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1. Introduction

This is an attempt to increase the power of a spreadsheet and try to use the spreadsheet as

a powerful programming tool. The basic idea is to treat each cell of the spreadsheet as an

object.  The cell (Object) could be programmed, that is, the attributes and the

functionality of the cell could be described by the programmer. This type of visual

programming is extremely useful in cases such as simulation systems and when analyzing

"what if" conditions.

The following are some of the advantages of taking a spreadsheet like programming

approach.

• The task of programming is greatly simplified. This is later shown using some

example problems which demonstrate the simplicity of spreadsheets.

• We are able to express relationships over many different data types, including

numbers, strings, boolean, fonts, colors etc.

• The programmer of such an interactive application gets immediate feedback on the

updates made to the system

• The complicated flow of control in the present day programming techniques

could be avoided. This is makes testing and maintenance of such an software

easier

• The programmer is saved the burden of expressing the computed result in an

appropriate visual form for analysis. The two different tasks of computation of data

and expression of results (which might actually be more difficult than computation)

are bundled into one. The programmer is saved from the need of separate graphic

programming

The spreadsheet model will make the line of distinction between a

programmer and an end-user very thin. In fact, if the end-user has some

basic programming abilities, he or she can change the application to fit

their needs more appropriately.
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2. Why take a spreadsheet approach to programming?

If we have to name a single software invention that revolutionized the way people

perform numerical calculations with computers, it is undoubtedly the spreadsheets.

Before the invention of spreadsheets, the only way to perform calculations would be to

use a complex programming language such as FORTRAN.  For the first time,

spreadsheets allowed people not experienced with any programming language to do

complex calculations easily.

The reason why spreadsheets became so popular is due the fact that they are conceptually

very simple. The power of the traditional spreadsheets could be summarized more or less

with the following statements

1. A spreadsheet contains a grid of cells whose value or formulae could be accessed

2. A formulae can refer to other cells (thus building the relationship between cells) or

the results of computation of formulae of these other cells.

3. There is a standard library with some already defined functions available to the user.

2.1 Supremacy of spreadsheet over conventional procedural techniques

It is not difficult to see that this conceptually simple spreadsheet can actually be a

powerful programming tool. In fact, this is already proved with the success of traditional

spreadsheets. Many programmers found that using spreadsheets to perform their

numerical calculations was much easier than trying to do the same in languages such as

FORTRAN. Thus, we can safely say that the spreadsheets have long back established

their supremacy over procedural languages in the area of numeric data representation and

calculation.
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One of the primary motivations of using the spreadsheet would be the possibility for

visualization of data (1). An important technique for understanding data is to apply an

appropriate visualization model to it. Each cell of the spreadsheet can contain a data set.

The physical appearance of the cell could be programmed to reflect the structure of data

in the cell. Lets take a simple example of analyzing sets of data. Let each set of data be

represented in a cell. Let the cells color be made to reflect the standard deviation of this

set. Thus a cell’s red color component could be made to reflect its standard deviation

value. We can also make the cell color depend on the relative standard deviation among

sets of data. This type of analysis is made extremely easy using the spreadsheet model.

The relationship between the cells could be used to describe both the data and the view

attributes. The duplication of sets of data could be made extremely easy through cloning.

This type of data visualization could be also used for genetic comparisons. Each cell’s

data could represent a genetic code. The similarity between two genetic codes could be

analyzed by storing these two codes as distinct data sets in two cells. We could then

establish a relationship among these two cells to identify the genetic similarity. The color

difference between the two cells could be used as a parameter to identify the genetic

similarity. The cells could be programmed such that any change in the genetic sequence

of one cell is immediately processed and reflected.

Collective problem solving: The spreadsheet programming model encourages collective

problem solving. The effective division of each cell of a spreadsheet as an object enables

parallel development of Objects for collective problem solving.

The visualization of data when combined with some effective programming tools can

make the spreadsheets an excellent tool for analyzing "what if" conditions of the real

world. That is, it could server as a simulation tool.

For many applications the computation of data might not be the largest part of the

problem. The big challenge might be to present the data in such a format that it is easy to

understand and analyze.  Also, applications, which basically take a system from one state
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to another, are good candidates for a spreadsheet model. These applications could be

modeled using Finite Automaton.

One of the other main advantage is that the spreadsheets allows the features for “what if”

conditions to be included into the application without any additional difficulty.

Spreadsheets also eliminate one at a time approach through dependency propagation,

which allows automatic recomputation of values among cells.

Also, spreadsheet approach proves effective in cases where we are trying to build an

experimental model which is constantly changed as the parameters are changed. For

example, experimenting with the weather model perfectly suits this scenario. In these

cases, the power to visually see the effect of change in the parameters of the experiment

goes a long way in finding the ideal solution.

The technique of cloning is very fundamental to the power of spreadsheet. Cloning is the

process by which copies of cells (objects) could be created. A cell could be made as an

identical copy of another and this process is called "deep cloning". In this case, the state

and functionality of the two cloned cells are identical. Two or more cells could

effectively represent the same object and this is called "shallow cloning".  Any change

made to the state or functionality of the common object of these cells is reflected in all

the other cells.

We can take an example to demonstrate why taking a spreadsheet approach to problem

solving can be extremely effective.

