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STABILITY OF ELASTICALLY RESTRAINED FRAMED 

STRUCTURES BY MATRIX ANALYSIS 

INTRODUCTION 

In the design of structures it is necessary to know the load 

carrying capability of the structure as governed by its stability. 

Since Euler' s development of the column formula, stability has been 

a point of concern in structures containing columns. 

The critical loads as applied to simple portal frames have 

been found, in general, for both the symmetrical (non -sway) mode 

of failure and the antisymmetrical (sidesway) mode of failure 

(2, p. 251-255, 23, p. 66, 1 49). It is undertaken here to use a 

method applicable to a large variety of framed structures (12) to 

determine the critical loads of elastically restrained, simple portal 

frames. By varying the stiffness of the restraint, the critical 

loads will vary from those obtained for the sidesway - permitted 

condition to those obtained for the non -sway condition. 

The following limitations or assumptions are made in regard 

to this investigation: 

1. The stresses in the members remain in the elastic 

range. 

2. Only plane frameworks will be considered. 

3. There are no out -of -plane deformations. 



4. The moment of inertia is constant along the length of 

each member. 

5. Each column is initially perfectly straight. 

6. Each column is centrally loaded. 

7. Placement of the loads will be such that there will be 

no primary bending moments. 

METHOD OF ANALYSIS 

2 

The method of analysis to be used is the displacement method 

of matrix analysis. The development of this method can be credited 

mainly to those engaged in aircraft analysis and design (1, 9, 24). 

To analyze the highly redundant structures used in the aircraft 

industry by classical methods involves the simultaneous solution of 

a large number of linear equations. Matrix notation is ideal in such 

a situation because of its concise notation and its ability to be readily 

applied to a digital computer. 

Notation Used 

Figure 1(a) shows the external coordinate system to be used. 

External displacements are denoted by D and external loads are 

denoted by Q as shown in Figure 1(b). Quantities as shown are 

considered to be positive. The circled numbers refer to nodal point 

designation. External loads will be applied only at the nodal points. 
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Each member is designated by the number near the center of each 

member span. 

(a) (b) 

Figure 1. External Load and Displacement Notation 

Superscripts used on external loads and displacements denote 

the particular component as shown in Figure 1(a), Subscripts used 

on external loads and displacements refer to the nodal point at which 

they occur. For example in Figure 1 (b) , Q2 refers to a clockwise 

moment applied at nodal point number two. 

Y 

(a) 

X 

(b) 

Figure 2. Internal Load and Displacement Notation 

(c) 

Figure 2(a) shows the member coordinate system. Figure 

2(b) shows the internal or member loads where P refers to the 

axial load, M refers to the bending moment, and V refers to the 

2 
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shear. Figure 2(c) shows the internal or member displacements 

where 4, refers to rotation and y refers to translation. The 

quantities as shown in Figures 2(b) and 2(c) are considered to be 

positive. Not shown in Figure 2(c) is the quantity e which refers 

to axial deformation. The sign of e is positive when there is exten- 

sion in the member. The superscripts i and j refer to the member 

end at which the load or displacement occurs. The letter i refers 

to the left end and j refers to the right end. Any subscripts used 

will denote the member number. 

Internal loads and displacements in matrix notation are 

referred to as q and d respectively. Symbols that are underlined 
nnn 

with a wavy line denote that the symbol is in matrix form. Equation 

(1), for example, denotes that the matrix q is composed of the 
nnti 

array of elements M1, V1, M3, V3, and P. 

q = 

P 

(1) 

Displacement Transformation Matrix 

In using the displacement method of matrix analysis, it is 

necessary to define a displacement transformation matrix A such Nt 

that: 
d = A D 

AAA AAA 
(2) 

nn 

i 
M 

V 

Mi 

Vi 

.nn. 
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Figure 3. Typical Framed Structure 

For example, in Figure 3, neglecting axial deformations 

and noting that D2 D 
2 

= O. 0 and that D1 = D 2 we may rewrite 

equation (2) and get: 

