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Robust Nonlinear Decentralized Control of Robot

Manipulators

I. INTRODUCTION

The highly nonlinear dynamics and the joints interaction that

characterize Robotic Manipulators, and especially the difficulties that these

features embody in the control design, have received the attention of many

researches during the last two decades. In the past, robot applications were

rather elementary, and linear control procedures were widely used [9],[17],

because of the fact that the coupling effects between joints due to Coriolis,

centripetal, and gravitational forces for slow speed motion with high gear ratios

do not appear to affect drastically the dynamics of the manipulator.

This decoupling-like dynamic property of manipulators when acting at

slow speed has also been used in most of the work available today concerning

the application of adaptive theory to solve the problem of robustness in robotic

control [8],[14],[21]; which indeed, has been characterized by the use of

perturbation theory to obtain suitable linear models and, therefore, apply

adaptive concepts originally derived for linear systems. The common drawback,

though, is that to obtain the control law and the adaptation scheme, it is

assumed a time invariant inertia matrix, making it difficult to ensure robustness

to unmodelled dynamics. One of the latest applications of adaptive control to

manipulators that investigates time variations of the inertia matrix can be found

in [18].

These previous control strategies started to fail when, later on, high

performance tasks demanding characteristics such as precise trajectory tracking,

high speed response for fast trajectories, global asymptotic stability,



2

computational-time efficiency and robustness against unmodelled dynamics and

unknown disturbance became part of the robot specifications. Moreover, the use

of direct-drive actuators and the lack of high gear ratios demanded new control

schemes that would take into account the nonlinearities of the manipulator

dynamics [18].

In pursuing this high performance, researches have applied control

methods such as Variable Structure Control, Adaptive Control, Computed

Torque, and Lyapunov theory. In most of the cases, these technics are employed

in conjunction with nonlinear cancellation methods (see for instance [15]),

where the basic idea is to cancel the nonlinear part of the dynamical
performance of the particular manipulator, and use a better known control

theory to solve the tracking problem for the resulting linear system. The main

drawback in this case is that it is commonly assumed that the mathematical

model of the plant is precisely known. Although, mathematical models for

robotics can be, in most of the cases, well specified by a rich robotic modelling

theory [2], exact information of the model parameters, task specifications, and

the environment the manipulator is to work in, are not always perfectly known.

Payload Variations, for instance, in picking up or dropping actions may vary

the inertia matrix substantially.

With few recent exceptions, these concepts have been applied to obtain

centralized algorithms, that is, considering the robot as one system.

Consequently, complex, and in some cases even impractical control laws have

resulted. Recently, some authors [4], [10], [12] -[14], [19], [20], [22] have

obtained rather simple control laws by considering the manipulator as a set of

interconnected subsystems where each joint is controlled independently and the

coupling effects of one joint on the others are treated as perturbations. This

approach has been named "Decentralized Control" or "Independent Joint

Control". Some of the characteristics that make this new method appealing to
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control designers are:

1. Due to its decentralized structure, it can be implemented by a parallel

processing architecture.

2. Not being a model-based control, it is robust to a wide range of
uncertainties such as time-varying parameters, unmodelled dynamics and

external perturbations.

3. In contrast to stochastic approaches, no statistics of the uncertainties are

required, but only the bounds of a set to which the uncertainties belong.

4. Contrary to centralized control, it is possible to design and adjust the

control parameters based on specific representation of joint coupling effects,

joint actuator limitations and joint motion objective.

In this thesis, we present a decentralized scheme based on the application

of Lyapunov stability theory and some ideas of Variable Structure Theory. The

idea appears to have been originally conceived by G. Leitmann, M. Corless and

J. Martin [7]. Other related work can be found in [3] and [5]. Here we prove

that this theory can be extended to design robust decentralized control of

manipulators with very satisfactory results, according to the desired

characteristics enumerated above.

