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In this thesis we construct compatible discretizations of Maxwell’s equations. We

use the term compatible to describe numerical methods for Maxwell’s equations which

obey many properties of vector Calculus in a discrete setting. Compatible discretizations

preserve the exterior Calculus ensuring that the divergence of the curl and the curl of

a gradient are zero in a discrete setting. This compatibility of discretizations with the

continuum Maxwell’s equations guarantees that the numerical solutions are physically

meaningful.

We focus on the construction of a class of discretizations called Mimetic Finite Dif-

ferences (MFD). The MFD method is a generalization of both staggered finite differences

and mixed finite elements. We construct a parameterized family of MFD methods with

equivalent formal order of accuracy. For time-dependent problems, we exploit this non-

uniqueness by finding parameters which are optimal with respect to a certain criteria, for

example, minimizing dispersion error. Dispersion error is a numerical artifact in which

individual frequencies in a wave propagate at incorrect speeds; dominating the error in

wave problems over long time propagation.

The novelty of this work is the construction of an MFD discretization for Maxwell’s

equations which reduces dispersion error for transient wave propagation in materials that



are modeled by a general class of linear constitutive laws. We provide theoretical analysis

of these new discretizations including an analysis of stability and discrete divergence. We

also provide numerical demonstrations to illustrate the theory.

In addition to applications in the time domain we consider equilibrium Magnetohy-

drodynamic (MHD) generators. MHD generators extract power directly from a plasma

by passing it through a strong magnetic field. Used as a topping cycle for traditional

steam turbine generator, MHD offers a theoretical thermal efficiency of 60% compared

to 40% of traditional systems. However, this technology has high life cycle costs due to

equipment failure. One source of failure is arcing: the formation of high density currents

which damage the generator. In this work we develop, analyze, and simulate a model of

these generators. We use these simulations to show the viability of detecting electrical

arcs by measurements of their magnetic fields outside of the generator.
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COMPATIBLE DISCRETIZATIONS FOR

MAXWELL’S EQUATIONS WITH GENERAL

CONSTITUTIVE LAWS

————

1 INTRODUCTION

The focus of this thesis is on the development of models and discretization techniques

for Maxwell’s equations motivated by the need to solve challenging problems arrising in

electromagnetics. Maxwell’s Equations are a system of partial differential equations

which relate electric fields, electric currents, and magnetic fields to one another. They are

named for James Clerk Maxwell, a Scottish physicist who combined the previous works

of Faraday and Ampére into a cohesive theory. In essence, Maxwell’s equations state that

electric fields will wrap around a time varying magnetic field, while magnetic fields wrap

around time varying electric fields and currents. In vacuum, this behavior can be reduced

to linear wave propagation, c.f. [25].

Maxwell’s equations are not complete and must be combined with Constitutive

Laws which govern the response of the material to the electromagnetic field. In essence,

these laws will relate various electromagnetic variables to one another. We consider for

the most part Polarization Laws and a Generalized Ohm’s Law. A polarization field

describes the behavior of a material where molecular charges are bound in a particular

configuration and are not free to move throughout the media – for example water, biolog-

ical tissues, or cold plasmas, c.f. [25]. Generalized Ohm’s law relates electrical currents to
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both the electric field as well as the magnetic field via, for example, an anisotropic tensor.

When coupled with Maxwell’s equations, such a system models wave propagation that is

very distinct from the pure wave propagation we observe in free space. For example, a

Debye material models a relaxing polarization field where molecules of the material align

with the electric field and then relax into a charge neutral configuration after it passes.

With realistic coefficients, this model is singularly perturbed and exhibits features of both

parabolic and hyperbolic systems, c.f. [49].

We consider numerical solutions of such Maxwell models and thus require a dis-

cretization of the continuous model. We develop compatible discretizations i.e. those

which respect continuum properties but in a discrete setting. The foremost such property

is the preservation of the Exterior Calculus– i.e. that the image of the curl is exactly

the kernel of the divergence and that the image of the gradient is the kernel of the curl.

These discretizations generally consider mixed space formulations of the equations – either

relying upon grid staggering for electric and magnetic fields, or stated in a more explicit

Galerkin form where each variable will be posed in its own function space. The compatible

discretizations we develop in this thesis are Mimetic Finite Difference (MFD) Method.

This thesis is composed of roughly two parts. The first part is a more theoretical

development of novel MFD discretizations for Maxwell’s equations with linear polariza-

tion laws in the time domain. The discretizations we develop will focus on removing a

troubling numerical artifact from our simulations; dispersion errors. Our second part is

a computational investigation of Magnetohydrodynamic Generators in equilibrium. This

investigation will be focused on the sensitivity of magnetic fields to destructive arcing. We

will develop a model using Maxwell’s equations with generalized Ohm’s Law, analyze it,

and use simulations of the model in order to determine the practicality of detecting the

electromagnetic effects of arcing.
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1.1 Introduction to Transient Maxwell’s Equations

One of the major challenges of numerical approximation of wave propagation is that

discretization errors result in waves travelling at non-physical speeds. This non-physical

speed depends both on frequency and direction of propagation. The frequency dependence

can be understood in that not all frequencies are equally well resolved by a given mesh,

resulting in different magnitudes of error for different frequency components. The angular

dependence is really a property of the underlying mesh on which we are simulating wave

propagation. This error is called numerical dispersion and we refer to the angular

dependence as numerical anisotropy. We refer to these errors as numerical since they

are artifacts of a numerical methods. Many physical systems have phyiscal dispersion.

In particular, linear polarization models describe dispersive media and this frequency

dependence of wave speed is a feature of the model and a property of the medium.

Numerical dispersion error results in a number of non-desirable features. Foremost

is phase error – where a wave packet will travel at an incorrect speed. This is particularly

concerning if the simulation is being carried out to determine the arrival time of a wave

front– if the wave is travelling at the wrong speed then the method is dubious at best for

this application. The second is the formation of spurious oscillations even from infinitely

smooth initial conditions. Such “wiggles” are generally very obvious when simulating a

non-dispersive system so they can perhaps be reasonably ignored as long as the model of

interest is not physically dispersive. However, in a dispersive media when such wiggles

may actually be physical, the ability to differentiate between physical and numerical dis-

persion by eye cannot be trusted. Therefore the quantification and reduction of numerical

dispersion is an important step in the validation and verification of numerical algorithms

for wave problems.

The curl-conforming finite element (FE) discretizations (edge elements), first devel-
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oped by Nédélec and Whitney [44, 45], are very popular for the spatial discretization of the

first order Maxwell equations or the second order vector wave equation. The popularity

of edge discretizations is due to their ability to preserve the Exterior Calculus in con-

trast to nodal discretizations of the vector wave equation based on nodal finite elements

[26, 41, 42, 43, 57]. Edge discretizations also allow for easy implementation of boundary

and material interface conditions by automatically ensuring the continuity of the tan-

gential and normal components of the vector fields [29, 38, 59]. The application of edge

discretizations is a standard technique in more complicated material models, see for exam-

ple [22, 32, 58] and references therein for discretization for polarization and metamaterial

models.

One of the issues with FE discretizations for wave equations in general, and Maxwell’s

Equations equation in particular, is that a non-diagonal mass matrix has to be inverted

at each time step of the solution of the resulting discrete system. This is highly inefficient

for a problem where the number of time steps is typically on the order of the number

of spatial steps (due to a Courant-type stability condition). A popular remedy has been

an approximation of the mass matrix M with a diagonal matrix D obtained by lump-

ing all entries of the mass matrix to the diagonal. Hence, the name for the procedure –

mass lumping. Mass-lumped methods maintain the same order of the dispersion error as

their non-lumped counterparts, however they often suffer from larger constants in their

dispersion errors [40].

One of the most popular finite difference (FD) methods for the numerical discretiza-

tion of Maxwell’s equations is the Yee scheme [62] which has been shown to be equivalent

to a mass-lumped version of the lowest order Nédélec FE method on a uniform cubic

mesh [37]. An extensive overview of numerical methods for wave equations in the time

domain can be found in [11]. This includes high order finite difference, high order finite

element methods, and numerical dispersion analysis for the acoustics, linear elasticity, and
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Maxwell’s equations.

The Mimetic Finite Difference (MFD) method is a discretization technique for a

large class of partial differential equations. The essential philosophy of the MFD is a

mimicry of continuum vector Calculus in a discrete setting. A history of the method

can be found in the review by Lipnikov, Manzini, and Shashkov in [34]. The history

they describe is, in essence, first the development of discretizations on rectangular meshes

and then proving the resulting schemes obey discrete analogues of continuum properties.

For example, the Yee Scheme or Finite Difference Time Domain Method (FDTD), first

developed by Kane Yee at Lawrence Livermore National Lab, c.f. [63], fits solidly into

this framework. The method was developed to be second order accurate and then it was

proven that it preserved a discrete analogue of the divergence for electric displacements and

magnetic induction. Also fitting in this framework are staggered finite volume methods

in which discrete operators are defined exactly by the divergence theorem – mimicking

conservation and other desirable properties.

There is then a transition to a development focused first on discrete mimicry and

then proving approximation properties of the resulting schemes by way of polynomial

consistency conditions, roughly analogous to a patch test. This approach allows for the

development of schemes on non-orthogonal meshes. See, for example, the work of Shashkov

and Hyman for Maxwell’s equations on logically rectangular meshes, c.f. [24].

In order to expand the method to more general types of polygonal and polyhedral

meshes, a more rigorous approach to defining inner products and polynomial consistency

was necessary. Results from this can be seen, for example, in the discretization methods

of Lipnikov, Manzini, Brezzi, and Buffa for 3D magnetostatics on polyhedral meshes, c.f.

[33]. A very complete description of lowest order MFD methods using this approach can be

found in the book [2] as well as a review paper [34]. This deeper understanding of necessary

polynomial consistency has led to arbitrary order formulations [20]. This approach has also
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led to a purely variational formulation of MFD called the Virtual Element Method (VEM).

Here the elements are virtual in that shape functions are not defined explicitly. Rather

they are assumed satisfy a particular PDE, one which a particular class of polynomials,

and some unknown other functions, will also satisfy. An early exploration of this approach

can be found in [3]. The literature for VEM is still developing but there have been recent

efforts in extending the approach to the DeRham Complex, [4].

The MFD method is a hybrid method adopting ideas and techniques from staggered

finite differences, finite volumes, and mixed finite elements. In the MFD method we

solve for degrees of freedom of a solution to a PDE rather than finding an approximating

function, making it in some sense analogous to a finite difference scheme. The MFD defines

discrete primal differential operators by the Stokes’s theorem analogously to the finite

volume method. The MFD also develops a discrete analogue of the inner product allowing

for the discretization of weak formulations of PDE similar to fixed finite elements. In the

MFD a well defined mapping exists between grid functions and an approximation space in

the traditional finite element sense. Instead of considering control volumes around each of

the variables and applying Stokes’s theorem to compute fluxes, we define discrete adjoint

operators for certain operators which are discretizations of weak derivatives. Finally, MFD

is well defined on a large class of polygonal and polyhedral meshes rather than only on

relatively simple shapes such as triangles, squares, tetrahedra, hexahedra, or pyramids as

is typical in the finite element method.

There are many ingredients in a MFD method. First one must have a mesh of

a domain which is nice in a topological sense. It must be a connected domain and we

disallow connection between two cells to occur only at a vertex. Next we define discrete

spaces of grid functions which are interpreted as degrees of freedom of functions sitting in

appropriate Sobolev spaces. Next we define discrete analogues of differential operators on

these discrete spaces – however, the operators constructed will not be sufficient on their
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own to define a mixed space discretization. For example, we will construct only the gra-

dient operator but will require a divergence operator as well. These operators are defined

to preserve commutativity properties – namely that one can apply a discrete operator to

the interpolant of a function or apply a continuum operator and then interpolate, and

recover an identical result. Once spaces and operators are defined we construct a linear

isomorphism between discrete spaces and a finite dimensional approximation space. We

define this map as the reconstruction operator and we develop this mapping so that the

reconstructed space is a virtual element space – that is it contains piecewise polynomials

of a particular order and other shape functions which are of minimal norm and have a

specified set of degrees of freedom. Once the accuracy of discrete spaces is established

we construct polynomially consistent inner product matrices with in order to discretize

weak formulations. The construction of inner product matrices is non-unique. A closed

form exists for a stable choice of this matrix. However, there is no guarantee that this

matrix will be optimal. The selection of an optimal inner product matrix for a given prob-

lem is called M-adaptation. We exploit this non-uniqueness by constructing parametric

families of inner products. The number of parameters in these matrices grows rapidly

with the dimension of the space, the number of sides on our cells, and with the order of

polynomial approximation. Once we have constructed a discrete inner product we can

complete the set of necessary discrete differential operators by defining adjoint operators

which are discrete weak derivatives.

Bokil and Gibson [6] considered a number of FD discretizations of Maxwell’s equa-

tions for which they demonstrated reduction of numerical dispersion when the spatial

discretization order was increased from second to fourth while maintaining second order

for the temporal discretization. Increasing the spatial discretization beyond fourth or-

der did not produce any significant reduction in the dispersion error. Smith, et al. [55]

were able to eliminate fourth order dispersion error by using a modified fourth-order FD
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method in space and time. The modified stencil of the FD method was obtained as a

weighted average of various rotated stencils.

The problem of constructing methods with optimal numerical dispersion properties

has been considered in the case of acoustics, where similar results were obtained using FD

and FE-type discretizations. In particular, Jo et al. [27] and Stekl and Pratt [56] derived

an optimized 9-point FD method in two space dimensions for an acoustic wave equation

in the frequency domain. Their idea was to consider a weighted average of the standard

and “diagonal” FD methods and optimize the resulting scheme for the weights. Sescu et

al. [54] extended this idea to three space dimensions.

One can approach the reduction of dispersion with time domain finite element meth-

ods (TDFEM) by employing higher order discretizations. However, as mentioned above,

drawback of this approach is the necessity of inverting the mass matrix at every time

step. Fisher et al. in [15] addressed this issue by employing a generalized mass lump-

ing technique. Their approach was to increase the computational efficiency of high order

Nédélec Elements by choosing Gauss-Lobatto quadrature points and using these quadra-

tures to resolve the integrals of the mass and stiffness matrices. On orthogonal Cartesian

meshes their method produces a diagonal mass matrix and on more general geometries

the sparsity of the mass matrix is greatly reduced if non-diagonal. As is typical of Nédélec

elements, they recover a dispersion error of order 2p where p is the polynomial degree.

This approach is philosophically different than our approach: while they attempt to make

an accurate method more efficient, we will make an efficient method more accurate. Our

optimization technique produces a method which has a formal L2 error of order two and

dispersion error of order four producing higher quality solutions than those produced by

the lowest order Nédélec elements. A natural extension of our work is the development

of both higher order discretizations using M-adaptation and an extension to hexahedral

meshes.
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Another technique based on the FE framework is closer to our method, see e.g.,

[19, 28, 64]. Instead of using the typical lumping, i.e., by approximating the mass matrix

M with a diagonal matrix D, an approximation of the mass matrix M ≈ DM−1D is

used. This approach makes approximation of M−1 ≈ D−1MD−1 simple, as it involves

inverting a diagonal matrix D. Also, in this approach the mass matrix M is retained in

the scheme, which becomes important in the optimization step. The optimization step is

similar in spirit to utilizing weighted combinations of standard and rotated stencils in the

FD approach.

Our approach to the reduction of dispersion on rectangular grids is to exploit the

non-uniqueness of the MFD. We begin by constructing a family of discretizations for two

dimensional Maxwell’s equations in free space. We discretize in time using staggered leap

frog and in space using MFD. This family of schemes includes both the Nedéléc method

and the Yee Scheme, both of which have second order dispersion errors. By performing

dispersion analysis on a parameterized family of discretizations and carefully choosing our

parameters we are able to select an optimal member with order four dispersion. In this

case the resulting stencil is roughly twice the size of the Yee scheme yet comparable to

the Nedelec scheme. We call the resulting scheme the M-Adapted MFD for Maxwell’s

Equations.

We next extended this approach to a large class of linear polarization models, for

example cold plasma, namely those models which can be modeled as linear, first order,

system of ODE driven by the electric field. We first attempted to apply the standard

semi-implicit time averaged schemes for these models. For this time integrator applied

to these models M-adaptation to reduce dispersion fails. We then considered less typical

integrators including Exponential Time Differencing (ETD).

The ETD method was originally introduced in computational electromagnetism

as a scheme for handling stiff problems, such as computing the electric and magnetic
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fields in a box surrounded by perfectly matched layers [13]. For these problems, explicit

time-stepping, for example the Leapfrog time differencing method, requires an extremely

small time step in order to be stable. On the other hand implicit schemes that are

unconditionally stable can be costly to implement in three dimensions. ETD involves

an exact integration of some of the lower order linear terms in the governing equations,

and higher order accuracy can be obtained by using a higher order discretization of the

resulting integral terms. However, the ETD approach has been shown to offer no major

advantages over the time averaging of the lower order linear terms in the Yee scheme, for

alleviating stiffness. In some cases, ETD may be less efficient by necessitating smaller step

sizes [50]. We would like to emphasize that the reason for the choice of ETD in our work

is not for handling stiffness, but rather that it is a good candidate for a time discretization

method which allows for successful optimization in the M-adaptation technique.

In contrast to other numerical methods for the cold plasma model that use ETD dis-

cretization only for the equation of polarization current density [14], our ETMFD method

is a discretization of a hybrid PDE-ODE system modeling the evolution of the polarization

current density and electric field forced by spatial derivatives of field variables.

It is possible to apply the M-adaptation technique to discretization of Maxwell’s

Equations with a general polarization law using MFD in space and ETD in time. We call

the resulting scheme the M-Adapted ETMFD for Maxwell’s Equations in a General

Polarizaiton Media. This method uses an identical choice of parameters as the free space

case and still has super convergent dispersion error at order four. The equivalent properties

between the two schemes can be shown as ETD is the correct generalization of the leap frog

and taking limits as our polarization properties go to zero one would recover exactly the

free space discretization. In addition to the superior convergence properties we also prove

that the M-Adapted schemes obey a stability requirement identical to the Yee scheme.

Further, both the MFD and ETMFD also preserve a discrete analogue of Gauss’ Law
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exactly in the absence of source currents.

1.2 Introduction to Magnetohydrodynamic Gen-

erators

Direct power extraction via magnetohydrodynamic (MHD) principles offers a po-

tential step improvement in thermal efficiencies over energy systems utilizing traditional

turbomachinery [60]. This is principally due to the lack of moving parts in an MHD gen-

erator, as the temperature limits of the moving parts tend to limit cycle temperatures in

traditional combustion driven systems. A history of MHD power generation technologies

can be found in [35]. It is also worth noting that the Proceedings of the Symposia on

Engineering Aspects of Magnetohydrodynamic Power Generation are a primary source

for the development of MHD power. Many fundamental notions and concepts on which

this work rests are based on the papers published in this series. Some of these papers are

now available online through the US Department of Energy OSTI website.

It was established that a major weakness toward commercialization of MHD power

generation is the durability of the current collectors on the walls of the generator (elec-

trodes). The electrodes must withstand harsh conditions, and the most damaging and per-

haps most difficult to predict phenomenon experienced in the generator is arcing. Consider

the example of an oxyfuel kerosene MHD Generator with a water-cooled, copper channel.

The combustion product will be at approximately 2500 K while the channel will be kept at

a temperature near 500 K. This large difference in temperature causes a thermal boundary

layer to form in the plasma, where the bulk flow will be much hotter than a thin layer near

the edge of this channel. As the plasma is thermally ionized, the conductivity will drop in

this boundary layer. Large arcs of high current density will then form near the electrodes

as the current which is forced through the electrodes will have to “jump the conductivity
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gap.” The literature on arcing in MHD generators is extensive, c.f. [36, 46, 52, 53] and

references therein.

In the arc state we expect the current densities at the wall to be many orders of

magnitude larger than in the diffuse state. Given these large differences in current density,

the induced magnetic fields are measurably different near the arc. Therefore properties of

the current density may be inferred via measurements of the induced fields. The idea of re-

constructing current densities from external magnetic flux density measurements has been

successfully applied to fuel cells and vacuum arc remelters [61]. The standard approach to

this problem is to apply the Biot-Savart law and solve a system of integral equations. This

formulation unfortunately requires many assumptions on the geometry and the model pa-

rameters. Instead, one can formulate the inversion by way of a simulation-based parameter

estimation. This technique requires the simulation of a forward problem whose inputs are

parameterized explicitly. One then matches the solution of the model to measured data

by minimizing the discrepency between data and simulation using non-linear optimization

techniques in the parameter space.

It is our goal here is two three two fold. First we will develop a 3D model of equilib-

rium MHD generators and produce simulations showing that this model is qualitatively

correct. Second we will provide a proof of concept for inversion, via sensitivity analysis,

that current densities inside the channel of a magnetohydrodynamic generator (MHDG)

can indeed be estimated from external measurements of the induced magnetic fields. This

is in comparison to using measurements of the applied field which will most often al-

ready be known. It is worth noting that the induced fields are expected to be significantly

smaller than the applied field of the generator, which will be a practical issue in the design

of experiments.
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1.3 Outline

In Chapter 2 we present a brief introduction to electromagnetism, Maxwell’s Equa-

tions, and a variety of material models.

In Chapter 3 we present a theoretical development of the Mimetic Finite Difference

Method suitable for discretizations Maxwell’s equations in two dimensions. This develop-

ment will seek to establish similarities between the MFD and Virtual Element Methods.

In Chapter 4 we will present semi-discrete and fully discrete approximations for

Maxwell’s equations. In addition we will prove a number of properties of these methods

including analyzing the divergence of these schemes. We will present numerical results

demonstrating some of these properties.

In Chapter 5 we will introduce dispersion analysis for both continuum and discrete

equations. Using these techniques we will then analyze the dispersion properties of a family

of mimetic discretizations and perform M-adaptation. These results will be developed first

for free space and then extended to general linear polarization laws. We present numerical

results supporting our theoretical findings.

In Chapter 6 we will prove necessary conditions for stability of the M-adapted

Methods constructed in Chatper 5. We will present numerical results demonstrating the

sufficiency of these conditions as well as demonstrating that violating the conditions indeed

leads to instability.

In Chapter 7 we will establish a model for equilibrium magnetohydrodynamic gener-

ators. We will then prove the electromagnetic fields in this model are well posed and that

magnetic fields depend continuously on the electrical conductivity of the medium. We

will present a numerical study of the sensitivity of magnetic fields to a heuristic model of

arcing. Finally we will numerically investigate the qualitiative features of our equilibrium

model.
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In Chapter 8 we will present conclusions and a number of open problems.

1.4 Resulting Publications

This thesis resulted in the following works accepted or published in peer reviewed

journals.

1. V. A. Bokil, N. L. Gibson, V. Gyrya, and D. A. McGregor. Dispersion reducing meth-

ods for edge discretizations of the electric vector wave equation, J. Comput. Phys.

287 (2015), pp. 88-109.

2. V. A. Bokil, N. L. Gibson, D. A. McGregor, and C. R. Woodside. Toward estimating

current densities in magnetohydrodynamic generator, J. Phys. Conf. Sers. 640 (2015),

p. 012032.

3. V. A. Bokil, V. Gyrya, and D. A. Mcgregor. A dispersion minimized mimetic method

for cold plasma, ECCOMAS (2016), accepted.

1.5 Notation
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TABLE 1.1: Common notation.

E an electric field D an electric induction

B a magnetic flux density or induction H a magnetic field

J current density I current

u a velocity field T temperature

V Voltage or potential difference ρ charge or mass density

ε electrical permittivity µ magnetic permeability

η electron mobility e electron charge

ν fluid viscosity c speed of light

τ a relaxation time ωI ion collision frequency

ωP plasma frequency ω0 natural frequency

σ electrical conductivity ε∆ relative permittivity gap

ω frequency k wave vector

k wave number k = |k|

∇ the gradient operator div the divergence operator

curl the curl operator or vector curl in 2D curl the scalar curl in 2D

4 the Laplacian dV infinitesimal of integration, 3D

dA infinitesimal of integration, 2D ds infinitesimal of integration, 1D

⊆ the subset relation ≤ when arguments are spaces, subspace relation

A the closure of A ∂A the boundary of A

∆x x-axis resolution ∆y y-axis resolution

∆t time resolution h spatial resolution

ν Courant number ν = c∆t
h α aspect ratio α = ∆y

∆x
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2 ELECTROMAGNETIC MODELS

In this chapter we will provide a brief introduction to electromagnetics, following

closely the development of [18] and [25]. We will introduce electric and magnetic fields

in the stationary, or static, case and then conclude with a description of the time depen-

dent Maxwell’s equations. Our development of the time dependent case will in terms of

empirical observations and then from these derive differential equations. Beginning with

a static, or steady, assumption will allow for an intuitive motivation of what electric and

magnetic fields are while removing much of the complexity of deriving time varying fields

from fundamental principals which requires physics outside the scope of this thesis. In

section 2.1 we introduce electric fields and variables associated with charge. In section 2.2

we introduce magnetism. In section 2.3 we introduce Maxwell’s equations and present a

number of constitutive laws. In section 2.4 we introduce function spaces suitable for the

variational treatment of Maxwell’s Equations.

2.1 Electricity

In this section we will investigate the physical phenomenon related to electricity

and electric fields. The fundamental dimensional quantity we will discuss here is charge.

Unlike mass, charge is a signed dimension with negative charge corresponding to electrons

and positive charges corresponding to protons. Charge is measured in the unit of Coulombs

(C) and the fundamental charge is that of the electron which we denote as e ≈ −1.6×10−19

C. Before the development of classical electromagnetics, the forces exerted on charge were

analogized to that of gravity–i.e., there is a force proportional to the distance squared

between two particles. This force is described by Coulomb’s law which states that the



17

force exerted on a particle with charge q1 at spatial location x1 by a particle of charge q2

at x2 is given by

F = ke
q1q2

|r|3
r (2.1.1)

where r = x2 − x1, and ke is the Coulomb constant

ke = 8.99
N m2

C2 (2.1.2)

where Newtons (N) is the fundamental unit of force and the meter m is measure of distance.

With the work of Faraday a radically different notion was adopted. Instead of

considering forces as being driven by distinct particles we consider a globally defined

vector field with units of force per unit charge N
C . This vector field is called the electric

field, denoted by E, and a particle with charge q sitting in an electric field at location x

will have a force of qE(x) exerted upon it. To extract the value of this electric field we

will define it in terms of an infinite superposition of Coulomb forces.

Let ρ be the volumetric charge density with units of C
m3 . The force acting on a

charge q at a point x can then be defined by summing of all of the Coulomb forces.

F(x) =
q

4π

∫
1

ε
ρ

y − x

|y − x|3
dV. (2.1.3)

Here ε is called the electrical permittivity. In the case of vacuum we have

ke =
1

4πε0
(2.1.4)

where ε0 is the electrical permittivity of vacuum. In all materials electrical permittivity

determines how easily charges can reorient themselves in the presence of electric forces.

We can then define E by the equation

F = qE. (2.1.5)

The electric field is force per unit charge. We can define a quantity which is roughly

analogous to work. We call this value the voltage or electric potential (energy). Let Γ be
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some path in space. We define the potential difference between the start point and end

point of the path Γ to be

∆V =

∫
Γ

E · ds. (2.1.6)

The voltage V has units of energy per unit charge defined as volts V = J
C . In essence,

moving a particle of charge q along the path requires work given by q∆V . We define the

scalar voltage function V (x) by fixing some point xc and defining

V (x) =

∫ x

xc

E · ds. (2.1.7)

From this definition we see that voltage is only well defined up to a constant as we could

move the center xc and change the field by a factor of ∆V , i.e.∫ x

yc

E · ds =

∫ xc

yc

E · ds+

∫ x

xc

E · ds = ∆V + V (x). (2.1.8)

We will finally describe a final electric quantity which was a major contribution of

Maxwell. Define the field

D(x) =
1

4π

∫
ρ

x− y

|x− y|3
dy. (2.1.9)

This field, which we will call the electric displacement field has units of charge per unit

area C
m2 . A physical interpretation for this field is not straight forward. The field D at a

point x is the superposition of the product of charge with displacement weighted by the

displacement cubed.