1 
J 

J 
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i 
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3 

J 

J 
113 

0 

0 

0 
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0 
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0 
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0 
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-1 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 
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0 

0 

0 

0 

0 

1 
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1 
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Equation (3) may be rewritten in a more usable form by 

combining terms and by dividing by L, where needed, to make the 

matrix dimensionally homogeneous, If this is done we obtain: 

`P'1 

`rJ 
i j 

r,l 
ril 

_- 

L 

4) 2 
i j 

T12 T12 

L 

4)3 

i 
3 

i j 
113 113 

L 

o o o o 

o 1 o o 

1 0 0 0 

o 1 o o 

o o 1 o 

o 0 o o 

o 0 0 1 

o 0 1 o 

1 o o 0 

(4) 

Di/L=D2/L 

D3 
1 

D3 D 
2 

D3 
3 

If axial deformations only were being considered the displace- 

ment transformation matrix would be as shown in equation (5). 

e 

e 

1 

2 

e3 

0 1 0 0 

-1 0 1 0 

0 0 0 1 

D1 

D2 
1 

D1 
2 

D2 
2 

Such a transformation is used most often in the truss type of 

structures. 

(5) 

1)2 
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Member Stiffness Matrix 

The stiffness of a member is defined as the amount of force 

required to deflect the member a unit distance. It is usually 

expressed by a ratio as in equation (6): 

k = P/ e (6) 

where k is the stiffness of the member, P is the force applied, 

and e is the amount of deflection, Equation (6) can be rearranged 

and expressed in our matrix notation as: 

q = k, d 
nnn ,,N- 

(7) 

where k, is the individual member stiffness matrix. Thus the i 
AAA.. 

expression for the axial force on an elastic restraint or spring 

become s: 

P = k e 
sp 

where k denotes the stiffness of the spring, 
sp 

(8) 

Considering axial force P, the differential equation for 

bending is: 

4 2 

EId 4+ P 
d 

2 dx dx 
= 0 

Using the general solution of this differential equation and the 

(9) 

force and deflection boundary conditions, it can be shown that (12) 



where: 

M1 k1 k2 k3 

Mi EI k2 k1 k3 
L 

VL k3 k3 k4 

(10) 

k k (s - c) (11a) 
1 2-2c-ks 

- s) 
( llb) 

k2 2-2c- s 

k 
k 2(c - 1) (11c) 

3 2-2c- s 

3s 
(11d) k4 2 - 2c - s 

s = sink (11e) 

c = cos k 

2 PL2 
EI 

(11f) 

(11g) 

If P is a tensile force the expressions in equations (11) 

are replaced by: 

k (Ac - s) 
1 2-2c+ks 

K(s - K) 
k2 2-2c+Ks 

A 2(c - 1) 

k3 2-2c+Ks 

A 
3T 

k4 2-2c+Ks 

(12a) 

(12b) 

(12c) 

(12d) 

8 

k 

i 
(1) 

J 
L 

(k 

k 

k 

k 

= 
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s = sinh (12e) 

= cosh k (12f) 

When there is no axial load in the member or when axial force effects 

are neglected, P equals zero and equation (10) becomes: 

i 
M 

Mi 

VL 

EI 
L 

4 

2 

-6 

2 

4 

-6 

-6 

-6 

12 

i 
el) 

i 
T1 

- j 
(13) 

L 

From the individual member stiffness matrixes k. a 
nniV 

stiffness matrix k for the structure is formed which appears as 
Ann. 

follows: 

k 
nM 

k1 
nnti 

0 

0 

0 

0 

k2 
Anti 

0 

0 

0 

0 

0 .., 

0 

0 

kn 
tvvs. 

(14) 

It will be seen in the next section that this matrix is used for 

determining the stiffness matrix K for the entire structure, 
nrvt. 

