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The eventual deployment of wave energy converters (WECs) on a commer-
cial scale will necessitate the grouping of devices into arrays or “wave farms,”
in order to minimize overhead costs of mooring, maintenance, installation,
and electrical cabling for shoreward power delivery. Closely spaced WECs will
interact hydrodynamically through diffracted and radiated waves. Recent re-
search has focused on the WEC wave field and used its structures to design
constructive WEC arrays as well as to describe the means of WEC energy
absorption. In this study, the WEC wave field is investigated for a single
WEC and a five WEC array with linear wave theory and experimental results.
Both regular waves and spectral seas are considered. Computational results
are produced with the linear boundary-element-method (BEM) hydrodynamic
software WAMIT for a simple WEC geometry. Experimental data comes from
WEC array tests that took place at Oregon State University over the winter of
2010-11 [1]. The experimental measurements help validate the computational
modeling, and the computational models serve as an aid to interpreting the
experimental data.

Results reveal two universal WEC wave field features - partially standing
waves and a wave shadow, both of which are the result of the coherent interac-
tion of the planar incident wave with the circular generated wave, composed of
the diffracted and radiated waves. The partial standing waves in the offshore
are seen qualitatively in experimental data but could not be exactly reproduced
computationally, because the computational model is only a simple represen-
tation of the physical model. In the lee of the WEC, the measured longshore
structure of the wave shadow is in good agreement with theoretical expecta-
tions as well as computational results. It is believed that the agreement is



because the formation of the wave shadow is dominated by energy extraction,
which was approximately the same for both the computational and physical
models.

A study of the linear WEC wave field in regular waves and spectral seas
reveals patterns such as the wave shadow that have also been found in experi-
mental data. The positions and magnitudes of the offshore partially standing
waves are very sensitive to wavelength, and WEC geometry, motions and lo-
cation, and in spectral seas, they are smoothed when considering significant
wave height. All of which suggest that it may be difficult to use them ad-
vantageously in the design of WEC arrays. The wave shadow is a dominant
feature of the WEC wave field for both regular waves and spectral seas. It
appears to be fairly generic and to be based on power absorption. In the
design of WEC arrays, rather than attempting constructive interference by
using standing wave crests, perhaps the best one can do is to avoid destructive
interference of the wave shadow.
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Wave Field Patterns Generated by Wave
Energy Converters

1 Introduction

Anyone who has been in a boat in a crowded river or lake has felt the effects
of hydrodynamic interactions between floating bodies. Waves from one boat
propagate through the water, become incident upon and create motion in
other vessels. Typically, the waves are the Kelvin wake generated by the boat’s
steady forward motion. Wave energy converters (WECs) generally do not move
at a steady speed. Instead, they oscillate about a mean position and so the
hydrodynamic interactions between multiple closely spaced WECs are via two
other types of waves, diffracted waves and radiated waves. When boat wakes
intersect the resulting wave is the combination of each wake, which in some
cases is larger and others smaller than each wake independently. Similarly,
the coherent interaction of the incident, diffracted and radiated waves creates
spatial variations in the wave height around a single WEC or arrays of WECs.
An example of a WEC wave field is shown in Fig. 1.

A fundamental facet of WECs is that they remove energy from the waves,
and so by conservation of energy, they necessarily must decrease the net wave
height, which is related to wave energy. In fact, they not only remove energy
but also redistribute it. In the wave field shoreward of a group of WECs, wave
energy removal may affect coastal processes such as erosion and accretion,
human commercial and recreational activities, environmental and biological
processes, and even the efficacy of other arrays of wave energy converters. In
the near WEC wave field, this has significant implications to the design of
WEC arrays.

The eventual deployment of WECs on a commercial scale will necessitate
the grouping of devices into arrays or “wave farms,” in order to minimize over-
head costs of installation, mooring, maintenance, and electrical cabling for
shoreward power delivery. Closely spaced devices are not isolated from one
another, but interact hydrodynamically. Despite WEC energy removal, hy-
drodynamic WEC array interactions have been shown in theory under certain
circumstances to be constructive; that is, by interacting the power performance
of the array is greater than the sum of isolated individual performances. How-
ever, the assumptions made in these computations may not be realistic. In
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Figure 1: The picture shows the wave elevation of an array of five cylindrical
WECs as computed by WAMIT. The image is stretched in the z-direction in
order to magnify the size of the waves.

any case, the design of WEC arrays or array optimization is complex, but will
have a significant impact on the power performance and economics of a wave
farm.

In the past, array optimization has focused on performance as the only
parameter to guide the spatial configuration of WEC arrays. Hydrodynamic
interactions were implicit in the formulations of performance through the ra-
diation and excitation forces, but the interaction of various waves was not
explicitly examined. Only recently have researchers looked specifically at the
WEC wave field, and used it to guide spatial WEC array design. For ex-
ample, Child and Venugopal [2] exploited standing waves in their Parabolic
Intersection method to design constructive arrays. Herein, the so-called “wave
shadow” in the lee of a WEC is described.

Physically, WECs absorb wave energy when wave momentum is transferred
to the mechanical motions of the device, which is converted down the line to
other forms of energy. However, the process is not simple - some wave energy
is reflected off the device; at times the device transfers energy back to the wave
field through a momentum exchange; and within the wave field, wave energy
diffuses spatially. Fortunately, linear water wave theory serves to simplify the
wave-body interaction processes and computations.

Under the assumptions of potential flow, small wave height, and small body
motions, linear wave theory breaks down the wave field into the superposition
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of three components - the incident wave, the diffracted wave, and the radiated
waves. The incident wave is the wave that exists in the absence of submerged
bodies. The diffracted wave is the wave that is generated when the incident
wave interacts with fixed (not moving) submerged or partially submerged bod-
ies. One could think of the diffracted wave as similar to a reflected wave, but
it includes a wave field that propagates at all directions. Radiated waves exist
for each mode of motion of the device. For a given mode, the radiated wave
is generated by the device motion in the absence of incident waves.

In linear wave theory, energy is removed from and redistributed within
the wave field by the precise relationship in amplitude and phase of the in-
cident wave to the combined diffracted and radiated waves. Farley [3] calls
the combined diffracted and radiated waves the generated wave. Offshore, the
redistribution occurs as partially standing waves. In the lee of a WEC, the
energy redistribution and removal combine to create a wave shadow. These
wave field patterns exist for a regular wave at a given incident wave frequency
and direction. In reality, WEC arrays will operate in spectral seas, in which
wave energy is spread over wave frequency and direction. Spectral seas can
be approximated as multiple incident wave components at different frequency-
direction pairs, and which, under linear wave theory are independent of one
another. Wave fields can be computed separately for each wave component
and then the results combined to produce a spectral wave field. Consideration
of the spectral wave field is critical to the optimization of WEC arrays for real
conditions.

In this thesis, WEC wave fields are studied explicitly with linear wave
theory and through experimental data analysis in order to show fundamen-
tal patterns that could be helpful in the design of WEC arrays. Results are
shown as plots of wave elevation and wave energy flux for regular waves and as
plots of significant wave height and wave spectra for irregular waves. Compu-
tational results are produced by the linear boundary-element-method (BEM)
hydrodynamic software WAMIT for a simple WEC geometry. Experimental
data comes from WEC array tests of a device designed by Columbia Power
Technologies, Inc. The experiments took place in the O.H. Hinsdale Tsunami
wave basin at Oregon State University over the winter of 2010-11 [1]. The ex-
perimental results help to validate the computational model results, and the
computational models serves as an invaluable aid to interpreting the experi-
mental data.
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Phase-resolving linear wave theory is one of many computational meth-
ods available with which to model the WEC wave field. And so in addition,
a comparison is made of the phase-resolved wave field to that of a phase-
averaged computational model, SWAN. Phase-averaged models are not able to
model some of the physical wave-structure interaction processes explicitly, but
can be augmented with physics-based parametric approximations. In general,
they are computationally faster and can cover a broad domain with a realistic
bathymetry. The goal of the comparison was the explore the adequacy of the
phase-averaged model in reproducing the linear WEC wave field.

The importance of hydrodynamic interactions in the design of wave farms
should not be underestimated. They will have a significant impact on the
overall performance and hence the economics of the wave energy. There are
numerous methods for computing WEC array interactions. Some require sig-
nificant computation time and do not elucidate the means of the interactions,
that is the WEC generated wave field. Recent research has studied the wave
field explicitly and found it to be useful for understanding WEC energy absorp-
tion and array interactions, and for designing WEC arrays. Results discussed
in this paper expand upon previous WEC wave field research and show some
WEC wave field patterns experimentally. It is believed that the patterns are
fundamental and apply generally to WECs of any type. WEC engineers could
to apply the understanding of WEC wave field patterns as rules-of-thumb in
their preliminary array designs.



5

2 Background

A great variety of computational methods exist for modeling wave energy con-
verter arrays, and an excellent review and comparison is given by Folley et
al. [4]. Herein, the focus is linear wave theory, which because of its rela-
tive simplicity has historically been the dominant theoretical framework for
studying WEC arrays. In this section, a brief review of array computations,
optimization, and wave field studies based on linear wave theory is given.

2.1 Computation of WEC Array Performance

The linear wave theory methods used in the computation of WEC array per-
formance have developed from analytical to numerical with advances in com-
puting power. Although numerical methods are fairly common now, some
of the original analytical methods are still useful for promoting conceptual
understanding, and they perform well within the range of their assumptions.

The commonly used measure of WEC array performance is the factor q.

q =
Power of Array

N × (Power of a Device)

where N is the number of devices in the array. A q greater than 1 signifies
constructive interference and is desirable. A q less than 1 indicates destructive
device interaction, and a q equal to 1 means that there is no net gain from the
array. Although it is not the only means of measuring WEC array hydrody-
namic interaction, it is the most commonly used, has a simple and universal
scale, and shall be referenced throughout this document.

The very first studies [5, 6, 7] on WEC array performance used two impor-
tant assumptions: 1) the point absorber assumption and 2) optimal motions.
The point absorber assumption states that the dimensions of an individual
WEC are much smaller than the incident wavelength, and so the diffracted
wave can be neglected. The interaction of the radiated wave with the incident
wave is the only means of hydrodynamic interactions between the devices.
One may wonder why, if the body is small enough to neglect the diffracted
wave, should the radiated wave be significant. This is generally attributed
to the assumption of optimal motions [8]. It was found by Evans [6] that if
the radiation and excitation forces are known for every mode of motion of
every body (all degrees of freedom), there exists an amplitude and phase of
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motion for each degree of freedom that maximizes the total power absorption
of the incident wave by the array.1 Depending on incident wave frequency and
the properties of the radiation interaction, the amplitudes of these motions
could be very large, and in some cases unrealistically large. Because the body
motions are large, the amplitude of the radiated wave is proportionally large
(assumed to be much larger than the diffracted wave).

Later work improved upon these assumptions. Thomas and Evans [7]
showed that for a row of five semi-submerged spheres the amplitude of optimal
motions could be eight times higher than the incident wave height, which is
physically unlikely. In addition to computing the performance of the array
oscillating with optimal amplitude, they found the performance for motions
where the amplitude was limited to two and three times the incident wave
amplitude. Simon [9], developed the plane wave method to approximate the
diffracted wave as well as scattering by the radiated waves in WEC arrays.
The method states that if the devices are spaced far enough apart, a diffracted
or radiated wave from device 1 incident on device 2 could be modeled as a
plane sinusoidal wave at device 2 of an amplitude defined by the scattering
properties of and distance from device 1. Kagemoto and Yue [10] devised a
fully analytical method for solving hydrodynamic interactions within arrays of
floating bodies that included forces due to propagating and evanescent wave
modes. If the forces and wave response for each individual body is known,
then the hydrodynamic problem can be formulated into a matrix and solved
efficiently. Their method is exact within the context of linear wave theory.

Except for relative simple canonical cases, numerical methods are required
for finding the diffracted and radiated wave fields and forces on submerged ge-
ometries. One of the more common methods is the boundary-element method
(BEM), which is the method employed by WAMIT to solve linear hydrody-
namic problems in the frequency domain [11]. In its most fundamental sense,
the BEM is known as the integral method because a solution to the flow
(Laplace’s equation), is found by integrating source or dipole distributions
over the surfaces in the boundary value problem. In the traditional low-order
version of the BEM, wetted surfaces are discritized into quadrilateral panels
containing a source or dipole. The source or dipole strength is determined so
that the boundary conditions on all the panels are met [12]. The implementa-
tion of the BEM in WAMIT is described in the WAMIT User’s Manual [11].

1Section 3.3 explains the optimal motions mathematically.



7

Several authors have used WAMIT [13, 14, 15, 16, 17] or another BEM code
[18, 19, 20] to solve for the hydrodynamic forces in WEC arrays.

Early methods in computing WEC array hydrodynamics made significant
assumptions about the motion and size of the WECs. Later methods im-
proved upon these assumptions so that the WEC array problem can now be
solved completely for any number of bodies with arbitrary geometries under
the assumptions of linear wave theory.

2.2 WEC Array Optimization

The primary goal of array design is to maximize the output power of the array
for its intended wave conditions within the limits of cost, safety, and practical-
ity. Such an effort is called array optimization. In general, array optimization
includes the design of the spatial layout of the devices as well as individual-
ized control and power take-off (PTO) settings. Several studies have shown
that individualizing the PTO settings can have significant benefits to the ar-
ray performance [18, 14, 15]. Optimization of the array would necessitate the
simultaneous optimizations of both the layout and the PTO properties, which
is a complex problem. In the present study on the hydrodynamic interactions,
WEC array optimization is only with respect to the spatial configuration of
the WECs in the wave field.

Many early studies of WEC array hydrodynamic interactions only con-
sidered a single row or a regular grid of evenly spaced devices and exam-
ined the performance as a function of the separation distance between devices
[5, 6, 7, 21, 9]. They showed very high q values at certain ratios of device
spacing to wavelength and q values much less than 1 at others. For a given
wave frequency and direction, the spacing between the devices could be tuned
to optimize the array performance. However, at that same array spacing, sig-
nificant losses would occur at other wave frequencies and directions. Because
real seas are spectral and vary temporally, it is clearly not possible to achieve
consistent constructive hydrodynamic interference.