Problem-1

The problem is to model a physical environment, which consists of bodies at various

temperatures in thermal contact with one another. Let us assume that new entities at

different temperatures could be continually added to the system and existing entities

could be removed anytime. We are interested in analyzing how the system reaches a
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thermal equilibrium condition and how the system adjusts to the introduction of new

objects into the system and the removal of existing objects.

Modeling such a system involves the following:

1. An appropriate model has to found to represent the system as a whole

2. Each entity within the system has to be defined. The objects at various temperatures

are the entities within the system. The state of the object is its temperature and the

functionality is how the body reacts to changes in its environment. The functionality

(reaction to environment) depends on its state (that is, how hot it is).

3. We have to specify the relationship between the objects of the system, which will

define their functionality. Two bodies are "related" if they are in thermal contact with

each other. That is, the name of the relationship is "thermal closeness"

4. We have to provide flexible easy ways to introduce new objects into the system and

naming facility of objects has to be provided for easy coding.  It also increases the

ease at which testing and maintenance could be done. It makes the code for each cell

more readable. Also, it is easier to understand the visualization.

5. We have to provide facilities to remove objects from the system

6. There has to be ways to define objects that are similar to existing objects. This will

reduce the need to code identical objects again. Two objects are identical when their

state and functionality are the same.

7. We have to define a graphic representation of the entire system so that a user could

study the changes in the system as and when they occur.
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8.   We have to identify the situation when the system has reached thermal equilibrium.

The spreadsheet programming model is a very effective tool to program a system such as

the above.

1. The entire spreadsheet could be used to represent the system.

2. Each cell of the spreadsheet represents an Object in the system. This fits in perfectly

with a scenario where a system is a collection of its constituent entities, just as a

spreadsheet is a collection of cells.

3. The cells could be made to represent the bodies at various temperatures by defining

their state and functionality. The state of a cell could be described with a set of

variables and the functionality could be defined using a set of equations that define

the relationship of this object with the others.

For example: For each thermal object (cell) of the system (spreadsheet) we could

define a variable to hold the temperature value of the object. Variables could be

defined to hold the temperature, mass and specific heat values of the object.

To define the functionality of a cell, we could use equations (similar to formulae in

traditional spreadsheets) to define the relationship between the various variables of a

cell. We could use arithmetic operators and assignment statements to express the

relationship thorough an infix expression.

4. The physical attributes of the cell could be modified to reflect the state of the cell. For

example, the red color component of a cell could be made proportional to the

temperature of the cell. This really helps in visualization of the system when it tries to

attain thermal equilibrium.
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5. Introduction of new thermal objects can be done in two ways :

The first way is that a user clicks on a cell and that cell could be programmed. That

is, the state and functionality of this cell could be defined. This becomes a new object

in the system that is ready to interact with other objects when the spreadsheet is

"executed"

The second way is to deep clone an already existing object. Deep Cloning is a very

useful feature in the spreadsheet model for programming. A new cell (object) that is

identical to the original object could be created through an extremely simple "copy

and paste" interface. Thus, new objects in the thermal system, which are identical to

the already existing objects, could be created very fast.  Thus new Objects could be

introduced into the system very fast and the effect could be seen immediately.

New functionality could be added to the cloned thermal object by defining more

equations. Thus the child could have more added functionality than the parent.  Also,

the spreadsheet model I developed supports both absolute referencing and relative

referencing. When an object is cloned, both its absolute and relative references are

copied.

Shallow Cloning is a way in which different cells of the spreadsheet could be made to

refer to the same object (cell). That is, any change made to the source cell ’A’ will be

reflected in all the other cells that are shallow cloned from cell ’A’. We can analyze

one situation in this thermal system scenario where shallow cloning would be useful.

Lets assume that we are to analyze a very large thermal system with possibly a few

hundred objects. Lets say that the person in charge of maintaining and analyzing this

thermal system is just interested in the temperature changes and the final equilibrium

temperature of just a few objects which are located at different locations separated by

a large number of cells.  In this case, a separate area of the spreadsheet cells that are

adjacent to each other could be "shallow cloned" from these objects of interest. Thus

the temperature changes of these "critical" objects could be observed by concentrating
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on one area of spreadsheet without having to jump around for the critical objects and

observing their changes. Thus shallow cloning allows easy "preference of view" for

objects of "supreme interest".

Each newly created thermal body can be given a name. This increases the readability

of the cell code and also makes testing and maintenance easy.

6. Removal of thermal Objects.

In case a thermal object has to be removed from the system, it could be very easily

done in a spreadsheet programming model. The object could be very simply

deactivated. A deactivated thermal object is not part of the thermal system anymore.

It does not interact with any other cell (object) of the spreadsheet. Thus addition and

removal of thermal system components could be done very easily. This gives a lot of

flexibility in designing the system.

7. Thermal objects similar to the already existing objects could be made part of the

system very fast using cloning methods described above.

8.    As the spreadsheet itself is inherently graphical with visible cells representing objects

       and color attributes, no separate graphic programming is needed for the visualization

       of the system (1) .

9.   Identifying when the system reaches equilibrium: This task is made extremely

simple in my model for spreadsheet programming. This is because of the concept of

cell stability that is built into the model. Each cell can define one of its state variables

to be the stability variable. When the stability variable value does not change over

two or more iterations, the cell is declared to be stable. When all the active cells of

the spreadsheet are stable, the spreadsheet (system) is said to be stable. In this model,

each cell (thermal object) could declare its "temperature" variable to be the stability
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variable. Thus when the thermal object’s (cell’s) temperature does not change after

successive interaction with its neighbors, the object is declared to be stable. When all

the thermal objects are stable, the system as a whole is declared to be stable.

