Pee-Keong Or for the degree of Master of Science in Electrical and Computer Engineering presented on December 10, 1987.

Title: Modeling of Subthreshold Current in GaAs MESFET and the Design of Voltage Reference Circuit.

Abstract approved:

Red́acted for Privacy

David J. Allstot

The characteristic of the subthreshold current in a GaAs MESFET exhibits a negative exponential function with Vgs. After studying the behavior of this current in this region over a range of temperature and drain bias voltages, a subthreshold current model was developed. The model was implemented in a circuit simulation program called VREFSIM. An arbitrary reference voltage is obtained by a simple selection of different component values. In this project, 2.56 volt and 1.28 volt references were designed and simulated. The simulated temperature coefficients of these two voltage references over a temperature range of -55 to 125 degrees Celsius were 7 and 26 parts-per-million (PPM)/Kelvin, respectively.

Modeling of Subthreshold Current in GaAs MESFET and the Design of Voltage Reference Circuit

by

> Pee-Keong Or

A THESIS submitted to Oregon State University

in partial fulfillment of the requirment for the
degree of
Master of Science

Completed December 10, 1987
Commencement June 1988

APPROVED:

Redacted for Privacy

 in charge of major

Redacted for Privacy

Head of deparEmedt of Electricat and Computer Engineering

Redacted for Privacy

Dean of Gradyafe school

ACKNOWLEDGMENTS

I would like to express my appreciation and special thanks to Philip Canfield. Phil has generously provided the work station, controller and plotter programs, and his expertise in buried-channel GaAs MESFETs. I would like to thank Dr. L. Forbes for providing the laboratory facility, and Triquint Semiconductor for fabricating and supplying test devices. Special thanks to Howard Yang for assisting me in the circuit design. I would like to especially thank Dr. Allstot for his dedication, guidance and patience during the course of this work. This work was supported in part by the National Science Foundation under research grant number MIP8709158.

TABLE OF CONTENTS

1. INTRODUCTION 1
2. SUBTHRESHOLD CURRENT MODELING 2
2.1 Subthreshold Current Models 2
2.1.1 The McKinley Drain Current Model 3
2.1.2 The Chang Subthreshold Current Model 4
2.2 Device for Model Implementation 5
2.2.1 Buried-Channel GaAs MESFET 6
2.2.2 Subthreshold Leakage Current Mechanism 6
2.2.3 Development of Subthreshold Model for Buried-Channel GaAs MESFET 8
2.3 Experimental Procedure 10
2.3.1 Work Station Setup 10
2.3.2 Initial Determination of Large Signals 11
2.4 Subthreshold Current Model 11
2.4.1 Data Interpretation 12
2.4.2 Parameters Extraction 12
3. VOLTAGE REFERENCE 14
3.1 Generation of Voltage Reference 14
3.2 Negative Temperature Coefficient Component 15
3.3 Positive Temperature Coefficient Component 16
4. VOLTAGE REFERENCE CIRCUIT DESIGN 18
4.1 Circuit Implementation 18
4.2 Square-Law Device in Saturation 19
4.2.1 Vp Variation with Temperature 20
4.2.2 Beta Variation with Temperature 21
4.3 VREFSIM Circuit Simulation Program 21
4.3.1 Programming Technique 22
4.3.2 Generating Designs Curves 23
4.3.2.1 Square-Law Device 23
4.3.2.2 Subthreshold Device 23
4.3.3 Design Procedure 24
4.3.4 Simulate Output 25
5. CONCLUSION 26
6. BIBLIOGRAPHY 52
7. APPENDICES 54

LIST OF FIGURES

Figures Page

1. MESFET in Subthreshold Current Region 28
2. Buried-Channel GaAs MESFET 29
3. Impurity Doping Profile 30
4. Above Threshold Drain Current Conduction 31
5. Below Threshold Drain Current Conduction 32
6. Changes in Channel Thickness Due to Vdis change 33
7. Io as defined on Data Plot 34
8. Io as expressed by Eqn. (10) 35
9. Schematic of Work Station Setup 36
10. Theoretical Data and Experimental Data Plots 37
11. MESFET Voltage Reference Schematic 41
12. Bipolar Bandgap Voltage Reference Schematic 42
13. Circuit Implementation 43
14. VREFSIM Technique 44
15. Square-Law device design curve 45
16. Subthreshold Device Design Curve 46
17. Square-Law Device Negative Temperature Drift Component 47
18. Subthreshold Device Positve Temperature Drift Component 48
19. A 2.56 Volt Simulated Output 49
20. A 1.28 Volt Simulated Output 50
21. Bipolar Versus MESFET Technology 51

Modeling of Subthreshold Current in GaAs MESFET and the Design of Voltage Reference Circuit

1. INTRODUCTION

As gallium arsenide (GaAs) integrated circuit (IC) technology matures, high-speed logic and memory applications of GaAs circuits are receiving more attention [1,2]. The inherent high electron mobility makes GaAs Metal Semiconductor Field Effect Transistors (MESFETs) an attractive technology over silicon based technologies. However, leakage currents in GaAs MESFETs due to backgating [3,4] and subthreshold conduction have impeded large scale integration of GaAs circuits.

In section 2 of this report, subthreshold current for a quarter micron gate length depletion-mode buried-channel GaAs MESFET is characterized. Two of the subthreshold models that were introduced in recent puolications are discussed. Section 3 explores different possibilities of generating a temperature independent voltage reference. Finally, section 4 describes the circuit design implementation, simulation program VREFSIM, and gives design equations for generating other reference voltages using the same topology.

2. SUBTHRESHOLD CURRENT MODELING

2.1 Subthreshold Current Models

There are several approaches to model drain current behavior in MESFETs. These approaches vary from the physical models which involve a two-dimensional simulation $[5,6]$ to a heuristic model [7]. Though it is insightful to do a comprehensive physical model, such a model obscures the necessary I-V relationship for circuit design and simulation. Therefore, the approach taken herein to model the subthreshold current is a compromise between understanding the first-order device physics, that is, relating device parameters to different drain voltage biases and temperature variations, and at the same time having an I-V relationship that is easily applied to circuit design and simulation.

Even though there are several sophisticated abovethreshold MESFET models for circuit simulation [8,9], little work has been done in subthreshold modeling. The MESFET model that is presently implemented in SPICE2 is the Curtice MESFET model [10]. The Curtice model, as represented in Equation (1), is fairly accurate for $\mathrm{V}_{\mathcal{E}}$ values above the pinch-off voltage:

$$
\begin{equation*}
I d s=\beta\left(V_{g s}-V t\right)^{2}(1+\alpha V d s) T a n h(\sigma V d s), \tag{1}
\end{equation*}
$$

where,
β is the transconductance,
V is the threshold voltage,
α is an empirical parameter that accounts for
σ the output conductance, and
σ is the channel conductance modeled at low Vds.

Unfortunately, this model only represents the current in the square-law region, that is, above threshold voltage. When the gate to source voltage, $V g s, i s$ equal to the threshold voltage, Vt, the model erroneously predicts zero current flow. The understanding of the drain current in the subthreshold region is critical to circuit design. One limitation to large-scale circuit integration in GaAs technology is the subthreshold leakage current. However, in this project the subthreshold current, which exhibits a linear exponential function is used to advantage in the design of a temperature insensitive voltage reference circuit.

Several subthreshold models have been introduced in recent publications. The McKinley model [11] is similar to the Curtice model with an added subthreshold term. The Chang model [12] specifically models the subthreshold conduction region. In the following, we discuss the McKinley and Chang models.
2.1.1 McKinley Drain Current Model [11]

The DC model Equation (2) for the drain to source
current is implemented by McKinley as :
$\operatorname{Ids}=\beta(V g s-V t o)^{2}(1+\alpha V d s) \operatorname{Tanh}(\sigma V d s)+V d s / R s h$,
and
Rsh $=$ Rsho/2 $[\exp ($ Vto $-V g s / S T F * k T / q)+1]$,
where,

$$
\begin{array}{ll}
\text { Rsho } & \text { is the parasitic drain to source shunt } \\
\text { resistance at Vgs = Vto, and } \\
\text { STF } & \text { is an empiricai parameter. }
\end{array}
$$

Equation (2) is similar to Curtice model except that McKinley uses Rsh in Equation (2) to empirically model the subthreshold current. The subthreshold current is given as :

$$
\begin{equation*}
\text { Isub }=2 \mathrm{Vds} / \text { Rsho } *[\operatorname{Exp}(V t o-\operatorname{Vgs} / S T F * k T / q)+1] \tag{4}
\end{equation*}
$$

This equation was not implemented in this project because it lacks a description of the subthreshold current for Vds at different temperatures. As was observed from the experimental data, drain voltage bias at different temperatures plays a significant role in the subthreshold current. Furthermore, the coefficient of the exponential term, Io $=2 \mathrm{Vds} /$ Rsho, is not a constant. As shown in section 2.2, a device is defined to enter the subthreshold region when Isub $=$ Io, which is a constant.

2.1.2 Chang Subthreshold Current Model [12]

Chang specifically looks at the subthreshold reyion of MESFET drain current. He observed a linear exponential drain current in the subthreshold region and a monotonic increase
of this current at a more negative Vgs due to leakage current through the gate. Figure 1 represents a typical subthreshold current characteristic. The semi-empirical expression is:

$$
\begin{equation*}
\text { Isub }=\operatorname{WJexp}[(q / \mathrm{kTNs})(1-\Gamma \mathrm{Vds})(\mathrm{Vgs}-\mathrm{Vto}+\Phi V d s)], \tag{5}
\end{equation*}
$$

for Vgs < Vto,
where,
J current for low drain voltage at Vgs = Vto in ampere/unit width,
Ns Schottky ideality factor,
$\Gamma \quad$ related mainly to the lowering of the Schottky
$\Phi \quad$ revealed mainly in the change of the subthreshold current slope, and
W device width in microns.

This closed form of $I-V$ relationship is relatively simple to implement in a voltage reference circuit design and simulation. The Chang model is therefore more appropriate to develop for this project than the McKinley model. The Chang model is implemented for a buried-channel depletion-mode GaAs MESFET in the next section.

2.2 Device for Model Implementation

The model developed in this project uses several definitions that differ from those of Chang. These modified definitions are necessary in order to relate first-order physics to the model and to set a convention for terms used in the rest of this thesis.

2.2.1 Buried-Channel GaAs MESFET

The device that is characterized and used in the circuit design has a 0.25 micron gate length and 50 micron gate width. It is a depletion-mode buried-channel GaAs MESFET. This device is well described in [13]. Figure 2 shows a side profile and energy band diagram and Figure 3 shows a impurity doping profile of the device.

The device is fabricated on a semi-insulating GaAs substrate. The active channel is silicon doped to a concentration of about 8 E 17 dopant $/ \mathrm{cm}^{3}$. This channel is "buried" between two p-type layers doped with beryllium. The top p-layer is shallow and highly doped, while the bottom p^{-} layer is deep and lightly doped. The thickness of the active channel is defined as the distance from the gate depletion region to the channel-substrate depletion layer at zero gate bias. From Figure 3, the depth is about 6.6E-2 microns.

2.2.2 Subthreshold Leakage Current Mechanism

For above threshold voltage analysis, the channel under the gate region provides a conduit for free carriers to drift from the source to the drain under the influence of an electric field. The number of available free carriers is assumed to be proportional to the constant doping profile, Nc. The free carriers at the fringing edges is assumed to have little contribution to the drain current conduction as
shown in Figure 5. The fringing edge effect is due to the probability of finding carriers a distance away from the edges. The assumption of a constant doping profile is valid only when Vgs > Vt since the total number of free carriers in the constant doping profile dominates over the total number of free carriers in the edges.

However, the carriers at the edges will play a significant role in drain current conduction when Vg s is equal or less than Vt. Under this condition, the doping profile concentration became a exponential term :

Doping Concentration \propto Nc $\exp [q(V g s-V t) / k T]$.

The edge effect is modeled as :
where,

$$
\begin{equation*}
\text { Edge Effect } \propto \exp \left[-t / L_{D}\right] \tag{7}
\end{equation*}
$$

L_{D} is the Debye length, and
t^{D} channel thickness.

Therefore, the drain current density, Jn, and the total number of free carriers in the profile shown in Figure 5 is represented as:

$$
\begin{aligned}
& \text { Jn } \propto \text { Number of free carriers, } \\
& \text { Jn } \propto 2 \int \text { Nc } \exp [q(V g s-V t) / k T] \exp \left[-t / L_{D}\right] d t \\
& \text { for } V g s<=V t .
\end{aligned}
$$

This first order analysis shows the exponential characteristic of the subthreshold current.

2.2.3 Development of Subthreshold Current Model in BuriedChannel GaAs MESFET

In this project the subthreshold current is modeled as :

$$
\begin{equation*}
\text { Isub }=\text { Io } \exp [(q / k T N s)(1-\Gamma V d s)(V g s-V t o+\Phi V d i s)] \tag{9}
\end{equation*}
$$ where,

Io current when the device enters subthreshold region,
Ns, Γ parameters that model changes in the slope, and $\Phi \quad$ is related to barrier lowering associated with changes in Vds.

The approach to this model is semi-empirical. For this particular technology a set of empirical values for $N s, \Gamma$ and Φ have been determined from experimental data. Ns and Γ are obtained from a curve fitting program (see Appendix 7.4).

Because of the steep slope of the subthreshold characteristic, it is more appropriate to define a constant current when the device enters subthreshold region rather than a constant voltage. When the drain bias voltage, Vds, and/or the temperature is increased, at constant $V_{g s}$, the active channel thickness is increased from to t'[14] as shown in Figure 6a. Thus, more current flow through the channel. Graphical representation of the experimental data in Figure 6b illustrates the physical behavior of the drain current in Figure 6a. A more negative Vgs is needed to deplete the channel from t^{\prime} back to t. A constant Io
provides a consistent measure of the subthreshold region of operation. Io is derived from Equation (2) :

$$
I d s=\beta(V g s-V t)^{2}(1+\alpha V d s) \operatorname{Tanh}(\sigma V d s) .
$$

When Vgs is equal to the subthreshold voltage, Vts (see Equation (11)), Ids = Io. Since Io is independent of Vds (see Figure 7), Io is expressed as :

$$
\begin{equation*}
\text { Io }=\beta(\text { Vts }-V t)^{2} \tag{10}
\end{equation*}
$$

For the device under study, Io is taken as 0.1 milliampere for all Vds values and at all temperatures. Figure 7 shows Io as defined on the data plots, and Figure 8 shows that Io as expressed in Equation (10) is constant for the temperature range of interest.