Recognizing this characteristic, McIver [8] stated:

...part of a practical strategy for the design of wave-power stations
with large numbers of devices might be to seek to reduce destruc-
tive interference effects, perhaps by using unequal spacing, rather
than attempt large increase in power absorption through construc-
tive interference.
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He computed the performance for a row of devices with unequal spacing and
found that q was consistently much closer to 1 for all frequencies and directions
examined. Mavrakos and Kalofonos [22] computed the performance of two
irregular WEC array arrangements and compared them to a regular row of
devices. For the irregular array configurations, they also found q to be more
consistently near 1 over all frequencies. Neither of these studies attempted to
optimize the array configuration for a given set of wave conditions.

More recent research has examined arrays in relatively simple configura-
tions: a pair of devices [18, 19], a triangle [17], an “X” shape [23], and a square
[14], in both regular and irregular waves. Borgarino et al. [20] examined trian-
gular and regular grids of 9, 16, and 25 WECs in spectral seas and found that
the triangular grid performed better than the regular grid. In several stud-
ies, the effect of device spacing on the array performance was examined, but
in none was an optimization performed to find the arrangement of maximum
power production.

Fitzgerald and Thomas [24] performed a constrained nonlinear optimiza-
tion of the configuration of an array of five spherical WECs at a single fre-
quency under the point absorber and optimal motions assumptions. Their
optimal arrangement had a q value of 2.77, which is extremely high for such
a small number of devices. In the same paper, they presented a consistency
condition, which states that under the point absorber assumption at a given
frequency, the average of q over all wave directions is 1. This means that for
any region of constructive interference at one direction, there must be an equal
amount of destructive interference at other directions. The plots of the q factor
versus direction for the optimal arrangement show a large spike of 2.77 at the
direction for which the array was designed, and values near or less than 1 at
all other directions. Fitzgerald and Thomas’s optimization was the first of its
kind but it was performed within the possibly unrealistic context of optimal
motions and point absorber theory.

Folley and Whittaker [16] found optimal configurations of two, three, and
four point absorbers with optimal motions for spectral seas. To find the op-
timal configuration, they mapped values of the average q factor (traditional q
factor scaled by the incident wave energy) to values of the parameter space.
In spectral seas, the average q factor of the optimal array was always close
to 1. The use of spectral seas was a step forward in array design, but the
optimization was still performed with point absorber and optimal motions
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assumptions.
Child and Venugopal [2] used the exact analytical method of Kagemoto

and Yue to solve for an array of five cylindrical WECs. To find optimal con-
figurations, they used a genetic algorithm and a novel heuristic method, which
they termed the Parabolic Intersection (PI) method. They found parabolic-
like contours around a single device where the incident wave was in-phase and
out-of-phase with the combined radiated and diffracted wave. The parabolic
intersection method takes advantage of the parabolas formed by either the
incident and diffracted wave or the incident and radiated wave to guide the
placement of devices in an array. Devices placed on in-phase parabolic curves
lead to higher array performance, because these intersections indicate the lo-
cation of crests of partial standing waves. Although their genetic algorithm
method did not explicitly guide the WEC positions towards in-phase crests,
the optimal configurations found by the genetic algorithm had devices located
on such crests. The optimization was performed for a single frequency and
direction, but they examined the performance of the optimal arrays as a func-
tion of frequency and direction. Child and Venugopal’s research was the first
time that the wave field had been explicitly utilized in the design and analysis
of a WEC array.

2.3 WEC Wave Field

Under linear wave theory, harmonic wave components can be superimposed
to create a total wave field. If progressive wave components are of differ-
ent frequencies, they travel at different speeds and pass through one another.
However, if the waves are of the same frequency (coherent), their interaction
is different and can lead to wave magnification, cancellation, and partially or
fully standing waves depending on the relationship between the amplitude,
phase and direction of the waves.

This can be most easily understood with a two-dimensional example. Con-
sider two waves of the same frequency and traveling in the same direction
with amplitudes a1 and a2, respectively. When the waves are in phase, the
result is a harmonic wave traveling in the same direction with an amplitude
a1 + a2. When the waves are out of phase, they result in a wave of amplitude
less than a1 + a2 reaching a minimum of 0 when the waves are 180◦ out of
phase. Now, consider the wave components traveling in opposite directions.
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Figure 2: The figure shows the superposition of two 2D waves travelling in
opposite directions. The resultant wave is a partially standing wave shown at
the bottom. The solid line shows the waves at time, t = 0 s, and the dashed
line shows the waves at a future time, t = T/4 s, where T is the wave period.
The black dashed line shows the envelope of the standing wave. Note how the
resultant wave increases in amplitude from t = 0 s (at a node) to t = T/4 s
(at an anti-node).
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When the amplitudes of the two waves are the same, the result is a fully stand-
ing (non-progressing) wave. When the amplitudes are not equal, the result is
a partially standing wave progressing in the direction of the wave with the
higher amplitude (see Fig. 2). The amplitude of a two-dimensional standing
wave forms a simple harmonic pattern of nodes and anti-nodes. The node is
the location of minimum wave height; for a fully standing wave the node has
zero wave height. The anti-node is the location of maximum wave height. The
positions of the nodes and anti-nodes are determined by the phasing relation-
ship between the wave components. One can now imagine placing WECs in
the two-dimensional standing wave field. It seems that a WEC placed at an
anti-node would perform better than a WEC at a node.

A similar behavior occurs in three-dimensional wave fields except the pat-
terns are more complex because there are many wave directions and because
the waves do not have to be planar, but can also be circular. Modern studies
have investigated the wave field to improve the understanding of WEC array
hydrodynamics and guide the design of WEC configurations. Child and Venu-
gopal [2] applied wave field structure to an array design method and to the
analysis of their results. Newman and Mei [25] plotted the wave amplitude
across a row of nine floating bodies computed with WAMIT and showed wave
amplitudes four times greater than the incident amplitude due to so called
“trapped” waves. Although it was not a plot of the wave field explicitly, Folley
and Whittaker [16] plotted the magnitude and direction of the total radiated
wave for certain array arrangements and used the plots to discuss array perfor-
mance. Kalen [13] produced plots of the wave elevation for arrays of 2, 7, and
420 point absorbers and used wave elevation at each WEC as an indicator of
performance. Borgarino et. al [20] plotted the wave elevation of a single WEC
and three WECs in their array configurations to show that at the optimal
separation distance, certain WECs were in the peak of standing waves.

It was shown early in WEC research that a WEC could absorb power from
an incident wave front much wider than its physical dimensions. For instance,
a heaving axisymmetric WEC of any size can theoretically absorb energy from
a width of the incident wave front equal to λ/2π, where λ is the wavelength
[26]. This may seem physically unintuitive but is similar to the way in which
an electromagnetic antenna can absorb power from an area wider than its
physical width. Within the context of linear wave theory, power absorption is
explained mathematically by the destructive interference of the generated wave
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(combined diffracted and radiated waves) with the incident wave [27]. Because
the generated wave travels outward from the WEC in a circular pattern, it
interacts with the incident wave outside the physical dimensions of the WEC,
which explains the capture width phenomenon and has implications on the
size and shape of the wave shadow.

Recent papers have explored the process of energy extraction in the wave
field in more detail. Wypych et al. [28] used analytical functions for radiated
waves produced by heaving and surging point sources to compute the energy
flux through a cylindrical control surface. From a wave field formulation,
they were able to derive classical absorption equations for point absorbers.
Farley [3] defined the term “generated wave,” which he said is the sum of all
waves both diffracted and radiated created by any number of power absorbing
bodies. He plotted the wave field energy flux over a transect perpendicular to
the direction of the incident wave propagation. He was also able to derive the
classical limit of point absorber capture width. Most interestingly he showed
that only the portion of generated wave that propagated in the direction of
the incident wave is responsible for power capture. The wake or wave shadow
of any single WEC or WEC array always has the same general form at a large
enough distance from the devices, and that form is based on the power capture.
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3 Methods

In this study, WEC motions and wave field properties are computed with linear
water wave theory. Linear wave theory rests on two significant assumptions,
first that the fluid can be described with potential flow and second that the
free surface and body motions are small. The potential flow condition states
that if the fluid can considered inviscid and irrotational, the fluid velocity
vector can be reduced to the gradient of the scalar velocity potential. For
the free surface to be small, the wave height must be much less than the
wavelength and the water depth. For body motions to be considered small,
the motion must be small with respect to the length scale of the body. The
linear wave theory principle of superposition justifies the decomposition of the
total velocity potential into velocity potentials due to the incident wave, the
diffracted wave, and radiated waves [29].

The following subsections describe the boundary value problem of linear
water wave theory, the formulation of the equations of body motion, and the
computation of power absorption by the body and through energy flux in the
wave field. Additionally, a simple theoretical WEC wave field is devised that
serves to illustrate mathematically some of its key features. In addition to
describing concepts, this section introduces the notation used throughout the
document.

3.1 Boundary Value Problem

Consider an arbitrary number bodies floating in an inviscid irrotational fluid.
A right-handed coordinate system is defined with positive z up, and the x− y

plane at z = 0 is the calm water surface. The fluid extends to infinity in
all x and y directions, and there is a flat sea floor at z = −h. Because the
fluid is inviscid and irrotational, it can be defined by a velocity potential,
Φ (x, y, z), where the velocity of the fluid is the vector, V = ∇Φ. Also assume
the motions of the bodies and fluid to be small and harmonic with a frequency
ω, so that Φ = Re {φeiωt},2 where i =

√
−1 and φ is complex valued. The

governing equation in the fluid domain (i.e. −h ≤ z ≤ 0 and external to all
body boundaries) is Laplace’s equation,

2Often in literature the time function is e−iωt, which results in a slightly different set of
equations. However, WAMIT uses eiωt and so that version shall be followed here.
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∇2φ = 0

On the sea floor (z = −h), the no penetration condition states

∂φ

∂z
= 0

On the linearized free surface (z = 0), the dynamic and kinematic boundary
conditions can be combined as

ω2φ = g
∂φ

∂z

where g is the gravitational constant.
The velocity potential can be separated into components consisting of the

incident wave potential, Aφi, the diffraction potential, Aφd, and radiation
potentials due to motion in each degree of freedom, ξjφj

r, where j is the index
of the jth motion. A is the complex amplitude of the incident wave. ξj is
the complex amplitude of the jth motion, and φj

r is the velocity potential due
to unit amplitude, zero phase motion in mode j in otherwise calm water. φi

is the velocity potential of a unit amplitude, zero phase incident wave and is
equal to

φi = i
g

ω

cosh k (h+ z)

cosh kh
e−ik(cos β·x+sin β·y) (1)

where β is the direction of wave propagation and k is the wave number. k is
related to the frequency by the dispersion relation

ω2 = gk tanh kh

φd is the velocity potential of the diffracted wave that results from a unit
amplitude, zero phase incident wave. Define the jth mode of motion response
to a unit amplitude, zero phase incident wave as ζj so that ξj = Aζj. For
floating bodies with a total of N degrees of freedom, the total velocity potential
is

φ = A

(
φi + φd +

N∑
j=1

ζjφj
r

)
(2)

The incident and the diffracted potential satisfy the boundary value prob-
lem for all bodies held fixed. Call S the wetted surface of all bodies and ∂

∂n
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indicates the partial derivative in the direction of the body surface normal. By
the no-penetration condition, on S the diffraction potential must satisfy

∂φd

∂n
= −∂φi

∂n

Each radiation potential, φj
r, is found for the unit amplitude, zero phase

motion j, which moves at a velocity iω in an otherwise undisturbed fluid. On
the wetted surface, S, motion j has a generalized normal nj, where nj is a
unit normal in the direction of the motion for translational modes and is the
cross-product of the unit normal and vector about the point of rotation for
rotational modes. On S, the radiation potential of the jth motion satisfies the
boundary condition

∂φj
r

∂n
= iωnj

Far from the bodies, the wave field should appear as the undisturbed or
incident wave field, which means that the diffraction and radiation potentials
must decay as the distance from the bodies increases. By energy conservation,
the magnitude of the potential should decrease with inverse of the square-root
of the distance. This is called the radiation boundary condition, and it is
stated as

φd, φ
j
r ∝ (kr)−1/2 e−ikr as r → ∞ (3)

where r is the radial distance from the body.
The velocity potential provides a complete description of the wave field.

The complex fluid velocity amplitude is

v = ∇φ (4)

From the Bernoulli equation, the complex dynamic fluid pressure is

p = −iωρφ (5)

where ρ is the fluid density. And the complex wave elevation is
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η = −iω

g
φ|z=0 (6)

=
1

ρg
p|z=0 (7)

Additionally, the velocity potential can be used to compute the hydrody-
namic forces and moments on the floating bodies. Just as the solution to the
boundary value problem was divided into a diffraction problem and a radiation
problem so too are the hydrodynamic forces. When the bodies are held fixed,
the force or moment on each mode of motion, j, is the excitation force, F j

ex,
which is the integral over the wetted surface of the incident plus diffracted
pressure in the direction of the generalized normal nj.

F j
ex = Re

{
f j
exe

iωt
}

f j
ex = −iωρA

ˆ ˆ
S

(φi + φd)n
jdS

The radiation force on mode j, F j
r , is slightly more complicated because it

is the summation of the integrals of the pressure forces generated by motion
in all modes including j.

F j
r = Re

{
f j
r e

iωt
}

f j
r =

N∑
k=1

−iωρAζk
ˆ ˆ

S

φk
rn

jdS

For unit amplitude motion, the velocity of the motion j is iωnj, which means
that from the radiation body boundary condition, iωnj = ∂φj

r

∂n
. The radiation

force can be rewritten as the force on mode j due to motion in kth direction

f jk
r = Aζk

[
−ρ

ˆ ˆ
S

∂φj
r

∂n
φk
rdS

]
The quantity in the brackets is the complex radiation resistance matrix and
is typically written in terms of the real added mass, Ajk, and damping, Bjk,
coefficients.
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−ρ

ˆ ˆ
S

∂φj
r

∂n
φk
rds = ω2Ajk − iωBjk

So the total force in mode j is the sum of the forces due to motions in mode
k.

f j
r = −A

N∑
k=1

(
−ω2Ajk + iωBjk

)
ζk

Since, ζ̇ = iωζ and ζ̈ = −ω2ζ,

f j
r = −A

N∑
k=1

(
Ajkζ̈k + Bjkζ̇k

)
Ajk applies a force proportional to body acceleration and Bjk applies a force
proportional to velocity, which explains the respective terminology, added mass
and damping.