In a standard application of Variable Structure Control, the system states

are driven to a switching surface, containing the manipulator trajectories. Once

the states cross this surface, the system remains within a sliding mode which

makes it insensitive to parameter variations and external disturbances [1]. The

main disadvantage of this approach becomes evident when we look at the control
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action, which virtually oscillates at infinite frequency, producing then an

undesirable chattering effect [2] and the possibility of exciting high frequency

resonant modes.

In this work, the chattering problem is overcome by ensuring asymptotic

convergence to a neighborhood of the equilibrium state, rather than requiring

the same stability of the equilibrium point itself. Therefore, we obtain a set of

controllers which guarantee global ultimate asymptotic stability within some

arbitrarily small neighborhood of the equilibrium state. Moreover, the

synthesized control law is continuous in the states which makes possible its

physical realizability.

Our approach can also be viewed as a modified Linear Multivariable

Approach (LMA) according to [1], where no exact linearization of the robot is

needed. That is, in LMA the globally linearized error system given by

z = z21T

zi = q

z2 zl

{0 1 lz [11,

0 0 0

v = M -10[T U()1

is utilized to find v , usually a linear control, such that some specified closed

loop performance can be achieved. However, due to the presence of the

uncertainty elements in M() and U(), it is impossible to cancel precisely the
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nonlinear terms. Some authors [1], [8], [21] employ adaptive methods and

identification algorithms in either centralized or decentralized structures to

obtain the estimates of these matrices, but again, giving rise to drawbacks such

as lack of robustness when fast trajectory tracking are required, in which

unknown parameters in M and U are no longer slow time varying, and high

computational complexity.

In the approach discussed here, we do not need estimation algorithms.

Moreover, since it is not a model-based control, we do not have to worry about

matching a exact linearized model. The only information that is required is the

knowledge of the possible size of the uncertainties.

This work is organized as follows: Chapter II contains a brief account

of the manipulator dynamics. Chapter III includes the derivation of the robust

nonlinear decentralized control. It also includes a Stability analysis of the

composite system. In chapter IV, control laws for a two-link robot manipulator

are derived and some simulations results of the closed loop system are shown.

Finally, in chapter V some conclusions are drawn and open problems are stated.
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II. MANIPULATOR DYNAMICS

By using the Lagrange-Euler equation [17], the dynamics of a multiple

link manipulator can be represented by the second order nonlinear vector

differential equation

M(t,q,w)-4 + U(t,q,4,w) = T,

where

q(t): Nn is the joint angular position vector.

M(.): Nnx3/1 Hnxn

U(-): RxEnldinx11 *

is the positive definite inertia matrix.

(1)

contains Coriolis and centrifugal torques as well as

gravity loading and frictional torques.

w E El is a vector of uncertainties such as unknown constant or time varying

parameters and inputs. It is assumed that these perturbations belong to a closed

bounded set.

T c En is a vector of control inputs.

The system modelled by (1) can also be viewed as a collection of n

second-order subsystems of the form

mu(t,q,w)4i + ui(t,q,4,4,e) = Ti i = 1,2,...,n, (2)

(3)
ui(t,q,4,4,w) = E mip,q,wrvo

Jo./
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thus, mi,() is the varying effective inertia seen at the ith joint and u;() is a

scalar function that accounts for torques from the interaction of joint i with the

others.

For our purpose, all information coming from other subsystems will be

considered as perturbations at subsystem i. That is, {w, 4 ay eV are

perturbation variables for subsystem i*j

Define

and

Let's now obtain a state model representation for subsystem (2)

x = qi]r

G(t,q,w) a mii1(t,q,w)

h(t,q,4,4,w) A mii-1(t,q,w)u1(t,q,44,w),

(4)

(5)

(6)

where in-1,,( ) exists due to the positive definiteness of M(). Then (2) can be

written as

x = Ax + B[h(t,x,y) + G(t,x,v)7], (7)

A f(t,x,v,T),

where



A =
0 1
0 0

B =
1
I, T s Tr

8
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III. ROBUST NONLINEAR DECENTRALIZED CONTROL OF ROBOT

MANIPULATORS

This chapter contains the description of the control design objectives in

terms of some suitable stability criterion, general sufficient conditions to attain

these objectives, and the synthesis of a control law satisfying the conditions for

that desired stability.