Structure Stiffness Matrix 

Using the principle of virtual work it can be shown that (11): 

Q A' k A D 
Nv.. (IAA MA AM Nh (15) 

where A' denotes 
A 

transpose, Defining the structure stiffness 

$ 

= 

= 

c 

0 

4%' 



matrix as 

Ann - Ann Ann Anti 
(16) 

10 

it is seen that the external displacements are related to the external 

loads by the expression 

Q = K D n nM. nnti (17) 

Stability Criterion 

When the load applied to a structure reaches the critical 

load (that load which will make the structure unstable) its deflection 

grows infinitely large with virtually no increase in load, From 

equation (17) the only way D can change considerably with no 

change in Q is for the determinant of K to go to zero (19, 21), nom. 
If the determinant of K equals zero, the structure is said to be in 

neutral equilibrium and the critical load P may be calculated, cr 

APPLICATION TO ELASTICALLY RESTRAINED STRUCTURE 

The application of the matrix method to a particular structure 

requires that the previously mentioned A and k matrices be 
MA. AAA- 

developed for the structure, From these the K matrix for the 
AAA, 

structure can be determined, 

Development of Required Matrices 

Pinned -Base Frame, The notation, geometry, and loading of 

a pinned -base frame is shown in Figure 4, The lengths and moments 

K A 



of inertia of the respective members are denoted as L1, L2, I 

and I2. 

L1 

L2 

I2 

P 

1 

2 

3 

11 

Figure 4. Notation, Geometry, and Loading of Pinned -Base Frame 

The elastic restraint, as applied in Figure 4, can represent 

any of several actual conditions of restraint against side sway such 

as shear walls or cross bracing. The spring constant used in the 

analysis would be equal to the stiffness of the actual restraint. 

1 
D2 

3 

D3 D3 
2 

Figure 5. Deflected Structure 
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Figure 5 shows the deflection that the pinned -base frame is 

capable of undergoing in the plane of the frame (neglecting axial 

deformations of all members except member four). The non - 

deflected shape is shown by dashed lines while the deflected shape is 

shown in solid lines. 

The displacement transformation matrix A from equation 

(2) is developed from Figure 5 and is found to be 

i 
(1)1 

1 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 0 1 0 0 D3 
1 

0 0 0 1 0 
D L1 

0 0 0 0 0 

D3 
2 

(18) 

D3 
3 

0 0 0 1 0 
D3 

4 

0 0 0 0 1 

0 1 0 0 0 

0 -1 0 0 0 

The individual member stiffness matrices for the members in 

Figure 4 are shown in equations (19). 

TI1-T11 
L1 

i 
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L2 

$1 3 

-03 
L 

1 

e4 L1 
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j Ml 

V i L 

L - 
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2 
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V2 L2 
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M3 

M3 

V3L1 
3 1 

[P4L}[L2 

EI 
1 
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k2 

k3 

- 
kl 

k2 

k3 
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k2 

k3 
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k2 k3 
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k2 k3 

kl k3 

k3 k4 
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k3 k4 

[e/Ll 

`1)1 

- 
j 

l 1 

(19a) 

(19b) 

(19c) 

(19d) 

EI2 

L1 

i 

1:13' 2 

71z 

L2 

EI 
1 

L2 

'1)3 

i j 
T13 T13 

L1 

L1 
1 

These equations are combined to give the stiffness matrix k 
nnrt 

of the structure as shown in equation (20), 

The stiffness matrix K of the entire structure is obtained by 

substituting the A matrix from equation (18) and the k matrix from N 
equation (20) into equation (16). Performing the matrix multiplication 

one obtains equation (21). The subscript pb indicates this is the 

stiffness matrix of the pinned -base frame. 