At the threshold voltage, the channel is not fully depleted as predicted in the abrupt transition case. The voltage at which the device enters the subthreshold region, Vts, is defined as the gate-source voltage for which the gate-channel depletion region and the channel-substrate depletion region are τ Debye lengths apart [15] :

$$
\begin{equation*}
V t s=V t+\left(2 V p r L_{D} / t\right)\left(1-\gamma L_{D} / 2 t\right) \tag{11}
\end{equation*}
$$

From Sze [16], the definitions of transconductance, β, pinch-off current, $I p$, and threshold voltage with $V d s=0$, Vto, are used:

$$
\begin{align*}
& \mathrm{Ip}=(\mathrm{W} / \mathrm{L}) \mathrm{Uq}^{2} \mathrm{Nc}^{2} \mathrm{t}^{3} / 6 \epsilon_{\mathrm{s}}, \tag{12}\\
& \mathrm{Vto}=\mathrm{Vbi}-\mathrm{Vp} \tag{13}\\
& \mathrm{Vbi}=\mathrm{kT} / \mathrm{q} \operatorname{LN}[\mathrm{Nc} / \mathrm{ni}], \tag{14}
\end{align*}
$$

$$
V_{p}=\frac{\text { qNct }}{---} \begin{array}{cc}
\mathrm{T} \tag{15}\\
2 \epsilon_{s} & --- \\
292
\end{array}
$$

where,
Nc is the imgurity doping concentration in dopant/cm ${ }^{3}$,
U bulk carriér mobility in volt/ cm^{2}-second. From equations (12) and (15), β is simplified to :

$$
\beta=\begin{gather*}
2 \mathrm{~W} \mathrm{Uc} \epsilon \mathrm{~s} \tag{16}\\
\frac{-}{2}-12^{2} \\
3 \mathrm{~L}
\end{gather*} \frac{-T^{2}}{}
$$

It is observed that β is similar to the k in a MOSFET, except it has an explicit temperature dependent term.
2.3 Experimental Procedure

A work station based on the Tektronix 4054 A controller was set up to take measurements. A controller program was written in BASIC to interface various measuring instruments with the controller. A plotting program was also written to plot the experimental data. The large signals Vds, Vgs, Vp and Ids, for the device under investigation are first examined using a Tektronix 576 curve tracer. The data is stored on a magnetic tape for later analysis. An example of the measured data for the buried-channel MESFET is presented in Appendix 7.3.

2.3.1 Work Station SetUp

The equipment used in this project is listed in

Appendix 7.2. Figure 9 shows a schematic of the work station setup. Communication between instruments was based on HPIB protocol. A closed system helium refrigeration unit and cold head allowed low temperature measurements to be taken. Also listed in Appendices 7.4 and 7.5 are the program listings for the controller and plotter.

2.3.2 Initial Determination of Large Signal I-V Behavior

Before the measurement sequence began, it was imperative that the large signal characteristics of the device be examined. This is to assure that the data gathered is valid within the range of useful Vds, Vgs and Ids values.

Two parasitic effects in some MESFETs are kinking [17] and looping [18]. To avoid kinking effect, Vdis is ramped up to a maximum of 3.0 volts. And to avoid looping, measurements were taken at $D C$. The pinch-off voltage is also determined experimentally using the curve tracer.

2.4 Subthreshold Current Model

The subthreshold current model developed in the previous three sections is implemented in this section. The implementation starts with the interpretation of data. The two empirical parameters $N s$ and Γ are extracted through a least-square method of curve-fitting.

2.4.1 Data Interpretation

The data acquired for the buried-channel MESFET is plotted as drain current, Ids, versus gate-source voltage, Vgs. To observe the influence of the drain bias voltage, Vds, a set of plots are made with constant temperature but varying Vds as shown in Appendix 7.3.1. Conversely, the effect of temperature is studied by keeping the Vds constant and varying the temperature as in Appendix 7.3.2.

The pinch-off voltage for this device at room temperature is approximately -0.75 volt. In the subthreshold region, the drain current varies exponentially in the region of $-0.75 \mathrm{~V}<\mathrm{Vgs}<-1.0 \mathrm{~V}$. Also observed was a gradual monotonic increase of dirain current for $\mathrm{Vgs}<-1.0 \mathrm{~V}$. This increase was principally due to the gate conduction through the reverse-biased gate-to-drain diode.

Since Io is constant, the voltage in which the device enters subthreshold region will vary with temperature and Vds as modeled by the Φ parameter. From both representations of data in Appendix 7.3, the slope of the exponential curve decreases with increasing temperature and Vds. The changes in the slope are modeled by the N s and Γ parameters.

2.4.2 Parameters Extraction

Two of the three parameters ($\mathrm{N} s$ and Γ) that modeled the
changes in temperature and Vds are extracted from a curve fitting program (Appendix 7.5). From the data plots, the changes in Vgs(Isub $=$ Io),Φ, are consistent, and can be measured directly from the plot as shown in Figure 7.

The parameter values extracted by the methods described above for the device characterized are :

$$
\begin{aligned}
\mathrm{Ns} & =1.671 \\
\Gamma & =0.046 \text { Volt }^{-1}, \text { and } \\
\Phi & =0.07
\end{aligned}
$$

Implementing these parameters, and letting Io equal 0.1 milliampere in Equation (10), the current model agrees with the subthreshold current data with the experimental error as shown in Figure 10.

3. VOLTAGE REFERENCE

3.1 Generation of Vref

Voltage references find useful applications both in analog and digital circuits. In analog ICs, voltage references are found in operational amplifiers and analog-to-digital converters. In digital ICs, a temperature insensitive voltage reference is required for biasing circuits such as ECL gates. In all applications, the sensitivity of the voltage reference to temperature is a critical issue.

On a GaAs IC, the two devices that are available to generate $a \operatorname{DC}$ voltage reference are a thin-film resistor and MESFET a transistor. These two devices have one or more temperature dependent term in their current expressions. Therefore, the strategy was to find a positive and a negative temperature drift component. To obtain a minimum temperature dependence of the voltage reference, the scaled sum of these two components must give an overall change in current over temperature to be approximately equal to zero. Figure 11 shows a schematic of a voltage reference design by the technique of drain current summation. The next two sections examine the available components and how to make use of their temperature variation properties.

3.2 Negative Temperature Coefficient Component

The first-order temperature dependence of resistance of a resistor is represented by :

$$
\begin{equation*}
R(T)=R o+\alpha_{t}\left(T-T_{273}\right) \tag{17}
\end{equation*}
$$

where,
Ro resistance at 273 Kelvin,
α_{t} resistance coefficient of resistor in ohm/Kelvin, T operational temperature, and
T_{273} is 273 Kelvin.

The current through the resistor and the derivative of the current with respect to the temperature are given by :

$$
\begin{aligned}
& I_{R}=V / R(T) \\
& d I_{R} / d T=-\left(\alpha_{t} V\right) /\left[R o+\alpha_{t}\left(T-T_{273}\right)\right]^{2}
\end{aligned}
$$

where, V is assumed to be a constant with temperature.

Assuming α_{t} is positive, the $\mathrm{dI}_{\mathrm{R}} / \mathrm{dT}$ is a negative quantity. Thus, resistors provide a negative temperature drift component of current.

The MESFET operating in the square-law saturation region also exhibits a negative temperature drift coefficient of current as the shown below :

$$
\begin{equation*}
I d s=\beta(V g s-V t)^{2}(1+\alpha V d s) \operatorname{Tanh}(\sigma V d s) \tag{20}
\end{equation*}
$$

From Appendix 7.1.1, Equation (18) is recast as :

$$
\begin{equation*}
I d s=\left(A / T^{3}\right)(C-B T)^{2} D \tag{20a}
\end{equation*}
$$

where,
A, B, C, D are positive temperature independent variables, and $(C-B T)>0$.

Therefore, the derivative of Equation (20a) with respect to temperature is :

$$
\begin{align*}
\mathrm{dIds} / \mathrm{dT} & =-\left(2 \mathrm{AD} / \mathrm{T}^{3}\right)(\mathrm{C}-\mathrm{BT})(\mathrm{B}+2 / \mathrm{T} *(\mathrm{C}-\mathrm{BT})) \tag{21}\\
& =\text { Negative Quantity. }
\end{align*}
$$

Thus, the resistor and the MESFET operating in the square-law saturation region are both used in the design to provide current component with negative temperature drift.

Next, a positive temperature drift component of current with predicable behavior must be implemented in the circuit. When these two temperature components are appropriately combined, the resulting $d I / d T$ is ideally zero.

3.3 Positive Temperature Coefficient Component

The other region of MESFET operation, the subtnreshold region is now examined closely.

Though the subthreshold current is usually undesirable in a circuit design, its predicable behavior is advantageously made use of in this design. Interestingly, when the device operates in the subthreshold region, its subthreshold current increases with temperature, as shown in the following equations and derivative:

$$
\begin{equation*}
\text { Idsub }=\text { Io } \exp [(q / k T N s)(1-\Gamma V d s)(V g s-V t o+\Phi V d s)] \tag{22}
\end{equation*}
$$

From Appendix 7.1.2, Equation (22) is recast as :

$$
\begin{equation*}
\text { Isub }=\text { Io } \operatorname{Exp}[-A B] \operatorname{Exp}[A C / T], \tag{22a}
\end{equation*}
$$

where,
A and B are positive temperature independent variables.
C is negative temperature independent variable.

Therefore, the derivative of Equation (23a) with respect to temperature is :

$$
\begin{aligned}
\text { dIsub/dT } & =- \text { Io EXP[-AB] }\left(A C / T^{2}\right) \exp [A C / T] \\
& =\text { Positive Quantity. }
\end{aligned}
$$

This current provides the positive temperature drift component for the voltage reference circuit design. This positive quantity is predicable by the current model. These quantities are further emphasized by the design curves generated from VREFSIM program in the next section.

4. VOLTAGE REFERENCE CIRCUIT DESIGN

4.1 Circuit Implementation

The voltage reference implementation technique with GaAs MESFETs deviates from that of the bipolar voltage reference [20]. As the name implies, the bipolar bandgap reference circuit is only referenced at one voltage, that is at the silicon bandgap voltage of 1.12 volt at room temperature. The technique deployed is a voltage summation [19] as shown in Figure 12.

Conversely, using GaAs MESFETs and current summation, any reference voltage is realizable so long as the reference voltage is within the power supply limits and all devices operate in saturation. The technique of current summation is illustrated in Figure 13.

From section 3, the schematic in Figure 11 has been realized with two MESFETs, one operating in the square-law saturation region and the other operating in the subthreshold saturation region. Figure 13 shows the transistor-level schematic of the circuit. The idea behind drain current summation is that the negative temperature coefficient of the drain current of device M2 will cancel the positive temperature coefficient of the drain current of
the subthreshold device M1. Ideally, the current through the resistor Ro is constant with temperature. Thus, a voltage is generated by the constant current flowing through the resistor Ro. This is almost the case in the circuit simulation except that the thin-film resistor has a small positive temperature coefficient. For the worst case, the temperature coefficient of the resistance is $100 \mathrm{PPM} / \mathrm{Kelvin}$. The resistor R 1 biases $M 1$ in the subthreshold region, and R 3 holds the node voltage V 1 to a variation of only q0.1 V . Without R1, V1 will vary in a range of q0. 3 V . This is undesirable because the device M1 may exit the the subthreshold region. The resistor $R 2$ biases $M 2$ in the square-law saturation region.

4.2 Square-Law Device in Saturation

In Section 2, the first-order subthreshold device physics were discussed. In this section, the first-order physics of the device operating in square-law saturation region are analyzed.

The doping concentration in the channel, Nc, is assumed to have a uniform profile. The electron mobility is inversely proportional to temperature and thus, mobility at different temperatures is calculated as :

$$
\begin{align*}
& \mathrm{U}_{3} \underline{0} 0 \tag{24}\\
& \mathrm{~T}_{300}
\end{align*}=\quad-\frac{\mathrm{U}_{\mathrm{T}}}{\mathrm{~T}},
$$

where,

$\mathrm{U}_{3} 00$	bulk mobility at room temperature,
T 300	room temperature $=300$ Kelvin,
$\mathrm{U}_{\mathrm{T}} 00$	mobility at temperature T, and
T	temperature of interest.

The device operating in square-1aw saturation region has a gate length of 0.25 micron and a gate width of 5 micron. The $I-V$ equation for this region is given from the Curtice model as:
$I d s=\beta(V g s-V t)^{2}(1+\alpha V d s) \operatorname{Tanh}(\sigma V d s)$, where,

$$
\begin{aligned}
& \alpha=0.05 \text { volt }-1 \\
& \sigma=2.2 \text { volt } \\
& \sigma, 0 \text { and } \\
& \operatorname{Vgs}(T=300)=0.0 \text { volt. }
\end{aligned}
$$

The variables that change with temperature are β and Vt. These variations are analyzed in the next two sections.

4.2.1 Vp Variations with Temperature

The pinch-off voltage here assumes a channel pinch-off rather than saturated velocity pinch-off. The pinch-off voltage term used in this project has a slightly different definition Erom that of Sze. From Equation (15) :

$$
V_{P}=\frac{q N c t^{2}}{----} \frac{--}{2 \epsilon} .
$$

With the assumption that the doping profile is a constant, Vp varies linearly with temperature. The derivative of $\left(V_{p}\right)^{2}$ with temperature is a positive term :
4.2.2 Beta Variations with Temperature

From Equations (16), the transconductance, , is represented as :

$$
\beta=\begin{array}{cccc}
2 \mathrm{~W} \text { UcEs } & 292^{2} \\
- & --- & --\overline{1}^{-}
\end{array}
$$

The implicit temperature dependent term is mobility. The bulk mobility varies as T^{-1}. The derivative of β with respect to temperature is a negative term :

Therefore,

$$
\begin{equation*}
\frac{\operatorname{dIds}}{---} \frac{d \beta}{d T} * \frac{d V p}{d T} * C \tag{27}
\end{equation*}
$$

where,

$$
C=(1+\alpha V d s) \operatorname{Tanh}(\zeta V d s) .
$$

4.3 VREFSIM Circuit Simulation Program

The MESFET modiel that is available in SPICE2 does not model the subthreshold behavior. A simulation program that implements the $D C$ behavior of the MESFET, including the subthreshold region was implemented in Pascal. In the following sections, the basic programming technique, user interface, and generation of design curves are discussed.

4.3.1 Programming Technique

The VREFSIM progran consists of four subroutines. Three of these subroutines generate design curves and one simulates the circuit. The purpose of these different subroutines is explained fully in section 4.3.3. The required algorithms are simplified since only the DC analysis of the circuit is of interest for $D C$ voltage references. The programming techniques for these programs are similar, with the basic idea being to establish a continuity of current at a node.