Problem Statement

It is our goal to design controllers T, = p1(t,x):31x312-431 for each

subsystem (7), using only that information realistically available at the

subsystem, e.g., joint position and velocity, so that the local state vector x(t)

asymptotically tracks some desired state motion xr(t) c 312 within an

arbitrarily small constant d, according to definition 1 below. Furthermore, to

facilitate physical realizability of the controller, the function T = p(t,x)

be continuous with respect to the state.

is to

Definition 1: x(t) asymptotically tracks xr(t) to within d if and only if the error

state model (8) defined by

z(t) = x(t) xr(t)

i(t) = f(t,z(t)+x,(0,v,7) it(t) A F(t,z(t),v,7) (8)



10

is "globally uniformly ultimately bounded" with respect to a set S c N2 whose

Euclidean norm II S d. Hence, the system (8) must have the following

properties:

i. For each uncertainty realization v c V, for each tocE, zoc112, there

exists a solution to (8) defined as z(t):[to,ti)-012, t1 >_ to z(to) =

ii. For any real number 6 > 0, there exists a real number d(6) > 0 such

that, for any solution z(t), with z(to) = zo and II zo 5 6, then II z(t) 5 d(6)

for all tc[to,t1).

iii. For each zo c R2, , there exists a real number e(zo,S) > 0 such that,

for all z(t) solution to (4) and with z(to) = zo, then z(t) c S for all

t to + e(zo,S). Thus, II z(t) II d for all

t ?. to + e(zo,d).

Assumptions

The following properties are to be satisfied in order to sufficiently show

the existence of a class of controls previously described.

i. For each v c V, G(,v) and h(,v) are continuous functions. This is a

sufficient condition for existence of solution to system (7).

ii. There exist continuous bounding functions po, P1, P2 such that



Ntpq4,4,w) I s P0(t404) s 130(t,x),

I G#4,w) I S P1(t4) s 131(4),

min G i(t,q,w) z 13 2(t4 i) 132(1,X) > 0.
ally eV

iii. The state reference ;(t) E. C1. Then by defining

Tr(t) a 4,.(t) ,

Tr(t) is a continuous function and a reference model for each subsystem can be

written as

Zr(t) = A x r(t) + B Tr(t)

with A and B as in (7).

(12)

Notice that assumptions i and iii together guarantee existence of a

solution to (8).

Remark 1. Based on physical limitations of every robotic mechanism, it is

possible to assume the existence of positive constants C, and Ca for each joint,

such that



j= 1,...,n,

j= 1,...,n.
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Remark 2. For a revolute joint, q appears in M() and U() only as argument

of either sines or cosines; therefore, the perturbations due to qj at joint i are

always bounded for j = 1,...,n, i = 1,...,n, itj

Remark 3. For a prismatic joint, the joint variable is a linear displacement

which can also be assumed to be physically constrained. That is, if d is the

displacement, there exists a positive real constant Cd so that I d I 5 Cd for

every prismatic joint.

From these remarks and also by taking into account that w belongs to a

closed bounded set W by assumption, then V is also a closed bounded set; hence,

there exist bounding functions Po(t,x), Pi(t,x) and P2(t,x) that satisfy (9)-(11).

Theorem 1. Sufficient Conditions for Stability

Assume there exist symmetric, positive-definite matrices 1),Q c 12x2 and

non-negative real numbers a, b, c, a >0, such that V(z) = zTPz is a Lyapunov

function for the error model (8)

= F(t,z,v,7),

with

(8)



ztPF(t,z,v,T) s + biz12 + c,

for all t E z c 12, and v c V,

where IzIQ T Q z)"2.

