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A "MILDLY INCONSISTENT" METHOD FOR ACCELERATING
UPSTREAM CORNER BALANCE TRANSPORT

1 INTRODUCTION

1.1 Motivation

Over the last five decades an area of intense research has been the development

of numerical techniques used to simulate the propagation of thermal radiation as it

flows through and interacts with a fluid. Characterizing the flow of thermal radiation

allows researchers to accurately determine how the fluid responds and reacts to the

thermal radiation field. Fluid motion, or hydrodynamics is very important in many

systems of interest. In certain hydrodynamic systems the pressure or momentum

forces exerted by the thermal radiation field on the fluid may actually dominate and

dictate the dynamics of the system. The study of these types of systems is called

radiation hydrodynamics, where the hydrodynamics of the system are driven, at least

in part, by a thermal radiation field. Areas of research where radiation hydrodynamics

is very important are astrophysics, inertially and magnetically confined fusion, and

climate/atmospheric modeling.

Radiation hydrodynamics is described mathematically by the radiative transfer

equations, and constitutive models (equations of state). Thermal radiation, photons,

exist in densities high enough to drive the dynamics of the system. The underly-

ing substrate that the photons are flowing through and exerting pressure on affects

the photons and the photon distribution both in energy and in space. Because of

the complexity of the coupled system, researchers often decouple the radiation and

hydrodynamics components to computationally simulate these systems.
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The radiation component of radiation hydrodynamics can be described by a kinetic

or transport equation, traditionally referred to as the equation of transfer [Pom73].

The equation of transfer describes radiation flowing through and interacting with

matter within a domain. Solution strategies for the equation of transfer have mainly

involved numerical techniques. Analytic solutions do exist but only for very special

idealized problems. The numerical techniques used to solve the equation of transfer

fall into two classes: deterministic techniques, in which various discretizations are

used to arrive at a solution, and stochastic techniques, in which statistical probabil-

ities describing the system are used to directly simulate the movement of photons.

Deterministic techniques involve the discretization of the space, angle, energy and

time variables. Deterministic techniques automatically provide global information

across the entire system [Lar99]. Stochastic techniques, sometimes known as Monte

Carlo techniques, arrive at a solution by statistically sampling from a distribution

that describes the transport process. Stochastic techniques are often very good at

handling extremely complicated geometries and are better suited for determining the

solution when a small amount of information is needed. Stochastic techniques are

least efficient when global information is needed [Lar99]. A third emerging class of

techniques, known as hybrid techniques, combines deterministic and stochastic ide-

ologies. This thesis will concentrate on issues associated with deterministic solutions

to the equation of transfer.

1.2 Literature Review

In 1999, Larsen [Lar99] related that there are three primary technical issues con-

fronting deterministic transport researchers today.

. Limited geometric modeling

. Truncation errors
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. Slow iterative convergence

In this thesis we will restrict ourselves to looking at two of these issues, "limited

geometric modeling," and "slow iterative convergence."

1.2.1 Limited Geometric Modeling

"Limited geometric modeling" refers to the difficulty associated with determin-

istically solving the equation of transfer on non-orthogonal surfaces and/or curved

surfaces. A substantial amount of research has been done studying new advanced

spatial discretizations that enable solutions on arbitrary or unstructured grids. The

reason for this is two-fold. First, the geometric error associated with applying dis-

cretizations that do not properly handle specific shapes can be reduced. Second,

coupling the radiation solution to the fluid hydrodynamics becomes easier when the

spatial grids are similar. Generally, there are two approaches for determining the grid

in coupled radiation/hydrodynamics physics packages. One is to use a common mesh

for both packages, the second is to let the radiation and the hydrodynamics pack-

ages generate their own meshes and provide some sort of functionality that translates

results between the two meshes [Pa101].

In 1991 Adams [Ada9l] introduced a new finite-volume (FV) transport discretiza-

tion based in part on a hydrodynamic concept of Burton [Bur9l]. Burton had pre-

viously employed a sub-cell concept known as corners in his hydrodynamics meth-

ods. Adams' corner balance (CB) finite-volume concept is based on imposing particle

conservation over corner volumes. Corner balance, designed for arbitrary connected

polygons, allows the radiation package to use a similar or even identical mesh as

the hydrodynamics package. Adams initially derived simple-corner-balance (SCB)

which represents the interior corner edge intensities as a simple average of the cor-

ner intensities. Adams [Ada9l] found that in slab geometry SCB was equivalent to
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the finite-element (FE) method known as the lumped linear-discontinuous (LLD).

In x-y geometry Adams found SCB to be equivalent to the fully-lumped bilinear-

discontinuous (FLBLD) FE method.

An initial analysis of SCB showed it was strictly positive, and very good in thick,

diffusive regions. Radiative transfer problems of interest are often characterized as

being optically thick and highly diffusive. SCB was found to have a leading-order

solution that satisfies a discretized diffusion equation regardless of grid spacing.

While SCB has many desirable properties there are problems with this new dis-

cretization. The first is that as the cells become distorted the accuracy of the scheme

degrades in optically thick, diffusive regions. Second, the boundary condition satis-

fied by the leading-order solution inside thick diffusive regions can become inaccu-

rate [Ada9lJ. Another problem is the simple closure of SCB effectively couples all of

the corners in a given cell. For each cell this requires the solution of a 2 x 2 linear

system in slab geometry and a 4 x 4 linear system on orthogonal grids in x-y geome-

try. When SCB is used on arbitrarily connected polygons, where there are N corners

in each cell, SCB requires the inversion of an N x N matrix for each cell. This can

quickly become prohibitively expensive as the number of corners increases.

Adams designed a modification to SCB to alleviate the requirement to invert this

within-cell matrix. He replaced the simple closure with an upstream closure which

allows the transport sweeps to proceed corner by corner, instead of coupling all corners

together. Adams designed upstream-corner-balance (UCB) to perform better than

SCB for intermediate and thin optical thicknesses. Adams also designed UCB so

that the leading-order solution in thick diffusive problems was identical to that of

SCB [Ada97J.
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1.2.2 Slow Iterative Convergence

"Slow iterative convergence" refers to a problematic decrease in iterative con-

vergence rate when the system of interest becomes diffusive. The reason for this is

that photons undergo many interactions over the cell length and few if any these

interactions remove photons from the system. In highly scattering problems the only

removal mechanism that exists is sometimes leakage. If the problem is also very op-

tically thick, few photons are eliminated. This means that source iteration (SI), the

simplest and most common iterative technique for numerical transport, will require a

very large number of iterations to converge to the correct solution. Source iteration

degrades in this way for analytic and discretized transport equations, independent of

the choice of discretization.

To increase the iterative rate of convergence of source iteration, acceleration

techniques such as Chebyschev [LM84J, rebalance [LM84], diffusion synthetic ac-

celeration (DSA) {Kop63], transport synthetic acceleration (TSA) [RAN97], quasi-

diffusion [Go164], and multigrid [ABDP81], have been developed. Chebyschev be-

comes unstable for problems in which the scattering ratio is close to unity, or optically

thick and diffusive. Rebalance is effective in one-dimension, but in higher dimensions

it fails to effectively accelerate the rate of convergence. Active research is now being

performed on DSA,TSA, multi-grid and quasi-diffusion.

Transport synthetic acceleration (TSA) [RAN97] was recently developed to deal

with arbitrary spatial grids. TSA works by applying a correction based on the solution

to a synthetic, low-order, transport equatLon. TSA is less efficient than DSA but can

been implemented on any arbitrary transport discretization since it uses the same

discretization as the high-order problem. TSA however, loses effectiveness in systems

where the scattering ratio is close to or equal to unity.

Multigrid, a very popular technique, uses a low-order operator to remove error
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from source iteration. The low-order operator and hence the name multi-grid come

from the changing of the mesh spacing. By changing the mesh spacing the slowest

converging error modes in an iterative scheme, such as source iteration, can be re-

moved. Multi-grid is a very successful method for certain types of problems, but, its

effectiveness decreases as the fine mesh becomes coarser. [KimOO]

Quasi-diffusion, an established technique receiving more attention lately, works

by using a low-order operator which has transport and diffusion characteristics. This

might be a very promising technique in the future and active research is on going to

better understand it.

Diffusion synthetic acceleration(DSA) [Kop63} is one of the most popular accelera-

tion techniques today. It uses a low-order operator derived from the diffusion equation

to accelerate the iterative rate of convergence of the transport operator. DSA was

originally developed by Kopp in 1963 to solve simple slab geometry problems. Un-

til 1977 when Alcouffe [Alc77] realized the importance in consistency between the

transport discretization and the diffusion equations, DSA schemes were often unsta-

ble and only accelerated very specific problems. Alcouffe solved the stability problem

by realizing that the differencing of the diffusion acceleration equations must be con-

sistent with the transport operator. Alcouffe's method was unconditionally stable for

all mesh sizes; however, Alcouffe had difficulty implementing it with the diamond-

difference (DD) discretization. Diamond-difference was susceptible to non-physical

negative fluxes. To treat negative fluxes, "fix-ups" were used which altered the trans-

port operator enough to eliminate the consistency between the transport and diffusion

operators.

Larsen built on Alcouffe's work and introduced a form of DSA along with a four-

step procedure [Lar82b] that was unconditionally effective and stable for several slab

geometry discretizations. Using the P1 [G099] approximation his four-step scheme

produced consistently differenced diffusion acceleration equations directly from the
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differenced transport equation. Larsen extended this work to a variety of families of

discretizations including weighted diamond (WD), linear characteristics (LC), linear

moments (LM), and finite element (FE). Larsen analyzed the stability of his acceler-

ation techniques with a tool known as Fourier analysis. Fourier analysis has allowed

researchers to effectively determine the convergence rate of iterative schemes. In slab

geometries Larsen's four-step DSA has been very effective; however, Larsen {Lar84]

postulated that for multi-dimensional problems the four-step technique might produce

equations that would be difficult to reduce to diffusion equations. Khalil [Kha85] in-

troduced an acceleration technique for nodal methods which was revolutionary in that

the diffusion equations were not consistent with the transport operator. This led to

the understanding that strict consistency was not a requirement.

Other break throughs have occurred but the most significant to the work being

performed in this thesis was that of Adams and Martin [AM92J. They introduced a

Modified four-step DSA, a new procedure that is very similar to Larsen's four-step

DSA but was designed primarily for FE discretizations. It is applicable in slab, spher-

ical, x-y and r-z geometries and is simpler then the traditional four-step method. The

technique actually yields equations that are inconsistent with the transport operator

but are unconditionally stable.

Wareing [War93] started pursuing the acceleration of corner balance discretiza-

tions using advanced DSA methods for slab and x-y geometry transport. When

Adams [Ada97] introduced the upstream corner balance (UCB) discretization he made

some key connections between SCB and finite element techniques. In fact he showed

that SCB and LLD are exactly equivalent in slab geometry and SCB and FLBLD are

exactly equivalent in x-y geometry. This meant that Modified Four-step (M4S) DSA

could be applied to accelerate SCB. Palmer [Pa193], working on advanced curvilinear

discretizations such as SCB, UCB, LD, LLD, and fully lumped bilinear discontinuous

(FLBLD) noticed that UCB transport appeared to be effectively accelerated by dif-
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fusion equations derived from SCB transport differencings. Palmer's motivation for

applying inconsistent acceleration equations was based on results he obtained from an

asymptotic analysis [LMM89]. Asymptotic analysis allows researchers to determine

the behavior of a discretization in some limit. Palmer studied the thick diffusion limit

and found that in curvilinear geometries SCB and UCB had identical thick diffusion

limits. Palmer noticed that UCB could be accelerated by diffusion equations de-

rived from applying M4S to SCB. His reasoning was that SCB and UCB were similar

because they have identical thick diffusion limits. Palmer [Pa193] noticed effective

acceleration but did not rigorously analyze applying this inconsistently derived SCB

DSA equation to UCB.

Furthering the idea of inconsistently derived acceleration equations Adams and

Wareing [MLA98] used inconsistent diffusion equations to accelerate linear bilinear

characteristics transport. The equations they used came from Morel, Dendy and

Wareing [MDW93]. They were developing a multi-level solution method for the dif-

fusion acceleration equations of the M4S procedure for bilinear discontinuous (BLD)

in x-y geometry. Morel, Dendy and Wareing showed that the bilinear continuous

(BLC) FE diffusion equations could be used to accelerate the iterative solution of the

BLD diffusion equations and that these BLC equations can be efficiently solved using

multigrid techniques. Wareing [TWM94} then showed that he could accelerate the

linear-bilinear nodal transport discretization using bilinear discontinuous diffusion. It

was these inconsistent diffusion equations that Adams and Wareing used to accelerate

bilinear characteristics transport.

1.3 Outline of the Thesis

This thesis focuses on the validation of the application of inconsistently derived

diffusion acceleration equations for the UCB transport discretization in slab and x-y



geometries. Building on the initial results obtained by Palmer [Pa193] in curvilinear

geometries we show that SCB derived M4S diffusion acceleration equations effec-

tively accelerate the iterative convergence of UCB source iteration. This inconsistent

method has been determined to be highly effective by Fourier analysis in slab and

x-y geometries. We have shown that the Fourier analysis data agrees well with the

observed effectiveness of the method. Our results indicate that this mildly incon-

sistent acceleration scheme will greatly increase the rate of iterative convergence of

UCB compared to that of source iteration alone. We call our acceleration scheme

mildly inconsistent because of the similarities shared between the SCB and UCB

discretizations in the thick diffusion limit.

We begin by performing Fourier analyses of the proposed scheme in slab geometry.

We then implement the method in a code to verify the convergence rates obtained by

the Fourier analysis. We then repeat the same procedure in x-y geometry for orthog-

onal meshes. By performing both a rigorous Fourier analysis and then implementing

the method we are able to verify the behavior of the acceleration scheme. The the-

oretical and computational results indicate that UCB can be effectively accelerated

with inconsistently derived SCB diffusion equations.

The remainder of this thesis is organized as follows. We will begin by reviewing key

concepts of the equation of transfer in Section 2. The information in this section will

lay the foundation for the work in subsequent sections sections of the thesis. Section 2

also includes a discussion of iterative techniques and methods used to accelerate

iterative techniques. We will then discuss our slab geometry analysis and results in

Section 3. In Section 4 we discuss the x-y geometry analysis and results. We finally

submit our conclusions and suggestions for future work in Section 5.
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2 ANALYTIC TRANSPORT

2.1 Introduction

In this chapter we develop some of the concepts that are fundamental to the work

being performed within this thesis. We motivate this chapter by discussing the char-

acteristics of the physical system of interest, and the equation, known as the equation

of transfer which describes the flow of radiation in this system. This discussion will

begin with the continuous, general geometry, radiative transfer equation.

Next, we will discuss solution strategies for the equation of transfer. We begin

by looking at iterative methods in general and then focus on source iteration, the

simplest, and, perhaps most obvious method for solving the equation of transfer.

We will introduce a tool known as Fourier analysis that will allow us to analyze the

convergence characteristics of source iteration, and will guide us in our search for

valid acceleration techniques.

2.2 Radiation Transport: The Equation of Transfer

Suppose we wanted to describe the propagation of thermal radiation through

some material. In order to accomplish this we would use the equation of transfer,

also known as the transport equation, to describe the conservation of the thermal

radiation or photons within some domain, D, with surface 8D, and outward surface

normal n (see Figure (1)).

The equation of transfer describes the time rate of change of the specific intensity

as the photons participate in five processes:

1. Photons streaming out of and into the domain through surface D.

2. Photons absorbed within the domain.
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Fig. 1: Arbitrary domain D, with surface 8D, and outward normal, n.

3. Photons scattering from frequency ii, and direction 1 to all other frequencies

and directions (outscattering) within the domain.

4. Photons scattering into frequency v, and direction from all other frequencies

and directions (inscattering) within the domain.

5. Photon (energy) emission within the domain.

The conventional form of the equation of transfer [Pom73],

Here,

'a
at

+ [dv' I d1' rvLi(r,v + v,1' t)(r,v',1',t)

o (r, v * v', 1 1', t) L' (r, v, , t)]

= (length) spatial position vector,

= (steradian) angular vector,

= (ge) frequency variable,

t = (time) time variable,

(1)
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jlengthc - ' time ) speed of light,

h = (energy time) Planck's constant,

cra(r, v) = (len'gth) macroscopic absorption cross-section,
a3(r, v) = (len'gth) macroscopic scattering cross-section,

energyv, Il, t) = (areatime--frequencysteradian) specific intensity (chvf),

q (r, v, t)
photons

"volumetimefrequency) photon source.

