye 6 
2 

- 

Pi 

= V(xe 
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line of the final convex hull, and since we have at least 

two equations of the supporting line containing the points 

Pi, NNk and MMk we reorder the equations of the supporting 

lines removing the equation k, and at the same time we 

subtract one from NE. 

We continue in the above manner checking each point 

pi = 1,..,NV, until we have determined which of the NV 

points are vertices of the final convex hull and have re- 

moved all but one equation for each supporting line. We 

have now determined which of the given N points are inside 

the convex hull, which of the given N points are boundary 

points of the final convex hull, which of the given N 

points are vertices of the final convex hull and we have 

determined an equation for each supporting line. This 

completes the procedure for the coplanar case. 

Since much of the procedure for the noncoplanar case 

parallels the coplanar case, making the extension for the 

third dimension, it would be repetitious to describe the 

noncoplanar case in as much detail as we have the coplanar 

case. Thus we will give a general description of the non - 

coplanar case where it parallels the coplanar case and go 

into a more detailed description at the point where the 

two procedures differ. 

i 
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For the noncoplanar case we begin with the values U 
ki 

k = 1,..,N, obtained by substituting the coordinates of 

each of the given N points into the left member of the 

equation Aox + By + Coz + Do = 0 containing the points 

P 
1° 

P2 
2 
and -P 

3° 
For the coplanar case II is a triangle 

determined by the points P1, P2 and P3. For the nonco- 

planar case we define H1 
1 

to be a tetrahedron determined by 

the points T1,.P2,-P3 and the point Pm corresponding to a 

value Um determined above where Um =1.3k, k 1,..,N. Af- 

ter we have determined the point P m we reorder the points 

so that the-m-th point becomes the fourth point and the 

fourth point becomes the m-th point. 

After we have determined the coefficients of the 

equations of the supporting planes of H1 using the equa- 

tions (3.4) and the points PI, P2, P3 and P4 we determine 

the point C and proceed to determine if any of the given 

N points are inside Hi. We We eliminate these points, if 

any, and then check to see if H1 is the convex hull of 

the given N points. 

If the tetrahedron H1 is not the convex hull of the 

given .:N points we proceed to determine a new convex hull 

H2. In the coplanar case to determine H. from the convex 
3 

hull H. j = 2,..,f, we essentially added a triangle to 

= 
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H1 by replacing the supporting line determined by the 

equation NETC by two new supporting lines; one containing 

the points PNV and MMNETC and the other containing the 

points PNV and NNNETC° For the noncoplanar case we add a 

tetrahedron to HJ replacing the - supporting plane deter- 

mined by equation NETC by three new supporting planes; 

one containing the points P ..MMNETC and NNNETC, one con- 

taining the points PNV, MEC and ETC and one contain- 

ing the points PNv, NETC and ETC° 

We will make use of the same symbols for the nonco- 

planar case that we used for the coplanar case and we 

adopt the same definitions for inside, outside, inside 

points, outside -points, and boundary points, assuming the 

extension for the third dimension when necessary. We shall 

refer to the given point that is a vertex of H1 but not a 

vertex of H1®1' as the point PNV. We will refer to the 

equations of the supporting planes of H3 as the equations 

;Aix + Biy + Cz + D. _ 0, i = 1, ° °,NE° For each equation 

i we shall refer to the given points used to determine 

the equation as the points MMi, NNi and KKi. As in the 

coplanar case we will use the symbol NE to denote the 

number of equations of supporting planes for H1, the 

symbol NV to denote the number of given points used as 

-1 

- 

- 

.. 



31 

vertices so far and we will use the symbol NETC to denote 

the number of the equation that we are checking to deter- 

mine if it is the equation of a supporting plane of the 

final convex hull. We refer to the equations that have 

already been determined to be equations of supporting 

planes of the final convex hull as the equations 1,.., 

NETC -1. 

In the coplanar case the point P could not be on the NV 

outside of more than one of the equations Akx + Bky + Ck 

ID, k = 1,..,NE. For proof of this statement see Theorem 

4.7. In the noncoplanar case however the point P 

be on the outside of more than one of the equations Akx + 

Bky + Ckz + Dk = 0, k = 1,..,NE, and thus the polyhedron 

determined by the equations Akx +.Bky + Ckz + Dk = 0, 

k = 1,..,NE, is not necessarily convex. For an example of 

such a case see Theorem 4.8. 

We check to see if the polyhedron is convex by sub- 

stituting the coordinates of the point PNV into the left 

member of each of the equations Akx + Bky + Ckz + Dk = 0, 

k NETC,..,NE, checking the value obtained in each case. 

If all the values obtained are negative or zero the poly- 

hedron determined by the above equations is convex. The 

proof is similar to the proof given for Theorem 4.5 and 

= 

can 
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is not included. Suppose now that not all of the values 

obtained are negative or zero, Dg 

0 be one of the NE equations determined above for which 

AgxNV +By +Cz +])g ..0. Using equations (3.4) NV g NV g NV 

determine the coefficients of the plane containing the 

points 9.0 NNg and PNV, the coefficients of an equation NV° 

of the plane containing the points KKg g o g and P 

the coefficients of an equation of the plane containing 

the points 
q 

NNg 
g 

and PNV PNV. Normalize each of these 
' 

equations,and call them NE+1,,NE+2 and NE+3 respectively. 

Now increase NE by two and reorder the equations eliminat- 

ing equation g. 

We continue checking each equation g where g takes on 

the values NETC +1,..,NE. For each value of g for which 

_Ax + Bgy + z NV 1 NE, we repeat the NV 

above procedure until we have Akx NV -1-.PkYNV C kzNV 

O, k= 1,..,NE. 
"I" Dk 

Suppose that we eliminated two equations i and m for 

whichMM.=MM-andNN.= NNE and such that AixNV + i J i J i NV 

BiYNV CizNV Di 0 and AmxNV Bm17NV CmzNV Dm -()* 

In expanding the convex hull we replaced equation i by 

three new equations, one containing MMi, NNi 
i 

and PNV, 
° 

one NV 

Let Agx + Bgy + Cgz + = 

and 

0, -c g _ 

+ 

+ + 
+ + 

w 

- 
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containing MMi, :KKi and PNv and one containing NNi, KKi 

and PNV. For convenience we will call these equations 1, 

i2 and i3 respectively. Similarly we replaced equation m 

by three new equations, one containing MMm, NNm and PNv, 

one containing MMm, KKm and 
PNV 

and one containing NNm, 

KKm and 
PNé10 

We call these ml., and m3 respectively. 

Now since MMi = MMm and NNi _ NNm it follows that equation 

il and equation m 
1 
are equations of the same plane and 

further this plane is not a supporting plane since KKi is 

contained in one section determined by the plane and KKm 

in another, neither KKi nor KKm being contained in the 

plane. 

We therefore reorder the equations 1,..,NE eliminat- 

ing equations and ml and at the same time we subtract 

two from NE. We repeat the above procedure eliminating 

equations .j and k for which MMi = MMk,,NN] = NNk and KK. = 

j, until the equations Aix + Biy + Ciz + Di = 0,' 

i = 1,..,NE, are equations of the supporting planes of the 

convex hull determined by the points Pi, ..,PNv. We now 

increase j by one and start over again checking HJ for 

inside points proceeding in the same manner as for Hl. 

We continue in the above manner obtaining successive 

approximations to the final convex hull until after a 

m2 

KKk, k 

m i m 

.. 
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finite number of steps we have NETC = NE. As in the co- 

planar case this process comes to an end after a finite 

number of steps since we can add another vertex at most 

N -4 times. If NETC = NE all the supporting planes of the 

final convex hull have been determined and this hull, H 

is the convex hull of the given N points. The proof of 

this last statement is similar to the proof given for 

Theorem 4.5 and is not included. 

Once we have NETC = NE we check to see if Nf 

If it is the points PNV+l,o.,PN 
f 

are boundary points of 

the final convex hull. This follows from the fact that 

the inside points have been eliminated and the vertices 

are contained among the points P1,..,PNV. We now want to 

determine if we have more than one equation for each sup- 

porting plane. We do this by checking to see if there is 

an equation j containing the points NNi, MMi and KKi where 

j If there exists an equation j we reorder the 

equations eliminating equation j, and at the same time 

subtract one from NE. We do this for each equation j 

where j = 1,..,NE, and for each value of j, i takes on 

the values j +1,..,NE. 

Not all of the points P1,..,PNv are necessarily ver- 

tices of the final convex hull. A necessary condition for 

NV. 

i / 

, 
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a point to be a vertex of the final convex hull is that 

it be contained in at least three distinct supporting 

planes of the convex hull. This follows from the fact 

that if Pk 
k. 

is contained in at most two supporting planes 

of the convex hull then Pk can be expressed in terms of 

the endpoints of the line segment determined by these two 

supporting planes and thus is not a vertex (6, p. 195). 

Each of the points Pi,..,PNv was a vertex for at least one 

approximation to the final convex hull but it is possible 

for a point Pi, 1 = i = NV, to be contained in only one 

or two supporting planes of the final convex hull. 

To eliminate these points, if any, that are not ver- 

tices we substitute the coordinates of each of the points 

into the left member of the equations Akx + Bky + Ckz + 

Dk = 0, k = 1,..,NE, and if the point is not a vertex it 

will satisfy at most two of the above equations. 

If we determine that one of the points P19 .,P 
is 

not a vertex we reorder the points eliminating that point 

and at the same time we subtract one from NV. 

We have thus determined which of the given N points 

are inside the convex hull, which of the given N points 

are boundary points of the final convex hull, which of 

the given N points are vertices of the final convex hull 
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and we have determined an equation for each of the sup- 

porting planes. This completes the procedure for deter- 

mining the convex hull for the noncoplanar case. 
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Chapter 4 

SUPPORTING THEOREMS 

THEOREM 4.1 Given a set of N distinct noncoplanar 

points Pl,®.oPN, let P 
Rx° P:sx° PJ2y° Psy° P z ° Psz 

be 

points among the given N such that 

x., 1=i`-N9 sx 

Y y., 
QY 

Y Y,° sy i 
1 i N, C 

zQz 
,zl° l=iN, 

z Ç za, liNo 
sz 

The points PQx° Psx° PQy° Psy° PQz° PSZ may be coplanar 

whether or not they are distinct. 

PROOF: The above statement is clearly true if there 

are at most three distinct points among PQX, PsX, PQy, 

P P , P 
° sz 

We will show by an example however that sy Qz 

the above statement is also true in cases where there are 

six distinct points among P , Psx° PQy° Psy' PQz' Psz° 

Consider the following set of nine points: 

x 
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P1-= (9,6,-8) 
'P4 = (6,4,5) P7 = (-11,0,6) 

P2 _ (10,0,-8) 'P5 = (8oG2B-10) P8 - (-.gam3°®1) 

P3 = (m1,7,11) P6 = (4,5,8) P9 = (-10,4,12) 

For this set of points we have 

P Py = P3 PQz P9 

Psx = P7 Psy =-P8 -PSZ =-P5a 

The plane determined by the equation 2x - 5y + 3z + 4 = 0 

contains the points PQx° 
Psx°-PAy° Psy° PStz° Psz but it 

. does not contain the points P, P4 and P6. This completes 

the -proof 

THEOREM 4.2 A polyhedron with vertices P®o,P6 where 

xl xi, 

x2 -= xi, 1 i=6, 
y3 tyi, lis6, 
yq. yi, 1 - 6, 

zi, 1.cc 6, 

zi, 1!5 iC6o 

is not always a convex polyhedron. 

PROOF: The proof will be by example. Consider the fol- 

lowing set of six points: 

Pl = (5,0,0) P3 = (3,5,7/4) P5 - (0,0,4) 

- (-2,0,0) P4 = (3a-5ó7/4) (0,0, -2) 

= P2 

t 

z5 

z6 

P2 P6 = 

1 i 6 
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These six points satisfy the initial conditions of 

THEOREM 4.2 and thus it remains to show that there exists 

a polyhedron with these six points as vertices that is not 

convex, Figure 1 is an illustration of such a polyhedron. 