1 

2 1 

i 
¢1 

i 
- 

z 

_ 

2 

.4)3 

Ann_ 

nnn 

1 L1 

1 2 3 

1 

"2 



i 
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VL1 k3 k,l k4 
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LlI2 
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1 
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1 sp 

\ 

EI1 
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1 

k3 k2 0 

3 
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L 

1 
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0 

k3 

0 

k2 

kl 

14 

20) 

(21) 

Fixed -Base Frame. The fixed -base frame considered has the 

same form as Figures 4 and 5 except that nodal points one and four 

are fixed and cannot, therefore, undergo rotation. The displacement 

2 

3 

1 2 

-6 1 

1 

(i) 
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- 1 1 
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i 

(1)2 
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transformation matrix in this case is the same as the three middle 

columns of the A matrix for the pinned -base frame. 
ewe. 

o 0 0 

o 1 0 

1 0 0 

o 1 0 

o 0 1 

A = 

o 0 0 
(22) 

o o 1 

o o o 

1 o o 

-1 0 0 

The stiffness matrix k of the structure is the same as for 
.w", 

the pinned -base frame. This matrix is given by equation (20). 

Performing the necessary matrix operations the stiffness matrix K 

for the entire structure becomes 

EI 
K = 

nññ. 
L 

1 

L3k 
1 sp 

2k4 + k3 k3 

I2L1 I2L1 
k3 k1 2 +4 

I2L1 I2L1 
k3 2 k 

I 
+4 

1L2 I1L2 

(23) 

...". 

I1L2 I1L2 

1 

4 EI1 

I 
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The subscript fb denotes this is the stiffness matrix of the fixed- 

base frame. 

Application of Stability Criterion 

As previously mentioned, the criterion for neutral equilibrium 

is that the determinant of K is equal to zero. In observing the 

composition of the K matrices from equations (21), (23), and (11), 

it is seen that the condition for the determinant is best obtained by 

a trial and error solution. 

The procedure used is as follows: first, a value for A is 

assumed; the sines and cosines of ? are then obtained; these are 

then substituted into the equations for kl, k2, k3, and k4, which 

in turn are substituted into the expression for the determinant of K. A 
If the determinant of K is zero, the appropriate value of P is 

rv+n. cr 

calculated from the assumed value of X . If the determinant of K is 

positive or negative, a larger or smaller value, respectively, of X. 

is assumed and the determinant is recalculated. 

This procedure may take a large number of trials before a 

value of X. can be found which will make the determinant of 
K 

equal 

to zero, A high -speed digital computer can be used very effectively 

to perform the required calculations. 

iw. 
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COMPUTER PROGRAM DESCRIPTION 

The program used was written in the FORTRAN language 

for use on an IBM 1410 Data Processing System. The examples were 

run at the Oregon State University Statistics Computing Laboratory. 

Computer Logic 

The program was written in three parts - -the main program 

with two subprograms. Complete listings will be found in the 

Appendix. The first subprogram (SUBROUTINE MSTFM) simply 

assembles the member stiffness matrix of the structure from the 

values given it by the main program, This matrix is then returned 

to the main program for future calculations, 

The second subprogram (FUNCTION DETERM) calculates the 

value of the determinant of any square matrix given it by the main 

program. 

A brief description of the main program logic follows: 

1. All necessary input variables, such as frame geometry, 

accuracy desired, and the displacement transformation 

matrix are input to the computer. 

2, An initial value of k is assumed. 

3 The SUBROUTINE MSTFM forms the member stiffness 

matrix from the given geometry and the assumed value of N.. 
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4. The main program performs the matrix multiplication 

to get K =A'kA. 
met aM n"n 

5. If the determinant of K is close enough to zero as rw 
specified by the accuracy desired, the value of P cr 
is calculated and printed out. The computer then 

returns to the beginning of the program to read a new 

set of data. 

6. If the determinant of K is positive, k is increased by rwL 

the value of DLAMDA and the computer returns to step 

three, 

7. If the determinant of K is negative, the new value of . 
non_ 

is obtained by using a straight line interpolation between 

the k corresponding to the negative value of the 

determinant of K and the k corresponding to the last 

positive value for the determinant of K. The computer 
1%."\., 

then returns to step three.. 

Program Generalities 

The subprogram FUNCTION DETERM is completely general 

and will calculate the determinant of any matrix up to the limits 

of the computer. 