We can now pose our first and simplest constitutive law for electric fields.

D = εE (2.1.10)

This constitutive law states that D and E must be proportional for materials which possess

a scalar valued permittivity ε or D and E must be linearly dependent pointwise when ε

is matrix valued. There are materials for which this is not true and we can introduce
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an additional field to account for the discrepancy. We call this discrepancy field field P,

the electric polarization. This field can be used to represent a preferred orientation or

structure to the charges in the domain. A constitutive law including polarization is given

as

D = εE + P. (2.1.11)

2.2 Magnetism

In this section we will now discuss magnetism. The magnetic effect is due to the

motion of charges rather than being induced from a fundamental dimension like charge or

mass. Such a quantity is hypothetically referred to as a monopole. As no such quantity

is observed we call our universe monopole free.

So far we have assumed that charges remain fixed in space. We will now establish a

notion of the flow rate of charge. We call this quantity current, denoted by I, with units of

charge per second C
s and oriented in the direction of flow. We will denote the norm of this

quantity I. As we are concerned with continuum objects we define the current density J

through an arbitrary surface A as

I · n =

∫
A

J · n dA (2.2.1)

A very clean theory of magnetism can be developed using the Special Theory of Relativity

and in particular using Lorentz transformations. Namely that one develops electrostatics

in an inertial frame of reference and then describes magnetic fields as arising when changing

frame of reference. However, the elegance of this approach requires significant theory which

is not directly relevant to the rest of this work. We will instead consider a less profound,

but simpler development.

We consider a theoretical object referred to as a dipole an infinitesimal bar magnet.
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In the presence of a magnetic field a dipole will orient itself with the magnetic field. The

direction in which a dipole at given point in space orients in the presence of a magnetic

field is in the direction of a field B which we call the magnetic flux density or magnetic

induction. The magnitude of B is then given by the amount of torque exerted on the

dipole

τ = µ×B (2.2.2)

where µ is called the dipole moment. Magnetic fields exert forces on moving charges by

way of the empirical relation

F = qu×B, (2.2.3)

where u is the velocity of the charged particle. This law gives us units for the field B in

terms of force per amp per meter N
Am which we define as the unit Tesla (T). This relation

can be posed on an object with charge density rather than a point charge by

F =

∫
ρu×B. (2.2.4)

Since velocity times charge density is exactly the flow rate of charge per unit area, we

have a continuum scale relation

f = J×B. (2.2.5)

where f is the volumetric force density.

Similar to electric fields we can then define the magnetic field induced by a steady

current density by the Biot-Savart law

B(x) =

∫
µ

4π
J× y − x

|y − x|3
dV. (2.2.6)

Here µ is a material dependent proportionality constant called the magnetic permeability

which the integral could change point by point in space. Also similar to the electric
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variables we introduce a quantity roughly analogous to D, which we call the magnetic

field denoted by H. It obeys a simple constitutive relation

B = µH. (2.2.7)

which may not be true for all materials as it requires, as in the electric field cases, B and

H to be proportional or linearly dependent. We introduce a field which would account

for a non-linear discrepancy by defining the Magnetization Field denoted by M. Playing

a roll similar to electrical polarization we can introduce a general constitutive law by

B = µH + M. (2.2.8)

2.3 Maxwell’s Equations

Maxwell’s equations are the synthesis of Faraday’s Law and Ampére’s Law. Fara-

day’s law relates time varying magnetic fields to the curl of electric fields. It can be

measured experimentally by attaching a voltmeter to a loop of wire and then moving a

magnetic field in and out of the loop. The results of this experiment obey

∂

∂t
Φ = −∆V (2.3.1)

where Φ is the total magnetic flux through the area contained in the loop. This statement

can be rewritten as

∂

∂t
Φ =

∂

∂t

∫
Γ

B · n dA (2.3.2)

−∆V = −
∫
∂Γ

E · ds (2.3.3)

which states that the total magnetic flux through the surface Γ is exactly the circulation

of the electric field along the boundary.
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Applying Stokes’ Theorem and assuming sufficient regularity in time of B and in

space on E we can pose this as the equation∫
Γ

(
∂

∂t
B + curlE

)
· n dA = 0. (2.3.4)

By letting |Γ| → 0 and choosing arbitrary surfaces in 3D we can deduce the differential

equation

∂

∂t
B = −curl E Faraday’s Law. (2.3.5)

An experiment to demonstrate Ampére’s Law can be described as follows. Take a

long wire and run a current through it. Then take a short segment of wire carrying a small

current and measure the force acting on it as you move this current about the first. By

carefully noting the direction and magnitude of this force, we can determine the direction

and magnitude of the magnetic field about some loop around the large current.

By carefully integrating the magnetic field tangent to this loop we derive the result:

I =

∫
∂Γ

H · ds (2.3.6)∫
Γ

J · n =

∫
∂Γ

H · ds (2.3.7)

The Maxwell correction to Ampére’s Law was to decompose J =
∑

i Ji and recognize

that the time derivative of the electric displacement

∂

∂t
D (2.3.8)

is a current. Applying this we end up with the Maxwell-Ampére Law, which states

that

∂

∂t
D + J = curl H Maxwell-Ampére Law. (2.3.9)

In addition to these first order time dependent equations, Maxwell’s equations are bound

by two divergence conditions. The first of which is the monopole free condition for mag-

netic fields. This condition follows from the lack of free magnetic charges and is posed
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as

div B = 0. (2.3.10)

This condition can be derived from Faraday’s law by taking the divergence of both sides.

∂

∂t
div B = −div curl E = 0. (2.3.11)

Then assuming that divB(0) = 0 we have that it must remain zero for all time. Gauss’

Law, on the other hand relates to electric charges and states that

div D = ρ. (2.3.12)

Combining these four equations we have a system of four partial differential equa-

tions (PDEs) referred to as Maxwell’s Equations

∂

∂t
D + J = curl H, Ampére-Maxwell Law

∂

∂t
B = −curl E, Faraday’s Law

div D = ρ, Gauss’ Law

div B = 0. Gauss’ Law for Magnetism

(2.3.13)

Maxwell’s equations by themselves are incomplete and so we will now introduce an few

constitutive laws which close the system.

2.3.1 Linear Media

Free space is the simplest constitutive Model. In particular, we assume the two

constitutive relations

D = εE, B = µH. (2.3.14)

Here the electrical permittivity ε and magnetic permeability µ can be functions of space

and time, but they must be independent all other variables. They may be matrix or scalar
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valued. In this case, the materials do not respond to the electromagnetic fields. Examples

of materials which can be modeled reliably as a linear media include vacuum and air under

standard conditions.

2.3.2 The Debye Model

In the Debye model is a description of the response of a relaxing dielectric to elec-

tromagnetic fields. In this model consider a material whose molecules are bound in a

charge neutral configuration in the absence of and electric field. When an electric field

enters the material, the charges are pushed away from the nucleus of the molecule due to

the Coulomb force. After the electric field has passed, these negative charges relax into

their neutral configuration with some relaxation time τ . See Figure 2.1 for illustration.

The Debye model is often posed as a frequency dependent electrical permittivity

+

- - -
-

--
-
-

-
+

- -
- -

-
--

-

Electric Field

-
-

No Electric Field 
Configuration

Negative charges 
perturbed by electric 

field

FIGURE 2.1: A simple illustration of the effects of an electric field on a Debye Material

ε(ω) = ε∞ +
ε∆

1 + iωτ
(2.3.15)

Here ε∞ is the permittivity of infinite frequency while ε∆ is the permittivity gap of the

material. We can extract an ODE model of Debye materials by taking a Fourier transform
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of the Ampére-Maxwell Law and applying the Ansatz

D = ε(ω)E + P (2.3.16)

and then taking inverse transforms we recover:
ε∞

∂

∂t
E +

∂

∂t
P = curl H

τ
∂

∂t
P = −P + ε0ε∆E.

(2.3.17)

This equation states that P is a decaying exponential forced by the electric field. By

eliminating the ∂
∂tP term from the first equation we can see that the effect is that is

roughly dampening:

ε∞
∂

∂t
E = −ε∆

τ
E +

1

τ
P + curl H. (2.3.18)

The − ε∆
τ term will remove energy from E exponentially. While we are adding some energy

to E through P we have that P is also relaxing towards zero.

2.3.3 Drude-Lorentz Model

The Drude-Lorentz model for electrical polarization is somewhat analogous to the

Debye medium– we assume that electrons are pushed away from their positively charged

nuclei by the electric field. However, instead of assuming that the when the electric

field passes the electrons relax back to charge neutral we assume there behavior will be

analogous to that of a spring dash-pot system.

The complex permittivity of this model is given by

ε(ω) = 1 +
ω2
P

−ω2 − iωωI − ω2
0

. (2.3.19)

Here ωP is the called the plasma frequency of the plasma it is essentially the frequency

of oscillation induced by the Coulomb force acting on the electron shells of our molecules.

The parameter ω0 is the natural frequency and it should be interpreted as the spring
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constant in the oscillation. The parameter ωI is the ion collision frequency and it controls

the rate at which energy dissipates from the media.

The polarization law which is induced by this relation is given by

D = εE + P, (2.3.20)

∂2

∂t2
P + ωI

∂

∂t
P + ω2

0P = εω2
PE. (2.3.21)

When the natural frequency of the material is zero we have what is called the Drude

model. By defining

∂

∂t
P = J (2.3.22)

we then have a first order system

∂

∂t
D = ε

∂

∂t
E + J (2.3.23)

∂

∂t
J + ωIJ = ε0ω

2
PE. (2.3.24)

This cases has slightly different behavior as are only a single resonance frequency rather

than two. In the case of ωi = 0 this plasma is called collisionless and the model is energy

conservative.

2.3.4 Generalized Polarization Laws

Throughout this work we will consider a general framework which accommodates

many models with similar structure to both the Debye and Drude-Lorentz Models. In

particular, Polarization models which are forced by the electric field and perhaps other

polarizations. These models we write in the abstract form of

∂

∂t
u = Xu + F. (2.3.25)
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where

∂

∂t
u =



E

P1

P2

...

PM


, F =



curl H

0

0

...

0


(2.3.26)

and X is a matrix of coefficients. For an isotropic material (i.e. one which all directions

have essentially the same behavior) this matrix X can be written as

X⊗ I2×2. (2.3.27)

This is primarily the case we will consider although most of our methods will be able to

handle a very mild anisotropy of form
X 0 0

0 Y 0

0 0 Z

 (2.3.28)

where we then group the vector u by

u =

(
Ex · · · PMx,x Ey · · · PMy ,y Ez · · · PMz ,z

)T
(2.3.29)

Here there is no reason for there to be an identical number of polarization fields in each

direction. In addition, it is worth noting that this formulation can handle, in addition to

linear combinations of polarization models, a random polarization. In this case, we would

consider the macroscopic polarization to be given by

P = E[p(ξ)] (2.3.30)

where E is the expected value and p(ξ) is some ODE with random parameters ξ. By

discretizing the ODE of p(ξ) using generalized polynomial chaos methods we will end up
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with an abstract evolution equation of the form (2.3.25) although our interpretation for

the polarizations Pi will be moments of the moments of the probability distribution. See

[17] for the construction development of random polarizations.

2.3.5 Generalized Ohm’s Law

Ohm’s law is a famous empirical law which states that

∆V = IR (2.3.31)

where R is a material dependent proportionality constant we call resistance. To produce

continuum fields to describe Ohm’s law we make the following definitions. Define the

current density J associated with some cross section A by∫
A

J · n dA = I (2.3.32)

and define the electrical conductivity by∫ x

xc

1

σ
= R. (2.3.33)

Here electrical conductivity is e linear density of the inverse of resistance which is called

conductance. Consider a wire with area A then we have∫
A

∫ x

xc

J · n
σ

dsdA = IR (2.3.34)

By the definition of V as a path integral of E and taking the limit as |A| → 0 and

|x− xc| → 0 and by varying the orientation of of the cross section A arbitrarily we derive

the relation

J = σE (2.3.35)

which is also referred to as Ohm’s Law in the literature. We stress that Ohm’s law is an

empirical description and thus it should be considered a constitutive model rather than a

universal law.
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This assumes that the conductor is stationary. If the conductor moves with velocity

u then we must account currents induced by the magnetic field

J = σ(E + u×B). (2.3.36)

A final additional complexity we consider is that if the currents are moving, then the

Lorentz force should act upon them. However, this Lorentz force is proportional to J so

we arrive at an implicit equation

J = σ(E + u×B) + ηJ×B. (2.3.37)

This last term is called the Hall effect. The parameter η is called electron mobility and

it accounts for how easily electrons can flow through the media. In the case of solids this

value is very small but in gasses it can be significantly higher. For this reason it is a very

important effect toe account for in plasma physics.

2.4 Sobolev Spaces

The fundamental object in functional analysis is the linear space.

Definition 2.4.1. A set V is a linear space over the reals, R, if it is closed under the

abstract operations of addition and scaling.

∀u, v ∈ V : u+ v ∈ V, (2.4.1)

∀α ∈ R, u ∈ V : αu ∈ V. (2.4.2)

If V is also a metric space, and is in particular complete, we call V a Banach Space. If V

is a complete inner product space we call V a Hilbert Space.

Throughout this thesis we will make use of variational formulations of Maxwell’s

equations rather than strong formulations. For details on the development of weak formu-

lations for Maxwell’s equations see [5, 12, 39]. Variational formulations are developed in
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special Hilbert spaces called Sobolev spaces. We define the relevant spaces here. As the

curl or divergence requires significantly fewer derivatives than the gradient we will make

use of a number of lower-regularity Hilbert spaces.

Definition 2.4.2. Define the following spaces.

L2(Ω) =

{
u : Ω→ R measurable :

∫
Ω
|u|2 <∞

}
, (2.4.3)

L2(Ω) = {u : Ω→ Rd : ui ∈ L2(Ω), 1 ≤ i ≤ d}, (2.4.4)

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}, (2.4.5)

H(curl,Ω) = {u ∈ L2(Ω) : curl u ∈ L2(Ω)}, (2.4.6)

H(div,Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω)}. (2.4.7)

Each of these spaces is an inner product space, complete with respect to that the norm

induced by that inner product; i.e., a Hilbert Space. The inner product of the above spaces

are written as [·, ·]V where V is one of the above spaces.

[u, v]L2(Ω) =

∫
Ω
uv dΩ, (2.4.8)

[u,v]L2(Ω) =

∫
Ω

u · v dΩ =
∑
i

[ui, vi]L2(Ω), (2.4.9)

[u, v]H1(Ω) = [u, v]L2(Ω) + [∇u,∇v]L2(Ω), (2.4.10)

[u,v]H(curl,Ω) = [u,v]L2(Ω) + [curl u, curl v]L2(Ω), (2.4.11)

[u,v]H(div,Ω) = [u,v]L2(Ω) + [div u, div v]L2(Ω). (2.4.12)

The norm on an inner product space V induced by the inner product is given by

‖u‖V =
√

[u, u]V . (2.4.13)

Definition 2.4.3. If V and W are linear spaces such that W is a linear subspace, i.e. a

subset closed under addition and scaling, we denote this by

W ≤ V. (2.4.14)
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Definition 2.4.4. If V is a linear space. Define dual space of V by

V ′ = {F : V → R, F a linear functional}. (2.4.15)

Definition 2.4.5. Let B be a linear space with dual space B′. Define the duality pairing

by

〈·, ·〉B : B′ ×B → R (2.4.16)

〈F, u〉B = F (u), ∀F ∈ B′, u ∈ B. (2.4.17)

We will now present traces, i.e. restrictions to the boudary. A thorough develop-

ment, beyond definitions, can be found in [39].

Definition 2.4.6. Define the trace on H1 by

γ : H1(Ω)→ H(div,Ω)′, (2.4.18)

〈γu,v〉H(div,Ω) =

∫
Ω
∇u · v +

∫
Ω
u div v dΩ, ∀u ∈ H1(Ω),v ∈ H(div,Ω). (2.4.19)

When γu can be identified as an object in L2(∂Ω) we state γu = u|∂Ω.

Definition 2.4.7. Define the trace on H(div) by

γn : H(div,Ω)→ (H1(Ω))′, (2.4.20)

〈γnv, u〉H1(Ω) =

∫
Ω
∇u · v +

∫
Ω
u div v dΩ, ∀u ∈ H1(Ω),v ∈ H(div,Ω). (2.4.21)

When γnv can be identified as function in L2(∂Ω) we state γnv = n · v|∂Ω.

Remark. The trace and on H1 and the trace on H(div) are related by the following adjoint

property

〈γnv, u〉H1(Ω) = 〈γu,v〉H(div,Ω). (2.4.22)

Definition 2.4.8. We will now define the trace on H(curl). There are two cases.
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• Let Ω ⊂ R3. We define the trace on H(curl) by

γτ : H(curl,Ω)→ H(curl,Ω)′, (2.4.23)

〈γτu,v〉H(curl,Ω) =

∫
Ω

curl u · v dΩ−
∫

Ω
u · curl v dΩ. (2.4.24)

If γτu can be identified with an object in L2(∂Ω) then we say γτu = n× u|∂Ω.

• Let Ω ⊂ R2. We define the trace on H(curl) by

γτ : H(curl,Ω)→ (H1(Ω))′, (2.4.25)

〈γτu, v〉H1(Ω) =

∫
Ω

u · curl v dΩ−
∫

Ω
vcurl u dΩ. (2.4.26)

γτu can be identified with an object in L2(∂Ω) then we say γτu = τ · u|∂Ω.

We will present a number of standard estimates on these spaces.

Theorem 2.4.1. Let for V ≤ H1(Ω) and W ≤ H1(Ω) such that for Γ is an open subset

of ∂Ω

V =
{
v ∈ H1(Ω) : v|Γ = 0

}
, (2.4.27)

W =

{
v ∈ H1(Ω) :

∫
Ω
v dΩ = 0

}
. (2.4.28)

Then the following estimate holds

‖v‖L2(Ω) ≤ Cp.f.‖∇v‖L2(Ω) (2.4.29)

for all v ∈ V or v ∈W .

Proof. See [5]. Q.E.D.

Theorem 2.4.2. Define the spaces

V = {A ∈ H(curl,Ω) ∩H(div,Ω) : A× n|∂Ω ∈ L2(∂Ω)}, (2.4.30)

W = {A ∈ H(curl,Ω) ∩H(div,Ω) : A · n|∂Ω ∈ L2(∂Ω)}. (2.4.31)
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Then the following estimate holds:

‖div A‖L2(Ω) + ‖curl A‖L2(Ω) + ‖n×A‖L2(∂Ω) ≥ C‖A‖L2(Ω), ∀A ∈ V, (2.4.32)

‖div A‖L2(Ω) + ‖curl A‖L2(Ω) + ‖n ·A‖L2(∂Ω) ≥ C‖A‖L2(Ω),∀A ∈W. (2.4.33)

Proof. See [39]. Q.E.D.

A similar estimate holds in 2D relying upon the scalar curl and divergence.

In addition to these continuum spaces we also make use of polynomial spaces.

Definition 2.4.9. Let Ω ⊂ Rd. We define the space

Pk(Ω) = {p : Ω→ R, p a polynomial of degree ≤ k}. (2.4.34)
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3 MIMETIC FINITE DIFFERENCES IN TWO

DIMENSIONS

In this chapter we present a theoretical development of a lowest order MFD in two

dimensions suitable for discretizing Maxwell’s equations. This theoretical development

follows closely the work of [2] and [34]. However, we deviate from those works in that we

present our proofs to be more consistent with the VEM. In section 3.1 we will introduce the

DeRham and Hilbert Complex. In section 3.2 we will describe hypotheses on meshes for

the MFD. In section 3.3 we will present discrete spaces and discrete differential operators

which commute with the DeRham complex. In section 3.4 we will present reconstruction

proceedures with which a MFD discretiztion can be interpreted as a lowest order virtual

element method. In section 3.5 we will construct polynomially consistent inner products

for the MFD. In section 3.6 we will present the local matrices of a MFD discretization

on a rectangle. In section 3.7 we will define adjoint or weak differential operators for the

MFD. In section 3.8 we will prove that our MFD discretization preserves the kernel and

image properties of the gradient, divergence, and curl.

3.1 2D DeRham Complices

A DeRham Complex is an object introduced in Differential Geometry to relate

function spaces of scalars and vector fields through differential mappings, c. f. [30]. The

differential mapping is referred to as the exterior derivative, often simply called d. The

exterior derivative has the property that d2 = 0, a result which proves that div curl = 0

and curl ∇ = 0 respectively.

In the classical case the functions spaces are always infinitely smooth. This allows for
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no loss of regularity when the exterior derivative is applied. However, in the development

of weak formulations of partial differential equations we make use of Hilbert spaces. For

this reason we consider a DeRham Complex of Hilbert Spaces, often called a Hilbert

Complex, c.f. [1].

Consider the first order derivatives in two dimensions. Let f = f(x, y) and let

f = (f1(x, y), f2(x, y))T defined on Ω ⊂ R2,

∇f = (∂xf, ∂yf), curl f = (∂yf,−∂xf)T , (3.1.1)

curl f = ∂xf2 − ∂yf1, div f = ∂xf1 + ∂yf2. (3.1.2)

In two dimensions there are two non-equivalent Hilbert Complices,

H1 ∇ // H(curl)
curl // L2 (3.1.3)

H1 curl // H(div)
div // L2 . (3.1.4)

Choosing the appropriate complex for a given MFD discretization is determined by the

weak form of the partial differential equation to discretize. The Hilbert Complex (3.1.3)

is required for weak formulations of Maxwell’s Equations of the form
∂

∂t

∫
D ·Φ dA =

∫
Hcurl Φ dA, ∀Φ ∈ H(curl),

∂

∂t

∫
Bψ dA = −

∫
curl Eψ dA, ∀ψ ∈ L2.

(3.1.5)

While the Hilbert Complex (3.1.4) is required for weak formulations of the form
∂

∂t

∫
D ·Φ dA =

∫
curl H ·Φ dA, ∀Φ ∈ L2,

∂

∂t

∫
Bψ dA = −

∫
E · curl ψ dA, ∀ψ ∈ H1.

(3.1.6)

While this formulation is often of interest, discretizations of this system have a character

very similar to those seen in acoustics which have been thoroughly analyzed in [21]. For

this reason we will focus on the development of a MFD discretization of the Complex

(3.1.3).
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3.2 Preliminaries for Meshes

The MFD is defined on polyhedral meshes in 3D and polygonal meshes in 2D. There

is a very strong connection between mesh topology and our discretization.

Consider some simply connected domain Ω ⊂ R2 with a polygonal mesh T . We call

the set of all polygons in the mesh F , the set of all edges E , and the set of all vertices V .

We will refer to the polygons in F as faces. In general we refer to elements of F by the

variable f , E by e, and V by v.

The mesh T has the following properties:

1. The mesh is conformal to Ω, i.e.

Ω =
⋃
f∈F

f. (3.2.1)

2. The mesh T is path connected. That is between every vertex v,w ∈ V we can

construct a path from edges e ∈ E which connects v to w. Further we require for

any two faces f1, f2 ∈ F with f1 ∩ f2 6= ∅ that f1 ∩ f2 = e some edge in E .

3. Every face has a global numbering from 1 to NF .

4. Every edge has a global numbering from 1 to NE .

5. Every vertex has a global numbering from 1 to NV .

6. Every edge has a global orientation pointing in the direction τ e the unit tangent

vector to e. We choose τ e’s orientation so that it forms an angle with the x axis in

[0, π).

7. For every face f ∈ F there is a local numbering of edges e ∈ E which form the

boundary of f . This numbering is from 1 to nfE , where we will use the convention

that the local edges are numbered counter-clockwise around f .
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8. For every face f ∈ F there is a local numbering of vertices which are exactly end

points of edges which form the boundary of f . This numbering is also counter-

clockwise and ranges from 1 to nfV .

9. For every edge e ∈ F there exists two local vertices v1,v2 which form the endpoints

e. This numbering respects the orientation of e.

3.3 Discrete Spaces and Primal Operators

In this section we will introduce the degrees of freedom and primal, discrete differ-

ential operators of the lowest order Mimetic Finite Difference method.

In the lowest order there is a very natural connection between mesh topological

structures and discrete spaces. We will now present properties which we require of our

interpolation operators.

Definition 3.3.1. Let V and W be linear spaces. We say an operator L : V → W is

linear if

L(u+ αv) = L(u) + αL(v) (3.3.1)

for every α ∈ R and u, v ∈ V .

Definition 3.3.2. We define the following grid function spaces which are represented by

standard vectors in Rn:

Vh = RNV , Eh = RNE , Fh = RNF . (3.3.2)

We say that the natural topology of Vh is V the set of vertices, Eh is E the set of edges,

and Fh is F the set of faces. Grid function spaces are indexed by the numbering of the

corresponding natural topology.



38

Definition 3.3.3. We define discrete primal differential operators as linear operators

between grid function spaces:

∇h : Vh → Eh, curlh : Eh → Fh, (3.3.3)

which are referred to as the discrete primal gradient and discrete primal curl respectively.

Definition 3.3.4. We define interpolation operators as linear operators

IVh : H1(Ω) ∩ C0(Ω)→ Vh, (3.3.4)

IEh : H(curl,Ω)→ Eh, (3.3.5)

IFh : L2(Ω)→ Fh. (3.3.6)

These operators obey the following Hilbert Complex preserving properties:

∇h ◦ IVh = IEh ◦ ∇, curlh ◦ IEh = IFh ◦ curl. (3.3.7)

This property is illustrated in Figure 3.1.

H1 ∇ //

IVh

��

H(curl)
curl //

IEh

��

L2

IFh

��
Vh

∇h // Eh
curlh // Fh

FIGURE 3.1: Hilbert complex for discrete spaces.

We also make use of the following restriction notation.

Definition 3.3.5. The restriction of the interpolant of a grid function space Sh to the

natural topology of Sh is defined by

ISh
s (uh) = us ∈ R. (3.3.8)

This is to say that ISh
s is exactly the degree of freedom associated with s ∈ S .
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Definition 3.3.6. For a grid function space Sh with natural topology S and some other

topology W such that for w ∈ W and s ∈ S , s ∈ ∂w. Then we define the restriction of

u ∈ Sh to w by

ISh
w (uh) = uw := (us : s ∈ ∂w). (3.3.9)

This notation will allow us to define, for example, the space of all edge degrees of

freedom tangent to a face. We refer to the image space IS
w as Sw which is isomorphic to

an appropriately sized copy of Rn.

IVh
v : H1 → Vv = R

IVh
e : H1 → Ve = R2 IEh

e : H(curl)→ Ee = R

IVh
f : H1 → Vf = Rn

f
V IEh

f : H(curl)→ Ef = Rn
f
E IFh

f : L2 → Ff = R

(3.3.10)

In order to construct a collection of discrete spaces which obey these properties we

begin at the left most end of the complex with the continuum space L2. As this space has

no continuity and no trace we will discretize it with averages over every cell in F .

Definition 3.3.7. We define the face based interpolant IFh as follows. Assume H ∈

L2(Ω),

IFh
f (H) =

1

|f |

∫
f
H dA, f ∈ F , IFh(H) =

(
Hf : ∀f ∈ F

)
. (3.3.11)

Further, for an arbitrary grid function Hh ∈ Fh we define Hf to be the restriction to face

f .

In order to determine the space Eh we consider the relevant commutativity condition.

Consider it on just one cell f ∈ F

IFh
f ◦ curlE =

1

|f |

∫
f

curl E dA, (3.3.12)

=
1

|f |
∑
e∈∂f

∫
e
τ ·E ds. (3.3.13)



40

Given this calculation it appears that if we choose the degrees of freedom on Eh as pro-

portional to the integral of tangential components on cell edges we can define curlh to

preserve the commuting property.

Definition 3.3.8. We define the interpolant on Eh as follows. Choose E ∈ H(curl,Ω).