Equations of the faces of the polyhedron as illustrated 

in Figure 1, and a corresponding list of the vertices con- 

tained in each face can be found in Table 1, 

Figure 1 
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Table 1. 

EQUATION OF FACE VERTICES IN FACE 

1. 

2. 

3. 

4 . 

5. 

6. 

7. 

8. 

-40x + 33y + 20z - 80 = 

-40x - 33y +.20z-- 80 = 

-20x + 27y - 20z -- 40 = 

-20x --27y - 20z - 40 = 

40x + 51y - 100z .- 200 

40x - 51y - 100z. 200 

- 3y + 100z - 400 = 

80x 3y + 100z - 400 = 

0 

0 

0 

0 

= 

= 

0 

0 

0 

0 

P5, P2, P3 

P5, P2,' P4 

P2' 
P6' P3 

P2 ° P6, ,P4. 

P6':P, P3 

P6, P1' P4 

P5°'pli° P3 

P5' "P1 ° P4 

Substituting the coordinates of each of the six 

points P1,..,P6 into the left member of equations 7 and 8 

we see that they are not equations of supporting planes 

for the convex hull determined by the points P1 ,..,13 

and 

For equation 7 we have 

+ B7y4 + C7 
0 

A7xi + B7yi + C7 0, i = 2,6. 

For equation 8 we have 

A8x3 +. B$y3 + C8 0, 

and 

A7x4 

. 
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_A8xi + B8yi + C8 -= 0, i = 2,6. 

This completes the proof. 

THEOREM 4.3 The perpendicular distance between the 

point Pk and the line containing the distinct points Pl 

and P2 is greater than or equal to the perpendicular dis- 

tance between the point P, and the line containing Pl and 

P2 if Vk = Vi where, in general, the value Vi for the point 

Pi is obtained from the equation 

Vi = [(y2 - 
171)(z 

- zl) - (z2 - zi) 
(y2 1 

)1 2 

1 [(z2 - zl) (x2 - xl) - (x2 s xi) (z2 - 
"zl)] 

+ [(x2 - xl) (y2 - yl) - (y2 - yi) (x2 - X1)] 2. 

PROOF: The perpendicular distance di from the line con- 

taining the points P1 and P2 to the point Pi is given by 

the equation 

2 
d. 

z2 

y2 

- zi 

yi 

2 

+ 

A µ 
where , /Land Vare direction cosines of the line con- 

taining Pl and P2 (5, p. 96). We define the direction 

cosines of the line containing the points P1 and P2 as 

1 

+ 

= 

+ 

Y2 - Yi 

v 

x2 - xi 

z2 - zi x2 - xi 

V 

A 

2 

.L 

2 



follows 

2 
X1 

(e) (D) 

y2 - Y1 

(e) (D) 

z2 z1 

(e) (D) 

where D = (x 
2 

x1)2 + (y2 - y1) 
2 

+ (z2 z1 
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and e is 

+1 or -1, the sign being chosen so that the first of the 

numbers e (z2 zi) e (y2 m y1) and e (x2 - x1) which is 

not zero shall be positive (5, p. 85). On substituting 

the above values for A , and V into the right member 

of the equation for Vi and simplifying we have 

2 
d. = (y2 

y1) (z2 
zl) (z2 zi) (y2 yl) 

2 

i 
(e) (D) (e) (D) 

2 

(z z.) (x x (x x) z )- 
2 2 1) 2 i. 2 1 

(e) (D) (e) (D) 

(x2 - xi) (y2 - y-,) (x2 

2 

4 

(e) (D) (e) (D) 

and on multiplying both sides by e D 2 2 
we obtain 

2 22 2 de D = Vi = [(y2 (z2 - (z2 - (y2 - yi)] 

+ [(z2 -zi) (x2 -xi) - (x2 - xi) (z2 zi)] 2 

[(x2 - x:) (y2 -Y1) - (Y2 -y) (x2 - xx1)] 

2 

A ° 
0 V 

m 
= 

m 

m 

- ° ° - 

° ° m ° 
+ 

_ 
Yi) 

m x1) 
+ 

° yi) z1) ® zi) 

m 

+ . 

= 
. 

= o 

2 

g 

.. 
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2 
Since e = 1 it follows that if Vk > Vi then 

d2 D2 ? d?D2. 

2 
Since P1 and are distinct we know that D and hence 

2 2 
d ; d k j ° 

Thus the perpendicular distance between the point Pk and 

the line containing the points Pl and P2 is greater than 

or equal to the perpendicular distance between the point 

Pj and the line containing the points 

completes the proof. 

and P2. This 

THEOREM 4.4 Let9( be the unique convex hull determined 

by the distinct coplanar points P1,.°,PN, Let an equa- 

tion of the plane containing}( be Aox+ Boy + Coz + Do 

Let X° be the projection of tX in the coordinate plane 

Acx + BdY + Ccz Dc = O. If Pi is a point of "( let Pi 

be the projection point corresponding to the point Pi. 

If the plane and the plane containing tX are 

not perpendicular, i.e., if AdAc + BoBc + CoCc + Dopc /,:0 

then Pk, 1 k = N, is a vertex ofN if and only if Pk is 

a vertex of F.W . 

0 

Pl 

= O. 

+ 

J 

s 

0 0 
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PROOF: In projecting a point onto a coordinate plane 

we are in effect setting one of the coordinates of the 

point equal to zero, the other two coordinates remaining 

unchanged. We consider first the projection of °J( onto the 

x -y plane assuming the plane determined by the equation 

Aox ± Boy +Cz + Do = 0 is not perpendicular to the x-y 

plane. 

If we project the points (x.,y,z) of onto the xy 

plane we have the points (x,y) as the corresponding ;pro- 

jection points. 

We first want to show that the point (xk,yk,zk) is a 

vertex of the convex hull determined by the points 

(xi,yi,zi), i = 1,..,N, if the point (xkoyk) is 

of the convex hull determined by the points ( 

i = 1,..,N. 

By definition the. point (xk,yk) is a vertex of the 

convex hull determined by (x ,y ),i =l,o ®,N,i.f and only if 

there do not exist points (xa,ya) and (xb,yb) of 9.(° such 

that 

a vertex 

L,Yi) 

xk = (1_® A) xa Axb 

Yk ° (1 _ ) ya íLYb B 

Now if (xk,yk) cannot be written as a convex combination 

+ C)-4A-`1' 

` 
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of (xa,ya) 
a and (xb,yb) it follows that there do not exist 

points (xa,ya,za) and (xb,yb,zb) of ?K such that 

xk ® (1 ® A) xa + Axb, 

Yk 
= 

(1 -° A) Ya + AYb, 

zk = (1 m A) za + AZb o 

Thus the point Pk is a vertex of the convex hull deter- 

mined by the points 

Suppose now that the point (xk,yk,zk) is a vertex of 

the convex hull determined by the points (x 

1.,U, but the point (xk,yk) is not a vertex of the con- 

vex hull determined by the points (xi,yi), i = 1,00,N. 

Since (xk,yk) is not a vertex it follows that there 

exist two , points (xa,ya) and (xb,yb) of `}-(° such that 

xk (1 - A) xa 
+ Axb, 

yk = (1 ° A) Ya + Ayb, 

Now since (xk,yk,zk) is a vertex it follows that 

Zk (1 ° A za + Azb , o 

To prove that this does not occur we show that if it 

does the plane containing the points (xk,yk,zk), 

(xa,ya,za) and (xb,yb,zb), and hence all the given points, 

is perpendicular to the x-y plane contrary to our original 

0..c /1.t lo 

Pl, °.,PN. 

= 

= 

o.À-c 1. 

o c/I 

. 
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assumption. Since equations of the x -y plane are in the 

form Ccz = 0, to show the perpendicularity condition, 

Aó c+ BoBc + CòCc + i D, 

is not satisfied all we need to show is that Co = O. 

From (3.4) we have 

Co = xayb xbyk + yaxk._ ybxk,r xayk - xbya. 

Now we substitute the value (1- /1.)xa + Axb for xk and the 

value (1- Xya + )yb for 
yk in the equation given in (3.4) 

for ̀ Co. Simplifying we have 

Co = xaYb - xayb - 
xa:yb 
xayb (1 - A) + xaYb (1 ) + Xa.Yb )( ` 

xaYb + Xaya /l - Xaya il + Xbyb (1 - /l ) - xbyb (1 A) 

0. 

Thus it follows that the plane containing the points 

(xi,yi,zi), i = 1,..,N, is perpendicular to the coordinate 

plane containing the points (xi,yi), i = 1,..,N, contrary 

to our original assumption. Hence the point (xk,yk,zk) 

is a vertex of the convex hull determined by the points 

(xi,yi,zi), = l, . . ,N, only if (xk,yk) is a vertex of 

the convex hull determined by the points 

N. 

(xi,yi), i = 1,,., . 

This completes the proof for the case where the 

points are projected onto the x®y plane. The proof is 

= 

i 

: 
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the same for the x ®z plane if we replace y by z and for 

the y -z plane if we replace x by z. 

THEOREM 4.5 The polyhedron H. 1 ° j = f, obtained by 

the procedure described in Chapter 3, with supporting 

lines determined by the equations -Aix + Biy + Ci = 0, 

1,..,NE, and vertices ,Plóo.,PN,, is the convex hull deter- 

mimed by the points Pi,.o,PNV° 

PROOF: To prove the above statement we need to show that 

Pm is a point of H. if and only if Pm can be expressed as 

a convex combination of the points P1,.o,P begin We 

1:1y assuming that Pm is a convex combination of the points 

11 
..,p Thus we have 

xm = ki1 
x 1 

+ . o + 
/I NVXNV ° 

_ Thy]. ly -I- . . + ,( NVyN1' , /- 

i where kti 0, i = 1e ..,NV, and 

i=1 
1. 

By definition Pm is a point of Hj if Aixm + Biym 
NV 

= O, i = 1,..,NE. Making the substitution 

i=1 
NV 

for xm and (y for ym into the left member of the 
i =1 

equations Aix +.Biy +,C 8° 1,..,NE, we have 

i = 

J 

ym 

NV 
- 

Ci 

+ 

Y 

= O, i = 

c 
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NV NV 

E Al( ),gjxj) -E. Pi( 17. kijn) Ci, i = 1,0NE0 
j=1 j=1 

Rearranging the above terms we have 

E = AL1C4ixl B/71) 
144NV(AiNV /7 BiYNV) 

1,..,NE 

By construction we know that + Ci =0, for 

= 1,..,NE and )7, = 1, ..,NV. Thus we have 

NV 

E :n ill +,..0+ gm7(_ci) ci C. T/Lj + = o. 

j=1 

Thus if -P is a convex combination of the points P m 

then Pm is a point of H,. 
3 

We now want to prove that if Pm m is a point of Hj then 

can be written as a convex combination of the points 

The proof will be by mathematical induction on 

We consider first the case for j = 1. If j = 1 we 

have NV = 3 and H1 
1 

is a triangle with vertices P1, P2 and 

P3. For proof of the statement that if Pm is a point of 

a triangle then P 
m 

can be expressed as a convex combina- 

tion of the vertices of the triangle see (6, p. 218 -219). 

Using this proof we consider the statement to be true for 

j = 1. We now assume the statement to be true for j = k 

and consider the case for j = k + 1. 

= 

+ Ci ° 

i= 

+ Biyi 

i 

( -Ci) + = 

Pm 

Pl,..,PNv. 

j. 
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To obtain H, 
11k 

we in effect add a triangle 

to H . (Fig. 2) 

Figure 2 

By our induction hypothesis for j = k we know that if 

Pm is a point of Hk then Pm can be written as a convex 

combination of the points P1,..,Pmv. For the case j=i 

we know that Pm can be written as a convex combination of 

the points P P2 and P3. Thus for Hk+1 if Pm is not a 

point of Hk but is a point of Hk+i we can express Pm as a 

convex combination of the points F , 

a 
P 
b 

and P where 

gi = Q, i = 1,..,NV, i / a, i # b. Thus Hk +i is the con- 

vex hull of the points Pl.,PNv+1. Hence if Pm is a 

point of H, then Pm can be written as a convex combination 

of the points P1,..,PNv. This completes the proof. 