The main program would be applicable to many framed 

structures with only a few minor changes. As the main program is 

nM_ 
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listed in the Appendix it is limited to a symmetric, three -member, 

framed structure with a single elastic restraint. 

The subprogram SUBROUTINE MSTFM was written 

specifically for the structure configuration used in this work. 

RESULTS 

Presentation 

Input. The examples calculated in this work are based on 

both a pinned -base frame and a fixed -base frame. The properties 

of the members selected for the calculations, using the notation of 

Figure 4, are L1 = 20 feet, L2 = 40 feet, I1 = 1000 in4, and I2 = 

500 in4, In each case Young's modulus is equal to 30, 000 kips per 

square inch. 

The degree of accuracy to which the determinant of K was 

to equal zero was dependent upon the magnitude of the determinant of 

K for X. equal to zero and also upon the value input to the computer nnr` 

as data. The accuracy used was equal to the product of the input 

accuracy, equal to unity in all examples calculated, and 0.01 per 

cent of the determinant of K for k equal to zero. 
Hike+.. 

The value of the increment of X. DLAMDA, was varied 

with the stiffness of the restraint to obtain fast convergence of the 

determinant of K to zero. 

, 
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Output. An example of the output using the pinned -base frame 

is shown in Table 1. This example represents the sidesway condition 

as can be seen by noting that the spring constant or stiffness of the 

restraint is equal to zero. 

Table 1, Sample Output Data 

L1 L2 I1 I2 SPRING CONSTANT 

20, 000 40, 000 500. 000 1000, 000 0, 000 

LAMDA 

.0000 

DETERM(K) 

2880. 00 
1. 0000 1141, 46 
2. 0000 -1913. 78 
1, 3736 -80. 48 
1, 3489 1. 85 
1, 3495 . 00 
THE CRITICAL LOAD IS 474. 294 KIPS 

Figure 6 is a graph of X. vs. the spring constant of the 

restraint for both the pinned -base and the fixed -base frames, Also 

included are the values from Bleich (2) for the sidesway and non -sway 

conditions for both frames, 

Reliability 

The reliability of the results obtained is very good, The 

maximum per cent error of the values obtained by the computer is 

0, 1 per cent of those values found in Bleich. 
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Although there are a large number of calculations involved, 

round -off error does not seem to be a problem within the accuracy 

desired. This assumption was substantiated by the calculation of one 

set of data using double precision arithmetic. This calculation showed 

no change in the sixth significant figure. 

CONCLUSIONS 

The method presented in this work is a method that shows 

good accuracy for simple portal frames. The method is versatile 

and can be applied to many types of framed structures. Framed 

structures with elastic restraints are especially suited for analysis 

by the use of this method. 
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NOTATION USED 

A Displacement transformation matrix 

A' A transpose 

c Cosine 

d Internal displacement matrix 

D External displacement matrix 

e Axial deformation 

E Modulus of elasticity or Young's modulus 

i, j Superscripts referring to member end 

I Moment of inertia 

k Stiffness of a member 

(s - c) k (1,:c - 
1 2 - 2c -ks 1 2-2c+s 

., 
k (X. - s) k (s - A) 

Z 2 - 2c - ks 2 2-Zc+X.s 

k =k 2(c - 1) 
k k 2(c - 1) 

3 2- 2c - As 3 2- 2c +X.s 

k 
X. k k3s 

4 2 - 2c -ks 4 2-2c+X.s 

k Stiffness of an elastic restraint sp 

k. Individual member stiffness matrix i 

k Member stiffness matrix of entire structure 
nN.. 

K Structure stiffness matrix 
nM- 

L Length of member 

M Moment 

.w.- "nn, 

rm.. 

k 

3s 

A 

k 

_ 



P Axial force 

P Critical axial force cr 

q Internal load matrix 

Q External load matrix 

s Sine 

Shear 

x, y Individual member coordinates 

11 Translation of end of member 

(i) 

2 PL2 
k EI 

Rotation of end of member 

28 
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LIST OF VARIABLES USED IN PROGRAMS 

Main Program 

A Displacement transformation matrix 

ACC Accuracy to which determinant of BGK must approach 
zero. Value input is multiplied by 0.01 per cent of 
the determinant of BGK for . = 0 to get the actual 
accuracy. 