IEh
e (E) =

1

|e|

∫
e
τ e ·E ds, e ∈ E , (3.3.14)

IEh(E) =
(
Ee : ∀e ∈ E

)
. (3.3.15)

Definition 3.3.9. We define the discrete primal curl operator, curlh, as follows. Let

Eh ∈ Eh,

curlh : Eh → Fh (3.3.16)

curlh,fEf =
1

|f |

(
|e1|σf,e1 , · · · |enfE |σf,enfE

)
Ef . (3.3.17)

Here σf,e = ±1 corrects for a counter clockwise orientation of tangent vectors to compute

the curl, which in general does not agree with the global orientation of every edge. The

global matrix curlh is then assembled from local contributions on every face f ∈ F :

curlhEh =
(

curlh,fEf : f ∈ F
)
. (3.3.18)

Lemma 3.3.1. The discrete primal curl operator, curlh, as defined in Definition 3.3.8

obeys the commutativity condition

curlh ◦ IEh = IFh ◦ curl. (3.3.19)

Proof. Without loss of generality we need only prove the identity for an arbitrary face
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f ∈ F . We then have

curlh,fIEh
f (E) =

1

|f |

(
|e1|σf,e1 , · · · |enfE |σf,enfE

)


1

|e1|

∫
e1

E · τ e1 ds

...

1

|e
nfE
|

∫
e
n
f
E

E · τ e
n
f
E

ds

 , (3.3.20)

=
1

|f |
∑
e∈∂f

∫
e
E · τ e ds, (3.3.21)

=
1

|f |

∫
f

curl E dA, (3.3.22)

= IF
f (curl E). (3.3.23)

Which completes the proof. Q.E.D.

We must now determine the space Vh and the discrete primal gradient. Consider

the commutativity condition

∇h ◦ IVh = IEh ◦ ∇. (3.3.24)

We will perform a calculation of the right hand side. Fix arbitrary e ∈ E with boundary

vertices v1,v2.

1

|e|

∫
e
∇u · τ e =

u(v2)− u(v1)

|e|
(3.3.25)

A natural choice of the Vh’s degrees of freedom is therefore evaluation at vertices.

Definition 3.3.10. We define the interpolant on Vh as follows. Choose u ∈ H1(Ω) ∩

C0(Ω),

IVh
v (u) = u(v),v ∈ V , IVh(u) =

(
uv : v ∈ V

)
. (3.3.26)

Definition 3.3.11. We define the discrete primal gradient, ∇h as follows

∇h : Vh → Eh (3.3.27)

∇h,eue =
1

|e|

(
− 1, 1

)
ue (3.3.28)
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The global matrix ∇h is then assembled from local contributions on every edge e ∈ E :

∇huh =
(
∇h,eue : e ∈ E

)
. (3.3.29)

Lemma 3.3.2. The discrete primal gradient, ∇h as defined above obeys the commutativity

condition

∇h ◦ IVh = IVh ◦ ∇. (3.3.30)

Proof. Without loss of generality we consider a single edge e ∈ E .

∇h,eue =
1

|e|

(
−1 1

)u(v1)

u(v2)

 (3.3.31)

=
u(v2)− u(v1)

|e|
(3.3.32)

=
1

|e|

∫
e
∇u · τ e ds (3.3.33)

= IEh
e (∇u). (3.3.34)

This completes the proof. Q.E.D.

3.4 Reconstruction and Accuracy

With our discrete operators and spaces in place there is now a question of how

accurately these degrees of freedom approximate a given function. One approach for this

quantification is to apply local truncation analysis. This approach is relatively simple on

rectangular meshes. However we wish to utilize finite element theory as we are attempted

to discretize weak forms. To do so we must introduce the concept of reconstruction.

A reconstruction problem is one in which we seek a continuum functions with pre-

scribed of degrees of freedom. The goal is to create an isomorphism between discrete

spaces and an approximation space. If the approximation space contains all polynomials



43

of a certain degree we can then use those functions to prove the accuracy of the method.

We begin by considering global reconstruction and use a formulation equivalent to [2].

Definition 3.4.1. We define the following finite dimensional Reconstructed Spaces:

Vh ≤ H1(Ω) ∩ C0(Ω), DimVh = NV , (3.4.1)

Eh ≤ H(curl,Ω) DimEh = NE , (3.4.2)

Fh ≤ L2(Ω), DimFh = NF . (3.4.3)

We call the subspace embedding the Conformal Approximation Property. Further we say

that Vh corresponds to Vh, Eh corresponds to Eh, and Fh corresponds to Fh.

Definition 3.4.2. For a function F we say G is right inverse of F if

F ◦G = I (3.4.4)

where I is the identity map.

Definition 3.4.3. We define Global Reconstruction Operators on a grid function space

Sh as a linear mapping from Sh to the corresponding reconstructed space Sh

RSh : Sh → Sh. (3.4.5)

We require the following properties.

• If S is the domain of ISh define the inclusion map iS : Sh → S. We require iS ◦RSh

is the right inverse of ISh .

• We additionally require the following Hilbert Complex preserving property:

∇ ◦RVh = REh ◦ ∇h, curl ◦ REh = RFh ◦ curlh. (3.4.6)

It is worth noting that the Right Inverse Property and Linearity imply that RSh is

a linear isomorphism. Figure 3.2 illustrates many of these properties.
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H1

IEh

��

∇ // H(curl)

IEh

��

curl // L2

IFh

		

Vh

iH1

YY

∇ // Eh

iH(curl)

\\

curl // Fh

iL2

YY

Vh

RVh

66

∇h // Eh

REh

55

curlh // Fh

RFh

66

FIGURE 3.2: A commuting diagram relating discrete spaces and their reconstructions.

We will construct our global reconstructions using local reconstruction mappings.

At this stage we will diverge from the formulation of [2] and instead pursue an approach

closer to the Virtual Element Method as described in [3].

Definition 3.4.4. Define Local Reconstructed Spaces on arbitrary v ∈ V , e ∈ E , f ∈ F

as follows.

Vv = P0(v)

Ve ≤ H1(e) Ee = P0(e)

Vf ≤ H1(f) Ef ≤ H(curl, f) Ff = P0(f)

(3.4.7)

We require these spaces have the following dimensions.

DimVv = 1

DimVe = 2 DimEe = 1

DimVf = nfV DimEf = nfE DimFf = 1

(3.4.8)

Definition 3.4.5. We say a mapping from to a local reconstruction space Sw, where

w ∈ W is some topology, has the Data Locality Property if domain of that mapping is is

the corresponding local grid function space Sw.

Definition 3.4.6. Let W ,L be two topologies such that for w ∈ W there is some ` ∈ L .

Let Sh be a grid function space with reasonable restriction to ` and w. Let f`, fw be two
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mappings

f` : S` → S`, fw : Sw → Sw (3.4.9)

we say that fw is consistent with f` if

fw(uw)|` = f`(u`) (3.4.10)

where uw, u` are usual restrictions form uh ∈ Sh.

Definition 3.4.7. Let W be some topology on which a grid function space Sh has a

restriction. Call the domain of ISh the space S and let V ≤ S be a subspace. We say

that mappings fw : Sw → Sw for every w ∈ W are V Accurate if for every v ∈ V

fw ◦ ISh
w (v) = v. (3.4.11)

Definition 3.4.8. We define Local Reconstruction Operators as linear mappings on arbi-

trary v ∈ V , e ∈ E , f ∈ F as follows.

RVh
v : Vv → Vv

RVh
e : Ve → Ve REh

e : Ee → Ee

RVh
f : Vf → Vf REh

f : Ef → Ef RFh
f : Ff → Ff

(3.4.12)

We require the following properties of local reconstruction operators.

• Reconstruction is data local,

• We require the following consistency conditions:

– RVh
e consistent with RVh

v and RVh
f consistent with RVh

e ,

– REh
f consistent with REh

e .

• We require the following polynomial accuracy:

– RVh
w must be P1(w) accurate for w ∈ {v, e, f},
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– REh
e must be P0(e) accurate and REh

f must be P0(f)2 accurate,

– RFh
f must be P0(f) accurate.

• We require the following Hilbert Complex preserving properties:

curl ◦ REh
f = RFh

f ◦ curlh,f , (3.4.13)

∇ ◦RVh
w = REh

w ◦ ∇h, w ∈ {e, f}. (3.4.14)

We will now seek to realize local reconstruction operators with the above properties.

The MFD construction presented in [2] relies on ill-posed PDE and then makes the recon-

struction unique by adding, for example, orthogonality conditions for certain polynomials.

In contrast our development will pose reconstruction as solution to well-posed PDE and

then prove that the unique solutions obey the reconstruction properties more similar to

Virtual Elements.

It is our goal to construct the face based reconstructions RSh
f . However, these

operators natural require the reconstruction on every finer mesh structure . We will begin

with the simplest reconstructions, namely those on the topology natural to each grid

function space.

Definition 3.4.9. Define the reconstruction operators RVh
v ,REh

e ,R
Fh
f for v ∈ V , e ∈ E ,

and f ∈ F as

RVh
v (uh) = uv∀uh ∈ Vh (3.4.15)

REh
e (Eh) = Ee,∀Eh ∈ Eh (3.4.16)

RFh
f (gh) = gf , ∀gh ∈ Fh. (3.4.17)

That is we assume that our reconstructed functions will be piecewise constant on their

natural topology.
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Reconstruction operators as defined in 3.4.9 satisfy, trivially, all of the local recon-

struction operator properties. We will now define the reconstruction of an edge function

on a face.

Definition 3.4.10. Fix arbitrary f ∈ F and Eh ∈ Eh. We define E = REh
f (Eh) as the

solution of the following variational problem: E ∈ Hg(curl, f) such that
∫
f

curl E curl Φ dA+

∫
f
∇λ ·Φ dA =

∫
f

curl(RFh
f (curlhEh)) ·Φ dA ∀,Φ ∈ Hg(curl, f)∫

f
E · ∇ψ = 0, ∀ψ ∈ H1

0 (f).

(3.4.18)

Where

Hg(curl, f) = {Φ ∈ H(curl, f) : Φ · τ e = REh
e (Eh), e ∈ ∂f} (3.4.19)

Theorem 3.4.1. The local reconstruction operator REh
f satisfies the following properties:

1. it is a right inverse,

2. it is Hilbert complex preserving,

3. it satisfies the data locality condition,

4. it is consistent with REh
e ,

5. the map is linear,

6. the map is P0(f)2 accurate.

Proof. The variational problem (3.4.18) is well posed, therefore E = REh
f (Eh) is well

defined and unique for every Eh ∈ Eh.

1. Note that E ∈ Hg(curl, f). Therefore E|e · τ e = REh
e (Eh) for every e ∈ ∂f . As the

reconstruction operator REh
e has the right inverse property, the operator REh

f has

been constructed to obey it as well.
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2. The functionRFh(curlhEh) is a constant function on f . Therefore, curlRFh(curlhEh) =

0. Therefore, ∫
f

curlRFh
f (curlhEh) · ∇ψ = 0. (3.4.20)

Therefore, curlRFh(curlhEh) is in the kernel of our constraint operator

B(E, ψ) =

∫
f

E · ∇ψ. (3.4.21)

We therefore have λ = 0 as the function E is in the kernel of the constraint. The

variational problem therefore reduces as to,∫
f

curl E curl Φ dA =

∫
f

curl RFh
f (curlhEh) ·Φ dA (3.4.22)

The operator curl has a kernel consisting exactly of constant functions. RFh(curlhEh)

is a constant function thus curlcurlE = 0 in the sense of L2. As the kernel of curl

is exactly constants we have curlE a constant.

|f |curlE =

∫
f

curlE =
∑
e∈∂f

∫
e
E · τ e ds Stokes’ Theorem, (3.4.23)

=
∑
e∈∂f

∫
e
REh
e (Eh) · τ e E ∈ Hg(curl, f), (3.4.24)

=
∑
e∈∂f

σf,e|e|Ee Definition of REh
e , (3.4.25)

= |f |curlh,fEf Definition of curlh,f , (3.4.26)

= |f |RFh
f (curlhEh) Definition of RFh

f . (3.4.27)

Thus, curlREh
f (Eh) = RFh

f (curlhEh) and we have demonstrated Hilbert complex

preservation.

3. The definition of REh
f requires only edge data from the boundary of f therefore we

satisfy data locality.

4. As E ∈ Hg(curl, f), E|e · τ e = REh
e (Eh). Therefore the operator is consistent.
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5. Linearity is inherited from the linearity of (3.4.18) and the linearity of REh
e .

6. Without loss of generality assume E = ei a standard basis vector of R2. Let Eh =

IEh(E). As E is constant we know curl E ≡ 0 and curlh,fEh = 0. Therefore REh
f (E)

is the unique solution to the following strong equations in the sense of L2:
curlcurlREh

f (Eh) = 0 ∈ L2(f)

divREh
f (Eh) = 0 ∈ L2(f)

τ · REh
f (Eh)|e = e1 · τ ∈ L2(e), e ∈ ∂f

(3.4.28)

This equation is satisfied by the function ei therefore by uniqueness we have

REh
f ◦ I

Eh
f (ei) = ei. (3.4.29)

As every constant function c = c1e1 + c2e2 we have demonstrated the accuracy

property for P0(f)2.

Q.E.D.

Next we will discuss vertex function reconstruction.

Definition 3.4.11. Fix arbitrary e ∈ E and uh ∈ Vh. Let the boundary vertices of e be

v1,v2. We define u = RVh
e (uh) as the solution to the initial value problem

∂
∂τ u = REh

e (∇huh)

u(v1) = uv1

(3.4.30)

Theorem 3.4.2. Local edge reconstruction of vertex functions RVh
e has the following

properties:

1. it is a right inverse,

2. it is Hilbert complex preserving,

3. it satisfies the data locality property,
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4. it is consistent with consistency RVh
v ,

5. the map is linear,

6. the map is P1 accurate.

Proof. Note that REh
e (∇huh) =

uv2−uv1
|e| a constant function. This is sufficient to show the

ODE has a unique solution, namely a linear function.

1. Our definition of u guarantees u(v1) = uv1 . We must show that u(v2) = uv2 . Solve

for RVh
e (uh) exactly, we have

RVh
e (uh)(s) =

uv2 − uv1

|e|
s+ uv1 , s ∈ [0, |e|]. (3.4.31)

Evaluating at s = |e| we have RVh
e (uh) = uv2 which completes the proof.

2. Apply our exact solution from the previous problem we have

1

|e|

∫
e
τ · ∇u ds =

∫
e

∂

∂τ
u ds (3.4.32)

=
1

|e|

∫ |e|
0

∂

∂s

(
uv2 − uv1

|e|
s+ uv1

)
ds (3.4.33)

=
uv2 − uv1

|e|
(3.4.34)

= ∇h,euh. (3.4.35)

We therefore have the Hilbert complex preserving property.

3. As RVh
e depends only on the vertices which make up the end points of e we have

data locality.

4. As the ODE governing reconstruction is linear the operator therefore is as well.

5. Suppose u|e(s) = as + b some linear polynomial in the local coordinates of e, s ∈

[0, |e|]. Let uh = IEh(u). We therefore have ue = (b, a|e|+ b)T and ∇h,euh = a. The

exact solution of the reconstruction is given by (3.4.31) which implies

RVh
e (uh) = as+ b = u|e. (3.4.36)
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Q.E.D.

Definition 3.4.12. Fix arbitrary f ∈ F with boundary vertices v1, · · · ,vnfV and fix

arbitrary uh ∈ Vh. We define the face reconstruction of a grid function uh ∈ Vh as

u = RVh
f (uh) such that u is a solution to the variational problem : u ∈ H1

g (f) such that∫
f
∇u · ∇ϕ dA = −

∫
f

div REh
f (∇huh)ϕ dA, ∀ϕ ∈ H1

g (f). (3.4.37)

H1
g (f) = {ϕ ∈ H1(f) : ϕ|e = RVh

e (uh), e ∈ ∂f}. (3.4.38)

Theorem 3.4.3. The local face reconstruction of vertex functions RVh
f has the following

properties:

1. it is right inverse,

2. it is Hilbert complex preserving,

3. it satisfies data locality conditions,

4. it is consistent with RVh
e ,

5. the map is linear,

6. the map is P1 accurate.

Proof. As the variational problem (3.4.37) is well posed and RVh
f is well-defined and thus

the map is well defined and unique for every uh ∈ Vh.

1. Let ei, ej ∈ ∂f , then either ei ∩ ej = vk some vertex in the boundary of f or the

intersection is empty. If the intersection is non empty then RVh
ei and RVh

ej both

preserve the value uvk . We therefore have the right inverse property.

2. Similar to the other arguments we have the property

∆u = divRVh
f (∇huh) in the sense of L2. (3.4.39)
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As the kernel of the divergence operator is exactly curls we have

∇u = RVh
f (∇huh) + curl ψ. (3.4.40)

We must now show that curlψ = 0.∫
f
∇u · ∇ϕ dA = −

∫
f

divREh
f (∇huh)ϕ dA (3.4.41)

=

∫
f
REh
f (∇huh) · ∇ϕ dA (3.4.42)

by an affine lift of H1
0∫

f
(REh

f (∇huh) + curl ψ) · ∇ϕ dA =

∫
f
REh
f (∇huh) · ∇ · ϕ by (3.4.40). (3.4.43)∫

f
curl ψ · ∇ϕ dA = 0 (3.4.44)

We will now perform integration by parts on the left hand side.

0 =

∫
f

curl ψ · ∇ϕ dA (3.4.45)

=

∫
f
ψcurl∇ϕ dA−

∫
∂f
ψ
∂

∂τ
ϕ ds (3.4.46)

=

∫
∂f
ψ
∂

∂τ
ϕ ds. (3.4.47)

Applying an affine lifting argument we have the trace of ψ is zero in the sense of L2.

As ∇u = REh
e (∇huh) + curlψ on the boundary this implies that curlψ · τ = 0.

Further curlψ · τ = ∇ψ ·n = 0. Taking the scalar curl of equation (3.4.40) we have

the following PDE

curl curl ψ = −curlRVh
f (∇huh) (3.4.48)

∆ψ = curlRVh
f (∇huh). (3.4.49)
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From Theorem 3.4.1 we know that curlREh
f (∇huh) is a constant function.

|f |curlREh
f (∇huh) =

∫
f

curlREh
f (∇huh) (3.4.50)

=
∑
e∈∂f
|e|REh

e (∇huh) · τ (3.4.51)

= (uv2 − uv1) + (uv3 − uv1) + · · ·+ (uv1 − uv
n
f
V

) (3.4.52)

= 0. (3.4.53)

We therefore know that ψ satisfies the following strong equations in the sense of L2 4ψ = 0 ∈ L2(f)

ψ = 0 ∈ L2(∂f)
(3.4.54)

Which implies that ψ must be zero. We have therefore shown that

∇RVh
f (uh) = REh

f (∇huh). (3.4.55)

3. We have data locality as reconstruction depends only on the vertices in the boundary

of f .

4. We have consistency as RVh
f (uh)|e = REh

e (uh).

5. Linearity is inherited from the linearity of the PDE which defines RVh
f .

6. Let u be some function satisfying u|f = ax + by + c. Let uh = IVh(u). Note that

∇u = (a, b)T and by commutativity of interpolation we have

∇huh = IEh
f (∇u). (3.4.56)

However we know that REh
f is a right inverse on constant functions therefore

∇u = REh
f (∇huh). (3.4.57)
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Further, by P1 accuracy of RVh
e we know that REh

e (uh) = u|e for every edge e ∈ ∂f .

The reconstruction RVh(uh) satisfies the PDE 4R
Vh(uh) = 0 ∈ f

RVh
f (uh)|e = u|e e ∈ ∂f

(3.4.58)

Q.E.D.

With local reconstructions now well defined we will define the global reconstruction

operators.

Definition 3.4.13. Let χA be the indicator function for the set A. We define the global

reconstruction operator by

RSh(uh) =
∑
f∈F

RSh
f (uh)χf . (3.4.59)

Theorem 3.4.4. The global face reconstruction operator RFh has the following three

properties:

1. it is a right inverse,

2. the mapping is linear,

3. the mapping has the conformal approximation property.

Proof. 1. Fix Hh ∈ Fh.

IFh ◦ RFh(Hh) =

(
1

|f |

∫
f
RFh(Hh) dA : f ∈ F

)
, by definition,

=

 1

|f |

∫
f

∑
f∈Fh

RFh
f (Hh)χf dA : f ∈ F

 , by definition,

=

(
1

|f |

∫
f
RFh
f (Hh) dA : f ∈ F

)
, integrating over f,

=
(
IFh
f ◦ RFh

f (Hh) dA : f ∈ F
)
, by definition,

= (Hf : f ∈ Fh) local right inverse property

(3.4.60)
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2. Linearity is inherited directly from local linearity.

RFh(Hh + αBh) =
∑
f∈Fh

RFh
f (Hh + αBh) (3.4.61)

=
∑
f∈Fh

RFh
f (Hh) + αRFh

f (Bh) (3.4.62)

=
∑
f∈Fh

RFh
f (Hh) + α

∑
f∈Fh

RFh
f (Bh) (3.4.63)

= RFh(Hh) + αRFh(Bh). (3.4.64)

3. The local reconstruction RFh
f is constant on every f ∈ Fh. Therefore we have that

Fh = {H : H|f ∈ P0} a strict subspace of L2(Ω) as Ω is compact.

Q.E.D.

Theorem 3.4.5. The global edge reconstruction operator REh has the following three

properties:

1. it is a right inverse,

2. the mapping is linear,

3. the mapping has the conformal approximation property.

Proof. The proof of properties 1 and 2 follows exactly as in 3.4.4.

3. By construction of the reconstruction REh
f (Eh) is in the space H(curl, f) for every

Eh ∈ Eh and f ∈ F . Linearity of the map REh
f and the fact that Ef is a linear space

implies closure of the space REh
f (Ef ). For any f1, f2 ∈ F whose boundary shares an edge

e, the consistency of REh
f with REh

e guarantees that we have that

REh
f1

(Eh)|e = REh
e (Eh) = REh

f2
(Eh)|e. (3.4.65)

Therefore the global function REh(Eh) has tangential continuity across every edge e ∈ E .

This combined with REh
f (Ef ) = Ef ≤ H(curl, f) is sufficient to show REh(Eh) = Eh ≤

H(curl,Ω). Q.E.D.
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Theorem 3.4.6. The global vertex reconstruction operator RVh has the following three

properties:

1. right inverse,

2. linearity,

3. conformal approximation.

Proof. The proof of properties 1 and 2 follows exactly as in 3.4.4.

3. By construction the reconstruction RVh
f (uh) is in H1(f) for every uh ∈ Eh, f ∈ F . As

before, linearity of RVh
f implies that Vf ≤ H1(f). The consistency of RVh

f with RVh
e and

RVh
v guarantees that for any two faces f1, f2 sharing a vertex v and faces f3, f4 sharing

some edge e we have

RVh
f1

(uh)|v = RVh
v (uh) = RVh

f2
(uh)|v, (3.4.66)

RVh
f3

(uh)|e = RVh
e (uh) = RVh

f4
(uh)|e. (3.4.67)

Therefore every function RVh(uh) is globally continuous. This with local conformality

property Vf ≤ H1(f) guarantees that RVh(Vh) = Vh ≤ H1(Ω). Q.E.D.

Theorem 3.4.7. Global reconstruction preserves the Hilbert Complex:

∇ ◦RVh = REh ◦ ∇h, curl ◦ REh = RFh ◦ curlh. (3.4.68)

Proof. We must show this property in the sense of weak derivatives. Fix arbitrary Φ ∈

C∞0 (Ω)2 and ψ ∈ C∞0 (Ω). Fix arbitrary uh ∈ Vh. In the sense of distributions ∇RVh(uh)

is defined to be

−
∫

Ω
RVh(uh)divΦ dA. (3.4.69)
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We compute

−
∫

Ω
RVh(uh)divΦ dA = −

∫
Ω

∑
f∈F

RVh
f (uh)χfdivΦ dA, (3.4.70)

= −
∑
f∈Fh

∫
f
RVh
f (uh)divΦ dA, (3.4.71)

=
∑
f∈Fh

∫
f
∇RVh

f (uh) ·Φ dA, RVh
f (uh) ∈ H1(f), (3.4.72)

=
∑
f∈Fh

∫
f
REh
f (∇huh) ·Φ dA, local commutativity, (3.4.73)

=

∫
Ω

∑
f∈F

REh
f (∇huh)χf ·Φ dA, (3.4.74)

=

∫
Ω
REh(∇huh) ·Φ dA. (3.4.75)

As Φ and uh were chosen arbitrarily we have ∇◦RVh = REh ◦∇h in the sense of distribu-

tions. Given that RVh(uh) ∈ H1(Ω) and that REh(∇huh) ∈ L2(Ω) we have this identity

in the sense of H1 as well.

Fix arbitrary Eh ∈ Eh. Similarly curl REh(Eh) in the sense of distributions is given

as∫
Ω
REh(Eh) · curlψ dA =

∑
f∈F

∫
f
REh
f (Eh) · curl ψ dA, (3.4.76)

=
∑
f∈F

∫
f

curl REh
f (Eh)ψ dA, REh

f (Eh) ∈ H(curl, f), (3.4.77)

=
∑
f∈F

∫
f
RFh
f (curlhEh)ψ dA, local commutativity, (3.4.78)

=

∫
Ω
RFh(curlhEh)ψ dA. (3.4.79)

Similarly we have shown that curl REh(Eh) = RFh(curlhEh) in the sense of distributions

and H(curl,Ω). Q.E.D.

Having now developed the theory of reconstruction we can make two qualitative

observations about our Mimetic Finite Difference Method. The first observation is that
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having constructed a linear isomorphism to the reconstructed spaces Vh, Eh, Fh, and given

that these spaces are a conformal subspaces containing polynomials of the continuum

spaces, we can argue that reconstructed spaces are in fact finite element approximation

spaces. These reconstruction spaces are exactly the approximation spaces developed in

the virtual element method. We can interpret the MFD as a discretization of the dual

space of a given virtual element space. This is recognizable as the space Sh is exactly the

degrees of freedom of the reconstructed space. In this sense then we have Sh = S′h in the

traditional Hilbert space sense.

Secondly, while we developed a class of reconstructed spaces from which we can

make approximation space arguments, the MFD has no preferred approximation space. By

choosing a different reconstruction procedure which guarantees equivalent approximability,

the MFD would then also be a dual space representation of any such reconstructed space.

From this perspective then the MFD is a discretization of the dual space of all possible

virtual element spaces for a given mesh.

3.5 Inner Products

Having developed in the previous section that our MFD spaces are linearly isomor-

phic to their reconstructed spaces, spaces which contain piecewise polynomials and are

conformal subspaces of our continuum spaces, we are very close to inheriting a-priori esti-

mates from lowest order mixed finite element methods. However, we are missing a crucial

component of such discretizations– namely a discrete notion of the inner product. These

discrete inner products will have to respect integration against polynomials. For the other

functions in our reconstructed spaces we will make errors, but these will be in essence the

same as of selecting a quadrature to evaluate the integrals in a finite element method.

We will make repeated throughout the section of polynomial projections.
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Definition 3.5.1. Let A ⊂ Ω have non-zero measure. Let u be some L2(Ω) function. We

call the Pk projection of u on A the function ΠA
k (u) defined by∫

A
ΠA
k (f)p dA =

∫
A
fp dA, ∀p ∈ Pk(A). (3.5.1)

We will now define our inner products.

Definition 3.5.2. We define the global global inner products as follows:

[uh, vh]V = uThMV vh, [Eh,Dh]E = ET
hME Dh, [Fh, Hh]F = F Th MFHh. (3.5.2)

Where each matrix will be symmetric positive definite approximation of the L2 inner

product on Ω. Global inner products will be assembled from local inner products on every

face f ∈ F .

[uf , vf ]V ,f = uTfMV ,fvf , [Ef ,Df ]E ,f = ET
fME ,fDf , (3.5.3)

[Ff , Hf ]F ,f = F Th MF ,fHf . (3.5.4)

Our local inner products must satisfy the following hypotheses.