THEOREM 4.6 Let Ax + By +C = 0 be the equation of a 

line in 2-space and let Pm and Pi be two points in the 

from 

+1 

+l 
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x-y plane satisfying the condition 

Ax. + By. + C =0, for i = m and i = j. 

The perpendicular distance between the point Pm and the 

line determined by the equation Ax + By + C = 0 is greater 

than or equal to the perpendicular distance between the 

point Pj and the line determined by the equation Ax + By 

+.0 = 0 if 

Axm + Bym +:C Axj + Byj + C. 

PROOF: In -space the perpendicular distance dk between 

a point Pk and the line determined by the equation Ax + 

By + C = 0 can be determined by the formula 

dk = 
iAxk +.1317k 

+ C) 

V A2 + 
B2 

(ll,p.43) 

If we multiply both sides of the above equation by 

VA2 + B2 we have 

Now if 

it follows that 

A2 =lAxk + Byk +'C1. 

Axm+Bym+C >Ax. 
3 
+By. +C?0 

+ B2 

2 2 y 
dm-\/A + B 

=. 

2 2 djA + B 



and since VA 2 + B2 'Owe have 

d ad 
m j 

This completes the proof. 
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THEOREM 4.7 Given a set of N distinct coplanar points, 

let H., l j Ç f, be a convex hull obtained by the proce- 

dure described in Chapter 3 where Aix +.Biy + Ci = 0, i = 

1,..,NE, are equations of the supporting lines of Hj and 

P1,..,PN are the vertices. If there exists a point Ph, 

NV +1= h ̂ N, and a number . where 1 =A :!NE, such that 

+ + -0, 

then 
Amxh +.B 

my h 
+Cm 0, rn= 1,..,NE, m# Q. 

PROOF: The proof will be by mathematical induction on j. 

We consider the case for j = 1 first. In determining H1 

we started with two points in Q. For convenience suppose 

these points were PQx and PsX. Then we know for any point 

Pi, 172E i N, xi xQx and xi xsx. We called the first 

two points Pl and P2. For our third point P3 we chose a 

point Pk such that the perpendicular distance between the 

line containing P1 and P2 and the point Pk is greater 

than or equal to the perpendicular distance between this 

line and any other given point. We considered the 

n 

ARxh 

mh m 

° 
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projection of the given N points onto the x -y plane. For 

convenience let -A 
1 
x + Bly + Cl = 0 be an equation of the 

line containing Pl and P2; let A2x + B2y + C2 = 0 be 

equation of the line containing Pl and P3 and let A3x + 

Bay + C3 = O be an equation of the plane containing P2 and 

P3' 

By a proper choice of a coordinate system we can 

have the point P3 at the origin and the line containing 

the points Pl and P2 parallel to the y -axis. (see Fig. 3) 

(X0y10 

la,o) 
X 

Figure 3 

an 

Y 
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Using this coordinate system the equation Aix + Bly + Ci 

0 becomes x ® xi = 0, the equation A2x + B2y + C2 = 0 be- 

comes yix xly = 0 and the equation A3x + B3y + C3 = 0 

becomes - -y2x +.xiy = Om Thus the equations of the sup- 

porting lines of this triangle are 

(1) x x1 
= 0 

(2) yix ®xly= 0 

(3) -y2x + 

By the manner in which we chose P3 and the choice of 

our present coordinate system we know that none of the 

given N points will have an x coordinate less than zero. 

Hence if we can show, using (2) and (3) above, that for 

and 

(4) my2xh + xlyh 0, 

(5) Ylxh xiYh 0, 

we must have xh ç 0, we will have proved that a point Ph 

cannot satisfy both of the conditions 

Aixh + Biyh + Ci 
- 

0, i = 
2,3e 

Adding equations (4) and (5) we obtain 

(y1 ®y2)h00 

Now since yl - y2-.:0 it follows that xh -c O. 

By choosing a coordinate system so that the point 

Pl is at the origin and the y -axis is'coincident with the 

= 

- 

xiY = 0 

? 

- a 
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line x - x1 = 0 we can show in a manner similar to the 

above that P cannot satisfy both of the conditions 

Aixh + Biyh + Ci 0, i = l,2 0 

Similarly by choosing a coordinate system so that the 

point P2 is at the origin and the y-axis is coincident 

with the line x x2 = 0 we can show in a manner similar 

to the above that Ph cannot satisfy both of the conditions 

Aixh + Biyh + Ci > 0, i = 1,3e 

Thus the statement is true for the case j = 1. 

We now assume the statement to be true for k and 

consider next the case for j = k + 1. To obtain Hk +1 

from Hk we essentially add one triangle to -Hk® (Fig. 4) 

HK 

Figure 4 

- 

j = 

H K+I 

- 
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Considering the triangle determined by the points 

Pa' Pb and PNV+l we can consider the point PNv+1 in the 

same way we did P3 and thus show that the point Ph cannot 

satisfy the conditions 

Aixh 
J 

+ B,y +:C 
J h h J 

= NE+l,NE+2 

where NE +l contains the points Pa and PNV+l and NE +2 con- 

tains the points Pb and PNV+l. By the induction hypothe- 

sis the point Ph satisfies the condition 

Aixh + Biyh + Ci ; 0, 

for NE -1 of the equations for Hk. If Q is an equation of 

Hk such that 

Aqx 
h 
+Bq y +C y0, 

h . 
then this equation is eliminated for Hk 

follows that the 

and thus it 

original statement is also true for 

Hk The statement is true therefore for all values of 

J. 

THEOREM 4.8 Theorem 4.7 has no analogue in 3- dimensions. 

PROOF: The proof is by example. Consider the following 

set of nine points 

4, -4,2) (0,0,0) (9/4,4,1/8) 

0, j 

+1' 

. 

q 



(®5/2,4,®1/3) 

(- 2,4,.1) 
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(1/2,4, -1/2) (3,4,1) 

(2,4,0) (m2/135,1/9, -1 /10) 

The points (- 4,4,2) , (3,4,1) , (- 2,4, -1) and (0,0,0) are 

the vertices of H1. We then add the points (2,4,0), 

(1/2,4, -1/2), (9/4,4,1/8) and (- 5/2,4, -1/3) obtaining in 

turn H2, H3, 
3' 

and H5 respectively. 

Now the only point of the original nine which can 

still be outside H5 is the point (- 2/135,1/9,- 1 /10). 

Equations of the supporting planes of H5 are given by the 

following table: 

EQUATION OF PLANE VERTICES IN PLANE 

1. 2x - 5y + 14z = 0 (-4,4,2), (3,4,1), (0,0,0) 

2. y - 4 = 0 (-4,4,2) o(-2,4a-1) , (3,4,-1) 

3. 4x -- 3y - 20z = 0 (-2,4,-1) , (1/2,4,-1/2), (0,0,0) 

4. 2x - y - 6z = 0 (1/2,4,-1/2), (2,4,0), (0,0,0) 

5. 2x - y - 4z = 0 (9/4,4,1/8), (2,4,0), (0,0,0) 

6. 28x - 15y - 24z = 0 (9/4,4,1/8) , (3,4,1) , (0,0,0) 

7. -28x - 19y - 18z = 0 (-5/2,4,-1/3), (-4,4,2), (0,0,0) 

8. -16x - lly - 12z = 0 (-5/2,4,-1/3), (-2,4,-1), (0,0,0) 

By substituting the coordinates of the point 

(- 2/135,1/9, -1 /10) into the left member of each of the 

H4 
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equations (3) through (8) we find that 

Ai(-2/135) if 3:1i.= + Bi(1/9) + Ci (-1/10) + Di 0, 8. ° 
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Chapter 5 

FORTRAN PROGRAMS AND GENERAL FLOW CHARTS 

Machine requirements: 

IBM 1622 card input -output 

IBM 1620 with at least 40,000 storage positions 

indirect addressing 

automatic divide 

IBM 026 card punches are required for preparing data and 

an IBM 407 accounting machine is required to list punched 

output. 

Restrictions: 

With 40,000 storage positions the maximum number of 

points is 51. 

Eight significant digits are retained during calcu- 

lations. If more than eight are required the programs 

type out the message "DATA NOT ACCEPTABLE." 

Data Preparation: 

Input data for Program 1 

Card 
No, Field Definition Format Example 

1 1-2 N 12 08 



59 

2 

2 

1-14 

15-28 

E14.8 

E14.8 

+012000000E+02 

+.30000000E+0]. 

29-52 z1 E14.8 +014600000Em01 

2 53-80 blank 

N+1 1-14 xN E14.8 +.00000000E +02 

N+1 15-28 yN E14.8 +.26100000E -01 

N+1 29-52 zN E14.8 +.60000000E +01 

N +1 53 -80 blank 

The output from Program 1 will be the final results 

if the message "CONVEX HULL" is typed on the typewriter. 

If the message "POINTS ARE COPLANAR" is typed on the type- 

writer the output from Program 1 is used as input for 

Program 2. If the message "POINTS ARE NOT COPLANAR" is 

typed on the console the output from Program 1 is used as 

input for Program 3. 

xl 

y1 

2 



FLOW CHART SYMBOLS 

SYMBOL DESCRIPTION 

Direction of flow 

Decision function 

Input /Output function 

Processing function 

Connector or step 
identification 

60 

CD 

o 



PROGRAM 1 

Read in 
value of 

N 

(7ead in 

points 

Determine e- 
quations of 
line contain- 
ing the two 
points 

Punch 
Output 

Punch 
Output 

61 

111) 

N 



Determine 
the points 
Pix8PlyoPlzs 

Psx,PsyopsZ 

62 

Determine 
equations of 
line con- 
taining P 
and Psx 

lx 

Determine e- 
quations of 
the line 
containing 
Piza and Psz 

Determine e- 
quations of 
the line 
containing 
Ply and Psy 



63 

Choose 
Third 
Point 

Choose 
Fourth 
Point 

t 
Determine e- 
quations of 
supporting 
planes of 
'tetrahedron 

Ili 

(Punch 
Output 

Determine 
equations o 
supporting 
lines 

Punch outpu 

co 

Punch 
Output 

s 
Punch 
Output 

Determine an 
equation of 
plane con - 
taininglst 
3 points 

c 



C CONVEX HULL-PROGRAM 1 

DIMENSION <x(51) ,Y(51) ,Z(51) ,U(51) ,v(51) ,W(51) ,E(51) 
DIMENSION XA (4) , XB (4) ,XC (4) ,XD (4) 

100 READ 1,N 
DO 101 I =1,N 

101 _READ 21,X(1) ,Y(I) ,Z (I) 
NUMB1=1 
NUMB2=2 
ICOEF=1 
INN=0 
IHEAD=0 
IF(N-2)102,107,134 

102 PUNCH 3,N 
PRINT 4 
PUNCH 5 
PUNCH 6,X (N) ,Y(N) ,Z (N) 

103 PUNCH 7 

GO TO 100 
104 PRINT 8 

GO TO 100 
105 PUNCH 3,N 

11=1 
12=2 
PRINT 4 
PUNCH 9 
DO 106 I=1,N 

106 PUNCH 10 ,I,X(I) ,Y(I) ,z(I) 
,I.07 ;11=1 

I2=2 
108 .IF(X(.I1)-X(12) ) 109,110,109 

. 