The first term in Eq. (1),

18
(2)

represents the time rate of change of the specific intensity within our domain. The
second term in this expression,

(3)

represents the process by which energy (photons) stream through the domain. We
have defined the function,

S (r, u, t) = hvq (r, v, t) , (4)

which is equivalent to the rate of spontaneous thermal energy (photon) emission from
the material or fluid. The next term,

(5)

represents the rate at which energy (photons) are absorbed by the material within
the domain. The final term,

JVhf d'
0 4ir V

a5(r,v -+ u',1 1Z',t)(r,V,fZ,t)] , (6)
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represents the sum, over all frequencies and directions (v, 1k), of the rate of outscat-

tering and inscattering within the domain.

The equation of transfer mathematically describes the physical process by which

photons are gained and lost from the domain, D. We can see that the various terms

within the transport equation translate into corresponding physical gain and loss

processes for photon conservation.

The scattering integral is often evaluated by defining, c in Eq. (1) to be,

a (v, Il' . f, t)

f dv' f
d1'a3 (v p v', [' . , t) , (7)

which results in,

V(r,v,,t) = S(r,v,t) at(r,v,t)(r,v,,t)

+JThv'J
d'a3(r,v' v,'.,t)(r,v',',t), (8)

V

0 4ir

where, the total interaction coefficient is defined by

v, t) = a3(r, ii, t) + aa(r, u, t) . (9)

In order to solve the equation of transfer we often make several assumptions about

the physical system that we are interested in approximating. One assumption often

invoked is the concept of local thermodynamic equilibrium or LTE. LTE assumes

that matter at any given spatial location is in thermodynamic equilibrium, meaning

that the the matter is governed by atomic collisions which establish local equilibrium.

This, therefore, allows the radiation field to be described by a Planck distribution, and

leads to a relationship between the source S and cra [Pom73]. Approximations are also

often made to the scattering kernel. Several different methods exist to simplify this

term. Most often we assume that the scattering kernel is coherent. This means that

while scattering is frequency dependent, scattering events do not lead to a change in
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photon frequency. Instead we assume that frequency change is due to the absorption-

remission process and is thus properly handled by the assumption of LTE. Along with

the assumption of LTE it is often appropriate to approximate the scattering kernel as

isotropic or independent of direction. These two assumptions lead us to the following

form of the equation of transfer,

where,

.V(r,v,,t)+at(r,),(r,v,,t)
1

= o (r, ii, t) q (r, L', t) + Ua (r, v, t) B(z.', T),
4ir

T(r, t) (temperature) Material temperature,
energy

B(v, T) = (areatime frequencysteradian) Plank function,
energy

v, t) = (areatimefrequency) Direction-integrated intensity.

We define the direction-integrated intensity as,

ç(r,v,t) =

and the Planck function as,

(10)

(11)

B(u,T) 2hv3 1e[I
1

1

c2
L ]

, (12)

where the Boltzmann constant k has units of ( energy ' The material temperaturetemperature)

equation is defined as,

where,

ÔT

Cv-=J dvaa(c47rB(v,T))+Q,
at

c - ( energy
V volumetemperature

Q - ( energy
k volumetime

Heat capacity,

Material energy source.

(13)
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The equation of transfer is a first-order integro-differential equation, and in order

to close the system we must specify both initial conditions and boundary conditions.

The initial condition specifies the specific intensity distribution within our domain at
time t = 0,

(14)

In coupled problems, where our source is driven by the material temperature, the

initial material temperature is defined as,

T(r,0)=T2(r) (15)

The spatial boundary condition specifies the incident radiation at the boundary 5D

of our domain. It should be noted that we require that the surface be non-reentrant.

By non-reentrant we mean that any particle leaving the domain D through surface

t5D is not able to reenter the domain. We define this as,

(r, ii, Il, t) lPb (r, v, 1, t) , . < 0, r E 6D. (16)

The general equation of transfer, Eq. (1), can be cast in various coordinate sys-

tems. The primary difference is the treatment of . V. We interpret V in Eq. (1)
as being a directional derivative in the direction . This is equivalent to saying,

.V=
i3s (17)

where s is a length along direction 1. It is important to note that the directional
derivative is taken with time and frequency held constant [Pom73}. For this thesis

we will concentrate on the equation of transfer in Cartesian geometry. In Cartesian

geometry, the directional derivative can be expressed as,

lV a__pax+7]+. (18)
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Figure (2), illustrates the definition of the direction cosines, (i, 1], ), as the dot
product of the direction vector, , with each of the unit vectors of the characteristic

directions (x, y, z).

Fig. 2: Cartesian geometry coordinate system.

(19)

Three-Dimensional Cartesian Geometry With the above definitions, we

can rewrite the equation of transfer, in three-dimensional, Cartesian geometry,

10

(x, y, z, v, , t) + (x, y, z, ii, 1, t) + zb (x, y, z, v, , t)Ox

1= o (x, y, z, ii, t) q (x, y, Z, ii, t) + °a (x, y, z, ii, t) B(v, T), (20)4ir



which can be rewritten was,

'a
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'9(x, y, z, v, p, j, , t) + (x, y, z, v, , , , t) + (x, y, z, ii, , i,e, t)

1
= as (x, y, z, ii, t) q (x, y, z, v, t) + cia (x, y, z, v, t) B(ii, T) , (21)4ir

with an initial condition,

i' (x, y, z, v, p, , 0) = (x, , , u, p, i, ) , (22)

and boundary conditions,

/' (r, v, p, i, , t) = 'bb (r, 1, Il, t) , n 1 <0, r E 8D. (23a)

Two-Dimensional Cartesian Geometry We can obtain the Cartesian geom-

etry equations in two dimensions by assuming that the quantities of interest, notably

the specific intensity, are invariant with respect to one of the spatial dimensions. This

causes the directional derivative in that direction to vanish. The resulting equation

of transfer, often called the x-y geometry equation of transfer is,

(x, y, v, 1,t) + y, v, Il, t) + (x, y, v, 1, t)

1= o (x,y,u,t)(x,y,ii,t) +cia(x,Y,v,t)B(v,T) , (24)4ir

which can be rewritten as,

1'9 '9
(x, y, v, , i, t) + (x, y, v, , i, t) + (x, y, v, , i, t)t Ox

1
= a3 (x, y, v, t) (x, y, v, t) + cia (x, y, v, t) B(v, T), (25)

47r



with an initial condition,

= 'i/,'1(x,y,v,p,ri) , (26)

and boundary conditions,

O (r, ii, p, i, t) = 'iJb (r, v, 1, t) , n 1 <0, r e SD. (27a)

One-Dimensional Cartesian Geometry We can obtain the Cartesian geom-

etry equations in one dimensions in a fashion similar to the one used to generate the

two-dimensional form: assuming that the quantities of interest, notably the specific

intensity, are invariant with respect to two dimensions. This causes the directional

derivative in those specific directions to vanish. The resulting equation of transfer,

often called the slab geometry form of the equation of transfer is,

(x, v, 1, t) + (x, ii, 1, t)

1= a3(x,v,t)(z,v,t) +a(X,,t)B(,T), (28)
4K

which can be rewritten as,

10 0(x, ii, ,i, t) + tJl (x, v, i, t)

1= a5 (x, v, t) (x, v, t) + aa (x, ii, t) B(v, T), (29)
4K

with an initial condition,

and boundary conditions,

(30)

nf <0, rESD. (31)
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2.3 Solution Strategies for General Geometry Transport

To solve the general geometry equation of transfer, the transport community most

often uses iterative methods. Direct solution methods do exist, but for most problems

of interest these methods are prohibitively slow. The two most common forms of

iteration are Cell Block Inversion (CI), and Source Iteration (SI). For this thesis we

will restrict our analysis to source iteration.

2.3.1 General Iterative Methods

We will start our discussion of source iteration by reviewing some of the concepts of

general iterative methods. This discussion will follow one presented by Morel [Mor82].

Consider the system,

Hf = s, (32)

where H is some high-order (possibly matrix) operator, f is the unknown function

(or vector) and s is some source function (or vector). For the systems of interest H

is often very difficult to directly invert. Instead of directly inverting H it is often

possible to split H into two operators where one of the operators is chosen so that it

is easily invertible.

H=AB. (33)

This allows us to define the following iterative scheme,

Af1' = Bf(t) + 5, (34)

where I is the iteration index and f(°) is some initial guess to the system solution.

Inverting A yields,

f(l+l) = A1Bf(1) + A1s, (35)



or,
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f(l+l) = + A's. (36)

Operator Z = A-'B is known as the iteration operator. If we write Eq. (35) in

terms of the converged solution the result is,

1(converged) [A-'B] f(conver9ed) + A1s. (37)

If we subtract Equation [35] from Equation [37] the result is,

where,

e1' = [A'B] e'1, (38)

e1 f(conver9ed) - j(l) , (39)

is the error at iteration 1. To determine the convergence characteristics of this general

iterative scheme, we consider the characteristics of the iteration operator [A'B]. If

we consider the set of {eigenvalue, eigenfunction} pairs of this operator,

{A'B] v = ii = 1,2,3..., (40)

these eigenfunctions form a complete set or basis. This allows us to express the initial

iterative error, in terms of this set. The initial error is,

e° = (41)

Knowing e° allows us to determine using the eigenfunctions for the iteration

operator A'B,

e" = [A'B] e° = a [A1B] v = (42)
n n





which can be rewritten as,

or,
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e1 = (I [.A.-'B] ) {.A.'B] (f(l) - j(ll)) (48)

Using a Taylor series expansion we arrive at a second estimate for the error,

IleII < (i [AB] 1

{A'B] (1)11
II

(j(l) - f(ll)) (49)

(1)

I I

Wmax
I (f(l) - f(ll))

I. (50)(1) II
1 Wmax

If Wmax < 1.0, then the method should be unconditionally convergent as I + oo.

The rate at which convergence occurs will depend on the maximum eigenvalue Wmax.

If Wmax 1.0 then the rate of error reduction on each successive iteration will be

prohibitively small. Usually a convergence criterion, e, is selected to determine if an

iterative scheme has converged. Convergence is normally measured by comparing the

norm of successive solutions to :

IIf'1 i'ii < { Converged , (51)

IIi° ftH > { Not Converged . (52)

When Eq. (51) is satisfied, after some number of I iterations, Eq. (50) implies,

IIe1II < Wmaxf
1 Wmax

(53)

If the maximum eigenvalue is near unity, w$,L 1.0, Eq. (53) implies that the

error e1 in the final solution f(c0.9e) would be significantly larger than that spec-

ified by f. This is what is known as false convergence. As an example say that our

maximum eigenvalue, Wmax = 0.999, then Eq. (43) implies that,

in 0.1
in 0.999

2303, (54)
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iterations are needed to reduce the iterative error by one order of magnitude. From

Eq. (53) we observe that upon convergence to the tolerance e that the iteration error

may be three orders of magnitude larger then the convergence tolerance, e.

We gather from this discussion two principle ideas to keep in mind about iterative

schemes. The first is that we must be aware of the possibility of incorrect results due

to false convergence in slowly converging systems. To guard against false convergence

requires that we are diligent in our implementation of these iterative schemes. The

second is that these schemes may converge at a prohibitively slow rate.

2.3.2 Acceleration Techniques

In order to decrease the computational expense of these calculations and effectively

increase the rate of convergence we need to reduce the spectral radius of the iterative

scheme. Recalling Eqs. (33)-(39), an exact expression for the error can be formulated,

where,

He1 = (55)

- Residual. (56)

Using Eq. (55), given the exact residual, a solution could be found after a

single iteration. However, Eq. (55) is just as hard to solve as Eq. (32), our original

system. The difficulty arises that in both the original problem, Eq. (32), and the

expression incorporating the error, Eq. (55), the matrix H must be inverted. If,

however, we could approximate, in an efficient and timely manner, the expression

for the error, Eq. (55), we could add the approximated error e(L+l) to any given

iterative solution to the original problem j(l). This leads to a better iterative

approximation on each iteration of the original problem leading to an increase in the

rate of convergence. To demonstrate this acceleration technique we again follow the
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description given by Morel [Mor82]. In our error expression, Eq. (55), we replace the

exact operator H with an approximation,

Lê'' = Br1', (57)

where L is a low-order approximation to H. This suggests the following modified

iterative scheme,

which can be rewritten as,

f(1+) = Zf(1) + A1s, (58)

= f(l) (59)

= (60)

j(l+l) j(1+) + (61)

f(l+l) = (I L1H) zj(1) + (I L1B) A's. (62)

If L is a good approximation to H then the spectral radius of the iteration operator

Z' = (I L'H) Z will be very small and the iterative scheme will converge rapidly.

This modification to the original iterative scheme is called an acceleration technique

and L is a preconditioner of the system since it changes the eigenvalues and thus the

condition number of the iteration operator. [Pau98]

Devising an effective acceleration technique for an iterative scheme requires that

the low-order operator, L, be carefully selected. Various choices for L exist but the

most important property of L is that it should be far less costly to invert than H.

Although we wish L to be similar to H we do not want it to be too similar as it
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will cost the same amount to invert and thus not yield the solution in less time. We

also require that the accelerated scheme yield the same result as the unaccelerated

iterative scheme. The acceleration scheme should oniy change the rate of convergence,

not the solution.

The low-order operator L must also be effective. In order to determine whether

or not a preconditioner will be effective we need to express the error, et as a linear

combination of the eigenvectors of the iteration operator. This allows us to determine

the rates at which the various error modes are removed during the iterative scheme.

The technique to do this is known as Fourier analysis. By analyzing the error modes of

the iterative technique and determining which ones dominate, acceleration operators

L can be evaluated.

2.3.3 Source Iteration

To solve the transport equation an iterative method called Source iteration is most

commonly used. Source iteration gets its name because the technique iterates on the

scattering source. In slab geometry source iteration (SI) is described by,

(x, ) + t (x) (1) (x, ) = a3 (x) (') (x) + Qx),
(63)

ax

(t+1) (x)
f

(x, ') , (64)

where 1 is the iteration index and,

a (x) (x) , (65)

is the scattering source. An initial guess at 1 = 0 for the scalar intensity, , is required.

Solving for the approximation of the specific intensity, ', at I + , Eq. (64) is used

to calculate the new scalar intensity. This procedure is repeated until the difference

between successive iterates is less then some tolerance, e.
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Source iteration has the same problem as the iterative methods described in Sec-

tion (2.3.1). When the iteration operator has maximum eigenvalues close to unity

the convergence rate of the iteration scheme will be very slow. The source iteration

operator has eigenvalues close to unity when material regions are optically thick and

highly scattering. The scalar intensity, q, at the 1t1L iterate is the scalar intensity due

to photons which have experienced 1 1 collisions after emission. If the problem is

optically thick and the photons undergo a large number of scattering events before

absorption or leakage, a large number of iterations will be required before the iterative

method converges.