Thus, software projects such as the above problem of modeling the thermal system using

spreadsheets is an example of how using spreadsheets simplifies the development of

software applications.

1. The whole task of programming was greatly simplified as seen in the above example.

This report also contains an example thermal system analysis. You can see that the

number of lines of code is indeed very small.  Trying to program the same model

using conventional languages would have been much more complex.

2. Because the spreadsheet is a conceptually simple, the task of programming was

simplified as seen in the above example. The time taken to program such a system is

also drastically reduced compared to the time it takes when modeling in conventional

languages.

3. If we had tried to program the same application in conventional languages, we might

have had to deal with complicated flow of control. The spreadsheet model

eliminated the complicated flow of control.

4. The addition of new thermal objects was made extremely simple and easy as it is just

a mouse click operation. The user had to just program an already existing cell.  The

creation of other thermal objects, which are functionally similar to already existing

ones, is made conceptually very simple through the process of cloning.  Thus, the

programmer is saved the task of having to program the behavior of new object. This

code reuse saves a lot of time in the development of such applications.  The process

of trying to add and program new objects using conventional languages would have

been a much more complicated and difficult task.  Thus the spreadsheet offers much

more flexibility in the design and execution of the program.
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5. The removal of existing objects could be done through a single line "deactivate"

statement.

Problem-2

Let’s say we are trying to model an illumination system for a room. The optical behavior

has to be studied as light sources are introduced into the room. Each part of the room has

a desired particular illumination value. We have to find out the optimal lighting

arrangement for the room which achieves this.  This process might be a trail and error

process where new sources might be added, removed, repositioned until the desired

illumination level is achieved. This problem applies equally well to acoustical studies

also.

Modeling such a system involves the following:

1. We have to find a model that accommodates the whole system. We can see that the

spreadsheet suits this situation perfectly. The spreadsheet as a whole could

represent the room.

2. We have to identify and model light sources. Again we could see that the cells of the

spreadsheet could be programmed to represent the light sources. This very easily goes

with the model. The spreadsheet contains cells as a room might contain light sources.

3. We must be able to program the light sources. For easy visualization, the color of the

light source could be made to reflect the intensity. The state information and

functionality of each cell has to be defined. We have to declare variables to represent

the intensity of the light source. Thus the state of each light source is defined. Each

light source has an effect on its neighbors. Thus the functionality of each light

source is the way it affects the illumination of its adjacent area. We can see that

this perfectly suits the spreadsheet model I had developed.
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• We can see that the spreadsheet model is inherently graphical. Thus each cell that

represents a light source could have its color components depend on the intensity

variable. Thus it is extremely easy to do and suits perfectly with the user

visualization.

• The spreadsheet cells have default functionality associated with its neighbors.

Thus it takes very less time to define the functionality of cells (light sources). This

problem perfectly suits the “neighbor friendly model” of the spreadsheet.

• Each cell could affect the state of its neighbors, which is exactly what happens in

the room illumination problem. Spreadsheet fit perfectly the conceptual

visualization of this problem.

4. Once each cell has been programmed to represent a light source, we can see the effect

immediately on the spreadsheet. Each cell affects its neighbor’s intensity and those in

turn affect their neighbor’s intensity. We can visually see the effect immediately after

programming each light source.  Because both the physical attributes and the data are

encapsulated within the cell, it takes very little time to program the system and see the

effects.

5. Addition of new light sources to the system is made very simple through the process

of cloning. Because the behavior of the light sources towards its neighbors are pretty

much the same (namely, it obeys the inverse square law of light intensity

transmission), we can duplicate light sources easily. Because the behavior is similar,

only the state information (intensity, in this case) has to be changed, we can very

easily do it with a single assignment statement. Thus creating new light sources is as

simple as a “copy and paste” and a single assignment statement if the state

information has to be changed.
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6. Removal of existing light sources is also an operation that has to be repeated over

and over again until the illumination of the room is satisfactory.  The removal of an

existing light source can be done very simply through a single “Activate false”

statement on the cell. The effect of the removal is immediately reflected with the

color change in all the affected cells of the entire spreadsheet. This will correspond to

the corresponding change in lighting of the room.

7. Repositioning of Light Sources

One of the fundamental operations to be done to achieve the ideal illumination of the

room will be to change the position of light sources in the room and analyze the

effect. The repositioning of light sources correspond to two very simple operation on

the spreadsheet.

• Deactivate the cell corresponding to the light source

• Clone the cell and paste it into the desired position

In fact, the ease at which any cell of the spreadsheet could be deleted (deactivated,

which corresponds to removal of the light source) and cloned makes the model so

inherently easy to program. The effect of the repositioning is immediately reflected

with the corresponding change in the color of the cells, which in turn corresponds to

the level of illumination of the room.

Thus we can see that the system could be programmed very easily using spreadsheets,

whereas it would have been a very time consuming and complex process when we try

to use the traditional languages. The spreadsheet model makes the programming of

“what if” scenarios very easy and it also provides immediate feedback on any

changes to the system.