109 KPERP=1 
GO TO 113 

110 IF(Y(I1)-Y(I2) ) 111,112,111 
111 KPERP=2 

GO TO 113 
112 KPERP=3 

GO TO 114 
113 A1=Y(I2)-Y(I1) 

B1=X(I1)-X(I2) 
C1= (x (I2) =x (I1) ) *Y (I1) + (Y (I1) -Y (I2) ) *x (I1) 
GO TO (114,115,100),KPERP 

114 A2=Z (L2) -Z (I1) 
B2=X(I1)-X(I2) 
C2= (X (I2) -X(I1) ) *Z (I1) + (Z (I1) -Z (I2) ) *X (I1) 
GO TO (116,100,115),KPERP 

115 A3=Z.(I2) -Z (I1) 
B3=Y(I1)-Y(I2) 
C3= (Y (I2) -Y(I1) ) *Z (I1) + (Z (I1) mZ (I2) ) *Y (I1) 

116 ZERO=O. 
IF (N-2)104,219,117 

117 IF(INN-1)118,100,181 
118 IF(IHEAD-2)119,120,120 
119 PUNCH 11 

PUNCH 12 
PUNCH 13 
PUNCH 14 
IHEAD=2 

120 GO TO (121,122,123),KPERP 
121 15,NUMBl,Al,B1, ZERO ¡Cl 

PUNCH 15,NUMB2,A2,ZERO,B2,C2 



GO TO 
122 PUNCH 

PUNCH 
GO TO 

123 PUNCH 
PUNCH 15,NUMB2,ZERO,A3,B3,C3 

124 GO TO 

124 
15,NUMB1,A1,B1,ZERO,C1 
15,NUMB2,ZERO,A3,B3,C3 
124 
15,NUMB1 ,A2,ZERO,B2,C2 

(126,132,133,103),ICOEF 
126 PUNCH. 16 

DO 127 1=1,2 
127 PUNCH 17,1 

IF (INN-2) 128,103,128 
128 DO 12S I=3,4 
129 PUNCH 18,I 

DO 130 I=5,6 
130 PUNCH 19,I 

GO TO 103 
131 ICOEF=2 

NUMB1=1 
NUMB2=2 
GO TO 105 

132 11=3 
ICOEF=3 
NUMB1=NUMB1+2 
NUMB2=NUMB2+2 
GO TO 108 

133 I2=1 
ICOEF=1 
NUMB1=NUMB1+2 
NUMB2=NUMB2+2 



GO TO 108 
134 A=X(1) 

B=Y(1) 
C=Z(1) 
D=X(1) 
EE=Y(1) 
F=Z (1) 
DO 146 I=1,N 
IF(A-X(I) ) 135,135,136 

135 KL=I 
A-X(I) 

136 IF(B-Y(I))137,137,138 
137 LL=I 

B=Y(I) 
138 IF (C-Z (I) )139,139,140 
139 ML=I 

C=Z ( I ) 

140 IF (X (I) -D) 141,141,142 
141 KS=I 

D=X (I) 
142 IF (Y(I) -EE) 143,143,144 
143 LS=I 

EE=Y(I) 
144 IF(Z(I)-F)145,145,146 
145 MS=I 

F=Z(I) 
146 CONTINUE 

IF (X (KL) -X(KS) ) 147,151,147 
151 IF(Y(LL)-Y(LS))160,152,160 
147 I1=KL 

I2=KS 



KPERP=1 
GO TO 155 

160 I1=LL 
I2=LS 
KPERP=2 
GO TO 155 

152 I1=ML 
I2=MS 
KPERP=3 

155 'K=I1 
J=1 

150 RA=x(K) 

RB=Y(K) 
RC=Z (K) 
X(K)=X(J) 
Y(K)=Y(J) 

Z(K)=Z(J) 
X(J)=RA 
Y(J)=RB 
Z(J)=RC 
IF (J-1) 153,153,154 

153 J=2 
_IF(I2-1)157,157,158 

157 K=I1 
GO TO 150 

158 K=I2 
GO TO 150 

154 INN=2 
LINE=O 
GO TO (113,113,114),KPERP 

rn 
co 



181 GO TO (182,182,189) ,KPERP 
182 DO 183 I=1,N 
183 E (I) =Al*X(I)+B1*Y(I)+Cl 
184 E1=E (1) 

DO 186 I=1,N 
IF (E1**2-E (I) **2) 185,185,186 

185 E1=E (Z) 
K=I 

186 CONTINUE 
IVERT=2 
L=3 
IF (El) 225,187, 225 

187 IF (LINE-1) 188, 219,104 
188 LINE=1 

GO TO (189,191,191),KPERP 
189 DO 190 I=1,N 
190 E (I) =A2*X (I) +B2*Z (I) +C2 

GO TO 184 
191 DO 192 I=1,N 
192 'E (I) =A3*Y (I) +B3*Z (I) +C3 

GO TO 184 
225 IF (N-3) 104, 131,125 
125 DO 226 I = 1,N 

01=((Y(2)-Y(I))*(z(2)-Z(1))-(Z(2)-Z(I))*(Y(2)-Y(1)))**2 
02=((Z(2)-Z(I))*(X(2)-X(1))-(X(2)-X(I))*(Z(2)-Z(1)))**2 
03=((X(2)-X(I))*(Y(2)-Y(1))-(Y(2)-Y(I))*(X(2)-X(1)))**2 

226 E.(I)-01+02+03 
E1=E(1) 
DO 228 I=1,N 
IF'(E1-E (I) ) 227,227,228 

227 :E1=E (I) 
K=I 

0 



228 CONTINUE 
193 RA=X(K) 

RB=Y(K) 
RC=Z(K) 
x(K)=x(L) 
Y(K)=Y(L) 
Z_(K) =Z (L) 
X(L)=RA 
Y(L)=RB 
Z(L)=RC 
GO TO (119,194) ,IVERT 

194'A-Y(1)*Z(2)+Y(2)*z(3)+Z(1)*Y(3)-Y(3)*Z(2)-Y(1)*Z(3)-Y(2)*z(1) 
B=X(3)*Z(2)+X(1)*Z(3)+X(2)*Z(1)-X(1)*Z(2)-x(2)*Z(3)®X(3)*Z(1) 
C=x(1) *Y(2)+x(2) *Y(3)+Y(l) *x(3) -Y(2)*X(3) -x(1) *Y(3) ®x(2:) *Y(1) 
DD-X(3)*Y(2)*Z(1)+Y(3)*Z(2)*X(1)+X(2)*Y(1)*Z(3) 
D=UD-X(1) *Y(2) *z (3) -x(2) *Y(3) *Z(1) -Y(1) *Z (2) *X(3) 
cP=Oo 
DO 195 I=1,N 
E (1) =A*X(i ) +B*Y(I) +C*z.(I) +D 

195 ,cP=CP-1-E (I) *E (3:) 
IF(CP)104,209,196 

196 F=E(1) 
DO 198 I=1, N 

IF (F*F-E (I) *E (I ) )197 ,197 ,198 
197 F=E (I) 

K=I 
198 CONTINUE 

L=4 
iVERT=1 
GO TO 193 

199 PRINT 20 

O 

. 



C1=(X(1)+X(2)+X(3)+X(4) )/4. 
C2={Y(1)+Y(2)+Y(3)+Y(4) )/4. 
C3=(Z(1)+Z (2)+Z(3)+Z (4) )/4. 
II=1 
I=1 
L=1 
J=2 
K=3 
U(1)=1 
V(1)=2 
W(1)=3 

200 XA(L)=Y(I)*Z(J)+Y(J)*Z(K)+Z(I)*Y°(K)-Y(K)*Z(J)-Y(I)*Z(K)®Y(J)*Z(I) 
XB (L) =X (K) *Z (J) +X (I) *Z (K) +X (J) *Z (I) ®x (I) *Z (J) mX (J) *Z (K) ®X (K) *Z (I) 
xc (L) =x ( I ) *Y (J) +x (J) *Y (K) FY ( I ) *X (K) ®Y (J) *X (K) -X ( I ) *Y (K) mX (J) *Y ( I ) 

DD=X (K) *Y{.J) *Z (I ) +Y (K) *Z (J) *X (I ) +X (J) *Y (I ) *Z (K) 
XD (L) =DD--X (I ) *Y (J) *Z (K) °x (J) *Y (K) *Z (I) ®Y (I) *Z (J) *X (K) 
GO TO (201,202,203,204) II 

201 K=4 
L=2 
II=2 
U(2)=1 
v(2)=2 
W(2)=4 
GO TO 200 

202 J=3 
L=3 
II=3 
U(3)=1 
V(3)=3 
W(3)=4 
GO TO 200 



203,1=2 
L=4 
II=4 
U(4)=2 
V(4)=3 
W(4)=4 
GO TO 200 

204 DO 206 1=1,4 
E (I) =XA(I) *C1+XB (I) *C2+XC (I) *C3+XD (I) 
IF(E(I))206,104,205 

205 XA(I)=XA(I)*(-1.) 
XB(I)=XB(I)*(-1.) 
XC(I)=XC(I)*(®1.) 

' XD(I)=XD(I)*(-1.) 
206 CONTINUE 

PUNCH 21,C1,C2,C3 
DO 207 I=1,4 
IU=U(I) 
'IV=V (I) 
IW=W(I) 

207 PUNCH 21,XA(I) ,XB(I) ,XC (I) ,XD(I) ,IU,IV,IW 
PUNCH 25,N 
DO 208 I=1,N 

208 PUNCH 21,X(I),Y(I),Z(I) 
GO TO 100 

209 PRINT 23 
PUNCH 21,A,B,C,D 
IF(A)211,210,211 

210 IF(B)213,215,213 
211 DO 212 I=1,N 



U(I) =Y(I) 
V(I)=Z(I) 

212 W(I)=X(I) 
KPROJ =1 
GO TO 217 

213 DO 214 I=1,N 

U(I)=X(I) 
V(I)=Z(I) 

214 W(I) =Y(I) 
KPROJ=2 
GO TO 217 

215 DO 216 I=1,N 
U(I)=X(I) 
V(I)=Y(I) 

216 W(I)=Z(I) 
KPROJ=3 

217 PUNCH 25,N,KPROJ 
DO 218 I=1,N 

218 PUNCH 21,U(I),V(I),W(I) 
GO TO 100 

219 PUNCH 3,N 
PUNCH 26 
PRINT 4 
PUNCH 27 
DO 220-I=1o2 

220 PUNCH 10,I,X(I) ,Y(I) ,Z (I) 
ZERO =0. 
ICOEF=4 
NUMB1=1 
NUMB2=2 
PUNCH 28 

-- 



PUNCH 
PUNCH 
PUNCH 
GO TO 

1 FORMAT 
3 FORMAT 
4 FORMAT 
5 FORMAT 
6 FORMAT 
7 FORMAT 
8 FORMAT 
9 FORMAT 

10 FORMAT 
11 FORMAT 
12 FORMAT 
13 FORMAT 
14 FORMAT 
15 FORMAT 
16 FORMAT 
17 FORMAT 
18 FORMAT 
19 FORMAT 
20 FORMAT 
21 FORMAT 
23 FORMAT 
25 FORMAT 
26 FORMAT 
27 FORMAT 

28FORMAT( //2 
29 FORMAT 

END 

29 
13 

14 
120 
(I2) 

( /11HCONVEX HULL/2HN=,I4/) 
(11HCONVEX HULL) 
(13X,1HX,15X,1HY,15X,1HZ /) 
(7X,E14o8,2X,E14,.8,2X,E14o8) 
( /31HCONVEX HULL HAS BEEN DETERMINED / //) 
(16HERROR IN PROGRAM) 
(/8HVERTICES//2X,3HN0o,8X,1HX,15X,1HY,15X,1HZ/) 
(I3,4X,E14o8,2X,E14o8,2X,E14,8) 
/ OF SUPPORTING LINES,16H ARE IN THE FORM) 
(20HAX + BY + CZ + D = 0 //) 

( BHEQUATION, 5X,1HA,15X,1HB,15X,1HC,15X,1HD) 
(2X,3HNO. /) 
(I 3,2X,E14o.8,2X,E14m8,2X,E14o8,2X,E14o8) 
(//8HVERTICES,13X,16HSATISFY EQUATION 
(2X,2H1,,2X,1H2,18X,I3) 
(2X,2H2,,2X,1H3,18X,I3) 
(2X, 2H1 2X,1H3,18X,I3) 
(23HPOINTS ARE NOT COPLANAR) 
(4E14o8,3I4) 
(19HPOINTS ARE COPLANAR) 
(I4,I2) 
( /20HPOINTS ARE COLLINEAR /) 
(/9HENDPOINTS//2X,3HNO0,8X,1HX,15X,1HY,15X,1HZ/) 

1HEQUATIONS OF THE LINE,30H CONTAINING THE GIVEN N POINTS) 
(15HARE IN THE FORM,21H AX + BY + CZ + D = 0 //) ' 
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PROGRAM 2 - COPLANAR 

("Read 
Value of 

N 

.i_!) 

points 
N 

Determine equations 
of the supporting 
lines of the tri- 
angle determined by 
by the first three 
points 

Read 

O 
S 
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Check pre- 
sent convex 
hull for in- 
side points 

Check equation No. 
NETC to see if it 
is an equation of 
a supporting line 
of final convex 
hull 

Punch 
\ Output 

T 
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NETC= 
NETC+1 

'Determine if 
any of the N 
points are 
not vertices 
of final con- 
vex hull 

al 
verti- 
ces 

Punch 
Output 

r 

? 