A node is the point where two or more devices are connected together as illustrated in Figure 14. An initial guess of the node voltage, $V n$, is made. For the example shown in the Figure 14, the resistor current, Ir, is calculated using Ohm's law and the current for the MESFET, Im, is found using Equation (2). The relative ratio of $\operatorname{Im} / \mathrm{Ir}$ indicates the continuity of current through the node. The
ratio is recast as (Im/Ir - 1). For the implemented program, the error tolerance was set at 0.5 percent. When the ratio is less than or equal to the tolerance, the continuity of current at that node is established. Otherwise the node voitage is either increased or decreased so that the ratio will approach the tolerance level.

4.3.2 Generating Design Curves

There are three subroutines in VREFSIM that generate design curves for a particular subthreshold device and a square-law device. These subroutines generate the design curves that give the designer a choice of different squarelaw device gate width for a given gate length, and the subthreshold biasing current for a given Vgs. With this information the designer is able to optimize the design. The generation and explanation of these design curves are given in the following sub-sections.

4.3.2.1 Square-Law Device

The square-law device is simulated by the subroutine called NORMAL. For a given gate width, the currenttemperature slope is calculated and plotted in Figure 15.

4.3.2.2 Subthreshold Device

There are two subroutines that simulate the device in subthreshold saturation region. One subroutine, SUB_DEV,
generates a plot of $d I / d T$ versus the bias current, Ibias, for a given Vgs, as shown in Figure 16. The purpose of this design curve is to give the designer a view of different dI/dT values that are obtainable with different Vg s and bias current values.

The second subroutine, SUB R1R3 calculates the values of $R 1$ and $R 3$ for the given bias current. Since nickel-cnrome thin-film resistors are used in this GaAs process, the values of resistance have a resolution of 1 ohm. Therefore, R1 and R3 are accurately adjusted to give the desired bias current and $d I / d T$ to compensate the $d I / d T$ of the square-law device.

4.3.3 Design Procedure

Since the generated voltage is based on the principal of current summation, the $d I / d T$'s of the square-law device and the subthreshold device must add up to approximately zero. By using the design curves, one can determine the range of $d I / d T$'s that are suitable for these devices to compensate each other.

The program NORMAL provides the appropriate width W for the square-law device and SUB_R1R3 zives the values of R1 and R3. These data are then input into the full circuit simulation subroutine called CKTSIM. The output gives the voltage reference value over the desired range of
temperatures. The temperature coefficient of the reference is determined as :
4.2.6 Simulated Output

Two voltage reference circuits were designed. Both used the same number of circuit devices. The circuits were simulated over the temperature range of -55 to 125 degrees Celsius. Figure 17 shows the negative temperature drift component of the square-law device, and Figure 18 shows the positive temperature drift component of the subthreshold device. One reference is at 2.56 volts with a temperature variation of 6.5 PPM/Kelvin. The second reference is at 1.28 volt with a temperature variation of $26 \mathrm{PPM} / \mathrm{Kelvin}$. Figures 19 and 20 show the simulated output of these two circuits.

5. CONCLUSION

The advantages of this voltage reference over a bipolar bandgap reference [20] are very significant. A typical temperature sensitivity for a bipolar bandgap circuit is in a range of 30 - $60 \mathrm{PPM} / K e l v i n$, whereas, for this MESFET circuit, the voltage variation over temperature is about 6.5 PPM/Kelvin for the 2.56 volt reference.

The differences in performance are due to the basic technique of generating the voltage reference. In bipolar technology, the reference voltage is generated by summing Vbe and delta Vbe. The derivative of this sum with temperature determines the performance of the circuit with temperature. In GaAs MESFET technology, the reference voltage is generated by summing the derivative of current components with temperature :

$$
\begin{equation*}
\mathrm{dI} / \mathrm{dT}=\mathrm{dIsub} / \mathrm{dT}+\mathrm{dIds} / \mathrm{dT} \tag{28}
\end{equation*}
$$

The $d I / d T$ is typically in the range of $1 E-6$ ampere/Kelvin, whereas, $d V / d T$ is typically in the range of $1 E-3$ volt/Kelvin. The resolution of the current summation technique is three orders of magnitude better than the voltage summation technique.

One important advantage of this MESFET circuit is that
it requires no amplification. In this project, 2.56 volt and 1.28 volt references are realized using the same circuit without any additional components. In other words, any voltage reference is realizable using this circuit as long as the devices are kept in saturation. This is also an important advantage over other voltage reference techniques. For example, in a bipolar bandgap reference, the 1.12 volt reference is not generally very useful. This voltage must be amplified by an external gain circuit to a more practical voltage. The additional devices in the amplification circuit not only increase the cost, but also degrade the performance. Figure 21 shows a comparison between the two voltage reference schemes.

Finally, it was observed that the subthreshold behavior in a MESFET is similar to a MOSFET. Therefore, it may be possible to transfer the design technique from GaAs MESFETs to silicon MOSFETs.

Figure 1. MESFET in Subthreshold Current Region

Figure 2. Buried-Channel GaAs MESFET

Figure 3. Inpurity Doping Profile

Figure 4. Above Threshold Drain Current Conduction

Figure 6. Changes in Channel Thickness Due to Vds change

Figure 9. Schematic of Work Station Setup

Figure 10a. Theoretical Data and Experemental Data Plots

Figure 10b. Theoretical Data and
Experemental Data Plots

Figure 10 c . Theoretical Data and Experimental Data Plots

Figure lod. Theorasical DaEa and Experinencal Data Plots

Figure 11. MESFET Voltage Reference Schematic

Figure 12. Bipolar Bandgap Voltage Reference Schenatic [After A. L. Grebene, pp 206-209]

CIRCUIT

788

Figure 13. Circuit Implementation

VREFSIM

STMPLR EMAMPIR

Figure 14. VREFSIM Iteration Technique

Square-Law Scaling by Width
PLot or di/dT vs.w ($1=0.25 \mathrm{Lu}$)

Figure 15. Square-Law Device Design Curve
subthreshold device scaling ey bios

Figure 16. Subtineshold Device Design Curve

Figure 17. Square-Law Device Negative Temperature DriEE Component

Figure 18. Sujthreshold Device Positve Temperature DriEE Component

Figure 20.
A 1.28 Volt Simulated Output

A. BIPOLAR TECHNOLOGY


```
DECENPOUE: VOLTAEE SUMATION
PEPRORMANCE: FOR TEMP : -60K TO TESK
                                    VOLATEE VNGUTION = 0.000003S / KEVVN
                                    On 35 PPM/KELMN
```



```
                                    MEED AMPUFICATION CIRCUTTRY.
                                    DEGPADE PEFOPGANCE
                                    VOLTAGE DNVKNON EXTEPOAL RESSTOR 8TR|MG
```


B. MESFET TECHNOLOGY

IWTEOHL VOLTAGE DMENOM - SAVE CHP BPACE

1. F. Lee, " A high-speed LSI 8 X 8 bit parallel multiplier", IEEE Journal of Solid State Circuits, Vol. SC-17, pp. 638-647, 1982.
2. N. Yokoyama, H. Onodera, T. Shiroki, H. Ohnishi and H. Nishi, " A 3-ns GaAs \$K X 1 stsiac RAM", IEEE Transactions on Electron Devices, Vol. ED-32, pp. 17971801, 1985.
3. C. Kocot and C. A. Stolte, "Backgating in GaAs MESFET's", IEEE Transactions on Electron Devives, Vol. ED-29, No. \&, pp. 1059-1064, July, 1982.
4. C. P. Lee and M. F. Chang, " Temperature Dependence of Backgating Effect in GaAs Integrared Circuits", IEEE Electron Device Letters, Vol. ED-6, No. 8, pp. 428-430, Aug. 1985.
5. P. Andrzej, C. Chen, M Shur, S. Baier, " Modeling and Characterization of Ion-Implanted GaAs MESFET's", IEEE Transaction on Electron Devices, Vol. ED-34, No. 4, pp.726-732, April 1987.
6. C. M. Snowden, D. Loret, "Two-Dimensional Hot-Electron Models for Short-Gate Length GaAs MESFET's', IEEE Transaction on Electron Devices, Vol. ED-34, No. 2, pp.212-223, Feb. 1987.
7. P. George, K. Hui, P. Ko and C. Hu,"A GaAs MESFET Model for Circuit Simulation", IEEE 1987 Custom Integrated Circuits Conference, pp. 409-412, 1987.
8. H. Statz, P. Newman, I. W. Smith, R. A. Pucel and H. A. Haus, "GaAs FET Device and Circuit simulation in SPICE", IEEE Transaction on Electron Devices, Vol. ED34, No.2, Pp. 160-169, Feb. 1987.
9. L. E. Larson, "An Improved GaAs MESFET Equivalent Circuit Model for Analog Integrated Circuit Applications", IEEE Journal of Solid State Circuits, Vol. SC-22, NO. 4, May 1980.
10. W.R. Curtice, " A MESFET Model for use in the design of GaAs Integrated Circuits", IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-28, No. 5, Pp. 448-456, May 1980.
11. W. R. McKinley, "GASSIM: A Circuit Simulator for Large Scale GaAs Circuits", IEEE 1986 Custom Integrated Circuits Conference, pp. 628-631, 1986.
12. C. Chang, T. Vrotos, M. T. Frizzell and R. Caroll, " A Substhreshold Current Model for MESFET's', IEEE

Electron Device Letters, Vol. EDL-8, No. 2, pp. 69-72, Feb. 1987.
13. P. C. Canfield, J. Medinger, D. J. Allstot, L.Forbes, A. J. McCamant, B. A. Vetanen, B. Odekrik, E. P. Finchem and K. R. Gleason, "High Speed Quarter Micron Buried-Channel MESFETs with Improved Output Characteristics for Analob Applications", 11th IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, 1987 (in pree).
14. R. R. Troutman, "VLSI Limitations from Drain-Induced Barrier Lowering", IEEE Transactions on Electron Devices, Vol. ED-26, No. 4, pp. 461-468, April 1979.
15. C. D. Hartgring, "An Accurate JFET/MESFET Model for Circuit Analysis", Solid State Electronics, Vol. 25, No. 3, pp. 233-240, 1982.
16. S. M. Sze, Physics of Semiconductor Devices, pp. 314340, John Wiley \& Sons, 1984.
17. M. Rocchi, "Surface and Bulk Parasitic Effects in GaAs ICs", Physica 129B, 1985.
18. M. Rocchi, " Statue of Parasitic Effects in GaAs IC", Physica 129B, 1985.
19. A. L. Grebene, Bipolar and MOS Analog Integrated Circuit Design, PP. 206-209, John Wiley \& Sond, 1984.
20. R. J. Widlar, "New Developments in IC Voltage Regulators", IEEE Journal of Solid State Circuits, Vol. SC-6, pp. 2-7, Feb. 1971.

APPENDICES

7. APPENDICES

7.1 Equation Derivations
7.1.1 Equation (20a)

The Curtice model was used to implement the square-law device in saturation region. From Equation (21),

$$
\begin{equation*}
I d s=\beta(V g s-V t)^{2}(1+\alpha V d s) \operatorname{Tanh}(\sigma V d s) \tag{20.0}
\end{equation*}
$$

From Equation (16),

$$
\begin{equation*}
\beta=\left(\frac{2 \mathrm{WUc} \in \mathrm{~s} 292^{2}}{3 \mathrm{Lt} \mathrm{~T}^{2}}\right. \tag{20.1}
\end{equation*}
$$

The mobility, Uc, as expressed in Equation (24) is inserted into the above equation. Beta is expressed as,

$$
\begin{equation*}
\beta=\left(\frac{2 \mathrm{U}_{300} * \mathrm{~T}_{300} \in \mathrm{~s} 292^{2}}{3 \mathrm{~T}+\mathrm{T}^{2}}=\frac{\mathrm{A}}{\mathrm{~T}^{3}}\right. \tag{20.2}
\end{equation*}
$$

where,

$$
\begin{equation*}
A=\frac{2 U_{300} * T_{300} \in s 292^{2}}{3 t} \tag{20.3}
\end{equation*}
$$

The threshold voltage is :

$$
\begin{equation*}
\mathrm{Vt}=\mathrm{Vto}-\Phi \mathrm{Vds}, \tag{20.4}
\end{equation*}
$$

and from Equation (13),

$$
\begin{equation*}
\text { Vto }=\mathrm{Vbi}-\mathrm{Vp} \tag{20.5}
\end{equation*}
$$

Equation (15) gives Vp as:

$$
\begin{equation*}
V_{p}=\frac{q N c t}{2 \epsilon_{\mathrm{s}}} \frac{\mathrm{~T}}{292} \tag{20.6}
\end{equation*}
$$

Combining Equation (20.4), (20.5), and (20.6) :

$$
\begin{align*}
V t & =V b i-V p-\Phi V d s \\
& =k T / q^{\star} \operatorname{Ln}(\mathrm{Nc} / \mathrm{ni})-\left(\mathrm{qNct}^{2} / 2 \mathrm{~s}\right)(\mathrm{T} / 292)-\Phi V d s \\
& =T\left[\left(\mathrm{k} / \mathrm{q}^{*} \operatorname{Ln}(\mathrm{Nc} / \mathrm{ni})-\left(\mathrm{qNct}^{2} / 2 \mathrm{~s} 292\right)\right]-\Phi V d s\right. \\
& =\mathrm{BT}-\Phi V d s \tag{20.7}
\end{align*}
$$

where,

$$
\begin{equation*}
B=T\left[\left(k / q * \operatorname{Ln}(N c / n i)-\left(q N c t^{2} / 2 \epsilon s 292\right)\right]\right. \tag{20.8}
\end{equation*}
$$

Finally, inserting Equation (20.7) :

$$
\begin{align*}
(V g s-V t)^{2} & =(V g s-B T+\Phi V d s) \\
& =(C-B T) \tag{20.9}
\end{align*}
$$

where,

$$
\begin{align*}
& C=(V g s-\Phi V d s) \tag{20.10}\\
& (1+\alpha V d s) \operatorname{Tanh}(\sigma V d s)=D \tag{20.11}
\end{align*}
$$

Expressing Equation (21) in terms of the temperature independent variables A, B, and C we have,
$I d s=\left(A / T^{3}\right)(C-B T)^{2} D$.