Symmetric Positive Definite: MS ,f must satisfy

uThMS ,fuh ≥ 0, uThMS ,fuh = 0 =⇒ uh = 0 (3.5.5)

and MS ,f = MT
S ,f .

Polynomial Exactness: Our integration must be exact for polynomials. Let {pi} be a

basis for the polynomial space Pk(f)d. We will have k = 0 for Eh,Fh and k = 1

for Vh. Further d = 0 for Vh,Fh and d = 2 for Eh. Let K be an appropriate inner

product weight on L2.

[uh, ISh(pi)]S ,f ≈
∫
f
KRSh

f (uh)pi dA. (3.5.6)

and further if RSh
h (uh) ∈ Pk(f)d then it most hold exactly.
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If we have n distinct weights K1,K2, · · · ,Kn we will denote each inner product by

[·, ·]KiSh
with corresponding matrix MKi

S . (3.5.7)

If one the weights Kj is the identity we would leave that matrix with no special

marking.

Remark. When we defined our reconstructions we were able to show that every local

approximation space Sf can be decomposed into Pk(f)d ⊕ S̃f where S̃f could contain

non-polynomial functions. This gives us RSh
f (uh) = qk + v where qk ∈ Pk(f)d and v ∈ S̃f .

Our definition of polynomial exactness states that

[uh, ISh(p)]S ,f =

∫
f
Kqkp dA. (3.5.8)

which is in essence assuming that S̃f is L2(K, f) orthogonal to Pk(f)d. However, S̃f is

only provably L2 orthogonal to Pk.

While never explicitly stated this way, the literature is full of examples of this sort

of approximation. For example, assuming KΠk(K
−1p) ≈ p for every p ∈Pk.

In order to construct local inner product matrices we make use of the following

construction.

Theorem 3.5.1. Fix arbitrary f ∈ F . Let {pi}, {p̃i} be bases for Pk(f)d satisfying:∫
f
Kp̃ip dA =

∫
f
pip dA, ∀p ∈ Pk(f)d, (3.5.9)

where k = 0 for Eh,Fh and k = 1 for Vh and d = 1 for Vh,Fh and d = 2 for Eh. We

define the matrix N by its columns (called Ni) by

Ni = ISh
f (p̃i). (3.5.10)

We define the matrix R by its columns so that

uThRi ≈
∫
f
KRSh

f (uh)p̃i dA, ∀uh ∈ Sh (3.5.11)

=

∫
f
RSh(uh)pi dA, ∀uh such that RSh

f (uh) ∈ Pk(f)d. (3.5.12)
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We then have the identity

MS ,fN = R. (3.5.13)

The local matrix MSh
can be expressed in the form

MSh,f = M1 + M2,M1 = R(NTR)−1RT (3.5.14)

M2 = |f |QCQT . (3.5.15)

Here the columns of Q are a basis for the null space of NT and C is an SPD matrix. Such

an MSh,f has the following four properties:

1. polynomial exactness,

2. NTR is SPD,

3. MSh,f is SPD.

Proof. 1. Polynomial exactness follows from the definition of the matrices N and R.

Consider ph = ISh
f (p̃i). Then ph is in the span N, i.e. p̃h = Nc where cj = δij .

[uh, ph]S ,f = uThMS ,fph = uThMSh,fNc, (3.5.16)

= uThRc, (3.5.17)

=

∫
f
RSh
f (uh)pi dA, (3.5.18)

=

∫
f
RSh
f (uh)pi dA. (3.5.19)

This is exactly polynomial consistency.

2. Consider the product NTR.

[NTR]i,j =

∫
f
KRSh

f ◦ I
Sh
f (p̃i)p̃j (3.5.20)

=

∫
f
Kp̃ip̃j . RSh

f ◦ I
Sh
f exact on Pk. (3.5.21)

This is exactly the L2(K, f) Gram matrix of Pk which is SPD.
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3. Symmetry of MS ,f is immediate. Consider uh = Nx+ Qy.

uThMS ,fuh = (Nx)TM1(Nx) + (Qy)TM2Qy. (3.5.22)

We will now consider each component.

(Nx)TM1Nx = (Nx)TR(NTR)−1RTNx by definition (3.5.23)

= xTNTRx. (3.5.24)

We have previously demonstrated NTR is SPD so we have positivity and definiteness.

For the other component we have

(Qy)TM2Qy = yT (QTQ)C(QTQ)y. (3.5.25)

That matrix QTQ is full rank as the columns of Q are linearly independent. AS C

is SPD we have positivity and definiteness.

Q.E.D.

We next construct our inner product matrices.

Construction 3.1 (MF ,f ). This construction is simple enough that it does not rely upon

Theorem 3.5.1, but rather is produced directly from the polynomial exactness property.

Fix Hh ∈ Fh. Let p = 1.

[Hh, IFh
f (p)]F ,f =

∫
f
µRFh

f (Hh)p dA (3.5.26)

= RFh
f (Hh)

∫
f
µ dA p,RFh

f (Hh) constant, (3.5.27)

= RFh
f (Hh)|f |Πf

0(µ). (3.5.28)

Choosing MFh,f = |f |Πf
0(µ) we then must have the polynomial exactness condition. As µ

is positive and bounded we know that the resulting matrix is SPD. After assembling local

matrices into the global matrix MF we will maintain this property and, in addition, have

a diagonal matrix MF .
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Construction 3.2 (ME ,f ). We will now construct the matrices N and R for the space

Eh. First we will define two polynomials.

p1(x, y) = (y − yc)−
1

|f |

∫
f
(y − yc), p2 = −(x− xc) +

1

|f |

∫
f
(x− xc). (3.5.29)

Here (xc, yc) is the barycenter of f . We have curl p1 = e1 and curl p2 = e2 where e1, e2

are the standard basis functions. Further the pi’s are L2 orthogonal to constant functions

by construction. Let ẽi be a solution to the following projection problem on P0(f)2.∫
f

ẽi
TKej dA =

∫
f

eTi ej dA (3.5.30)

We then define the columns of the matrix N (referred to as Ni) as

Ni = IEh
f (ẽi). (3.5.31)

This then gives us the identity

ET
hME ,fN =

(∫
f
REh
f (Eh)TKẽ1 dA,

∫
f
REh
f (Eh)TKẽ2 dA

)
. (3.5.32)

We then define the columns of R such that

ET
hRi =

∫
f
REh
f (Eh)TKẽi dA (3.5.33)

=

∫
f
REh
f (Eh)Tei dA. (3.5.34)

We will now show the integral is computable.

ET
hRi =

∫
f

REh(Eh) · ei dA (3.5.35)

=

∫
f

curlREh(Eh)pi dA−
∑
e∈∂f

∫
e

τ eREh(Eh)pi ds Stokes’ Theorem (3.5.36)

=

∫
f

RFh(curlhEh)pi dA−
∑
e∈∂f

∫
e

τ eREh(Eh)pi ds commutativity (3.5.37)

=

∫
f

RFh(curlhEh)pi dA−
∑
e∈∂f

σf,eREh
e (Eh)

∫
e

pi ds REh
e (Eh) is constant (3.5.38)
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Thus,

ET
hRi = RFh(curlhEh)

∫
f

pi dA−
∑
e∈∂f

σf,eREh
e (Eh)

∫
e

pi ds RFh

f (Hh) is constant (3.5.39)

= −
∑
e∈∂f

σf,eREh
e (Eh)

∫
e

pi ds

∫
f

pi = 0 (3.5.40)

= −
∑
e∈∂f

σf,eEe

∫
e

pi ds right inverse property (3.5.41)

The integral
∫
e pi ds is computable, for example, with the midpoint quadrature∫

e
pi = |e|pi(se) ds, se the midpoint of e. (3.5.42)

We therefore have that

Ri,j = −σf,ej |ej |pi(sej ) (3.5.43)

Using Theorem 3.5.1 and this construction we can compute the inner product matrix

MEh,f .

Construction 3.3 (MV ,f ). We will now construct the matrices N and R for the inner

product MV ,f . Assume our inner product has a weight σ. We consider the following basis

of P1

p1 = 1, p2 = x− xf , p3 = y − yf (3.5.44)

where (xf , yf ) is the barycenter of f . We will write pi = divpi and further write pi = ∇qi

where qi is mean zero, i.e.
∫
f qi dA = 0.

q1 =
1

2

x− xf
y − yf

 , q2 =
1

2

(x− xf )2

0

 , q3 =
1

2

 0

(y − yf )2

 , (3.5.45)

pi = qi −Πf
0(qi). (3.5.46)

To define the matrix N we use a similar technique to the previous construction. Define

the polynomial p̃i by the projection problem∫
f
Kp̃ipj dA =

∫
f
pipj dA. (3.5.47)
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We then define the columns of the matrix N by

Ni = IVh
f (p̃i). (3.5.48)

Using integration by parts we will now define integration of pi against RVh
f (uh) for

arbitrary uh ∈ Vh.

uThRi =

∫
f
KRVh

f (uh)p̃i (3.5.49)

≈
∫
f
RVh
f (uh)pi. (3.5.50)

This step is justified as we are neglecting the integral against the non-polynomial part of

RVh
f (uh).

uThRi =

∫
f
RVh
f (uh)divpi dA (3.5.51)

= −
∫
f
∇RVh

f (uh) · pi dA+
∑
e∈∂f

∫
e
RVh
f (uh)n · pi ds integration by parts

(3.5.52)

= −
∫
f
REh
f (∇huh) · pi dA+

∑
e∈∂f

∫
e
RVh
f (uh)n · pi ds commutativity

(3.5.53)

−
∫
f
REh
f (∇huh) · pi dA+

∑
e∈∂f

∫
e
RVh
e (uh)n · pi ds consistency.

(3.5.54)

We will neglect the interior integral of REh
f (∇huh) against pi as pi is mean zero and the

gradient of the polynomial part of REh
f (∇huh) is constant. We therefore have th formula

uThRi =
∑
e∈∂f

∫
e
RVh
e (uh)n · pi. (3.5.55)

This is computable as RVh
e has a closed form and as n ·pi is a polynomial. The maximum

order of the product RVh
e (uh)n · pi is 3 so it is exactly computable with a two point

Gaussian quadrature on each edge.
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With the following three constructions in place we now have defined classes of inner

product matrices which are exact on either P0 or P1 in the case of MV . The inner product

matrices ME ,MV are not completely defined as they depend on choosing selecting the

matrix C.

A simple choice of C is given a:

C = |f |(QTQ)−1. (3.5.56)

Then the resulting M2 is the default choice for the MFD.

M2 = |f |Q(QTQ)−1QT = |f |(I− N(NTN)−1NT ). (3.5.57)

This last equality is true as ImQ ⊥ ImN and M2 is the projection onto the orthogonal

complement of N. That is to say that we integrate any function which is orthogonal to the

polynomial space Pk by using the value |f |. A significant portion of the MFD literature

is devoted to proving that MFD discretizations using this choice of stabilization matrix

result in convergent, i.e. consistent and stable, dicretizations of PDEs.

The existence of a stable M2 is useful in that it does not require the selection of

tuning parameters. However, the Mimetic Finite Difference does allow for tuning param-

eters. The selection of an optimal matrix C is generally referred to as M-adaptation or

Mimetic-adaptation.

3.6 MFD Construction on Rectangular Meshes

The previous theoretical development has been rather abstract. In this section

we will present local MFD constructions on a rectangular cell to make this construction

concrete. We will assume no weighting functions, K, for simplicity.

We consider a cell f = [−∆x
2 ,

∆x
2 ] × [−∆y

2 ,
∆y
2 ] with edges e1, e2, e3, e4 and vertices

v1,v2,v3v4 as pictured in Figure 3.3. In this context the local face function inner product
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is given by

MF ,f = ∆x∆y. (3.6.1)

Our local degrees of freedom for the spaces Vf ,Ef ,Ff are identical to the general con-

FIGURE 3.3: Local degrees of freedom for the cell f . Arrows on edges represent the
orientation of our edges.

struction.

Construction 3.4. We will first compute the discrete curl operator curlh,f . As defined

before we have

curlh,fEf =
1

|f |
∑
e∈∂f

σf,e|e|Ee =
1

|f |

∫
∂f
τ ·E ds. (3.6.2)

Where the orientation constant in (3.6.2) σf,e guarantees that boundary path runs counter-

clockwise. Given that all of our edges are oriented with the principal axes we therefore

have

σf,e1 = σf,e2 = 1, σf,e3 = σf,e4 = −1. (3.6.3)

Our odd numbered edges have length ∆x while our even numbered edges have length ∆y

and |f | = ∆x∆y. We therefore have curlh,f given as

curlh,f =
1

∆x∆y

(
∆x ∆y −∆x −∆y

)
. (3.6.4)
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Construction 3.5. We will now compute the discrete graidnt on some edge ei, ∇h,ei .

The boundary vertices of edge ei are given by i and j = mod(i, 4) + 1. Our definition of

∇h uses the fundamental theorem of line integrals applied to the direction derivative ∂
∂τ

and along each edge. The formulas for each edge are given by

∇h,e1 =
1

∆x

(
−1 1 0 0

)
, (3.6.5)

∇h,e2 =
1

∆y

(
0 −1 1 0

)
, (3.6.6)

∇h,e3 =
1

∆x

(
0 0 −1 1

)
, (3.6.7)

∇h,e4 =
1

∆x

(
−1 0 0 1

)
. (3.6.8)

Construction 3.6. We will now construct the matrix ME ,f . Our two basis vectors are

e1, e2 and their corresponding polynomials are

p1 = y, p2 = −x, where curl pi = ei. (3.6.9)

Note that p1, p2 have zero mean. Our matrix N is given by the degrees of freedom of ei,

i.e.

N =



1 0

0 1

1 0

0 1


. (3.6.10)

To construct the matrix R recall our identity from Construction 3.2 that

Rij = −σf,ej |ej |pi(sej ) (3.6.11)

where sej is the midpoint of ej . This formula produces

R =
∆x∆y

2
N. (3.6.12)
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We also have NTR = ∆x∆yI2×2 which gives us

M1 = R(NTR)−1RT =
∆x∆y

4
NNT =

∆x∆y

4



1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


. (3.6.13)

The columns of matrix Q are the orthogonal complement of the image of N in R4. We

choose Q as

Q =



−1 0

0 −1

1 0

0 1


. (3.6.14)

Under the standard choice of the matrix M2 we would have

Q = 2∆x∆yQ(QTQ)−1QT = ∆x∆y



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


. (3.6.15)

For a parameterized choice of M2 we define

C =

w1 w2

w2 w3

 . (3.6.16)

Thus,

M2 = 2∆x∆yQCQT = ∆x∆y



w1 w2 −w1 −w2

w2 w3 −w2 −w3

−w1 −w2 w1 w2

−w2 −w3 w2 w3


(3.6.17)

when we allow our parameters to absorb the constant 2.
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Construction 3.7. We will now construct the local matrix MV ,f . Our basis for P1(f)

and their corresponding vectors in P2(f)2 are given by

p1 = 1, p2 =
x

∆x
, p3 =

y

∆y
, (3.6.18)

p1 =
1

2

x
y

 , p2 =
1

2∆x

x2 − ∆x2

12

0

 , p2 =
1

2∆y

 0

y2 − ∆y2

12

 . (3.6.19)

Note that we have div pi = pi. The matrix N is given by

N =



1 −1
2 −1

2

1 1
2 −1

2

1 1
2

1
2

1 −1
2

1
2


. (3.6.20)

As per construction 3.3 we have the definition of uThRi as

uThRi =
∑
e∈∂f

∫
e
RVh
e (uh)n · pi ds. (3.6.21)

We will now apply the formula for each i and extract a corresponding column vector.

uThR1 =

∫
e1

(
uv2 − uv1

∆x
x+

uv2 + uv1

2

)(
−∆y

4

)
dx (3.6.22)

+

∫
e2

(
uv3 − uv2

∆y
y +

uv3 + uv2

2

)(
∆x

4

)
dy (3.6.23)

+

∫
e3

(
uv3 − uv4

∆x
x+

uv3 + uv4

2

)(
∆y

4

)
dx (3.6.24)

+

∫
e4

(
uv4 − uv1

∆y
y +

uv4 + uv1

2

)(
−∆x

4

)
dy, (3.6.25)

=
∆x∆y

4

(
uv1 + uv2 + uv3 + uv4

)
. (3.6.26)

We therefore have

R1 =
∆x∆y

4

(
1 1 1 1

)T
. (3.6.27)
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For the second column we have

uThR2 =

∫
e2

(
uv3 − uv2

∆y
y +

uv3 + uv2

2

)(
∆x

12

)
dy (3.6.28)

+

∫
e4

(
uv4 − uv1

∆y
y +

uv4 + uv1

2

)(
−∆x

12

)
dy, (3.6.29)

=
∆x∆y

24

(
− uv1 + uv2 + uv3 − uv4

)
. (3.6.30)

From this equality we can infer that

R2 =
∆x∆y

24

(
−1 1 1 −1

)T
. (3.6.31)

For the third column we have

uThR3 =

∫
e1

(
uv2 − uv1

∆x
x+

uv2 + uv1

2

)(
−∆y

12

)
dx (3.6.32)

+

∫
e3

(
uv3 − uv4

∆x
x+

uv3 + uv4

2

)(
∆y

12

)
dx, (3.6.33)

=
∆x∆y

24

(
− uv1 − uv2 + uv3 + uv4

)
. (3.6.34)

We can now determine the final column of R.

R3 =
∆x∆y

24

(
−1 −1 1 1

)T
. (3.6.35)

The full matrix R is then given by

R =
∆x∆y

4



1 −1
6 −1

6

1 1
6 −1

6

1 1
6

1
6

1 −1
6

1
6


. (3.6.36)

The product NTR agrees exactly with the L2 Gram matrix of our basis {p1, p2, p3},

NTR = ∆x∆y


1

1
12

1
12

 . (3.6.37)
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The inner product matrix for the polynomials is then given by

M1 =
∆x∆y

48



5 3 1 3

3 5 3 1

1 3 5 3

3 1 3 5


. (3.6.38)

The matrix Q is the orthogonal compliment of the columns of N given by

Q =

(
−1 1 −1 1

)T
. (3.6.39)

The standard choice of M2 is given by

M2 = Tr(M1)Q(QTQ)−1Q =
5∆x∆y

48



1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1


. (3.6.40)

The matrix M2 is rank 1 our parameterized choice replaces the constant 5
48 by some

parameter w1.

3.7 Adjoint Operators

With inner product matrices defined we will now introduce the concept of adjoint

differential operators. Adjoint operators appear when the continuum variational formula-

tion has moved differentiation from a variable of interest onto a test function. For example

in the Ampere-Maxwell Law:∫
Ω

(
∂

∂t
D + J

)
·Φ dA =

∫
Ω
H(curlΦ) dA. (3.7.1)
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In the standard sense we are using the adjoint of the continuum curl operator applied to

H rather than the primal curl. We would then discretize this variational formulation as[
Φh,

∂

∂t
Dh + Jh

]
Vh

=
[
curlhΦh, Hh]Fh

(3.7.2)

Definition 3.7.1. Let H1, H2 be Hilbert spaces with corresponding inner products [·, ·]H1

and [·, ·]H2 , and A : H1 → H2 be a bounded linear operator. We define A′, the adjoint of

A , by the identity

[Au, v]H2 = [u,A′v]H1 , ∀u ∈ H1, v ∈ H2. (3.7.3)

Definition 3.7.2. Rather than writing all discretizations variationally we will instead

define equivalent adjoint differential operators.

c̃urlh : Fh → Eh, (3.7.4)

[Φh, c̃urlhHh]Eh = [curlhΦh, Hh]Fh
, ∀Φ ∈ Eh, Hh ∈ Fh, (3.7.5)

d̃ivh : Eh → Vh, (3.7.6)

[ψh, d̃ivhEh]Vh = −[∇hψh,Eh]Eh , ∀ψh ∈ Vh,Eh ∈ Eh. (3.7.7)

These definitions naturally assume a homogeneous Dirichlet type boundary condi-

tions. If you were interested in more sophisticated boundary conditions, we would build

them into the adjoint operator. We define two adjoint operators for our 2D complex.

A closed form of the adjoint operator can be computed as follows. Let Φh ∈ Eh and

Hh ∈ Fh.

[Φh, c̃urlhHh]Eh = [curlhΦh, Hh]Fh
, (3.7.8)

ΦT
hMEh c̃urlhHh = ΦT

h curlThMFh
Hh, (3.7.9)

c̃urlh = M−1
Eh

curlThMFh
. (3.7.10)
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A closed form d̃ivh can be computed as follows. Let Eh ∈ Eh and ψh ∈ Vh.

[ψh, d̃ivhEh]Vh = −[∇hψh,Eh]Eh , (3.7.11)

ψThMVh d̃ivhEh = −ψTh∇ThMEhEh, (3.7.12)

d̃ivhEh = −M−1
Vh
∇ThMEh . (3.7.13)

3.8 Exact Sequence Property

The exact sequence property states in essence states that our discrete representation

preserve the exterior calculus.

Definition 3.8.1. Consider an abstract Hilbert Complex with a corresponding discretiza-

tion

S1
d1
//

IS1

��

S2
d2
//

IS2

��

· · · d
n−1
// Sn

ISn

��
S1

d1
h // S2

d2
h // · · ·

dn−1
h // Sn

(3.8.1)

We say the discrete complex has the exact sequence property if

Im(di−1
h ) = Ker(dih), 2 ≤ i ≤ n− 1. (3.8.2)

Theorem 3.8.1. The 2D mimetic discretization of a (∇, curl) Hilbert complex has the

exact sequence property:

Im(∇h) = Ker(curlh). (3.8.3)

Proof. ⊆: We will first show that curlh∇huh = 0NF
. Fix arbitrary uh ∈ Vh. Let u =
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RVh(uh). Note that IVh(u) = uh by the right inverse property.

curlh ◦ ∇h ◦ IVh(u) = curlh ◦ IEh(∇u) commutativity property, (3.8.4)

= IFh ◦ (curl∇u) commutativity property, (3.8.5)

= IFh(0) curl∇ = 0 in the continuum, (3.8.6)

= 0NF
interpolation is linear. (3.8.7)

This implies that curlh∇huh = 0NF
.

⊇: Fix Eh ∈ Eh such that curlhEh = 0. We will now show that Eh = ∇huh for some

u ∈ Vh. We will rely on commutativity properties of reconstruction operators.

0 = RFh(curlhEh), reconstruction is linear, (3.8.8)

= curl ◦ REh(Eh), commutativity property. (3.8.9)

The space Eh = REh(Eh) is embedded continuously in H(curl,Ω). ThereforeREh(Eh) ∈

H(curl). As H(curl) has the Helmholtz decomposition property we know that

REh(Eh) = ∇u for some u ∈ H1.

Eh = IEh ◦ REh(Eh) right inverse property, (3.8.10)

= IEh(∇u) Helmholtz decomposition on H(curl), (3.8.11)

= ∇h ◦ IVh(u) commutativity property. (3.8.12)

We have therefore shown that curlhEh = 0 implies Eh = ∇huh for some uh ∈ Vh.

Q.E.D.

Corollary 3.8.2. Adjoint operators obey the exact sequence property:

Im(c̃urlh) = Ker(d̃ivh) (3.8.13)
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Proof. We have the following two adjoint properties:

[Φ, c̃urlhHh]Eh = [curlhΦ, Hh]Fh
, (3.8.14)

[ψ, d̃ivhEh]Vh = −[∇hψ,Eh]Eh . (3.8.15)

Therefore, c̃urlh is adjoint to curlh and c̃urlh and −d̃ivh is adjoint to ∇h in the traditional

Hilbert space sense. We apply the fundamental theorem of linear algebra which states

that if A is an operator and A′ is its adjoint then Im(A)⊥ = Ker(A′) and equivalently

Ker(A) = Im(A′)⊥ by way of the fact that A′′ = A.

Ker(d̃ivh) = Im(−∇h)⊥ Fundamental Theorem of Linear Algebra, (3.8.16)

= Im(∇h)⊥ linear closure, (3.8.17)

= Ker(curlh)⊥ Theorem 3.8.1, (3.8.18)

= (Im(c̃urlh)⊥)⊥ Fundamental Theorem of Linear Algebra, (3.8.19)

= Im(c̃urlh). (3.8.20)

This last result follows from the following argument. If W is a linear subspace of a Hilbert

space V , then (W⊥)⊥ = W if and only if W is closed in V . All linear subspaces are closed

in finite dimensions therefore the result applies.

Q.E.D.

We will have the following result regarding the dimensions of our given subspaces.

Theorem 3.8.3. The following subspaces have the given dimensions

Dim(Im(∇h)) = NE −NF , (3.8.21)

Dim(Im(curlh)) = NF , (3.8.22)

Dim(Ker(∇h)) = 1, (3.8.23)

Dim(Ker(curlh)) = NE −NF . (3.8.24)
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Proof. Dim(Im(curlh)): We prove that the operator curlh is onto Fh. We will primarily

utilize reconstruction. Fix arbitrary Hh ∈ Fh. Define H = RFh(Hh). The operator

curl : H(curl)→ L2 is onto therefore H = curl E for some E ∈ H(curl).

Hh = IFh ◦ REh(Hh) right inverse property, (3.8.25)

= IFh(curlE) curl is onto L2, (3.8.26)

= curlh ◦ IFh(E) commutativity property. (3.8.27)

Therefore every Hh = curlhEh. We have shown that Im(curlh) = Fh, therefore

Dim(Im(curlh)) = Dim(Fh) = NF . (3.8.28)

Dim(Ker(∇h)): We have assumed that T is path connected. That is between any two

vertices v,w ∈ V there exists a collection of edges {ej}Mj=1 ⊂ E which forms a path

between v and w. Constant functions are in the kernel of ∇h as we calculate our

gradients by

∇h,eue =
uv2 − uv2

|e|
(3.8.29)

with uv2 = uv1 if and only if ∇h,eue = 0. Assume ∇huh = 0Eh .

Fix some vertex v0 ∈ V . Now consider an arbitrary vertex vN+1 ∈ V . Path

connected, gives us a sequence of intermediary vertices {vi}Ni=1 such that vi and

vi−1 share an edge. By induction you can then show at every vertex we have

uvi = uvi+1 , (3.8.30)

which implies that uv0 = uvN+1 . As the choice of vN+1 was arbitrary we have this

property for every vertex. Therefore

Ker(∇h) = {IVh(c) : c ∈ R} =⇒ Dim(Ker(∇h))) = 1. (3.8.31)

It is worth noting that if T is not path connected then the dimension of the kernel

of ∇h is the number of path connected components in T .
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Dim(Ker(curlh)): In order to prove this result we will utilize the famous Rank-Nullity

theorem.

Dim(Eh) = Dim(Im(curlh)) + Dim(Ker(curlh)). (3.8.32)

We know that the dimensions of Eh is the number of edges in T therefore DimEh =

NE . We have previously shown that the Dim(Im(curlh)) = NF . Therefore,

Dim(Im(curlh)) = NE −NF . (3.8.33)

Dim(Im(∇h)) : This is proven by utilizing Dim(Ker(curlh)) = NE − NF and applying

Theorem 3.8.1.

Q.E.D.
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4 MFD DISCRETIZATIONS FOR

MAXWELL’S EQUATIONS

In this chapter we present the construction and analysis of discrete approximations

to a number of electromagnetic models using the mimetic finite difference (MFD) method

in space.

In Section 4.1 we present semi-discretizations in space of Maxwell’s equations with

various constitutive laws using the MFD tecnique. In Section 4.2 we present time integra-

tion schemes which are appropriate for discretizating the transient Maxwell’s equations.

In Section 4.3 we present fully discrete formulations of Maxwell’s equations using MFD

discretizations in space and time staggering methods. In Section 4.4 we provide some

numerical demonstrations of the discrete divergence preservering properties of MFD dis-

cretizations of Maxwell’s equations.