2.3.4 Fourier Analysis

Often we represent the response of a system as a linear function of time. The

function that measures the frequency, i, that comprises this response is called the

spectral function of the original function. These two functions, the original function

and the spectral function, are mathematically related through what is known as the

Fourier transform [LP97]. The mapping of a function f(t) to a function Y(w) in w

space is done using the Fourier transform. For example,

1
y (t)

J
dY (w) eWt, (66)

is actually called the inverse transform because it relates Y(w) to y(t). The related

Fourier transform is,

Y (w) = dLeiwty (t). (67)/Joo

Here we apply the Fourier transform to the equation of transfer where the co-

ordinate space is symbolized by r and the frequency space is the complex domain

symbolized by A. Applying the Fourier transform to the angular intensity in the spa-

tial domain, '(r, 1) results in a mapping to the frequency domain, A(A, ) [KimOO}.
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The Fourier transforms which we call ansatz in general Cartesian geometry are,

1
A (A, 1)

J
d3r' (A, Il) ewt(Ar), (68)

1
t) (A, f)

J
d3rA (A, 1) et(>t1). (69)

v

We apply the Fourier transforms, Eqs. (68) and (69), to the general geometry
analytic source iteration equations:

1
. v(1) (r, ) + a (r) (1 (r, ) = a (r) f (r, ) + Q (r). (70)

4,,-

Assuming a homogeneous medium we subtract Eq. (70) from the converged trans-

port equation with the following definitions,

yields,

() (r, ) = (r, ) (r, ), (71)

L'(1) (r, 1) = (r, 1) - 'iL' (r, 1) , (72)

V1 (r, ) + Ut (r) () (r, )
1

(Z) (r, ). (73)a3 (r) d1bL
We substitute the ansatz, Eq. (69) into Eq. (73) which results in,

J
d3

( . iA + 1) (A, )

1 (r) / d'A1 (A, a')] et() 0.03

(74)

The orthogonality of the Fourier modes e0t (A.r) implies,

where,

(A,
)

C
I d'A (A, ') ,

oo < A <, (75)
47r(IZ.iA+1) J4,r

c = { Scattering Ratio . (76)



Integrating Eq. (75) over 1 results in,

I c

f
d

]

I d1l'A (A, 1'). (77)I d'A (A ')

L (. A + 1)J4?r

Subsequently,

df
(78)

47rJ41r (.A+1)

is the set of eigenvalues for the system and A(1+) (A, 1') are the associated eigenvec-

tors of the iteration scheme. The meaning of the eigenvalues is the rate at which the

error is reduced in frequency space. Similar to the definition of the spectral radius in

Eq. (44) for the general iteration scheme, we define the spectral radius for the general

geometry equation of transfer as the absolute value of the maximum eigenvalue,

p max Iw(A)
-<A<

(79)

We will now analyze source iteration applied to the slab geometry equations of

transfer. We will reiterate the original presentation of Larsen in 1982 [LM82] [Lar82a]

[Lar82b]. We start by assuming the problem of interest is an infinite homogeneous

medium. The slab geometry transport equation is,

a3 ci

4(x,) +at(x,p) = jdji(x,)+Q(x). (80)

When iteratively solved with source iteration the equation becomes,

where,

(x, p) + at (x, ) = (x) + Q (x) , (81)0x

p1

q(l+l) (x)

J
dpb' (x,ji). (82)

-1

We rewrite Eqs. (81) (82) in terms of the converged solution to the system so that,

(x, ) + at (x) (1+) (x, )
a8(x)

(1) (x) + Q (x), (83)
ox
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1

1+1) (x) = J (x,), (84)
-1

(x, p) = b (x, j) (x, /2), (85)

(x) = (x) - q5(l) (x) . (86)

The separation of variable ansatz for Fourier analysis are,

/(1) (x) W1 (A) A (A) ett, (87)

where,

(1)
(x, ) = (A) b (A, p) eUt, (88)

(89)

The eigenfunctions are the set A (A) et and the eigenvalues are (A). Substi-

tuting the ansatz, Eqs. (87) and (88) into Eqs. (83) and (84) we arrive at the following

equations,

b(A,/2)= [l+hiA/2]A(A), (90)

dp d c

_11+A2/22 0 1+A2/22
tanA. (91)

Figure (3) is a plot of of Eq. (91) and shows that the maximum spectral radius,

Pmax, for the slab geometry infinite homogeneous medium source iteration case with

c = 1.0 occurs at the zero mode and is equal to,

p = max i (A)I = w (0) = c { Scattering Ratio . (92)
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Fig. 3: Source iteration (SI) eigenvalues w(A) as a function of A for analytic slab
geometry.

This Fourier analysis is for the analytic in space problem and as such, the A = 0

mode is present and is the slowest converging mode. For a finite problem this mode,

A = 0, does not exist and so a problem with c < 1.0 will be stable and will always

converge. It is important, however, to keep in mind the concept of false convergence

in problems when c is very near unity. It is also important to note the shape of this

eigenvalue versus frequency curve. We can see that source iteration very effectively

removes the error in the high frequency domain but does not damp low frequency error

modes. This data will be useful in determining an appropriate low-order operator for

accelerating source iteration.
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2.3.5 Diffusion Synthetic Acceleration

We know from the above analytic analysis that the slowest converging error

modes of source iteration are the spatially smooth, slowly changing modes. This

means that the acceleration method that we apply should dampen these error modes.

These slowly changing modes have an angular dependence which is nearly linearly

anisotropic. The diffusion operator approximates the transport operator when the an-

gular intensity is linearly anisotropic. It could be used to remove or at least dampen

the low frequency, slowly converging error modes from the source iteration sweep. By

removing these slowly converging source iteration error modes on each iteration, the

iterative convergence rate may be improved.

If we recall the requirements for the low-order operator L in Section (2.3.2), we

see that the diffusion operator is an approximation to the transport operator and is

usually far less costly to invert.

Applying a diffusion correction to source iteration yields the following iterative

system,

with,

1. VIJ (r, 1) + cit (r) ('+) (r, 1a(r)(r)+Q(r), (93)
4

(1+) (r) f (r, Il) (94)

V 1
Vf11 (r) + a (r) f(L+l) (r) = ci3 (r) [i (r) - (1) (r)] , (95)3a (r)

f(1+1) (r) (r) - (r), (96)

where Eq. (95) yields the correction fo to the scalar intensity.

We can Fourier analyze this new iteration scheme in a similar fashion to source

iteration. Starting with the single energy, isotropic scattering analytic slab geometry
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equation of transfer written in terms of the error we have,

(x, p) + t (x) ('+) (x, )
a8 (x)

(1) (x) + Q (x), (97)
2

1

1+1) (x) = J (x, ). (98)
-1

The low order diffusion equations are,

o 1 Of(1+1) (x) + a (x) j(L+1) (x) = a8 (x) (t (x) (1) (x)) (99)Ox3a(x)Ox

The Fourier ansatz are defined as,

(1) = (A) a (A) (100)

1+) = w (A) b (A, ji) (101)

= W1 (A) c (A) eUt, (102)

f(L+i) 1)
P') d (A) eicTt. (103)

If we substitute Eqs. (100)-(103) into Eqs. (93)-(96) we find that the iteration

eigenvalue becomes,

A2 d(13P)
1+A22

3c [(A2 tan'A
iA2+3(1c) [\3+1)

A
(104)

Looking at Figure (4) we can see how the eigenvalues of the accelerated system

compare to that of the unaccelerated system. The low order diffusion equations
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Fig. 4: Eigenvalues w7) as a function of \ for diffusion synthetic acceleration (DSA)
in slab geometry.

rapidly accelerate the rate of convergence for the iteration scheme. We determine

the spectral radius for the accelerated iteration scheme by solving for the maximum

eigenvalue,

I 1 13j2Ipmaxle I
A

d/1lA22 <0.2247e. (105)

This means that for c = 1.0, the slowest converging error mode is reduced approx-

imately by a factor of 77% on each iteration.

2.4 Summary

In this chapter we have reviewed some concepts important to the work being

performed within this thesis. We started by introducing the system of interest and
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the equation of transfer that describes the flow of radiation in this system. We also

reviewed general iterative techniques and their application to solving the equation of

transfer. We discussed general ways of accelerating iterative methods and some of the

desirable properties of iterative accelerators. We then introduced source iteration, a

specific iterative technique used for solving the equation of transfer and then discussed

a method called Fourier analysis used to analyze the convergence rates of source

iteration. Fourier analysis will be used extensively to investigate iterative schemes

in this thesis. Based on the results of the Fourier analysis of source iteration we

motivated our look at acceleration techniques. We showed how and why a diffusion

equation can be used to accelerate the iterative rate of convergence of source iteration.

A specific means of deriving the diffusion equations was introduced called the Four-

Step procedure. A modification to the Four-Step procedure will be used to derive

the diffusion acceleration equations used in this thesis. We ended by using Fourier

analysis to determine the convergence rates of source iteration accelerated by the

4-step diffusion synthetic acceleration procedure.
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3 SLAB GEOMETRY DISCRETIZED TRANSPORT

3.1 Introduction

In this section we discuss the methodology used to discretize the seven indepen-

dent variables in the equation of transfer. First we review methods for discretizing

the frequency dependence of the equation of transfer. More specifically we will in-

troduce the commonly used multi-group technique. We then introduce a method for

treating the temporal variable. We will make the observation that the equation of

transfer, discretized in energy using the multi-group approximation, and discretized

in time using a backward Euler technique, is very similar to a neutron transport equa-

tion with a fission source. At this point we explain our rationale for considering, in

the remainder of the thesis, an energy-independent steady-state transport equation

with isotropic scattering and an isotropic source. From here we describe the discrete

ordinates method for discretizing the angular unknown.

Next we introduce the two spatial discretizations that we are concerned with in

this thesis, simple corner balance (SCB), and upstream corner balance (UCB). Both

of these discretizations impose particle conservation over sub-cell volumes (corners)

of a cell and are thus coined corner balance discretizations. We will then look at how

to derive the modified 4-step DSA equations from the SCB balance equations.

We will next discuss how to analyze these discretization and acceleration schemes.

Using Fourier analysis we will compute the theoretical rates of convergence for our

scheme. We also use an implementation code, a code the implements the method to

verify the results of the Fourier analysis. The results of this analysis will determine

whether or not in slab geometry the SCB derived modified 4-step DSA equations can

be used to unconditionally accelerate UCB.



3.2 Discrete Transport

The solution to the general geometry equation of transfer is a function of seven

independent variables: three spatial variables (x, y, z), two angular variables (i

(polar),-y -+ (azimuthal)), one frequency variable (v), and one time variable (t). In

order to numerically solve this equation in a deterministic way, we must discretize

each of these independent variables.

3.2.1 Frequency Discretization

In our discussion so far, we have treated the radiation frequency, as a continu-

ous variable ii. The most common technique for discretizing the transfer equation

in frequency is the multi-group technique. The photon frequency range is divided

into G frequency groups. Figure 5 shows the continuous frequency spectrum broken

into a finite number of groups. These frequency groups are typically numbered in a

backwards fashion, v = 0 being the highest frequency and ii = C being the lowest.

This frequency indexing treatment coincides with that of the neutronics community

where neutrons tend to slow down in energy as they interact with the matter. We

define the total specific intensity in frequency group g, as

V9 -1

(r, , t)
J

du (r, ii, 1, t) . (106)
L'g

The total direction-integrated intensity between frequency v91 and v is,

as,

/'Vg -1

çb9 (r, t)
j

dvq (r, ii, t) . (107)
V9

This means that the total specific intensity b for all frequency groups is defined

G

(r, , t) f dv (r, zi, , t) = / dv' (r, zi', , t), (108)
0 9,0Jg'
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and that the the total direction-integrated intensity is defined as,
_ G

(r,t) [ dv(r,v,t) dv'(r,v',t). (109)
g'=O 9'

The frequency dependent Plankian, Eq. (12) is integrated over frequency to give

an expression for the group-averaged Plank spectrum:

-' 2hv3

[

Ihvl
1

c2
L1Ti i] . (110)

Bg(T)=J
dv e

The cross-sections (o, Ua, Ut) are normally defined by assuming a known spectrum

within each group (either Plankian or Rosseland mean) [Pa193] such as,

f Ug_1d1/Ua (ii) 1 (1')
Ua,g

fv9_idvf(v)
(111)

Low Frequency High Frequency

VG V01 V02 V2 Vi

Fig. 5: Frequency division into G frequency groups.

With the above definitions the equation of transfer becomes,

+ 11 . Vb9 + Ut,9b9 = + Ua,gBg (T), (112)

The material temperature equation becomes,
G

aT = Ua,g (5g 4irB9 (T)) + Q,. (113)

g'=O



3.2.2 Time Discretization

To discretize the transfer equation in time we apply the standard backward Euler

method to Eqs. (10)- (13). This results in,

czt + + = + a9B9 (Tn+),

(114)

where,

(115)

G

_-_ (T T) = 47rB9 (T)) + Q9, (116)
Ltn

g=1

n = time index
L.t = time step

g = frequency group index

G = total number of photon frequency groups.

Eqs. (114)- (116) are nonlinear with respect to temperature. The Plankian func-

tion is linearized in temperature enabling us to substitute an expression for the ma-

terial temperature into the transport equation. This results in a linear transport

equation representing a single Newton iteration on a nonlinear system [MWS96].

The linearization begins by assuming that,

B + (T_T) . (117)
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The linearization assumption, Eq. (117), is substituted into Eq. (116). Rearrang-

ing we find:

G G

>Oa,k7Sk 47ra,kB +Qg
k=1 k=1 (118)

fcrn GI________+4ira,
k=1

k ÔT ]

Eq. (118) is used to determine the material temperature at the next time iteration

by solving for based on T1 Substituting Eq. (118) back into the discretized

radiative transfer equation (114) and performing some simple algebra results in the

following,

.
+;+2 = +q +aa,kk2 + ct2' (119)

where the quantities with no time index ii are assumed to be evaluated at the previous

time step n

= + 4] , (120)

c ôBkl
[47r Ua,

k=1
kj

G -.
' (121)

1C ôBkI
+ 47r Uakyj

f 9B91

X9 = C ' (122)

cra,k
k=1

q9 = ua,gBg + 17X9
8Bgl

4ii-
47r-j , (123)
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2hv3

[

Ihvl -1

Vg

LJT] i] , (124)B9= dv e

I hz/I

(9B9

fig_i

2h2v4 e[kTi

hv 2
(125)

[e[TI _1]

Eq. (119) is dependent only the material temperature at the previous time step.

Eliminating the current time step temperature has left us with a system that couples

the frequency groups through an effective emission source. This source is analogous

to a neutron fission source [MWS96J. The multigroup technique consists of a number

of one-group results. At each stage in a multigroup problem we have a one-group

problem to solve. For this reason we will restrict ourselves to a simpler one-group

approximation of Eq. (119) for the duration of this thesis. If the acceleration methods

that we investigate fail on the one-group system then they will almost surely fail on the

far more complicated multigroup system. For these reasons we will use the following

one-group general geometry transport equation with isotropic scattering,

.V+at= u+Q, (126)
47r

where the group index has been omitted for convenience.

3.2.3 Angular Discretization

There are several methods for treating the angular dependence of the equation

of transfer. In order to solve the equation of transfer, integrals over direction must

be computed. To properly handle these integrals we will concentrate on one of the

more popular methods known as discrete ordinates or S. The discrete ordinates
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approximation requires the equation of transfer to hold true only for a finite number

of angles Il. With this assumption we can numerically approximate the integral in

angle by applying a quadrature rule. In slab geometry the S equation of transfer

becomes,

Q(x)
2

m=1,2,3...,N, (127)

where the the direction-integrated intensity is defined as,

(128)
m=1

The quadrature weights, Wm are normalized based on the dimensionality of the

problem. In slab geometry we choose this to be,

>Wm = 2.
m=1

3.2.4 Spatial Discretization

(129)

Spatially discretizing the equation of transfer requires that we divide the problem

domain into a finite number of cells, over which material properties are held constant.

Dividing the problem into a finite number of cells is the same as laying a mesh or grid

on the problem. The mesh allows us to understand the connectivity of the problem

and devise discretizations with which to solve the equation of transfer. A variety of

different discretization techniques have been created, each of which possesses different

characteristics. Overall, the goal is to have a discretization that will allow for the quick

but accurate solution to a given problem. There are a variety of different families of

discretizations and we can group most of them into three primary categories. These

categories are Characteristic Methods (CM), Finite Element Methods (FEM) and

Finite Volume Methods (FVM) [Ada97]. In this work we will concentrate on Cartesian

geometry corner balance discretizations in slab and x-y geometries.
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V

Cell 1 Cell i ... Cell I

_______ ___A___ _______ ___A___ _______
X

1/2 3/2 i-1/2 1+1/2 1-1/2 1+1/2

Fig. 6: Slab-geometry problem in which the slab has been broken into I discrete cells.

3.3 Corner Balance

We consider a slab geometry problem, shown in Figure 6, and divide cell i into

two corners represented in Figure 7.

Cell i

I1m, 1-1/2
[

'f'm, 1+1/2

1'm, I

+'m,iL Ym,iR..
i-i i-112 i+112 i+

LX

Fig. 7: Cell i divided into left and right corners.

Corner balance is a finite volume technique in which we impose particle balance

over each corner. We integrate the discrete-ordinates equation of transfer, Eq. (127),

over each corner (from ;_ to x for the left corner and x, to for the right

corner):

x1 r
Jmm(X) +at(x)m(x) = as(x)m(z)+ Q(x)]

(130)
L ax
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1 9Imm(X)t(m(X) = s(X)m(X)+ (131)
x L t9X

The result is two equations, one for the left corner,

Us,iL QiL1m " m,i_) + at,im,iL -----çbL + (132)
L.xj '

and one for the right corner,

Pm! °s,iR(mi+ m,i) + 7t,ibm,iR = --çbR + (133)

These exact balance equations, Eqs. (132) (133), for the left and right corners, need

to be closed with two additional expressions as there are currently four unknowns:

two corner average scalar intensities bm,iLarld hI'm,iR, a cell-edge scalar intensity, either

or m,i+' and a cell-midpoint scalar intensity m,i An upstream closure is

chosen for the cell-edge unknown,

m,i+1/2 = m,i,R
}

, > 0, (134)
L'm,i-1/2 I-m,i--1,R

m,i+1/2 = m,i+1,L 1)

/'m,i-1/2 = 1I'm,i,L
i < 0. (135)

We need a relationship between the cell midpoint and the corner and cell-edge

scalar intensities. The two closures that we will investigate in this thesis, simple

corner balance (SCB) [Ada9l] and upstream corner balance (UCB) [Ada97] differ

subtly in their form.