7.1.2 Equation (23a)

For the subthreshold device, the current model is :

$$
\operatorname{Idsub}=I o \exp [(q / k T N s)(1-\Gamma V d s)(V g s-V t o+\Phi V d s)](23.0)
$$

The exponential term is expressed as,

$$
\begin{equation*}
(\mathrm{q} / \mathrm{kTNs})(1-\Gamma \mathrm{Vds})=\mathrm{A} / \mathrm{T} \tag{23.1}
\end{equation*}
$$

and,

$$
\begin{equation*}
(V \mathrm{gs}-\mathrm{Vto}+\Phi V d s)=(B-V t o) \tag{23.2}
\end{equation*}
$$

Where,

$$
\begin{align*}
& A=(q / k N s)(1-\Gamma V d s) \tag{23.3}\\
& B=(V g s+\Phi V d s) \tag{23.4}
\end{align*}
$$

Inserting Equations (14) and (15) into Vto, we have an explicit temperature term:

$$
\begin{equation*}
\text { Vto }=T\left(k / q \operatorname{Ln}[\mathrm{Nc} / \mathrm{ni}]+\mathrm{qNct}^{2} / 584 \epsilon_{\mathrm{s}}\right) . \tag{23.5}
\end{equation*}
$$

Letting the term in Equation (23.5) equal C, Equation (23.0) is expressed in terms of the temperature independent variables A, B, and C as,

$$
\begin{equation*}
\text { Idsub }=\operatorname{Io} \operatorname{Exp}[A / T *(B-C T)] \tag{23.6}
\end{equation*}
$$

Finally, rearranging the exponential terms in Equation (23.6) :

$$
\begin{equation*}
\text { Idsub }=\operatorname{Io} \operatorname{Exp}[-A B] \operatorname{Exp}[A C / T] \tag{23a}
\end{equation*}
$$

7.2 List of Equipment

The work station consists of a Tektronix 4054A computer, Keithley 192 electrometer, two Tektronix PS 5004 programmable precision power supply, a Tektronix FG 5010 Programmable 20MHz Function Generator, a Tektronix DM 5010 Programmable Digital Multimeter, a Tektronix SI 5010 Programmer Scanner, a Air Product Temperature controller, and a Helium closed cycle refrigeration unit. Figure 9 shows the experimental work station set up in the laboratory.

8-11-1087
C550^-D 33401 PKG. \#2 LG-ø. 25u, Z-5®u, $1918 \wedge$ buried channel

8-14-1987
TEMP $=270 \mathrm{~K}$
6558^-D8 33406 PKC. N2
LGm. 25us Zm5@us 1ø1øА

VDS
(VOLTS)
$0.5 —$
$1-$
$2 —$
$2.5 —$

TAPERFILE
(T, F)
$(4,8)$
$(4,8)$
$(4,6)$
$(4,8)$
$(4,6)$
$(4,6)$
BURIED CHANNEL
 BURIED CHANNEL

7.4 Controller and Plotter Program Listings

```
100 REM ********************5-13-1987
FILE G
110 REM
120 REM * Author : Philip C. Cenfield
130 REM * Update : P.K.Or
140 REM * Date : July 15, 1987 (Last Update)
150 REM * Implement : BASIC on Tektronix 4054A
160 REM
170 REM * Purpose : To issue communication protocol to various
180 REM * measuring equipments, sequence the measurement
190 REM * procedure and store data in tape.
200 REM
210 REM
***************************************************************1
220 REM
    **
230 CALL Start
240 END
250 CALL Ndev
260 END
270 CALL Tempset
280 END
290 CALL Bias
300 END
310 CALL Idsvos
320 END
330 CALL Vdsswp
340 END
350 CALL Sbthshd
360 END
370 REM ****************************************************************
380 REM *** ***
390 REM *** PROGRAM: MEASURES Ids vs Vgs
400 REM
****************************************************************
410 REM
430 1
440 REM
450 REM
4 5 0 ~ R E M ~ I N I T I A L I Z E ~ T H E ~ S Y S T E M ~ A N D ~ I D E N T I F Y ~ T H E ~ D E V I C E ~ T O ~ B E ~ M E A S U R E D
470 REM
4 8 0 ~ R E M
490 REM
5 0 0 ~ R E M
510 REM
520 SUB Start
530 PAGE
540 INIT
550 PRINT @26:"init*
560 PRINT @16:"init"
570 PRINT E24:*init*
580 PRINT @20:"IN"
590 PRINT 025:*INit*
600 PRINT e25:"frea 20ES;ampl 0.0;offs 0.0"
610 Fsen=50
E20 ItS=" "
```

```
Ej0
540
E50
560
6 7 0
6 8 0
ESO
700
710
720
730
7 4 0
750
760
7 7 0
7 8 0
7 9 0
800
810
820
830
840
850
860
870
880
890
900
910
C20
530
940
950
950
970
980
990
1000
1010 LzS=STR(Lz)
1020 PRINT "Enter the device gate width."
1030 ALTER LzS,LzS
1040 Lz=UAL(LzS)
1050 Rsens=5TR(Rsen)
1050 PRINT "THE UALUE OF THE ORAIN SENSE RESISTOR=?"
1070 ALTER Rsens,Rsens
1080 Rsen=UAL(Rsen$)
1090 PRINT "CURRENT LIMIT FOR THE DRAIN CURRENT SOURPE=? (AMPS)"
1100 ALTER Crntlms,Crntlms
1110 ClS="CU "
1120 Cls=Cls&Crntlms
1150 PRINT 023:C1$
1140 ALTER Dtes,Dtes
1150 END SUB
1150 !
```

```
    1170 !
```



```
    1190 !
    1200 ! RECORD TEMPERATURE OF THE MEASUREMENT
    1210 !
    1220 !
    1250 !
    1240 !
    1250 SUB Tempset
    1260 Temps=STR(Temp)
    1270 PRINT "Enter temperature of the measurement."
    1280 ALTER Temps,Temp$
    1290 Temp=UAL(Temps)
    1300 END SUB
    1310 !
    1320 !
    1330 REM
    1340 REM
    1350 REM
    1360 REM
    1370 REM
    1380 REM SET UARIOUS BIASES AND DIMENSION ARRAYS
    1390 REM
    1400 REM
    1410 REM
    1420 REM
    1430 REM
    1440 SUB Bias
    1450 PRINT "ENTER MOST NEGATIUE GATE BIAS"
    1460 INPUT Negvgs
    1470 PRINT "ENTER MOST POSITIUE GATE BIAS"
    1480 INPUT Plsvgs
    1490 PRINT "ENTER GATE BIAS INCREMENT*
    1500 INPUT Ugsiner
    1510 M=INT(1+(Plsvgs-Negvgs)/Vgsincr)
    1520 PRINT "ENTER ADDITIONAL IMPORTANT INFORMATION"
1530 ALTER COms,COms
1540 IF ThrshldS="Y" THEN 1550
1550 DIM Gds(M),Vgsgo(M+1),Gm(M),Vgsgm(M+1)
1550 END SUB
1570 REM
1580 REM
1590 REM
1500 REM
1610 REM
1620 REM MEASURE DRAIN CURRENT US UGS
1630 REM
1640 REM
1650 REM
1660 REM
1570 REM
1580 SUB Idsvgs
iEE0 Ugs=Plsvgs
1700 Vos4=Vds
```

```
1710 Ugs = Vgs
    1720 FRINT @16:"dcv"
    17J0 Ovrrng$="N"
    1740 Xd$="v0 *
    1750 Xg$="offs"
    1750 Y$=STR(Uds)
    1770 Zd$=Xd$8Y$
    1780 PRINT @20:ZdS
    1790 PRINT @ड7,25:1
    1800 PRINT @O, 1:"FIRGT4X" !put electormeter on the 2A scale.
    1810 PRINT O37,26:0
    1820 CALL "wait",4
    1830 PRINT 020:"OUT ON" !turn on the drain power supply
    1840 Ugg=Ugs
    1850 Gps=25
    1860 Yg=5TR(Ugs)
    1870 Zg$=Xg$&Y$
    1880 PRINT @Gps:Zg$
    1890 PRINT @Gps:"OUT ON" !turn on the gate power supply
    1500 Dps=20
    1910 PRINT 26:"clo 14,10" !measure Vgs DUM; connect the elect.
    1920 CALL "WAIT",2
    1930 CALL Adjvgs
    1940 PRINT 026:"ope 14;clo 15" !measure Uds with the DUM
    1950 CALL "wait",2
    1960 CALL Adjvds
    1970 PRINT @26:"ope 15:clo 14" !measure Vgs with the DUM
    1980 IF Ovrrng$="Y" THEN 2050
    1990 CALL "wait",2
    2000 PRINT @16:"SEN"
    2010 INPUT 16:Ugsid(K,1)
    2020 Vdif=Ugsid(K,1)-Ugs
    2030 IF ABS(Udif)>0.01 THEN 1930
    2040 PRINT @26:"ope 14;clo 15" !measure Uds with the DUM
    2050 PRINT "Check the electrometerG6666G"
    2060 P=1
    2070 CALL "wait",4
    2080 PRINT @37,25:1
    2050 INPUT %5,1:Ids(K,P)
    2100 PRINT 037,26:0
    2110 IF ASS(Ids(K,P))<0.01 THEN 2130
    2120 G0 TO 2470
    2130 PRINT @37,26:1
    2140 PRINT OS,1:"F1R8T4X* lset the electrometer to the 20mA scale
    2150 CALL "wait",2
    2150 PRINT QG,1:"FIROT4X" iset the electrometer to autoranging
    2170 PRINT @37,26:0
    2180 Ugs=Ugs-Ugsincr
    Z190 Y$=STR(Ugs)
    2200 Zg$=Xg$&Ys
    2210 P1=P
2220 FOR P=PI TO M
2230 PRINT @26:"ope 15:clo 14" Imeasure Vos with the DUM
2240 CALL "wait".2
```

> CALL Adjvgs

CALL "wait", 2
Call Adjuds
CALL "wait", 2
PRINT ©16:"SEN"
INPUT ©16:Vgsid(K, P)
Udif=Ugsid(K, $P)$-Ugs
IF ABS(Udif) >0.01 THEN 2250
CALL "WAIT", 2
PRINT 837,26:1
INPUT 26, 1:Ids(K,P)
PRINT 037,26:0
Ugs=Ugs-Ugsincr
$Y \$=S T R\left(U_{g S}\right)$
2gs=Xgs\&Ys
PRINT @Gps:Zgs
CALL "wait",1
NEXT P
GO TO 2830
PRINT 037,25:1
PRINT 837,25:0
PRINT Q26:"ope 15;clo 14" !MEASURE Ugs with the DUM
CALL "Wait", 2
CALL Adjvgs
PRINT O26:"ope 14;clo 15" !measure Vds with the DUM
CALL "Wait", 2
CALL Adjuds
FRINT 026:"ope 15;clo 14" !measure Uds with the DUM
CALL "wait", 2
PRINT @15:"SEN"
INPUT Qis:Ugsid(K, P)
Udif=Ugsid(K,F)-Ugs
IF ABS(Udif)>0.01 THEN 2520
PRINT @25:"ope 14;clo 15" !measur Uds with the DUM
CALL "WAIT", 3
PRINT 037,26:1
INPUT 26,1:U8
PRINT 037,26:0
Ids(K, P) $=$ UB/Relec
$P=P+1$
$U_{g s}=U_{g s}-U_{g s i n c r}$
$Y \$=S T R\left(U_{g S}\right)$
$Z_{g} \$=X_{g} \$ \& Y \$$
PRINT OGps:Zg\$
CALL "wait", 1

PRINT C26:"ope 9"

PRINT ©25:"ope 14;clo 15" !measure Uds with the DUM

PRINT Q26:"ope 15;clo 14" !measure Vgs with the DUM

PRINT ©26:"ope 14;clo 15" !measure Uds with the DUM

PRINT Q26:"clo 9" !connect resistor across inputs of electr.
PRINT @G,1:"FOROT4X" ! SET ELECTROMETER TO MEASURE VOLTAGE

```
    2750 PRINT @J7,26:1
    2\varepsilon00 PRINT 6G,1:"FIROT4X* lset the electrometer to autorange current
    2E10 PRINT @こ7,26:0
    2020 GO TO 2220
    2530 PRINT OGps:"OUT OFF*
    2\varepsilon40 PRINT ©20:"OUT OFF"
    2E50 PRINT 826:"ope all"
    2860 END SUB
    2870 1
    2580
    2890
    2900
    2910 I ADJUST UDS TO THE DESIRED VALUE
    2920 1
2930
2940
2950
2560 SUB
2970 Vdd=Uds4
2980 PRINT 016:"sen*
2990 INPUT O16:Vds4
3000 Udif=Uds-Uds4
3010 IF ABS(Udif)<0.01 THEN 3130
3020 Udd=Udd+Udif
3030 IF Dps<>24 THEN 3050
3040 IF Udd>7.5 THEN 3120
3050 IF Udd<0 THEN 2970
30E0 IF Udd>10 THEN 3130
3070 YS=STR(Udd)
3090 Zd$=Xd$8Y$
3090 PRINT ODps:Zd$
3100 CALL "wait",2
3110 GO TO 2980
3120 Ovrrng$="Y*
3120 END SUB
3140 !
3150 !
3150 !
3170 !
3180 ! ADJUST THE GATE BIAS TO THE DESIRED vALUE
3190 1
3200 !
3210
3220
3230 SUB Adjvgs
3240 Vgg=Ugs
ここ50 PRINT Q16:*sen*
3250 INPUT E16:Vgs4
3270 Vdif=Ugs-Vgs4
3280 IF AES(Udif)<0.01 THEN 3380
3290 Vgg=Ugg+Udif
3300 IF Vgg<-7.5 THEN
डう10 Ugg=Ugs
\Xiこ20 END IF
```

```
うう40 2g$=xgS&YS
3350 PRINT QGps:Zg$
3j00 CALL "wait",2
3370 GOTO 3250
3350 END SUE
3`90 !
3400 !
34:0 1
3420 !
3430 ! SUBROUTINE FOR MEASUREING SUBTHRESHOLD CURRENTS
3440 !
3450
3450 1
3470 !
3480 SUB Sbthshd
3490 PRINT 025:"OPE ALL"
3500 Thrshld$="Y"
3510 PRINT "Enter Uds max."
3520 INPUT Udsmax
3530 PRINT "Enter Uds min."
3540 INPUT Udsmin
3550 PRINT "Enter the step size for. Vds."
3550 INPUT Udsstp
3570 J=INT((Udsmex-Udsmin)/Udsstf+1.001)
3580 DIM Sbvds(J+1)
3590 PRINT "Enter the data tape number and be sure that"
3600 PRINT "it is in the computer.E56"
3510 INPUT Tape
3E20 PRINT "Enter the starting data file #."
3530 INPUT File
3540 CALL Bias
3E50 CALL Tempset
3650 Sbvds(1)=Udsmin
3570 DIM Ids(J,M),Ugsid(J,M)
3680 FOR K=1 TO J
3690 Vds=5bvds(K)
3700 CALL Idsvgs
3710 IF K=>J THEN 3730
3720
3730
3740
5750
3750
3770 END SUB
3780 !
3790 !
3800
3810 !
3820 ! STORE THE SUBTHRESHOLD CURRENT DATA
3830 !
3840 !
3850 !
こ&50 !
```

```
\overline{3}70 SUB Sbthstr
3880 FIND File
3890 WRITE {J3:Ids,Devcoms,Otes,Coms
3900 WRITE @\Xi3:Tape,File,J,M,Temp,Negvgs,Plsvgs,Udsmax,Vdsmin
3910 FOR Ks=1 TO J
3920 WRITE R3J:Sbvds(Ks)
3030 FOR P5=1 TO M
3940 WRITE @33:Ids(Ks,Ps),Vgsid(Ks,Ps)
3950 NEXT Ps
3 9 5 0 ~ N E X T ~ K s ~
3970 END SUB
```



```540650
```