Shallow cloning allows the user to concentrate on the cells which are important at

that moment. This is particularly useful when you are dealing with a large number of

light sources, which results in a very large spreadsheet. We can shallow clone the

cells (light sources) of interest to physically adjacent locations of the spreadsheet to

better observe the effect of changes in the lighting configuration.
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3. Traditional Spreadsheets: A Comparison

Spreadsheets first appeared as a primary numerical calculation tool which revolutionized

the way people used computers for numerical calculation. People started using

spreadsheets for their numerical calculation needs rather than using high level languages

such as FORTRAN.

The first electronic spreadsheet application to make a huge impact was VisiCalc (2). It

was invented by Daniel Bricklin and Bob Frankston. By the fall of 1978, Bricklin had

programmed the first working prototype of his concept in integer basic. The program

helped users input and manipulate a matrix of five columns and 20 rows. The first version

was not very "powerful" so Bricklin recruited an MIT acquaintance Bob Frankston to

improve and expand the program. Bricklin calls Frankston the "co-creator" of the

electronic spreadsheet. VisiCalc was a great success and was a real motivation for people

to buy PC’s.

The VisiCalc magic did not last long. In 1983, Mitch Kapor developed Lotus, which

became an Industry Standard. Lotus 1-2-3 made it easier to use spreadsheets and it added

integrated charting, plotting and database capabilities. Lotus 1-2-3 established

spreadsheet software as a major data presentation package as well as a complex

calculation tool. Lotus was also the first spreadsheet vendor to introduce naming cells,

cell ranges and spreadsheet macros.

The Lotus-Improv interface was different from that of traditional spreadsheets. It

allowed addition of structures. It allowed data to be grouped into categories and groups

and enabled operations on such groups. This was the first known spreadsheet to go

beyond cell boundaries. The lotus-Improv took an Object Oriented approach in some

sense that its formulae can be applied to Objects of a particular category, not just cells.
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The next milestone was the Microsoft Excel spreadsheet. Excel was originally written

for the 512K Apple Macintosh in 1984-1985. Excel was one of the first spreadsheets to

use a graphical interface with pull down menus and a point and click capability using a

mouse pointing device. The Excel spreadsheet with a graphical user interface was easier

for most people to use than the command line interface of PC-DOS spreadsheet products.

Many people bought Apple Macintoshes so that they could use Bill Gates’ Excel

spreadsheet program.

These traditional spreadsheets which are designed to be more friendly as a numeric

calculation tool lack the features to be used as a general programming model. The

traditional spreadsheet model is very much error prone because of the structure of the

formulae definitions. The cells are referred using a (letter Number) string. Using such

references to cells in formulae is extremely error prone. This is because it is very easy

to commit an error and it is an extensive time consuming process to debug the error. This

property of traditional spreadsheets makes them an unlikely candidate for a programming

tool.

In order to make a spreadsheet a powerful programming tool the following needs has to

be addressed.

• The definition of formulae has to be more readable and understandable. This in turn

makes the testing and maintenance of the software developed using the spreadsheets

easier.

• The debugging of the spreadsheet has to be possible

• The cells of the spreadsheet have to be made programmable. That is, it should be

possible to define a set of variables for the state and equations for functionality of

cells.
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• The cells must be able to interact with one another in a clearly defined manner that is

easy to understand and debug

• There must be features to specify the physical attributes of cells if the spreadsheet has

to serve as effective graphic programming tool

In this report, it will be shown that the spreadsheet programming model which I had

developed tries to satisfy all of the above requirements in order to serve as an effective

programming tool.

We also have to note that the spreadsheet model is not intended to replace the

procedural languages. Some of the application may be inherently suited to

procedural languages. But there are certain types of applications for which

spreadsheet provides a more natural and a convenient environment.

It is interesting to take a look at some of the other spreadsheet languages, which have

already attempted successfully to make the spreadsheet a good programming

environment.

Forms/3

Forms/3 is perhaps one of the most successful visual programming language which

follows the spreadsheet paradigm (3). In this language each cell is programmable through

formulae which can contain references to other cell values, its own cell values and

constants. One of the interesting features of Forms/3 is the ability of the cell formulae to

refer to cell values at a previous moment in time. Forms/3 provides facilities of a general

purpose programming language.
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Forms/3 contains the following features:

1. Ability to resize a cell: This is not implemented in the model I had developed.

2. Immediate feed back on change in cell parameters: Any change made to the cell

formulae is immediately reflected when the user processes the formulae through an

"Accept" button. This type of immediate feedback is extremely useful. In the model

that I had developed, I had implemented immediate feed back when values are set.

But the formulae are not processed until the spreadsheet is executed.  The formulae

are just accepted and the results are reflected only when the spreadsheet is executed.

Thus in Forms/3, the programmer gets immediate feed back on

3. Deletion of cells: Unwanted cells could be deleted by just "cutting" them. In my

model, the user has to deactivate the cell through a "Activate false" statement in the

program box for that cell.

4. Forms/3 allows reusable abstractions. It also uses some very interesting concepts

such as automatic generation of reusable generalized version of formulae.  This is

very effectively demonstrated in the explanation of the program to calculate fibonacci

numbers (for more information, please refer to Dr.Burnett’s web page. Please see

references at the end of this report) Forms/3 also provides some very powerful time

travel features. It allows the definition of a sequence of values over time. The cell

formulae could refer to earlier values which were held by the cell in the past.