3.4 Slab Geometry Simple Corner Balance

The cell-center angular intensity is replaced by a simple average of the angular

intensities on the left and right corners,

( m,i,L + '(1bmiR)

{
P> 0 ,

2 ji.<0 (136)
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The result is two equations, one for the left corner,

QiL/2mf(m,iL + ,bm,iR 2m,i_) + t,im,iL = --çbL + ----, (137)xi \

and one for the right corner,

0s,iR2tm,i+ m,iL m,iR) + Ut,iV)m,iR = + (138)

We can write Eqs. (137) and (138) in matrix form:

I 0t,itX1+I1 /2 1
I 'hI)m,i,L

1 + 2p o1
[

'ç/)m,j1,R 1

L/2 + IL] L m,i,R] L
0 0 j bm,i+1,L ]

1 1 x, 1

= 2
0 1

] +
I I QI,L 1, >, (139)

I L i,R
L

0 4:f! I L Qi,R ]0 2] 2]
F a,1Lx p

1 1 m,i,L
1 +

0 0 1 I 'lI'Tn,i1,R

[ ] L m,i,Rj L
0 2p]

I m,i+1,L ]

I o8,Lx2 1 1 LX 1

=1 2 çf
1 + I

0 I Qi,L 1

L
0 [ i,R]

I
0

2 ] L 2 j

I Qi,R ]
/2<0. (140)

Which can be expressed as,

where,

tI±,iflC,+ = (141)m m,z 1m m,i+1

L 'z,R
(142)

I 'I'rn,i,L 1

m,i
I '" i

' (143)
Pm,i,R

I ii,±1 1

m,i±1
I '9,,±i j

' (144)



45

and represents positive and negative direction dependence on p, of .

The use of a simple average to close the system is the origin of the name of

this corner balance discretization: Simple Corner Balance or SCB [Ada9l]. When

Adams introduced SCB it was a step in the right direction for radiative transfer

problems. It has excellent behavior in optically thick diffusive problems, common

for radiation transport problems, and it is easy to define and implement on arbitrary

polygonal cells. By optically thick we mean that the distance a photon travels between

interactions is very small compared to the size of the problem. However, the simple

corner balance (SCB) closure couples the left and right half cell scalar intensities in

both of the balance equations. This requires the solution of a 2 x 2 linear system in

each zone for slab geometry transport sweeps.

3.5 Slab Geometry Upstream Corner Balance

During the last few years there has been an increased effort to use unstructured

meshes consisting of arbitrarily connected grids of polygons. When we extend the

SCB method to general 2D polygons, the transport sweep requires the inversion of an

N x N matrix in each spatial cell where N is the number of corners of each polygon.

Inverting an N x N matrix for the solution within each spatial cell becomes very

expensive as the number of corners increases. A discretization method that maintains

the favorable properties of SCB but eliminates the need to invert an N x N matrix

for each cell would be a significant improvement. In 1997 Adams [Ada97] designed a

modification to SCB that alleviates this inefficiency by replacing Eq. (136) with an

upstream closure, eliminating the coupling between the corner balance equations. In



slab geometry this closure has the form:

where,

m,i,L+
1(+Q'\ (as+Q

1

L°t )i,R CT Ji,L]

+/3 (Tm,i,L) ('m,i,L '11'm,i-1/2) , Ii > 0
m,i =

m,i,R+1(\ _(a3+Q
1

Lo \ Ut Ji,Rj

+/3 (Tm,i,R) (m,i,R m,i+1/2) , t < 0,

m,i (Tm,i)
/3m,i (Tm,i) = , (145)

Tm,j

+ 4Tm,i + 4ao7-&2
m,i (Trn,i) = 2 + 2ym,i + 4TT,j

co = 0.455, (146)

Ut,jLX
Tm,i

21

(147)

This closure eliminates the need for a matrix inversion in each zone. Furthermore,

Eq. (145) helps UCB to limit to the same (or somewhat more accurate) discretized

diffusion equation for optically thick and diffusive problems [Ada97]. This closure

also provides improved accuracy for optically thin and intermediate regimes.

By combining the left and right corner balance Eqs. (132)- (133) with the upstream

closure Eq. (145) we obtain,



1 (1 + /3m,i,L) + a,i,L
I Ax2
I 2pm (1 + 13n2,i,L)

o
I Ym,i,L

+ Ut,z,L L m,i,R

(1 + m,i,L) 0
m,i-1,RAx1

2Pm m,i-1,R0 m,z,L

PmC
Ax4Pm+as

Ax14 2

Pm1
+ Ax4aPm cl

Ax1 4ot 2

PmC a
-:----

i,R

Ax2 4

PmC 11

Pm C I LQI,R] '-;]
I 2ILm 2Pm
I + a,1,L (1 + flm,i,L)

1 r m,i,L 1
I

Ax Ax,

L
0 (1 + m,i,L) + a,1,L

]

I 'm,i,R]
Ax

2Pm (fim,i,L) o
1 r m,i+1,L

2Pm (1 + fim,i,L) j
m,i+1,L]-P 0

Ax2

PmC Os PmC-+-- i,L-
i,R

Ax24 Ax24 2

__+
+ Ax1 4at 2 Ax2 4crtPmC PmC+l

Ax1 4t Ax2 4ot 2

The UCB system can be expressed, with the ap
1, i\ 1 1

m± iTi' +) L T.±m m i ''rn m,i±1

where,

47

(148)

][Q

1, p < 0. (149)
Qi,R j

propriate matrix substitutions, as

S I (150)mj,

1 i,L 1

[Qi,R j
' (151)



jj±
'Irn,i,L 1

m,i
L

''

i

' (152)
Prn,i,R

11
1

m,i±1
'± j

, (153)

and represents positive and negative direction dependence on p, of .

3.6 1D SCB Derived Modified-4-Step DSA

Source iteration applied to the SCB and UCB transport differencings will converge

prohibitively slowly for optically thick and diffusive problems. In fact, the spectral

radius for source iteration will be c, the scattering ratio. As was discussed in Section 2,

diffusion synthetic acceleration (DSA) can be used to alleviate this problem and has

been shown to unconditionally reduce the spectral radius from c to approximately c/3

(for isotropic scattering), provided the discretized diffusion equations are consistently

derived from the discretized transport equations [AM92]. The Modified Four-Step

(M4S) DSA scheme of Adams and Martin [AM92] yields a diffusion equation that

is not strictly consistent with the transport discretization. M4S, in contrast to the

traditional Four-Step procedure, enables researchers to readily derive acceleration

diffusion equations for multi-dimensional systems. M4S was initially developed for

FE discretizations. Adams [Ada97] showed that SCB is exactly equivalent to lumped

linear discontinuous (LLD) FE. This means that the M4S procedure can be applied

to SCB to yield acceleration equations.

Starting with the slab geometry SCB Eqs. (137)- (138), the following steps are

followed to derive the M4S DSA equations:

1. Take the Or" and 1st angular moments of SCB transport Eqs. (137) (138).

2. Change iteration indices to (1 + 1) except on second and higher moment terms.
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3. Subtract the resulting equations from the converged system to obtain a new

system of equations for the additive corrections to the scalar flux resulting from

source iteration.

4. Eliminate 1st moments from system, leaving a discretized diffusion equation. To

do this we have to make the within-cell approximation to the cell-edge scalar

flux correction and we have to eliminate all currents in favor of the left and

right half-cell flux corrections.

Taking the 0th moment >m Wm of Eqs. (137) (138) yields,

2

(i+)
+ (i+) Os,iXi (1)(JiL + J2R

i,L 2
(154)

(z) (Ji,L +
Ji,R)(2) +

(i+) Us,iXi (1)-
2 i,R

2
(155)

In order to take the l moment of Eqs. (137) (138) we recall that,

Then

where,

2
211

Im L'] +P2(Lm)+PO(im). (156)

(157)

WmP2(/Lm)bm. (158)

Taking the l moment >.m Wm,LLm of Eqs. (137) (138) yields,

2 h1'i,L+T?,R

R 2
(i)1 1 I (cbiL+cSiR)(')

-z]2 ] 4 2

i,L = 0, (159)



50

2 [(z+)
(,L

+ i,R\
(ta)]

1

+

F (t+fl (ciL + iR)
3

L
2 )

] [+ 2

(i+)
i,R =0. (160)

Now, we rewrite Eqs. (154) (155) and (159) - (160) promoting all iteration

indices to the (1 + 1) iterate except those of 4:

/ Ji,L +
(1+1)

(1+1) fs,iXi (1+1)

2
jl) +

2 i,L 2 i,L ' (161)

(J2L+JZR (1+1)

j(l+l)

2 ) + (1+1) (1+1)
'Pi,R = , (162)

2

z L + i,R\2 [(iL + dI)iR)
(z+) (z+_ (1+1)

2 + [(.' 2 )

Ot,iXi 7(1+1)
i,L = 0, (163)

2 1(z+)

(z,L

+ IiR)
(11 1

[

(1+1) (c5iL + i,R\
(1+1)1

L
2 j

+ i+ 2 )
j

.(1+1)

i,R = 0. (164)

We define the following corrections:

(1+1) (1+1) (i+fl

f,L = i,L 'Pi,L , (165)

(1+1) (1+1) (i+)
fi,R z,R Qi,R , (166)

(1+1) .(1+1) (z+)
(167)9i,L i,L i,L

(1+1) (l+1) 7(1+2) (168)Yi,R i,R i,R
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Substitute in the corrections, Eqs. (165) - (166) and (167) - (168) and subtract 
Eqs. (154), (155), (159), (160) from Eqs. (161), (162), (163), and (164) to yield: 

(1+1) (9i,L_+ gz,R) 
(1+1) t,z''i --i (+1) \ 2 - 2 

fi,L = 2 i,L - (c5) 
, 

(169) 

(1+1) 
(iL + gi,R) (1+1) 

+ (1+1) (1+1) 
- 

(ck) 
, 

(170) - 2 
fi,R = 2 i,R 

1 1(fi,L + fi,R)(1+1) 

2 

f(i+1)] 
+ at,Lx (1+1) 

Yi,L - 0, (171) 

(1+1)1 1 1 
(1+1) 

(fi,L + fI,R\ i (1+1) 
- 0 - 2 ) ] 2 Yi,R - . 

(172) 

We simplify the right hand side of Eqs. (169) and (170) using the fact that 

( (1+1) (1) '\ O3,/X 1 
(1+1) 

(i+fl\ 
+ 

( (i+) 
2 'i,L/R i,L/R) - 2 1i,L/R iL/R) 2 ki,/R - iL/R) 

(173) 

which yields, 

( 9i,L + 9iR)+) 
g') + (1+1) Us,jXj ( (z+) 

2 -- 2 2 - , 
(174) ________ - f,L = 

(i+i) 

- 2 2 
f,R 

2 - . 
(175) (1-4-1) 

(g + 
+ Oa,jXj (1+1) 

( (i+) 

We next remove the dependencies on the edges i + 
, 

i - by first obtaining, 

(1+1) 
1 

+i 
(i+fll 

+ 
1 

(1+1) 
(i+fll 

- Wm/-Lm - l-i,R j Wm/Lm [Pz+l,L - Pi+1,L j 
' 

(176) 

which, if we use a P1 expansion of the angular intensity becomes, 

(1+ 1) 
3[LrnJi,R \(1+1) (ciR 

+ 
3PmJiR)(1l 

g1 
WmPm[(+ 

2 j - 2 ] 
P>O 

(1+1) (+',L 3[tmJ,+i 
L 

(i+)1 1 (+1,L 
+WmPrn [ 

2 
+ 

3ILmJi+1L) 
- 2 

+ 
2 

' 
) j(177) 
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This reduces to, 

(1+1) 7 " (1+1) (1+1)\ 1 1 (1+1) (1+1) \ 
= - f+i,i) + - +l,L) 

. 
(178) 

Similarly, we find, 

1 1 (1+1) (1+1) \ (1+1) 7 1 (1+1) (1+1) g_ - - f ) + - i_l,R) (179) 

where is the quadrature normalization defined as the sum of the quadrature weights, 
N/2 

7 = 

We substitute Eqs. (178) and (179) into Eqs. (174) and (175) which yields, 

(gi,L + 9i,R\ (1+1) (,(i+i) + 1( (1+1) (1+1) 
2 ) 2 Ji-1,R JZ,L 1 2 9i,L 1,R 

(180) 

_______ 
(1+1) a3,Lx r0(i+) - , 

(181) fi,L - L i,L 2 

((1+1) (1+1)) + 1 ((1+1) (1+1) 1 (iL + Yi,R\ (1+1) 
fz, - jJi,R - i+lL,j - 2 

) 

_______ 
(1+1) a8,Lx I (i+) - (182) f,R = [c/iR 

2 

We use a very simple approximation to eliminate the it is: 

,(1+1) ,(1+1) (1+1) (1+1) - JiR ' J_1 JjL 
2 2 

These are local approximations to the edge direction integrated intensity quanti- 

ties. These allow us to reduce Eqs. (171) and (172) to: 
(1+1) (1+1) 

gcil) 
= 

gcil) 
= - 

() (fii f,L ) 
(184) 

By using Eq. (184) we arrive at two equations containing only the corner direction- 

integrated intensity corrections: 
t+l if 1 \fJi,R Jj,L 

I - Ji-1,R Ji,L 

tt+1 :t+1 )(Ji_1R - u_i ,L + 
0a,iL.Xi 

1+1 - i,L) 
, 

(185) 
Lx_1 2 

fi,L 
2 
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ç1+1 :t+1
1 1 Jj,R Ji,L + 'Y(ft+l t+1

) i,R f+1,L

t+1 :1+1
1 1 f+l,R Ji+1L + Oa,jLXj o-8,Lx £+

2
fi,R

2
(i,R i,R) (186)

These equations, valid only in the interior of the domain, can be written in matrix

form as a banded seven-stripe matrix. We can write Eqs. (185)- (186) in matrix form

as,

where,

I
If_l,L

(t+1

Qi1,L
I

(i+)
If-1,R

i_1,L1

(i+'

I
(i+)fL

i-1,R

L iL ID
IfiR

= p
1+1

(i)

(187)

I
fi+l,L i+1,L

jL

(i+)
f+1,R Qi+1,R i±1,R

DEm
n o p 0 0

0 0 q r st
]

(188)

m = , (189)

2' 1( 1

2 2
(190)

1o=
)+;+'j2 2

(191)

if 1 \
p= (3at,jLxj) ' (192)

1 1 "
q = (3crt,izxi) ' (193)
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1" 1 "
'y Ua,iL.Xir

2 (3aj,jxj) + +
2

(194)

'y i 1 ), (195)= +
2 3atj+ix+i

1t = . (196)

o3,2Lx

where I is the identity matrix.

(197)

In contrast to SCB, the non-conventional form of the UCB closure, Eq. (145),

makes deriving a set of discontinuous acceleration equations using M4S DSA a diffi-

cult task. Palmer [Pal93] while analyzing curvilinear geometries applied a procedure

called asymptotic analysis [LMM89} that determines specific characteristics about

discretizations in particular limits. Palmer noted that SCB and UCB have identical

thick diffusion limits. Palmer observed, that SCB derived M4S diffusion equations

appeared to effectively accelerate UCB source iteration.

3.7 Slab Geometry Fourier Analysis

To determine the effectiveness of accelerating UCB with SCB derived M4S DSA

equations we will perform a Fourier analysis similar to that described in Section 2.