4.1 Semi Discrete MFD Formulations of Maxwell’s

Equations

We start with the 2D transverse electric mode of Maxwell’s Equations in free space

and describe the construction of MFD discretizations in space. We next consider Maxwell’s

equations in linear dispersive materials in which the constitutive law for the electric dis-

place ment D can be decomposed into an electric field E and a macroscopic field called

the polarization P. A system of ODEs describes the dynamic evolution of P forced by

the electric field. We discuss the construction of MFD discretizations in space for these

models. Many of the discretizations discussed in this section, particularly in space, are

very similar to those found in [2, 10].
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4.1.1 Transverse Electric Maxwell’s Equations in Free Space

Recall Maxwell’s equations in free space:

∂

∂t
(εE) = curlH − J

∂

∂t
(µH) = −curlE (4.1.1)

subject to the constraints

divεE = ρ,
∂

∂t
ρ = −divJ. (4.1.2)

We will consider the variational formulation of problem (4.1.1)-(4.1.2) given by

find (E,H) ∈ C1([0, T ],H0(curl,Ω))× C1([0, T ], L2(Ω) satisfying :

∫
Ω

∂

∂t
(εE) ·Φ dA =

∫
Ω
HcurlΦ dA−

∫
Ω

J ·Φ dA, ∀Φ ∈ H0(curl,Ω),∫
Ω

∂

∂t
(µH)ψ dA = −

∫
Ω

curlEψ dA, ∀ψ ∈ L2(Ω).

E(0) = E0 ∈ H(curl,Ω), H(0) = H0 ∈ L2(Ω).

(4.1.3)

Assuming ε, µ are constant in time the semi-discrete formulation of this problem using an

MFD discretization is

find Eh ∈ C1([0, T ],Eh), Hh ∈ C1([0, T ],Fh) satisfying

[ ∂
∂t

Eh,Φh

]ε
Eh

=
[
Hh, curlhΦh

]
Fh

−
[
Fh,Φh

]ε
Eh
, ∀Φh ∈ Eh,[ ∂

∂t
Hh, ψh

]µ
Fh

=
[
curlhEh, ψh

]
Fh

, ∀ψh ∈ Fh.

Eh(0) = IEh(E0), Hh(0) = IFh(H0), Fh = IEh(ε−1J).

(4.1.4)

By choosing Φh and ψh as standard basis vectors we can extract from this discrete varia-

tional statement a matrix evolution equation

find Eh ∈ C1([0, T ],Eh), Hh ∈ C1([0, T ],Fh) satisfying
Mε

E

(
∂

∂t
Eh

)
= curlThMFHh −Mε

E Fh,

Mµ
F

(
∂

∂t
Hh

)
= −MF curlhEh,

Eh(0) = IE (E0), Hh(0) = IFh(H0), Fh = IEh(ε−1J).

(4.1.5)
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We will now present a series of theorems introduced in [2]. The proofs of these

results follow a standard format specific to the MFD literature and illustrates one of the

fudnamental advantages of the approach. We present them in their entirety here in order

to illustrate how MFD discretiztions mimic continuum properties.

Theorem 4.1.1. An MFD semi-discrete formulation of Maxwell’s equations obeys a dis-

crete analogue of the continuity equation given in (4.1.2).

Proof. We will consider the adjoint divergence d̃ivh induced by the inner product [·, ·]εEh
as defined in (3.7.7)

d̃ivh = −M−1
V ∇

T
h (Mε

E )−1. (4.1.6)

Appling the inverse matrix (Mε
E )−1 to both sides of the semi-discrete Ampere-Maxwell

Law, given in (4.1.4) and we derive

∂

∂t
Eh = c̃urlhHh − Fh. (4.1.7)

Here the adjoint curl, c̃urlh is defined per equation (3.7.6). Now apply the operator d̃ivh.

∂

∂t
d̃ivhEh = d̃ivhc̃urlhHh − d̃ivhFh, (4.1.8)

= −d̃ivhFh. (4.1.9)

This last identity is true by Corollary 3.8.2. We define the grid function ρh = d̃ivhEh.

Then ρh must then satisfy the inital value problem
∂

∂t
ρh = −d̃ivhFh(0),

ρh(0) = d̃ivhEh(0).

(4.1.10)

This initial value problem is a discrete approximation of the IVP for the continuum Gauss’

law. This can be shown as follows. Testing (4.1.10) against arbitrary ϕh ∈ Vh and

rewriting the discrete statement variationally, we have[ ∂
∂t

Eh,∇hϕh
]ε
E

= −
[
Fh,∇hϕh

]ε
E

= −
[
IFh(ε−1J),∇hϕh

]ε
E
. (4.1.11)
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This is an MFD approximation of the continuum variational statement∫
Ω

∂

∂t
(εE) · ∇ϕ dA = −

∫
Ω

J · ∇ϕ dA, ∀ψ ∈ H1
0 (Ω). (4.1.12)

This is a weak formulation of the continuity equation. Q.E.D.

Theorem 4.1.2. A spatial MFD discretization of Maxwell’s equations in free space is

energy conservative, for the discrete energy

Eh =
(

(‖Eh‖εEh)2 + (‖Hh‖µFh
)2
)1/2

. (4.1.13)

Proof. We begin with the discrete variational formulation but choose our test functions

carefully.

[ ∂
∂t

Eh,Eh

]ε
=
[
Hh, curlhEh

]
Fh

, (4.1.14)[ ∂
∂t
Hh, Hh

]µ
= −

[
curlEh, Hh

]
Fh

. (4.1.15)

Adding the two equations together we rewrite as

[ ∂
∂t

Eh,Eh

]ε
Eh

+
[ ∂
∂t
Hh, Hh

]µ
Fh

= 0. (4.1.16)

Applying the product rule in time we have

∂

∂t

1

2
((‖Eh‖εEh)2 + (‖Hh‖µFh

)2) =
∂

∂t

1

2
E2
h = 0. (4.1.17)

Therefore E2
h is constant for all time. Note that Eh is the Euclidean norm of a vector

(‖Eh‖εEh , ‖Hh‖µFh
)T and is therefore non-negative. We therefore know that Eh is constant

for all time. Q.E.D.

This discrete energy conservation is an analogue of the continuum energy conserva-

tion

∂

∂t

1

2

∫
Ω

(
ε|E|2 + µ|H|2

)
= 0 (4.1.18)
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4.1.2 Transient Maxwell’s Equations in a Linear Polariza-
tion Media

Consider a general polarization law with 1 ≤ m ≤M polarization fields is modelled

by the following system of equations:

∂

∂t

 εE

Pm

 = X

 E

Pm

+

curlH

0

 ,
∂

∂µ
H = −curlE. (4.1.19)

Let xj , 1 ≤ j ≤M + 1 be the rows of X, i.e

X =



x1

x2

...

xM+1


. (4.1.20)

The variational formulation of (4.1.19) is written as follows:

find (E,Pm, H) ∈ C1([0, T ],H0(curl,Ω))× [C1([0, T ],L2(Ω))]M × C1([0, T ], L2(Ω)) satisfying

∫
Ω

∂

∂t
εE ·Φ dA =

∫
Ω

x1

 E

Pm

 ·Φ +

∫
Ω
HcurlΦ dA, ∀Φ ∈ H0(curl,Ω),

∫
Ω

∂

∂t
Pj ·Θj dA =

∫
Ω

xj+1

 E

Pm

 ·Θj dA, Θj ∈ L2T (Ω),

∫
Ω

∂

∂t
µHψ dA = −

∫
Ω

curlE ψ dA, ∀ψ ∈ L2(Ω).

E(0) = E0 ∈ H0(curl,Ω), Pm(0) = Pm,0 ∈ H(curl),

H(0) = H0 ∈ L2(Ω)

(4.1.21)
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The semi discrete mimetic variational formulation of (4.1.21) is posed as follows:

find (Eh,Pm,h, Hh) ∈ [C1([0, T ],Eh)]M+1 × C1([0, T ],Fh) such that

[ ∂
∂t

Eh,Φh

]ε
Eh

=
[
Eh,Φh

]x1,1

Eh
+

M∑
j=1

[Pj ,Φh]
x1,j+1

Eh
+ [Hh, curlΦh]Fh

, ∀Φh ∈ Eh,

[ ∂
∂t

Pj,h,Θh

]
Eh

=
[
Eh,Θh]

xj+1,1

Eh
+

M∑
i=1

[Pi,Θh]
xj+1,i+1

Eh
, ∀Θh ∈ Eh,[ ∂

∂t
Hh, ψh

]µ
Fh

= −
[
curlEh, ψh

]
Fh

∀ψh ∈ Fh,

Eh(0) = IEh(E0), Pm,h(0) = IEh(Pm,0), Hh(0) = IFh(H0).

(4.1.22)

While the case of X depending on space is very realistic, we will primarily analyze the

case where X, ε, µ are constant in space and time. In this case the MFD can be written

relatively compactly in the following matrix equation.

∂

∂t

 ME Eh

ME Pm,h

 =
1

ε
X⊗ I

ME Eh

ME Ph

+
1

ε

curlThMFHh

0

 (4.1.23)

∂

∂t
Hh = −curlhEh (4.1.24)

Here ⊗ is the Kronecker product and I is a (M +1)NE × (M +1)NE identity matrix. This

can be expressed in terms of adjoint operators as follows:

∂

∂t

 Eh

Pm,h

 =
1

ε
X⊗ I

Eh

Ph

+
1

ε

c̃urlhHh

0

 (4.1.25)

∂

∂t
Hh = −curlhEh (4.1.26)

Where c̃urlh is defined in (3.7.6). We will now prove energy decay a simple example media.

This result, while relying on the underlying techniques of the MFD technology is original

to this work and does not appear in [2].

Theorem 4.1.3. A MFD discretization of a Cold Isotropic Plasma with constant coeffi-
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cients ( a Drude Polarization Law) has energy decay. Namely the energy of the system

Eh =

(
1

2

(
ε‖Eh‖2Eh + µ‖H‖2Fh

+
1

εω2
P

‖Jh‖2Eh

))1/2

(4.1.27)

obeys the differential equation

∂

∂t
E2
h = − ωI

εω2
P

‖J‖2E . (4.1.28)

Proof. The Cold Isotropic plasma model has the matrix X given as

X =

 0 −1

εω2
P −ωI

 . (4.1.29)

The mimetic variational form is then given as:

find Eh,Jh ∈ C1([0, T ],Eh), Hh ∈ C1([0, T ],Fh) such that

ε

[
∂

∂t
Eh,Φh

]
Eh

+
[
Jh,Φh

]
Eh

=
[
H, curlhΦh]Fh

, ∀Φh ∈ Eh,[
∂

∂t
J,Θh

]
Eh

= −ωI
[
Jh,Θh

]
Eh

+ εω2
P

[
Eh,Θh

]
Eh
, ∀Θh ∈ Eh,

µ

[
∂

∂t
Hh, ψh

]
Fh

= −
[
curlhEh, ψh

]
Fh

, ∀ψh ∈ Fh.

(4.1.30)

As in free space we test the discrete Ampere-Maxwell Law against Eh and the discrete

Faraday’s Law against Hh and add the results to arrive at

ε

[
∂

∂t
Eh,Eh

]
E

+ µ

[
∂

∂t
Hh, Hh

]
F

+
[
Jh,Eh

]
E

= 0 (4.1.31)

By testing the Drude Law against Jh we can solve for [Eh,J]E .

1

εω2
P

[
∂

∂t
Jh,Jh

]
Eh

+
ωI
εω2

P

[
Jh,Jh

]
Eh

=
[
Eh,Jh

]
Eh
. (4.1.32)

Substituting this into the Equation (4.1.31) we have

∂

∂t

1

2

(
ε‖Eh‖2Eh +

1

εω2
P

‖Jh‖2Eh + ‖Hh‖2Fh

)
= − ωI

εω2
P

‖J‖2Eh . (4.1.33)

Which implies that

∂

∂t
E2
h < 0. (4.1.34)

Assuming Eh non-zero we then have ∂
∂tEh < 0. Q.E.D.



86

4.2 Time Integration

Having developed semi-discrete approximations of Maxwell’s equations, we will now

consider the time discretizations that will be employed to build fully discrete methods.

Maxwell’s equations can be written in the framework of the abstract, first order wave

equation. We will develop time discretizations for this abstract equation to suggest the

usefullness of our discretizations in more general wave problem applications. Let U, V be

Hilbert spaces. Let D : V → U ′ be a bounded linear operator and D′ be its adjoint where

DD′ and D′D are elliptic. Let f ∈ U ′, g ∈ V ′.

find u ∈ C1([0, T ],U),v ∈ C1([0, T ],V) such that
∂

∂t
u = Dv + f

∂

∂t
v = D′u + g

.
(4.2.1)

Where u and v are vectors in two distinct spaces (for example the discrete spaces Eh and

Fh). Assuming that f and g are independent of u,v we can apply the following staggering

in time.

Let ∆t > 0 and define un and vn+1/2 as

un ≈ u(tn), tn = n∆t, (4.2.2a)

vn+1/2 ≈ v(tn+1/2), tn+1/2 = (n+ 1/2)∆t. (4.2.2b)

For an abstract wave equation of the form (4.2.1) we define the staggered leap frog

method as follows: 
un+1 = un + ∆tDvn+1/2 + ∆tfn+1/2,

vn+1/2 = vn−1/2 + ∆tDun + ∆tgn.

. (4.2.3)

Lemma 4.2.1. Staggered leap frog is O(∆t2) accurate.
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Proof. We need only consider one equation to prove accuracy.∫ tn+1

tn

∂

∂t
u dt =

∫ tn+1

tn

Dv + f dt (4.2.4)

u(tn+1)− u(tn) =

∫ tn+1

tn

Dv + f dt Fundamental Theorem, (4.2.5)

u(tn+1)− u(tn) = ∆t(Dv + f)|tn+1/2
+O(∆t3) midpoint quadrature (4.2.6)

Dividing both sides by ∆t yields the following local truncation estimate

u(tn+1)− u(tn)

∆t
−Dvt(tn+1/2)− f(tn+1/2) = (

∂

∂t
u−Dv − f)(tn+1/2) +O(∆t2). (4.2.7)

Q.E.D.

We will utilize this time integrator for Maxwell’s equations in free space. Now

consider a more complex abstract dispersive wave equation
∂

∂t
u− Xu = Dv + g

∂

∂t
v − Yv = D′u + f

. (4.2.8)

Here u ∈ UM and v ∈ V N for U and V Hilbert Spaces. The operators D : V N → (UM )′

and D′ the adjoint. The forcing terms g ∈ (UM )′ and f ∈ (V N )′. Here X,Y are M ×M

and N ×N matrices respectively representing lower order terms. In general this abstract

equation could be dispersive or dissipative or both. For example Maxwell’s equations

in conductive media or general polarization media fall into this category as do damped

acoustic waves. We will present two possible time integrators for this system.

Consider un,vn+1/2 as in Definition (4.2). We define Time Averaged Differenc-

ing by 
un+1 − un

∆t
− X

un+1 + un

2
= Dvn+1/2 + fn+1/2,

vn+1/2 − vn−1/2

∆t
− Y

vn+1/2 − vn−1/2

2
= D′un + gn,

(4.2.9)

Lemma 4.2.2. Time averaged differencing is O(∆t2) accurate.
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Proof. As before we consider only a single equation without loss of generality.∫ tn+1

tn

∂

∂t
u dt =

∫ tn+1

tn

Xu +Dv + f dt (4.2.10)

u(tn+1)− u(tn) =

∫ tn+1

tn

Xu +Dv + f Fundamental Theorem (4.2.11)

To resolve the Dv + g term we apply the midpoint rule as in time staggering. For the

term Xu we use the trapezoid rule, both of which are order ∆t2 accurate.∫ tn+1

tn

Xu dt = ∆tX
u(tn+1) + u(tn)

2
+O(∆t3), (4.2.12)∫ tn+1

tn

Dv + f dt = ∆t(Dv(tn+1/2) + f(tn+1/2)) +O(∆t3). (4.2.13)

Dividing both sides by ∆t we recover an order ∆t2 local truncation error.

u(tn+1)− u(tn)

∆t
− X

u(tn+1) + u(tn)

2
−Dv(tn+1/2)− f(tn+1/2) (4.2.14)

=

(
∂

∂t
u− Xu +Dv + f

)
(tn+1/2) +O(∆t2). (4.2.15)

Q.E.D.

We also consider time integrator which relies upon the method of integrating factors.

Definition 4.2.1. Consider a matrix A ∈ RN×N . We define the Matrix Exponential

of A by the formal power series:

eAt =

∞∑
n=0

An
tn

n!
. (4.2.16)

This series converges uniformly on every compact subset of RN×N similar to the case of

the series for the scalar exponential case.

We rely upon the following property of the matrix exponential.

Lemma 4.2.3. For a matrix A ∈ RN×N , the matrix exponential eAt has the following

properties:
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1. (eAt)−1 = e−At.

2. ∂
∂te

At = AeAt.

Proof. See [31]. Q.E.D.

We will now briefly reproduce the method of integrating factors.

Construction 4.1. Consider the semi-linear system of ODE

u̇− Au = F, (4.2.17)

where u,F(u, t) ∈ RN and A ∈ RN×N . We have∫ tn+1

tn

∂

∂t
e−Atu dt =

∫ tn+1

tn

e−At
(
∂

∂t
u− Au

)
dt (4.2.18)

=

∫ tn+1

tn

e−AtF(u(t), t) dt. (4.2.19)

We can apply the fundamental theorem of Calculus to the left hand side of (4.2.18) and

arrive at

e−Atn+1u(tn+1)− e−Atnu(tn) =

∫ tn+1

tn

e−AtF(u(t), t) dt. (4.2.20)

As tn+1 − tn = ∆t and apply the exponential eAtn+1 to both sides and compute

u(tn+1)− eA∆tu(tn) =

∫ tn+1

tn

eA(tn+1−t)F(u(t), t) dt (4.2.21)

=

∫ ∆t

0
eAsF(u(s+ tn), s+ tn) ds. (4.2.22)

This now creates a formula which relates the solution at a later time to values at a previous

time and response to the function F.

Using Construction 4.1 we now introduce the Exponential Time Differencing

technique. This time integrator is well known to the FDTD literature. Originally applied

to reduce stiffness in Perfectly Matched Layers it has been shown in [50] to offer no major
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advantages in this regard over time staggered differences. We will show that it does

provide advantages as a “mimetic” time integrator. Higher order ETD discretizations

can be found in [13] which are more successful at reducing stiffness in systems of ODE.

The following general formulation of ETD for an abstract dispersive wave generalizes the

approach laid out in [50].

Assume un,vn+1/2 are staggered per (4.2). We define Exponential Time Differ-

encing for the abstract dispersive wave problem (4.2.8) by
un+1 = eX∆tun +

(∫ ∆t

0
eXs ds

)(
Dvn+1/2 + fn+1/2

)
vn+1/2 = eY∆tvn−1/2 +

(∫ ∆t

0
eYs ds

)(
D′un + gn

) . (4.2.23)

Lemma 4.2.4. Exponential Time Differencing is O(∆t2) accurate.

Proof. Given that our terms not multiplied by the integral in (4.2.23) are exact we need

only show that

f(tn+1/2)

∫ ∆t

0
g(s) ds =

∫ ∆t

0
f(s+ tn)g(s) ds+O(∆t3) (4.2.24)

for arbitrarily smooth f, g. Expand the integral in a Taylor series in ∆t about tn+1/2∫ ∆t

0
g(s) · f(s+ tn+1/2) ds = ∆tg(tn+1/2)f(tn+1/2) (4.2.25)

+
∆t3

24

(
2ġ(t0)ḟ(tn+1/2) + g̈(tn+1/2)f(tn+1/2) + g(tn+1/2)f̈(tn+1/2)

)
+O(∆t4). (4.2.26)

Now we will compute the Taylor series for our approximation about tn+1/2 in ∆t.

f(t0)

∫ ∆t

0
g(s) ds = ∆tg(tn+1/2)f(tn+1/2) +

∆t3

24
g̈(tn+1/2)f(tn+1/2) +O(∆t4). (4.2.27)

As both integrals scale like ∆t and differ at the O(∆t3) the two are within O(∆t3).

Q.E.D.

Remark. It is worth noting of that leap frog defined in (4.2.3) is directly generalized by

exponential time differencing, defined in (4.2.23), by assuming X = Y = 0. Further,
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the exponential time differencing is exact for homogeneous problems by construction. In

addition when A is invertible the integral∫ ∆t

0
eAs ds = A−1

(
eA∆t − I

)
. (4.2.28)

4.3 Fully Discrete Approximations for Transient

Maxwell’s Equations

Having developed second order time integrators for Maxwell’s equations, we will

now consider fully discrete mimetic discretizations for transient Maxwell’s equations.

Definition 4.3.1. We present a fully discrete mimetic method for Maxwell’s equations

with variable coefficients ε, µ in space. We discretize in space with MFD in space and leap

frog in time. Let c̃urlh = (Mε
E )−1curlThMF as in (3.7.6),

En+1
h −En

h

∆t
= c̃urlhH

n+1/2 + Fn+1/2

Mµ
F

Hn+1
h −Hn−1/2

h

∆t
= −MF curlhE

n
h

E0
h = IEh(E(0)), Fn+1/2 = IEh(ε−1J(tn+1/2))

H−1/2 = IFh(H(t−1/2))

(4.3.1)

In the case of ε, µ constants this reduces to the following:

En+1
h −En

h

∆t
=

1

ε
c̃urlhH

n+1/2 +
1

ε
Jn+1/2

Hn+1
h −Hn−1/2

h

∆t
= − 1

µ
curlhE

n
h

E0
h = IEh(E(0)), Jn+1/2 = IEh(J(tn+1/2))

H−1/2 = IFh(H(t−1/2))

(4.3.2)

where c̃urlh = M−1
E curlThMF in (4.3.2).
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For a general polarization law with variable or constant coefficients we can formulate

Maxwell’s equations with time averaged differencing.

Definition 4.3.2. Consider a linear polarization law with M polarization fields and Xi,j =

xi,j . Define the matrix MX
E by

MX
E =


Mx1,1

E · · · Mx1,M

E

...
...

MxM,1
E · · · MxM,M

E

 . (4.3.3)

The Time Averaged Mimetic Finite Differnce Method (TAMFD) for a linear

polarization law is posed then as

1

∆t

 Mε
E (En+1

h −En
h)

ME (Pn+1
m,h −Pn

m,h)

 =
1

2
MX

E

 En+1
h + En

h

Pn+1
m,h + Pn

m,h

+

curlThMFH
n+1/2

0

 ,

Mµ
F

Hn+1
h −Hn−1/2

h

∆t
= −MF curlhE

n
h,

E0
h = IEh(E(0)), P0

m,h = IEh(Pm(0)),

H−1/2 = IFh(H(t−1/2)).

(4.3.4)

In the case of constant coefficients this formulation is then posed as

1

∆t

 En+1
h −En

h

Pn+1
m,h −Pn

m,h

 =
1

2
X⊗ I

 En+1
h + En

h

Pn+1
m,h + Pn

m,h

+

ε−1c̃urlhH
n+1/2

0

 ,

Hn+1
h −Hn−1/2

h

∆t
= −µ−1curlhE

n
h,

E0
h = IEh(E(0)), P0

m,h = IEh(Pm(0)),

H−1/2 = IFh(H(t−1/2)).

(4.3.5)

Where c̃urlh = M−1
V curlThME . Finally we will present a fully discrete formulation of

a linear polarization law using exponential time differencing. In this approach we assume

constant coefficients to obtain a computationally feasible discretization. This is due to do

the fact computation of eM
x1,1
E ∆t may be infeasible.
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Definition 4.3.3. Consider a general polarization law having M polarization fields with

matrix X. The Exponential Time Mimetic Finite Difference Method (ETMFD)

for a linear polarization law is posed as

En+1
h

Pn+1
m,h

 = eX∆t ⊗ I

 En

Pn
m,h

+
1

ε

(∫ ∆t

0
eXs ds

)
⊗ I

c̃urlhH
n+1/2
h

0

 ,

H
n+1/2
h = H

n−1/2
h − ∆t

µ
curlhE

n
h

E0
h = IEh(E(0)), P0

m,h = IEh(Pm(0)),

H−1/2 = IFh(H(t−1/2)).

(4.3.6)

4.3.1 Efficient Treatment of Inner Product Matrices

In the discretization of the MFD we will necessarily solve a linear system of equations

at every time step: for example,

En+1
h = En

h +
∆t

ε
M−1

E curlThMF . (4.3.7)

Given that ME is symmetric positive definite and scales like |f | this system can be approx-

imately solved with a few steps of the conjugate gradient method. However, on rectangles

we have access to a procedure analogous to mass lumping. Recall that on a rectangle

we have a parameterized choice of edge based inner product matrix is given by

ME ,f (w1, w2, w3) =
∆x∆y

4



1 + 4w1 4w2 −4w1 1− 4w2

4w2 1 + 4w3 −4w2 1− 4w3

1− 4w1 −4w2 1 + 4w1 4w2

−4w2 1− 4w3 4w2 1 + 4w3


. (4.3.8)

By choosing our parameters w1 = w3 = 1
4 and w2 = 0 we produce a diagonal matrix

ME ,f

(
1

4
, 0,

1

4

)
=

∆x∆y

2
I4×4 := DE ,f . (4.3.9)
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Therefore on rectangular meshes it is possible to perform mass lumping using M-adaptation.

Mass lumping is a finite element technique where one selects a quadrature to increase the

sparsity of an inner product (or mass ) matrix, c.f. [12]. Once the mass lumped matrix

has been produced we could then formulate a completely explicit scheme as

En+1
h = En

h +
∆t

ε
c̃urlhH

n+1/2
h , c̃urlh = D−1

E curlThMF . (4.3.10)

However, in this approach we loose all of our available parameters to make our inner

product matrix diagonal. In order to still have parameters available for optimization we

note that as all choices of parameters wi result in a matrix which is exact on polynomials

it is reasonable to assume that

DE ≈ME =⇒ D−1
E ≈M−1

E (4.3.11)

where ME is any possible edge inner product matrix. Using this approximation we can

introduce an approximate inverse inner product matrix

WE := D−1
E MED−1

E ≈M−1
E . (4.3.12)

On rectangles we have DE ,f = ∆x∆y
2 I we have DE = ∆x∆yINE×NE

. This gives us

WE =
1

∆x2∆y2ME , WE ,f =
1

∆x2∆y2ME ,f . (4.3.13)

This then allows us to formulate truly explicit schemes which still retain a family of free

parameters in the form

En+1
h = En

h +
∆t

ε
c̃urlhH

n+1/2
h , c̃urlh = WE curlThMF . (4.3.14)

This explicit mass lumping leads to the following system of evolution equation for

Maxwell’s in free space.
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Find En
h ∈ Eh, Hh ∈ Fh such that

En+1
h = En

h + ∆tc̃urlhH
n+1/2
h + F

n+1/2
h

Mµ
F H

n+1/2
h = H

n−1/2
h −∆tMF curlEn

h

E0 = IEh(E(0)), H
−1/2
h = IFh(H(t−1/2))

F
n+1/2
h = IEh(ε−1J(tn+1/2))

,
(4.3.15)

c̃urlh = Wε−1

E curlThMF . (4.3.16)

This formulation does not appear to be truly explicit; however, MK
F is always diagonal

therefore the product

[(Mµ
F )−1MF ]f,f =

|f |∫
f µ

. (4.3.17)

In the case of constant coefficients this reduces to

En+1
h = En

h + ∆t
ε c̃urlhH

n+1/2
h + J

n+1/2
h

H
n+1/2
h = H

n−1/2
h − ∆t

µ curlEn
h

E0 = IEh(E(0)), H
−1/2
h = IFh(H(t−1/2))

J
n+1/2
h = IEh(J(tn+1/2))

, (4.3.18)

where c̃urlh = WE curlThMF . (4.3.19)

This technique can also be applied to linear polarization laws although we will only

present the case of constant coefficients. The time averaged formulation in this case is
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given by

find Eh,Pm,h ∈ Eh, Hh ∈ Fh such that

1

∆t

 En+1
h −En

h

Pn+1
m,h −Pn

m,h

+
1

2ε
X⊗ I

 En+1
h + En

h

Pn+1
m,h + Pn

m,h

 =
1

ε

c̃urlhH
n+1/2
h

0


H
n+1/2
h −Hn−1/2

h

∆t
= − 1

µ
curlhE

n
h

E0
h = IEh(E(0)), P0

m,h = IEh(Pm(0)),

H−1/2 = IFh(H(t−1/2)).