 1190 PRINT EFrt:"PA";X!1);",";Y(!);";PD;"
 1190 FOR I=1 TO Numpts
 1200 PRINT @Prt:"PA";X(I);",";Y(I);";"
 1210 NEXT I
 1220 PRINT OPrt:"IP;IW;SC;"
 12ذ0 PRINT @Prt:"PU;PA";Lx;",";Ly;";"
 1240 PRINT @Prt:"LB";Crntdtas;Hs;";"
 1250 PRINT @Frt:"CP 2,0.5;PD;PR 300,0;PU;"
 1260 PRINT OPrt:"PA 1500,";Ly;";LB (";Tape;",";File;")";H$;";
 1270 PRINT APrt:"PA";Lx;",";Ly;";CP;CP;OA;"
 1280 INPUT @Prt:Lx,Ly,St
 1290 PRINT 037,25:0
 1300 END SUB
 1310 !
 1320 !
    ```

```

 1340 !
 1350 ISUBROUTIND TO READ THE SUBTHRESHOLD CURRENT DATA
 1350 !
 1370 !
 1380 !
 1390 1
 1400 SUB Ridsdta
 1410 PRINT "Check to be sure that data tape #";Tape;" is instaled"
 1420 INPUT C$
 1430 FIND File
 1440 READ @J3:Id$,Devcom$,Dtes,Coms
 1450 READ @33:Tape,File,J,M,Temp,Negvgs,Plsvgs,Udsmax,Udsmin,Lg,Lz
 1460 DIM Sbvds(J),Ids(J,M),V口sid(J,M),Igs(J,M),Iss(J,M),Isb(J,M)=
 1470 FOR Ks=1 TO J
 REAO @JJ:Sbvds(Ks)
 FOR Ps=1 TO M
 READ @J3:Ids(Ks,Ps),Vgsid(Ks,Ps),Igs(Ks,Ps),Iss(Ks,Ps),Isb
 (Ks,Ps)
 NEXT Ps
 1520 NEXT Ks
1530 END SUB
1540 !
1550 !
1560 1
1570 !
1580 ! SUBROUTINE TO PUT THE SUBTHRESHOLO DATA IN THE PROPER
1590 I FORMAT FOR PLOTTING AND THEN TO PLOT IT.
1600 !
1E10
1620 !
1630 !
1640 SUB Indernt
1E50 Pass\$="N"
1650 PAGE
1570 PRINT "CHOOSE CURRENT UERSUS UgS PLOT WANTED::"
1680 PRINT
1E90 PRINT "1.....DRAIN CURRENT"
IT00 PRINT "2.....GATE CURRENT"

```

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1850
1870
1880
1890
1900
1910
1520
1950
1940
1950
1560
1970
1980
1590
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
PRINT "3.....SOURCE CURRENT"
PRINT "4.....SUBSTRATE CURRENT"
FPINT "5.....RETURN TO MAIN MENU"
INPUT IDt
IF Pass\$="Y" THEN 1830
PRINT "SELECT THE DATA TAPE AND FILE NUMBER TO BE PLOTTED."
PRINT "TAPE? ";
INPUT Tape
PRINT "FILE? *;
INPUT File
CALL Ridsdta
DIM Sbipt(J,M)
IF Ipt=1 THEN
    Crnt\$="DRAIN"
    FOR Ks=1 TO J
        FOR Ps=1 TO M
            Sbipt(Ks, Ps ) \(=I d s\left(K_{s}, P_{s}\right)\)
            NEXT Ps
        NEXT Ks
    ELSE
        IF Ift=2 THEN
            Crnts="GATE"
            FOR Ks=1 TO J
                    FOR Ps=1 TO M
                    Sbipt(Ks, Ps \()=I g_{s}\left(K_{s}, P_{s}\right)\)
                    NEXT Ps
            NEXT K's
        ELSE
            IF Ipt \(=3\) THEN
                Crnts="SOURCE"
                    FOR Ks=1 TO J
                    FOR Ps=1 TO M
                    Sbipt (Ks, \(\mathrm{P}_{5}\) ) \(=I_{5 s}\left(K_{s}, P_{5}\right)\)
                    NEXT Ps
            NEXT Ks
            ELSE
                    IF Ipt=4 THEN
                    Crnts="SUBSTRATE"
                    FOR Ks=1 TO J
                    FOR Ps=1 TO M
                    Sbipt (Kis, Ps \()=I s_{b}\left(K_{s}, P_{s}\right)\)
                    NEXT Ps
                    NEXT Ks
            ELSE
                IF Ipt=5 THEN 2410
                    PRINT "INUALID SELECTION. TRY AGAIN";
                    GO TO 1740
                    END IF
            END IF
        END IF
    END IF
    Scles="0"
    IF IDt =: THEN
    FRINT "FLOT DRAIN CURRENT ON LOE(O) OR LINEAR(I) SLALE? ";
```

 2こ50 ALTEF Scles,5eles
 2260 ELSE
 PFINT "CURRENT IS PLOTTED ON LOG SCALE"
 END IF
 PRINT "CHOCSE TEMPERATURE(T) OR Uds(U). ";
 Choices="U"
 ALTER Choices,Choices
 PRINT "NORMALIZE PLOT WITH GATE WIDTH (Y/N)? ";
 Nrmal$="N"
 ALTER Nrmals,Nrmal$
 CALL Label
 CALL Xyaxis
 CALL Pltaxis
 CALL Frmdta
 Pass$="Y"
 GO TO 16E0
 END SUB
 2420 !
2430 SUB Label
2440 Header1$=Dte$
2450 Header2$*Ids
2450 Header3$=Devcom\$
2470 Header4$=Coms
2480 Var?$=" "
2490 IF Ipt=1 THEN
2500 IF Scle\$="O" THEN
2510
2520
2530
2540
2550
2550
2570
2580
2590
2500
2610
2520
530
2540
2650
2550
2670
2580
2590
2700
2710
2720
2730
2740
2750
2750
2770
2780

```

2270
2260
2290
2300
2310
2320
2330
2340
2350
2360
```

 IF Nrmal$="Y" THEN
 Ylables="DRAIN CURRENT (AMPS) / GATE WIDTH (uM)"
 ELSE
 Ylables="DRAIN CURRENT (AMPS)"
 END IF
 ELSE
 IF Nrmals="Y" THEN
 Ylables="DRAIN CURRENT (MILLIAMPS) / GATE WIDTH (uM)"
 ELSE
 Ylable\equiv="DRAIN CURRENT (MILLIAMPS)*
 END IF
 END IF
 ELSE
 IF Nrmals="Y" THEN
 Ylable$=Crnt$&" CURRENT (AMPS) / GATE WIDTH (uM)"
 ELSE
 YlableS=Crnt$&" CURRENT (AMPS)*
 END IF
 END IF
 Xlables="GATE BIAS (VOLTS)"
 IF Choice$="T" THEN
 Var1$="VOS="
 FOR K=1 TO J
 PRINT K;"........UDS(";K;")=";Sbvds(K)
 NEXT K
 PRINT "CHOOSE THE UDS TO PLOT BY #*
 INPUT K
 IF K!i THEN
    ```
```

 =2.0 PFINT "INUALID CHOICE TRY AGAIN*
 2500 60 T0 2770
 28!0
 2\varepsilonこ0
 2ミ50
 2E=0
 2850
 2550
 2870
 2880
 2890
 2900
 2910
 2520
2530
2940
2550
2550
2970
2980
2990 END
3000 !
3010 !
3020 SUB Xyaxis
3030 !
3040 ! X-AXIS DIUISIONS
3050 !
3050 X10=-4
3070 Xhi=1
3080 Nxdiv=Xhi-X10
3090 DIM Xdiv1b(Nxdiv+1)
3100 Xdivlb(1)=X10
3110 FOR Ix=2 TO Nxdiv+1
3120 XdivIb(Ix)=INT(XdivIb(Ix-1)+1.001)
3130 NEXT IX
3140 X10=INT(100*X10+1.0E-5)
3150 Xhi=INT(100*Xhi+1.0E-3)
3i50 Tx=100
3170 !
3180 ! Y-AXIS DIUISIONS
3190 !
3200 IF Scle\$="I" THEN
3210 Y10=0
3220
3230
IF Ids(J,1)<0.025 THEN
Yhi=25
Nydiv=5
3240
3250
ELSE
IF Ids(J,1)<0.05 THEN
3250
3270
Yhi=50
Nydiv=5
3280
3290
ELSE
3300
IF Ids(J.1)<0.1 THEN
3310 Yhi=100
3j20 Nydiv=5

```
```

330
3340
3350
3350
3570
3380
3350
3400
3410
3420
3430
3440
3450
3450
3580 SUB Frmdta
3690 DIM X(M),Y(M)
3700
3710
3720
3730
3740
3750
3760
3770

```
!
FORMAT DATA
!
IF Choice$="T" THEN
    Crntdta$=STR(Temp)
    Numpts=M
    FOR P=1 TO M
        X(P)=INT(100*Vgsid(K,P)+1.0E-3)
    NEXT P
    IF Seles="I" THEN
        IF Nrmals="Y" THEN
            FOR P=1 TO M
                                    Y(P)=INT(10000*5bipt(K,F)/Lz+1.0E-J)
            NEXT P
        ELSE
            FOR P=1 TO M
                Y(P)=INT(10000*5b1Ft(K,P)+1.0E-3)
```

```
4%10
4420
4ニj0
4*40
4450
4450
4 4 7 0
4 4 5 0
4 4 9 0
4 5 0 0
4 5 1 0
4520
4530
4 5 4 0
4550
4560
4570
4580
4590
4500
4510
4620
4E30
4640
4550
4 6 5 0
4 6 7 0
4 6 8 0
4 6 9 0
4 7 0 0 ~ S U B ~ P d a t a ~
4 7 1 0 ~ P A G E
4720 Pnt=1
4730 PRINT "SELECT DATA TAPE & FILE TO BE PRINTED"
4740 PRINT "TAPE= ";
4750 INPUT Tape
4760 PRINT "FILE= ";
4 7 7 0 ~ I N P U T ~ F i l e ~
4780 CALL Ridsdata
4790 PRINT @37,25:1
4500 PRINT BPnt:Id$
4810 PRINT @Pnt:Devcoms
4820 PRINT @Pnt:Coms
4830 PRINT @Pnt:"TAPE: ",Tape," FILE:*,File
4840 PRINT @Pnt:"TEMP=",Temp
4850 PRINT @Pnt:"LG= ",Lg, LZ= ",Lz
4850 FOR Ks=1 TO J
4 8 7 0
4980
4 8 9 0
4 9 0 0
4910
4E20 PRINT EJ7,25:0
AEJ0 END SUB
```

3870
3850
3890
3900
3910
3920
3930
3940
3950
3960
3570
3980
3990
4000
4010
4020
4030
4040
4050
4050
4070
4080
4090
4100
4110
4120
4130
4140
4150
4150
4170
4180
4190
4200
4210
4220
4230
4240
4250
4250
4270
4230
4290

4300

4310
4320
4330

NEXT P
END IF
ELSE
IF Nrmal\$="Y" THEN
FOR $P=1$ TO M $Y(P)=\operatorname{INT}(L G T(S b i p t(K, P) / L z) * 100+1.0 E-3)$
NEXT P
ELSE
FOR $\mathrm{P}=1$ TO M
END IF
PRINT "CHOOSE A DIFFERENT COLORED PEN FOR THE"
PRINT "PLOTTER AND PRESS RETURN."
INPUT Cs
CALL Pltata
PRINT "PLOT ANOTHER TEMPERATURE? (Y/N)*
$Y(F)=\operatorname{INT}(L G T(S b i p t(K, P)) * 100+1.0 E-3)$
NEXT P
END IF
INPUT Anthrts
IF Anthrts="N" THEN 4570
PRINT "DATA TAPE \#?"
INPUT Tape
PRINT "FILE \#?"
INPUT File
CALL Ridsdta
GO TO 3690
ELSE
page
PRINT "DO YOU WISH TO PLOT THE DATA FOR ALL OF THE"
PRINT "UDS UALUES LISTED BELOW? (Y/N)"
SIvdvius="Y"
DIM Vov(J+1)
FOR Ki=1 TO J
PRINT Ki;"......UDS("; Ki;")="; Sbvds(Ki)
$\operatorname{vdv}\left(K_{i}\right)=K_{i}$
NEXT Ki
$\mathrm{J} 1=\mathrm{J}$
ALTER Sivdvlus, Slvdvius
IF Slvdvlus="Y" THEN 4340
PRINT "SELECT THE \#'S CORRESPONDING TO THE VOS UALUES"
PRINT "YOU WANT TO PLOT ONE AT A TIME FOLLOWED BY A 〈CR〉."
PRINT "ENTER A 0 TO QUIT"
$K C=0$
$K c=k c+1$
INPUT Udv(Ke)
IF Udv(Kc)<<>0 THEN 4300
J1 $=K \mathrm{Kc}-1$
Numpts=M
FOR $k=1$ TO JI
Crntotas=STR(Sbvds(Vov(K)))
FOR $P=1$ TO M
$X(F)=\operatorname{INT}\left(100 * V_{g s i d}(V d v(K), P)+1.0 E-3\right)$
NEXT P
IF Scles="I" THEN

```
    4940 !
    4950 !
    4950 !
    4970 SUB Main
    4980 Tape$="1"
    4990 File$="1"
    5 0 0 0 ~ P A G E
    5010 CHARSIZE 3
    5020 PRINT *********************************************************
    5030 PRINT
    5040 PRINT
```



```
    5060 PRINT
    5070 PRINT
    5080 PRINT
    5090 PRINT
    5100 PRINT
    5110 PRINT "1.....INDIVIDUAL COMPONENT OF CURRENT"
    5120 PRINT "2.....PRINT DATA FROM DATA TAPE"
    5130 PRINT "3.....QUIT"
    5140 INPUT SICt
    5150 IF Slct=1 THEN
    5160 CALL Indernt
5170 ELSE
5180 IF Slct=2 THEN
5190 CALL Pdata
5200 ELSE
5210 IF Slct=3 THEN 5270
5220 PRINT "INUALID CHOICE. CHOOSE AGAIN.";
5230 GO TO 5140
5240 END IF
5250 END IF
5250 60 TO 5000
5270 END SUB
```


7．5 Curve Fitting Program Listing

```
(***********************************************************
*****************)
(大丈夫ネネ
*****)
(***** FILE : SUBTRESHOLD_CURRENT.PAS
*****)
(***** VERSION : 1.02
```



```
(***** AURTHOR : P. K. OR
シネウネ丈)
(***** PURPOSE : SUBTHRESHOLD VOLTAGE vs. Vgs & Vds
れがれま)
(***** IMPLEMENT : TURBO_PAS
*****)
(*****
*****)
```