Output 

_Punch 

output 
' Boundary 

points 

V 

Remove all 
but 1 equa- 
tion for 
each sup- 
porting line 
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Reorder 
points so 
that the 
NVth point is 
new vertex 

Determine e- 
quations of 
the 2 new 
supporting 
lines. Nos. 
NE +1 ,NE +2 

Reorder equa- 
tions remov- 
ing equation 
No NETC. 

Deter- 
mine a 
new vertex 

NV = NV+1 

i 

Ol 

P 



CONVEX HULL-PROGRAM 2-COPLANAR 
DIMENSION R(51) ,S(51),T(51),A(51) ,B(51),C(51) ,D(51) oE(51) 
DIMENSION MM(51) ,NN(51) 

100 READ 1,AP,BP,CP,DP 
READ 2,N,KPROJ 
DO 101 I=1,N 

101 E(I)=0. 
PUNCH 3,N 
DO 102 I=1,N 

102 READ 4,.R(I),S(I),T(I) 
NETC=1 
.NE=3 

NV=-3 

NEWEQ=1 
INSID=1 
IBDRY=1 
C1=(R(1)+R(2)+R(3)')/3. 
C2= (S(1) (2)+S (3) )/3= 

-S(1) 
B(1)=R(1)-R(2) 
C(1)={R(2)°R(1))*S(1)+(S(1)°S(.2))*R(1) 
MM(1)=1 
NN(1)=2 
A(2)= S(3) -S(2) 
B(2)=R(2)-R(3) 
C(2)=(R(3)eR(2))*S(2)+(S(2)mS(3))*R(2) 
MM(2)=3 
NN(2)=2 
A(3)=S(1)-S(3) 
B(3)=R(3) °R(1) 

C 



C(3)=(R(1)-R(3) )*S(1)+(S(3)®S(1) )*R(1) 
MM(3)=1 
NN(3)=3 

103 DO 105<'J=NEWEQ,NE 
D (J) =A (J) *Cl+B (J) *C2+C (J) 
IF (D (J) ) 105,105,104 

104-A(J)=A(J)*(-10) 
B(J)=B(J)*(-1.) 
C(J)=C(J)*(-1m) 

105 CONTINUE 
LESSQ=2 
IF (NE.3) 112,106,134 

C CHECKING FOR INSIDE POINTS 
106 IF (N-NV) 112 ,136 ,186 
186 I=NV+1 
107 DO 108 J=1,NE 
108 D (J) =A(J) *R (I) +B (J) *S (I) +C (J) 

DMAX=D(1) 
DO110 J=1,NE 
IF(DMAX-D(J))109,110,110 

109 DMAX=D ( J) 
110 CONTINUE 

IF(DMAX)111,120,120 
111 GO TO (113,114),INSID 
112 PRINT 5 

GO TO 100 
113 PUNCH 6 

INSID=2 
114 GO TO (115,116,117),KPROJ 
115 PUNCH 7,T(I),R(I),S(I) 

GO TO 118 

- 

- 



116 PUNCH 7,R(I),T(I),S(I) 
GO TO 118 

117 PUNCH 7,R(I),S(I),T(I) 
118 N=N-1 

DO 119 J=I,N 
R(J)=R(J+1) 
S (J) =S (J+1) 

119 T(J)=T(J+1) 
IF (N®I) 124,107 ,107 

120 IF(N-I)112,124,122 
122 I=I+1 

GO TO 107 
C CHECKING FOR SUPPORTING LINES 

124 I=NETC 
MR=MM ( I ) 
NR=NN ( I ) 
D (I) =A (I) *R (MR) +B (I) *S (MR) +C (I) 
IF(D(I))126,125,126 

125 D(I)=A(I)*R(NR)+B(I)*S(NR)+C(I) 
IF(D(I))126,128,126 

126 ° PRINT 8 

IF(SENSE SWITCH 1)128,100 
128 NCK=NV+1 

IF (N-NCK) 144 ,187 ,187 

187 DO 129 J=NCK,N 
129 D(J)=A(I)*R(J)+B(I)*S(J)+C(I) 

DMAX=D(NCK) 
DO 131 J=NCK,N 
IF(DMAX-D(J))130,130,131 

130 DMAX=D(J) 



K=J 
131 CONTINUE 

IF(DMAX)132e132,133 
132 NETC=NETC+1 

IF (NE-NETC) 136,124,124 
133 NV=NV+1 

RA=R (NV) 
SA=S (NV) 
TA=T (NV) 
R (NV) =R (K) 
S (NV) =S (K) 
T (NV) =T (K) 
R(K)=RA 
S (K) =SA 
T(K)=TA 
I 1=MM ( I ) 
I2=NN (I) 
NE=NE+1 
A (NE) =S (I1) -S (NV) 
B(NE)=R(NV) -R (I1) 
C (NE) =-(R(I1) ®R (NV) ) *S (NV) + (S (NV) -S (Il) ) *R (NV) 
MM(NE)=MM(I) 
NN(NE)=NV 
NE (NE+1 
A(NE) =S (I2) -S (NV) 
B (NE) =R ( NV ) --R ( I 2 ) 
C (NE) = (R (I2) -R (NV) ) *s (NV) + (S (NV) -S (I2) ) *R (NV) 
MM(NE)=NN(I) 
NN(NE)=NV 
NEWEQ=NE-1 
GO TO 103 



134 NE =NE -1 
DO 135 J=L,NE 
A(J)=A(J+1) 
B (J) =B (J+1) 
C (J) =C ( J+1) 
MM(J)= MM(J +1) 

135 NN(J)= NN(J +1) 
GO TO (166,106),LESSQ 

C CHECKING FOR BOUNDARY POINTS THAT ARE NOT VERTICES 
136 NPNCH =O 

IF(NV-N)137,144,112 
137 PUNCH 9 

IBDRY =2 
K =NV +1 
DO 143 > J=K , N 

138 GO TO (139,140,141),KPROJ 
139 PUNCH 7,T(J),R(J),S(J) 

GO TO 142 
140 PUNCH 7,R(J),T(J),S(J) 

GO TO 142 
141 PUNCH 7,R(J),S(J),T(J) 
142 -IF (NPNCH) 112 ,143 ,160 
143 CONTINUE 

N =NV 
C CHECKING FOR BOUNDARY POINTS THAT WERE VERTICES 
C BUT ARE NOT VERTICES OF THE FINAL CONVEX HULL 

144 K =1 
145 DO 146 I =1,N 
146 D(I)=A(K)*R(I)+B(K)*S(I)+C(K) 

I =1 
m 



147 IF (D (I) ) 151,149,151 
149 IF(MM(K)®I)150,151,150 
150 IF (NN (K)®I)155,151,155 
151 IF(N®I)112,153,152 
152 I=I+1 

GO TO 147 
153 IF (NEvK) 112,1'70,154 
154 K=K+1 

GO TO 145 
155 11=MM(K) 

12=NN(K) 
13=1 
KK=K 
AL=SQRT ( (R (I1) -R (I2) )**2+(S(Il)-S(I2) ) **2) 
BL=SQRT ( (R (I1) -R (I3) ) **2+ (S (I1) =S (I3) ) **2) 
CL=SQRT ( (R (I2) -R (I3) ) **2+(S (I2) ®S (I3) ) **2) 
IF (AL+BL-CL) 157,156,157 

156 J=11 
MM-(K) =I3 
11=MM(K) 
GO TO 158 

157 IF(AL+CL-BL)1157,2157,1157 
1157 J=I3 

GO TO 158 
2157 J=I2 

NN (K)=I3 
I2=NN(K) 

158 NPNCH=2 
I=0 
I-F (IBDRY®2) 159,138,112 

159 PUNCH 9 



GO TO 138 
C CHECKING FOR MORE THAN ONE EQUATION OF THE SAME LINE 

160 E(J)=1. 
161-I=I+1 
162 V1= A(I) *R (I1) +B(I) *S(I1) +C(I) 

IF(V1)169,163,169 
163 V2=A(I)*R(I2)+B(I)*S(I2)+C(I) 

IF(V2)169,164,169 
164 IF (I-KK) 165 , 161, l65 
165 LESSQ =1 

GO TO 134 
166 IF(NE -I) 167,162,162 
167 IF(NE -KK) 112,170,168 
168 K =KK +1 

GO TO 145 
169 IF (NET) 112 ,167 ,161 
170 PUNCH 10 

NUMB =1 
DO 175 I =1,N 
IF (E (L) ) 112 ,171,175 

171 GO TO (172,173,174),KPROJ 
172 PUNCH 11,NUMB,T(I),R(I),S(I) 

GO TO 190 
173 PUNCH 11,NUMB,R(I),T(I),S(I) 

GO TO 190 
174 PUNCH 11,NUMB,R(I),S(I),T(I) 
190 NUMB= NUMB +1 
175 CONTINUE 

PUNCH 12 
PUNCH 13 

OD 
01 



PUNCH 14 
DO 179 I =1,NE 
ZERO =0o 
GO TO (176,177,178),KPROJ 

176 PUNCH 11,I,ZERO,A(I),B(I),C(I) 
GO TO 179 

177 PUNCH 11,I,A(I),ZERO,B(I),C(I) 
GO TO 179 

178 PUNCH 11,I,A(I),B(I),ZERO,C(I) 
179 CONTINUE 

PUNCH 15 
DO 191 I =1,N 
IF (E(I))112,184,180 

180 DO 184 K =1,NE 
IF(MM(K) -I) 182,181,181 

181 MM (K) =MM (K) ®1 
182 IF (NN (K) -I) 184,183,183 
183 NN(K)= NN(K) -1 
184 CONTINUE 
191 CONTINUE 

DO 185 I =1,NE 
185 PUNCH 16,MM(I),NN(I),I 

PUNCH 17 
PUNCH 18 
PUNCH 19 
PUNCH 7,AP,BP,CP,DP 
PUNCH 20 
GO TO 100 

1 FORMAT (4E14.8) 
2 FORMAT (I4,12) 

3 FORMAT ( /11HCONVEX HULL /2HN =,I4 /) 



4 FORMAT (3E14.8) 
5 FORMAT (16HERROR IN PROGRAM) 
6 FORMAT ( /13HINSIDE POINTS / /13X,1HX,15X,1HY,15X,1HZ /) 
7 FORMAT (6X,E14.8, 2X,E14.8,2X,E14.8, 2X,E14.8) 
8 FORMAT (19HDATA NOT ACCEPTABLE) 
9 FORMAT (/15HBOUNDARY POINTS / /13X,1HX,15X,1HY,15X,1HZ 