(4.3.20)

where c̃urlh = WE curlThMF . (4.3.21)

The ETMFD for linear polarization laws with mass lumping is given by

find Eh,Ph,m ∈ Eh, Hh ∈ Fh

En+1
h

Pn+1
m,h

 = eX∆t ⊗ I

En+1
h

Pn+1
m,h

+
1

ε

(∫ ∆t

0
eXs ds

)
⊗ I

c̃urlhH
n+1/2
h

0

 ,

Hn+1/2 = Hn−1/2 − 1

µ
curlhE

n
h,

E0
h = IEh(E(0)), P0

m,h = IEh(Pm(0)),

H−1/2 = IFh(H(t−1/2)).

(4.3.22)

4.3.2 Discrete Gauss’ Law and Continuity Equation

Theorem 4.3.1. Let n ≥ 1 and En
h satisfying the discrete evolution equation En+1

h = En
h + ∆tc2

0c̃urlhB
n+1/2, n ≥ 0,

B
n+1/2
h = B

n−1/2
h −∆tcurlhE

n
h , n ≥ 1

(4.3.23)

and given initial conditions

E0
h = IEh(E(0)), B

1/2
h = IFh(B(∆t/2)). (4.3.24)
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Then

d̃ivhE
n
h = d̃ivhE

0
h. (4.3.25)

Proof. We calculate the discrete divergence of the discrete Ampére-Maxwell Law (4.3.23)

d̃ivhE
n+1
h − d̃ivhE

n
h

∆t
= c2

0d̃ivhc̃urlhB
n+1/2
h = 0. (4.3.26)

This gives us the identity

d̃ivhE
n+1
h = d̃ivhE

n
h, n ≥ 0. (4.3.27)

Applying the identity recursively yields

d̃ivhE
n = d̃ivhIEh(E(0)). (4.3.28)

Q.E.D.

This is a discrete analogue of Gauss’ Law (4.1.2)

div(εE) = ρ. (4.3.29)

Here we have that the initial divergence is preserved for all discrete time points which is

the discrete analogue of for free space in the continuum. In particular if we introduce the

discrete charge density

ρnh = d̃ivhE
n
h (4.3.30)

then we have that

ρnh = ρ0
h,∀n ≥ 0. (4.3.31)

We will now extend this approach to show discrete continuity equation is not preserved

exactly for a time averaged discretization of a simple conductive media. First note that
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for a conductive medium, combining the Guass’ law with the continuity equation we and

assuming uniform σ and ε we have the identity

divεE = ρ,
∂

∂t
ρ = −divσE =⇒ ∂

∂t
ρ = −σ

ε
ρ. (4.3.32)

Time averaging will only approximate this property in time.

Theorem 4.3.2. Let n ≥ 1 and En
h ∈ Eh, B

n+1/2
h ∈ Fh satisfying

En+1
h −En

h

∆t
+
σ

ε

En+1
h + En

h

2
= c2c̃urlhB

n+1/2
h

B
n+1/2
h −Bn−1/2

h

∆t
= −curlhE

n
h

(4.3.33)

and given initial data

E0
h = IEh(E(0)), B

1/2
h = IFh(B(∆t/2)). (4.3.34)

Then we have

d̃ivhE
n+1
h =

(
1− σ∆t

2ε

1 + σ∆t
2ε

)n+1

d̃ivhE
0
h. (4.3.35)

Proof. The proof here follows much like the free space case– we apply the adjoint diver-

gence, d̃ivh to our discrete Ampére-Maxwell Law and then compute.

d̃ivh
En+1
h −En

h

∆t
+
σ

ε
d̃ivh

En+1
h + En

h

2
= c2d̃ivhc̃urlhB

n+1/2
h (4.3.36)

= 0 by Corollary 3.8.2 (4.3.37)

d̃ivhE
n+1
h =

1− σ∆t
2ε

1 + σ∆t
2ε

d̃ivhE
n
h. (4.3.38)

Applying this identity recursively yields the result. Q.E.D.

Note that in the case of d̃ivhE
0
h = 0 we have the exactness property again, that the

divergence free condition is conserved for all time steps. However, if En+1
h is not divergence

free, then time averaging will not capture the decay of the divergence exactly. This is due

to the fact that the exact solution to

ρ̇ = −σ
ε
ρ (4.3.39)
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is given by

ρ(t) = e−
σ
ε
tρ(0). (4.3.40)

However, expanding in Taylor series about the point n∆t we have(
1− σ∆t

2ε

1 + σ∆t
2ε

)n+1

= e
σ
ε
n∆t +O(∆t2). (4.3.41)

This is in contrast to the ETMFD for which we will have exact agreement in the discrete

sense.

Theorem 4.3.3. Let n ≥ 0 and consider En
h,P

n
m,h ∈ Eh and B

n+1/2
h ∈ Fh a solution to

the ETMFD for a general polarization law

En+1
h

Pn+1
m,h

 = eX∆t

 En
h

Pn
m,h

+ c2

(∫ ∆t

0
eXs ds

)c̃urlhB
n+1/2
h

0

 ,

B
n+1/2
h = B

n−1/2
h − curlhE

n
h.

(4.3.42)

subject to appropriate initial conditions

E0
h = IEh(E(0)), P0

m,h = IEh(Pm(0)), B
1/2
h = IFh(B(∆t/2)). (4.3.43)

We then have that d̃ivhE
n+1
h

d̃ivhP
n+1
m,h

 = eX(n+1)∆t

 d̃ivhE
0
h

d̃ivhP
0
m,h

 . (4.3.44)

Proof. Let Y = c2
0

(∫ ∆t
0 eXs ds

)
. Let the i, j entry of Y be given by yi,j . We have the

identity

(∫ ∆t

0
eXs ds

)c̃urlhB
n+1/2
h

0

 =


y1,1c̃urlhB

n+1/2
h

...

y1,M+1c̃urlhB
n+1/2
h

 (4.3.45)
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We will now take the discrete adjoint divergence of every row of our Ampére-Maxwell-

Polarization Law equation.

d̃ivhE
n+1
h

d̃ivhP
n+1
m,h

 = eX∆t

 d̃ivhE
n
h

d̃ivhP
n
m,h

+


y1,1d̃ivhc̃urlhB

n+1/2
h

...

y1,M+1d̃ivhc̃urlhB
n+1/2
h

 (4.3.46)

= eX∆t

 d̃ivhE
n
h

d̃ivhP
n
m,h

 . (4.3.47)

Applying the above identity recursively yeilds the result. Q.E.D.

Note that the first row of X decribes the consitutive law

D = εE +

M∑
m=1

x1,mPm. (4.3.48)

Thus the above result is a discrete analogue of the continuity equation for the polarization

media.

4.4 Numerical Demonstration of Continuity Equa-

tion

In this section we will demonstrate the discrete divergence results as developed in

Theorem 4.3.1. Throughout the section we will consider a media where ε = µ = =̧1 for

simplicity.

Given that the discrete weak divergence is defined as

d̃ivh = M−1
V ∇

T
hW

−1
E , (4.4.1)

we must solve a linear systems in order to compute the weak divergence. For efficiency

we choose MV ,f = ∆x∆yI4×4 using M-adaptation to perform mass lumping. In order to



101

solve the problem

WE Fh = Eh, (4.4.2)

for the vector Fh we use the conjugate gradient method in order to avoid assembling the

global matrix. In order to guarantee accuracy we choose a relative residual tolerance of

10−15 which is attained in approximately 10 iterations for our problem. The accuracy

of this linear solve does seem to influence the exactness of the method so high precision

appears necessary.

Further, the construction of the weak divergence developed in this work requires Vh

to have discrete homogeneous Dirichlet boundary conditions. This is then built into the

inner product matrix MV .

Experiment 1. In our first experiment we will demonstrate that Im(c̃urlh) ⊂ Ker(d̃ivh)

and that for divergence free initial data the fully discrete Maxwell’s Equations with MFD

in space and leap frog in time has a discrete weak divergence within machine precision.

Consider the initial value problem in free space

∂
∂tE = curlB, ∈ [0, 6]2

∂
∂tH = −curlE, ∈ [0, 6]2

E× n = 0, ∈ ∂[0, 6]2

E(0) = 0,

H(0) = e−100((x−3)2+(y−3)2).

(4.4.3)

Given that the initial conditions are divergence free the continuum setting divE = 0 for

all time.

See Figure 4.1 for results. We find that the discrete charge density ρnh = d̃ivhE stays

at or below machine precision for all time and the L2 norm of this field is computed at

approximately 10−32.

This experiment provides numerical evidence that d̃ivhc̃urlh = 0.
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FIGURE 4.1: By resolving W−1
E using conjugate gradients to a tolerance of 10−15 we

produce a discrete charge density ρnh = d̃ivhE
n
h which is pointwise on the order of 10−15

for divergence free initial conditions. Over time L2 norm of ρnh stays bellow 10−30 for
divergence free initial data. Subfigure (a) shows the charge density |ρnh| at time 2.5 with
log scale coloring while subfigure (b) shows the L2 norm of the field.
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FIGURE 4.2: (a) We present the difference L2 divergence error for initial conditions which
are not divergence free. (b) we show the quantity ‖ρnh‖L2 at our lowest resolution h = 2−7.
Charge appears to be conserved throughout computation

Experiment 2. In this second experiment we consider initial data which is not divergence
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free. 

∂
∂tE = curlB ∈ [0, 6]2,

∂
∂tH = −curlE ∈ [0, 6]2,

E× n = 0 ∈ ∂[0, 6]2,

E(0) = (e−100((x−3)2+(y−3)2), 0)T ,

H(0) = 0.

(4.4.4)

A continuum calculation gives us that

ρ = divE(0) = −200(x− 3)e−100((x−3)2+(y−3)2) (4.4.5)

for all time. For this experiment we advance the approximation to time 2.5 and then

compute

ρnh = d̃ivhE
n
h (4.4.6)

the discrete charge density. We will compute the L2 error of this discrete representation

and the interpolant of the exact solution

Ediv =
√

(ρnh − IVh(ρ))TMV (ρnh − IVh(ρ)). (4.4.7)

Here we find an unexpected super convergence result, namely that ρh appears to converge

at order three, i.e. Ediv = O(h3). Further we provide the quantity ‖ρnh‖L2 as function of

time for our lowest resolution case. We find that this quantity is approximately constant

during the calculation suggesting conservation of charge. See Table 4.1 and Figure 4.2 for

results.

These experiments provide evidence that the method also preserves non-divergence

free solutions with high accuracy.

These two experiments show that MFD preserves Gauss’ Law and the continuity

equation well. We find that when using iterative solvers to compute the adjoint divergence

high accuracy is especially important. We do not recommend converging a M−1
E to only
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discretiztion error levels as this will violate the adjoint properties which guarentee our

mimetic properties. However, when M−1
E is computed accurately we see that divergence

free soutions appear to remain divergence free for all time and solutions with non-zero

divergence exhibit super convergence of dispersion error.

TABLE 4.1: Divergence errors for a free space problem with non-zero divergence initial
data. Errors appear to converge at order h3.

log2(h) Ediv rate

-7 0.6313 –

-8 0.0866 2.86

-9 0.0111 2.95

-10 0.0014 2.99
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5 DISPERSION ANALYSIS AND

M-ADAPTATION

5.1 Introduction to Dispersion Analysis

In this chapter we will focus in more depth on mimetic methods for transient wave

problems arising from Maxwell’s equations. One of the major challenges of numerical

approximation of wave propagation is that discretization errors result in waves travelling

at non-physical speeds.

In order to quantify dispersion error the Fourier Transform is employed. The

Fourier transform is an isomorphism on L2 which carries functions which depend on time

t and space x to functions which depend on frequencies ω and wave vectors k. Both

frequency and wave vectors are inversely proportional to the period (in time) and wave

length (in space) of a given plane wave. Intuitively, the Fourier Transform produces the

parameters which decompose a function into a continuous superposition of plane waves.

A major feature of the Fourier Transform is that it transforms differential equations in

physical space into algebraic equations in frequency-wave vector space. An equality of

this algebraic equation is called the dispersion relation for a PDE and it relates the

wave vectors and frequencies of a given solution. Using this technique one can infer the

wave speed and dispersive characteristics of a given PDE. The Fourier transform can

also be employed in the analysis of numerical methods, however the dispersion relations

become trigonometric rather than algebraic equations but they are amenable to Taylor

series analysis.

In this section we will perform dispersion analysis for a number of transient models

for Maxwell’s equations as well as MFD discretizations. Once we have performed this

analysis we will select optimal parameters in the MFD which reduces the dispersion error
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of the method using an method optimization technique called M-adaptation. Section

5.2 we introduce continuum dispersion analysis. In Section 5.4 we perform a dispersion

analysis of the MFD and perform M-adaptation. In Section 5.5 we present numerical

results which support our theoretical findings.

5.2 Continuum Fourier Analysis

In its classical application, dispersion analysis is performed by transforming a (par-

tial) differential equation from physical space-time to frequency domain. This is accom-

plished by way of the Fourier transform. We will use the following Fourier transform

convention. Note that it will have different signs depending on whether we are transform-

ing in space or time. We will follow the notational conventions similar to those laid out

in [12].

Definition 5.2.1. Consider a function of space u : Rd → R with d = 1, 2, 3. We define

its spatial Fourier transform as

F(u)(k) =
1

(2π)d/2

∫
Rd
u(x)e−ik·x dx. (5.2.1)

Where, F(u) : Rd → R.

We call the domain of this transformed function the wave vector space with variable

wave vector k. We use the convention that a wave vector k has an associated wave number

k = |k|. The Fourier transform is invertible.

Let f : R→ R be a function of time. We define its Fourier transform as

G(f)(ω) =
1√
2π

∫
R
f(t)eiωt dt. (5.2.2)

This transform G(f) is also a function now mapping R→ R. We call its domain frequency

space denoted by the frequency ω. The inverse Fourier transform in time is given as

follows.
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We will also consider transforms on (time dependent) vector fields u : Rd → Rn

where n ≥ 2 and u = (u1, u2, · · · , un). In this case Fourier transforms in time and

space are defnied component wise by F(u) = (F(u1),F(u2), · · · F(un)) and G(u) =

(G(u1),G(u2), · · · ,G(un)) respectively.

Before developing Fourier Analysis on vector valued equations we will start with the

scalar case.

Theorem 5.2.1. The Fourier transforms F and G are invertible with inverses given as

follows. Let û = F(u) and f̃ = G(f)

u(x) =
1

(2π)d/2

∫
Rd
û(k)eik·x dk (5.2.3)

f(t) =
1√
2π

∫
R
f̃(ω)e−iωt dω (5.2.4)

We will now introduce the concepts of symbols and dispersion relations. To do so

we must first establish some notation.

Definition 5.2.2. We define a multi-index notation for differential operators as follows.

Consider an array of integers a = (a1, a2, . . . , an, an+1). We define

Da =
∂|a|

∂a1
x1∂

a2
x2 · · · ∂anxn∂

an+1

t

(5.2.5)

Where |a| is the usual taxicab norm of a

|a| =
n∑
i=1

|ai|. (5.2.6)

Assume that ã = (a1, · · · , ad, at). We define the multi-index polynomial

(k, ω)ã = ωat
d∏
i=1

kaii (5.2.7)

where k = (k1, · · · , kd).

With the multi-index in place we can now define the symbol and dispersion relation

of a PDE.
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Definition 5.2.3. Consider a linear nth order differential operator (in time and space)

defined by

Lu =
∑
|a|≤n

caD
au, (5.2.8)

where the constants ca are real numbers associated to each component of the operator

Da. We define the Symbol of L to be

F [L] =
∑
|a|≤n

ca(ik,−iω)a (5.2.9)

This definition is typical to the Fourier Analysis found in [12]

Lemma 5.2.2. Assume that L is an nth order differential operator in time and space

Lu =
∑
|a|≤n

caD
au. (5.2.10)

Let û be the Fourier transform in time and space of u

Lu = F−1 ◦ G−1(F [L]û) (5.2.11)

Proof. Let û be the Fourier transform in time and space of u(x, t).

Lu =
∑
|a|≤n

caD
a 1

(2π)
d+1

2

∫
Rd

∫
R
û(k, ω)eik·x−iωt dω dk (5.2.12)

Assuming sufficient regularity we commute the sum over caD
a with the integrals.

Lu =
1

(2π)
d+1

2

∫
Rd

∫
R
û(k, ω)

∑
|a|≤n

caD
aeik·x−iωt dω dk. (5.2.13)

Consider a = (a1, · · · , ad, at). Then we have

caD
aei(k·x−ωt) = ca(ik,−iω)aei(k·x−ωt). (5.2.14)

Therefore

Lu =
1

(2π)
d+1

2

∫
Rd

∫
R
û(k, ω)

∑
|a|≤n

ca(ik,−iω)a dω dk. (5.2.15)

= F−1 ◦ G−1(F [L]û) (5.2.16)

Q.E.D.
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The previous result relates to us the symbol of F [L] and G[L] to L in terms of the

Fourier transform. Note that we can compute the symbol rather quickly by the following

lemma.

Lemma 5.2.3. The symbol of an operator L is determined by its action on plane waves,

i.e., functions of the form ei(k·x−ωt) by

F [L] =
Lei(k·x−ωt)

ei(k·x−ωt) (5.2.17)

Proof. This is immediate using the definitions of Fourier Transform, its inverse, and

Lemma 5.2.3. Q.E.D.

So far we have considered only scalar valued differential operators. As this work

mostly concerns electromagnetism we must provide an interpretation for higher dimen-

sional derivatives. There are roughly three classes of these operators: operators which

take vectors to scalars (such as the divergence or scalar curl in 2D), operators which take

scalars to vectors (such as the gradient or vector curl in 2D), and operators which take

vectors to vectors (such as the curl in 3D).

We prefer to interpret such operators as matrices of scalar equations.

for d = 3 for d = 2 (5.2.18)

div =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
curl =

(
− ∂

∂y
,
∂

∂x

)
(5.2.19)

∇ =


∂

∂x
∂

∂y
∂

∂z

 curl =

 ∂

∂y

− ∂

∂x

 (5.2.20)

curl =


0 − ∂

∂z

∂

∂y
∂

∂z
0 − ∂

∂x

− ∂

∂y

∂

∂x
0

 (5.2.21)
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In the scalar case action by plane waves do not depend upon initial amplitudes. However,

for operators which take vectors for inputs we must include the possibility of different

amplitudes in different components. For this reason we introduce the following formalism

when computing the symbol of a higher dimensional derivative.

Definition 5.2.4. Consider u an m vector valued function and L an n×m linear operator.

Defined as

L =


L1,1 · · · L1,m

...
...

Ln,1 · · · Ln,m

 (5.2.22)

where Li,j are abstract, linear, differential operators in space and time. We define its

symbol as

F [L] =


F [L1,1] · · · F [L1,m]

...
...

F [Ln,1] · · · F [Ln,m]

 . (5.2.23)

This definition is similar to one found in [12].

Similar to Lemma 5.2.3 we have that high dimension linear differential operators

have symbols determined by their action on plane waves of the form E0ei(k·x−ωt) where

E0 is a constant unit vector. We have the following lemma.

Lemma 5.2.4. If L1 is a m × n linear differential operator and L2 is a r × m linear

operator then we have

F [L2L1] = F [L2]F [L1]. (5.2.24)

Proof. This follows immediately from linearity of the Fourier symbol and the definition of

matrix multiplication. Q.E.D.

We will now provide several simple examples, c.f. [12].
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Example 5.2.1. Consider the gradient operator ∇ defined by

∇ = (
∂

∂x1
, · · · , ∂

∂xd
)T (5.2.25)

Calculating its action on a plane wave we have

∇eik·x = (ik1, · · · , ikd)T eik·x (5.2.26)

Therefore the symbol of F [∇] = ik.

Example 5.2.2. Consider the divergence operator div. We calculate its action on a plane

wave of the form E0eik·x.

divE0eik·x =
d∑
i=1

(iki)Ei = ikTE0. (5.2.27)

Therefore the symbol F [div] = ikT .

Example 5.2.3. Consider the curl operator curl acting on E0eik·x.

curlE0eik·x =


ikyEz − ikzEy

ikzEx − ikxEz

ikxEy − ikyEx

 = ik×E0 (5.2.28)

Therefore F [∇×] = i[k]× where this notation describes a cross product [a]×b = a× b.

Example 5.2.4. We will now calculate the symbol of the Laplace operator 4 = div∇.

F [4] = F [div]F [∇] = (ik)T (ik) = −k2. (5.2.29)

5.3 Continuum dispersion relations

Having developed some well known theory to describe the linear differential opera-

tors in frequency domain we use this to solve differential equations.
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Lemma 5.3.1. Consider the linear differential equation

Lu = 0 (5.3.1)

where L is a m× n linear differential operator and u : Rd → Rn. If u = E0ei(k·x−ωt) is a

plane wave whose wave vector k and frequency ω satisfy

F [L]E0ei(k·x−ωt) = 0 (5.3.2)

then

LE0ei(k·x−ωt) = 0 (5.3.3)

Proof. This follows immediately as the action of L on plane waves is its symbol F [L].

Q.E.D.

We can also use this theory to generate solutions to equations of the form

Lu = F. (5.3.4)

Definition 5.3.1. Consider a linear differential equation

Lu = F. (5.3.5)

Then the dispersion relation is given by

F [L]û(k, ω) = F̂(k, ω). (5.3.6)

Note that for many problems we are interested in the case F = 0.

In this respect a symbol is the action of a linear operator on plane waves while

dispersion relations are equations relating symbols of operators for plane wave solutions

of differential equation.
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5.3.1 Dispersion Relation for Scalar Wave Equation

We will now present several examples of dispersion relations. For our first example

we consider the scalar wave equation

∂2

∂t2
u = c24u. (5.3.7)

We will first calculate the symbol of the operator ∂tt − c24.(
∂2

∂t2
− c24

)
ei(k·x−ωt) = −ω2 + c2k2. (5.3.8)

The dispersion relation is then posed by setting the symbol equal to zero

−ω2 = −c2k2 (5.3.9)

which has two solutions, namely ω = ±ck.

5.3.2 Dispersion Relation for Maxwell’s Equations in Vac-
uum

Next we will present the dispersion relation for Maxwell’s equations in vacuum in

the absence of source currents. That is, consider the curl equations
∂

∂t
E =

1

ε
curlH,

∂

∂t
H = − 1

µ
curlE.

(5.3.10)

To calculate the dispersion relation we will rewrite the operator in the form of a matrix

equation  ∂

∂t
I3×3 −1

ε
curl

1

µ
curl

∂

∂t
I3×3


E

H

 =

0

0

 (5.3.11)

To calculate the symbol with constant ε, µ we assume E = E0ei(k·x−ωt) and H = H0ei(k·x−ωt)

where E0,H0 are unit vectors in R3. Thus we have,−iωI3×3 −iε−1[k]×

iµ−1[k]× −iωI3×3


E0

H0

 =

0

0

 (5.3.12)
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The dispersion relation is now posed as a zero eigenvalue problem. In particular we need

both the eigenvalues and eigenvectors. First we will find the eigenvalues first. To this end

we compute

det

−iωI3×3 −iε−1[k]×

iµ−1[k]× −iωI3×3

 = 0. (5.3.13)

We will begin by eliminating the variable H in (5.3.13). This choice is arbitrary and we

could as easily eliminate E and recover identical solutions. This produces an equivalent

dispersion relation as can be seen by the final calculation. To do so we note that the

lower left hand block commutes with both [k]× blocks therefore we can apply the block

determinate formula.

det

−iωI3×3 −iε−1[k]×

iµ−1[k]× −iωI3×3

 = det
(

(−iω)2I3×3 − (εµ)−1[k]2×

)
. (5.3.14)

Since c2 = (εµ)−1, we have the following eigenvalue problem.

(
− ω2I3×3 − c2

0[k]2×

)
E0 = 0. (5.3.15)

The matrix [k]2× = kkT − k2I3×3 has three eigenvectors. The vector k is asscoiated a zero

eigenvalue and k⊥1 and k⊥2 which are orthogonal to k and are −k2. By choosing E0 in the

span of k we have

−ω2E0 = 0. (5.3.16)

The solution is ω = 0. As E0||k we have that divE0 is non-zero as the symbol of div

is ikT . This tells us that divergent components of E are evanescent, that is they do not

propagate. If we choose E0 ∈ 〈k⊥1 ,k⊥2 〉 the dispersion relation is given by

(−ω2 + c2
0k

2)E0 = 0. (5.3.17)
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In this case we have ω = ±c0k. To find the solution for H0 we consider the equation

(−iω)B = −iµ−1k×E (5.3.18)

B =
1

µω
k×E. (5.3.19)

This tells us that if E||k then B = 0. If E0 ∈ 〈k⊥1 ,k⊥2 〉 then B0 will be orthogonal to E0

but also in the plane 〈k⊥1 ,k⊥2 〉.

5.3.3 Dispersion Relation for Maxwell’s Equations in Con-
ductive Media

Maxwell’s equations in a conductive media are governed by the following system of

equations. 
∂

∂t
E +

σ

ε
E =

1

ε
curlH

∂

∂t
H = − 1

µ
curlE

(5.3.20)

Define the relaxation frequency γ = σ
ε . We rewrite the system as a matrix equation we

eliminate the variable H to the second order equation

∂2

∂t2
E + γ

∂

∂t
E = −c2curlcurlE. (5.3.21)

We calculate the dispersion relation by consider the plane wave Ansatz E = E0ei(k·x−ωt).

(−ω2 − iγω)E0 = c2k× k×E0. (5.3.22)

As before we have two classes of eigenvalues. For E0||k we have the dispersion relation

ω2 + iγω = 0. (5.3.23)

Which is solved by ω = 0 and ω = −iγ which gives us two evanescent modes. One

which does not propagate and one which decays exponentially with rate e−γt. These

solutions state that divergent electric waves are decaying and evanescent. In the case of

E0 ∈ 〈k⊥1 ,k⊥2 〉 we have the dispersion relation for transient modes

ω2 + iγω − c2
0k

2 = 0. (5.3.24)
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This relation implies that the transient waves are also decaying.

5.3.4 Dispersion Relation for Maxwell’s Equations in Debye
Media

In a Polarization Medium, a polarization field is introduced to account for the

discrepancy between electric fields and electric induction. For the Debye Model of Po-

larization, one assumes that atoms in the material are deformed by the presence of the

electric field and then relax back to an equilibrium configuration after some time. For this

reason Debye Media are also referred to as relaxing dielectrics. The Debye model is given

by appending Auxilary Differential Equations to Maxwell’s equations to account for

the polarization field. The model is given as follows:

∂

∂t
E +

1

ε

∂

∂t
P =

1

ε0
∇×H

∂

∂t
P = −1

τ
+ ε0

ε∆
τ

E

∂

∂t
H = − 1

µ0
∇×E

(5.3.25)

Here the parameter τ is the relaxation time of the medium and ε∆ is the band gap– namely

the relative difference in electrical permittivity for infinite frequency signals and zero

frequency signals. Many materials can be modeled as Debye materials – biological tissues

and water being common examples. For water τ = O(10−12) and ε∆ ≈ 80. Typically one

eliminates the variable ∂
∂tP from the Maxwell-Ampére law.

∂

∂t
E = −ε∆

τ
E +

1

ε0τ
P +

1

ε0
∇×H (5.3.26)

We will now compute the dispersion relation assuming all fields are plane waves initial

orientations E0,P0,H0.
−iω + ε∆

τ − 1
ε0τ

0

−ε0 ε∆τ −iω + 1
τ 0

0 0 −iω




E0

P0

H0

 =


0 0 i

ε [k]×

0 0 0

− i
µ [k]× 0 0

 (5.3.27)
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Eliminating the variables P0 and H0 gives us the following. We begin with some geometric

analysis. The dispersion equation governing P guarantees that P and E should be colinear

P0 =
ε0ε∆

1− iωτ
E0. (5.3.28)

We know that E0,H0 must be eigenvectors of [k]×. Further, we know that H0 ⊥ E0 by

the third equation. The matrix i/ε[k]× has three eigenvectors, k,k⊥1 ,k
⊥
2 . There are two

cases.