(:::::::::::::::::::::::: EDITING HISTORY
::::::::::::::::::::::::::)
)
(1.02 Create file handling procedures
09-17-1987)
(1.01 Working program for Nc constant
09-16-1987)
(1.00 Create Procedures and Function necessary for math
09-14-1987)
(
)
::::::::::::::::
（\＄F20）
Program Subthres（ input，output）；
Const

```
MaxR = 40; ( data Points )
MaxC = 4; ( polynomial terms )
```

Const
Es $=1.15989 \mathrm{E}-12 ;$（Farad／cm－GaAs dielectric
constant)
$\mathrm{Q}=1.60218 \mathrm{E}-19 ; \quad$ (Coulomb - Electronic charge)
$\mathrm{Nc}=4.022 \mathrm{E} 17$; ($\mathrm{cm} \Delta-3$ - Uniform doping)
$\mathrm{t}=6.00 \mathrm{E}-6$; (cm - Active layer
thickness)
$\mathrm{Uc}=3500$;
(cm/V.s - Channel mobility)
$\mathrm{K}=1.38066 \mathrm{E}-23 ;$ (J/K - Boltzmann constant)

Type
Index $=1 . . \operatorname{MaxR}$;
Ary1R = Array[Index] of Real;
Ary1C = Array[1..MaxC] of Real;
Var
(************** Variables used for experimental data *****************)

Vgs
: Ary1R;
Vds
: Ary1R;
Isub
: Ary1R;
Vto : Real;
Vthv : Real;
Temp : Real;
Lg, Lz : Real;
DeviceID : String[80];
Gamma : Real;
Alpha : Real;
Ns : Real;
Data : Text;
DataFile : String[6];
StoDataFile : String[10];
Vpts, DataPts : Integer;
Vgstep : Real;
(************** Variables used in calculation $* *) ~$
$\mathrm{X}, \mathrm{Y} \quad:$ Ary1R;
YCalc : Ary1R;
Cōef : Ary1C;
Ex : Ary1R;
Process : Text;
ProcessFile : String[6];
StoProcessFile : String[12];
Sequence : Integer;
SequenceNum : String[2];
DDrive
Select
Vdsub, VthvP
Nrow, Ncol
A, B
: String[2];
: Integer;

SRS, ASRS
: Real;

Done, Error : Boolean;
I : Integer;
Store : Char;
$(\Delta \Delta \Delta$

Read $V g s$ and $I s u b$ values from data file.
$X=(V g s-V t o-G a m m a * V d s) \quad: ~ i n d e p e n d e n t ~ v a r i a b l e$
$Y=(q / K T) *(1-A l p h a * V d s):$ dependent variable

Procedure Get_Data (Var X, Y : Ary1R;
Nrow : Integer;
Vdsub : Real);
Var
I : Integer;
Begin
For I := 1 to Nrow Do
Begin

$$
\begin{aligned}
& \text { Readln (Data, Isub[I], Vgs[I]); } \\
& \mathrm{X}[I]:=(V g s[I]-V t o) *(1-A 1 \text { pha*Vdsub) } / \mathrm{Ns} ; \\
& \mathrm{Y}[I]:=\mathrm{Isub}[I] ;
\end{aligned}
$$

End;

End;
$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$

Procedure Set_Vthv (Var Vthv : Real; Temp : Real);

Begin
Vthv := (K/Q) * Temp;
End;
$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$
)

PROCEDURE PRINT_DATA

Display Isub values for each set of Vd .
SRS : Sum of Residual square.
$A=$ Coef[1] : Idso, drain current at low bias

Procedure Print_Data (Vdsub : Real; Nrow : Integer);
Var
I : Integer;
Begin
Writeln;
Writeln ('Vds = ',Vdsub:4:3);
Writeln ('I Vgs Isub ',' Isub Calc');
For $I:=1$ To Nrow Do
Writeln (I:3, Vgs[I]:8:2,' ', Isub[I]:12,'
', Y Calc[I]:12);
Writeln;
Writeln ('Coefficients');
Writeln (Coef[1]:12,' Constant Term');
For I := 2 To Ncol Do
Writeln (Coef[I]:12); (other terms)
Writeln;
Writeln (' Idso $\left.=1, A: 12, ' A m p s^{\prime}\right)$;
Writeln (' $1 / \mathrm{B}=$ ', $1 / \mathrm{B}: 6: 5$, 'Volt',' Vthv $=$
',Vthv:6:5);
Writeln;
VthvP : = ABS (Vthv*B-1);
Writeln (' SRS $=$ ', SRS:8:4);
Writeln (' VthvP $=$ ',VthvP:8:4);
Writeln;
End;

```
\((\Delta \Delta \Delta\) \(\Delta \Delta \Delta)\)
PROCEDURE STORE_DATA
```

Store calculate data into process file.
(

Procedure Store_Data(Vdsub	: Real;
Nrow	: Integer);

Var I : Integer;

Begin
StoProcessFile := ProcessFile + SequenceNum + '.Pro';
Assign(Process, StoProcessFile);
Rewrite(Process);
Writeln(Process, 'DeviceID = ', DeviceID);
Writeln(Process, ' $\mathrm{Lg}=1, \mathrm{Lg}: 4: 3,1 \mathrm{Lz}=', \mathrm{Lz:4:3},{ }^{\prime}$
Temp $=$ ', Temp:4:3, ' Vto $=$ ',Vto:4:3);
Writein(Process, 'Vthv $=$ ',Vthv:7:6,' Alpha $=$
',Alpha:6:5, ${ }^{\prime}$ Ns = ',Ns:4:3);
Writeln(Process);
Writeln (Process, 'Idso $=$ ', Coef[1]:12,' $1 / B=$
', 1/B:7:6,' SRS = ', SRS:5:4, ' VthvP = ',VthvP:5:4);
Writeln (Process,'Vds = ',Vdsub:4:3);
Writeln (Process,'Vgs Isub Isub Calc ');
For $I:=1$ to Nrow Do
Begin
Writeln (Process, $\operatorname{Vgs}[I]: 5: 3,1 \quad$, $\mathrm{Y}[\mathrm{I}]: 12,{ }^{\prime}$
', Y_Calc[I]:12);
-End;
Flush (Process);
Sequence := Sequence + 1;
Str(Sequence, SequenceNum);
End;
$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$

PROCEDURE DISKSTORAGE

(Create data file from experimental data, and store file in DATA
\qquad

Procedure DiskStorage;
Var
I, J : Integer;
Begin
Write ('Device ID
= 1); Readln
(DeviceID);

```
    Write ('Gate Length(um) = '); Readln (Lg);
    Write ('Gate Width(um) = '); Readln (Lz);
    Write ('Temperature(K) = '); Readln
(Temp);
    Write ('Threshold Voltage(V) = '); Readln (Vto);
    Write ('# of Vds Points = '); Readln
(Vpts);
    StoDataFile := DataFile + '.Dat';
    Assign (Data, StoDataFile);
    Rewrite (Data);
    Writeln (Data, DeviceID);
    Writeln (Data, Lg:8:3, Lz:8:3, Temp:8:3, Vto:8:3,
Vpts:3);
    For I:= 1 to Vpts Do
    Begin
        Writeln;
        Write ('Vds = '); Readln
(Vds[I]);
        Write ('# of Data points = '); Readln
(DataPts);
        Write ('Starting Vgs = '); Readln
(Vgs[1]);
        Write ('Vgs step = '); Readln
(Vgstep);
        Writeln (Data, Vds[I]:4:3, DataPts:3);
        Writeln;
        Writeln ('Enter Isub <CR> ');
        For J := 1 to DataPts Do
        Begin
            Readln (Isub[J]);
            Writeln (Data, Isub[J]:12, Vgs[J]:8:3);
            Vgs[J+1]:= Vgs[J] - Vgstep;
        End;
    End;
    Close (Data);
End;
```

$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$

```
Procedure Func( B: Real;
Var \(\mathrm{Fb}, \mathrm{Dfb}:\) Real);
```

Var

I: Integer;
S1, S2, S3, S4, S5, S6,
Ex1, EX2, Xi, X2, Yi, Y2 : Real;
Begin
S1 := 0.0;
S2 := 0.0;
S3 :=0.0;
S4 : = 0.0;
S5 : $=0.0$
S6 := 0.0;
For I := 1 to DataPts Do
Begin
$\mathrm{Xi}:=\mathrm{X}[\mathrm{I}] ;$
X2 : =Xi*Xi;
Yi $:=Y[I]$;
Y2 : = Yi*Yi;
$\operatorname{Ex} 1:=\operatorname{Exp}(\mathrm{B} * \mathrm{Xi})$;
$\operatorname{Ex}[\mathrm{I}]:=\mathrm{Ex} 1$;
Ex2 := Ex1*Ex1;
$\mathrm{S} 1:=\mathrm{S} 1+\mathrm{Xi} * \mathrm{Ex} 2 / \mathrm{Y} 2$;
S2 := S2 + Ex1/Yi;
S3 := S3 + Xi*Ex1/Yi;
S4 : = S4 + Ex2/Y2;
S5 : = S5 + 2.0*X2*Ex2/Y2;
S6 := S6 + X2*Ex1/Yi;
End;
$\mathrm{Fb}:=\mathrm{S} 1 * \mathrm{~S} 2-\mathrm{S} 3 * \mathrm{~S} 4$;
Dfb : = S $2 *$ S5 - S $1 *$ S $3-\mathrm{S} 4 * S 6$;
A $:=S 2 / S 4$;
End; (Func)
$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$

PROCEDURE NEWTON

Procedure Newton(Var X : Real);
Const
Tol $=1.0 \mathrm{E}-6 ;$
Max $=20$;
Var
I : Integer;
Fx, Dfx, Dx, X1 : Real;
Begin
Error := False;
I : = 0;
Repeat

```
I : = I + 1;
X1 : = X;
Func(X, Fx, Dfx);
If \(\operatorname{Dfx}=0.0\) then
    Begin
        Error := True;
        \(\mathrm{X}:=1.0\);
        Writeln ('ERROR: slope zero');
    End
Else
    Begin
        Dx \(:=\mathrm{Fx} / \mathrm{Dfx} ;\)
        \(\mathrm{X}:=\mathrm{X} 1\) - Dx ;
    End;
    Until Error \(O R(I \quad>\operatorname{Max}) \mathrm{OR}(\mathrm{Abs}(\mathrm{Dx})\) <= Abs(Tol*X));
    If \(I\) > Max Then
    Begin
    Writeln ('ERROR: no convergence in ',max,' loops');
    Error := True;
    End
End; (NEWTON)
```

$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$

Procedure Nlin(X, Y : Ary1R;

```
Var Y Calc : Ary1R;
```

Nrow : Integer);
(fit the subthreshold equation through N stes of X and Y pairs of points)

Var
Resid : Ary1R;
I : Integer;
Xi, Yi, Sum_X, Sum_Y, Sum_Xy, Sum_X2 : Real;
Begin

```
Ncol := 2; (two terms)
    Sum X := 0.0;
    Sum-Y := 0.0;
    Sum-Xy := 0.0;
    Sum-X2 := 0.0;
    For-I := 1 To Nrow Do
        Begin
            Xi := X[I];
            Yi := Ln(Y[I]);
            Sum_X := Sum_X + Xi;
```

Sum_Y : = Sum_Y + Yi;
Sum- Xy := Sum Xy + Xi夫Yi;
Sum-X2 : $=$ Sum_X2 + Xi*Xi;
End;
B : = (Sum Xy - Sum X*Sum Y/Nrow) /
(Sum${ }^{-}$X2 - SqrTSum_XT/Nrow);
Newton(B);
Coef[1] := A;
Coef[2] := B;
SRS := 0.0;
For I := 1 To Nrow do
Begin
Y Calc[I] $:=\mathrm{A}$ *Ex[I];
IF $Y[I]$ <> 0.0 Then
$\operatorname{Resid}[I]:=Y$ Calc[I]/Y[I] - 1.0
Else
Resid[I] := Y[I]/Y Calc[I] - 1.0;
SRS := SRS + Sqr(Resid[I]);
End;
ASRS := SRS/Nrow;
End; (NLIN)
$(\Delta \Delta \Delta$ $\Delta \Delta \Delta)$

PROCEDURE SETUP
)

Procedure SetUp (Var Select : Integer);
Var
OK : Boolean;
Begin
ClrScr;
Writeln (1 MENU ');
Writeln;
Writeln ('1. CREATE DATA FILE.');
Writeln ('2. RUN CURVE FITTING PROGRAM.');
Writeln ('3. END.');
Writeln;
Readln (Select);
DDrive := ': B';
Case Select Of
1 : Begin
ClrScr;
Write ('Data File name (max of 6 characters)
= ') ;

```
                    Readln (DataFile);
                End;
        2 : Begin
                        ClrScr;
                            Repeat
? ');
',StoDataFile);
    Until OK;
    ProcessFile := DataFile + ' ';
    Readln (Data, DeviceID);
    Readln (Data, Lg, Lz, Temp, Vto, Vpts);
    Writeln;
    Write ('Alpha = ? '); Readln
(Alpha);
    Write ('Ns = ? '); Readln (Ns);
    Sequence := 0;
    SequenceNum := '0';
        End;
        3 : Exit;
    End;
End;
```



```
(
)
( M A I N P R O G R A M
)
(
```


Begin
Select := 1;
Repeat
SetUp (Select);
ClrScr;
Case Select Of
1 : DiskStorage;
2 : Begin
Set Vthv (Vthv, Temp);
For ${ }^{-}$I := 1 To Vpts Do

```
            Begin
                        Readln (Data, Vds[I], DataPts);
                        Get_Data(X, Y, DataPts, Vds[I]);
                            Nliñ (X, Y, Y_Calc, DataPts);
                            Print_Data(Vds[I], DataPts);
                            Write-('Store Data on Disk? (y/n) ');
                    Readln (Store);
                    If Store = 'y' then
                    Store_Data(Vds[I], DataPts);
                    End;
                    Close (Data);
                            End;
            3 : ;
        End;
    Until Select = 3;
End.
```


7.6 VREFSIM Program Listing

$)_{(}^{\frac{1}{2}}$ NORMAL
(Circuit1 is the program to simulate the normal device operation. It runs (Erom a temperature of 400 K to 220 K . The user has to change the lambda and (and Alpha manually in the constant declaration. The (W/L) scale the Tempe (coefficient of the device. The mimimum current must be greater than 1 mA .) INPUT : TEMP HIGH, TEMP LOW, TEMP STEP, RS)