Diffraction and radiation velocity potentials are found from the linear wa-
ter wave boundary value problem for an arbitrary number of floating bodies.
From the potentials, wave field properties are found including wave elevation,
pressure, and velocity. Wave pressure is used to compute the excitation force
and added mass and damping coefficient matrices.

3.2 Equations of Motion

In the previous section, hydrodynamic forces and moments are described for an
arbitrary number of floating rigid bodies with N degrees of freedom. Generally,
one wants to know the amplitude and phase of the motions of the bodies in
response to waves. And to find the total elevation of the wave field, one needs
to know the complex body motions (see Eqns. 2 and 6). To compute the
body motions, one also needs mass and mechanical properties of the bodies.
The motions are solved with a linear equation for complex amplitudes in the
frequency domain.

Again consider an arbitrary number of floating rigid bodies with N degrees
of freedom. In matrix form, the equation of motion is

MẌ = Fhyd + Fhs + Fmech

where M is an N × N matrix of masses or moments of inertia depending
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on whether the mode of motion is translational or rotational, Ẍ is an N × 1

vector of accelerations, and each F is an N × 1 vector of forces, where the
subscript hyd indicates hydrodynamic, hs indicates hydrostatic, and mech

indicates mechanical forces.
As described in the previous section, the hydrodynamic force is the sum of

excitation force and the radiation forces which can be written in terms of real
added mass and damping coefficients.

Fhyd = Fex −AẌ−BẊ

where Fex is an N × 1 vector of exciting forces, A is the N ×N added mass
matrix and B is the N × N damping matrix. The hydrostatic force can be
described by the product of an N ×N stiffness matrix and the body displace-
ments

Fhs = −CX

The linear body forces are a damping force proportional to body velocity
and a stiffness force proportional to body displacement,

Fmech = −DẊ−KX

where D is an N ×N body damping matrix and K is an N ×N body stiffness
matrix. Moving all terms in X to the left-hand side, the equation of motion
is written as

(A+M) Ẍ+ (B +D) Ẋ+ (C+K)X = Fex

Assuming the excitation force and motions to be harmonic with a frequency
ω, Fex = Re {fexeiωt} and X = Re {ξeiωt}, the equation of motion can be
written as

[
C+K− ω2 (A+M) + iω (B +D)

]
ξ = fex (8)

and so the complex amplitude vector of the motion in each degree of freedom
is

ξ =
[
C+K− ω2 (A+M) + iω (B +D)

]−1
fex (9)
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3.3 Device Power

The total time-averaged power delivered by the waves to the array of WECs
is the time average of the sum of the products of the hydrodynamic forces and
the body velocities.

P =
ω

2π

ˆ 2π
ω

0

FT
hydẊdt

where T indicates the transpose. In complex form this can be written as

P =
1

2
Re {iωf∗exξ} −

1

2
ω2ξ∗Bξ (10)

where ∗ indicates the complex conjugate transpose. The first term in the
power equation is the power absorbed by the bodies from the wave excitation
force and the second term is the power radiated back into the wave field by
waves generated by the bodies. When the excitation force (Eqn. 8) equation
is substituted into Eqn. 10, the result is

P =
1

2
ω2ξ∗Dξ (11)

For this reason, the mechanical body damping matrix, D, is typically called
the power-take-off (PTO) damping. The PTO damping determines how much
power is absorbed by the floating bodies from the wave field.

Rather than computing the power for motions specified by equation 9, one
can specify the motions and determine how it affects the power absorbed.
Evans [6] showed that equation 10 can be rewritten as

P =
1

8
f∗exB−1fex −

1

2

(
iωξ − 1

2
B−1fex

)∗

B
(
iωξ − 1

2
B−1fex

)
In this form, the body motions are part of an independent term. The power
clearly reaches a maximum of (the first term)

P =
1

8
f∗xB−1fx

when body motions are defined by

ξ = − i

2ω
B−1fx (12)

because it results in the second term being zero. Motions found by the above
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equation are the optimal motions that have been used frequently in WEC array
studies. They can be computed for any array of WECs where the excitation
force and radiation damping matrix are known.

3.4 Wave Energy Flux

Just as the power absorbed by the floating bodies can be computed from the
body motions, it can also be computed from the wave field. Instantaneous
power in a fluid is the product of pressure and a volumetric flow rate, where
the volumetric flow rate can be formulated as the flux of the fluid through a
control surface. If the pressure and velocity are harmonic with a frequency ω,
the instantaneous power in the fluid or the wave energy flux is

F inst =

ˆ
CS

Re
{
peiωt

}
· Re

{
veiωt · n

}
ds

where p and v are the complex pressure and velocity amplitudes as before,
and n is the unit normal of the control surface, CS. In the wave field, p,
v, and CS are functions of three dimensional space {x, y, z} for z ≤ 0. The
time-averaged wave energy flux is

F =
ω

2π

ˆ 2π
ω

0

ˆ
CS

Re
{
peiωt

}
· Re

{
veiωt · n

}
dsdt

which can be rewritten as

F =
1

4

ˆ
CS

(pv∗ · n+ p∗v · n) ds (13)

where ∗ indicates the complex conjugate. Eqn. 13 computes the flux through
some arbitrary three-dimensional wetted control surface of a harmonically os-
cillating fluid with only the complex pressure and velocity amplitudes.

The wave energy flux of regular waves is computed by integrating the
product of the pressure and velocity values along a vertical control surface
that extends from the sea floor (z = −h) to the linearized free-surface (z = 0)

[30]. Here, make the assumption that the vertical profiles of the pressure
and velocity are of known forms gp (z) and gv (z) respectively, which can be
separated functions of horizontal space, (x, y). The separation into functions
of the vertical and horizontal variables can be performed for regular waves in
the absence of submerged bodies. It also seems reasonable in the region outside
of where the fluid is constrained in the z direction by a submerged body, in
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other words, in the region with a free surface. The pressure can be written as
the product of the surface pressure, ps (x, y) at z = 0 and the vertical pressure
function, gp (z). Likewise, the velocity can be written as a function of the
velocity at the surface, vs (x, y) and a vertical function, which in this case is
a vector, gv (z).

p (x, y, z) = ps (x, y) gp (z)

v (x, y, z) = vs (x, y) gv (z)

Now, define the control surface, CS, to be everywhere perpendicular to
planes of constant z, and to extend from the bottom, z = −h, to the linearized
free surface, z = 0. Its projection onto the plane z = 0 would be an open or
closed curve, which shall be called the control loop, CL. Just as the pressure
and velocity functions were defined as the product of their values at the surface
and a function of z, so too can the control surface, where at z = 0 it is
defined by the control loop CL and its depth function is gCS (z) = 1. CS is
the constant CL at all water depths. Because CS does not change in the z

direction, the normal in the z direction is zero over the entire surface, nz = 0,
and the normals in x and y are constants with respect to depth. The dot
product of the control surface normal and the velocity in Eqn. 13 is then

v · n = us (x, y) gu (z)nx (x, y) + vs (x, y) gv (z)ny (x, y)

where us is the velocity in the x direction at the surface z = 0, vs is the surface
velocity in the y direction, gu is the depth dependence of the x velocity and gv

is the depth dependance of the y velocity. Based off the equations for regular
waves (see Eqn. 1, 4, and 5), the depth functions for pressure and velocity are
all the same (gp (z) = gu (z) = gv (z) = g (z)) and are all equal to

g (z) =
cosh k (h+ z)

cosh kh
(14)

Eqn. 13 can then be separated into the product of a depth integral and a
integral around the control loop.

F =
1

4

ˆ
CL

(psv
∗
s · ns + p∗svs · ns) dl

ˆ 0

−h

g (z)2 dz

The depth integral is
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ˆ 0

−h

g (z)2 dz =
1

cosh2 kh

ˆ 0

−h

cosh2 k (h+ z) dz

=
c

g
cg

where c is the phase speed of the wave, c = ω/k, and cg is the group velocity
and is equal to

cg =
1

2

(
1 +

2kh

sinh 2kh

)
· c

Assuming the pressure and velocity have a depth dependence as defined by
Eqn. 14, and that the control surface is uniform in z and defined by a control
loop, CL, the average wave energy flux computed with complex pressure and
velocity amplitudes at the linearized free surface is

F =
ccg
4g

ˆ
CL

(psv
∗
s · ns + p∗svs · ns) dl (15)

If the control loop is closed, encircles a group of floating bodies, and the
normals point inwards, and the surface pressure and velocity values are found
with Eqn. 2, 4, and 5, then the wave energy flux given by Eqn. 15 will equal
the power absorbed by the bodies given by Eqn. 10.

For a regular harmonic wave propagating through an open-ended unit-
width control surface, the dimensional energy flux is

Freg =
1

2
ρg |A|2 cg (16)

which can be found by combining Eqns. 1, 4, 5, and 15 for a wave of complex
amplitude, A.

3.5 Theoretical WEC Wave Field

In order to illustrate the features of the WEC wave field and provide a mathe-
matical background, a simple theoretical WEC wave field is devised. It consists
of an incident regular wave and a circular wave that represents the combined
diffracted and radiated waves. Although it may be simplified, it is a reasonable
approximation of the linear WEC wave field.

In general, the total wave elevation is
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ηt = ηi + ηd +
∑

ξjηjr

First, consider just the diffracted and radiated waves, which propagate
outwards from the WEC. Define the cylindrical coordinates {r, θ, z}, where

x = r cos θ

y = r sin θ

z = z

In cylindrical coordinates, the boundary value problem of a circular wave
can be solved with a separation of variables. Waves propagating radially out-
ward have magnitudes in the radial direction defined by the Hankel function
of kr [28]. Within a few wavelengths of the source, the Hankel function can be
approximated as (kr)−1/2 eikr. The approximation represents circular waves
whose magnitude decays at a rate that preserves the wave energy flux through
ever increasing circumferences (i.e. it satisfies the radiation condition). Ad-
ditionally, a complex directional dependence function, f (θ), is defined. A
general circular wave can then be approximated as

η =
f (θ)

(kr)1/2
e−ikr (17)

The f (θ) function has been used frequently to describe the angular varia-
tion of the radiated as well as the diffracted wave field in WEC literature (e.g.
[5, 7, 8]). It is often called the far-field angular dependence as it is typically
only applied at large radial distances, but may be valid near the device. f (θ)

is a function of the geometry of the device and the mode of motion that pro-
duces the radiated wave field. In this document it shall be called the generated
wave function, because it describes the angular variation of a wave generated
by the device. The wave may be due to device motions (radiation), diffraction,
or the combination of radiation and diffraction.

Consider the diffracted and all radiated waves to be of the form of Eqn.
17, so that the wave field is then



24

ηt = ηi +
fd (θ)

(kr)1/2
e−ikr +

∑
ξj

f j
r (θ)

(kr)1/2
e−ikr

All the circular waves can be combined into a single circular wave, modified
by a single generated wave function,

ηt = ηi +
f (θ)

(kr)1/2
e−ikr

where

f (θ) = fd (θ) +
∑

ξjf j
r (θ)

The WEC wave field for a single device can be considered as the superpo-
sition of a planar incident wave and circular wave. The wave field of a WEC
array could also be approximated as such in the far-field if all waves radiated
from the group come from approximately the same origin. Farley [3] claims
that f (θ) is a universal function for any group of WECs, and can be used to
determine the WEC wave field and the power capture.

As an example, take the incident wave field as the unit amplitude, zero
phase case, propagating at an angle β = 0. The complex generated wave
function, f (θ) is the sum of the complex responses of the diffracted wave and
the various radiated waves due to the unit amplitude, zero phase, incident
wave propagating in the direction β = 0. The total wave is then

ηt = e−ikr cos θ +
f (θ)

(kr)1/2
e−ikr (18)

Of primary interest in this paper is the spatial variation of the magnitude
of the total wave field. The magnitude of Eqn. 18 is

|ηt| =

√
1 +

|f (θ)|2

kr
+

2 |f (θ)|
(kr)1/2

cos (kr (cos θ − 1) + εf (θ)) (19)

where |f (θ)| and εf (θ) are the magnitude and phase of f (θ), respectively.
What wave field patterns can be deduced from Eqn. 19? How does magnitude
of the wave elevation vary spatially? First, as the distance from the origin
increases (kr → ∞), the magnitude of the wave field goes to 1 (the magnitude
of the incident wave) as it should. Second, in the region near the WEC, there
are peaks in the wave field when the argument of the cosine term is equal to



25

an integer multiple of 2π. That is, there are standing wave peaks when

kr (cos θ − 1) + εf (θ) = ±2πn (20)

If εf is defined from 0 ≤ εf < 2π, and r > 0 (r = 0 causes a singularity in Eqn.
17 and so is undefined in the domain), the left hand side of Eqn. 20 is always
less than 2π, and so the positive symbol on the right-hand side is eliminated
and n = 0, 1, 2, 3, . . .. Using Cartesian coordinates, Eqn. 20 becomes

y = ±
√

2

k
(2πn+ εf (θ))x+

1

k2
(2πn+ εf (θ))

2 (21)

Of course, the standing wave pattern also contains troughs which are found as

y = ±
√

2

k

(
2π
(
n− 1

2

)
+ εf (θ)

)
x+

1

k2

(
2π
(
n− 1

2

)
+ εf (θ)

)2 (22)

Note that the first trough (n = 0) is only valid when εf (θ) ≥ π.
Farley showed that the power absorbed (or radiated) by a WEC can be

computed from the value of the generated wave function at θ = 0 [3], that is,
in the direction that the incident wave propagates. Following his derivation,
the power absorbed by the wave (and thus the WEC) described by Eqn. 18 is

Pfarley = −2
√
π |f (0)|
k

(sin εf (0) + cos εf (0))−
1

k

ˆ 2π

0

|f (θ)|2 dθ (23)

where εf (0) is the phase of the circular wave in the direction of incident wave
propagation. The power absorbed reaches a maximum when εf (0) = 5π

4
,

which is the optimal phase of the wave. An interesting aspect of the value
of the phase that Farley points out is that, for the two-dimensional case (i.e.
when the generated wave in long-crested), the optimal phase is π, so that the
generated wave cancels perfectly with the incident wave. However, for the
combination of a circular wave with an incident planar wave, the phasing is
offset from π by π/4 or 1/8 of the wavelength.