10 FORMAT (/8HVERTICES//2X,3HNO.,8X,1HX,15X,1HY,15X,1HZ/) 
11 FORMAT (I4,2X,E14m8,2X,E14o8,2X,E14o8,2X,E14o8) 
12 FORMAT ( /29HEQUATIONS OF SUPPORTING LINES,16H ARE IN THE FORM) 
13 FORMAT (20HAX + BY + CZ + D = 0 //) 

14 FORMAT (1X,3HNOo,9X,1HAo15X,1HB,15X,1HC,15X,1HD/) 
15 FORMAT (/1X,8HVERTICES,lOX,16HSATISFY'EQUATION/) 
16 FORMAT (I4,1H I4,14X,I4) 

17FORMAT ( / /27HCOEFFICIENTS OF AN EQUATION,24H OF THE PLANE CONTAINING) 
18FORMAT (21HTHE GIVEN N POINTS IN,30H THE FORM AX + BY + CZ + D = 0 //) 

19 FORMAT ( 13X ,1HA,15X,1HB,15X,1HC,15X,1HD /) 
20 FORMAT ( /31HCONVEX HULL HAS BEEN DETERMINED) 

END 
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PROGRAM 3 - NOT COPLANAR 
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Punch 
Output 
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equation No. 
NETC is an equa- 
tion of a sup- 
porting plane of 
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Determine the equations, 
of the 3 new support- 
ing planes NE +l,NE +2, 
NE +3. 
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o 
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Determine if 
the NVth 
point was on 
the outside 
of more than 
1 equation 

Eliminate 
Inside 
Planes 
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Remove all 
but 1 equa- 
tion for each 
supporting 
line 

Determine if 
any of the N 
points are 
not vert }ce 
of the find 
convex u 

unc 
output 

point(Bounda 

y 
s) 

1 

7 Punch 
(Bouuncar 
points) 
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NETC+l 

y 

Output 

N =NV 

y 



C CONVEX HULL -PROGRAM 3 -NOT COPLANAR 
DIMENSION X(51) ,Y(51) ,Z(51) ,A(98) ,B(98) ,C(98) ,D(98) ,E(98) 
DIMENSION MM(98),NN(98),.KK(98) 

100 KELEQ =1 
C INSID =2.IF INSIDE POINT HEADING HAS BEEN PUNCHED 

INSID =1 
NEWEQ =1 
NETC =1 

_ NE =4 
NV=4 
READ 1,C1,C2,C3 
DO 101 I =1,4 

101 READ 2, A( ,B(I) ,C(I) ,D(I) ,NN(I) ,MM(I) ,KK(,I) 
READ 3,N 
PUNCH 4,N 
DO 102 I =1,N 

102 READ 1,X(I),Y(I),z(I) 
C CHECKING FOR INSIDE POINTS 

103 IF(N- NV)133,161,213 
213 I =NV +1 
104 DO 105 J=1,NE 
105 E( =A J ) *X(I) +B(J) *Y(I) +C(J) *Z(I) +D(J) 

EE=E (1) 
DO 107 K =1,NE 
IF (EE -E(K)) 106,106,107 

106 EE =E(K) 
107 CONTINUE 

IF(EE)108,112,112 
108 GO TO (109,110),INSID 
109 PUNCH ,5 

INSID =2 



110 PUNCH 6,X(I) ,Y(I) ,Z (I) 
N=N-1 
DO 111 L=I ,N 
X(L)=X(L+1) 
Y(L)=Y(L+1) 

111 Z(L)=Z(L+1) 
IF (N+1-I) 133 ,114 ,104 

112 IF (N-I) 133,114,113 
113 I=I+1 

GO TO 104 
C CHECKING FOR SUPPORTING PLANES 

114 1123=1 
NINP=O 

115 IF (NE -NETC) 161,116,116 
116 J=NETC 

MR=MM (J) 
NR=NN ( J) 
KR=KK ( J) 
E (J) =A (J) *X (MR) +B (J) *y (MR) +c (J) *Z (MR) +D (J) 
IF (E (J) ) 119 ,117 ,119 

117 'E(J)=A(J)*X(NR)+B(J)*Y(NR)+C(J)*Z(NR)+D(J) 
IF (E (J) ) 119,118,119 

118 .E (J) =A (J) *X (KR) +B (J) *Y (KR) +C (J) *Z (KR) +D (J) 
IF (E (J) ) 119,120,119 

119 PRINT 7 

SENSE SWITCH 1) 120,100 
120 DO 121 I=1,N 
121 E(I)=A(J)*X(I)+B(J)*Y(I)+C(J)*Z(I)+D(J) 

V=E (1) 
DO 123 I=1,N 



IF (V-E (I) ) 122 ,122 ,123 
122 V=E(I) 

K=I 
123 CONTINUE 

IF(V)124,124,125 
124 NETC=NETC+1 

GO TO 115 
125 NV=NV+1 

XA=X(NV) 
YA=Y(NV) 
ZA=Z (NV) 
X(NV)=X(K) 
Y(NV)=Y(K) 
Z (NV) =Z (K) 
X (K) =XA 
Y (K) =YA 
Z (K) =ZA 

126 I1=MM (J) 
12=NN (J) 
I 3=KK (J) 
NE=NE+1 
GO TO (127,128,129,131),I123 

127 11=NV 
GO TO 130 

128 L2=NV 
GO TO 130 

129 I 3=NV 
130 MM(NE)=I1 

NN (NE) =12 
KK (NE) =L3 



AA=Y(I1) *Z (I2)+Y(I2) *Z 
A(NE)=AA-Y(13) *Z (I2) -Y(I1) 
BB=X(13) *Z(L2)+X(I1) *Z 
B (NE) =BB-X (I1) *Z (I2) mX 

Cc=x(I1)*Y(12)+x(12)*Y 
C(NE)=CC-Y (I2) *X (I3) -X 
DD=X(I3) *Y(I2) *Z (I1)+Y(I3) 
D(NE)=DD-X(I1) *Y(I2) *Z 
I123=I123+1 
GO TO 126 

131 NE=NE-1 
LJ=J 
KELEQ=3 
GO TO 157 

132 NEWEQ=J 
DO 135 I=NEWEQ,NE 
E (I) =A(I ) *C1+B (I) *C2+C 
IF(E(I))135,133,134 

133 PRINT 8 
GO TO 100 

134 A(I)=A(I)*(-1.) 
B(I)=B(I)*(-1e) 
C(I)=C(I)*(-1a) 
D(I)=D(I)*(-1.) 

135 CONTINUE 
DO 136 L=1,NE 

136 E (L) =A (L) *X (NV) +B (L) *Y (NV) +C (L) *Z (NV) +D (L) 
EE=E (1) 
DO 138 L=1,NE 
IF (EE-E (L) ) 1.37 ,137 ,138 

(I3) +Z (I1) *Y (I3) 
(I1)*Z(13)-Y(12)*Z(I1) 
(I3)+X(I2)*Z(I1) 
(I2) *Z (I3) -X (I3) *Z (I1) 
(I3) +Y(I1) *X(13) 
(I1) *Y (13) -X (I 2) *Y (I1) 

*Z (12) *x (I1) *X(12) *Y(I1) *Z (13) 
(I3) -X(I2) *Y(I3) *Z (I1) -Y(I1) -Z (I2) *X(13) 

(I) *C3+D (I) 



137 EE=E(L) 
J=L 

138 CONTINUE 
IF (EE) 140 ,140 ,139 

139 I123=1 
NINP=NINP+1 
GO TO 126 

140 IF (NINP) 133,103,141 
C ELIMINATING INSIDE PLANES 

141 I=1 
KELEQ=1 

142 K=I+1 
143'KMN=MM(I) 

ID3=0 
144 IF (MM (K)-KMN)145,149,145 
145 IF (NN(K) -KMN) 146,149,146 
146 IF (KK (K) -KMN) 147 ,149 ,147 
147 IF(NE-K)133,154,148 
148 K=K+1 

GO TO 143 
149 ID3=ID3+1 

IF(KMN-MM(I))151,150,151 
150 KMN=NN(I) 

GO TO 144 
151 IF (KMN-NN (I) ) 153,152,153 
152 KMN=KK(I) 

GO TO 144 
153 IF (ID3-3-) 154,156,133 
154 -IF (NE-I-1) 133,103,155 
155 I=I+1 

Lo 



GO TO 142 
156 LJ=I 

ID02=0 
157 NE=NE-1 

DO 158 LM=LJ,NE 
A(LM) =A (LM+1) 
B(LM) =B (LM+1) 

C (LM) =c (LM+1) 
D.(LM) =D (LM+1) 
MM ( LM) =MM ( LM+1 ) 
NN (LM) =NN (LM+1) 

158 KK(LM)=KK(LM+1) 
GO TO (159,165,132),.KELEQ 

159 IF (IDO2) 133,160,142 
160 IDO2 =1 

LJ=K-1 
GO TO 157 

C DETERMINING BOUNDARY POINTS THAT ARE NOT VERTICES 
161.IBDRY=1 

Ik' (NdNV) 133,,164,162 
162 IBDRY=2 

K=NV+1 
PUNCH 9 

DO 163 'J=K,N 
163 PUNCH 10,X(J),Y(J),Z(J) 

N=NV 
C ELIMINATING MORE THAN ONE EQUATION OF THE SAME PLANE 

164 I=1 
165 MZ=MM(I) 

NZ=NN ( I ) 



Kz=KK(I) 
J=I+1 

166 EZ=A (J) *X (MZ) +B (J) *Y (MZ) +C (J) *Z (MZ) +D (J) 
IF(EZ)170,167,170 

167 EZ=A (J) *X (NZ) +B{J) *Y (NZ) +C (J) *Z (NZ) +D (J) 
IF(EZ)170,168,170 

168 EZ=A (J) *X (KZ) +B (J) *Y (KZ) *C (J) *Z (KZ) *D (J) 
IF(EZ)170,169,170 

169 LJ=J 
KELEQ=2 
GO TO 157 

170 IF (NE-J) 133,172,171 
171 J=J+1 

GO TO 166 
172 -IF (NE-I-1) 133,174,173 
173 I=I+1 

GO TO 165 
174 I=1 

DO 175 K=1,N 
175 E(K)=0. 
176 IF (N-I) 185,177 ,177 
177 IV=O 

DO 179 K=1,NE 
VERT=A(K) *X(I) +B{K) *Y(I) +C (K) *Z (I)+D(K) 
IF(VERT)179,178,179 

178 IV=IV+1 
179 CONTINUE 

IF(IV-3)182,180,180 
180 IF(N-I)133,185,181 
181 I=I+1 



GO TO 177 
182 'IF (IBDRY-2) 183,184,133 
183 PUNCH 9 
184 PUNCH 10,X(I),Y(I),Z(I) 

E(I)=1. 
I=I+1 
GO TO 176 

185 PUNCH 11 
K=1 
DO 187 I=1,N 
IF(E(I))133,186,187 

186 PUNCH 12,K,X(I) ,Y(I) ,Z (I) 
K=K+1 

187 CONTINUE 
PUNCH 13 
PUNCH 14 
PUNCH 15 
PUNCH 16 
DO 188 I=1,NE 

188 PUNCH 12oI,A(I),B(I),C(I),D(I) 
PUNCH 17 
I=1 

189 IF(E(I))133,192,190 
190 N=N-1 

DO 191 K----I,N 
E (K) =E (K+1) 
X(K)=X(K+l) 
Y(K)=Y(K+1) 

191 Z (K) =Z (K+1) 
IF (N-I) 194,189,189 

- 

°o 



192 IF(N-I)194,194,193 
193 I=I+1 

GO TO 189 
194 K=1 
195 I=1 
196 DO 197 J=1,3 
197 . 