1. E0 = k. To be an eigenvector of the RHS we must have H0 = k. This reduces the

right hand side to zero. We are left to solve the eigenvalue problem
−iω + ε∆

τ − 1
ε0τ

0

−ε0 ε∆τ −iω + 1
τ 0

0 0 −iω




E0

P0

H0

 =


0

0

0

 (5.3.29)

This is done in the standard way where we take the determinate of the matrix,

resulting in a characteristic polynomial in ω and search for roots.

0 = Det


−iω + ε∆

τ − 1
ε0τ

0

−ε0 ε∆τ −iω + 1
τ 0

0 0 −iω

 = iτω2(ε0τω + iε0(1 + ε∆)) (5.3.30)

Solving this equation for ω we are left with two distinct solutions

ω = 0, ω = −i
1 + ε∆
τ

. (5.3.31)

2. Let E0 ∈ 〈k⊥1 ,k⊥2 〉. We have a dispersion relation given by

0 = Det


−iω + ε∆

τ − 1
ε0τ

− i
εk

−ε0 ε∆τ −iω + 1
τ 0

i
µk 0 −iω

 = ω2(iτω − (1 + ε∆)) + ck2(iτω − 1).

(5.3.32)
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5.3.5 Dispersion Relation for Maxwell’s Equation in Cold
Isotropic Plasma

Consider a cold isotropic plasma model with constant coefficients:

∂

∂t
E +

1

ε
J = curlH

∂

∂t
J = −ωIJ + εω2

PE

∂

∂t
H = − 1

µ
curlE

(5.3.33)

Assuming the plane wave Ansatz this system of equations reduces to the following gener-

alized eigenvalue problem
−iω 1

ε 0

−εω2
P −iω + ωI 0

0 0 −iω




E0

J0

H0

 =


0 0 i

ε [k]×

0 0 0

− i
µ [k]× 0 0




E0

J0

H0

 (5.3.34)

We eliminate the variable H by the identity

−iωH = − i

µ
k×E0 (5.3.35)

This reduces the system as follows: −ω2 −iω 1
ε

−εω2
P −iω + ωI


E0

J0

 =

−c2[k]2× 0

0 0


E0

J0

 . (5.3.36)

It is now clear that we must consider eigenvectors of the matrix [k]2×, i.e. E ∝ k or

E ∝ k⊥.

k⊥: In case of E ∝ k⊥ the system reduces as follows:−ω2 + c2k2 −iω 1
ε

εω2
P −iω + ωI


E0

J0

 =

0

0

 (5.3.37)

Calculating the determinate of this system we arrive at the dispersion relation

iω3 − ω2ωI + iω(ω2
P − c2k2) + c2ωIk

2 = 0 (5.3.38)
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k: Choosing E0 ∝ k there is no k dependence. −ω2 −iω 1
ε

−εω2
P −iω + ωI


E0

J0

 =

0

0

 (5.3.39)

Calculating the determinant of this matrix we arrive at the dispersion relation

iω(ω2 + iωωI + ω2
P ) = 0. (5.3.40)

5.4 Discrete Fourier Analysis

In this section we will extend dispersion analysis from the continuum setting to

discrete approximations. This sort of analysis is simplest when applied to discretizations

with uniform grids.

To begin with we will shift our interpretation of symbols slightly. In the continuum

setting we focused on symbols as objects arising from Fourier transforms of the continuum

PDE and then proved equivalence with the action of the operators on plane waves.

In the discrete setting we will not attempt to create a discrete representation of

the Fourier Transform but instead jump immediately to action on plane waves. To do so

we must consider discretizations of plane waves. In the case of finite difference methods

discrete plane waves are exactly the degrees of freedom of a plane wave. For finite element

interpretations we may consider the interpolant the plane wave’s degrees of freedom in the

appropriate polynomial space. For our purposes we will focus primarily on finite difference

interpretation.

Example 5.4.1. Consider degrees of freedom for the Yee scheme or lowest order edge-

based mimetic discretizations:

Ee =
1

|e|

∫
e
E · τ e de (5.4.1)
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where e are the edges of the mesh and τ e is the unit tangent vector to that edge. Assume a

rectangular discretization oriented with the x and y axes where the midpoints of horizontal

edges lie at points (i∆x, (j + 1/2)∆y) and the midpoints of vertical edges lie at ((i +

1/2)∆x, j∆y). Call horizontal edges ei,j+1/2 and vertical edges ei+1/2,j

The degrees of freedom of the plane wave E = E0eik·x are then given by as follows.

Eei,j+1/2
= Exeik·(i∆x,(j+1/2)∆y) 2 sin kx∆x

2

kx
, (5.4.2)

Eei+1/2,j
= Eye

ik·((i+1/2)∆x,j∆y) 2 sin
ky∆y

2

ky
. (5.4.3)

This immediately implies the relation

Eei,j+1/2
= eik·(i∆x,j∆y)Ee0,1/2 , (5.4.4)

Eei+1/2,j
= eik·(i∆x,j∆y)Ee1/2,0 . (5.4.5)

This shows the discrete plane wave is controlled by two degrees of freedom – analogous to

free space where we needed consider only each component of the wave.

Once we have established our discrete plane waves we apply the discretization of

PDE to these waves to compute symbols. This is generally done by reducing to a minimal

number of degrees of freedom and considering the action of the discretization on the

discrete plane waves. In general the resulting generalized eigenvalues are trigonometric

functions of discretization parameters and (ω,k) rather than polynomials as was the case

in the continuum setting.

For the schemes to be consistent discrete symbols must approximate continuum

symbols in the limit of high grid resolution. However, any discrepancy will cause what

is referred to as Dispersion Error. Dispersion error is typically observed as non-physical

oscillations or phase errors in discrete solutions. The source of these numerical artifacts

can be attributed to a difference in the frequency-wave number pairs which solve the

continuum dispersion relation and the discrete dispersion relation.

We will illustrate this now by way of an example.
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Example 5.4.2. Consider the one dimensional transport equation

∂

∂t
u = −c ∂

∂x
u. (5.4.6)

If we try to solve this equation for some data f(x) we have the exact solution given by

u(x, t) = f(x− ct). The dispersion relationship for this PDE is given by

−iω = −ick =⇒ ω = ck. (5.4.7)

The dispersion relation implies the identity

c =
ω

k
(5.4.8)

which says that the wave speed should be given by the ratio of frequency to wave number.

Consider the classical Leap-frog discretization of the transport equation

un+1
j − un−1

j

2∆t
= −c

unj+1 − unj−1

2∆x
, unj ≈ u(j∆x, n∆t). (5.4.9)

Assuming the discrete plane wave Ansatz we have

unj = u0eikj∆x−iωn∆t. (5.4.10)

Applying the stencil to this Ansatz we are left with the following discrete dispersion

relation

−i
sinω∆t

∆t
u0

0 = −ic
sin k∆x

∆x
u0

0. (5.4.11)

Define the variable

cn =
∆x

∆t

sinω∆t

sin k∆x
=
ω

k
+ ∆x2 c

2k2ω − ν2ω3

6c2k
+O(∆x4), ν =

c∆t

∆x
. (5.4.12)

Assuming a true root of the dispersion relation ω = ck we can then simplify this expression

cn = c+
∆x2

6c
(1− ν2)ω +O(∆x4). (5.4.13)

This suggests that discrete waves will propagate at non-physical speeds.
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We will now define our preferred quantification of dispersion error.

Definition 5.4.1. Consider a linear partial differential equation defined as

Ltu = Lxu. (5.4.14)

Here Lt is a linear differential with only temporal operators and Lx is a differential with

only spatial operators. We use the following notation for the symbols

T (ω) := F [Lt] S(k) := F [Lx]. (5.4.15)

Consider a discretization of this differential equation. Say the method has a discrete

temporal symbol T∆t(ω) and discrete spatial symbol Sh(k).

Let (k, ω) be a solution to the continuum dispersion relation

T (ω)u0 = S(k)u0. (5.4.16)

Assume that ∆t is proportional to h. We say the numerical method has rth order dispersion

error if

(
T∆t(ω)− Sh(k)

)
u0 = O(hr). (5.4.17)

This definition is exactly the local truncation error assuming that the exact solution

is a plane wave. Another potential approach to the quantification is to find solutions to

both discrete and continuum dispersion relations

T∆t(ω∆t)uh = Sh(kh)uh T (ω)u0 = S(k)u0 (5.4.18)

and then calculate the norm of the difference between (ω,k) and (ω∆t,kh) in an appro-

priate vector norm. However, for most systems solutions for ω∆t and kh are very difficult

to work with. For this reason we prefer the presented definition.
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5.4.1 Dispersion Analysis for MFD Discretizations of Maxwell’s
Equations

Our primary analytical tool for M-adaptation will be discrete dispersion analysis.

In order to infer properties of the method we will consider the action of the numerical

discretization on numerical representations of plane waves. This approach seems unlikely

to be much use on bounded domains at first inspection. However, for many geometries

(for example squares) the Fourier modes of the geometry are in fact finite superpositions

of plane waves. In general one can prove that plane waves are dense in the solution space.

This allows for optimization for plane waves to have far reaching consequences.

We will work primarily with two discrete plane waves.

En
h = IEh(E0 exp i(k · x− ωn∆t)) (5.4.19)

B
n+1/2
h = IFh(B0 exp i(k · x− ω(n+ 1/2)∆t)) (5.4.20)

Further we will consider the case in the absence of external currents, namely J = 0 for all

time.

Here one can think of E0 and B0 as encoding the initial orientation and intensity of

the electric and magnetic fields respectively. In particular, each plane wave is determined

by only a few degrees of freedom (2 in the case of En
h and one in the case of B

n+1/2
h ).

This allows one to describe the effect of a global discrete operator acting on either grid

function in terms of local contributions. We will present three lemmata which illustrate

this fact.

Definition 5.4.2. We define the restriction of a grid function uh ∈ S to a collection of
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objects s1, s2, · · · , sn as follows

u(s1,s2,···sn) =



us1

us2
...

usn


(5.4.21)

Definition 5.4.3. For a space S and some face f we define the matrix TS ,f by

[TS ,f ]i,j =


1 local number j has global number i

0 otherwise

. (5.4.22)

We call the matrix TS ,f a restriction matrix.

Definition 5.4.4. Let X ∈ L(Sh,Wh). We call X uniform if there exists a matrix X`

such that

X =
∑
f∈Fh

TTW ,fX`TE ,f . (5.4.23)

Further if X is uniform call the matrix X` the local matrix of X

Lemma 5.4.1. Let T be a uniform rectangular mesh, X ∈ L(Eh,Eh) be uniform with

local matrix X`, and let (e1, e2) be the first and second local edges for some face f (i.e. e1

is the bottom edge and e2 is the right edge as described in Figure 3.3 ) then

(
XEn

h

)
|(e1,e2) = S?X`S

(
Eh|(e1,e2)

)
(5.4.24)

where S is defined as

S =



1 0

0 1

eiky∆y 0

0 e−ikx∆x


(5.4.25)

and ? is the complex conjugate.
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Proof. Let

En
(e1,e2) =

u1

u2

 and XEn
(e1,e2) =

v1

v2

 . (5.4.26)

If e1, e2 are the bottom and right edges of f then let e3 and e4 be the top and left edges

respectively. Without loss of generality we will assume that the barycenter of f is (0,0).

First note that if E is a plane wave then we have the following two identities

1

∆x

∫
e3

(1, 0)E0ei(kxx+ky
∆y
2
−ωt)dx =

eiky∆y

∆x

∫
e1

(1, 0)E0ei(kxx−ky ∆y
2
−ωt)dx, (5.4.27)

1

∆y

∫
e4

(0, 1)E0ei(−kx∆x
2

+kyy−ωt)dy =
e−ikx∆x

∆y

∫
e2

(0, 1)E0ei(kx
∆x
2

+kyy−ωt)dy. (5.4.28)

Therefore as En
f is the interpolant of a plane wave on the face f we have

IEh
f (E) =



u1

u2

eiky∆yu1

e−ikx∆xu2


= SEn

(e1,e2). (5.4.29)

The matrix product given by

X`S(En
(e1,e2)) (5.4.30)

is the local contribution of X from the cell f . We introduce two additional cells, fE which

is one cell to the right (+x direction) of f and fS which is one cell bellow f (−y direction),

see Figure 5.1. In order to calculate the total contribution of X the edges e1 and e2 we

must account for contributions from the cells fS and fE . To do so we note that u1 lies on

edge 3 in cell fS and u2 lies on edge 4 in cell fE . The global contribution on these edges

is then given by

v1 = (1, 0, 0, 0)X`S

u1

0

+ e−iky∆y(0, 0, 1, 0)X`S

u1

0

 (5.4.31)

v2 = (0, 1, 0, 0)X`S

 0

u2

+ eikx∆x(0, 0, 0, 1)X`S

 0

u2

 (5.4.32)
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FIGURE 5.1: Three cells used to assemble the contributions after multiplication by a
uniform matrix.

Collecting the above calculation as a matrix product gives us the desired identityv1

v2

 = S?X`S

u1

u2

 . (5.4.33)

Q.E.D.

The next two results can be proven by using the machinery presented in the previous

proof.

Corollary 5.4.2. Let T be a uniform rectangular mesh, X ∈ L(Eh,Fh) be uniform with

local matrix X`, and let e1, e2 be the first two degrees of freedom of a cell f then

XEn
f = X`SE2

(e1,e2). (5.4.34)

Where S is defined as in Lemma 5.4.1.

Proof. As in Lemma 5.4.1 we have that

En
f = SEn

(e1,e2). (5.4.35)
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As the operator X is uniform on T we have that v depends only En
f . Therefore

XEn
f = X`SEn

(e1,e2). (5.4.36)

Q.E.D.

Corollary 5.4.3. Let T be a uniform rectangular mesh, X ∈ L(Fh,Eh) be uniform with

local mass matrix X`, and let e1, e2 be the first two degrees of freedom in a cell f then

XB(e1,e2) = S?X`Bf (5.4.37)

where S is defined in 5.4.1 and ? is the conjugate transpose.

Proof. As X is uniform we have that for e ∈ E , Ee depends on all f such that e ∈ ∂f .

Therefore XBn
e1 has contributions from f and fS and XBn

e2 has contributions from f, fE .

Note that as B is a plane wave we have

BfS = e−ikx∆xBf , BfE = eiky∆yBf . (5.4.38)

Applying the argument developed in Lemma 5.4.1 we have

XBe1 = (1, 0, 0, 0)X`Bf + e−iky∆y(0, 0, 1, 0)X`Bf , (5.4.39)

XBe2 = (0, 1, 0, 0)X`Bf + eikx∆x(0, 0, 0, 1)X`BF . (5.4.40)

which can be rewritten as

XB(e1,e2) = S?X`Bf . (5.4.41)

Q.E.D.

With these results in place we will introduce simplifying notation.

Definition 5.4.5. Let T be a uniform rectangular mesh. Define uniform operators

X ∈ L(Eh,Eh) Y ∈ L(Eh,Fh) Z ∈ L(Fh,Eh) (5.4.42)
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with local matrices X`,Y`, and Z` respectively. We define the action of these operators

on plane waves as

X = S?X`S (5.4.43)

Y = Y`S (5.4.44)

Z = S?Z` (5.4.45)

where S is defined as in equation (5.4.25). Note that by this definition we have

Z = YT =⇒ (Z)? = YT (5.4.46)

With these results in place we can now compute the discrete dispersion relationship.

Theorem 5.4.4. The discrete dispersion relationship for the discrete evolution equation

(4.3.18) neglecting source currents is given by

T∆t(ω) = Sh(k) (5.4.47)

where

T∆t(ω) = −4
sin2 ω∆t

2

∆t2
, (5.4.48)

Sh(k) = − 4c2
0

∆x2 sin2 kx∆x

2

(
1 + (1− 4w3) sin2 kx∆x

2

)
(5.4.49)

− 32c2
0

∆x∆y
w2 sin2 kx∆x

2
sin2 ky∆y

2
(5.4.50)

− 4c2
0

∆y2 sin2 ky∆y

2

(
1 + (1− 4w1) sin2 ky∆y

2

)
. (5.4.51)

Proof. In order to prove the result we must calculate the Fourier symbol in time and

space. The temporal result is classical for staggered differences while the symbol in space

will rely upon the previous assembly. To compute the result we will first eliminate the

magnetic field from the evolution equation.
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En+1
h −En

h

∆t
− En −En−1

∆t
∆t

= c2
0WE curlThMF

(
B
n+1/2
h −Bn−1/2

h

∆t

)
(5.4.52)

En+1
h − 2En

h + En−1
h

∆t2
= −c2

0WE curlThMF curlhE
n. (5.4.53)

Given this second order equation we will now compute the Fourier Symbol in time.

En+1
h − 2En

h + En−1
h

∆t2
=

e−iω∆t − 2 + eiω∆t

∆t2
En
h (5.4.54)

=
2 cos(ω∆t)− 2

∆t2
En
h (5.4.55)

= −
4 sin2 ω∆t

2

∆t2
(5.4.56)

=: T∆t(ω) (5.4.57)

Similarly the discrete Fourier symbol in space can be calculated using Definition 5.4.5(
WE curlThMF curlhE

n
(e1,e2)

)
= WE (curlh)?∆x∆y(curlh)(En

(e1,e2)). (5.4.58)

Define the matrix

Ah = curl
?
h∆x∆ycurlh. (5.4.59)

We then have the identities

WE =
1

∆x∆y

2(1− (1− 4w1) sin2 ky∆y
2 ) (1− e−ikx∆x)(1− e−iky∆y)w2

(eikx∆x − 1)(eiky∆y − 1)w2 2(1− (1− 4w3) sin2 kx∆x
2 )

 , (5.4.60)

Ah =

 4∆x
∆y sin2 ky∆y

2 (1− e−ikx∆x)(1− e−iky∆y)

(eikx∆x − 1)(eiky∆y − 1) 4∆y
∆x sin2 kx∆x

2

 . (5.4.61)

Combining the two statements yields a 2× 2 eigenvalue problem

T∆t(ω)(En
(e1,e2)) = −c2

0WE Ah(En
h|(e1,e2)). (5.4.62)

As is typical of the continuum setting solution pairs of ω,k are determined by solving the

eigenvalue problem. To do this we must first find the eigenvalues of the spatial symbol.
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However, as curlTh curlh is rank 1 we have that (curlh)?(curlh) is at most rank 1. Therefore

the resulting spatial symbol −c2
0W EAh is rank one. As the matrix is only 2× 2 this gives

us that the non-zero eigenvalue of the matrix is given by its trace. No optimization can

be done for the zero eigenvalues which correspond to the divergence of the solution which

is handled by the exactness property of MFD. For the divergence free, transient modes

we have the discrete dispersion relation

−
4 sin2

(
ω∆t

2

)
∆t2

= −c2
0Tr(WEAh). (5.4.63)

Defining Sh(k) = Tr(WEAh) and carrying out a detailed but straightforward calculation

we arrive at

Sh(k) = − 4c2
0

∆x2 sin2 kx∆x

2

(
1 + (1− 4w3) sin2 kx∆x

2

)
(5.4.64a)

− 32c2
0

∆x∆y
w2 sin2 kx∆x

2
sin2 ky∆y

2
(5.4.64b)

− 4c2
0

∆y2 sin2 ky∆y

2

(
1 + (1− 4w1) sin2 ky∆y

2

)
. (5.4.64c)

This completes the proof. Q.E.D.

We will now justify the discrete elimination of the magnetic field B
n+1/2
h in the

previous calculation.

Lemma 5.4.5. The MFD for Maxwell’s equations in free space in first order formulation

and second order formulation have an identical dispersion relation

Proof. Note that while this analysis was performed for the second order evolution equation

it also applies to the first order system. For the first order system the discrete dispersion

relation is a 3× 3 generalized eigenvalue problem.

e−iω∆t − 1

∆t

 En
(e1,e2)

e−iω∆t/2Bn
f

 =

 0 c2e−iω∆t/2WE curl
?
h∆x∆y

e−iω∆tcurlh 0


En

(e1,e2)

Bn
f


(5.4.65)
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Define the matrix Dh by

Dh =

 1

∆t
(e−iω∆t − 1) −c2

0e−iω∆t/2WE curl
?
h∆x∆y

e−iω∆tcurlh
1

∆te
−iω∆t/2(e−iω∆t − 1)

 . (5.4.66)

The dispersion relation can then be posed as

Dh

En
(e1,e2)

B
n+1/2
f

 = 0. (5.4.67)

One solution to this problem is given by ω = 0 which corresponds to the non-divergence

free mode and can be neglected. Consider instead ω away from zero. We can then apply

the Schur compliment formula for the determinant.

detDh = e−iω∆t/2 e−iω∆t − 1

∆t
det
(e−iω∆t − 1

∆t
I (5.4.68)

+ c2
0∆te−iω∆t(e−iω∆t − 1)−1WE curl

?
hαh

2curlh

)
(5.4.69)

= e−iω∆t/2 (e−iω∆t − 1)(1− eiω∆t)

∆t
det

(
(e−iω∆t − 1)(1− eiω∆t)

∆t2
I + c2

0WEA
)

(5.4.70)

From this perspective the condition detDh = 0 is equivalent to either ω = 0 or

det

(
(e−iω∆t − 1)(1− expiω∆t)

∆t2
I + c2

0WEA
)

= 0 (5.4.71)

Which is exactly the dispersion relationship for the second order formulation. Q.E.D.

5.4.2 M-Adaptation for Free Space

Having established the dispersion relation for the entire MFD family of discretiza-

tions for Maxwell’s equations in free space we will now choose a member of the family

which has minimal dispersion error.

Definition 5.4.6. We define the dispersion error minimization M-adaptation problem as

follows. Let T∆t(ω),Sh(k) be defined as in Theorem 5.4.4. We seek (w?1, w
?
2, w

?
3) such that

(w?1, w
?
2, w

?
3) = arg min

R3

|T∆t(ω)− Sh(k)| (5.4.72)
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for every (ω,k) as solution to the continuum dispersion relation

ω2 = c2
0k

2. (5.4.73)

We define the MFD method whose matrix WE uses the parameters (w?1, w
?
2, w

?
3) the M-

adapted MFD for Maxwell’s equations in free space or where confusion will not

arise the M-adapted MFD.

Remark. It is also possible to formulate M-adaptation which reduces dispersion error for a

specific frequency. The resulting method may have superior dispersion properties than the

frequency oblivious approach we will formulate. However, given that most time domain

solvers are interested in data with very large frequency content we will not consider this

approach.

We relate our three resolution parameters ∆x, ∆y, and ∆t to a single parameter h

which we arbitrarily choose as h = ∆x. Namely we introduce the aspect ratio

α =
∆y

∆x
. (5.4.74)

Using this parameter we can relate ∆y = αh. Similarly for time we will use the famous

Courant number

ν =
c0∆t

h
(5.4.75)

which gives us ∆t = νh
c0

.

Lemma 5.4.6. Parameterize the wave vector k = k(cos θ, sin θ)T . The discrete spatial

symbol

Sh(k) = −c2
0k

2 +

(
3w3 − 1

3
cos4 θ + 2αw2 cos2 θ sin2 θ (5.4.76)

+
α2(3w1 − 1)

3
sin4 θ

)
c2

0k
4h2 +O(h4). (5.4.77)
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is a second order approximation of the continuous symbol −c2
0k

2 By choosing parameters

w1, w3 such that

w1 =
3w2α

−1 + 1

3
, w3 =

3w2α+ 1

3
(5.4.78)

the symbol Sh is an isotropic order 2 approximation of the continuous symbol −c2
0k

2

Sh(k) = −c2
0k

2 = αw2c
2
0k

4h2 +O(h4). (5.4.79)

Proof. Assume the parameterization k = k(cos θ, sin θ)T . We begin by expanding Sh(k)

in a Taylor series in h.

Sh = −c2
0k

2 +

(
3w3 − 1

3
cos4 θ + 2αw2 cos2 θ sin2 θ (5.4.80a)

+
α2(3w1 − 1)

3
sin4 θ

)
c2

0k
4h2 +O(h4). (5.4.80b)

Making the described parameter choice implies

3w3 − 1

3
= αw2 =

α2(3w1 − 1)

3
. (5.4.81)

Which eliminates the dependence of the second order term on θ.

Sh = −c2
0k

2 + αw2(cos4 θ + 2 cos2 θ sin2 θ + sin4 θ)c2
0k

4h2 +O(h4), (5.4.82)

= −c2
0k

2 + αw2c
2
0k

4h2 +O(h4). (5.4.83)

Q.E.D.

Using this Lemma it appears that choosing ω2 = 0 and therefore w1 = w3 = 1
3

would produce a spatial symbol whose dispersion error is order four.

One possible strategy for producing a fully discrete scheme with fourth order dis-

persion error using a lowest would be to apply a fourth order time integration scheme such

as the fourth famous order Runge-Kutta method. This will produce a method with high

dispersion error accuracy; however, high order integrators are sometimes avoided due to
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there larger storage requirements which may not be practical for very large problems. For

this reason we will try and produce a scheme with high dispersion accuracy from staggered

leap frog and its generalizations.

Theorem 5.4.7. The M-adapted MFD for free space is obtained by the choice of param-

eters

w1 =
4− ν2

α2

12
, w2 = − ν2

12α
, w3 =

4− ν2

12
, (5.4.84)

which results in a scheme with fourth order dispersion error.

Proof. We begin by selecting w1 and w3 as constructed in Lemma 5.4.6 and consider the

discrete dispersion relation developed in Theorem 5.4.4. Consider a root of the continuum

dispersion relation

(ω,k) : ω2 = c2
0k

2. (5.4.85)

Parameterize the discrete wave vector k = k(cos θ, sin θ)T . We can now expand the dif-

ference of the symbols in a Taylor series in h.

T∆t(ω)− Sh(k) (5.4.86)

= (−ω2 + c2k2) +
h2

12c2
0

(
ν2ω4 + 12αw2c

4
0k

4
)

+O(h4). (5.4.87)

Given that (ω,k) are roots of the continuum equation we have

T∆t(ω)− Sh(k) =
h2

12c2
0

ω4
(
ν2 + 12αw2

)
+O(h4) (5.4.88)

(5.4.89)

By choosing w2 as

w2 = − ν2

12α
(5.4.90)

we can eliminate the O(h2) term entirely leaving us with

T∆t(ω)− Sh(k) = O(h4) (5.4.91)
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The choice of w2 determines w1 and w3 uniquely. As the choice of (ω,k) is arbitrary

and as our parameters were chosen independently of frequency and wave number this

optimization holds for all (ω,k). Q.E.D.

With this choice of parameters the matrix WE |f is given by

WE |f =
1

12∆x∆y



7− ν2
y −νxνy ν2

y − 1 νxνy

−νxνy 7− ν2
x νxνy ν2

x − 1

ν2
y − 1 νxνy 7− ν2

y −νxνy

νxνy ν2
x − 1 −νxνy 7− ν2

x


, (5.4.92)

νx =
c0∆t

∆x
, νy =

c0∆t

∆y
. (5.4.93)

5.4.3 Necessary and sufficient conditions for M-adaptation

The entire previous optimization procedure relies upon finding the following prop-

erty of the numerical temporal symbol

T∆t(ω) = −ω2

(
1− ∆t2

12
ω2 +O(∆t4)

)
. (5.4.94)

This suggests that for any constitutive law for transient Maxwell’s equations, if the con-

tinuum symbol in time is given by T then any time integrator which has a discrete symbol

of the form

T∆t(ω) = T (ω) + c0∆t2T (ω)2 +O(∆t4) (5.4.95)

for some real value c which is independent of ω and ∆t then we can successfully perform

M-adaptation to cancel the second order dispersion error.