5.   Forms/3 also contains features for animation.

Forms/3 gives more power to a cell than many other spreadsheet models. Also,

Forms/3 shows the result of change in formulae of a cell instantly without waiting for any

event, whereas in my model, the formulae are accepted, but the effect is not shown until

the spreadsheet is executed.
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Model Master:

Model Master is an Object Oriented front-end for a Spreadsheet (5). It allows the

users to program the spreadsheets in an Object Oriented Programming language called

model master. The Model Master compiles the program to spreadsheet formulae. The

Model Master is developed in JAVA and uses the JavaCC (Java Compiler Compiler) as a

parse generator.  This is a new idea to integrate conventional Object Oriented

programming with spreadsheets. Instead of numbered cells, which are easy to confuse,

Model Master uses named variables. This reduces the chance that the programmer will

make a link to the wrong cell or column.

In the Model Master the spreadsheet as a whole could be programmed using an object

oriented programming syntax of the model master. When this code is compiled, code for

the spreadsheet cell is generated. The Model Master provides advantages such as using

names in place of cell references. My model also allows the user to specify their own

preferred names to cells, which could be used in coding too. This makes the spreadsheet

less prone to errors. The Model Master detects typical compilation errors such as cell

values that are never set but used and cell values set and never used. The compiler for

Model Master is written in JAVA. Model Master allows re-use of code through cut and

paste. Code re-use in my model could be implemented using cloning.  One of the other

major differences between Model Master and my model is that, the Model Master treats a

whole spreadsheet as an Object and allows creation of similar spreadsheets by cloning the

whole spreadsheet. This is different from my model where the cloning is at cell level.

Model Master allows declaration of arrays to represent values of cells in each column.

Each row represents the successive values of the column at successive time points.

Also, it is important to note that Model Master makes the difference between the user of

the spreadsheet and the programmer more explicit, whereas my model and various others
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like the Forms/3 tries to make the line of distinction more thin. In my spreadsheet model

there is no underlying language model on which the spreadsheet is based.

NoPumpG

There were languages such as NoPumpG, which greatly emphasized the spreadsheet

model for programming as a tool to simplify the creation of interactive graphic

applications when compared to other approaches (6). This spreadsheet model is more

geared towards graphic applications.

NoPumpG allows the cells to declare arbitrary number of complex formulae. The reason

for this is to reduce the number of cells needed. Also, in NoPumpG, all the cells of the

spreadsheet are divided into actual application cells and control cells. This type of

division is not present in my model. The clock is used as a counter variable. This is useful

in animations as well as to implement something like a while loop iteration in the code

for each cell.
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4. Project Description

My aim in this project is to expand the spreadsheet model to include fundamental

techniques of programming in order to make spreadsheets a very effective programming

environment.

The spreadsheet is viewed as a collection of cells where each cell is a programmable

object. Thus the spreadsheet is a collection of objects.  The cells of the spreadsheet are

distinct entities, which interact with one another for a solution to a common problem.

By programmable, I mean that the state and functionality of each cell could be defined.

State: We could declare and initialize variables to define the state of a cell. The state of a

cell also holds other critical information. The color attributes of a cell are stored as a

part of the definition of cell state.  The information on whether the cell is in a currently

activated or deactivated state in stored as a part of the state information. The stability

of a cell is a very important piece of the state information. The spreadsheet is as a whole

considered being in a stable state when all the cells are stable. State also holds the user

given name for the cell.

Functionality: The functionality of each cell is defined by specifying the way in which

each cell interacts with its neighbors. In my model, each cell has default neighbors as

well as explicitly declared neighbors. The default neighbors are those cells, which are

physically adjacent. We can also declare two distant cells to be neighbors through explicit

syntax. The functionality, which in other words defines the relationship the cell shares

with its neighbors, could be defined with a set of infix expressions.

A fundamental programming technique in using the spreadsheet as a programming is

Cloning.  This spreadsheet model implements two types of cloning; the Shallow Cloning

and the Deep Cloning. Deep Cloning is the process by which cells identical to an already

existing cell could be created. The cloned cell retains the state and functionality from its
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parent cell. Cloning is an extremely efficient programming technique, which results in

quick creation of new objects in the system. Because the state and the functionality are

retained in the newly cloned cell, we are saved the time consuming activity of having to

code new objects. Thus this enables code reuse at cell level.  Thus deep cloning saves a

lot of time in development efforts. Shallow Cloning results in the creation of cells that

actually refer to the parent cells. All the cells that are shallow cloned share a single object

of the parent. That is, identical copies of the Object are not created, but instead, cells that

refer to the same single object are created.  One of the main uses of shallow cloning is

that it allows the implementation of "preference of view" in situations were we are

dealing with a large spreadsheet with a few hundred cells (please refer the section "why

take a spreadsheet approach for an example based discussion). In these cases, mostly, the

user is just interested in some of the cells. But these cells might be physically separated

by large distances in the spreadsheet. This makes the analysis difficult. In such situations,

the cells of interest could be shallow cloned into an "interest area" of adjacent cells and

their changes could be monitored.

Cell stability is also one of the building concepts of this model. Each cell could declare a

variable to be the "stability variable". When the value of the stability variable does not

change over two or more iterations then the cell is declared to be stable. When all the

cells of the model are stable then the spreadsheet is said to have reached the stable state

and the spreadsheet execution (object interactions) stop.

Lets take a closer look now at the features that make the spreadsheet model a powerful

programming environment.