Then (q(t)4(t)) asymptotically tracks (q 0,4 ,(0)

within a tolerance d given by

where

[d lm"(Q 111
12

dQ'
1 min(13)

d e
[-b +(b 2 +4ac)112]

Q 2a

13

(13)

(14)

(15)

Loosely speaking, we then want to design a continuous control law T(t,x)

such that (13) is satisfied. Also, we would like that b and c be chosen arbitrarily

so that d is arbitrary too.

Proof: We obtain a set for which asymptotic stability in the sense of Lyapunov

is guaranteed.

Assume

V(z) = z TPz,



V(z) 2z T
2Z

T.rM-.r (t,z,v,7).

Assuming also that (13) holds, then

1.7(z) s 2[-a lz 1Q + b iz IQ + c]

and V(z) is negative definite for all t > to if

Iz IQ > dQ

with d() defined by (15). Inequality (16) implies that

or

or

Hence,

Z TQP -1Pz > do,

-1)z Tpz > dQ2

z TPz > [Amin(QP-1)]-142 = (42-1114.

V(z) > (42-1P)4,

Z T Amin(P)Z > x (Q-1P)do2 ,

Z Z > lmax(Q -1P) d2

Imm(P)

14

(16)



and

{linax(Q-111z1 > dQ = d.
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Therefore, for 11 z(t) > d, the error model (8) is asymptotically stable in

Lyapunov sense and, therefore, [q(0-qr(t), 4(t) -4,(0]

to a set S whose norm II S II s d.

Feedback Control Synthesis

asymptotically converges

A feedback control law for joint i is proposed here, which will be shown

to satisfy theorem 1 and so it achieves the requirements proposed in the problem

statement.

From (7), (8), and (12), we obtain

V(z) = 2z TPF(t,z,v,7),

1.7(z) = 2z TP[Az + B(h() + G()T T.)].

Let the control T(t,x) be of the form

T = p °(t ,x) + ps(t,x) + pe(t,x)

Then the closed loop error model can be written as

(17)

(18)



= Az + BG()p s(t,r) + B[e() + G()p e (t,x)]
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(19)

where e(t,x,v) = h() - Ti + G()V(t,x) (20)

Construction of p°(t,x)

Let p°():31x12-01 be any continuous function. It can be chosen to reduce

the effect of e() in the system (19). Thus, choose p° to reduce I e()

Construction of ps(t,x)

We choose ps(t,x) so that the system

= Az + BG(t,q,w)p z(t,x) (21)

is globally asymptotically stable with respect to zero for all v c V. To be able to

apply theorem 1, we must find positive definite symmetric matrices p, QE

and ps(t,x) such that, for V(z) = zTPz, the following inequality is satisfied

or

'k2 z)
TP[Az BG(t,q,w)p sl S 1z ec.

z TPAz + zTPBG()ps + zrQz s 0. (22)

Lemma 1. For any symmetric positive definite matrix Q, any Real positive



constant a > 0, and any continuous function r(t,x) which satisfies

r(t,x) 2 ci (mindivevG(t,q,w)) "1,

17

(23)

there exists a symmetric positive definite matrix P, solution of the algebraic

Riccati equation (24)

PA + ATP - 2oPBBTP + 2Q = 0 (24)

such that with

ps(t,x) = - r(t,x)BTPz, (25)

equation (22) is satisfied.

Notice that assumption ii guarantees the existence of the function r(t,x),

and that since the pair (A,B) is controllable the existence of matrix P is

guaranteed.

Proof: Let ps(t,x) = -r(t,x)BTPz, with r(t,x) a continuous function satisfying

(23). The left hand side of equation (22) becomes

T pAz zT PBG(t,q,w)11t,x)B TPz 4- z TQz

s zTPAz zTPBcy.B T Pz + zTQz.

Choose P for the critical case when



then,

or

zTPAz zrpBaB Tpz zTQz 0,

2
1z T[PA + A 7. Pjz az TPBBTPz + zTQz = 0,

zTPAz + z TA TPz 2oz TPBBTPz + 2z TQz = 0,

18

which must be satisfied for all zat2 . Consequently, P can be obtained by solving

PA + ATP - 2oPBBTP + 2Q = 0.