As a simplification, consider the generated wave function to be a constant
with respect to direction, f (θ) = f , which would be the case for the radiated
wave of an axisymmetric device operating in heave. Equations 21 and 22
(εf is a constant) then describe a family of parabolas symmetric about the
x-axis and increasing towards positive x. These are the same set of parabolic
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standing waves, that Child and Venugopal describe and exploit in the Parabolic
Intersection method [2]. For the heaving WEC wave (f (θ) = f) operating with
the optimal wave phase, εf (0) = 5π

4
, the absorbed power is

Pfarley =
2
√
2π

k
|f | − 2π

k
|f |2 (24)

Equation 24 is quadratic in |f | and has a maximum at |f | =
√
2π
2π

, at which the
power captured is Pfarley = λ

2π
. λ

2π
is the well know optimum capture width

for a WEC operating in heave [26]. Another interesting facet of the optimal
amplitude and phase of the generated wave is that they are constants with
respect to wave frequency. The optimal motions of the device are functions
of frequency, but that is because of the frequency dependence of the hydrody-
namic forces. Essentially, the device motions have to change as a function of
frequency so as to produce the same generated wave at all frequencies.

Figure 3 shows wave fields for the heaving WEC operating at optimal
amplitude for different radiated wave phases (εf ). The wave fields are plots
of |ηt| at a wavelength, λ = 2, as given by Eqn. 19. Also, superimposed
on the plot are red and blue parabolas located on the crests and troughs
respectively of the standing waves. The phase and power absorption are given
above each figure. A negative power absorption means that power is radiated
rather than absorbed. For only three of the phases shown does the WEC wave
absorb power (εf = π, εf = 5π/4, and εf = 3π/2). The phase εf = 5π/4

is the optimal phase at which the power absorption is P = 0.32 = λ/2π.
As the value of the phase increases, the parabolas widen, and shadow forms
inside the aft-most parabolic crest. The aft-most parabolic trough and the
region inside it constitutes what shall be referred to as the wave shadow. It
is interesting to observe how the wave shadow changes with phase. Note that
at εf = π and εf = 3π/2, the wave absorbs the same amount of power, but
the wave shadows look different. At εf = 3π/2, the wave shadow is clearly a
parabola and in between its arms the wave elevation increases back to almost
the incident elevation. At εf = π, the final parabola has been swept back until
it collapsed into line and the wave shadow loses its “V” shape.

In its most simple form, the WEC wave field is formed by the interaction
between a planar incident wave and a circular generated wave. The question
remains though: how good of an approximation is the circular wave to the
radiated and diffracted waves of a real device? The following sections attempt
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Figure 3: The figures show the magnitude of the wave elevation |ηt| at a
wavelength of λ = 2 at different phases of the generated wave. The phase
and power absoption are given above each figure. A negative power absoption
means that power is radiated rather than absorbed.



28

to answer that question by computing the radiated and diffracted wave fields
for simple geometries and by comparison with experimental data.
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3.6 WEC and Wave Field Computation

The linear wave BEM software WAMIT is used to solve the boundary value
problem described in Sec. 3.1 for a given geometry. Hydrodynamic forces from
WAMIT are combined with mechanical forces to solve for body motions as
described in Sec. 3.2. WAMIT also returns separate radiation and diffraction3

pressures, and velocity vectors at user specified field points. The diffracted
wave field computed by WAMIT is the wave field due to a unit amplitude, zero
phase incident wave (φd from Sec. 3.1). Radiated wave fields are computed
in each degree of freedom, j, for unit amplitude, zero-phase motions (φj

r from
Sec. 3.1). Body motions are combined with the field quantities to produce
wave fields as described in Sec. 3.1.

In addition to being functions of the wetted geometry, diffracted and ra-
diated wave fields are functions of the radial frequency, ω. Diffracted wave
fields are also functions of the incident wave direction, β, which is measured
in degrees, counter-clockwise from the positive x-axis. However, because the
radiated wave fields computed by WAMIT are for unit-amplitude, zero-phase
body motions, they are independent of incident wave direction. Radiated
wave fields become functions of direction when they are multiplied by direc-
tionally dependent body motions. Body motions can also be computed for
unit-amplitude, zero-phase incident waves, and then the sum of the incident,
diffracted, and radiated waves in each degree of freedom can be scaled by the
complex incident wave amplitude, A (see Eqn. 2).

For regular waves, the wave field is typically represented by the wave ele-
vation, η, as a function of space. Because wave elevation is complex valued,
it can be plotted in a color map as either the real part, which represents the
wave at an instant in time, or as the magnitude, which shows the size of the
wave. Magnitude plots are typically used for visualizing standing wave pat-
terns and the wave shadow. Two wave fields are of significant interest: the
incident plus diffracted, ηi + ηd, and the total wave field, ηt = ηi + ηd +

∑
ηjr .

The incident plus diffracted is the wave field of the fixed device, which does
not absorb power, and the total wave field is that of power absorbing device.
Unless otherwise specified, the wave fields are for unit-amplitude, zero-phase

3What WAMIT refers to as the diffracted wave field is herein referred to as the incident
plus diffracted wave field. Therefore to compute the diffracted wave field defined by this
document, one needs to subtract the incident (Eqn. 1) wave field from the WAMIT diffracted
wave field.
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incident waves.
In addition to computing the wave field for regular waves, spectral wave

fields are considered by evaluating multiple wave components at different fre-
quencies and directions and applying an amplitude to the incident wave as
defined by a wave spectrum. Consider the spectral representation of the inci-
dent wave field to be Si (ω, β). At a given frequency and direction, (ω, β), the
magnitude of incident wave amplitude is

|A (ω, β)| =
√

2Si (ω, β)∆ω∆β (25)

where ∆ω and ∆β are the bin widths at the given frequency and direction
respectively. For the phase of the incident wave amplitude, random values
can be chosen from a uniform distribution between 0 and 2π. The phase is
only relevant when considering the real part of the wave. And so for a given
incident wave spectrum, Si (ω, β), the total wave field is created with Eqn. 2
where the magnitude of the of the wave amplitude is defined by Eqn. 25.

The incident wave amplitudes scale the resulting wave fields over the com-
puted range of frequencies and directions. Within the wave field at each lo-
cation, there is a spectral representation of the wave field over the range of
frequencies and directions computed. The spectral representation of the total
wave field is

St (ω, β) =
1

2

|ηt (ω, β)|2

∆ω∆β

At any given point, a spectrum can be computed and plotted. In order to
visualize the entire spectral wave field simultaneously, the bulk parameter of
the zeroth-moment significant wave height is plotted over the grid of field
points. In order to accurately understand the wave field, it is important to
study both the significant wave height as well as wave spectra.
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4 Results

In this section, WEC wave fields are shown for three independent but inter-
related studies. In the first, generic wave field patterns and techniques for
analyzing the wave field are described using a heaving cylindrical WEC. Sim-
ilar patterns are found in the second study, which is a comparison of WEC
array experiment results to a computational model. The computational wave
field proved quite useful for interpreting the experimental data and the data
validates the existence of the modeled wave shadow. In the final set of results,
the linear computational WEC wave field is compared to wave fields produced
by a phase-averaged computational wave model, SWAN, which helps to frame
the range of applicability of the phase-averaged model.

4.1 Generic WEC Wave Field

As an initial investigation, a generic WEC operating in a single degree of free-
dom is used in order to keep the results as general as possible. The WEC
model is selected to be cylinder of diameter, d, and draft, l, allowed to operate
only in heave. Results are shown for three regular wave cases and two spectral
seas cases. Each regular wave case is for a different device diameter to wave-
length ratio. The spectral seas cases are for unidirectional irregular waves and
irregular waves spread over direction. Wave fields are presented as color plots
of elevation or significant wave height, transects of wave elevation or energy
flux, and wave spectra for irregular waves. Energy flux through the wave field
is computed and the results are displayed graphically.

All motions, forces, and wave field properties are made nondimensional by
ρ, g, and d. The nondimensional quantities are indicated by an apostrophe,
′. The mechanical spring force shall be taken as zero, K = 0, and the nondi-
mensional equation of motions for a cylindrical WEC operating only in heave
is

ξ′ =
f ′
ex

π
4
− ω′2

(
π
4
l′ +A′

)
+ iω′ (B′ +D′)

(26)

where ξ′ = d−1ξ, f ′
ex = ρ−1g−1d−3fex, l′ = d−1l, A′ = ρ−1d−3A,

B′ = ρ−1g−1/2d−5/2B, D′ = ρ−1g−1/2d−5/2D, ω′ = g−1/2d1/2ω. Also define the
nondimensional coordinates, x′ = d−1x, y′ = d−1y, and z′ = d−1z.

The critical geometric parameter is the nondimensional draft l′ = l/d.
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Cylinders with large nondimensional drafts are typically referred to as spars
and have very low resonant frequencies, which makes them stable in the typical
range of ocean wave frequencies and they are often used for offshore structures
such as oil platforms. WECs should respond actively to ocean waves, and as
such a heaving cylindrical WEC should have a low nondimensional draft. In
this case the nondimensional draft is taken as l′ = 1/2.

In addition to the parameters of the equation of motion, the following
nondimensional wave field parameters are defined, λ′ = d−1λ, k′ = dk, h′ =

d−1h, A′ = d−1A, φ′ = g1/2d−3/2φ, p′ = ρ−1g−1d−1p, v′ = g−1/2d−1/2v, η′ =
d−1η. The nondimensional wavelength is related to the nondimensional wave
number by λ′ = 2π/k′, the nondimensional wave number is related to the
nondimensional frequency by the nondimensional dispersion relation

ω′2 = k′ tanh k′h′

and the nondimensional group velocity is, c′g = g1/2d−3/2cg. For this study, a
nondimensional water depth of h′ = 4 is used because this would, for instance,
represent a 10m diameter full scale WEC in 40m of water, which seems typical.

The power absorbed by the WEC and the energy flux through the wave field
are nondimensionalized as P ′ = ρ−1g−3/2d−7/2P , and F ′ = ρ−1g−3/2d−7/2F re-
spectively. Unless otherwise specified for the remainder of Sec. 4.1, all quan-
tities shall be the nondimensional quantities and the word “nondimensional”
shall be left out. Power absorption by the WEC shall occur through a linear
power take-off (PTO) damping,

P ′ =
1

2
ω′2D′ |ξ′x|

2

For a given set of incident wave conditions, there is a D′ value that maxi-
mizes the amount of power absorbed by the WEC. At and near the resonant
frequency, the optimal D′ can lead to motions that are very large. Just as
the amplitude of optimal motions can be considered unrealistically large, so
too can the motions for the optimal D′ value. A heaving cylinder does not
move at these predicted large amplitudes because of nonlinear effects and hy-
drodynamic viscous forces. In order to make the motions of the heaving WEC
more realistic, a suboptimal D′ value is chosen. For this study, the value of
D′ = 0.15 is used.

A plot of |ξ′/A′|, or the response amplitude operator (RAO), for the heaving
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Figure 4: The RAO, |ξ′/A′|, is shown in blue and corresponds to the left-hand
axis, and the WEC power absorption, P ′, is shown in green and its axis is on
the right.

WEC as a function of wavelength is shown as the blue line in Fig. 4. The RAO
indicates the relative motion response of the WEC at different frequencies. For
long waves, |ξ′/A′| ≈ 1, which means the WEC mostly follows the motion of
the waves. At a wavelength slight greater than λ′ = 5, there is a resonant
peak, and for short waves, the WEC motion goes to zero. The green line in
Fig. 4 shows the power absorption of the WEC as a function of wavelength.
The peak of the power absorption occurs near the resonant frequency, and
power absorption decays for both longer and shorter waves. The RAO and
power curves are typical of heaving WECs with linear PTO.

4.1.1 Regular Waves

Figure 5 shows the real part of four wave fields, the incident, Re {η′i}, the
diffracted, Re {η′d}, the radiated, Re {η′r}, and the total, Re {η′t} in different
rows, at three different wave lengths, λ′ = 2, λ′ = 5, and λ′ = 10 in different
columns. These wavelengths are indicated by the vertical dashed lines in Fig.
4. The axes in all of the plots in Fig. 5 are the same; the x-axis is x′/λ′

and the y-axis is y′/λ′, where the limits in both the x-axis and y-axis go from
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Figure 5: The figure shows real values of the incident, Re {ηi} , the diffracted,
Re {ηd}, the radiated, Re {ηr}, and the total, Re {ηt}, wave fields at λ′ = 2,
λ′ = 5, and λ′ = 10. The real values are the instantaneous wave elevation at
time t = 0 s.



35

−3 to 3, and are shown in the bottom left hand figure. The axes scaling was
designed so that six wavelengths fit in the wave field regardless of λ′. A result
of this scaling is that the cylinder appears to shrink with increasing λ′ (figures
from left to right). An equally valid perspective is that the field of view is
“zoomed-out” with increasing λ′.

The real part of η shows the wave elevation at time t = 0. In all figures,
one can clearly see periodic wave patterns. The incident wave field (top row)
is clearly a planar regular wave. It appears the same for all wavelengths be-
cause the incident wave is independent of the body geometry. The diffracted
(second row) and radiated (third row) wave fields have an obvious circular
pattern, which is periodic in the radial direction. The angular variation of the
diffracted wave field is interesting. It appears as if the wave is not circular
(note the asymmetry from left to right), but the wave field can still be repre-
sented by the complex generated wave function, f (θ), where the magnitude
and phase changes from the front to the back of the device (left to right in the
figure), because of the directionality of the incident wave. Because the device
is axisymmetric and operating in heave, the radiated wave field is isotropic,
which mathematically means that is has a constant generated wave function,
f (θ) = f , as discussed in Sec. 3.5.

Comparison of each type of wave field at different wavelengths helps to
illustrate fundamental WEC concepts. The color scaling is the same across
columns but varies between rows and is indicated by the color bars on the right.
The diffracted wave field has the largest amplitude for the shortest wavelength,
and is very weak for the longest wavelength. The point-absorber assumption
states that if the wavelength is much greater than the device dimensions, the
diffracted wave can be neglected, which may be reasonable in this example at
the longest wavelength.