MM(J)=0 
NP=O 

198 E(I)=A(K)*X(I)+B(K)*Y(I)+C(K)*Z(I)+D(K) 
IF(E(1))199,201,199 

199 IF(N=I)133,205,200 
200 I=I+1 

GO TO 198 
201 NP=NP+1 

MM(NP)=I 
IF (NP-3) 202, 203,133 

202 IF(N-I)133,206,200 
203 PUNCH 19,MM(1) ,MM(2) ,MM(3) ,K 

IF(N-I)133,210,204 
204 I=I+1 

GO TO 196 
205 IF(NP)133,210,206 
206 GO TO (207, 208, 209) ,NP 
207 PUNCH 20,MM(1),K 

GO TO 210 
208 PUNCH 21,MM(1) ,MM(2) ,:K 

GO TO 210 
209 PUNCH 19,MM(1),MM(2),MM(3),K 
210 IF(NE-K) 133,212,211 
211 K=K+1 

. 

F, 
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GO TO 195 
212 PUNCH 18 

GO TO 100 
1 FORMAT (3E14.8) 
2 FORMAT (4E14.8,314) 
3 FORMAT - (I4) 

4 FORMAT ( /11HCONVEX HULL /2HN =,14/) 
5 FORMAT ( /13HINSIDE POINTS//13X,1HX,15X,1HY,15X,1HZ/) 
6 FORMAT (6X,E1408,2X,E14.8,2X,E14.8) 
7 FORMAT (19HDATA NOT ACCEPTABLE) 
8 FORMAT (16HERROR IN PROGRAM) 
9 FORMAT ( /15HBOUNDARY POINTS/13X,1HX,15X,1HY,15X,1HZ/) 

10 FORMAT (6X,E14.8,2X,E14.8,2X,E14v8,2X,E14.8) 
11 FORMAT (/8HVERTICES//2X,3HNO.,8X,1HX,15X,1HY,15X,1HZ/) 
12 FORMAT (I3,3X,E14.8,2,XE14.8,2X,E14.8,2X,E14.8) 
13 FORMAT ( /30HEQUATIONS OF SUPPORTING PLANES,16H ARE IN THE FORM) 
14 FORMAT (20HAX + BY + CZ + D = 0/) 
15 FORMAT ( 8HEQUATION, 5X,1HA,15X,1HB,15X,1HC,15X,1HD) 
16 FORMAT (2X,3HNO. /) 
17 FORMAT (//3x, 8HVERTICES, lOX, 16HSATISFY EQUATION /) 
18 FORMAT ( / /31HCONVEX HULL HAS BEEN DETERMINED / //) 
19 FORMAT (I3,1H23,1H,,I3,15X,I3) 
20 FORMAT (I3, 23X,I3) 
21 FORMAT (I3,1H, , I3,19X, I3) 

END 



CHAPTER 6 

EXAMPLES 

Example 1 

INPUT DATA FOR PROGRAM 1 

3 

+.20000000E+01-.50000000E+01+.20000000E+02 
+.20000000E+03-.40000000E+01-.50000000E+02 
-.30000000E+02+.80000000E+02+.40000000E+01 

OUTPUT FROM PROGRAM 1 

CONVEX HULL 
N = 3 

VERTICES 

NO. X Y Z 

1 . .20000000E +01 --.50000000E+01 .20000000E +02 
2 .20000000E+03 -.40000000E+01 -.50000000E +02 
3 -.30000000E+02 .80000000E+02 .40000000E+01 

EQUATIONS OF SUPPORTING LINES ARE IN THE FORM 
-AX + BY + CZ + D = 0 o 



EQUATION 
NO. A C D 

1 .10000000E +01 -.19800000E +03 .00000000E -99 -.99200000E+03 
2 -.70000000E +02 .00000000E -99 -.19800000E +03 .41000000E +04 
3 -.84000000E +02 -.23000000E +03 .00000000E -99 .15880000E +05 
4 -.54000000E+02 .00000000E -99 -.23000000E +03 -.70000000E +03 
5 -.85000000E +02 -.32000000E +02 .00000000E -99 .10000000E +02 
6 .16000000E +02 .00000000E -99 -.32000000E+02 .60800000E +03 

VERTICES SATISFY EQUATION 

1, 2 1 
1, 2 2 

2, 3 3 

2, 3 4 

1, 3 5 

1, 3 6 

CONVEX HULL HAS BEEN DETERMINED 

Example 2 

INPUT DATA FOR PROGRAM 1 

9 

+.20000000E+01+.38000000E+02-.16000000E+02 
+.29000000E+02+..38000000E+02-.16000000E+02 

B 



-.60000000E+03+.38000000E+02-.16000000E+02 
-.26800000E+03+.38000000E+02-.16000000E+02 
-.11000000E+02+.38000000E+02-.16000000E+02 
+.29800000E+03+.38000000E+02-.16000000E+02 
+.36010000E+04+.38000000E+02-.16000000E+02 
+.65020000E+04+.38000000E+02-.16000000E+02 
+. 26000000E +02 +.38000000E +02 

OUTPUT FROM PROGRAM 1 

CONVEX HULL 
N= 9 

POINTS ARE COLLINEAR 

ENDPOINTS 

NO. X Y Z 

1 +04 .38000000E +02 -.16000000E +02 
2, -.60000000E +03 .38000000E +02 -.16000000E +02 

EQUATIONS OF THE LINE CONTAINING THE GIVEN N POINTS 
ARE IN THE FOR AX+BY+CZ +D=-0 

EQUATION 
NO. A C D 

1 .00000000E-99 .71020000E+04 .00000000E -99 m.26987600E+06 
2 .00000000E-99 .00000000E-99 071020000E+04 .11363200E+06 

CONVEX HULL HAS BEEN DETERMINED 

B 

o 



Example 3 

INPUT DATA FOR PROGRAM 1 

1 

+.10000000E+01+.20000000E+01+.30000000E+01 

OUTPUT FROM PROGRAM 1 

CONVEX HULL 
N= 1 

X Y Z 

.10000000E +01 .20000000E +01 .30000000E +01 

CONVEX HULL HAS BEEN DETERMINED 

Example 4 

INPUT DATA FOR PROGRAM 1 

8 

+.10000000E +01 +.20000000E +01- .50000000E +01 
+. 40000000E +01 + - 20000000E +01 -.30000000E +01 
+. 40000000E +01 +.20000000E +01 +.40000000E +Oi 
+. 40000000E +01 +.20000000E +01 +.00000000E +00 
+.40000000E +01 +.20000000E +01- .10000000E +01 
+. 10000000E +01 +.20000000E +01 ±.70000000E +01 

. 

f. 

° 



+000000000E+00+020000000E+01+m00000000E+00 
eo2000O000E+O1+a20000000E+01+000000000E+00 

OUTPUT DATA FROM PROGRAM l AND INPUT DATA FOR PROGRAM 2 

m®00000000E®99®o45000000E+02-.00000000E®99 090000000E+02 
8 2 

.40000000E+O1ma10000000E+01 

.10000000E+01 m70000000E+01 
-.20000000E+01 .00000000E-99 
010000000E+O1-a50000000E+01 
.40000000E+01®030000000E+01 
.40000000E+01 .40000000E+01 
..40000000E+01 .00000000E -99 
..00000000E-99 .00000000E -99 

OUTPUT FROM PROGRAM 2 

CONVEX HULL 
N= 8 

INSIDE POINTS 

X 

.00000000E -99 

BOUNDARY POINTS 

X 

.40000000E +01 

.40000000E +01 

.20000000E+01 

.20000000E +01 

.20000000E +01 

.20000000E+01 

.20000000E +01 

.20000000E +01 

.20000000E+01 

.20000000E+01 

Y Z 

.20000000E+01 00000000E -99 

Y Z 

020000000E +01 .00000000E-99 
.20000000E+01 -,10000000E+01 



VERTICES 

NO. X Y Z 

1 .10000000E +01 020000000E +01 .70000000E+01 
2 +01 020000000E+01 000000000E-99 
3 .40000000E +01 +01 040000000E+01 
4 .10000000E +01 .20000000E +01 -050000000E+01 
5 .40000000E +01 020000000E+01 -.30000000E+01 

EQUATIONS OF SUPPORTING LINES ARE 
AX + BY + CZ D = 0 

IN THE FORM 

A B C D 

1 .-..70000000E+01 000000000E-99 30000000E+01 ®014000000E+02 
2 .50000000E+01 000000000E-99 -000000000E-99 -020000000E+02 
3 .30000000E+01 .00000000E-99 .30000000E+01 -.24000000E+02 
4 ®.50000000E+01 000000000E-99 .30000000E+01 -010000000E+02 
5 020000000E+01 .00000000E-99 -.30000000E+01 -m17000000E+02 

VERTICES SATISFY EQUATION 

2, 1 1 

5, 3 2 

l, 3 3 

2, 4 4 

4, 5 5 

COEFFICIENTS OF AN EQUATION OF 'THE PLANE CONTAINING 
THE GIVEN N POINTS IN THE FORM AX + BY + CZ + D = 0 

NO. 



B C 

- .00000000E ®99 .45000000E +02 -.00000000E -99 ..90000000E +02 

CONVES HULL HAS BEEN DETERMINED 

Example 5 

INPUT DATA FOR PROGRAM 1 

15 

+.40000000E+01+.20000000E+01®.60000000E+01. 
+.60000000E+01+.20000000E+O1m.40000000E+01 
+.10000000E+02+.20000000E+01,50000000E+01 
+.19000000E+02+.40000000E+01.070000000E+01 
®.30000000E+01+.20000000E+01.030000000E+01 
+.90000000E+01+.30000000E+O1m.60000000E+01 
+.80000000E+01+.20000000E+01-.70000000E+01 
+o900OOOOOE+01+.20000000E+01-.400OOOOOE+01 
+070000000E+01+.20000000E+01-012000000E+02 
+016000000E+02+010000000E+01+.30000000E+01 
,+.40000000E+01+,40000000E+O1+o10000000E+01 
+a30000000E+01+.30000000E+O1mo20000000E+01 
+.80000000E+01+.30000000E+01®.10000000E+01 
+.40000000E+01+.30000000E+01®.20000000E+01 
+.10000000E+02+.20000000E+01m.10000000E+01 

OUTPUT DATA FROM PROGRAM 1 AND INPUT DATA FOR PROGRAM 3 

A D 



.90000000E+01 .27500000E+01m.15000000E+01 
-.16000000E+02 .11600000E+03-.30000000E+02m.37000000E+03 
.24000000E+02 .12600000E+03 045000000E+02®.64.500000E+03 
.80000000E+01,20800000E+03m.60000000E+02 .26000000E+03 
.16000000E+02®.34000000E+02 .45000000E+02 .15500000E+03 
15 

.19000000E+02 .40000000E+O1m.70000000E+01 

.40000000E+01 .40000000E+01 .10000000E+01 

.30000000E+01 .20000000E+01-.30000000E+01 

.16000000E+02 .10000000E+01 .30000000E+01 

.70000000E+01 .20000000E+01-.12000000E+02 

.40000000E+01 .20000000E+01-.60000000E+01 

.60000000E+01 .20000000E+O1-o40000000E+01 

.10000000E+02 .20000000E+01-.50000000E+01 

.90000000E+01 030000000E+01®.60000000E+01 

.80000000E+01 .20000000E+01-.70000000E+01 

.90000000E+01 .20000000E+O1-o40000000E+01 

.30000000E+01 030000000E+01®020000000E+01 

.80000000E+01 .30000000E+O1-m10000000E+01 

.40000000E+01 .30000000E+01®.20000000E+01 

.10000000E+02 .20000000E+01,10000000E+01 

OUTPUT FROM PROGRAM 3 

CONVEX HUL 
N= 15 

INSIDE POINTS 

1 2 3 

1 2 4 
1 3 4 
2 3 4 

r r 
0 



X Y Z 

.30000000E+01 .30000000E+01 -.20000000E+01 

.80000000E+01 .30000000E+01 ®010000000E+01 

.40000000E+01 .30000000E+01 -020000000E+01 
010000000E+02 .20000000E+01 0.10000000E+01 
040000000E+01 .20000000E+01 -.60000000E+01 
.60000000E+01 .20000000E+01 ®040000000E+01 
.10000000E+02 .20000000E+01 -.50000000E+01 
.90000000E+01 .30000000E+01 m.60000000E+01 