OUTPUT : VOUT, IM

Program Circuit1;
Const
Es $\quad=1.1599 \mathrm{E}-12$;
Q $\quad=1.60218 \mathrm{E}-19$;
$\mathrm{K}=1.3806 \mathrm{E}-23$;
$t=6.6 \mathrm{E}-6$;
$\mathrm{Nc}=4.0 \mathrm{E} 17$;
ni $=2.0 \mathrm{E} 6 ;$
$\mathrm{U} 300=3500$;
T300 $=300$;
Vdd $=0.74$;
Vss $=-2.0$;
Lambda $=0.05$;
Alpha $=2.2$;
Type
Element $=$ Array[1..25] of Real;
Var
Vds, Vgs : Real;
Vthv, Vto, Vp : Real;
Vout, Vt, Vr, Vdif : Real;
Temp, Vg : Real;
W, L, Psi : Real;
Beta : Real;
Rs, Rsi : Real;
Im, Ir, Ilast : Real;
TempHi, TempLow, TempStep : Real;
I, P, LastElem : Integer;
Okay, FirstPass : Boolean;
Data : Text;
DataFile : String[12];
StoDataFile : String[16];

IBias
: Element;
Procedure SetUp;
Begin
ClrScr;
(Write ('High Temperature = ? ');
Write ('Low Temperatute $=$? ');
Write ('Temperature Step = ? ');
Readln (TempHi); Readln (TempLow); Readln
(TempStep);
TempHi $:=400 ;$ TempLow $:=220 ;$ TempStep $:=10$;
Write ('DataFile = ? ');
Readln
(DataFile);
Vout := 0.0;
$\mathrm{Vg}:=0.0$;
Write ('W = ?'); Readln(W);
L : = 0.25;
Rs := 2/(1.4129E-4*(W/L)); Writeln('Rs =
',Rs:1:0);
Psi := 0.0001;
Rsi : = Rs/(1+Psi*(T300-273));
End;

Function Tanh (X : Real): Real;
Var
A, B : Real;
Begin
A $:=\operatorname{Exp}(X)$;
$B:=\operatorname{Exp}(-X) ;$
$\operatorname{Tanh}:=(A-B) /(A+B)$;
End;

Procedure Im_Solve;
Begin
Beta $:=(2 * W * U 300 * T 300 * E s * S q r(292 / T e m p)) /(3 * L * T e m p * t)$;
Vds := Vdd - Vout;
Vgs $:=V g$ - Vout;
$V_{p} \quad:=(\mathrm{Q} * N c * \operatorname{Sqr}(t) /(2 * E s)) *($ Temp $/ 292)$;
Vthv := (K/Q)*Temp;
Vto $:=V t h v^{*} \operatorname{Ln}(N c / n i)-V p ;$
Vt $:=$ Vto-0.07*Vds;
Im $\quad:=\operatorname{Beta}{ }^{*} \operatorname{Sqr}(V g s-V t) *(1+\operatorname{Lambda*Vds)*Tanh(Alpha*Vds);~}$
(writeln('Beta=', Beta:6:5,' Vp=', Vp:4:3,'
Vthv=',Vthv:4:3,' Vto=',Vto:4:3,' Vt=',Vt:4:3);)
End;

Procedure Ir_Solve;

Begin
Vr : = Vout - Vss;
Rs : $=$ Rsi*(1+Psi*(Temp-273));
Ir $:=(\mathrm{Vr}) / \mathrm{Rs}$;
End;

Procedure Test_Bias (Var OKAY : Boolean);
Const
Tol $=0.0001$;
Var
Itest : Real;
Begin
Itest $:=\operatorname{Im} / \operatorname{Ir}-1$;
If ABS(Itest) $<=$ Tol Then OKAY := True
Else
Begin (ABS)
If FirstPass Then Begin (FirstPass)

Vdif := 0.0005;
If Itest > 0 then Vout := Vout + Vdif
Else Vout := Vout - Vdif;
FirstPass := False;
End (FirstPass)
Else
Begin (Subsequent Passes)
If Itest > 0 then
Begin
If Ilast < 0 then Vdif $:=$ Vdif*0.5; Vout := Vout + Vdif;
End
Else
Begin
If Ilast >0 then Vdif $:=$ Vdif*0.5;
Vout := Vout - Vdif;
End;
End; (Subsequent Passes)
End; (ABS)
Ilast := Itest;
End;
Procedure Store_Data (Ibias : Element; LastElem: integer); Var

J : Integer;
Begin
StoDataFile := DataFile+'.Dat';

```
    Rs := Rsi*(1 + Psi*(300-273));
    Assign (Data, StoDataFile);
    Rewrite (Data);
    Writeln (Data, 'W :',W:1:1);
    Writeln (Data, 'Rs :',Rs:1:0);
    For J := 1 to LastElem Do
    Writeln (Data, Ibias[J]);
    Flush (Data);
    Close (Data);
End;
Begin
    SetUp;
    Temp := TempLow;
    P := 0;
    Writeln ('Temp Vg Vout Vgs Im
Ir');
    Repeat
        OKAY := False;
        P := P + 1;
        FirstPass := True;
        I := 0;
        Repeat
            I := I + 1;
            Im Solve;
            Ir-Solve;
            Te\overline{st Bias (OKAY);}
            If Kēypressed then exit;
            Until (OKAY = True) OR (I > 1000);
            If I >= 1000 then
                Begin
                    Writeln ('No convergence. Program terminated.');
                    Exit
            End;
            Ibias[P] := Im;
            If (Vg-Vout)<0 then
            Writeln (Temp:0:0,' ',Vg:5:3,' ', Vout:5:3,'
',(Vg-Vout):3:3,' ',Im:10,' ',Ir:10)
            Else
                Writeln (Temp:0:0,' ',Vg:5:3,' ', Vout:5:3,'
',(Vg-Vout):3:3,' ',Im:10,' ',Ir:10);
            Temp := Temp + TempStep;
    Until Temp >= TempHi + Tempstep;
    LastE1em := P;
    Store_Data(Ibias, LastElem);
End.
```


(THE PROGRAM SIMULATE THE POSITIVE TEMPERATURE DRIFT COMPONENT PARTOF THE)
(CIRCUIT. IT CONSISTS OF A TRANSISTOR IN SUBTRESHOLD REGION, AND TWO RESISTOR.)
INPUT : temp high, Temp low, Rs, R2
INPUT : temp high, Temp low, Rs, R2
OUTPUT : IM

Program SUB_DEV;
Const

```
Es \(\quad=1.1599 \mathrm{E}-12\);
\(\mathrm{Q} \quad=1.60218 \mathrm{E}-19\);
\(\mathrm{K}=1.3806 \mathrm{E}-23\);
\(t=6.6 \mathrm{E}-6\);
\(\mathrm{Nc}=4.0 \mathrm{E} 17\);
ni \(=2.0 \mathrm{E} 6\);
\(\mathrm{U} 300=3500\);
T300 \(=300\);
Vdd \(=0.74\);
Vss \(=-2.0\);
Gamma \(=0.07\);
Alpha \(=0.046\);
Ns \(=1.671\);
```

Var

Vthv, Vto, Vp	: Real;
Vout, Vdif	: Real;
Temp, Vg	: Real;
W, L, Rs, Rsi, Psi, R2, R2i	: Real;
Im, Ir, Ir2, Ilast, Io	: Real;
TempHi, TempLow, TempStep	: Real;
I	Integer;
Okay, FirstPass	: Boolean;

Procedure SetUp;
Begin
ClrScr;
Write ('High Temperature = ? '); Readln (TempHi);
Write ('Low Temperatute $=$? '); Readln (TempLow);
Write ('Temperature Step = ? ');
Readln
(TempStep);
Write ('Rs = ? '); Readln (Rs);
Write ('R2 = ? '); Readln (R2);
Vout :=-1.25;
$\mathrm{Vg}:=-2.0$;
$W:=50$;

```
    L := 0.25;
    Psi := 0.0001;
    Rsi := Rs/(1+Psi*(T300-273));
    R2i := R2/(1+Psi*(T300-273));
    Io := 1.0E-4;
End;
```

Procedure Calc_TempVar;
Begin
$V \mathrm{p} \quad:=\left(\mathrm{Q}^{\star} \mathrm{Nc} * \operatorname{Sqr}(\mathrm{t}) /(2 * E s)\right) *($ Temp/292);
Vthv := (K/Q)*Temp;
Vto $:=V t h v * L n(N c / n i)-V p$;
Rs : $=$ Rsi*(1+Psi*(Temp-273));
R2 : $=$ R2i*(1+Psi*(Temp-273));
End;
Procedure Im_Solve;
Var
Vds, Vgs, Vt :Real;
Begin
Vds $:=$ Vdd - Vout;
Vgs := Vss - Vout;
Im $:=$ Io*Exp(((1-Alpha*Vds)/(Ns*Vthv))*(Vgs-
Vto + Gamma*Vds));
End;
Procedure Ir_Solve;
Var
Vr, Vr2 : Real;
Begin
Vr := Vout-Vss;
Ir $:=\mathrm{Vr} / \mathrm{Rs}$;
Vr2 $:=3.3$ - Vout;
Ir2 $:=\mathrm{Vr} 2 / \mathrm{R} 2$
End;
Procedure Test_Bias (Var OKAY : Boolean);
Const
Tol $=0.0001$;
Var
Itest : Real;
Begin
Itest $:=\operatorname{Im} /(\operatorname{Ir}-\operatorname{Ir} 2)-1$;

```
    If ABS(Itest) <= Tol Then
    OKAY := True
Else
    Begin (ABS)
        If FirstPass Then
        Begin (FirstPass)
            Vdif := 0.0005;
            If Itest > 0 then
                Vout := Vout + Vdif
                    Else
                        Vout := Vout - Vdif;
            FirstPass := False;
            End (FirstPass)
            Else
            Begin (Subsequent Passes)
                If Itest > 0 then
            Begin
                If Ilast < 0 then Vdif := Vdif*0.5;
                Vout := Vout + Vdif;
            End
            Else
                Begin
                    If Ilast > 0 then Vdif := Vdif*0.5;
                Vout := Vout - Vdif;
                    End;
            End; (Subsequent Passes)
    End; (ABS)
    Ilast := Itest;
End;
Begin
    SetUp;
    Temp := TempLow;
    Writeln ('Temp, Vref Vout Vgs Im
Ir
    Repeat
        OKAY := False;
        FirstPass := True;
        I := 0;
        Calc TempVar;
        Repeatt
        I := I + 1;
        Im Solve;
        Ir-Solve;
( Writeln('Vout=',Vout:5:4,' Im=',Im:8,' Id=',(Ir-
Ir2):8,' Ir=',Ir:8,' Ir2=', Ir2:8);
            If I mod 20=0 Then Repeat Until KeyPressed;)
            Test Bias (OKAY);
            If KēyPressed then Exit;
    Until (OKAY = True) OR (I > 10000);
        If I > 10000 then
        Begin
            Writeln ('No convergence. Program terminated.');
```

Exit
End;
Writeln (Temp:0:0,' ',(Vdd-Vout):5:3,'
',Vout:5:3,' ',(Vg-Vout):4:3,
${ }^{\prime}$ ', Im:10,' ', Ir:10,' ', Ir2:10);
Temp := Temp+TempStep;
Until Temp >= TempHi + Tempstep End.

```
( S U B_R1R R )
(simulate the subthreshold device, the positive temperature
drift portion)
(of the vref circuit. The program step through a given range
of desire )
(bias current. Temp high, temp low and temp Step are preset
)
input : Desire Vgs
output: R1, R3, Icoef̄f, Im
($F20)
Program SUB_R1R3;
Const
    Es = 1.1599E-12;
    Q = 1.60218E-19;
    K = 1.3806E-23;
    t = 6.6E-6;
    Nc = 4.0E17;
    ni = 2.0E6;
    U300 = 3500;
    T300 = 300;
    Vdd = 0.74;
    Vss = -2.0;
    Gamma = 0.07;
    Alpha = 0.046;
    Ns = 1.671;
Var
    Vthv, Vto, Vp : Real;
    Vout, Vdif : Real;
    Temp, Vgs : Real;
    W, L, R1, R1i, Psi, R2, R2i : Real;
    IMin, IMax, IStep : Real;
    Im, I1, I2, Ilast, Io,I : Real;
    TempHi, TempLow, TempStep : Real;
    J, Last, P : Integer;
    Okay, FirstPass, Init, Skip : Boolean;
    I j
    Data
    DataFile : String[14];
    StoDataFile : String[14];
    Sequence
    : Integer;
    SequenceNum : String[2];
Label
    Next;
```


Procedure SetUp;

Begin
ClrScr;
TempHi := 400; TempLow $:=220 ;$ TempStep $:=10 ;$
IMin $:=1.6 \mathrm{E}-3$; Imax $:=2.1 \mathrm{E}-3$; IStep $:=5 \mathrm{E}-5$;
Write ('Vgs (must be -ve number) = ?'); Readln
(Vgs);
Write ('Data File Name = ? '); Readln
(DataFile);
Sequence :=0;
SequenceNum := '0';
$\mathrm{W}:=50$;
$\mathrm{L}:=0.25$;
Psi := 0.0001;
Io $:=1.0 \mathrm{E}-4$;
End;

Procedure Temp_300Var;
Var
Vds : Real;
Begin
Vout := Vss - Vgs;
Vds := Vdd - Vout;
R1 : = (Vout-Vss)/I1;
R1i : = R1/(1 + Psi*(300-273));
Im $:=$ Io*Exp((1-Alpha*Vds)/(Ns*Vthv)*(Vgs - Vto +
Gamma*Vds));
I2 $:=(\mathrm{I} 1-\mathrm{Im}) ;$
R2 $:=(3.3$-Vout) $/$ I2;
R2i : = R2/(1+Psi*(300-273));
End;