The radiated wave elevation is a function of the device geometry and the
amplitude of the device motion at a given frequency. Insight into the radiated
waves can be gained from Fig. 4. At λ′ = 2, the relative motion and power
absorption of the WEC are very small, at λ′ = 5, the motion and power
absorption are near the maximum, and at λ′ = 10 the motion and power
absorption are moderate. The radiated wave fields shown in Fig. 5 follow the
same trend. It is almost nonexistent at λ′ = 2 where the power absorption is
very close to zero. It is maximized at λ′ = 5, and slightly smaller at λ′ = 10.
In linear wave theory, while the phase of the wave is critical, in order to absorb
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energy from the wave field, a finite amplitude radiated wave is required.
The bottom row of figures show the total wave elevation, which is the

real part of the sum of the complex incident, diffracted, and radiated wave
elevations. One can see waves that are nearly regular but are modulated in
magnitude with respect to space, which indicates the presence of standing
waves. The modulation of the waves is more discernible at the shorter wave-
lengths. However, it is difficult to learn a great deal from these figures. A plot
of the magnitude of the wave elevation, makes the standing wave effect much
more clear.

Figure 6 shows the magnitude of the combined incident and diffracted
wave fields, |η′i + η′d|, and the total wave field, |η′t|. The combined incident
and diffracted wave field is significant because it is the wave field of a fixed
device, for which, the wave field is modified, but no energy is removed. In Fig.
6 all plots have the same color scaling. The magnitude is centered around 1,
which is the magnitude of a unit-amplitude incident wave. All plots show with
varying degrees of intensity, standing waves in the form of parabolas where the
crests are shown in hot colors and the troughs in cool colors. These are the
parabolic formations described in Sec. 3.5 and used by Child and Venugopal
[2] in the Parabolic Intersection method. The height of the standing waves
decreases with increasing wavelength. The shortest wavelength produces the
most intense standing waves, and in the plot of the longest wavelength, the
standing waves are almost nonexistent.

It is interesting to compare the wave field of the fixed cylinder (top row of
Fig. 6) to that of the energy extracting WEC (bottom row). For λ′ = 2, both
wave fields appear identical, which is not surprising because at this wavelength,
the WEC hardly moves at all (see Fig. 4). At λ′ = 5, the WEC moves a great
deal and absorbs a large amount of energy. This energy absorption is clearly
visible by comparing the incident and diffracted wave field to the total wave
field. In the plot of the incident and diffracted wave field, most of the effect
on the wave field occurs in front of the device in the form of reflection and
there is little shadowing. In the plot of the total wave field, there is a distinct
parabolic wave shadow in the lee of the device. For the longest wave, λ′ = 10,
there does not appear to be much of a shadow in either of the wave fields, but
the effect of energy extraction seems to be that the standing waves in front
of the WEC are smaller than those of the fixed WEC. That is, it reduces the
amount of wave reflection.



37

Figure 6: The figures show magnitudes of the wave elevation for a fixed cylin-
der, |ηi + ηd|, and for the heaving WEC, |ηt|, at three wavelengths, λ′ = 2,
λ′ = 5, and λ′ = 10. Parabolic standing wave patterns and a parablic wave
shadow are visable. The waves shadow is most apparent in the plot of |ηt| at
λ = 5, which is where the WEC absorbs the most energy. The white circles
represent control surfaces, each has a radius equal to two wavelengths, and the
white vectors are graphical representations of the wave energy flux through the
control surface where the direction of the arrow is the direction of the control
surface normal and the arrow length is the magnitude of the energy flux at
that point.
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Also shown in Fig. 6 are white circles and vectors, which are graphical
representations of the wave energy flux through a cylindrical control surface
surrounding the WEC. The energy flux through the wave field is computed
with Eqn. 15. As mentioned at the end of Sec. 3.4, the energy flux through
a control surface surrounding a WEC should be equal to the power absorbed
by the WEC. The computed values of WEC power (Eqn. 11) and energy
flux through the wave field (Eqn. 15) are within 0.5 % of one another. The
agreement serves to verify the method of computing energy flux as well as the
accuracy of the wave field. The vectors in the figures point in the directions of
the control surface normals and the magnitudes of the vectors, including the
signs, are the magnitudes of the flux at those points on the control surface. A
vector pointing inward indicates a net energy flux into the control surface and
a vector pointing outward indicates a net flux out. One can see variation in the
magnitude of flux along the control surface corresponding to the magnitude
of the standing wave through which the control surface passes. This is most
apparent behind the WEC in the λ′ = 2 plots. The differences between the
magnitude of the vectors of the fixed case as compared to the power absorbing
case appears quite small, but this is because the power absorption is small. At
λ′ = 5, the power absorption is P ′ = 0.13, which means that only 13 % of the
wave power incident to the WEC is absorbed.

The λ′ = 2 case is also significant because even though there is no energy
extracted, the presence of the device significantly modifies the wave field in-
cluding the creation of a parabolic wave shadow. There are also large standing
wave ridges. Energy lost in the wave shadow is recuperated at other locations
in the wave field, so that the net wave energy flux is nearly zero. The WEC
modifies the wave field by reflecting and diffracting waves without extracting
energy. This effect on the wave field shall be termed wave scattering, and is
more prevalent at short wavelengths.

Another useful way to visualize the wave field is through transects of the
wave elevation or energy flux. A longshore transect of the wave elevation is
simply a plot of η′ as a function of y′ at a constant x′, or a slice of the wave
field at a constant x′. A cross-shore wave elevation transect is a slice of the
wave field at a constant y′. A longshore energy flux transect is the flux of
energy through a planar control surface at a constant x′. The energy flux
is related to the wave elevation, but because the flux computation includes
directionality they are not linearly proportional to one another. One method
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of approximating energy flux through the wave field is to assume that the
waves are planar and are propagating in the direction of the incident waves, so
that the energy flux can be computed by applying the complex wave elevation
at field points, η′, to Eqn. 16 through a delta width in the longshore, ∆y′.
This is relevant because in phase-averaged wave models, such as SWAN, the
waves are planar by definition and the planar wave approximation is the only
means of computing energy flux. In nondimensional form, the planar wave
energy flux approximation is

F ′
pl−ap =

1

2
|η′|2 c′g∆y′ (27)

Figure 7 compares the shoreward energy flux computed by Eqn. 15 to the
planar wave flux approximation, Eqn. 27, across five longshore transects at
x′/λ′ = −1, 0, 1, 2, 3 for λ′ = 5. x′/λ′ = −1 is an offshore transect, x′/λ′ = 0 is
a transect that cuts through the WEC, and the other three transects are in the
lee of the WEC. In the lee of the WEC, the planar wave flux approximation and
the true flux are in reasonable agreement. However near the WEC and in front
of it, the difference between the two is quite large. In all regions, the energy flux
is not as large as that predicted by the planar wave approximation because the
planar wave approximation assumes that all the energy is traveling toward the
WEC, while in reality the radiated and diffracted energy is directed radially
outwards from the WEC. The difference between the two is most significant
offshore because the difference between the direction of the incident and of the
radiated and diffracted waves is the greatest. Even though there may be large
variation in the wave height in the longshore, the variation in the net wave
energy flux relatively small. In the lee, the incident, radiated, and diffracted
waves are traveling in mostly the same direction, and so the wave height is a
reasonable indicator of the wave energy flux.

The pattern of the wave energy flux in the lee of the WEC is of a particular
shape that appears to expand as the distance behind the WEC increases.
Compare the longshore transects at x′/λ′ = 1, 2, 3 in Fig. 7. The transects
of x′/λ′ = 2 and x′/λ′ = 3 appear to be a stretched version of the transect at
x′/λ′ = 1. This is the same transect shape and stretching pattern is described
by Farley [3] for any generic system of WECs.
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Figure 7: The figure shows longshore transects of wave energy flux computed
using Eqn. 15 compared to transects of the planar wave approximation of wave
energy flux computed using Eqn. 27. The wavelength is λ′ = 5, and transects
are shown at one wavelength in front of the device, through the device, and
at one, two, and three wavelengths behind the device. The y-axis is the wave
field flux normalized by the incident flux.
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Figure 8: The figure shows the non-dimensional incident wave spectrum (S ′
B)

and WEC power absorption curve P ′.

4.1.2 Spectral Seas

To examine the irregular wave field, a spectrum is applied to incident wave
components as described in Sec. 2.1. Consider the nondimensional Bretschnei-
der spectrum

S ′
B(ω) =

1.25

4

ω′4
m

ω′5 H
′2
s e

−1.25(ω′
m/ω′)4

where ω′
m is the nondimensional modal frequency, H ′

s is the nondimensional
significant wave height, and the parameters are made nondimensional as S ′

B =

g−1/2d−5/2SB, ω′
m = g−1/2d1/2ω, and H ′

s = d−1Hs. First, consider the long-
crested case, in which all wave components are traveling in the direction
β = 0◦. The modal frequency is chosen to be near the resonant frequency
of the device, ω′

m = 1, and the significant wave height is chosen as H ′
s = 0.5.

The spectrum and power absorption curve as a function of frequency are shown
in Fig. 8.

Figure 9 shows the significant wave height of the wave field for the fixed
WEC case (η′i + η′d) and for the power absorbing WEC (η′t). The signifi-
cant wave height is normalized by the incident wave significant wave height,
H ′

s/H
′
s−in, so that in regions of green, the significant wave height of the wave
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field is the same as that of the incident. Although, there are still thin parabolic
ridges in the offshore, the clearly defined parabolic standing wave patterns of
regular wave fields are mostly smoothed out in significant wave height. There
is also a clear parabolic wave shadow for both the fixed cylinder and total
wave fields. Even a device not absorbing power creates a wave shadow due
to wave scattering. The wave shadow of the power absorbing WEC is more
intense and extends further in the lee than that of the fixed WEC. Also in-
teresting is that the fixed WEC creates an intense peak in the wave height
immediately in front of and around itself. However, this peak appears to be
significantly diminished for the power absorbing WEC. By absorbing power,
the WEC not only increases the wave show in its lee, but also reduces reflection
in the offshore.

Examining the significant wave height wave field only tells part of the story.
At each field point, there is a complete wave spectrum. In the total wave field
of Fig. 9, white dots indicate points at which wave spectra are examined,
three between the WEC and the wave source, or offshore, and three behind
the WEC, or in the lee. Each set is numbered 1 through 3 with increasing y′.
The spectra along with the original incident wave spectrum are shown in Fig.
10. First, examine the lee spectra. Spectrum “Lee 2” is taken from within the
wave shadow. It shows a uniform reduction in wave energy across almost all
frequencies, meaning that for most frequencies, there is a wave shadow here.
In contrast, spectrum “Lee 3” shows almost no reduction in energy, because
at this point, there is no wave shadow for most frequencies. “Lee 1” is quite
interesting, because it shows a reduction in energy at some frequencies but
a gain in energy at others. This phenomenon will become more clear in the
examination of the offshore spectra.

The energy density of all offshore spectra oscillates between being less than
and being greater than the incident energy as a function of frequency. This
is most apparent in “Offshore 3,” which is in line with the WEC and the
wave propagation. The oscillations in spectral energy are the result of spatial
variations of the peaks and troughs of standing waves at different frequen-
cies. At a given point in space, some wave frequencies will have a standing
wave trough and others will have a peak. Figure 11 helps to visually explain
this phenomenon. It shows cross-shore transect of the wave elevation at five
frequencies for the position y′ = 0, which cuts through the WEC, offshore
spectrum 3 and lee spectrum 3. In Fig. 11, the position of the WEC is indi-
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Figure 9: The figures show the normalized significant wave height (H ′
s at field

points divided by the incident H ′
s−in) for the WEC held fixed (|ηi + ηd|) at the

top and the power absorbing WEC (|ηt|) at the bottom in the non-directional
spectral wave field. The incident wave spectrum is shown in Fig. 8. In the
total wave field figure, the white dots indicate the locations at which wave
field spectra are examined. The offshore spectra occur at x′ = −5 and the
lee spectra are at x′ = 5. The spectra labeled 1 are located at y′ = −5, 2 at
y′ = −2.5, and 3 at y′ = 0.
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Figure 10: Figures show the field spectra for the power absorbing WEC along
with the incident wave spectrum. The locations can be seen in Fig. 9. Note
the spikes in the offshore spectra, while the lee spectra are smooth.

cated by a hole in the elevation, and the positions of the spectra are vertical
solid lines. The horizontal dashed line shows the magnitude of the incident
wave component at that given frequency. At ω′ = 0.94, “Offshore 3” is lo-
cated at a peak of a standing wave, and the spectrum shows a corresponding
peak in Fig. 10. At ω′ = 1.09, “Offshore 3” is located in the trough, and
the spectrum shows a hole. At ω′ = 1.18, “Offshore 3” is near a node and
the spectrum is almost the same as the incident. The pattern continues as
such. The magnitudes and locations of the peaks and troughs are dependent
on the generated wave function, f (θ), which depends on the WEC geometry,
motions, and precise location.

Now consider a spectrum with directional spreading defined by the function

G (β) = γ cos2s
(
1
2
β
)
for − 180◦ < β ≤ 180◦

γ =
Γ (s+ 1)

2
√
πΓ
(
s+ 1

2

)
where the coefficient γ normalizes the area of G (β) to 1 and Γ is the gamma
function. s is a parameter that defines the width of spreading. A lower value of
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Figure 11: The figures show cross-shore transects at x′ = 0 of the magnitude
of the wave elevation of the total wave field for different frequencies. The hole
in the elevation is the location of the WEC, and the vertical lines indicate
the locations where spectra were examined. Note how the magnitude varies
at each freqeuncy at the location of the offshore spectrum. This is causes the
spikes in the offshore spectra.
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Figure 12: The figure shows the incident wave spectrum for the directional
case.

s makes the directional spreading broader. As an example of spread spectrum
wave field, take s = 10 as shown in Fig. 12. The resulting wave fields are
shown in Fig. 13 as plots of the significant wave height for the fixed WEC
and the power absorbing WEC. The wave fields in both figures are even more
smooth than they were for the unidirectional case, and the parabolic wave
shadow has become an egg shape. As with the unidirectional case, the shadow
of the power absorbing WEC is greater than that of the fixed WEC and the
reflection is reduced.