.80000000E+01 020000000E+01 -a70000000E+01 

.90000000E+01 .20000000E+01 -.40000000E+01 

VERTICES 

NO. X Y Z 

1 .19000000E +02 .40000000E +01 -.70000000E +01 
2 .40000000E +01 .40000000E+01 010000000E+01 
3 -.30000000E +01 .20000000E +01 -.30000000E +01 
4 +02 .10000000E +01 .30000000E +01 
5 70000000E +01 .20000000E +01 m.1.2000000E+02 

EQUATIONS OF SUPPORTING PLANES ARE IN THE FORM 
AX + BY + CZ + D = 0 

EQUATION 
NO. A B C D 

1 02.4000000E+02 .12600000E+03 .4.5000000E+02 -.64500000E+03 



2 me16000000E+02 -.34000000E+02 .45000000E+02 015500000E+03 
3 -e18000000E+02 010300000E+03 0 -.20000000E +02 ®.32000000E+03 
4 -016000000E+02 m17100000E+03 -.30000000E+02 -059000000E+03 
5 035000000E+02 -.13500000E+03 0 30000000E+02 mm33500000E+03 
6 -m90000000E+01 -023100000E+03 0 010000000E+02 a40500000E+03 

VERTICES SATISFY EQUATION 

1, 2, 4 1 

2, 3, 4 2 

2, 3, 5 3 

1, 2, 5 4 

1, 4, 5 5 

3, 4, 5 6 

CONVEX HULL HAS BEEN DETERMINED 

Example 6 

INPUT DATA FOR PROGRAM 1 

10 
+m30000000E+01+m40000000E+O1+080000000E+01 
+060000000E+01®m30000000E+O1+m70000000E+01 
+010000000E+01+020000000E+01-050000000E+01 
+.40000000E+01+®20000000E+01-m30000000E+01 
+.40000000E+01+e20000000E+01+m40000000E+01. 
+®40000000E+01+020000000E+01+000000000E+00 nr 



+.40000000+01+.20000000E+01-.10000000E+01 
+.10000000E+01.20000000E+01+.70000000E+01 
+.00000000E+00.20000000E+O1+000000000E+00 
®.20000000E+01.20000000E+01+.00000000E+00 

OUTPUT DATA FROM PROGRAM 1 AND INPUT DATA FOR PROGRAM 3 

.27500000E+01 .12500000E+01 .30000000E+01 
®.54000000E+02®.29000000E+02 .41000000E+02-.50000000E+02 1 2 3 

®.60000000E+01 .63000000E+02-.12000000E+02m.13800000E+03 1 2 4 

.75000000E+02 032000000E+02 .10000000E+01®.36100000E+03 1 3 4 

-®15000000E+02-.66000000E+02m.30000000E+02 .10200000E+03 2 3 4 

10 

.30000000E+01 .40000000E+01 .80000000E+01 
®.20000000E+01 .20000000E+01 .00000000E-99 
.60000000E -.30000000E +01 +01 .70000000E+01 
.40000000E+01 .20000000E+01®.30000000E+01 
.10000000E+01 .20000000E+01-.50000000E+01 
.40000000E+01 .20000000E+01 .40000000E+01 
.40000000E+01 .20000000E+01 .00000000E-99 
.40000000E+01 .20000000E+01-m10000000E+01 
.10000000E+01 .20000000E+01 .70000000E+01 
.00000000E-99 .20000000E+01 .00000000E-99 

OUTPUT FROM PROGRAM 3 

CONVEX HULL 
N= 10 

INSIDE POINTS 



Y Z 

.00000000E -99 

BOUNDARY POINTS 

X 

.20000000E +01 

Y 

.00000000E -99 

Z 

.40000000E +01 .20000000E +01 -.10000000E +01 

.40000000E +01 .20000000E +01 .00000000E -99 

VERTICES 

NO. X Y 

1 .30000000E+01 .40000000E +01 .80000000E +01 
2 -.20000000E+01 .20000000E +01 .00000000E -99 
3 .60000000E+01 -.30000000E +01 .70000000E +01 
4 .40000000E+01 .20000000E+01 -.30000000E +01 
5 .10000000E+01 .20000000E +01 .70000000E +01 
6 .10000000E+01 .20000000E +01 -.50000000E +01 
7 .40000000E+01 .20000000E +01 .40000000E +01 

EQUATIONS OF SUPPORTING PLANES ARE IN THE FORM 
AX + BY + CZ + D = 0 

EQUATION' 
NO. B C D 

1 -.50000000E+01 -.50000000E +01 .20000000E +02 -.12500000E +03 
2 -.35000000E+02 -.35000000E+02 +02 -.00000000E -99 
3 -.14000000E+02 +02 .60000000E +01 -.50000000E +02 

Z 

A 

X 



4 .40000000E+01 .35000000E +02 -.60000000E+01 -.10400000E+03 
5 -.10000000E+02 .49000000E +02 ®.60000000E+01 .11800000E+03 
6 .10000000E+02 -.26000000E+02 ®.15000000E+02 -.33000000E+02 
7 -.25000000E+02 -.61000000E +02 -.15000000E+02 .72000000E+02 
8 .14000000E+02 .70000000E +01 -.00000000E-99 -.70000000E+02 
9 .35000000E+02 .14000000E +02 -.00000000E-99 ®.16800000E+03 

10 .26000000E+02 .11000000E +02 .10000000E+01 -.13000000E+03 

VERTICES SATISFY EQUATION 

1, 3, 5 1 

2, 3, 5 2 

1, 2, 5 3 

1, 4, 6 4 

1, 2, 6 5 

3, 4, 6 6 

2, 3, 6 7 

1, 4, 7 8 

3, 4, 7 9 

1, 3, 7 10 

CONVEX HULL HAS BEEN DETERMINED 
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Chapter 7 

MODIFICATIONS OF THE COMPUTER PROCEDURE 

Errors involved in numerical calculations depend in 

part on the calculating device used. In determining the 

convex hull using the IBM 1620 with 40,000 storage posi- 

tions we encounter two types of errors. These errors 

would be present to some degree on any computer used. The 

first type of errors are inherent errors due to the fact 

that the coordinates of a point can be specified to at 

most eight significant digits. Thus we may using a 

point whose coordinates are specified to eight significant 

digits to represent a point whose coordinates require more 

than eight digits (perhaps infinitely many) for their 

exact specifications. In such cases we are in effect ap- 

proximating the actual convex hull by determining the con- 

vex hull of a given set of approximation points. 

The second type of error is a truncation error, since 

only eight significant digits can be maintained throughout 

the calculations and no rounding occurs. Due to trunca- 

tion errors the coefficients of the equations of support- 

ing planes (or lines) may be approximations to the actual 

coefficients if the actual coefficients require more than 

be 
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eight significant digits for their exact specification. 

This presents us with a problem, since the equation 

of a plane (or line) that we obtain may not be the actual 

equation but rather an approximation to the actual equa- 

tion. Hence in substituting the coordinates of a point in 

this plane (or line) into the equation we have determined 

to represent the plane (or line) the value obtained may 

not be zero. At present the programs are set up so that 

after the coefficients of an equation of the plane (or 

line) have been determined we substitute the coordinates 

of each of the three points used to determine the equation 

back into the equation and if any one of the three values 

obtained is not zero the message "DATA NOT ACCEPTABLE" is 

typed on the console and the processing terminates. 

There still exists the possibility however that all 

three of the values obtained may be zero and yet on sub- 

stituting the coordinates of another point in the plane 

(or line) into . the equation representing the plane (or 

line) the value obtained is not zero. 

A possible solution to this problem would be to de- 

fine an interval say from -e to +e and agree that if the 

value obtained on substituting the coordinates of a 
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point into the left member of the equation fell within 

this interval we would consider that the point satisfied 

the equation and hence was a point of the plane (or line). 

In doing this however we are presented with another 

problem. We may be considering a point to be on the 

plane (or line) when actually it is not. Thus it may be 

that a point actually is a vertex of the convex hull but 

is not recognized as a vertex. By choosing e small 

enough however, we could be assured that a point was with- 

in a certain distance of a plane (or line) if the value 

obtained on substituting the coordinates of the point into 

the equation fell within the interval from -e to +e. 

We now want to consider a modification to the proce- 

dure that would simplify the task of normalizing each of 

the equations of the supporting planes . (or lines). 

In determining the convex hull by the procedure 

described in Chapter 3 we first determine the vertices of 

H1 and then using these points we determine the coordi- 

nates of the point C. Throughout the procedure we use 

the point C to normalize the equations of the supporting 

planes (or lines). We do this by substituting the co- 

ordinates of the point C into the left member of the 

equation of the plane (or line) and if the value obtained 
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is positive we multiply the equation by ( -1). 

If after we determine the point C we translate the 

origin to this point, then to normalize an equation we 

could merely check the constant term and if it is positive 

multiply the equation by ( -1). This translation would 

probably be worthwhile if the convex hull were being de- 

termined by hand. If a computer is being used the advis- 

ability of such a translation depends on several factors. 

Among the things to be considered are the amount of stor- 

age available and the number of equations to be normalized 

in relation to the number of points to be translated. 

Since it would be desirable to obtain the vertices 

and supporting planes with respect to the original coordi- 

nate system, we would have to perform another translation 

once the vertices were determined. For the IBM 1620 with 

40,000 storage positions the program for determining the 

convex hull must be divided into three separate programs 

because of the amount of storage required. Thus the 

translation might not be advisable since it would require 

more storage. However if storage is no problem such a 

translation would reduce the amount of time required to 

normalize an equation. Whether or not the total amount 
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of time required to determine the convex hull is reduced 

depends on the number of equations to be normalized in 

relation to the number of points to be translated. 



121 

BIBLIOGRAPHY 

1. Alexandroff, Paul. Elementary concepts of topology. 
Tr by Alan E. Farley. New York, Dover, 1961. 73 p. 

2. -Arnold, B. H. Intuitive concepts in elementary 
topology. Englewood Cliffs, N. Jo, Prentice -Hall, 
1962. 180 p. 

Balinski, Michel L. An algorithm for finding verti- 
ces of convex polyhedral sets. Ph.D. thesis. 
Princeton, Princeton University, 1959. 38 numb. 
leaves. (Microfilm) 

4. Eggleston, H. G. Convexity. Cambridge, University 
Press, 1958. 136 p. (Cambridge Tracts in Mathe- 
matics and Mathematical Physics, No. 47) 

. Eisenhart, Luther Pfahles. Coordinate geometry. 
New York, Dover, 1939, 297 p. 

6. Hadley, G. Linear algebra. Reading, Mass., 
Addison -Wesley, 1961. 290 p. 

7. International Business Machines. Reference manual 
IBM 1620 Fortran. San Jose, 1962. 94 p. 

8. Love, Clyde E. and Earl D. Rainville. Analytic 
geometry. New York, Macmillan, 1956. 302 p. 

9. Mancill, Julian D. Modern analytical trigonometry. 
New York, Dodd, Mead, 1960. 329 p. 

10. Motzkin, T. S. The double description method. In: 
Contributions to the theory of games, ed. by H. W. 
Kuhn and A. W. Tucker. vol. 2. Princeton, New 
Jersey, Princeton University Press, 1953. p.51 -73. 
(Annals of Mathematics Studies no. 28) 

11. Smith, Edward S., Meyer Salkover and Howard K. 
Justice. Analytic geometry. New York, Wiley, 1954. 
306 p. 

3. 



122 

12, Yaglom, I. M. and V. G. Boltyanskii. Convex figures. 
Tr. by Paul E. Kelly and Lewis F. Walton. New York, 
Holt, Rinehart and Winston, 1961. 301 p. 