Using this matrix P and the function c(t,x) as defined in (23), we obtain

the desired stability of (21), that is

zTPAz + zTPBG()ps + zTQz 5 0.

Construction of pe(t,x)

The control pe(t,x) is designed to overcome any destabilizing effect from

the term e(t,x,v) in (19). Hence, pe(t,x) is chosen so that

zTPB [e(t,x,v) + G(t,q,w) pe(t,x)] c (26)

for all t c x c v c V.

Lemma 2. Assume p and k are any two continuous functions satisfying



p(t,x) z (mindivo,G(t,q,w))-1 le(t,x,y)I,

k(t,x) Z le(t,x,y) I for all y e V.

Let sc(.):31-4 be any continuous function which satisfies

1,56(n) = 1s (n) I n

and for any c > 0,

In I > 0 1 ITO for all 71 E

Then the control

p e(t,x) = p(t,x) S(k(t,x)B7Pz)

with z = x - xf, guarantees the satisfaction of inequality (26).

Proof: Let

a a B Tit

L A zTPB[e(-) + GOP e (t,x)]

= ae() + a GOp (t,x).

19

(27)

(28)

(29)

(30)

(31)



Assume

thus,

p e(t,x) = -p(t,x) Se(k(t,x)B rPz)

pe) = -pSe(ka).

Assume I ka I > 0, then from (29)

and

S (ka) = lk a I-1 I V(ka) I ka

= la 1-1 IS(ka)l a

aGpe = -aGpS()

= -plarlISA)laGa

= -PlarISEOla2G

-P lal IVOIG

-13 'al ISOlminavEvG(t,q,w).

If we now use (27), we get

aGpe s lel Ial ISE01

Applying (30), results in

20



and from (28)

Therefore,

or

aGpe s lel lal + lel lal

aGpe s let lal + C.

L A ae + aGpe s c

z7PB[e + Gpe] s C.

21

In case Ka = 0, from (29), and taking into account that S600 is a

continuous function, we obtain Se(0) = 0 . Hence, pe(t,x) = 0, which implies

L la I lel ,thus, L s klal = 0 and consequently, (26) holds.

Applying the control laws previously defined for subsystem (19) and

choosing V(z) = zTPz as a Lyapunov function, we then obtain that

Z TPF(t,Z,V,7) s
2 + c

(32)

and by theorem 1, with a =1, b =0 and c= c , that the desired tracking, as stated

in the problem statement, is achieved.
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Composite System Stability

The stability of the composite system is based also on Lyapunov theory

and consists of constructing a Lyapunov function as the sum of the ones used

for each subsystem whose time derivative is proven to be negative definite to

within some tolerance when evaluated on the error state trajectories of the

respective composite error system.

The composite system is obtained by defining the following vectors [20]

X(t) A [q1,4'1,q2,42,...,q.,4.]T,

Xr(t) A krit, 4711 qr2,4r2, , gra, 4r) T

Z(t) a X(t) Xr(t),

A a diag(Ai), B A diag(Bi),

T [Ti,..., ,

G() A diag(Gi()),

w

D e [d1,...90,



di e hi() + G,()T Ti

D = H() + G()T T,

= it91,

then, the composite error system can be written as

Z(t) = AZ(t) + BD.

23

(33)

From the assumptions made for each subsystem, each of the components

of the vector H and matrix G is bounded. Therefore, there exist continuous

functions p B0, P2 such that

111(t,x,w) I s k(t,x),

1G(t,X,w)1 s

1 mn G(t,X,w) Z p2(t,X) >O,
all weW

for all te31, Xe312n and weW

Defining a new Lyapunov function for the composite system (33) as

n (34)
V(Z) = zirp,z,

then from (32) we obtain



where

24

n (35)

'(Z) 5 E Azil + Ei,
i=1

zi k, gri , 4i 4riir

and Pi satisfies (24) for each joint i= 1, ..., n

Therefore, theorem 1 can be applied to the composite system to show that it is

globally asymptotically stable within a tolerance d given by

with (10 given by

d [ A max(' 2 P) d ,
[ lmin(P) Q

It

dQ = {E,
1i..

and P = diag (P1), Q = diag (W.