3.7.1 Fourier Analysis of Source Iterations: SCB

The Fourier analysis source iteration applied to SCB begins with Eqs. (139)

and (140) written in terms of the iteration errors. We assume an infinite medium
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and
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I (1+1) 1 (1+1) I

I 0t,LXi + ILLm /1rn 1 Pm,i L I I 2Pm 0 1

[
''m,i-1,R I

(1+1) I

L + , I I + [ 0 0] m,i+1,L jm -'
L 'Im,i,H j

I
aLx 1

=1 2 iL
(k)

,[> 0,(198)
0

j
[

(1)

L
0 øi,R]

2

I (1-j-1) 1 r
0 0 1 (I+1) 1

F 0t,LX Pm
]

I 1m,i L I
I i

I Pm,i-1,R I

I (1+'1) I + 0 2p I I I[ Pm t,jXj Pm
L 'm,i,Rj L m [ m,i+1,L j

where,

1
0 I f1= 2 I

i
i (1) I ,

< 0 ,(199)

0 [i,Rj
2

(1) (1+1)
I V-m,i,L

I

I çb,L
1 Wm

L bR (200)
m

The discrete Fourier mode ansatz are,

() r

[
= wle2i am,L

, (201)

I i,L

I

j I AmLL= WIGIAX
Am,R] (202)

Substituting the Fourier ansatz into Eqs. (198) and (199) yields the following

equations,

wL Iam,L1 = Ps [] , p> 0, (203)m Lam,Rj

Iam,L1 = Ps [] , p < 0, (204)
[am,RJ
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where L and L, the matrices corresponding to positive and negative , are equal

to,

with,

11m t,1Xi /m -zx, 1

L
+

2
pme

]

, (205)m 12m 0t,i
2 2 2

I/-m o-,4x

L I 2 2 2

]

(206)
[game: - +

2

Icr8,Lx
0

PS = I

a3,/x I
. (207)

Lo
Rearranging Eqs. (203) and (204) we arrive at,

I a,L
1 = Wm {(LY' + (L3'] Ps [] = ASCB [f]. (208)

L am,R j

3.7.2 Fourier Analysis of Source Iteration: UCB

The Fourier analysis of source iteration applied to UCB begins with Eqs. (148)

and (149) written in terms of the iteration errors. We assume an infinite medium

with zero source which results in,

I (1 + !3m,i,L) +

(1 + 13m,i,L)
L

0 7(1+1)
Wm,i,L

2p 7(1+1)
+UtjL 'Km,i,R

F (1 + /3m,i,L) 0 1
(1+1) 1

I I 't'm,i-1,R I- (l+1)
0 (fim,i,L)

]
L m,i-1,R J

L\x

= [s8 MDmSsSt'] [; 1

(1)

j
,ga>0, (209)

Lx1 i,R
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I 2/Am 2/Am
I + a,L (1 + fim,i,L) 1 r ?(1+1) 1

I I I m,iL I

I
I (1+'1) I

L
0 ( + flrn,j,) + at,,L ] L

lPm,i,R
Lxxi

1 r (1+1) 1(13m,i,L) 0
I Pm,i+1,R I

I

0
2m

(1 + fim,i,L)
j

L m,i+1,R j
Lxxi

=
Ess

MDmSsSt'] <0, (210)(1)
Pi,R

(1) (1+1)
I i,L

1 - [
(211)

Ii,R j m,i,R Im

The discrete Fourier mode ansatz are,

(1)

=
j

(212)

(1)
I li,L 1 = wleXi I AL 1

I ] I
AR] (213)

Introducing the Fourier ansatz yields,

wL Iam,L1 p+ IAi,1
mlamR] Urn[AR] ,ji>0, (214)

wL Iam,Ll P_ fA
m Lam,Rj U,m LARj /1<0, (215)

which we notice is identical to Eqs. (203) and (204) except for P,m which in the

UCB discretization, is now a function of angle. We define L, L and P±um

(1 + /3m,i,L) + °t,i,L (1 + 13m,i,L) 1

L Xj I (216)m 2/Am
(1 + /3m,i,L) (1 + '

' -iALx
/Jrn,i,L) e + at,i,L]

Lxxi



212m
(1 + /37fl,j,R) e + clt,i,R (1 + /3Tn,i,L) 1

I

(217)+ LXjLm

L

2Pm
(1 + fim,i,R) + at,i,R](1 + /3m,i,R) e

rOs,i,L ILmC /lmC
I 2

+
2 2Lx I

I c7S,,R PmC
j

, (218)
L 2Lx 2 +2

where c is equal to the scattering ratio

Rearranging Eqs. (214) and (215) we arrive at,

IN/2 N

I

IAL1[amL]
= I

W [(Ly' PUm] + W [(L' Pam]
LAR]am,R

Lm=1 m=N/2

FALl
= AUCB

LAR]
(219)

3.7.3 Fourier Analysis of Modified 4-Step Diffusion Equations

The Fourier analysis of the slab geometry SCB derived M4S DSA equations begins

with Eqs. (185) and (186). The discrete Fourier mode ansatz are,

I 1
(1+1)

I aL 1
(220)

L fi,Rj
= LaR]'

(1)

[ i,L = AL 1
(221)Li,RJ

Substituting the Fourier ansatz into Eq. (187) yields the following matrix eigen-

value/eigenvector system:

D 1a1 = p
[aRj D [AR] ' (222)



I

where D is equal to,

[{O] + 'Y e'' + aaLx

I

]
ye' + 1 1 1 iAx

13otLIx L3ctxi e

and PD is equal to,

1 1 ye& +
1 1 1 e'{3otIxj {3utxJ

i 1 1 1
e'' + aaZx{3tLxj +'Y [3tz]

1a3Lx
o 1

PD= I

a8Lx'
Lo
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1

(223)

(224)

The Fourier analysis of the SCB system accelerated with the SCB derived modified

4-step equations and the UCB system accelerated with SCB derived modified 4-step

equations can be represented in the following in matrix notation,

where,

w [] = [ASCB,UCB + E (ASCB,UCB I)] [] , (225)

E = D1PD, (226)

where w is an eigenvalue, AL,R is an eigenfunction and I is the identity matrix.

3.8 Numerical Results

3.8.1 Fourier Analysis Results

A Fourier analysis of SCB and UCB transport accelerated with SCB derived

modified 4-step equations was performed using a S32 Gaussian quadrature set. The

iterative scheme was also implemented to verify the results of the Fourier analysis.

Figure (8) shows the results of the Fourier analysis and implementation code. It shows

the spectral radii as a function of mesh spacing for the SCB and UCB discretization

using SCB derived DSA corrections. The SCB-accelerated UCB discretization has



a maximum spectral radius of 0.2950, for c = 0.999999 and an optical thickness of

approximately 0.93 mean-free-paths (mfp). The expected spectral radius in the thin

limit is approximately 0.2247 at 0.01 mean-free-paths (mfp). The plot also shows

a spectral radius approaching zero for very optically thick cells. Numerical results

were generated for slabs with 100 cells, an S32 quadrature set and vacuum boundary

conditions for a range of optical thicknesses matching that of the Fourier analysis.

To get the most accurate results, all of the Fourier modes were excited by picking a

random initial guess for the angular intensity. We choose a zero source and let the

solution converge toward the exact results: '1' = 0. The problem is run until a stable

spectral radius is achieved. Figure 8 shows that our implementation code agrees well

with our analysis: SCB-derived DSA effectively accelerates the UCB discretization.

It is important to note that the implementation results should be equal to or less than

the Fourier analysis. This is because the implementation code is modeling a finite

system while the Fourier analysis is modeling an infinite system. We can clearly

see that the implementation results are just slightly less than the Fourier analysis

results. This means that the implemented method is behaving exactly as predicted

by the analysis.

3.8.2 Implementation Code Model Problem

To complement the Fourier analysis the implementation code was run on a rep-

resentative slab geometry problem. The implementation code serves two primary

purposes. First it is a separate means of determining the convergence properties of

the iterative scheme as shown in Figure 8. Second, it is a good way of verifying the

that the DSA is converging to the correct answer.

We begin by describing a slab geometry model problem that was chosen to verify
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Fig. 8: Maximum Eigenvalues (A) as a function of /x for SCB and UCB slab
geometry with "Modified 4-Step" diffusion synthetic acceleration (DSA).

the proper operation of the acceleration technique. Figure 9 illustrates the model

problem.

In Figures 10 and 11 we see that the SCB and UCB solutions both with and

without the DSA. One of the properties of an acceleration technique is that it yields

the same solution as the unaccelerated solution. We see that the SCB solution, with

and without DSA, converges to the same solution. We also see that the UCB solution,

with and without DSA, converge to same solution.
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Table 1 shows some convergence metrics for the model problem. It is clear to see

that the DSA scheme is highly effective in reducing the number of iterations required

to converge to the same result. The SCB and UCB model problem results have

spectral radii that are less than the Fourier analysis. Since the Fourier analysis is for

an infinite system, any finite system, such as the model problem, will have a smaller

spectral radius.

Table 1: Slab Model Problem Results

Discretization: Iterations51: IterationsDsA: PSI: PDSA:

SCB 2639 34 0.993 0.452 1.0e16

UCB 2629 24 0.989 0.252 1.0e'6

3.9 Summary

In this chapter we considered strategies for discretizing the slab geometry equation

of transfer in frequency, time, angle and space. In particular, we focused on the form

of the corner balance family of spatial discretizations. We reviewed the simple corner

balance and upstream corner balance closures and the equations that are iteratively

solved when using source iteration.

We then introduced the technique for deriving the M4S DSA equations and applied
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1

this technique to derive acceleration equations for slab geometry SCB transport.

We then performed a Fourier analysis of the SCB, UCB, and M4S DSA equations.

These Fourier analysis results have been verified by implementing this acceleration

scheme and observing convergence rates for several model problems. The results

clearly showed that SCB derived diffusion acceleration equations are very effective at

increasing the rate of iterative convergence of UCB. We have also solved an interesting

model problem to test our implementation code for accuracy. The results of this

problem indicate that our accelerated system converges to the unaccelerated results,

and that the coarse mesh results agree with high spatial resolution benchmark results.
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Fig. 11: UCB model problem results with and without and without acceleration.
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4 X-Y GEOMETRY DISCRETIZED TRANSPORT

4.1 Introduction

We begin by discussing the methodology used to discretize the seven independent

variables of the equation of transfer. In x-y geometry the only discretizations that

are different from the slab geometry cases are the angular and spatial discretizations.

We discuss the angular discretization changes and then apply SCB and UCB in x-y

geometry. This includes reviewing the form of the SCB derived M4S DSA equations.

We perform a Fourier analysis in x-y geometry in a manner consistent with that

in Section 3. We find that only subtle differences exist between the slab geometry

and x-y geometry Fourier analyses.

Having established the SCB, UCB and SCB derived M4S DSA schemes we will

look at the results of the Fourier analyses and the associated implementation code.

4.2 Discrete Transport

In x-y geometry, the solution to the equation of transfer is a function comprised

of six independent variables: two spatial variables (x, y), two angular variables (p -+

(polar), 'y (azimuthal)), one frequency variable (ii), and one time variable (t).

4.2.1 Frequency Discretization

In x-y geometry we use the same multigroup frequency discretization that we used

in slab geometry. [See Section 3.2.1]



4.2.2 Time Discretization

In x-y geometry we use the identical temporal discretization that we used in slab

geometry. [See Section 3.2.2]

4.2.3 Angular Discretization

In x-y geometry we again use discrete ordinates to discretize the angular variable.

The discrete-ordinates equation of transfer becomes,

iimbm(x,y)+rimbm(x,y)+at(x,y)bm(x,y)

Q(x,y) m=1,2,3...,N, (227)

where the direction-integrated intensity is defined as,

(x,y)=Wmm(X,y). (228)
m= 1

The normalization of the quadrature weights, Wm, changes in x-y geometry:

Wm = 4.
m= 1

4.2.4 Spatial Discretization

(229)

Just as we divided the problem domain into a finite number of cells in the slab

geometry system, we must divide up the plane in x-y geometry into a finite number

of cells, over which material properties are held constant.
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Fig. 12: Cell i,j and its neighbors with their corner subcell volumes.

4.3 Corner Balance

We consider the x-y geometry orthogonal mesh stencil, shown in Figure 12. The

relationship of cell i, j to its neighboring cells are shown.

Figure 12 illustrates cell (i, i) with four corners labeled 1, 2, 3, 4. In corner bal-

ance, we impose particle balance over each corner. We integrate the x-y geometry

discrete-ordinates equation of transfer, Eq. (227) over each corner:



Corner 1:

Us(X,Y)m(X,Y)+'] , (230)

Corner 2:

1 Q(x,y)1
= 0s(X,Y)qrn(x,y)+

j
(231)

Corner 3:

JX.4 dx dy [mm (x, y) ± (x, y) + Ut (x, Y)m (x, y)
Xi yi

Corner 4:

J
X

dx] dy
yi

,(232)

= Us(XY)m(XY)+ 4'Y)]
. (233)

The result is four equations for each of the four corners of each cell. Figure 13

illustrates the cell unknowns and locations.

11 Tim1,
/

Vm,i,j,B Ym,i,j,1) + Ym,i,j,L Ym,i,j,1+

+Ut,i,j)m,i,j,1 = + , (234)
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Fig. 13: X-Y geometry stencil for cell i, j.

'I'm,i,j,3-

'Fm,ij,2+

\
I'm,i,j,2+ lI'm,i,j,B) + I'm,i,j,R 'L'm,i,j,2_

+at,i,jm,i,j,2 = + , (235)

\ 1]7Th (

kI'm,i,j,3- l)m,i,j,T) + m,i,j,R

+Ut,i,jm,i,j,3 = Us,i,ji,j,3 + (236)

i_tm 17m
l-'m,i,j,T V-'m,i,j,4+) + I-'m,i,j,4- I-'m,i,j,L

+at,i,jm,i,j,4 = + . (237)

Similar to slab geometry, an upstream closure is chosen,

- { I-'m,i-1,j,2 ,
Ji > 0

I-'m,i,j,1 , P < 0 ' (238)
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- I m,i,j-1,4 , 7)> 0
1 / - - n ' 39
( 'Vm,ij,1 , I

- I I"m,i,j,2 , /1> 0
m,i,j,2+ / (- , 240)

I.. Wm,i+1,j,1 , I - u

/ - - f bm,ij_i, , 7)> 0
1 /

L Pm,i,j,2 , 7) '- 'j

mij3 { m,ij,3 /2 > 0
(242)-

11)m,i+1,j,4 , < 0

_f 'I'Tfl,ij,3 ij>0
bm,z,3,3+ 1 I - n ' 243)

I. Pm,i,j+1,2 , 7) -

m,ij4+ { m,i-1,j,3 , p> 0
(244)

m,i,j,4 /2 < 0

- I I-m,i,j,4 , 7) > 0
1)m,i,j,4- i / . (245)

1 1-'m,i,j+1,1 , 7)

4.4 X-Y Geometry Simple Corner Balance

As before, the cell-center angular intensity is replaced by a simple average of the

angular intensities across each internal boundary. In Figure 12, L, B, R, T represent

the internal corner surface boundaries. The four expressions for the four internal

corner surface fluxes are,

I-'m,i,j,L
± V)mi4)

, (246)

1m,i,j,B ± L)mi2)
, (247)

Im,i,j,R
± mii3)

, (248)
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Im,i,j,T
±

. (249)

Inserting these closures into Eqs. (234)- (237) yields,

(1/)m,j,j,i + I-'m,i,j,2 2,L'm,i,j,i_) + ( V-m,i,j,i + I-'m,i,j,4 2t'm,i,j,i+)

+at,im,ij,1 = + , (250)

I-tm 7lm / / /h(Pm,i,j,2 Ym,i,j,2 Ym,i,j,1) + .Ym,i,j,2 + Ym,i,j,3 hYm,i,j,2_

+Ut,i,j'm,i,j,2 = + , (251)

l-tm Tim
2'L'm,i,j,3- L'm,i,j,4 I-'m,i,j,3) + 2tm,i,j,3+ I'm,i,j,2 ,L'm,i,j,3

1_lxi

+at,i,j'm,i,j,3 = + , (252)

rim iIm,i,j,4 + L)m,i,j,3 21'm,i,j,4+) + I.,2I-'m,i,j,4- 'I-'m,i,j,1
L_lxi

+at,i,j)m,i,j,4 = Us,i,ji,j,4 + Qi,j,4 (253)

If we insert the upstream closures into Eqs. (250)- (253) and write the system in

matrix form, we have,

tJ)m,i. 1,j,2
I-'m,i,j-1,4
'I'm,i,j-1,3 'li,j,i Q,3,i

Hm
'4'm,i+1,j,1 Tm

Lm,i,j,2 °s,i,j1 4i,j,2 Xj/Z1 Qi,j,2
, (/Ym,i+1,j,4 /'Pm,i,j,3 i ,

10 Wi,j,3
i
10

/'m,i,j+1,2 L'm,i,j,4 i,j,4 Qi,3,
,1'm,i,j+1,1
/-'m,i-1,j,3

where the matrices Tm and Hm are direction dependent. If we define,

ImYi (255)2'
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7)m1Xi (256)2'
w (257)

(258)

then for p > 0, i > 0,

iu v o 0 0 0 0 0 I

Hm
10 0 V0000

j 0 0 0 0 0 0
ol
0

,p>0, 77>0. (259)

L 0 0 00000U
H can also be written in matrix form as

IG W OX
TmIoIW G X 0

]

, (260)XGW
[x 0 W G

where G, for p > 0, i> 0, is defined as,

G
PmL 7lrnLXi

+ +
Ut,i,j/XiLYj (261)

4 4 4

For p < 0, i > 0,

10 v 0 0 0 0 0 01

H 0
0

0 V
0 0

U
0

0 0
U 0

0 0
0 0] ji<O 71>0, (262)

0 0 0 0 0 0 0

G= I'rn.Yi + 7lmti
+ (263)

4 4 4

For p > 0, < 0,

0000 0 0 01

Hm
0 0 0 0 0 0 0 0 > 0, 17 < 0, (264)
0 0 0 0 0 V 0 0

[0 0000 0 V U]
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G /tmAYi
+ 11mtj cit ,,3Lx4Y

4
+

4
. (265)

For jt < 0, ij < 0,

10 0 0 0 0 0 0 01

Hm
0 0 0 U 0 0 0 0
0 0 0 0 U V 0 0

(266)

0 0 0 0 0 V 0]

G +
11m/Xi cit,,Z.\XL\Y

4
+

4
. (267)

4.5 X-Y Geometry Upstream Corner Balance

Similar to SCB we replace the cell-centered angular intensity by the UCB closure.