BGK Structure stiffness matrix 

CRDEND Routine to test for last data card 

DETERM Subprogram to' evaluate the determinant of BGK 

DLAMDA Increment 

E Young's modulus in ksi 

FI1,FI2 Moment of inertia -- corresponds to I1,I2 in in 

FL1, FL2 Length -- corresponds to L1, L2 in feet 

M Size of SMK matrix 

MSTFM Subroutine to form SMK 

N Degrees of freedom 

4 

NTEST, Temporary values to insure program convergence. 
NCOUNT If more than 20 increments of A are required, the 

program will switch to the next set of data, 

PR Value of the determinant of BGK 

SMK Member stiffness matrix of the entire structure 

SPRK Spring constant or stiffness of restraint in kips/ in 

TEMP Temporary storage 

TPR, PPR, TVL, PPL Temporary values to speed program convergence 

VLAMDA 

cf } 

t 
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Subroutine MSTFM* 

DIV = 2 - 2cos - k sink 

FACTOR = 1. 0 if considering other than member number two 
L1I2 

if considering member number two L2I1 

FK 1, FK2, FK3, K4 = k1, k2, k3, k4 respectively 

L Counting device to determine the member number 

Function DE TERM* 

N Size of BGK matrix 

X Dummy variable for BGK 

Variables listed only if not listed in main program or if 
defined differently from main program. 

= 



PROGRAM LISTING 

C MAIN PROGRAM FOR FRAME STABILITY ANALYSIS 
DIMENSION A(10, 10), SMK(10, 10),BGK(10, 10) , TEMP(10, 10) 

10 FORMAT (2I3,E10.2, SF8. 3) 

11 FORMAT (8F10.5) 
12 FORMAT (//6H L1 , 7X, 2HL2, 7X, 2HI1, 7X, 4HI2 ,ISHSP RING CONSTANT//, 

15F 9 . 3, / / 17HV LAMDA DETERM(K)//) 
13 FORMAT(F8.4, F10.2) 
14 FORMAT (22H THE CRITICAL LOAD IS , F10.3, 5H KIPS) 
15 FORMAT (E14. 5, F8. 3) 

READ (1,10)M,N,E,FL1,FL2,FI1,FI2,ACC 
DO 1 I=1,M 

1 READ(1, 11)(A(I,J),J=1,N) 
2 READ (1, 15)SPRK, DLAMDA 

WRITE(3, 12)FL1,FL2, FI1 , FI2, SPRK 

TPR = O. 0 

PPL = -1.0 
TVL= -1.0 
NTEST=O 
VLAMDA = 0.0 
NCOUNT=O 

3 IF(NCOUNT. GT.20)GO TO 2 

NCOUNT=NCOUNT+1 
CALL MSTFM(SMK, M, SPRK, E, FL1, FL2, FI1, FI2, VLAMDA) 

DO 4I=1,N 
DO 4 J=1 , M 

TEMP(I, J)=0. 0 

DO 4 L=1, M 

4 TEMP (I, J)=TEMP(I, J)+A(L, I)*SMK(L, J) 

DO 5 I=1 ,N 

DO 5 J=1 ,N 
BGK(I, J)=0. 0 

DO5 L=1,M 
S BGK(I, J)=BGK(I, J)+TEMP(I, L)*A(L, J) 

PR=DETERM(N, BGK) 