(36)
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IV. SIMULATION OF DECENTRALIZED CONTROL OF TWO-LINK

PUMA 560 ROBOT MANIPULATOR

We apply the concept previously developed to a two-link manipulator

depicted in figure 1, [20] and mathematically described by

T = M(q)4 + N(q,4) + G(q) + H(4)

+ mJ r(q)[J(q).4 + ..1(q,4)4 + g],

M(q) =

al+a2cos(q2)

a,
a3 +c os(q2)

N(q,4) =

G(q) =

J(q) =

aa3+ -Icos (q2)

a3

422)-a2sin(q2)%42 +

.2
41

a2sin(q2)
2

2
,

a4cos(q1) +

a scos (q +q
,

2)

V142 + V2sgn(41)
H(4) =

[V3q2 + V 4sgn(42)1'

,

[-lisin(q 1) -12sin(q2 +q2) -12sin(q1 +q2)

licos(q1)+12cos(q1 +q2) 12cos(q14 q2)'

(37)
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..1(q,4)=

0

9.81 ]

121221i-lcos(q)4-1cos(q)4 12cos(q12)412

-lisin(q1)41-12sin(q12)412 -/2sin(q12)412 '

q12 ql q2

412 A 41 + 42.

Figure 1 Two-link manipulator

In this example we consider m, V1, V2, V3, V4, as part of the uncertain elements

with the following given bounds

m c [0, mmj,

Vi c [Vmm, Vmaj i= 1,...,4.

From (37) we obtain the scalar equations for each joint as



2
T1 [M11 + M V11 + J21)]41

[3112 74111j12 j21j22N2

N1 + M[(J11ill +J21f21)41 (J11i12 +J21i22)42-1

+ G1 + 9.81mJ21 +

m141 + 141

T2 = [M22 + M V122 -4222N2

[m. noirin J21-r22A41

+ N2 + MP12i11+J22j21)41 +('12'12 +J27122)42]

+ G2 9.81mJ22 + 112

e m242 + uz.

The following relatinships can be verified

T2 2
`1121 + '21 .2/

1

J11J12 J21J22) < 122 + 151112,

2

J21j21 + 21112 + 122) 141 1 + (1112 + /22) 142 1 ,

J11`112 J21J21 L51112( 141 1 + 142 1)

Jul12 + J21Jzi s 1.51112141 I,

27

(38)

(39)



T2 T2
'12 + '22 - l2

J12J12 + J22'122 0 '

till S al + a2 + (li + 12)m.,

'hi sal a2 > 0,

m2 122 mom,

m2 a3 > 0.

The numerical values for the manipulator parameters are

al = 3.82, a2 = 2.12, a3 = 0.71, a4 = 81.82, a5 = 24.06,

m1 = 15.91kg, m2 = 11.36kg, mmax = 10kg,

11 = 12 = 0.432m,

Vlmax = V3max = 1 Nt m/rad s-1,

V/max = V4max = 1 Nt m.

For these parametric values, it can be proven that

ui < 7.361421 + 6.53214112 + (8.653)1421 + 1)1411

+ 3.31,4212 + 124.21cosqd + 67.44 a ill. ,

u2 < 2.237(4i1 + 1.06 Isinq2114112 + 2.814112

+ 67.44 + 1421 a u2..

28

(40)

(41)
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Assume for joint 1 that 1421 s Ca2, 1421 < Cv2 , and for joint 2 that

IC < Cal , 1411 < C where Ca2 C
v29

Cal, CvI are real positive constant given

by the manipulator physical constrains.