The x-y geometry UCB closures are,

1 (ciq+Q\ (ci8+Q'
l-'m,i,j,B = hI'm,i,j,1 +

cit ) i,j,2
cit I i,j,1

+/3 ('i,L'm,i,j,i ç1m,i,j,i_) , p > 0 , (268)

1 /cr3çb+Q\ (ci3+Q
1J)m,i,j,B V-'m,i,j,2 +

cit ) i,j,1 '\ cit I i,j,2

+3 ('I'm,i,j,2 'm,i,j,2+) , p < 0, (269)

1 /a3q+Q\ (cisc+Q
m,i,j,T m,i,j,4 +

cit ) i,j,3 cit i i,j,4

+3 ('I-'m,i,j,4 1'm,i,j,4+) , IL > 0, (270)

1

i(cicb+Q)
(cis+Q)

1
m,i,j,B = m,i,j,3 +

L
cit i,j,4 cit i,j,3]

+3 (bm,i,j,3 1bm,i,j,3) , IL < 0, (271)
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1 (a+Q\ (u3+Q
I-'m,i,j,L = l-'m,i,j,1 + a ) j,j,4 Ut I i,j,1

+13 (J'm,i,j,i '11'm,i,j,i+) , ii > 0, (272)

1 [(asc+Q) (asc+Q'\
11m,i,j,L t'm,i,j,4 + a Ut ) i,j,4]

+/3 (T1,,i,4) ("m,i,j,4 11'm,i,j,4_) , 17 < 0, (273)

1 /aq+Q'\ (a+Q
Im,i,j,R = ,1'm,i,j,2 + at ) i,j,3 Ut I i,j,2

+i3 (L'm,i,j,2 m,i,j,2) , 17 > 0, (274)

1 (a3q+Q'\ (a8+Q"
I-'m,i,j,B = L'm,i,j,3 +

Ut ) i,j,2 \ Ut I

+/3 (T,3) (1'm,i,j,3 'm,i,j,3+) , 11 < 0, (275)

x,y ( x,y

Rx,Y I x,y \ kTm,i,j
Pm,i,j kTm,i,j) x,y

Tm,i,j

c3 (T) + 4r,3 ±
2 + 2r + 4r 2 c0 = 0.455, (277)

m,i,j m,i,j

at,jAx
m,i,j & I

(278)
I /rn I

y ajLy
')I

(279)
I I

We can write this system in matrix notation to simplify the presentation. The
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resultant matrix system is, 

'I-'m,i,j+1,1 
LIA 

--B 
c1 

- --D m,j1,j,2 - --E m,i,j+1,2 
I 

m+ m+ 
I m m L1Xi Lj j 'bm,i,j,4 LXj 'I'm,i+1,j,4 LX I-'m,i,j-1,4 

bm,i,j,3 "m,i-1,j,3 L'm,i,j_1,3 

Q,3,i 

= Fm i,j,2 + Gm Qi,i,2 
, 

(280) 
4 i,j,4 4 Qi,j,4 

4i,j,3 Qi,j,3 

where, for u> 0, ij> 0, 

11+13x 0 0 01 

Am 
Iifi 

1 0 O 
(281) 

0 0 1+8r oj, 
L 

0 0 1p 1 

1i+,8 0 0 01 

Bm = 
I 

0 i+' 0 
ol 

, 

(282) 
0 1 

0] 

[ ip' 0 1 

C = (283) 

10 1+13x 0 0 1 Dm_[0 
- 

_3X 0 0 
I 

(284) 
0 0 0 

i+] 
0 0 0 _/3X 

10 0 1+13k 0 1 

Em= 
10 

0 0 
i+j3I 

1 I (285) 
10 0 _/3Y 0 
Lo 0 0 _3X 

j 

r + 
Lj 

+ cr - - 
Yj 

0 1 
I 

- F 

[Ax 

- 
xi 

_ _ + + a3 0 - 
I 

I 

I, (286) 
m - Lyj 

0 + + a8 

0 - flmC - 2Yj 
mC + + 
IX2 
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Diag 0 1at 1j at I

Diag 0 _1l!LLI

[_1

.xaj yjat I (287)m 0 Diagat at
0 Diaaat ix at

where c is equal to the scattering ratio and,at

Diag = Pm1 1)rnl 1
+ + (288)

For p < 0,i >0,
11 _1_13x 0 0 1

A 0 1+/9 0 0 (289)

[0 0 0 1+flx

m 0 0 1

1+fl 0 0 01
0 1+/3 0 ol

Bm
[_ flY 0 1

0]

, (290)

0 1flu 0 1

C= (291)

_3X 0 0 01

Dm
[i + fi 0 0 01 (292)

0 0 _3X

0],0 0 1+flx 0

0 1+fl 0 1

0 0 0 1fflY1m00 (293)

0],Lo 0 0 _3X

IL2 + + a - !ii

Yj
0 1

I

F =
+EXi 'Yj

+ o- 0
Yj

I

I

, (294)m
L1y

0 + +Ly a -
I

0 _!l2 L1ZtE + + a8j
Yj

Diag 0 1

LlZ!Ll
at Yj at

Diag 0Gxtat yatI (295)
I 0 Diag

1Yj at at

L
0 _1lrni Diag

Ay3 at at
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11+/3x 0 0 0] 

A 
I_i_13x 

1 0 ol 
(296) 

m 0 0 1+/3x oj, 
[ 

0 0 _1_/3x 1 

Ii 0 1flY 0 1 

B 0 1 0 
-i-13d 

(297) 

0 1+ 
m 00 1+13w 0 

j' 

C= (298) 

10 ifix 0 0 1 

0 _fiX 0 0 
I 

D m 
(299) 

0 0 0 
1+/3j' 

0 0 _X 

_/3Y 0 0 01 

0 j' 0 
ol 

Em = 
, 

(300) 
+ 0] 

0 1+3 0 0 

+ + a - - mC 
Lj I 

- !lrn + o- 
0 !1ZL I 

F 
m - 1Xi 

L 

1Yj 'Yj I (301) 
mC 0 + mC + 

8 - I 'yj Xj LXy 

0 _lrn 
Ax Lx 

± + c7j 

I Diag ----- ----- 0 1 
Ax 0t AY 

t 
I I_1±!L.i 

Diag 0 _iiiI 
I G 

I 
Yjt (302) 

0 Diag _irnij L0 
----- ------ Diag 

yj Ot Xi t 

for i < 0,ij <0, 

Ii _1_/3x 0 0 1 

A 0 1+fi 0 0 
I 

0 0 1+ 
m - 0 0 1 1 /3X] (303) 



1 0 1flY 0

B°1 0 1-13k
m00 1+13k 0

0 0 1+8'

C=

1]

(304)

(305)

_/3X 0 0 01

Dm + fi
(306)

0 0 /3X

oj,0 0 1+/3x 0

_/3Y 0 0 01

Em
0 13Y 0 ol

, (307)+ y 0 0

0]0 1+13k 0 0

1 + + a
I LX yj Xi

0 1
I

-F
I -

LXj
+ !1 + a3 0

Yj

- !l2
.Yj

I

I

I

(308)mC
yj

[

0 ' + mC
xi

+ a mC
Lxxi I

0 --
yj xi

+ + as]

Diag
Ut Yj Ut

I_1rni
0 1

I

G
Diag 0XUt

_1l2II
LYjUtI

(309)
0 Diag

I 'Yj Ut Xi Ut

L
0 Diag

yj U Xi U

We can write this system in matrix notation to simplify the presentation. With

the proper definition of Hm the resultant matrix system is,

l/'m,i1,j,2 1

/'m,i,j-1,4 I

1L'm,i+1,j_1,3 I
[1)m,i,j,1l It1i,j,il

Hm L'm,i+i,j,i
+ Tm I

a3,j,31
I

Lxz:yi1
+ I (310)

m,i+1,j,4 m,i,j,3
I

16 16 I

bm,i,j+1,2 bm,i,j,4j i,j,4 Qi,j,4]

I-'m,i,j+ 1,1
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4.6 2D SCB Derived Modified 4-Step DSA

To derive the modified 4-step DSA equations in x-y geometry, we follow exactly

the same procedure as in slab geometry:

1. Take the 0th and 1st angular moments of the SCB transport equations, Eqs. (250)-

(253).

2. Change iteration indices to (1 + 1) except on second and higher moment terms.

3. Subtract the resulting equations from the converged system to obtain a new

system of equations for the additive corrections to the scalar flux resulting from

source iteration.

4. Eliminate the 1st moments from the system, leaving a discretized diffusion equa-

tion. To do this we have to make the within-cell approximation to the cell-edge

scalar flux correction and we have to eliminate all currents in favor of the left

and right half-cell flux corrections.

We can derive the low order equations using the modified 4-step method by first

taking the 0th and l moments of the discretized SCB equations, Eqs. (250) (253).

Taking the 0th angular moment, >m Wm yields,

I(x,(1+) x(L+fl\ 1
+ z2

2
L

2
)

Tx,(t+2)I
i,j,1

]

I f,O+fl +

2
)

2,j,1+

j

LxLy3
=

zxLy
+

4 4 4
, (311)



Ij(i+) .,., Ji,j,2

2
L

2,j,2+

+
+__.!. z,j,3

2 )
i,j,2-

]

(1) /.X2Ly3 +Q132zxi/Yi (312)+at,i,j1 XiYj =
44

/ (i+'\Lj jxO+) ( j3 2/ + 2

i,j,3- 2

3 + i,j,2xi 1(t+) ''

2
+ z,j,3+

LXLy (1)

4
+ Qi,j,3 (313)

(
2

,j4 x,(1+)
I

x,(1+) 1

2
L

i,j,4+
j

xi Iy,(i+) 2,3,1 +
i,j,4- 2

XiL.Yj Ax2.Ay3 +
4 4 4

, (314)

where 1, 1+, 2, 2+, 3, 3+, 4, 4 refer to cell boundary currents (see Figure 13).

In order to take the 18t moment of Eqs. (250) (253) we recall that,

and,

2 211= (3ii 1)] + = (Lm) + PO (Lm), (315)

2 211
TJm = (3i 1)] + = (11m) + (urn). (316)



Then

where,

and

where,

[3'

(317)
Ill

(318)
m

(319)
m

wmP2(iim)bm. (320)

Taking the 1st moment >1m WmPm of Eqs. (250) - (253) yields,

Ly 2
1/(i+)i)\

()
L

i,j,1

2 )
i,j,1_]

=0, (321)i 1) (i+)]

L

'"
2 i,j,1- + 0t,i,j z,j,1

4

Ly

12)
[(t+)

i,j,2+

+i (1)
1 1,3,1

+P)I
x(1+flLXiLYi

L''
2

+ z,j,2
= 0, (322)

iYi
12)

1(z+)
(j

L

i,j,3

(1)
1 ,(t+)

(i+) + ) 1 x(i+) txij

L''

(ii3

2
j

+ i,j,3
= 0, (323)



LJ3 2

()
L

i,j,3
2

)

(1+) (i+)1 jx,O+) LxLy
=0, (324)

() [( 2
ii4+j z,j,4

2 ('+)1L

() R
'"

2
)

Lx 1

/(1+)O+))

(z+)1
=0, (325)+ () [

i,j,1
2

iii+j +at,,3 ,j,i
4

LXZ 2
1f(i+))\

(z+)1

()
L(¼

i,j,3
2

)
ii2_j

zx, fi\ F (i+)1

L2
+ o-t,i,jJi,j,2 = 0, (326)

Lxxi

(2)

[(i+)
i,j,3+

/i\ F (i+fl
(i+fl

+P)1)
L''

(ii3
2

j
+ at,z,3 z,j,3 = 0, (327)

/xi (2\

[(i+)
)

L

i,j,4

/ i\ I (i+)

+))1
[i4_

2
]

+ o.t,i,jJi,j,4 = 0. (328)



W now rewrite Eqs. (311) - (314), Eqs. (321) - (321), and Eqs. (325) - (325), 

promoting alliteration indices to the (1 + 1) iterate except those of 1: 

fjx(L+l) 
i,j,1 + jx(l+l) \ ft 

2 
) 

jx(1+1)l 
z,j,1- j 

Lx jY(l+l) + j+l)\ jY(1+1)l R _ 2,j,1 
2 

) z,j,1+ ] 

/Xi/.Yj (1+1) LXi/..Yj 
4 o.S,i,ji,j,1 4 , 

(329) 

(Jx(I+l) + Jl+l))] [+ 
2,3,1 

2 

Lx /jY(l+l) + jY(l+l)\ jY(1+1)l 
+__! L _ i,j,3 

2 
) z,j,2- ] 

+at,i,1 zxLy ,(1+1) 
4 a8,i,3p2 , 

(330) 

(Jx(l+l) + JX(l+l))] 
2. 

[Jx,(L+1) 
2,3,3 

2 i,j,3- 

IJY(1+1) 
2,3,3 

2 

(Jv(l+l) + JY+l))] 
L 

LxLy3 (1+1) /XiLYj 
4 , 

(331) 

Yj 
jx(l+l) + jX(I+l)\ 

2 
) 

jx(1+1)l 
i,j,4+ ] 

z:s. 
I,jY(1+1) (JY(l+l) + Jl+l))] 

---- L i,j,4 - 2 

,(L+1) Xi/.Yj 
4 0s,i,jPj,j,4 4 , 

(332) 



2
f(L+1) +i\

() [(\

'"

2
)

iii_j

(1+1) (1+1) \+ (1+1)
I+

()
[(.i,

2
)

x,(1+1) tX31iLYj+crt,,J1
4

= 0, (333)

iYi

(2)

[(i+)
;-- !j i,j,2+

(1+1) (1+1)\ 1+ i,j,2 I I+L.:fi
(1)

1(1+1)[i,2+ ( 2
)]

x,(1+1) LXLYj
+o.t,i,jJij2

4
= 0, (334)

Ly (2)

1(1+)
Li,j,3

+42 () (1+1)
(1+1) (1+1)

2 3
(

z,j,3 + j,j,4

)]
2

x,(1+1) LXLY+cTt,,J3,3
4

= 0, (335)

Ly 2

()
L

z,j,3

2
)

ii4+j

(1+1) (1+1) \ 1
+

I+L ()
[(i3

2
)

ii4+j

x,(1+1) XiYj
+a.t,i,jJi,j,4

4
= 0, (336)



Lx2 2 (,i--)1

() R 2
)

i,j,1+

zx r f(1±1) (1+1)\+ 4)j,j,4 \ (1+1) I

(i) R 2
)

XiYj
= 0, (337)

4

Lx2 2_L
()

L (

i,j,3
2

)
i,2-

j
(1+1) (1+1) \ 1

Lxxi + i,j,2 \ (1+1) I

() [(

i,j,3
2

)
øii2_j

iYj
= 0, (338)

4

xi

(2)

1(1+) +\1
2

)j

( i,j,3 + Pi,j,2LXj 'i' I (1+1)
(1+i) (1+1)

L''
2

)]

XiYj
= 0, (339)

4

ixi

(2)

[(i+)
-i- i,j,4-

2
)]

+ () (1+1) (1+1)

2
L

i,j,4- (
i,3,1 + i,j,4

)]
2

iYj = (340)
4



If we subtract Eqs. (311) - (314), (321)- (324), and (325)- (328) from Eqs. (329)

- (332), (333) - (336), and (337) - (340) we find:

J
f x,(1+1) _

Yi I 9i,j,1 ' Yi,j,2 x,(1+1)
2 2

y,(1+1) + g7() \ y,(1+1)1Lx2
+T_ 2

) j

LXjYj ZxiLyj ((i±i
, (341)= 0s,i,j

4 2,3,1

/ x,(1+1) x,(1+1)
Yj x,(1+1) 9i,j,1 + g32

2

Lx y,(1+i) + gY+l) \ y,(1+1)1[(gj,j,3
2

j

LXLy f (1+1)
= £T$,1,3

4 (i,j,2 i,j,2) (342)

x,(1-1-1) x,(1+1) \ 1+ gi,j,4 I[ x,(1+1)
9i,j,3

(gj,j,3
2

Fy,(l+l)
y,(l+l) y,(l+1)

+---- [i+
2

)]

( 9z,j,3 +

(1+l)i'Yj /.XiLy ( (1-i-i)

4
= øi,j,3 , (343)

/ x,(L+l)
y i g,3,3 -i- x,(1+1)

2
)

9i,j,4+

I y,(l-i-l)
y,1) + \ 1(gj,j,i

2
)]

+cit,i,jfi'
(

(1+1)
= a8,i,j i,j,4 4) , (344)



Ly
( 1)

-- 1

(f(l)

+ f,])
1

''

)

:(+') I
x,(l+l)XiLYj+ = 0, (345)

L
2

+ \ I x,(L+1) LxLyiXy

(1) [

(1+1) /j(l+l)
(1+1)\ 1

-- -
2

)]
+ = 0, (346)

LYi

( 1)

1
(1+1)

j(l+l) +

f))
1

x,(1+1)

- ( 2
j

+ = 0, (347)

Lyj (1\
(1+1) (1+1)\

+ f,4
1

t (1+1) I s,(1+1) LZy
=0, (348)

) 2
)

4

LX 1

()

(1+1)

[(fi,

(1+1)
+ fz,j,4

\ 1

\ (1+1) I-

fji+j

y,(1+1) XiLy+ ut,i,jg,i (349)
2

)
4

zx2 f1\
(1+1) (t+1)+

\ 1

(1+1) I

fii2_j
y,(1+l)

(350)
) 2

)
4

Lxxi

1)

1
(1+1)

/ (l+l)
Ji,j,3 + i,j,2 y,(l+1) LXiLiy

(
(

2
)]

+ at,i,jg,3 (351)

Lxxi

( 1)

1
(1+1) -

/ (1+1)

1 f(l+l)+ i,j,4

)]
+ ,1+1

0t,i,j9j,j,4 = 0. (352)
2

We simplify the right hand side of Eqs. (341) - (342) using the fact that

which yields,

2 i,N
- -

2 i,N _i,N)
a8,Lx 1 (1+1) s,iXi

(

(1+1)

+_
'2 i,N N=1,2,3,4, (353)

o-,Lx2

(

(i-i-i)

/ x,(1+1) x,(t+1) \
'Yi i g,1

-
9i,j,2 x,(1+1)

'K
2

)
9i,j,1

y,(L+l) y,(l+l) \ 1Ax -
\ y,(1+l) I

+_-_ [(gj,j,i 2
) ]

(4,,iT1) -
i)

, (354)



Ly I x,(1+l)
x,(t+1) r,(1+1) \ 1

9i,j,2 'I I(gj,j,i
2

y,(l+1) y,(l+1) \ 1
Lxxi Yj,i,2 \ y,(1+1) I+__

2 ) 9i,j,2
]

+Ua,i,jfjj2
/.Xj1j = i,j2) , (355)

f x,(1+1) x,(1+1)
x,(1+1) f 9i,j,3 Yi,j,4

-k-- g,3_
2

LX1 I y,(l+l)
y,(l+1) y,(l+l)

+---
2 )]

( g,3,3

+Ua,i,jf' = (i,J3 i,j,3) , (356)

x,(1+1) x,(1+1) \ 1g,3,4 \ x,(1+1) I1(
2 ) j2[

LX I y,(l+1)
y,(t+1) y,(l+l) \ 1

9i,j,4 \ I+---- [gi,,4_ (gj,j,i
2 ) j

+a,i,jfj' cx
LxLy3

(357)

We define the following corrections:

(1+1) (1+1) (i+)
fi,N Pi,N Ii,N ,N=1,2,3,4, (358)

(1+1) j(l-f-l)
, N = 1, 2, 3, 4. (359)9i,N i,N



We next remove the dependencies on the edges, 1, 1+, 2, 2+, 3, 3+, 4, 4+,

by first obtaining,

1 (1+1) (1+)1x,(1--1) 1 (1+1) ,(i+)]
(360)= Wm/lm /i_1,j,2] + Wm/2m ,j,i j/1<0 L

which, if we use a P1 expansion of the angular intensity becomes,

x,(1+1)
9i,j,1-

W/2 1(',3,2
(1+1)

(_',j,2/2>0 L
4

+
4

+

3/1mzj,i (1+1)

(361)
/2<0

4

This reduces to,

x,(1+1) 7 / (1+1) f(i+1)) + 1 / x,(1+1) x(1+1)) (362)gi,j,1_ = j (f_1,,2 +

Similarly, we find,

y,(l+I) 7 ( (1+1) (1+1)) 1- Jj,-I,4 + + gi+1))
, (363)

y,(l+l) 7 1 (1+1) (1+1)) 1 ( y,(1+l) +Yi,j,2- fi,j-1,3 f,3,2 + 9i,j-1,3 i,j,2 ) , (364)

x,(1+1) 7
(

(1+1) j7(1+i7)) +
1 / x,(1+1) x,(1+1)\- fi,j,2 + , (365)

x,(L+1) 7
(

(1+1) (1+1)

)

1 / x,(1+1) x,(1+1)\= fi,j,3 + + gj+34) , (366)

y,(l+l) - 7
(

(1+1) (1+1) \ 1 / y,(1+1)- fi,j+1,2) + + gj+i2) , (367)

y,(l+i) 7 (f(I+1) f'1) + 1 y,(l+i) +9i,j,4- = i,j,4 , t9i,j,4 ,j+ii) , (368)



x,(1+1) 'Y / (1+1) (1+1)) 1

(
x,(1+1) x,(1+1)\Yi,j,4+ (fi-1,j,3 fi,j,4 + + 9j,j,4 ) , (369)

where 'y is the quadrature normalization defined as the sum of the quadrature weights,

N/2

7EWfl. (370)

We substitute Eqs. (362) (369) into Eqs. (354) (357) which yields,

x,(1+1) x,(1+1)\
9i,j,2 \ 7 ( (1+1) (z-i--')\ 1 / x,(1+1)

( 2 ) i1,j,2 ) + g+1))]2[
y,(L+l) y,(l+1) \ 1g,3,4 \ 7 1 (1+1) (Z+i)\ 1 / y,(+1) y,(L+1)' I+ [(gjj,i

2 ) ) + gi,j,1
j

+aa,i,jfj = AxZy3 (;)
, (371)

1 (1+1)
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(1+1)
)

1 ( x,(L+1)+ x,(l-t-1)\+g13)
x,(1+1)

( 92,3,
x,(1-3-1)

2
L

2 )]
y,(l+l) y,(l+l) \ 1xi \ 7 1 (1+1) (Z+i)\ 1 y,(l+i) y,(1+1)\

2
)

fi,j-1,3 Ji,j,2 ) + g2 )j

±U,j,jfjj1Y3 (ii2 ij2) , (372)

Yj I'Y 1 (1+1) (1+1)
)

1

(

x,(1+1)+ x,(1+1)+
x,(1+1)(gj,j,3 x,(1+1) \ 1

9i,j,4 !%

2
L

2 )]
LXj 17 (1+1) (1+1) 1

(
y,(l+1) +

y,(l+l) y,(l+1)

k
(fi,,3 i,j+1,2) + 91,j+1,2

(gi,j,3
2

g,3,2

)]
+aa,i,jfjj3 Xjj LxLy ( (1+)

4 i,j,3 , (373)= o_s,i,j,
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x,(1+1) x,(1+1) \ 1g,3,4 \ 7 1' (1+1) (1+1)\ 1 / x,(1+1) x,(1+1)" I1 (gj,j,3
2

)
fi-1,j,3 fi,j,4 ) + g4 )j2

y,(l+l) y,(l+1)LX 17 / (1+1) (1+1) \ 1

(
y,(l+l) y,(1+1)\ (gj,j,i 9i,j,4

)]k
(fi,.j,4 f+1,1) + +

2

+Oa,i,jfjj4
LXLy X4y3 ((z+)

4) . (374)

We use very simple "within-cell" approximations to eliminate the edge scalar

intensity corrections:

= , f2,3,+ =

fi,j,2 = f,3,2 , fi,j,2+ = fi,3,2

fi,j,3.- = , f,s+ = fi,j,

fi,j,4- = f,j,4 , fi,j,4-F- = fi,j,4 (375)

These allow us to reduce Eqs. (345) (348) and Eqs. (349) - (352) to:
(1+1) (1+1)g+l) g+l) _fi,j,i

) , (376)

(1+1) (1+1)g+l) g+l) (fi3 fi,j,4

)
(377)

/ / ,(l+1) ,(L+1)
y,(l+l) y,(l+l) - (

1 Jj,j,4 Jj,j,1
3789i,j,1

'\30t,i,) Yj

/ / f(l+I) (1+1)
y,(l+1) y,(l+l) - 1

1 j Jj,j,4
379-

LYj
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By using Eqs. (376) - (379) with Eqs. (371) - (374) we arrive at four equations

containing only the corner direction-integrated intensity corrections, 11,2,3,4:

1D,3 D,3+ 2/x + +
2

+ aa,i,i] (1±1)
J i,j,1

1-D,31 (1+1) 1 D_1, -y 1 (1+1) 1 D2_1,3 1 (1+1)+
L ]

fi,j,2 + 2Lxj] fi-1,j,2 +[] fi-1,j,1

+ 1-D,31 (1+1) 1 D,,_1 'y 1 (1+1) 1 D2,3_1 1 (1+1)

]
fi,j,4 + 2Lyj] fi,j-1,4 + fi,-i,i

( (z+)
= , (380)

1D,3 D,3 1 (1+1)+ 2Lx + 2 + + Uaiij fj,i,2

1-D,1 f(L+l) + D2.,3 -y 1 (1+1) 1 (1+1)+
[ ]

2,3,1 Lxx+i 2x] fi+1,j,1 + fz+1,j,2

1-D2,31 (1+1) 1 D1,3_1 2'

]
(1+1) 1 D,_1 1 (1+1)+

[ 2 ]
f,j,3 + LYLY_1 2yj +

= as,i,j (4) i,j,2) (81)

E

D,3 2' D,3 'y +crati] (1+1)+ 2x + + 2A ''

1_Dj,31 (1+1) 1 2' 1 (1+1) 1 1 (1+1)+
[ j

+ Lxixi+i 2xj] f2+1,,4 + L] 2+ii3

[-D,1 (1+1) D,31 2'

]
(1+1) 1 D,31 1 (1+1)+

L ]
fi,j,2 + fi,j+1,2 + fij+1,3

= i,j,3 3,3) , (382)( (z+)
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[+ ++ (1+1)
2xj 2

+

+ 1D1 (1+1) + 1 D1_1, '' 1 (1+1)2x] fi-1,j,3 +
1 D_1,2 1 (1+1)

fi-1,j,4LX ] LAxx_1]L

1D,31 (1+1)+
[ j fi,j,1

1 D,31+ IYjYj+i
7

]
(1+1)f+1,1 + 1 D,31 1 (1+1)f+1,4

= ( (ifl
i,j,4 3,4) , (383)

where we have defined,

1
= 0 (384)

These equations, valid only in the interior of the domain, can be written in matrix

form as,

DF=P,
where,

(385)

Id c 0 0 g 0 0 f a b 0 e 0 0 0 0 0 0 0 01

D 0 0 0 0 0 g f 0 b a e 0 h i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 e a b 0 0 i h 0 j k o (386)

0 c d 0 0 0 0 e 0 b a 0 0 0 0 j 0 0 k]

a=i D,
Lx + 2x + + 2Yj + a,iij] , (387)

b 1_Di,j (388)

I D2_1,3 1

2zx] ' (389)

d - [_D2_1,3
[LXj1Xii (390)
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e- E-Di,j'
/-y

(391)

f=1 D2,_1 1

2zyjj ' (392)

I -D,
I

'

(393)
I Yj Ly -1

h-1 1

2zx] ' (394)

-D,3 1
i Lx1x+1i ' (395)

_1 D1,1 1

2zyj] ' (396)

1
k

, (397)

(398)
2
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(I I

f k 2
J 1- 1,j,1

fi-1,j,2

Ii- 1,j,3

li-i ,j,4

Iij- i,i

fi,j - 1,2

fi-1,3

fi,j-1,4

f,j,

F fi,3,2
, (399)

fi,j,3

fi,j,4

f+i,j,i

f+1,j,2

f+ 1 ,j,3

fi+1,4

f+i, 1

31,2

f,+1,3

fi+1,4

P (400)

th(1+2)
23,1

cI
ij,2 i,j,2

j,3 q5,3
(401)

I

i,j,4

In the next section, we will perform a Fourier analysis of this acceleration scheme

applied to the SCB and UCB transport equations.

4.7 X-Y Geometry Fourier Analysis

To determine the effectiveness of accelerating UCB with SCB derived M4S accel-

eration equations we perform a Fourier analysis.
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4.7.1 Fourier Analysis of Source Iterations: SCB

The Fourier analysis of source iteration applied to SCB begins with Eqs. (310)

written in terms of the iteration errors. We assume an infinite medium with zero

source which results in,

Hm

7(1+1)
Pm,i 1 ,j,2
7(1+1)
Wm,i,j-1,4

7(1+1)
9'm i+1,j-1,3

711+1)
Pm,i+1,j,1
7(1+ 1)
'Pm,i+1,j,4
1(1+ 1)
'Pm,i,j+ 1,2
1(1+ 1)
''m,i,j+1,1
7(1+ 1)
'Pm,i-1,j,3

where 1 is the iteration index.

r(1+1) 1
I m,i,j,1 I

I(1+1) I

m,i,j,2 I -+ Tm t+i i
I Wm,i,j,3 I

L(1+1)
m,i,j,4J

(1)
i,j,1

i(1)cr3,,,1
16 i,j,3

i(1)

The discrete Fourier mode ansatz in x-y geometry are,
(1)

'Im,i,j,1 am,j,j,1
',t'm,i,j,2 = w1e"' am,i,j,2
1bm,i,j,3 am,i,j,3

lL'm,i,j,4 am,i,j,4

m,i,j,1
(1)

Am,i,j,i
m,i,j,2 w1e" Am,i,j,2
m,i,j,3 Am,i,,,3

bm,i,j,4 Amij4

(402)

(403)

(404)

Substituting the Fourier ansatz into our system Eq. (402) yields the following

equations,

am,j,j,1 A2,,1
am,j,j,2 , 2> 0 , ii> 0, (405)
am,i,j,3 i,j,3

A,3,4

am,j,j,i

= < 0 , ii> 0, (406)
am,i,j,3 i,j,3
am,i,j,4
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am,j,j,1 -4i,j,1

wL' am,jj,2 = p A1,,2
, > 0, 1] < 0, (407)

am,i,j,3 A,3,3
am,i,j,4 A,3,4

IA1,j,i1

wL' = PS I , , < 0, < 0, (408)
am,z,3,3 i A1,3,3

am,i,j,4 L1j,j,4

where L+,+ L,+ L' and L;' are equal to,

ía + b + c a 0 b fe1"Yila a + b + c b fe1Yi 0
I (409)0 b a+b+c a

Lb 0 ade1

a + b + c a Ob - feiYi
1

+ a + a + b + C b fe'Yi 0 I

Lm'

[
0 b a + b + c a + de_xj I

' (410)

b 0 a a+b+c ]

ab+c 0 b 1

T+, I I

a ab+c b 0 I

L0 b+fe1i ab+c a I

(411)

b + fe1Yi 0 a dexj a b + cj

ab-i-c a 0 b 1

a + a b + c b 0 IL'
[

0 b + fe a b + c a + de2xj (412)

b+feiL/hi 0 a ab+c j
o3,1,Ax1y

[I], (413)PS=
16

where,

/LmLYja= , (414)

b
17m1Xi

(415)4,



Ot,j,jLYjLXiC , (416)

d
PmYj

2
' (417)

17mXi
2

(418)

Rearranging Eqs. (405) - (408) we arrive at,

I 1 1A11

f Wm [(''T' + (L'+' + (L'-1 + (L;Y1] Ps (419)
I

a,3 I m II[ j LA4]

which is equivalent to,

a,1
1

1A11

i
a,2 = ASCB I

A
I

(420)

Lam,3

I
11131

am,4 j LA4]

4.7.2 Fourier Analysis of Source Iterations: UCB

The same methodology that we applied to SCB is used to Fourier analyze UCB.