Figure 14 shows the directional spectra taken at field points. As with the
unidirectional case, the offshore spectra are highly variable in energy density
with peaks and troughs as a function of frequency and direction. The lee
spectra are much more orderly in their shape. It is interesting to note that the
direction of the peak of the wave energy shifts with position in the lee of the
WEC. For instance, for “Lee 1” the peak is about 10◦, while incident peak is at
0◦. This is not too surprising; the WEC blocks wave energy from directions of
0◦ or less, but would do little to block energy traveling at positive directions.
Perhaps if a WEC design is very directionally dependent, an array designer
may want to orient WECs in the second row of an array so that they point
outwards.

Wave fields around a generic heaving WEC are examined computationally.
Patterns including parabolic standing waves, wave shadows, and frequency
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Figure 13: The figures show the normalized significant wave height (H ′
s at

field points divided by the incident H ′
s) for the WEC held fixed (incident plus

diffracted) at the top and the power absorbing WEC (total wave field) at the
bottom in the directional spectral wave field. The incident wave spectrum is
shown in Fig. 12. In the total wave field figure, the white dots indicate the
locations at which wave field spectra are examined. The offshore spectra occur
at x′ = −5 and the lee spectra are at x′ = 5. The spectra labeled 1 have are
at y′ = −5, 2 are at y′ = −2.5, and 3 are at y′ = 0.
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Figure 14: The figures show the wave field spectra for the directional incident
wave case. The locations of the spectra can be seen in Fig. 13.
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Figure 15: The photo shows the WEC array experiment for the 5 WEC case
conducted in the O.H. Hinsdale Tsunami Wave Basin at Oregon State Univer-
sity [1].

dependent spikes in offshore spectra are described. Many of these patterns are
also found in the WEC array experimental data described in the next section.

4.2 Experimental Wave Field Analysis

Over the winter of 2010-11, Oregon State University and Columbia Power
Technologies, Inc. (CPT) conducted experiments on scale models of the CPT
WEC design “Manta” in the O.H. Hinsdale Tsunami Wave Basin. Tests were
performed on a single WEC as well as WEC arrays in a variety of wave condi-
tions and extensive measurements were made of the wave field with a variety
of instruments. A picture of the experiment is found in Fig. 15, and Fig 16
shows the experimental layout including the location of the WECs and wave
gauges. The experimental wave conditions include regular waves at different
frequencies and amplitudes, and irregular waves from seven sea states with
and without directional spreading. A list of the regular wave conditions and
the sea states of the irregular wave conditions is found in Table 1. The ex-
periment is described by Haller et al. [1]. Experimental data presented here
was provided by Porter, and details on the data analysis can be found in his
Masters thesis [31]

In Sec. 4.1, modeling of the wave field around a generic WEC produced
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Figure 16: The figure shows tests experimental layout of the WEC array tests.
The location of the WEC for the single WEC tests is shown as the red tri-
angle. The filled-in circles indicate the offshore and lee wave gauges at which
comparisons are made. Empty circles are gauges present in the experiment
but not used in this analysis.

interesting information about wave field characteristics including parabolic
standing wave formations, wave shadows, and modification of the offshore and
lee wave spectra. The data from the WEC Array tests provides a valuable
resource for validating the existence of these wave field patterns. Many of the
wave field patterns are somewhat non-intuitive, and so computational model-
ing also aides in the interpretation and analysis of the experimental wave field
data.

In order to model the WEC array experiments, a geometric model of the
physical WEC under test is required. The actual physical model is described
by Haller et al. [1] and is shown in Fig. 17. Because of proprietary issues
and time limitations, a simple cylindrical WEC (also shown in Fig. 17) was
adopted as the geometry for the computational model. Although the cylinder
is a very rough approximation of the physical model, it was believed that a
computational model with the cylinder could still provide useful information



51

Figure 17: On the left is the Manta geometry that was used in the WEC array
tests [1] and on the right is the cylinder that was used as the computational
model.

about the WEC wave field. In order to make the cylindrical model similar to
the physical model, three things were designed into it. First, the dimensions of
the cylinder were chosen to match the approximate size of the physical model.
The diameter and draft of the computational model WEC were selected as d =

0.6m and l = 0.8m respectively. Secondly, the single degree-of-freedom mode
of motion was chosen to be surge because surge most closely resembles the
power absorbing motion of the WEC under test. The power absorption curve
of the surging cylindrical WEC is closer in shape to that of the physical model
than are the power curves for other modes of motion. Finally, a PTO damping
was chosen for the computational model WEC so that the power absorbed
was of the same approximate magnitude with a peak at approximately the
same frequency as the physical model. The dimensional damping value is
D = 2000kg/s, and the power absorption curve and RAO of the computational
model WEC are shown in Fig. 18. In this case, the power absorption is plotted
as the relative capture width (RCW), which is the ratio of wave power absorbed
by the device to the wave power incident to the device’s width.

The modeled wave field domain is the same size as the Tsunami Wave
Basin. The water depth is a uniform h = 1.4m. No effort was made to model
the sloping beach, wave basin walls or the wave maker. Wave data from 21
wave gauges is available for comparison. Initially, interpolation of wave height
between the wave gauges was explored. Figure 19 shows an interpolation of
a wave field for a regular wave condition, T = 1.5 s, compared to the compu-
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Figure 18: The plot is of the RAO (|ξ/A|) and relative caputure width (RCW)
of cylindrical computational model of the WEC under test.

tational wave field produced by WAMIT. The WEC is indicated by a white
circle, and the wave gauges are marked by ’x’ and ’*’ symbols. The experi-
mental data interpolation can be deceiving as it misses significant wave field
features and produces wave field features that may not exist. The interpola-
tion smooths a large region of the wave field where the model predicts standing
waves. For instance, consider the two gauges at the top of the figure (greatest y
value), the interpolation produces a uniform high wave height between the two
gauges, but the computational wave field shows that these gauges just happen
to be on the crests of standing waves, and between them the wave field varies.
Although it is not certain whether the predictions of the computational wave
field are in fact the behavior of the real wave field, it raises strong doubts as
to the validity of the interpolated wave field.

Instead of making comparisons of the interpolated wave field, comparisons
are made directly at two sets of wave gauges. One, called the offshore wave
gauges, is the set of six gauges indicated by ’x’ symbols in Fig. 19 that is
between the WEC and the wave maker (lowest x value). The other set, called
the lee wave gauges, is the line of six ’x’ gauges behind the WEC in Fig. 19.
The offshore and lee wave gauges are numbered 1 to 6 from left to right facing
the wave maker. The numbering can be seen clearly in Fig. 16.
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Figure 19: The top figure shows an interpolation between the values measured
at the wave gauges for a regular wave with a period of T = 1.5 s. The
bottom figure shows the WAMIT wave field for the same wave. Note how the
interpolation may distort features of the wave field.
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4.2.1 Incident Wave Conditions

Determining the incident wave conditions was one of the challenges of the data
analysis. The incident wave conditions are critical for determining the wave
power delivered to the WECs and for calibrating the computational wave fields.
Wave makers are not perfect and cannot be expected to produce precisely the
wave conditions entered into their setup. One should use measurements to
determine the actual waves produced.

It was believed that the offshore wave gauges would be sufficient to measure
the incident wave conditions. However, the offshore gauges are within the wave
field region affected by the WECs. For example, in Fig. 19 the computational
result predict the offshore gauges to be on the crest of a standing wave. If one
were to believe these results, then the wave height measured at the offshore
gauges for this wave period would be 10% higher than the incident. However,
the computational predictions should not be used adjust the incident wave
heights. Determining the incident wave conditions is more challenging for
spectral seas where multiple frequencies exist simultaneously. The spectra at
the offshore gauges show peaks and troughs from frequency to frequency as
was discussed in Sec. 4.1.2 and shown in Fig. 10. Also, as the number of
WECs increases, the wave conditions measured by the offshore gauges diverge
more severely from the condition supplied to the wave maker, which indicates
a that the offshore wave data is dependent on the WECs.

In order to compare experimental data with computational data, one needs
to know the incident wave conditions to scale the computational results. WAMIT
computes results for a unit amplitude wave. The wave field can be scaled lin-
early by a dimensional incident wave height, and across frequencies by wave
amplitudes determined by an incident wave spectrum (see Sec. 2.1). On way
of determining incident wave conditions would have been to make wave gauge
measurements for an empty tank, that is, in a wave tank without WECs.
However, empty tank runs were only performed on a handful of conditions for
another purpose.

It was decided that the incident wave conditions should be taken as the
average of the offshore gauges and wave gauge 10 for the single WEC case.
The single WEC case was selected because the influence of the WEC on the
wave field would be less than the WEC influences of the 3 WEC and 5 WEC
arrays. The offshore gauges were chosen because they are located in region
from which the incident waves propagate, and wave gauge 10 was used because
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it is far from the WECs and the WEC influence at gauge 10 should be small.
By using the measurements from one particular case as the incident wave
conditions for other trials, the assumption is that the wave maker produces
repeatable results. The measured incident wave conditions for regular waves
and spectral seas are summarized in Table 1. For the spectral seas cases, Tp

is the period of the peak of the spectrum and Hs−in is the zeroth-moment
significant wave height.

Regular Waves
T (s) Hin (cm)

0.9 5.70
1.1 5.70
1.5 5.54
1.7 5.64
1.9 5.47
2.1 5.43
2.3 5.52
2.5 5.59
2.7 5.37

Spectral Seas
Tp (s) Hs−in (cm)
1.25 3.83
1.43 6.96
1.67 4.43
1.54 9.87
1.67 7.79
2.22 8.25
2.22 14.8

Table 1: The tables shows values of the incident wave conditions for regular
waves and spectral seas as measured by average of the offshore gauges and
wave guage 10 for the single WEC trials. For the spectral seas cases, Tp is the
period of the peak of the spectrum and Hs−in is the zeroth-moment significant
wave height.

4.2.2 Regular Waves

This section compares the computational results from WAMIT to measured
data from the WEC array tests for regular wave conditions. Figure 20 shows
the results for the single WEC case. The left-hand column shows the offshore
gauges and the right-hand shows the lee gauges. Each row shows a different
wave period and the gauges are aligned as if one is facing the wave maker. The
experimental data points are shown as diamond symbols. The data points are
the average of two or three trials at the same condition. Repeatability between
trials was excellent, and the size of the diamonds in the figure is generally
greater than the one standard deviation from the average. More information
on repeatability can be found in Porter [31].

For a single WEC in regular waves, there appears to be reasonable agree-
ment between the experimental data and the computations. Two especially
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exciting results are for the lee gauges at 0.9 second and 1.1 second waves. The
experimental data seems to mimic the computational curve that starts with
a hump on the left-hand side, decreases in the middle, has another hump to
the right and then a hole. This shows the well known standing wave ridge
pattern that was discussed in Secs. 3.5 and 4.1 as well as by Farley [3]. It
appears that linear wave theory has some skill in modeling the wave field, and
that the predicted standing waves do indeed exist for real waves. Without
the linear computation model, interpreting the hills and valleys of the data
transect would have been much more difficult.

For the offshore cases, the data and the model do not align as well, but
as mentioned in Sec. 4.2.1, the standing wave field is very sensitive to the
geometry, motions and position of the WEC, which are only crudely approx-
imated. One would not expect to match the offshore wave field particularly
well. However, it does appear that the magnitude of the variation of the data
points is similar to the variation in the computational transect.

In the lee, for the periods, T = 1.9 − 2.5 s, there appears to be an offset
between the computational measurements and the experimental data points.
At T = 2.3 and 2.5 s, the experimental points are higher than zero, which
would indicate a gain in wave height rather than a wave shadow. The off-
set and the gain could be the result of inaccurate assessment of the incident
wave conditions. For instance, if the incident wave height as determined by
measurements at the offshore gauges and gauge 10 is smaller than the actual
incident wave height then such an artificial gain would be produced. The low
measured incident wave height would occur if the offshore gauges happened
to be in the trough of an offshore standing wave. At the period, T = 2.7,
the data does not match computational model well in the lee, which could be
due to the simplicity of the computational geometry. For longer waves, the
nondimensional distance between the wave gauges and WEC is smaller, and
so the wave field may be more dependent on specific geometric qualities rather
than the magnitude of the power absorption.

Figure 21 shows the regular wave results for the five WEC array. Generally,
the results are not quite as good as those for a single WEC. Any differences
between the computational and experimental models would be exaggerated five
fold in the five WEC array, including the uncertainty in the positions of the
WECs, and the geometric dissimilarities. For T = 0.9 s, the lee experimental
data may not align exactly with the computational transect, but the variation
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Figure 20: Figures show offshore and lee transect of the experimental results
compared to the computational equivalent from WAMIT for a single WEC in
regular waves.
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of the data is on the same order of magnitude. The same is true for the
T = 0.9 s and T = 1.1 s offshore transects. In the T = 1.1 s lee transect, one
could argue that the data points follow the hill and valley pattern predicted
by the model. The lee computational transect for T = 1.5 s matches the data
fairly well. And the lee transects for periods, T = 1.7−2.5 s, seem reasonable.
The offshore and lee transects at T = 2.7 s are not great matches with the
computational results, and differences are similar to the differences observed in
the single WEC case, which again can be attributed to relatively close distance
of the wave gauges to the WECs and the mismatch in geometry.

4.2.3 Spectral Seas - Significant Wave Height

This section compares the significant wave height from experimental data to
that computed by WAMIT for unidirectional spectral seas. Both sets of signifi-
cant wave heights are computed from the zeroth moment of the wave spectrum.

For both the one WEC and five WEC cases, the longshore structure of
the experimental data matches well with the computational prediction. In
the offshore, the significant wave height is was fairly uniform. The offshore
variability due to standing waves that was found in the regular wave cases
is smoothed in significant wave height, because it is a bulk parameter. The
wave shadow is quite clear from both the data and the model, and the model
appears to accurately capture its shape and relative magnitude. A couple
poorer matches occur in the single WEC case. At Hs = 8.2cm, Tp = 2.2s, there
is an offset in the lee between the data and model, which can be attributed
to inaccuracy in the estimate of the incident wave conditions. And at Hs =

14.8 cm, Tp = 2.2 s, there is an offset in the offshore transect, which could be
because of the influence of wave gauge 10. In both the cases, it is important
to consider that the magnitude of these differences in only about 2− 3 %.