Then the control functions for joint 1 can be chosen as follows

11'0 = -13.4101(puz1

where p1 A
Pll p12

P12 P22

+ P22Z2) P

solves (24) and of > 0.

p e(t,x) = -p,SRB TPiz],

= pS (k(Pnzi + P22z2)),

where S() satisfies (30). From (20),

k() Z le(t,x,v) I,

le(4,0 I = I he) -Tr + GOP °() I ,

1110 I + I -7, + G()p °01.

Since

. -1
-_ _ _h() = m 1 __ u1 p

GO = m11,

then

(42)

(43)



Let

where

and let

le() I + I -Tr + 7111-1P °

s max(ihi-1) lui I + I -Tr-14'111P° I

= (min ifti)-1 lull + I -T +rh1 p ° I.

P °() A In Tr ,

in A
2

(max(iiii 1) +

T r(t) = ri(t)

k(t,x) -iui + + min (titil)titii

= 0.59u1. + .79 IT rI .

To satisfy (20) let

p() A (max = 13.4k().

Then the control law for joint 1 is

30

(44)

(45)

(46)



T1(t4) = °() P e0 P s

with p°, pe, and pS, given by (44), (43) and (42) respectively.

where

The control law for joint 2 is obtained in a similar way, that is

11270 = 71120T,
th20

1 (max(m2 ) + min(Ms2-1))]
2

p2 () = -1.86602(P122z12 P222z 22), 024

k2() = 1.43u2. + .453,

p20 = 1.866k2(),

P2e0 = P20 k20,51(k2()(P122;2 P222z22)),

rD112 P1221
=

z 122 P222222
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(47)

(48)

(49)

solves (24) for some symmetric positive definite matrix Q2 and u2 > 0, and u2m

is given by (41).
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In both equations (43) and (48) the function SE(q) is chosen as Se(q) =

( I v I + f)ig, which satisfies conditions (29) and (30).

Simulation Results

signals

In the following simulations, the manipulator is to track these reference

q,
la 1 27rt

)= sin(
3

,
6

gri qr2 it'

t E [O,3](sec).

The design parameters are adjusted to the following values.

5.79 2.01
P

l'2 2.01 .532

01 = 10, 02 = 10, el = 5.3, c2=5.8.

The boundary values for velocity and acceleration of each of the joints are

assumed as follows

rad radC 4 C 2 .
a1,2

,
1,2sect sec
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However, it is important to point out that these variables are not restricted to

these bounds during the simulations.

The control variables (torquel and torque2), position error, and velocity

error shown in the following plots are given in Newton meters, radians, and

radians/sec.

Simulation 1. A constant mass of 5 kg is considered in this case. Figures 2 and

3 show the respective joint tracking of the desired trajectories, the tracking

errors and the control action required by each joint.

Figure 2. Simulation 1. Tracking results using a constant
payload of 5 kg.
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Figure 3. Tracking errors from simulation 1.

Simulation 2. In this simulation the initial state of joint 1 differs from the one

given by the reference as follows

xr(to) = [-1.5708, 0] x(to) = [-1, 0] .

The convergence of the error model of each subsystems becomes more

noticeable in this case as it is shown in figures 4 and 5.
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Figure 3. Simulation 2. Mismatch in initial conditions.

Figure 5. Tracking errors from simulation 2.
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Simulation 3. In the subsequent simulation, the mass of the payload is

changed from 5 kg to 0 at t=1.5sec., as in the case of an end-effector dropping

the payload. Simulation results are illustrated in figures 6 and 7.

Figure 6. Simulation 3. Payload of 5 kg is dropped at t = 15
sec.

Simulation 4. Another interesting situation is the case in which the mass of the

payload varies linearly with time according to

m = --s t + 5 (kg.)
3

That is the case, for instance, when the end-effector pours its payload

throughout the reference trajectory.
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Figure 7. Tracking errors from simulation 3.

Figure 8. Simulation 4. Time varying payload.
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Figures 8 and 9 show how the tracking is hardly affected by the time varying

nature of the payload.

Figure 9. Tracking errors from simulation 4.

Simulation 5. We now consider a combination of perturbations. The initial state

of the manipulator are set as for simulation 2, and we let also the payload be

time varying as in the previous case. The simulation results are illustrated in

figures 10 and 11.