Procedure Calc_TempVar;
Begin
$\mathrm{Vp} \quad:=(\mathrm{Q} \star \mathrm{Nc} * \operatorname{Sqr}(\mathrm{t}) /(2 \star E s)) \star(\mathrm{Temp} / 292) ;$
Vthv := (K/Q)*Temp;
Vto $:=V t h v^{\star} \operatorname{Ln}(N c / n i)-V p$;
If Not Init Then
Begin
R2 $:=R 2 i \star(1+P s i *(T e m p-273))$;
R1 : = R1i*(1+Psi*(Temp-273));
End
End;
Procedure Im_Solve;
Var
Vds, Vgs, Vt :Real;

```
Begin
    Vds := Vdd - Vout;
    Vgs := Vss - Vout;
    Im \(\quad:=\) Io*Exp( ((1-Alpha*Vds) \(/(\mathrm{Ns} * V t h v)) *(V g s-\)
Vto+Gamma*Vds));
End;
Procedure Ir_Solve;
Var
    V1, V2 : Real;
Begin
    V1 : = Vout - Vss;
    I1 \(:=\mathrm{V} 1 / \mathrm{R} 1\);
    V2 : = 3.3-Vout;
    I2 \(:=\mathrm{V} 2 / \mathrm{R} 2\);
End;
(*Procedure Test_Bias (Var OKAY : Boolean);
Const
    Tol \(=0.001\);
Var
    Itest : Real;
Begin
    Itest \(:=\mathrm{Im} /(\mathrm{I} 1-\mathrm{I} 2)-1\);
    If \(\mathrm{ABS}(\) Itest \()<=\) Tol Then OKAY \(:=\) True
    Else
        Begin
                OKAY := False;
                If (ABS (Itest) > 1) Then
Vdif := 0.05;
        If (ABS (Itest) < 1) And (ABS (Itest) >= 0.9) Then
Vdif := 0.01;
    If (ABS (Itest) < 0.9) And (ABS(Itest) >= 0.8) Then
Vdif := 0.005;
        If (ABS (Itest) < 0.8) And (ABS(Itest) >=0.7) Then
Vdif := 0.001;
    If (ABS (Itest) < 0.7) And (ABS(Itest) >=0.6) Then
Vdif := 5e-4;
    If (ABS (Itest) < 0.6) And (ABS (Itest) >=0.5) Then
Vdif \(:=1 e-4\);
    If (ABS (Itest) < 0.5) And (ABS (Itest) >=0.4) Then
Vdif :=5e-5;
    If (ABS (Itest) < 0.4) And (ABS(Itest) >=0.3) Then
Vdif \(:=1 e-5\);
    If (ABS (Itest) < 0.3) And (ABS (Itest) >=0.2) Then
Vdif :=5e-6;
```

```
    If (ABS(Itest) < 0.2) And (ABS(Itest) >= 0.1) Then
Vdif := 1e-6;
    If (ABS(Itest) < 0.1) And (ABS(Itest) >= 0.05) Then
Vdif := 5e-7;
    If (ABS(Itest) < 0.05) And (ABS(Itest) >= 0.01) Then
Vdif := 1e-7;
    If (ABS(Itest) < 0.01) Then
Vdif := 5e-8;
    If Itest > 0 then
    Vout := Vout + Vdif
    Else
        Vout := Vout - Vdif;
        End;
    Writeln ('Itest=',Itest:10,' Im= ',Im:10,' I1-I2=',(I1-
I2):10,
End;*)
    ' Vdif= ',Vdif:10,' Vout=',Vout:4:3);
```

Procedure Test_Bias (Var OKAY : Boolean);
Const
Tol $=0.001$;
Var
Itest : Real;
Begin
Itest $:=\mathrm{Im} /(\mathrm{I} 1-\mathrm{I} 2)$ - 1 ;
If $\mathrm{ABS}($ Itest) $<=$ Tol Then
OKAY := True
Else
Begin (ABS)
If FirstPass Then
Begin (FirstPass)
Vdif := 0.0001;
If Itest > 0 then
Vout := Vout + Vdif
Else
Vout := Vout - Vdif;
FirstPass := False;
End (FirstPass)
Else
Begin (Subsequent Passes)
If Itest > 0 then
Begin
If Ilast < 0 then Vdif $:=$ Vdif*0.5;
Vout := Vout + Vdif
End
Else
Begin
If Ilast > 0 then Vdif $:=$ Vdif*0.5;

```
        Vout := Vout - Vdif
        End;
        End; (Subsequent Passes)
        End; (ABS)
        Ilast := Itest;
        ( Writeln ('Itest= ',Itest:10,' Im= ',Im:10,' I1-I2=
',(I1-I2):10,' I= ',I:4);)
End;
Procedure Store_Data;
Var
    J : Integer;
Begin;
    StoDataFile := DataFile+' '+SequenceNum+'.Dat';
    Assign (Data, StoDataFileT;
    Rewrite (Data);
    For J := 1 to Last do
        Writeln(Data, Ij[J]);
    Flush (Data);
    Close (Data);
    Sequence := Sequence + 1;
    Str(Sequence, SequenceNum);
End;
Begin
    SetUp;
    I := Imin;
    Repeat
        Temp := 300;
        I1 := I;
        Init := True;
        Calc_TempVar;
        Init}\mp@subsup{}{}{-}:= False
        Temp 300Var;
        Skip-
        Temp := TempLow;
        P := 0;
        Write ('I= ',I:8,' Im= ',Im:10,' Vgs= ',Vgs:1:3,' R1=
',R1:4:0,' R2= ',R2:5:0);
( Writeln ('Temp Vref Vout Vgs Im
I1-I2');)
        Repeat
            P := P+1;
            OKAY := False;
            FirstPass := True;
            J := 0;
            Calc_TempVar;
            Repeāt
                J := J + 1;
                Im_Solve;
                Ir`Solve;
                Te\overline{st_Bias (OKAY);}
```

```
            If KeyPressed then exit;
    Until (OKAY = True) OR (J > 2000);
        If J > 2000 then
            Begin
                Writeln (' No convergence.');
                Temp := TempHi + TempStep;
                Skip := true;
                Goto Next;
            End;
                            ( Writeln (Temp:0:0,' ',(Vdd-Vout):5:3,'
',Vout:5:3,' ',(Vss-Vout):4:3, , (Im-I2):10);)
    Ij[P] := Im;
    Next: Temp := Temp+TempStep;
        Until Temp >= TempHi + Tempstep;
        Last := P;
        (Store Data;)
        If not }\mp@subsup{}{}{-}\mathrm{ Skip then
        Writeln ('Icoef = ',(Abs(Ij[1]-Ij[Last])/180):10);
        I := I + Istep;
    Until I >= Imax + Istep;
End.
```

```
Const
    \(\mathrm{K}=1.3806 \mathrm{E}-23\);
    \(\mathrm{Q}=1.60218 \mathrm{E}-19\);
    \(\mathrm{Es}=1.1599 \mathrm{E}-12\);
    \(\mathrm{Nc}=4.0 \mathrm{E} 17\);
    ni \(=2.0 \mathrm{E} 6 ;\)
    \(t=6.6 \mathrm{E}-6\);
    Ido \(=1.0 \mathrm{E}-4\);
    Vdd \(=3.3\);
    Vss \(=-2.0 ;\)
    \(\mathrm{W} 1=50\);
    \(\mathrm{L} 1=0.25 ; \quad \mathrm{L} 2=0.25\);
    Alpha \(=0.046\);
    \(\mathrm{Ns}=1.671\);
    Gamma \(=0.07\); (Vds Coefficient of Isub)
    Lambda \(=0.05\);
    Theta \(=2.2\);
    Psi \(=0.0001\); (Temperature Coefficient of
resistor)
    T300 \(=300\);
    \(\mathrm{U} 300=3500\);
```

Var
Vo, V1, V2 : Real;
Io, I1, I2, I3 : Real;
Ro, R1, R2, R3
Vthv, Vbi, Vp, Vto, Vt : Real
Roi, R1i, R2i, R3i : Real;
Ilast, Ibias, Vbias : Real;
Vdif, Idummy : Real;
Temp, TempHi, TempLo, TempStep : Real;
Beta, W2
FirstPass, Okay
Pass, Dummy, Converge
C, Last
Data
DataFile
StoDataFile
Vref
Real;
Procedure SetUp;
Begin
ClrScr;
(Write ('High Temperature = ? '); Readln
(TempHi);

```
    Write ('Low Temperature = ? '); Readln
(TempLo);
    Write ('Temperature Step = ? '); Readln
(TempStep);)
    TempHi := 400; TempLo := 220; TempStep := 10;
    Write ('Ro = ? '); Readln
(Ro);
    Write ('R1 = ? '); Readln
(R1);
    Write ('R2 = ? '); Readln
(R2);
    Write ('R3 = ? '); Readln
(R3);
    Write ('W2 = ? ');; Readln
(W2);
    Write ('DataFile = ? '); Readln
(DataFile);
    Roi := Ro/(1 + Psi*(T300-273));
    R1i := R1/(1 + Psi*(T300-273));
    R2i := R2/(1 + Psi*(T300-273));
    R3i := R3/(1 + Psi*(T300-273));
End;
```

Procedure Initial_Guess;
Begin

$$
\begin{aligned}
& \text { Vo }:=0.74 ; \\
& \text { V1 }:=-1.25 ; \\
& \text { V2 }:=0.0 ;
\end{aligned}
$$

End;

```
Procedure Calc_TempVar (Var Vthv, Vto : Real;
                        Var Ro, R1, R2, R3 : Real);
```

Begin
Vthv $:=(\mathrm{K} / \mathrm{Q}) *$ Temp;
Vbi :=Vthv*Ln(Nc/ni);
$\mathrm{Vp} \quad:=\left(\left(\mathrm{Q} * \mathrm{Nc}^{*} \operatorname{Sqr}(\mathrm{t}) /(2 * E s)\right) *(\right.$ Temp/292));
Vto $:=\mathrm{Vbi}-\mathrm{Vp}$;
Ro $:=\operatorname{Roi} *(1+\operatorname{Psi} *(T e m p-273))$;
R1 : = R1i*(1 + Psi*(Temp-273));
R2 : = R2i*(1 + Psi*(Temp-273));
R3 : = R3i*(1 + Psi*(Temp-273));
End;

Function Tanh (X : Real) : Real;
Var

$$
A, B \quad: R e a l ;
$$

Begin
$\mathrm{A} \quad:=\operatorname{Exp}(X)$;
B $\quad:=\operatorname{Exp}(-X)$;
$\operatorname{Tanh}:=(A-B) /(A+B) ;$
End;
$\begin{aligned} \text { Procedure Calc_Ibias (} \quad \begin{array}{l}\text { Branch } \\ \text { Var Ir, Im } \\ \\ \mathrm{V}\end{array} & \text { Integer; } \\ & \text { Real; } \\ & \text { Real); }\end{aligned}$
Var
Vds, Vgs : Real;
Ip, I1, I3 : Real;
Begin
Case Branch of
0 : Begin
Ir $:=(\mathrm{Vdd}-\mathrm{V}) / \mathrm{Ro}$;
$I m:=0.0 ;$
End ;
1 : Begin
$\mathrm{Vds}:=\mathrm{Vo}-\mathrm{V}$;
Vgs $:=\mathrm{Vss}-\mathrm{V}$;
Im $:=I d o * E x p((1-A l p h a * V d s) /(N s * V t h v) *(V g s-$
Vto+Gamma*Vds));
$\mathrm{I} 1:=(\mathrm{V}-\mathrm{Vss}) / \mathrm{R} 1$;
I3 $:=(\mathrm{Vdd}-\mathrm{V}) / \mathrm{R} 3$;
Ir $:=(I 1-I 3) ;$
End;
2 : Begin
$\mathrm{Vgs}:=0.0-\mathrm{V}$;
Vds $:=\mathrm{Vo}-\mathrm{V}$;
Ip :=
(W2/L2)* (Sqr(Q*Nc*t)*t*U300*T300/Temp)/(6*Es);
Beta $:=I p / S q r(V p) ;$
Vt := Vto - Gamma*Vds;
Im := Beta*Sqr(Vgs-
Vt)* (1+Lambda*Vds)*Tanh (Theta*Vds);

$$
\operatorname{Ir}:=(V-V s s) / R 2 ;
$$

End;
End;
End;

Procedure Test_Bias (Ir, Im $\begin{aligned} \text { Var Vbias } & \text { : Real; Real; } \\ & \text { Var Okay }: \text { Boolean); }\end{aligned}$
Const

$$
\text { Tol }=0.0005 ;
$$

```
Var
    Itest : Real;
Begin
    Itest := Abs(Ir/Im) - 1;
    If Abs(Itest) <= Tol Then
    Okay := True
    Else
        Begin
            If FirstPass then
                Begin (FirstPass)
                Vdif := 0.0005;
                If Itest > 0 then
                                    Vbias := Vbias - Vdif
                            Else
                            Vbias := Vbias + Vdif;
                FirstPass := False;
            End (FirstPass)
                Else
                        Begin (Subsequent Passes)
                        If Itest > 0 then
                                Begin
                                    If Ilast < O then Vdif := Vdif*0.5;
                                    Vbias := Vbias - Vdif;
                                End
                        Else
                                    Begin
                                    If Ilast > 0 then Vdif := Vdif*0.5;
                                    Vbias := Vbias + Vdif;
                                End;
                    End; (Subsequent Passes)
            End; (Abs(Itest)
    Ilast := Itest;
End;
Procedure Set_Bias (Branch : Integer;
                                    Var I, V : Real;
                                    Var Converge : Boolean;
                                    Var Flag : Boolean);
Var
```

```
Im, Ir, Io : Real;
```

Im, Ir, Io : Real;
J : Integer;
J : Integer;
Begin
Vbias := V;
Ibias := I;
Okay := False;
FirstPass := True;
J := 0;
Repeat
J := J + 1;

```

Case Branch of
0 : Begin Calc_IBias ( \(0, ~ I o, ~ I d u m m y, ~ V b i a s) ;\) Test-Bias ((I1+I2), Io, Vbias, Okay); Ibias := Io;
End;
1 : Begin
Calc_IBias (Branch, Ir, Im, Vbias);
Test \({ }^{-}\)Bias (Ir, Im, Vbias, Okay); Ibias := Im;
End;
2 : Begin
Calc_IBias (2, Ir, Im, Vbias); Test \({ }^{-}\)Bias (Ir, Im, Vbias, Okay); Ibias \(:=\) Im;
End;
End;
Until (Okay) Or (J >10000);
If \(\mathrm{J}>10000\) then
Begin
Writeln ('No Convergence in branch ', Branch: 2, '.
Program Terminated');
Converge : = False;
End;
If \(J=1\) then Flag := True;
I := Ibias;
V := Vbias;
End;
Procedure Store_Data;
Var
I : Integer;
Begin
StoDataFile \(:=\) DataFile+'. Dat';
Assign(Data, StoDataFile);
Rewrite(Data);
For \(I\) := 1 to Last Do
Writeln (Data, Vref[I]);
Flush (Data);
Close (Data);
End;

Begin
SetUp;
Initial_Guess;
Writeln ('Temp Vref Vo V1 V2 Io
I1
I2');
Temp := TempLo;
Pass := False;
Converge := True;
C : = 0;
Repeat (Temperature loop)

Calc TempVar (Vthv, Vto, Ro, R1, R2, R3);
C: \(=C^{-}+1\);
Repeat (Bias Setting Loop)
Set Bias (1, I1, V1, Converge, Dummy); If Not Converge then Exit;

Set Bias (2, I2, V2, Converge, Dummy); If Not Converge then Exit;

Set_Bias (0, Io, Vo, Converge, Pass); If Not Converge then Exit;

If KeyPressed then exit;
Until Pass = True;
Vref[C]:=(Vdd-Vo);
If V2 > 0 Then
Writeln(Temp:0:0,' ', (Vdd-Vo):5:4,' ', Vo:4:3,'

End.```