4.2.4 Spectral Seas - Wave Spectra

In this section, an irregular wave condition - Hs = 7.58 cm, Tp = 1.42 s - is
examined in more detail by comparing plots of the non-directional spectra at
the wave gauge locations. Figure 24 shows the spectra for the single WEC
case, and Fig. 25 for the five WEC case. The spectra are plotted for each
gauge with the offshore spectra in the left-hand column and the lee spectra
in the right. The input spectrum is the black dashed line, the computational
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Figure 21: Figures show offshore and lee transect of the experimental results
compared to the computational equivalent from WAMIT for the five WEC
array in regular waves.
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Figure 22: Figures show offshore and lee significant wave height transects
of the experimental results compared to the computational equivalent from
WAMIT for the single WEC in spectral seas.
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Figure 23: Figures show offshore and lee significant wave height transects
of the experimental results compared to the computational equivalent from
WAMIT for the five WEC array in spectral seas.
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spectra are in blue and the measured spectra are in green. The green dashed
lines show the 95 % confidence intervals of the measured spectra.

At first glance at the single WEC case, it is difficult to make any firm
conclusions. The confidence bounds of the measured spectra are quite broad
and encompass the computational spectra and the incident spectra. To under-
stand the meaning of confidence interval, take a null hypothesis to be that the
spectrum measured at a field point is the incident spectrum. If the confidence
interval encloses the incident spectrum, then the null hypothesis cannot be
rejected, and the field spectrum could potentially be the incident spectrum.
This would mean the WECs have no effect on the wave field at those points.
Now, take the null hypothesis to be that the measured spectrum is not the
computational spectrum. Unless the computational result is clearly outside of
the confidence intervals, the null hypothesis cannot be rejected, and the com-
putational spectrum could be the measured spectrum. When the confidence
intervals enclose the incident spectrum and the computational spectrum, then
the measured spectrum could also be either the incident spectrum or the com-
putational spectrum. To have clear results, one wants the confidence intervals
to enclose the computational spectrum, but not the incident spectrum.

Despite the width of the confidence interval, the computational results
do lend insight into the behavior of the experimental results. The computa-
tional results predict spikes and dips in the spectra due to frequency-dependent
standing waves. The spikes and dips in the data are not extremely well re-
solved, which could be because the of the large number of degrees-of-freedom
used in the FFT that created the spectra from the time series (for details see
Porter [31]). Spectral modification does appear to exist. See in particular
gauge 5 offshore and lee, and gauge 2 offshore.

Because the the effect of the WECs on the wave field increases with the
number of WECs, the modification of the computational and experimental
spectra for the 5 WEC array is more apparent than for the single WEC case.
The computation results show dramatic spikes and dips, and the experimental
results show clear modification of the spectra. An interesting result is lee
gauge 6, in which both computation and experiment are in good qualitative
agreement. In the lee spectra, there is a clear reduction in spectral magnitude
for gauges 2 through 5, which is reflected in both the experimental data and
computational results. More importantly the confidence intervals of the data
do not include the incident wave spectrum, which gives us confidence that this
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is a real reduction in spectral energy. This is the all important region of the
wave shadow

4.3 SWAN Wave Field Analysis

In phase-resolving linear water wave theory, the phase of a wave component
is computed as the argument of a complex variable. For the linear wave-body
interaction problem, the phasing relationship between wave components (i.e.
incident, diffracted, and radiated) is critical for determining body forces, wave
fields, and absorbed power. The most common method of solving the linear
wave-body problem is the boundary-element method (BEM). However, BEMs
have some limitations. The BEM computation time is proportional to the
square of the number of panels on wetted surfaces [12], which for arrays of
WECs with complicated geometries can be quite large. Computing a large
number of wave field points also requires a significant amount of time, espe-
cially for spectral wave conditions. Also, BEMs are only practical for modeling
a constant depth bathymetry. In general, the BEM is not appropriate for mod-
eling spectral seas over large domains with non-uniform bathymetry.

In contrast, phase-averaged models are designed to model spectral wave
propagation over large domains with variable bathymetry, which makes them
attractive for modeling the effects of WECs on the far wave field. Phase-
averaged models propagate wave components with a balance of wave energy
in a form known as wave action density, which is a quantity that is conserved
in presence of currents. In the governing equation, only information on en-
ergy is preserved, where energy is proportional to the wave height squared;
the phase of wave components is lost [32]. SWAN is a well known, and well
validated phase-averaged wave model [33]. Several papers [34, 35, 36, 37] have
used SWAN or another phase-averaged model to model the effects of WEC
arrays on the wave field. Folley and Whittaker [38] discussed the adequacy
of phase-averaged models for modeling WEC arrays. They concluded that
phase-averaged models may be reasonable for modeling WEC array interac-
tions because in reality, it is not possible to achieve precise phase relationships
between devices in an array and the wave field.

The purpose of this section is to further explore the adequacy of phase-
averaged models for modeling the WEC wave field by comparing the phase-
resolved wave fields produced by WAMIT to those of the phase-averaged
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Figure 24: The figures show the measured and computational wave spectra at
the wave gauges for the single WEC case.
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Figure 25: The figures show the measured and computational wave spectra at
the wave gauges for the five WEC case.
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model, SWAN. Comparisons of the wave field for regular waves and spectral
seas are made in the form of plots of wave height or significant wave height
respectively. In contrast to the experimental data section, incident wave con-
ditions are known exactly, since they are inputs to the models, and wave data
at all points in the wave field can be computed.

SWAN operates on a bathymetric finite element grid, propagating wave
components from open boundaries throughout the domain based on the gov-
erning equations. The model domain can contain physical boundaries, which
allow for partial wave reflection and transmission. Although SWAN cannot
model diffraction directly, it has an option that implements a parametric
approximation of diffraction that is based on the mild slope equation. The
diffraction switch in SWAN changes the direction of wave energy propagation
based on gradients in wave height [39].

The geometry used for the comparison is the cylindrical WEC operating
in surge that is used for the WEC array experimental data study described
in Sec. 4.2. To reproduce the model in SWAN, the power absorption curve
is applied at an artificial boundary within the computational domain. Waves
are propagated from the wave maker boundary to the location of the WEC,
then over a width equal to the beam of the WEC, energy is extracted from
the wave field as a function of frequency as defined by the power absorption
curve, and the new waves are entered into the domain to continue propagating.
The SWAN modeling was done by Porter and is described in more detail in
his Masters thesis [31]. The WEC power absorption implemented in SWAN is
from the power absorption curve that is determined by WAMIT. This aspect
is critical to the justifying the comparison of the two models - in both models
the same amount of power is absorbed at each frequency, but do the wave
fields look the same?

Comparisons are made for regular waves in wave height and spectral seas
with significant wave height. Plots of the wave field of the entire domain as
well as transects are shown. In addition to the standard cross-shore transect,
another transect in the cross-shore is introduced, the averaged cross-shore
transect, which is the average in the longshore direction over the computed
domain of the wave height at each cross-shore location. SWAN wave fields are
shown without and with the SWAN diffraction switch set.
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Figure 26: The figures show the wave field produced by WAMIT and SWAN
for two regular wave cases. At T = 1 s, there is also a SWAN wave field with
the diffraction switch on.

4.3.1 Regular waves

This section compares the SWAN results to those of WAMIT for two regular
waves cases - a 1 second period and a 2 second period. The 1 second regular
wave case was run in SWAN with and without the diffraction switch set.
Unfortunately, the 2 second case did not converge to a result with SWAN
diffraction turned on.

Figure 26 shows the wave fields for the two regular wave cases. The relative
capture width curve in Fig. 18 shows that at both periods approximately
the same amount of energy is extracted from the wave field. Because WEC
modeling in SWAN is based solely on energy extraction, the diffraction-off
SWAN wave fields for both periods look the same. However, the WAMIT wave
fields for the two periods are quite different from one another. The 1 second
WAMIT wave field is characterized by steep standing wave ridges and large
wave shadow, while the 2 second wave field has smaller standing waves and
a much smaller wave shadow. In the 1 second wave field, the standing waves
and large wave shadow are mostly due to scattering of the shorter wavelength
wave rather than energy extraction. This is the same phenomenon that is
discussed for short waves in Sec. 4.1. SWAN is not able to capture wave
scattering, and because its wave shadow is based only on energy extraction,
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it severely underestimates the depth and breadth of the wave shadow. When
the diffraction switch is turned on for SWAN, it does a better job of capturing
the shape of the linear wave shadow, but still underestimates its magnitude.

The shape of the wave shadow is an important consideration in the de-
sign of WEC arrays. Because of the interaction of the planar incident waves
and circular radiated and diffracted waves, phase-resolved linear wave theory
produces wave shadows that are parabolically shaped and are wider than the
device width. However, SWAN only extracts energy from waves that pass di-
rectly through the WEC. The wave shadow is then a streak immediately in the
lee of the device. When diffraction is turned off, SWAN does not have a physi-
cal mechanism for distributing the energy loss in the wave shadow throughout
the domain. A small amount spreading of the wave shadow does occur, but
this is because SWAN does not allow for truly unidirectional waves and there
is a tiny amount of spreading of the regular wave. When the diffraction switch
is turned on in SWAN (see Fig. 26), its wave shadow much more closely resem-
bles the phase-resolved wave shadow. The shadow spreads nicely, and actually
has a longshore structure that is similar to the phase-resolved with two dips
and center ridge (see Fig. 28).

Figures 27 shows cross-shore transects of wave height for the 1 second wave.
Also shown are plots of the averaged cross-shore transect, which is the average
of the wave height in the longshore direction as a function of the cross-shore.
The averaged cross-shore transect gives an idea of how much total energy
is present in the whole computational domain. Consider the 1 second wave
case. In the standard cross-shore transect, the wave height immediately in
the lee of the device, is quite low for WAMIT, and increases geometrically
with distance from the WEC. In SWAN the wave height begins at a more
moderate value in the lee of the WEC and only increases gradually. However,
when considering the averaged cross-shore transects, the wave heights behind
the WEC for WAMIT and both SWAN cases begin around the same value,
because all three simulations extract the same energy from the wave field. The
cross-shore diffraction-on SWAN transect is actually very close to the WAMIT
transect. Near the WEC, it is not as close, but as the SWAN diffraction
mechanism takes effect, the energy spreading produces a shape similar to the
linear wave theory results.
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Figure 27: The figures show cross-shore transects of normalized wave height at
y = 0m (though the WEC). The top figure is a cross-section of wave height,
while the bottom figure is the average of the wave height in the longshore
direction at each cross-shore location.

4.3.2 Unidirectional Spectral Seas

The WAMIT and SWAN results for spectral seas are also compared. SWAN
was not designed to run at a single frequency; it is generally used with a
spectral distribution of wave components, and so it should perform better
here. In total six spectra are considered: two peak wave periods with three
levels of direction spreading. The peak wave periods are at 1 second and 2
seconds; the non-directional spectra are shown in Fig. 29 along with the RCW
curve of the device. The directional spreading cases are unidirectional, and two
directionally spread spectra created with cosine squared spreading functions.

First consider the unidirectional case. Wave field plots of normalized sig-
nificant wave height are shown in Fig. 30. More energy is extracted by the
WEC from the 2 second peak spectrum, but as before, the short wave, 1 sec-
ond spectrum creates a significant scattered wave field. The results are similar
to those of the regular wave case. Because of scattering of the short waves,
SWAN severely underestimates the depth and width of the wave shadow even
with diffraction turned on. SWAN is also not able to capture the large stand-
ing wave ridge that wraps parabolically around the device in the WAMIT 1
second case.

The SWAN results are a more similar to the WAMIT results for the 2



70

Figure 28: The figures show longshore transects at 5 locations: one offshore,
one through the device, and three in the lee.
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Figure 29: The figure shows the two non-directional input spectra used in the
WAMIT-SWAN comparison along side the WEC RCW curve. The spectra
correspond to the left y-axis and the RCW curve corresponds to the right
y-axis.

second peak case, especially with diffraction turned on. For the 2 second case,
the wave shadow is primarily created by energy absorption. Since SWAN only
affects the wave field through energy absorption, the magnitude of the wave
shadows in SWAN is similar to that of WAMIT. When diffraction is turned on,
the SWAN result for the 2 second case is remarkably similar to the WAMIT
result. SWAN produces the parabolic wave shadow, which has the same depth
and breath as the WAMIT shadow.

4.3.3 Directional Spectral Seas

To compare the result of directional seas, cosine squared spreading is applied
to the 1 and 2 second period spectra. Two levels of spreading are used and
defined by the spreading parameter, s. One case is s = 10, which is fairly
narrow, and the second is a broader spectrum with s = 4. The spectra are
shown in Fig. 31.

As before, in the 1 second case, the wave shadow is primarily due to wave
scattering, which is not captured in SWAN. The SWAN results again underes-
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Figure 30: The figures show the wave field (Hs/Hs−in) produced by WAMIT
and SWAN for two unidirectional spectral seas cases cases. The SWAN results
include the wave field with and without the diffraction switch on. The input
spectra are shown in Fig. 29.

timate the size of the wave shadow with and without diffraction at both levels
of spreading. For the 2 second wave spectra, at both levels of spreading, the
SWAN and WAMIT results are very similar. Both WAMIT and SWAN show
egg-shaped wave shadows, due to the increase in directionality of the waves.
The SWAN diffraction switch has no appreciable effect on the wave field. Di-
rectional spreading transfers the wave energy laterally and so diffraction which
depends on gradients in wave height is not needed to produce a realistic wave
shadow.
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Figure 31: The figure shows the four directional input spectra (two peak pe-
riods each at two spreading widths) used in the WAMIT-SWAN comparison.
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Figure 32: The figures show the wave field (Hs/Hs−in) produced by WAMIT
and SWAN for two directional spectral seas cases, both with a spreading pa-
rameter of s = 10. The SWAN results include the wave field with and without
the diffraction switch on. The input spectra are shown in Fig. 31

Figure 33: The figures show the wave field (Hs/Hs−in) produced by WAMIT
and SWAN for two directional spectral seas cases, both with a spreading pa-
rameter of s = 4. The SWAN results include the wave field with and without
the diffraction switch on. The input spectra are shown in Fig. 31
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5 Discussion

5.1 WEC Wave Field Patterns

Wave energy converters affect the wave environment. The magnitude, extent
and manner of the effects needs to be understood to assist in the design of
WEC arrays and assess the impact of WEC arrays in the far field. The re-
sults presented here explore the near WEC wave field computationally and
experimentally. A consequence of the WEC wave field effects was that in the
experiment, wave gauges that were intended to measure incident wave condi-
tions, in fact measured the WEC influenced wave field. This caused difficulty
in ascertaining the incident wave conditions, which are critical for determining
WEC power absorption and calibrating computational models.