We write Eq. (310) in terms of the iteration errors. We assume an infinite medium

with zero source which results in the following system,

Hm

7(1+1)

Pm,i-1,j,2
7(1+1)
Ym,i,j-1,4

7(1+1)
'm i+1,j-1,3
7('1+1)
Ym,i+ 1 ,j,1
7(1+1)
'm,i+1,j,4
7(1+1)

Wm,i,j+1,2
7(1+ 1)

Ym,i,j+1,1
7(1+ 1)
'Pm,i-1,j,3

7(1+1)
'Pm,i,j,l Yi,1,i
7(1+1) (i)
Ym,i,j,2 ,2+ Tm ,(1+i) -ij' d

7(1+1)
'*'m,i,j,4 'Pi,j,4

where the coefficients were defined in Section 4.5 and I is the iteration index.

(421)



The discrete Fourier mode ansatz in x-y geometry are,
(1)

tI)m,i,j,1 am,j,j,1
i,t'm,i,j,2 = eulj+h1?uj) am,i,j,2

, (422)
bm,i,j,3 am,j,j,3

I'm,i,j,4 am,i,j,4

(1)

m,ij,1 Am,i,j,i
m,i,j,2 = wteixi1!hj) Am,i,j,2

(423)
'lm,i,j,3 Am,z,j,3

47m,i,j,4 Am,j,j,4

Substituting the Fourier ansatz into our system Eq. (421) yields the following

equations,

am,j,j,i
am,j,j,2

= Pm,S , > 0 , > 0, (424)am,i,j,3 i,j,3
am,i,j,4

am,j,j,i

= Pm,S < 0 , 17 > 0, (425)am,i,j,3 i,j,3
am,i,j,4

am,1,j,j
am,2,j,j

= Pm,S > 0 , < 0, (426)am,3,i,j i,j,3
am,4,i,j A1,3,4

am,j,j,i A,,,1

am,j,j,2 = < 0 , ij <0, (427)am,i,j,3 A2,,3
am,i,j,4 A2,3,4

+,+ T-,+ T+,-where Lm 'i'm 'm and L[ are equal to,

ac + bd + 1

L ac
m 0

bd

ach
a+bd+ 1 +afh

bd
0

bdl
0

ac
ac + b + 1 + bgl

0

bdl

a+b+1+afh+bgl
ach

(428)



ac+b+1+bgk ach
L' ac a+b+1+afh+bgk

0 bdk
bdk 0

a+bd+1+afj
acj ac + bd + 1

0 bd
bd 0

100

bd 0
0 bd

ac a+bd+1+afh
ac+bd+1 ach

(429)

bdl 0
0 bdl

acj ac+b+1+bgl
a+b+1+afj+bgl ac

(430)

a+b+1+afj+bgj ac
L' acj ac+b+1+bgk

0 bdk
bdk 0

where,

Pm,S = [G]

2iUma

b
271m

c = (1 + 13x),

d=(1+,8)

f

g = flY,

bd 0
0 bd

acj ac+bd+1
a+bd+1+afj ac

(431)

(432)

(433)

(434)

(435)

(436)

(437)

(438)

h = e_2>i, (439)



1 = e''"

j = e,

k=

where 13X/ and G were defined in Section 4.5

arrive at,
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(440)

(441)

(442)

Rearranging Eqs. (405) - (408) we

I a,1 1 1A11

a,2

j
= Wm [((L'T' + + (L'1 + (Lj') Pm,S]

I

:

(443)

L

am,3 m II
am,4 LA4i

which is equivalent to,

f 1 rAil
a,2 =ASCB

1A21
I

(444)
I a,3 I A

L am,4 j [A4J

4.7.3 Fourier Analysis of Modified 4-Step Diffusion Equations

The Fourier analysis of the x-y geometry SCB derived M4S DSA equations begins

with Eq. (399). The discrete Fourier mode ansatz are,

I 1
(1+1) 1

I a
I

fi,j,2
I -

[

a2
Ifi,j,3 a3

]L fi,j,4 J
a4

i,j,1
(1)

A1

i,j,2 = w1e
A2

(446)
i,j,3 A3

,z.. A4'P2,3,4
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Substituting the Fourier ansatz into Eq. (399) yields the following matrix eigen-

value/eigenvector system:

where D is equal to,

where

Fail 1A11

wD 1a21 =PD 1A21 (447)
1a31

IA3jLa4] [A4

IA BCD1
IE FGHI
Ii J K Lj

(448)

LMNO P

A = + 2zx + + 2Yj + Ua,i,j

1D, _iALxi] 1-D,3+
L

e +
L

3?

e , (449)

I -2' D2,3]
B +

L2zx
+ (450)

C=0, (451)

D I 'y D,31
]

+ + (452)

E [_D2i1 +
I -2' + (453)

i L1 Lx

ID 2' 2'
F = [2 + 2Lx + +

2LY
+ t7a,i,j

ID2,, iALixi] 1-D,3
+

L

e

+ L
e , (454)

G I -2' + eulj
, (455)

y3 ]

+
yi



and PD is equal to,
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H=0, (456)

1=0, (457)

j_ [Di,jl
I -2'

j

+ LY + (458)

K=19-- + 2x + 2y +

1D,3
iAI +

2VY+
L

e

L y3

e , (459)

D2,31D,31
L

]

+ + (460)

2'M [_Dii]
+ [2 + (461)

N=0, (462)

[Di,jl

F 'y D1,31

Lx
+

[2
+ (463)

D 2' 2'P = +
2/x

+ +
2/

+ Ua,i,j

I-D,3

I

1D,3
+

L

e +
L

e , (464)

PD = o,i,j {I] (465)
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The Fourier analysis of the SCB system accelerated with the SCB derived modified

4-step equations and the UCB system accelerated with SCB derived modified 4-step

equations can be represented in the following matrix notation,

where,

[A11 1A11
IA2' IA2I

IA31
w I I = EASCB,UCB + E (ASCB,UCB I)]

I A3]
(466)

[A4] [A4

E= D'PD, (467)

where w is an eigenvalue, A1,2,3,4 is an eigenfunction and I is the identity matrix.

4.8 Numerical Results

4.8.1 Fourier Analysis Results

Following the same methodology performed in slab geometry, we have Fourier an-

alyzed SCB and UCB accelerated with SCB derived modified 4-step equations using

a S8 level-symmetric angular quadrature set for our x-y geometry results. The iter-

ative scheme was also implemented to verify the results of the analysis. Figures 14

and 15 show the results of this Fourier analysis. These figures represent the spectral

radii as a function of mesh spacing in the x and y directions. The accelerated SCB

plot shows a maximum spectral radius of 0.4567 for c = 1.0 and an optical thick-

ness of approximately 1.0 mean-free-paths (mfp). The SCB-accelerated UCB plot

shows a maximum spectral radius of 0.370 for c = 1.0 and an optical thickness of

approximately 1.0 mean-free-paths (mfp).

Numerical results were generated for a 20 x 20 plane, an S8 quadrature set, vacuum

boundary conditions, zero sources and a convergence to = 0 for a range of optical

thicknesses. To get the most accurate results all of the Fourier modes were excited
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Table 2: X-Y UCB Fourier Analysis Results

at x
0.1. 1.0 10.0 100.0 1000.0 10000.0

0.1 0.231 0.324 0.275 0.225 0.220 0.220
1.0 0.324 0.370 0.323 0.296 0.293 0.293

10.0 0.275 0.323 0.226 0.130 0.119 0.118
100.0 0.225 0.296 0.130 0.031 0.017 0.016

1000.0 0.220 0.293 0.119 0.017 0.002 0.001
10000.0 0.220 0.293 0.118 0.016 0.001 <0.001

Table 3: X-Y UCB Implementation Results

aLx
0.1 1.0 10.0

aty
100.0 1000.0 10000.0

0.1 0.209 0.312 0.249 0.199 0.194 0.194
1.0 0.312 0.368 0.321 0.293 0.290 0.289

10.0 0.227 0.321 0.223 0.128 0.118 0.117
100.0 0.196 0.293 0.129 0.030 0.017 0.015

1000.0 0.194 0.291 0.118 0.017 0.002 0.001
10000.0 0.194 0.288 0.117 0.015 0.001 <0.001

spectral radius less than that of the Fourier analysis, which it does.

4.9 Summary

In this chapter we described discretization techniques for the equation of transfer

in x-y geometry, including techniques for treating frequency, time, and angle. We

then introduced the corner balance family of spatial discretizations in x-y geometry.

We reviewed the simple corner balance and upstream corner balance closures and the

associated scheme for source iteration. We then derived the M4S DSA equations in

x-y geometry.
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Table 4: X-Y SCB Fourier Analysis Results

0.1 1.0 10.0
atY

100.0 1000.0 10000.0
0.1 0.242 0.426 0.237 0.236 0.236 0.236
1.0 0.426 0.456 0.457 0.457 0.457 0.457

10.0 0.237 0.457 0.140 0.135 0.135 0.135
100.0 0.236 0.457 0.135 0.015 0.015 0.015

1000.0 0.236 0.457 0.135 0.015 0.001 0.001
10000.0 0.236 0.457 0.135 0.015 0.001 <0.001

Table 5: X-Y SCB Implementation Results

0.1 1.0 10.0 100.0 1000.0 10000.0
0.1 0.220 0.343 0.215 0.214 0.215 0.215
1.0 0.344 0.452 0.455 0.456 0.455 0.456

10.0 0.210 0.455 0.137 0.134 0.134 0.134
100.0 0.214 0.456 0.133 0.014 0.015 0.015

1000.0 0.214 0.455 0.134 0.014 0.001 0.001
10000.0 0.215 0.455 0.134 0.015 0.001 <0.001

A Fourier analysis of UCB accelerated with SCB-derived modified 4-step DSA

equations was performed. We demonstrated that the implemented algorithm verifies

our Fourier analysis. The results clearly show that SCB derived diffusion acceleration

equations are very effective at increasing the rate of iterative convergence of UCB in

x-y geometry.



111

y (cm)

Vacuum
Boundary

Vacuum
20 Boundary

(Y=l.O cm
a=1.O cm1

Q = 0.0

oj=1.O a1=o.O
cY=1.O =1OO
Q=1000 Q=O.O

Vacuum
Boundary

0 20
Vacuum x (cm)
Boundary

Fig. 18: SCB and UCB x-y model stencil.

Table 6: X-Y Model Problem Results

Discretization: Iterationssj: IteratiorlsDsA: Psi: ,oDsA: f:

SCB 791 23 0.976 0.419 1.0e6
UCB 787 18 0.976 0.336 1.0e6











5 CONCLUSION

5.1 Summary of Results
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We had four primary objectives for this thesis; slab geometry Fourier analysis of

SCB and UCB discretizations accelerated with M4S DSA, slab geometry implementa-

tion analysis of the same system, x-y geometry Fourier analysis of the SCB and UCB

discretization accelerated with M4S DSA, and x-y geometry implementation analysis

of the same system. In this chapter summarize our work, discuss the significance of

our results and consider areas for future work.

We introduced a new mildly inconsistent application of the M4S equations. We

proposed applying M4S acceleration equations derived from SCB to the UCB source

iteration equations. The success of this mildly inconsistent application was judged

with two primary metrics; convergence rate and "correctness". We defined conver-

gence rate to be the error reduction rate on each successive iteration. "Correctness"

here means the accelerated solution is equal to the solution achieved using only source

iteration. Fourier analysis results show that in slab geometry and x-y geometry the

scheme should be highly effective and our implementation of the method supports this

assertion; M4S DSA equations derived from SCB substantially increase the iterative

convergence rate of otherwise slowly converging UCB source iteration problems. Our

results also show this scheme to be "correct"; implementing the technique results in

identical solutions between unaccelerated UCB and accelerated UCB.

Our analytic and implementation results support the initial observations of Palmer [Pa193}.

Our work verifies that on orthogonal meshes it is possible to rapidly accelerate UCB

with SCB derived DSA equations. We conclude that if modified 4-Step DSA equations

can be derived from SCB transport equations [Pa193], and, provided that the fore-

mentioned acceleration equations can be efficiently solved, we can greatly increase
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the convergence rate and therefore the rate at which solutions can be attained.

5.2 Scientific Computing

The computational analysis software developed in this thesis was written in C++.

The motivation for using C++ was based on several different influences. Scientific

computing has predominantly used high performance procedural languages. Proce-

dural programming techniques were used primarily because emerging software engi-

neering techniques degraded performance too severely to be cost effective. Modern

software engineering techniques, primarily the C++ language and compilers, have

matured to the point where performance is no longer a problem. The fundamen-

tally different programming ideologies can now be applied to scientific computing

problems without degrading performance. These new forms of abstraction, such as

object-oriented programming, can actually simplify the creation of cutting edge nu-

merical computation packages. One very beneficial result of C++ and object-oriented

programming is the concept of software reuse. Software reuse allows programmers

to use objects and abstractions created by others in their own projects. Instead of

having to fully understand the programming of how the object works and behaves, a

programmer can simply use behavior and state provided by the object. This capabil-

ity is just recently stating to gain momentum and acceptance in scientific computing

communities.

For this thesis modern software engineering techniques were employed in the cre-

ation of the Fourier analysis and implementation codes. The Matrix Template Library

(MTL) [Sie99] was extensively employed along with object-oriented programming

techniques. The use of C++ greatly increased the ease by which changes and modi-

fications could be made to the analysis packages. The ability to use behavior offered

by the MTL also greatly eased implementation of new high-performance numerical
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algebra routines.

There were also drawbacks to using a fundamentally different means of program-

ming. There is a very intense learning curve associated with object-oriented pro-

gramming. The author found that several revisions were necessary as new and far

superior methods of programming were discovered. Another concern was the lack of

control over the numerical linear algebra packages. Numerical issues were noticed in

some limits which indicated some problems with the linear algebra coding. This will

be discussed in the next section. Our results were obtained using a Sun Ultra 10

workstation running the KAI KCC compiler.

5.3 Discussion

The modifications that Adams [Ada97} made to SCB in designing UCB resulted in

a discretization with several very appealing characteristics. However, source iteration

suffers from the problematic decrease in iterative convergence rate when the system

of interest becomes highly diffusive. One solution to this convergence problem is

to use a form of acceleration to increase the rate of iterative convergence while still

preserving the unaccelerated result. The non-conventional form of the UCB closure

makes deriving a consistent set of acceleration equations a difficult task. What we

have found is that deriving M4S DSA equations from a similar discretization, SCB,

yields acceleration equations that effectively accelerate slab and x-y geometry UCB.

Our results indicate that our scheme is highly successful. However, we had numer-

ical difficulties with the diffusion solvers in high aspect ratio problems. Our diffusion

solvers became unstable and failed to converge for certain high aspect ratio problems.

This points out the fact that although the rate of convergence of the scheme can be

greatly increased, effective diffusion solvers must be available to rapidly solve the DSA

equations. If too much time is spent solving the diffusion acceleration equations, the
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overall cpu time needed for convergence may actually be greater than that of source

iteration.

5.4 Future Work

Several aspects of this research require further investigation.

The derivation and implementation of the acceleration equations needs to be ex-

tended from orthogonal meshes in x-y geometry to unstructured polygonal meshes.

The motivation for using UCB is that it is a discretization that rapidly sweeps through

polygonal cells. This is not a serious issue for regular orthogonal geometries. By

extending the implementation to arbitrarily connected polygons we can determine

whether the method is as effective as it is for orthogonal mesh schemes.

A method needs to be determined for performing Fourier analysis of the scheme

on polygons. Warsa and Wareing have discussed a technique to Fourier analyze

triangular meshes and they indicate it is highly effective at predicting convergence

characteristics for unstructured meshes [WarOOa} [WarOOb]. Performing this type

of analysis would provide insight into how the scheme behaves on non-orthogonal

meshes.

Finally, research needs to be performed investigating new ways of reducing the

time required to solve the diffusion acceleration equations. Currently M4S requires

the solution of an asymmetric matrix. This adds a great deal of computational

expense to the transport/DSA sweeps. One possibility is to use other types of mildly

inconsistent acceleration schemes to accelerate UCB. One of particular interest is

simplified P1 DSA [Pa193]. Simplified P1 DSA yields symmetric matrices which are

easy to solve compared to the non-symmetric matrices resulting from M4S DSA.

This could potentially yield a highly convergent rapid scheme for polygonal mesh

UCB transport.
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