WRITE(3, 13)VLAMDA, PR 
IF(V LAMDA. EQ . 0. )ACC=O. 0001*PR*ACC 
IF(ABS (PR). LE. ACC)GO TO 9 

6 IF(PR_ LT. 0 .)GO TO 8 

7 IF( TPR. NE. O. )GO TO 18 

IF(VLAMDA. EQ. O. ) GO TO 18 

IF(NTEST, EQ. 2)GO TO 20 
IF(PR. GT. PPR)GO TO 17 

18 PPR=PR 

IF(ABS(VLAMDA -PPL). LE. O. 0000S)GO TO9 
PPL=VLAMDA 

VLAMDA=VLAMDA+DLAMDA 

IF(TPR.EQ.O. )GO TO 3 

GOTO16 
17 IF(NTEST. EQ. 1)GO TO 19 

DLAMDA=0, 25*DLAMDA 

VLA MDA=VLAMDA -3. *DLAMDA 

31 
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NTEST=1 
GO TO 3 

19 V LAMDA=V LAMDA-5 . *D IAMDA 
NTEST=2 
GO TO 3 

20 NTEST=O 
GO TO 18 

8 TPR=PR 

IF(ABS(VLAMDA-TVL). LE. 0. 00005)GO TO 9 

TV L=V LAMDA 
16 VLAMDA=PPL+(PPR*(TVL-PPL))/(ABS (TPR)+PPR) 

GO TO 3 

9 PCR=VLAMDA*VLAMDA*E*FI1/(FL1*FL1*144. ) 
WRITE(3, 14)PCR 
CALLCRDEND(KK) 

IF(KK. EQ. 1)GO TO 2 

STOP 

END 
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SUBROUTINE MSTFM(SMK, M, SPRK, E, FL1 , FL2, FIl , FI2, V LAMDA) 
DIMENSION SMK(10, 10) 

DO 1 I=1, M 

DO 1 J=1,M 
1 SMK(I, J)=0. 0 

7 FK1=4. 
FK2 = 2. 
FK3 = -6. 
FK4=12. 
L=3 

FACTOR=(FL1*FI2)/(FL2*FI1) 
GOT05 

3 IF(V LAMDA. EQ . O. )GO TO 9 

8 DIV=2. 0-2. *COS (VLAMDA) -V LAMDA*SIN (VLAMDA) 
FK1=(VLAMDA*(SIN (VLAMDA)-VLAMDA*COS (VLAMDA)))/DIV 
FK2=(VLAMDA*(VLAMDA-SIN (VLAMDA)))/DIV 
FK3=(VLAMDA*VLAMDA*(COS (VLAMDA) -1. 0)) /DIV 
FK4=(VIAMDA*VLAMDA*VI,AMDA*SIN (VLAMDA))/DIV 

9 L=-6 
INCL=6 

4 FACTOR = 1.0 
2 L=L+INC 

5 SMK(L+1, L+1 FK1 *FAC TOR 
SMK(L+1, L+2)4K2*FAC TOR 
SMK(L+1 , L+30K3*FACTOR 
SMK(L+2, L+1)4'K2*FACTOR 
SMK(L+2, L+2)=FK1 *FAC TOR 
SMK(L+2, L+ 3)=FK3*FAC TOR 
SMK(L+3, L+1)=-FK3*FACTOR 
SMK(L+3, L+2)=FK3*FAC TOR 
SMK(L+3 , L+3)=FK4*FAC TO R 
IF(L. EQ . 3)GO TO 3 

IF(L. LT. 6)GO TO 2 

6 SMK(M, M)+(FL1*FL1*FL1*SPRK*1728. )/(E*FI1) 
RETURN 
END 
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FUNCTION DETERM(N, X) 

DIMENSION X(10, 10) 

M=N-1 
PR=1. 
DO15I=1,N 
XV=X(I, I) 
IF(I. EQ . N)GOTO20 
IF(XV. EQ . 0. )GOTO11 

2 PR=PR*XV 
D0 7J=I , N 

7 X(I, J)/XV J)=X(I, 
11 DO9L=I,M 

XY=X(L+1, I) 
IF(XY. EQ.O. )GOTO9 

10 DOBK=I, N 

8 X(L+1, K)=X(L+1 , K) -XY*X(I, K) 

9 CONTINUE 
15 CONTINUE 
20 PR=PR*XV 

DETERM = PR 

RETURN 
END 