The Spreadsheet that I developed is a table of cells. The user could specify the initial

number of cells of the Spreadsheet. Once the spreadsheet is launched the programming of

each cell is done in a text window that pops up when a user clicks on that cell. Each of

these cells has a default background and foreground color and a name, which could be

modified by the programmer. The following are some of the features that define the

power of a cell as a programmable object.
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Specify the name of the Object

This could be made the name by which this Object will be known to all the other Objects

in the spreadsheet. The reference of each cell through its name rather than the traditional

forms of cell reference makes it easier to program, test and maintain. This also makes

reference to neighbors easier. This also helps to make the code more readable.

Specify its initial color and later the make the color dependent on values of

its variables during execution

This is very useful in case of simulating physical systems. The color of the Object is

defined by three in-built variables for the three primary color components red, green and

blue. These "color" variables could be assigned values of program variables. This gives

the power to render a specific color to an Object depending on how the variables of the

Object change.

Activate/Deactivate an Object

An Object could be activated or deactivated depending on whether the programmer

chooses it to participate in the program execution (which takes the spreadsheet from an

"unstable" to state to a "stable" state. More on this concept later). In case the user decides

to "delete" a cell, this can be done using the "Activate false" statement inside the PDE

Box.

Set variables

The programmer can define variable and set values for them. All the variables together

define the state of the Object.

Set Infix expressions.

The programmer can define certain infix expressions to be evaluated. These expressions

can involve variables inside this Object as well as variables of Objects that has registered

with this Object as its neighbor. These expressions are evaluated one after another.
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Set the name of "stability variable"

One of the variables of the Object (cell) could be set as the "stability variable". When the

value of the stability variable does not change over two consecutive processing of the cell

Object, the Object is said to have reached a stable state and it does not participate in

further processing. The stability variable must be a local variable of the Object.

Set neighbors (similar to "friends" in C++)

The Object could register itself as a neighbor (friend) to another cell. This helps Objects

friends access to state variables of this Object and provides an easy mechanism for

referral. All the cells, which are adjacent to a cell, are its default neighbors.

Advertise

An Object can also register its name with all the other cells of the spreadsheet with one

command (notification) called advertise. This can be done if all or most of the cells of the

spreadsheet will need to access this cell.

Clone

One of the most powerful features of the spreadsheet-programming model is the ability to

clone cells. That is, using a very simple mechanism of "copy" and "paste" the

programmer could create new Objects that are identical to the existing objects. This is

similar to the copy constructor in C++ or the cloneable interface in JAVA.

There are primarily two types of cloning that are possible. The "Shallow Cloning" and

the "Deep Cloning"

Shallow Cloning: In case of shallow cloning, the cloned object (cell) is not created new,

but is a pointer to an existing Object. That is, any change made to the "source cell" will
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be reflected in the "destination cell" and vice versa. There is just one Object that is

pointed to by two different cells of the spreadsheet.

Deep Cloning: Deep cloning is more consistent with the real world cloning such as the

Dolly sheep cloning. Another new Object (cell) is created with all the state, behavioral

and physical attributes of the original cell. The source and destination cells are identical

and independent copies of one another. This is more consistent with the copy constructor

in C++ and cloneable interface in JAVA.

An Object Oriented Feature: This spreadsheet does provide the inheritance feature

available in the conventional Object Oriented programming environments. This power is

provided through the "Cloning" primitive described above. An "child cell" could be deep

cloned from the parent cell. Then additional equations could be added in the child cell

from the PDE Box.

Debug

The programmer can check at any time, the variable values of cells. This helps in

debugging a cell.

Spreadsheet Execution

Once all the cells of the Spreadsheet have been programmed, the spreadsheet is ready for

execution. When the spreadsheet is executed the cells undergo the following events to

take the spreadsheet from an unstable state to a stable state.

1. Each cell starts executing its program. The code for each cell (which was typed in the

PDE Box) is stored inside that cell.
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2. When the cells are interacting with one another (talking to each other), the color of

each cell might change depending on the how it was programmed. This could be used

as a visual feedback on the status of each of these cells (Objects).

3. When a cell’s "stability variable" does not change over two iterations, it announces

that it has reached a stable state.

4. When all the cells of the spreadsheet reach a stable state, the spreadsheet as a whole is

said to be stable.

5. When the spreadsheet reaches a stable state, the execution has stopped.

6. The final result of execution is the set of states of all the participating cells of the

spreadsheet. The visual representation of the result is useful in simulation systems.



27

5. Spreadsheet Model for Programming: A Detailed
Look at the Solution

In this Project, I developed a spreadsheet based programming interface. This was done

primarily using the Java Programming and mostly used the Java Swing Components.

A listing of the syntax and features of this programming environment could be found in

the Appendix. I will try to demonstrate the power of the Spreadsheet paradigm using an

example.

Programming each cell in the PDE Box

In order to program a cell in the spreadsheet the following powerful features could be

used

1. Activate <boolean value>

If you want a cell to participate in the spreadsheet execution, the cell has to be activated

through a "Activate true" statement inside the PDE Box. This will allow that particular

cell to interact with its neighbors. A cell could be deactiavted anytime using a "Activate

false" statement. This feature is useful in cases where you would want to "delete" an

Object. All the cells are initially deactivated by default.

Example: Activate true

2. SetColor <red_int_value> <green_int_value> <blue_int_value>

The user is allowed to set the initial color of the cell using this command in the PDE Box.