Simulation 6. To illustrate the robustness of the closed loop system to the

unknown viscous and Coulomb friction coefficients V1, V2, V3, and V4, we would

let these parameters have any constant values within the bounds
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Figure 10. Simulation 5. Mismatch in IC. and time varying
payload

Figure 11. Tracking errors from simulation 5
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assumed to derive the controller. However, in this simulation, these parameters

are set as random variables with normal distribution, mean .5, and standard

deviation equal to .1666. Although, random friction coefficients do not occur in

most real situations, by assuming so, we account for most real cases in this

regard. The smoothness of the control action is degraded by doing so though, as

can be observed in figure 11. Figures 12 and 13 show the respective errors and

the values of the friction coefficients during the simulation. The payload m is set

to a constant value of 5 kg.

Figure 12 Simulation 6. Random friction coefficients.
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Figure 13. Tracking errors from simulation 6.
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Figure 14. Viscous and Coulomb friction coefficients used in
simulation 6.
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The controller design parameters for all the previous simulations were the

same, thus reassuring in this way the robustness of this control scheme. It is

important to note that the control effort, the smoothness of the control action

and the magnitude of the tracking errors could be improved if these controller

parameters were properly adjusted for each one of the simulations. Consider as

an example the following simulation.

Simulation 7. In this instance, we simulate the same situation as described in

simulation 6, however, we now adjust the parameters of the controller to the

following values so that the tracking errors are smaller in magnitude (see figures

15 and 16).

[15.0179 1.1147
P1 =

1.1147 .2126

01 = 10, 02 = 10, ei = 5.3, 2=5.0 .

Figure 15. Simulation 7. Simulation 6 with controller
parameters given by (50).

(50)
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Figure 16. Tracking errors from simulation 7.
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V. CONCLUSIONS

By means of Lyapunov theory, and by taking advantage of physical

constraints, such as limited velocity and acceleration, of every real manipulator,

we obtained a continuous nonlinear decentralized controller for which

perturbation bounds and joint position and velocity is the only knowledge

required to drive the joint position and velocity to desired reference trajectories

within an arbitrary small error.

The control law obtained is composed of three parts, one defined as an

arbitrary continuous function, another defined to overcome any possible

instability effect due to the perturbation variables present in the inertia matrix.

The third part ensures stability against perturbations from both the inertia

matrix and the coupling terms among joints.

The scheme considers the coupling effects among joints as perturbations

and accounts for any model uncertainty or external disturbance, thus ensuring

its robustness. Moreover, the designed controller is also memoryless and

computationally very simple.

The control scheme obtained in this work, guarantees physical

realizability through continuous feedback control laws and offers design

flexibility through parameter adjustment.

In contrast to a centralized structure, the controller can be designed and

adjusted according to the specific joint dynamics, joint actuator limitations and

joint task specifications optimizing the control effort at each joint.

Simulations employing a two-link manipulator shows the simplicity and
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efficiency of the controller when a fast reference trajectory is to be tracked by

the manipulator under time varying uncertainties such as payload mass changes

and unknown joint friction constants.

The dependence of the controller on physical constrains can be viewed as

a limitation, for example, in cases where the boundary values are very large, a

relatively large control effort would be required to mathematically ensure

stability. However, it is important to keep in mind that the condition used in

Lyapunov theory are only sufficient and as it has been shown through

simulations, in many cases, these conditions can be violated and still obtain the

desired stability. Nevertheless, in regard to this issue, further research needs to

be done to make the controller of a particular joint independent of the velocity

and acceleration of the other joints. We think that by establishing a closed

bounded domain for the initial state within the physical constrains of the joint

variables, and employing upper and lower bounding functions of the Lyapunov

function defined for that joint, it may be possible to prove the existence of a

control which does not depend explicitly on physical constrains of other

subsystems state variables. In this case our approach could be used to control

other complex nonlinear systems where either the bounds for velocity and

acceleration are too large or in the case that they are not constrainable.
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