The WEC wave field effects can be broken down into two related categories
- standing wave ridges and the wave shadow. The standing wave ridges are
partial standing waves created by the coherent interaction of the planar inci-
dent wave and the circular generated wave. In linear wave theory, they can be
formulated in a straightforward manner by the superposition of a regular wave
and a circular wave described by f (θ) (kr)−1/2 e−ikr. The complex generated
wave function, f (θ), is responsible for the locations and magnitudes of the
standing waves, while the wavelength controls the periodicity. When f (θ) is
a constant the standing waves are shaped like parabolas extending to infinity
in the direction of incident wave propagation. For regular waves, the standing
waves are distinct.

However, in spectral seas, in terms of the bulk parameter of significant
wave height, the standing wave ridges are mostly smoothed out. Although
there may still be some standing waves in Hs, because the peaks and troughs
occur at different locations based on the wavelength and f (θ), they appear
to average towards a uniform Hs. Of course, the standing waves still exist at
each frequency and can be found as spikes and holes in wave spectra taken at
field points.

The standing wave phenomenon is produced by phase-resolved linear wave
theory and is shown somewhat in the experimental results. From the WEC
array experiment, in regular waves, there is clear variability in wave height
measured across the offshore wave gauges. While in spectral seas, the signifi-
cant wave height measured at the offshore wave gauges is fairly constant across
the gauges. In the measured wave spectra, the magnitudes and frequency loca-
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tions of the spectral spikes and dips varies across the gauges and varies between
the 1 WEC and 5 WEC case. The computational results qualitatively agree.
They also show variability in the offshore wave height for regular waves, which
is smoothed out for spectral seas, and spikes and dips in the wave spectra.
However in the offshore, the computational data does not coincide with the
experimental results on a gauge by gauge and frequency by frequency basis.
This can be attributed to the simplicity of the computational model and errors
in the position of physical model. The standing wave field, particularly in the
offshore, is very sensitive to the WEC geometry, motions, and location; none
of which was captured precisely by the computational model.

In contrast, the wave field in the lee of the WEC or the wave shadow
produced by linear wave theory matches the experimental data quite well.
The wave shadow is the region of the wave field in the lee of the WEC where
the wave height is mostly less than the incident, and which is responsible
for wave energy absorption. In the context of linear wave theory, power is
absorbed from the incident wave by the coherent interaction of the incident
and generated wave. Farley [3] shows that only the interaction of the incident
wave and the generated wave propagating in the direction of the incident wave
(θ = β) can absorb energy. The wave shadow essentially consists of the aft
most parabolic standing wave trough and the region between it that converges
at θ = β.

One may think that only the generated wave at θ = β is needed to deter-
mine the absorbed power. However, this is a little misleading. Recall that for
some fixed device cases (no power absorbed), there is a wave shadow due to
wave scattering, but this is balanced by wave reflection (for example see Fig.
6 at λ′ = 10, and Figs. 9, and 13). Consider Farley’s equation for wave field
power absorption, Eqn. 23. The power absorption occurs in the first term,
which includes only the values of generated wave function in the direction
of the incident wave propagation, f (θ) = f (0). The second term subtracts
power based on the power radiated by the generated wave, and is the integral
of f (θ) in all directions. The second term can make the power absorption zero
or negative, where negative means the device radiates power. Farley gives a
nice example of the Salter’s Duck WEC. The Duck is asymmetric front to
back and is designed not to radiate a wave at θ = β. However, there is a
diffracted wave at θ = β, which is what ultimately absorbs the energy. When
the device is held fixed, in addition to the wave cancellation in the lee, there
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is reflected wave in the direction towards the incident wave (θ = −β), which
causes the net wave energy absorption to be zero. When the device in moving,
a radiated wave propagates only at θ = −β, which cancels the reflected wave,
reduces the net radiated power (the second term in Eqn. 23), and creates
power absorption.

A wave shadow must exist for a power absorbing device and may exist due
to diffraction for a device that does not absorb power. Even for wave scattering,
the shadow is due to generated wave in the direction of the incident wave. For
a regular wave, Farley shows that the structure of the the wave field in the
lee of the WEC is of a certain general form (see Fig. 7). The linear wave
computational results are of this form and so are some experimental results
(see Fig. 20 especially T = 0.9 s and T = 1.1 s). In the terms of the longshore
structure of wave height, the computational and experimental results are in
reasonable agreement of the lee transects for 1 WEC and 5 WECs in regular
waves.

For unidirectional spectral seas, the wave shadow is generally found at
approximately the same location for all frequencies in the spectrum. The
direction of power absorption, θ = β, is the same for all frequencies, and the
aft most parabolic trough does not deviate greatly from frequency to frequency.
The result is that for unidirectional waves, even though the parabolic standing
wave ridges are smoothed in the offshore, the wave shadow is preserved in the
lee (see Fig. 9). The computational results are in very good agreement with
experiment in the lee transects of Hs for both the 1 WEC and 5 WEC cases
(see Figs. 22 and 23). The comparison of the lee spectra for the 1 WEC case
is inconclusive, but for the 5 WEC case, the experimental and computational
spectra in the lee (gauges 2-5) conclusively show a wave shadow (see Fig. 25).

Why is the linear wave computational model able to reproduce the wave
shadow that is seen in the experimental results despite the model geometry
and motions being only a crude representation of the physical geometry and
motions? It is likely because the wave shadow depends on the power captured
by the device rather than the particulars of device geometry and motions, and
the cylindrical computational model was designed to have approximately the
same power capture characteristics as the physical model. It is the coherent
interaction of generated wave in the direction of the incident wave that enables
WEC to absorb power and create a wave shadow.

Interestingly, the wave shadow produced by the phase-averaged model
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occurs at wave components traveling in the direction of the incident wave
and passing through the device. However, without the parametric diffrac-
tion switch set, the phase-averaged model misses a critical element of the
wave shadow. Without diffraction, the phase-averaged model produces a wave
shadow that extends as a streak behind the WEC, creating a physically unreal-
istic canyon in wave energy. When the diffraction switch is set, the diffraction
mechanism smooths the steep gradient and produces a wave shadow that can
be remarkably like the phase-resolved wave shadow (see Fig. 30).

The diffraction mechanism in the phase-averaged model operates based on
gradients in the wave height; it is not the solution to the linear wave-body
boundary value problem. The phase-averaged model is not capable of creat-
ing standing wave fields. At short wavelengths, WECs produce a large wave
shadow due to scattering even though there may be little net energy absorp-
tion. The phase-averaged model wave shadow is only created by energy ab-
sorption, and so when the wave shadow is due to scattering, the phase-averaged
model underestimates it (see Figs. 26 and 30).

For directionally spread spectral seas, wave shadows due to each direction
overlap and the wave shadow in Hs loses its parabolic shape. The overlapping
of the streak-like wave shadows of the phase-averaged model produces a shape
similar to that of linear wave theory. Because wave energy is spread laterally
by the directional spreading, the phase-averaged diffraction switch has little
effect on the wave field. However, again, when the wave shadow is produced by
scattering, the phase-averaged model underestimates it. The phase-averaged
model may produce good results when the wave shadow is produced primarily
by power absorption and when diffraction is set for long-crested waves or when
the seas are spread directionally.

5.2 Application of the WEC Wave Field to Array Design

How could one apply the knowledge of the wave field near a single WEC to
WEC array design? Constructive interactions amongst WECs in an array
are achieved theoretically for a given wave when WECs operate under precise
controls of amplitude and phase (optimal motions) and are located at specific
positions in the wave field. The WEC positions turn out to be the locations
of the peaks of standing waves, and were found almost fortuitously by varying
the spacing of arrays in regular grids or by optimization routines. Child and
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Venugopal [2] explicitly examined the wave field and found that by iteratively
placing WECs in an array on the parabolic standing waves of other WECs, they
could produce an array that performed constructively even for non-optimal
motions.

However, they and others realized that a configuration that performed
well for a given wave frequency and direction would perform poorly at others.
An examination of spectral seas shows that except for the wave shadow, the
wave field is mostly uniform in significant wave height. Since significant wave
height is proportional to wave energy, the total spectral wave energy is mostly
uniform throughout the wave field except in the wave shadow where there
is less energy. Also, in “The adequacy of phase-averaged wave models for
modelling wave farms,” Folley and Whittaker [38] pointed out that the lack of
precise knowledge about the position of the WECs and the phasing of wave
and device motions would make net consistent constructive performance nearly
impossible. This has implications for the design of arrays of real devices, which
move about on their moorings and cannot be controlled precisely, in real wave
conditions, which are spread in frequency and direction. Perhaps the goal of
array design should simply be to avoid the wave shadow where there is a net
reduction in wave energy.

A wave shadow could be devised for a given WEC in its expected sea
state, or perhaps a generic shadow could be created for an amount of power
absorption and a parametric sea spectrum. Wave shadows have been shown to
exist for regular waves, unidirectional spectral seas, and spectral seas spread
in direction. They have a fairly standard shapes - parabolic and in some cases
with a ridge in the middle. The shape and magnitude of the wave shadow are
functions of the power absorption rather that the precise geometric and motion
characteristics of the WEC. It can be well produced by phase-resolving linear
wave theory and in some cases by phase-averaged models. The devised wave
shadow could be used to determine the placement of WECs in the array, even in
as simple a manner as providing a minimum distance for the spacing between
rows. By placing WECs in an array outside of the wave shadows of other
WECs, the destructive losses should be minimized for real wave conditions.
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5.3 Future Work

In most cases, the wave fields considered in detail in this work are for a single
WEC. Individual WEC wave fields cannot necessarily be superimposed upon
one another, although they can under the point absorber assumption. In the
presence of multiple WECs, there is multiple scattering; that is, the diffracted
and radiated waves from one WEC are diffracted off another and those waves
can be diffracted off other WECs and so on. It seems prudent to see how
the wave field from one WEC extends to the wave field of an array of WECs.
Under what circumstances (for instance, under the point absorber assumption)
can the wave field from a single WEC be used to determine the wave field of
a WEC array? Will the wave shadow method of WEC array design described
in the previous section work? Or is it too simple? Will it miss potentially
advantageous WEC array configurations? Quite simply, can the wave field
from a single WEC be used to design WEC arrays?

Another interesting aspect of the wave field is the importance of the com-
plex generated wave function, f (θ). Wave fields produced with simple formu-
lation of f (θ) (see Sec. 3.5) are remarkably similar to wave fields produced
with a full formulation of the linear wave boundary value problem. It would
be straight-forward to determine an f (θ) from computational results. Could
f (θ) be determined from experimental results? If one had an f (θ) function
that represented a WEC, how would the wave field produced with the simple
formulation (Eqn. 18) compare to the wave field produced by the full linear
wave boundary value problem? Could the f (θ) function be used to explicitly
to design arrays? How does the presence of other devices in an array affect
the f (θ) of a single device?

There is also a good deal of work left in the experimental data comparison.
Only a simple computation model of the WEC under test could be created due
to time limitations and proprietary concerns. This turns out to be somewhat
of a blessing in disguise, because it forces the researchers to consider why such
a simple model could produce good results in the lee of the WEC, and it
shows that the wave shadow it rather generic and not specific to a geometry.
The question remains, could better results be obtained for a more accurate
computational model, especially in the offshore? It would be nice to construct
a computational geometry that was a better representation of the WEC and
that operated in all modes of motion. This is not a trivial task.

The implementation of WECs in the phase-averaged model could also pos-
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sibly be improved. In the current implementation, the WECs only affect the
wave field by power absorption. However, for short waves, the impact of the
wave scattering is significant. Perhaps the WEC in the phase-averaged model
could include reflection that would redirect wave components offshore. This
may be consistent in terms of conservation of energy as long as the same
amount of energy that is redirected offshore is also removed from waves prop-
agating in the lee of the WEC, which would create the wave shadow due to
scattering that is missing in the current model.
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6 Conclusion

The near WEC wave field is characterized by two significant patterns - 1)
standing waves that are mostly parabolic and 2) a wave shadow. The stand-
ing waves can be formed through simple mathematical representations of the
WEC wave field (i.e. the generated wave as f (θ) (kr)−1/2 eikr) as well as by
solving the linear wave boundary value problem. In previous theoretical work,
WEC array design has taken advantaged of the standing wave patterns to
create arrays with constructive power production. In spectral seas, in terms
of significant wave height, the standing waves are not distinct. However, they
can still be found in wave field spectra as spike and dips. Because spectral
seas smooth standing waves, their advantage in producing constructive arrays
in real conditions is diminished.

However, in spectral seas as well as in regular waves, a significant wave
shadow exists. The wave shadow is produced computationally with linear
wave theory, and the linear wave results are in reasonable agreement with ex-
perimental measurements. In two single-WEC regular wave cases (T = 0.9 s

and T = 1.1s), the lee transect shows a longshore structure including standing
wave ridges that was predicted by Farley and modeled by linear wave theory.
For spectral seas in terms of significant wave height, the longshore structure
of wave shadow shown in experimental data is in very good agreement with
computational results. The wave shadow is the necessary result of power ab-
sorption by a WEC. Farley shows that in linear wave theory, power absorption
is created the destructive interference of the planar incident wave and the por-
tion of the circular generated wave propagating in the direction of the incident
wave (θ = β). The destructive interference at θ = β and the aft-most standing
wave trough combine to form a wave shadow that has a parabolic or trian-
gular shape. This wave shadow shape is mostly maintained for unidirectional
spectral seas and becomes more oval-like for seas spread in direction. When
designing a WEC array, rather than attempting constructive interference by
using standing waves patterns, perhaps the best the array designer can do is
avoid the unquestionably destructive interference of the wave shadow.

Further work needs to be done to explore how the single WEC wave field
extends to the wave field of multiple WECs and to devise more concrete meth-
ods of wave field based WEC array design. The WEC wave field approach
to array design seems promising. The power production and economic perfor-
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mance of wave energy converters will depend not just on efficient individual
devises but on effective wave farm design, for which a thorough understanding
of the WEC array hydrodynamics interactions is required.
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