The three integer arguments represent the red, green and blue components of the Object

color.  The maximum value of the a color component can be 255.

Example: SetColor 255 50 255
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3. SetName <name_string>

The user can also specify the initial name of the cell using SetName function. This name

gets reflected on the spreadsheet cell. Initially, each cell’s name is its co-ordinate

positions inside the spreadsheet. This could be changed using the SetName command.

This is very useful for the programmers and users to easily recognize the real world entity

they might be trying to model. This name could also be used in the "Advertise" function

described later. This results in a very readable and hence an easily maintainable.

Example: SetName HotBody

4. SetNeighbor <co-ordinates> <name_string>

The SetNeighbor function lets a cell to declare itself as a neighbor of another cell in the

spreadsheet. The co-ordinates are used to specify the row and column position of the cell

which the source cell wants to befriend.  The "name_string" argument specifies the name

by which the source cell will be known to its friend.

Example: SetNeighbor 4,5 HotBody

Lets assume that this command is executed from the PDE Box of the cell 3,3(named

HotBody). This command informs the cell 4,5 that the cell HotBody wants to be a friend

and can be refereed using the "HotBody" prefix in the equations inside the PDE Box of

cell 4,5. For example, inside the PDE Box of cell 4,5, a expression HotBody.temp would

mean a reference to the value of variable "temp" in cell 3,3.

5. Advertise <name_string>

This is an extremely useful function, which enables the cell to inform all the other cells in

the spreadsheet about how to refer to it. This again results in a very readable code and

gives a way for all the other cells to access this cell. This is similar to SetNeighbor, but

advertises its name to all the cells in the spreadsheet. An equivalent method would be to

use "SetNeighbor" function with the co-ordinate argument for each cell in the

spreadsheet.
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Example: Advertise HotBody. If we assume that the source cell is 3,3 then all reference

to HotBody in all the other cells would be translated to cell 3,3.

6. Set <variable_name> <value>

This command lets the users to declare and initialize a variable for the cell. This variable

could then be used in other equations and expressions declared in the PDE Box.

Example: Set temperature 100. This results in initialization of variable named

temperature to a value 100 in the source cell.

7. SE <infix_expression>

This is used to specify the expression to be evaluated when each cell is executed during

the spreadsheet execution.  The expression is an assignment statement and the right hand

side is an infix expression to be evaluated. This infix expression could contain the

following:

1. Variables from this cell

2. Variables from cells those have explicitly registered as friends of these cells

3. Variables of the 8 adjacent cells

The default neighbors can be refereed using the fixed reserved prefixes

P    :  Present Cell (Source Cell)

N   :  Top Cell

S    :   Bottom Cell

E    :   Right Cell

W   :  Left Cell

NE : Top Right Cell

NW: Top Left Cell

SE  : Bottom Right Cell

SW : Bottom Left Cell
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For example, the expression SE P.temp=E.temp+W.temp, adds the "temp" value in the

right cell and the left cell and assigns the result to the temp variable in the present cell.

There are some default reserved fixed words for each cell to denote the color

components. For example, P.red denotes the red component. In case you do,

SE P.red=255, SE P.green=0 and SE P.blue=0, the component takes a full red color. You

can make the color component reflect some variable values as the spreadsheet executes.

For example, if the red component has to depend on the temperature value of the cell,

then SE P.red=P.temperature will do the trick.

All the variable names and their values of the cell are stored in a hashtable of that cell.

All the equations are Stored as a Java Vector and are executed in order when the cell

executes.

8. SetStable <variable_name>

This equation is very crucial to the stability of a cell. The variable defined in this function

is used to determine whether a cell is stable or not. A spreadsheet is said to be in a stable

state when all the variables in it are in a stable state.

The variable argument to the SetStable function is called the Stability variable.

Cell Stability:

A cell is said to be in a stable state when the value of the Stability variable does not

change over two consecutive iterations. A cell that has reached a stable state does not

participate in anymore executions. That is it stops interacting with other cells.

Spreadsheet Stability:

When all the cells in the spreadsheet are NOT in the unstable state.

Example: SetStable Temperature

In this case, the cell executes until the value of temperature variable does not change over

two iterations (when the system has reached thermal equilibrium).
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9. The Implementation of Cloning Primitive

The PDE Box contains facilities to implement the cloning described earlier.

Copy Button

The user can click on the "Deep Copy" or "Shallow Copy" Button depending on whether

the he or she wants the cell to be shallow copied or deep copied (please see the

explanation of these two concepts in the "Project Description" section above). This

button is available in the PDE Box to copy the source cell of the cloning process. Then

the user has to click on the destination cell. The PDE Box pops up. When the user then

clicks on the "Paste" button. The destination cell is then a clone of the source cell.

Paste Button

The destination cell is cloned when the user clicks on the "Paste" button on the PDE Box

of the destination cell.

10.  Object Oriented Features

• The Spreadsheet is very much inherently an object oriented programming tool. Each

cell of the spreadsheet is an object by itself. The data and the physical attributes of a

cell (object) is fully encapsulated inside the object.

• The access to a cell’s (object’s) variables is restricted to its neighbors. The neighbors

of a cell can be implicit or explicit

Implicit Neighbors: Cells implicit neighbors are all the cells surrounding this cell.

For example, for the cell 4,4 there are eight implicit neighbors, which could be

referred using the N, S, E, W, NE, SE, NW, SW prefixes.

Explicit Neighbors: We can declare a cell to be a neighbor of another cell using the

"SetNeighbor" and "Advertise" functions which were explained earlier.

• "Cloning" provides a base for implementing much more sophisticated inheritance

concepts
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6. Example Based Analysis

Problem:

Simulate a thermal system, which initially consists of bodies at various temperatures.

Show the state of the system when it finally reaches a stable state. The Specific heat of all

the bodies is assumed to be the same, but they differ in mass and temperature.

Solution using Spreadsheet programming

Steps

1. Launch the spreadsheet with the desired number of rows and column
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2. HotBody Temperature: 100 F, Mass: 100. Click on a cell (4,5) and do the

following :

• Activate the cell(Object)

Activate true

• Name the cell as the HotBody

SetName HotBody

• Advertise the cell name so that all the other cells will know how to access this

cells parameters.

Advertise HotBody

• Set the cell variable (that is the HotBody characteristics). The temperature and

mass.

Set temp 100

Set mass 100

• Set the Stability Variable. In this case, it is the temperature of the body. The

cells(thermal objects) will stop interacting with each other when the system

reaches thermal equilibrium(when the temperature of an Object does not change

when it interacts with its surrounding objects)

SetStable temp

• Set the thermodynamic equations to be evaluated. Set the red component of the

Object to reflect how hot it is.

SE P.temp=(P.mass*P.temp+E.mass*E.temp)/(P.mass+E.mass)

SE P.mass=P.mass+E.mass

SE E.temp=P.temp

SE E.mass=P.mass

SE P.red=P.temp
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SE P.green=0

SE P.blue=0

3.  MediumA: Temperature 50 F, Mass 50

             Similarly, execute the following for MediumA.

     Activate true

     Advertise MediumA

     SetName MediumA

     Set temp 50

     Set mass 50

     SetStable temp

     SE P.temp=(P.mass*P.temp+E.mass*E.temp)/(P.mass+P.temp)

     SE P.mass=P.mass+E.mass
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     SE E.temp=P.temp

     SE E.mass=P.mass

     SE HotBody.temp=P.temp

     SE HotBody.mass=P.mass

     SE HotBody.red=HotBody.temp

     SE P.red=P.temp

     SE P.green=0

     SE P.blue=0
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4. MediumB: Temperature 50 F, Mass 50

Similarly, execute the following for MediumB

Activate true

Advertise MediumB

SetName MediumB

Set temp 50

Set mass 50

SetStable temp

SE P.temp=(P.mass*P.temp+E.mass*E.temp)/(P.mass+E.mass)

SE P.mass=P.mass+E.mass

SE E.temp=P.temp

SE E.mass=P.mass

SE MediumA.temp=P.temp

SE HotBody.temp=P.temp

SE MediumA.mass=P.mass

SE HotBody.mass=P.mass

SE HotBody.red=HotBody.temp

SE MediumA.red=MediumA.temp

SE P.red=P.temp

SE P.green=0

SE P.blue=0
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5. ColdBody: Temperature 0 F, Mass 50

Similarly, set the cold body parameters

Activate true

SetName ColdBody

Set temp 0

Set mass 50

SetStable temp

SE P.red=P.temp

SE P.green=0

SE P.blue=0
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After all the above statements have been "Accepted" the spreadsheet looks something

like the following

Spreadsheet Execution

The spreadsheet is executed when the user clicks on the "Start" Button on the spreadsheet

programming environment box. The Equations of the cell are executed one after another

and all the cells are constantly checked for stability. The spreadsheet looks like the

following when the final stable state is reached.
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All the bodies reach a thermal equilibrium state when the spreadsheet has finished

execution.

A sample of the debugging output window which kind of traces how the program

executes is shown in the next window

The temperature of the final system is 59 F.
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7. Possible Future Enhancements

The spreadsheet model that I had developed can actually serve as a base for a much more

powerful spreadsheet-programming model. The following are some features that could be

added to make the spreadsheet a much more powerful and a comfortable environment to

program in.

Control Features

Adding the conventional control statements available in almost all procedural languages

will greatly enhance the power of this spreadsheet. Right now, all the cells of the

spreadsheet have only "value based" dependency. If the PDE Box allows control

statements such as the for, if, while and the switch statements, then it is possible to

implement a "flow of control" based dependency among the cells.

Object Oriented Features

Although the current spreadsheet is inherently object oriented in nature some more

conventional object oriented features could be added. For example, one of the cells could

be defined as the "interface cell" which could be defined to provide some basic

functionality which all the cells "cloned" from this has to implement.

Enhancing Cell Properties

The programmer could be given more flexibility in handling cells. The shape of the cell

could be a variable, which could be changed. The programmer could be given an option

to merge cells. Features that deal in great detail about the structural attributes of the cell

could be added.

Distributed Computing Features

This project assumed that the Objects reside on the same machine. A lot more flexibility

could be added if we could define a cell to be a remote object residing at a remote

position on the network. That way, the spreadsheet can hide the details of the remote
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Objects location on the network and the programmer can treat the remote object just like

any other cell with a co-ordinate position. There might be lot of concurrency control and

other issues to deal with.

Multimedia Features

At present, each cell has its "data and physical attributes" encapsulated. Audio and Video

attributes could also be added to cells.
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