Definition 5.4.7. Consider Maxwell’s equations with a linear constitutive law such that

the dispersion relation for transient waves is given by

T (ω) = S(k). (5.4.96)
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Then the dispersion error minimization M-adaptation problem is defined as follows. Let

the discrete Fourier the time integrator be T∆t(ω) and let the family of mimetic spatial

discretizations have the symbol S(k). We seek (w?1, w
?
2, w

?
3) such that

(w?1, w
?
2, w

?
3) = arg min

R3

|T∆t(ω)− Sh(k)| (5.4.97)

for every (ω,k) solutions to the continuum dispersion relation (5.4.96). As before we refer

to a scheme which uses WE with these parameters as the M-adapted MFD.

Theorem 5.4.8. The M-adaptation for MFD discretizations of TE or TM formulations

of Maxwell’s equations results in a method with fourth order dispersion error if and only

if the temporal symbol T∆t(ω) has the property

T∆t(ω) = T (ω)(1 + C∆t2T (ω) +O(∆t4)) (5.4.98)

where T (ω) is the continuum symbol in time.

Proof. Consider the formal discretization of TE or TM Maxwell’s equations with MFD

in space and a time discretization whose symbol is given by T∆t(ω). Assume we choose

parameters w1, w3 as in Lemma 5.4.6 and that we have (ω,k) a root of the continuum

dispersion relationship

T (ω) = F(k) note F(k) = c2k2 (5.4.99)

(⇐) Assume we there exists a ω2 independent of (ω,k) such that

T∆t(ω)−Fh(k) = O(h4). (5.4.100)

Assume the following formal Taylor of T∆t(ω)

T∆t(ω) = T0(ω) + T1(ω)∆t+ T2(ω)∆t2 + T3(ω)∆t3 +O(∆t4). (5.4.101)

As the spatial symbol is given by

Fh(k) = −c2k2 + c2k4αw2h
2 +O(h4) (5.4.102)
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we know that T0 = T (ω) and T1 = T3 = 0.

T∆t(ω)−F∆t(k) =
h2

c2
(ν2T2(ω) + αw2c

4k4) +O(∆t4). (5.4.103)

As the second order term is equal to zero we have the identity

0 = ν2T2(ω) + αw2c
4k4 (5.4.104)

= ν2T2(ω) + αw2T (ω)2 c2k2 = T (ω) (5.4.105)

T2(ω) = −αw2

ν2
T (ω)2 (5.4.106)

As w2, α, ν are all real numbers independent of ω we have T2(ω) = CT (ω)2 for some real

number C. We therefore have that T∆t(ω) = T (ω) +CT (ω)2∆t2 +O(∆t4) is a necessary

condition for M-adaptation.

(⇒) Now let

T∆t(ω) = T (ω) + CT (ω)2∆t2 +O(∆t4). (5.4.107)

Calculate the formal dispersion error about a true root (ω,k)

T∆t(ω)−Fh(k) = (T (ω) + c2k2) +
h2

c2
(ν2C2T (ω)2 + αw2c

4k4) +O(h4) (5.4.108)

=
h2

c2
T (ω)2(ν2C2 + αw2) +O(h4). (5.4.109)

Choosing w2 = −ν2C
α will eliminate the order h2 dispersion error. Thus we have shown

that the condition is sufficient for M-adaptation. Q.E.D.

Further if c = 1
12 then resultant M-adapted method will have an identical spatial

discretization to the algorithm developed in this chapter. In this chapter we will introduce

just such a time integrator and apply M-adaptation to a large class of linear constitutive

laws for Maxwell’s equations.
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5.4.4 M-adaptation fails for Time Averaged Schemes

The standard averaged differencing is the standard way of handling low order terms

in the Yee scheme. Consider a conductive media

∂

∂t
E +

1

τ
E =

1

ε
curlH, τ =

ε

σ
(5.4.110)

∂

∂t
H = − 1

µ
curlE. (5.4.111)

Calculating the symbol in time we have

T (ω) = −ω2 − i

τ
ω. (5.4.112)

The standard semi-implicit leapfrog discretization in time is then given as follows

En+1 −En

∆t
+

En+1 + En

2τ
=

1

ε
curlHn+1/2 (5.4.113)

Hn+1/2 −Hn−1/2

∆t
= − 1

µ
curlEn. (5.4.114)

To calculate the discrete symbol we eliminate the magnetic field H and are left with the

following second order stencil

En+1 − 2En + En−1

∆t2
+

En+1 −En−1

2τ∆t
= −c2curlcurlEn. (5.4.115)

Substituting the plane wave Ansatz En = e−iωn∆tE(x) we have arrive at the following

symbol

T∆t(ω) = −
4 sin2 ω∆t

2

∆t2
− i

τ

sinω∆t

∆t
. (5.4.116)

By expanding the symbol in a Taylor series in ∆t we have

T∆t(ω) =

(
−ω2 − i

τ
ω

)
+

∆t2

12

(
ω2

(
ω2 +

2i

τ
ω

))
+O(∆t4). (5.4.117)

However, (
ω2

(
ω2 +

2i

τ
ω

))
6=
(
−ω2 − i

τ
ω

)2

. (5.4.118)

Therefore Theorem 5.4.8 implies that wideband M-adaptation is impossible for time-

averaged differences applied to TE conductive media.
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5.4.5 Dispersion Analysis for the ETMFD

Consider the ETMFD discretization for a general polarization law as described in

(4.3.6). In order to obtain from (4.3.6) an appropriate second order formulation we will

eliminate the magnetic induction B
n+1/2
h from the discrete evolution equation. We do this

by applying a leap-frog step to both sides of the first equation in (4.3.6). This yields a

discretizationEn+1
h

Pn+1
m,h

 = (I + eX∆t)

 En
h

Pn
m,h

− eX∆t

En−1
h

Pn−1
m,h

− c2
0∆tY

c̃urlhcurlhE
n
h

0

 . (5.4.119)

Here Y =
∫ ∆t

0 eXs ds.

Lemma 5.4.9. The continuum temporal system for the general polarization law (4.1.19)

is given as

T (ω) = −ω2I + iωX. (5.4.120)

Proof. This follows immediately from eliminating the variable H from the continuum

equations.

∂2

∂t2

E

Pj

− X

E

Pj

 =

−c2curlcurlE

0j

 (5.4.121)

Assuming time harmonic waves produces the desired result.

−Iω

E

Pj

+ iωX

E

Pj

 =

−c2curlcurlE

0j

 . (5.4.122)

Q.E.D.

Lemma 5.4.10. Exponential time differencing for a general polarization law (4.1.19) has

a temporal symbol

T∆t(ω) = Y−1−e−iω∆tI− (I + eX∆t) + eX∆t

∆t
= T (ω) +

∆t2

12
T 2(ω) +O(∆t4). (5.4.123)
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Proof. To obtain a discrete in time dispersion relation we divide both sides of (5.4.119)

by the exponential integrator Y to calculate

1

∆t
Y−1


En+1

h

Pn+1
j,h

− (I + eX∆t)

 En
h

Pn
j,h

+ eX∆t

En−1
h

Pn−1
j,h


 =

−c2
0 c̃urlh curlh 0

0 0


 En

h

Pn
j,h

 .

(5.4.124)

Assuming time-harmonic solutions in the above equation we produce the system

Y−1 e−iω∆tI− (I + eX∆t) + eiω∆teX∆t

∆t

 Eh

Pj,h

 =

−c2
0 c̃urlh curlh 0

0 0

 .

 Eh

Pj,h


(5.4.125)

Defining the discrete symbol in time to be

T∆t(ω) = Y−1 e−iω∆tI− (I + eX∆t) + eiω∆teX∆t

∆t
, (5.4.126)

and expanding T∆t in a Taylor Series in the variable ∆t we obtain

T∆t(ω) = (−ω2I + iωX) +
∆t2

12
(−ω2I + iωX)2 +O(∆t4). (5.4.127)

Q.E.D.

This result will allow us to apply Theorem 5.4.8.

5.4.6 M-adaptation for the ETMFD

Consider an ETMFD discretization of a linear polarization model

Theorem 5.4.11. There exists a choice of parameters in the mimetic discretization,

w1, w2, w3, such that the ETMFD for a general polarization law (4.3.6) has order four

dispersion error.

Proof. Intuitively the dispersion relation for (4.3.6) would be determined by equality be-

tween the space discrete symbol Sh defined in (5.4.64) and the time discrete symbol T∆t
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defined in Lemma 5.4.10. However, the temporal symbol as defined is matrix valued while

the spatial symbol is scalar. However, this symbol acts on values En
(e1,e2) and has no

dependence on any field Pn
j,(e1,e2) therefore the discrete symbol in this context is given by

S̃h(k) =

Sh(k) 01×J

0J×1 0J×J

 (5.4.128)

We begin by choosing parameters w1, w3 as described in Lemma 5.4.6

α2(3w1 − 1)

3
= αw2 =

(3w3 − 1)

3
, i.e.

w1 =
3w2α

−1 + 1

3
,

w3 =
3w2α+ 1

3
.

(5.4.129)

This then gives us the identity

S̃h(k) =

S(k) 01×J

0J×1 0J×J

+ αw2h
2

S(k)2 01×J

0J×1 0J×J

+O(h4). (5.4.130)

Lemma 5.4.10 shows that

T∆t(ω) = T (ω) +
∆t2

12
T (ω)2. (5.4.131)

These two results are exactly the sufficient conditions of Theorem 5.4.8. Therefore the

ETMFD for a general polarization law can be M-adapted by choosing

w2 = − ν2

12α
, ν =

c∆t

h
, α =

∆x

∆y
, h = ∆x. (5.4.132)

This completes the proof. Q.E.D.

This theorem shows that the ETMFD can be M-adapted to produce a fourth order

dispersion error method for a general polarization law. Most interestingly we have shown

that the resulting method uses an identical choice of parameters as the free space case.
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5.5 Numerical Demonstrations of Dispersion Anal-

ysis

5.5.1 L2 and Dispersion Errors for Free Space

In this section we will present L2 and divergence errors for the M-adapted MFD.

We consider the initial value problem on the unit square with ε = µ = c = 1.

∂
∂tE = curlB ∈ [0, 1]2

∂
∂tB = −curlE ∈ [0, 1]2

E× n = 0 ∈ ∂[0, 1]2

E(0) =
(
− ky cos(kxx) sin(kyy), kx sin(kxx) cos(kyy)

)T
B(0) = 0

. (5.5.1)

We consider kx, ky ∈ πZ for compatibility with the boundary conditions. This problem

has a known exact solution given by

E = cos(ωt)

−ky cos(kxx) sin(kyy)

kx sin(kxx) cos(kyy)

 , ω =
√
k2
x + k2

y, (5.5.2)

H =
k2
x + k2

y

ω
sin(ωt) cos(kxx) cos(kyy). (5.5.3)

To calculate errors we consider relative L2 and dispersion errors. L2 errors are calculated

using an appropriate mimetic inner product matrix ME and MF as appropriate.

EL2(En
h) =

(
En
h − IE (E(n∆t))

)T
ME

(
En
h − IE (E(n∆t))

)
IE (E(n∆t))TME IE (E(n∆t))

(5.5.4)

EL2(B
n+1/2
h ) =

(
B
n+1/2
h − IF (B((n+ 1/2)∆t))

)T
MF

(
B
n+1/2
h − IF (B((n+ 1/2)∆t))

)
IF (B((n+ 1/2)∆t))TMFIF (B((n+ 1/2)∆t))

(5.5.5)

To compute dispersion errors we perform a parameter estimation problem problem. Namely

we collect a time history of the functions {En
e }Nn=1 and {Hn+1/2

f }Nn=1 at an edge e and face
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f . We construct a model of the exact solution by

dne = ah cos(ωhn∆t) for field E, (5.5.6)

d
n+1/2
f =

k2
x + k2

y

ωh
sin(ωh(n+ 1/2)∆t) for field B. (5.5.7)

When find two independent (ah, ωh) which each minimize one of

min
ah∈R,ωh≥0

N∑
n=1

|dne −En
e |2, min

ah,ωh≥0

N∑
n=1

|dn+1/2
f −Bn+1/2

f |. (5.5.8)

To solve the problem we use Levenburg-Marquarte and enforce the constraint ω ≥ 0 in

order to the appropriate root using a pull-back method. We use the exact solution ω as

our initial guess but require a very accurate solution by selecting our relative residual

tolerance as 10−13. Each estimation problem is done separately and defines an error

Edisp(U) =
|ωh − ω|
|ω|

, U = {En
h}Nn=1, {B

n+1/2
h }Nn=1. (5.5.9)

In this section we will present two experiments. The first will show L2 and dispersion

errors for a first order formulation of the m-adapted MFD while the second experiment

presents results for a second order formulation with the field B eliminated.

Our method optimization can be interpreted by way of a local truncation error

analysis for a plane wave Ansatz. For this reason, dispersion error reduction should

translate to reduced local truncation error for a plane waves. The Fourier mode exact

solution presented in Equation (5.5.2) is exactly the super position of four plane waves

with distinct directions of propagation

k1 = (kx, ky)
T , k2 = (−kx, ky)T , k3 = (−kx,−ky)T , k4 = (kx,−ky)T , (5.5.10)

E =

4∑
i=1

k⊥i
ki

ei(ki·x−ωt), (k⊥i )Tki = 0. (5.5.11)

For this reason, we expect to recover order four L2 errors for the M-adapted MFD for a

Fourier mode.
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Experiment 3. In this first experiment we consider a first order system formulation of an

MFD discretization of the initial boundary value problem described in Equation (5.5.1).

For convenience we include the first order formulation below:

En+1
h = En

h + ∆tWE curlThMFB
n+1/2
h 0 ≤ n ≤ N

B
n+1/2
h = B

n−1/2
h −∆tcurlhE

n
h 1 ≤ n ≤ N

E0
h = IEh((−ky cos(kxx) sin(kyy), (kx sin(kxx) cos(kyy))T )

B
1/2
h = IFh(

k2
x+k2

y

ω sin(ω∆t/2) cos(kxx) cos(kyy))

(5.5.12)

To compute initial conditions we use exact integration for all degrees of freedom assuming

kx = ky = π. For reference we also provide results for the Yee scheme which can be easily

computed by choosing WE = 1
∆x∆y I.

For results see Tables 5.1 and 5.2 as well as Figures 5.2 and 5.3. Using the first order

formulation we find that while errors and rates are superior to the Yee scheme. However,

we do not recover the theoretically optimal order four errors in both dispersion and L2

errors for our Fourier mode.

It is unclear exactly the what the source of this error is. However, the improved

accuracy and super-quadratic rates for MFD suggest that the method may be very close

to performing optimally.

TABLE 5.1: Relative L2 errors for a first order formulation of the MFD and Yee Schemes.

Electric Field E Magnetic Induction B

log2(h) Yee rate MFD rate Yee rate MFD rate

-4 2.3233e+00 1.6494e-01 1.7785e+00 4.4583e-01

-5 5.6606e-01 2.04 1.0759e-02 3.94 8.8462e-01 1.00 4.5181e-02 3.30

-6 1.3686e-01 2.05 7.3857e-04 3.86 2.2969e-01 1.95 7.6301e-03 2.57

-7 3.3865e-02 2.02 5.4404e-05 3.76 5.5913e-02 2.04 1.7050e-03 2.16

-8 8.4427e-03 2.00 4.4298e-06 3.62 1.3631e-02 2.03 4.1452e-04 2.04
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TABLE 5.2: Relative dispersion errors for a first order formulation of the MFD and Yee
Schemes.

Electric Field E Magnetic Induction B

log2(h) Yee rate MFD rate Yee rate MFD rate

-4 1.3277e-02 9.9181e-04 1.3276e-02 9.9255e-04

-5 3.2437e-03 2.03 6.6906e-05 3.89 3.2438e-03 2.03 6.6991e-05 3.89

-6 8.0570e-04 2.01 4.7613e-06 3.81 8.0571e-04 2.01 4.7722e-06 3.81

-7 2.0103e-04 2.00 3.6955e-07 3.69 2.0103e-04 2.00 3.7090e-07 3.69

-8 5.0223e-05 2.00 3.2085e-08 3.53 5.0223e-05 2.00 3.2252e-08 3.52

FIGURE 5.2: L2 errors for E and B for a first order formulation of m-adapted MFD
discretization. Errors appear super-quadratic but bellow theoretical estimates

Experiment 4. In this experiment we consider a second order or Vector Wave formulation

of the MFD to discretize (5.5.1).
En+1
h = 2En

h −En−1
h −∆t2WE curlThMF curlhE

n
h 1 ≤ n ≤ N

E0
h = IEh((−ky cos(kxx) sin(kyy), (kx sin(kxx) cos(kyy))T )

E−1
h = cos(−ω∆t)IEh((−ky cos(kxx) sin(kyy), (kx sin(kxx) cos(kyy))T )

(5.5.13)
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FIGURE 5.3: Dispersion errors for E and B for a first order formulation of m-adapted
MFD discretization. Errors appear super-quadratic but bellow theoretical estimates

For this experiment we calculate our initial conditions exactly assuming kx = ky = π.

See Table 5.3 and Figure 5.4 for results. In the second order, vector wave formulation we

recover theoretically optimal dispersion error and L2 error convergence for both the MFD

and Yee formulations.

TABLE 5.3: Relative errors for a vector wave formulation of the MFD and Yee Schemes.

Relative L2 errors Relative dispersion errors

log2(h) Yee rate MFD rate Yee rate MFD rate

-4 2.3316e+00 1.5734e-01 1.3355e-02 9.2767e-04

-5 5.6721e-01 2.04 9.7352e-03 4.01 3.2530e-03 2.04 5.8003e-05 4.00

-6 1.3699e-01 2.05 6.0779e-04 4.00 8.0685e-04 2.01 3.6209e-06 4.00

-7 3.3882e-02 2.02 3.7964e-05 4.00 2.0117e-04 2.00 2.2608e-07 4.00

-8 8.4447e-03 2.00 2.3718e-06 4.00 5.0241e-05 2.00 1.4122e-08 4.00

These experiments highlight a strong sensitivity to initial conditions– namely by the

suboptimal results in the first order formulation. Future work will be devoted to finding a
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FIGURE 5.4: Using a second order formulation of MFD we recover theoretically optimal
errors.

quadrature for initial conditions which provides optimal rates of convergence for the first

order formulation.

5.5.2 L2 and Dispersion errors for Cold Isotropic Plasma

For our experiments we introduce a change of variables for X which allows for an

easier formulation of the matrix exponential.

X =

 0 −ε−1
0

ε0(α2 + β2) 2α

 , α = −ωi
2
, β =

√
4ω2

P − ω2
i

2
. (5.5.14)

The ODE system governing the cold plasma model is a classical damped, driven

oscillator. For different values of the parameters the character of the system changes. We

present results for the case when the system is under damped (ω2
i < 4ω2

p). The matrix

exponential for X∆t is given by

eX∆t = eα∆t

cos(β∆t)− αsin(β∆t)

β
−sin(β∆t)

ε0β

ε0(α2 + β2)
sin(β∆t)

β
cos(β∆t) + α

sin(β∆t)

β

 :=

α1 α2

β2 β1

 . (5.5.15)
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The integral of this matrix is given by

∫ ∆t

0
eXs ds =

α3 α4

β3 β4

 , (5.5.16)

where the coefficients in the matrix above are defined as

α3 :=
1

β

(
eα∆t(2αβ cos(β∆t) + (β2 − α2) sin(β∆t))− 2αβ

α2 + β2

)
, (5.5.17)

α4 :=
1

β

(
−β − eα∆t(α sin(β∆t)− β cos(β∆t))

ε0(α2 + β2)

)
, (5.5.18)

β3 :=
1

β

(
ε0(β + eα∆t(α sin(β∆t)− β cos(β∆t)))

)
, (5.5.19)

β4 :=
1

β

(
eα∆t sin(β∆t)

)
. (5.5.20)

The second order formulation for the discrete electric field E and polarization current

density J, as introduced in Section 5.4, was a convenient formulation of the discrete

ETMFD method for the analysis of numerical dispersion. However, in our numerical

experiments we have found that L2 errors in the second order system for E and J are very

sensitive to the choice of initial conditions. Thus, for our numerical simulations we will

use a different formulation of the discrete ETMFD method, with an equivalent numerical

dispersion relation, that retains the second order discrete evolution equation for the electric

field, but uses a first order discrete evolution equation for the polarization current density

J. Since the focus of this paper is on numerical dispersion optimized methods, we do not

investigate the appropriate initialization of the discrete ETMFD scheme here. We defer

this investigation to future work.

The hybrid second order evolution equation for the discrete electric field E and first

order evolution equation for the polarization density J is given as

En+1
h = (1 + α1)En

h + α2J
n
h − α1E

n−1
h − α2J

n−1
h − c2

0∆tα3WEAhEn
h n ≥ 2, (5.5.21)

Jn+1
h = β1J

n
h + β2E

n
h +

β3

α3
(En+1

h − α1E
n
h − α2J

n
h) n ≥ 1. (5.5.22)
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This formulation is explicit when we compute En+1 before Jn+1. It requires three initial

conditions given by

E0
h = IEh(E(0)), E1

h = IEh(E(∆t)), J0
h = IEh(J(0)). (5.5.23)

In our numerical simulations we used a midpoint quadrature on every edge for Eh and

computed Jh exactly; i.e.,

Ej
h|e = τ e ·E(xc, yc, j∆t), j = {0, 1}, J0

h|e =
1

|e|

∫
e
J(x, y, 0) · τ eds. (5.5.24)

The following experiment will make use of this stencil to show the accuracy of the scheme.

Experiment 5. We will investigate the accuracy of our ETMFD method for discretizing

problems with a known exact solution. For k = (kx, ky)
T with kx, ky ∈ πZ, let a+ ib = ω

be a (complex) root of the dispersion relation (5.3.38). We consider the exact solution for

the Maxwell-CIP model given by

E(x, y, t) = eat cos(bt)

−ky cos(kxx) sin(kyy)

kx sin(kxx) cos(kyy)

 , (5.5.25)

J(x, y, t) = ε0ω
2
pe
at (a+ ωi) cos(bt) + b sin(bt)

b2 + (a+ ωi)2

−ky cos(kxx) sin(kyy)

kx sin(kxx) cos(kyy)

 . (5.5.26)

For our experiments we consider ωP = ωi = ε0 = c = 1 and kx = ky = π. For this we have

a ≈ 0.023 and b ≈ 4.55. We choose the final time to be T = 4. To calculate relative L2

errors we use an appropriate inner product, based on our mimetic discretization, which is

defined as

EhL2(Fn
h) :=

√
(Fn

h − IEh(F(n∆t))TME (Fn
h − IEh(F(n∆t))√

IEh(F(n∆t))TME IEh(F(n∆t))
, (5.5.27)

where Fn
h = (En

h,J
n
h)T .

To define the dispersion error we fit an appropriate temporal function, F (t : ωh),

to temporal grid data {En
h,ei
}Nn=0 at some edge ei to find the best discrete frequency wh.
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To calculate the relative dispersion errors, we perform the following procedure. If (ah, bh)

is the result of the non-linear least squares fitting of time tracking data {Fn
h|e}

N
n=1 to the ap-

propriate function (exp(aht) cos(bht) for the electric field and ε0ω
2
pe
aht (ah+ωi) cos(bht)+bh sin(bht)

b2h+(ah+ωi)2

for the current density) then we define the relative dispersion error by

Ehd (Fh) :=

√
(a− ah)2 + (b− bh)2

a2 + b2
(5.5.28)

where a, b are the true data. For comparison, we have also performed our simulations

with the corresponding ET-Yee scheme (i.e., Yee spatial staggering with ETD), which is

second order accurate in space and time. In Table 5.4 we present relative L2 errors in

the electric field and polarization density, while in Table 5.5 we present relative dispersion

errors for the electric field and polarization density, respectively. Figures 5.5, and 5.6 plot

the results of Tables 5.4-5.5. Our results indicate fourth order dispersion and L2 error

convergence for the ETMFD as compared to the corresponding (well known) second order

convergence for the ET-Yee scheme.

TABLE 5.4: Relative L2 Errors for Experiment 2.

Electric Field, E Current Density, J

log2(h) ET-Yee rate ETMFD rate ET-Yee rate ETMFD rate

-4 1.1024e-02 4.8495e-05 3.0064e-02 1.3322e-04

-5 2.7237e-03 2.0170 3.0206e-06 4.0049 7.4940e-03 2.0042 8.3901e-06 3.9890

-6 6.7826e-04 2.0057 1.8844e-07 4.0026 1.8704e-03 2.0024 5.3485e-07 3.9715

-7 1.6931e-04 2.0021 1.1767e-08 4.0013 4.6717e-04 2.0013 3.4784e-08 3.9426

-8 4.2303e-05 2.0009 7.3501e-10 4.0008 1.1674e-04 2.0007 2.3361e-09 3.8963

5.5.3 Numerical Anisotropy in Free Space

In this section we will present two experiments. The first will be a semi-analytic

calculation of dispersion error for the M-adapted MFD. In the second experiment we con-
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FIGURE 5.5: Relative L2 errors for Experiment 2.

FIGURE 5.6: Relative dispersion errors for Experiment 2.

TABLE 5.5: Relative Dispersion Errors for Experiment 2.

Electric Field, E Current Density, J

log2(h) ET-Yee rate ETMFD rate ET-Yee rate ETMFD rate

-4 7.7638e-04 3.4427e-06 8.7152e-04 3.4530e-06

-5 1.9280e-04 2.0129 2.1407e-07 4.0080 2.1720e-04 2.0045 2.1487e-07 4.0063

-6 4.8070e-05 2.0066 1.3345e-08 4.0042 5.4246e-05 2.0014 1.3399e-08 4.0032

-7 1.2002e-05 2.0033 8.3287e-10 4.0021 1.3557e-05 2.0005 8.3655e-10 4.0016

-8 2.9985e-06 2.0017 5.1994e-11 3.9892 3.3886e-06 2.0003 5.2097e-11 4.0052
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sider a radially symmetric pulse generated by Gaussian initial data we will then quantify

the point-wise error along a circle relative to a well resolved reference solution.

Experiment 6. In this first experiment we compute the effect of angle of propagation on

dispersion with the theory developed in the previous section. In particular we consider a

root of the continuous dispersion relationship

(ω,k) : ω = c2k2 (5.5.29)

where k = k(cos θ, sin θ)T . Throughout the section we consider experiment value of k,

namely 4 and consider the wave speed c = 1. We assume the Courant number ν = 1
2 . We

define the dispersion error then as

Edisp(θ) =
|T∆t(ω)− Sh(k)|

ω
. (5.5.30)

Figure 5.7 shows our the results of varying θ in several cases. These plots are log-polar.

Namely that the radius is determined by the log of the error. A circle on this diagram

would represent an isotropic dispersion error. In subfigure (a) we have hold α = 1 and

consider the effect of refinement. Namely we choose h such that we guarantee 12 and

24 points per wavelength. We provide comparison to the Yee scheme for reference. This

shows that the M-adapted MFD is anisotropic but that the magnitude of dispersion errors

is significantly reduced in comparison to the Yee scheme.

In subfigure (b) we show the effect of varying the aspect ratio on the dispersion

errors. Here we fix h to guarantee 48 points per wavelength. We then choose α = 4, 1, 1
4 .

This shows that dispersion error can be reduced in the direction of increased refinement at

the expense of larger errors in the unrefined directions. It also appears that the dispersion

minimizing angles change as function of α. For α = 1 these angles are clearly θ = π/4+nπ.

Experiment 7. In this experiment we will demonstrate qualitative agreement with the

previous experiment by considering the case of c = 1 and an initial value problem on the
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(a) (b)

FIGURE 5.7: (a) comparison of dispersion errors of the m-adapted MFD and the Yee
scheme as a function of angle of propagation θ. Model parameters are c = 1, k = 4
solutions are calculated at 12 and 24 points per wavelength. (b) a comparison of dispersion
errors for three aspect ratios. Here c = 1, k = 4 and we chose 48 h to such that there were
48 points per wavelength.

square [0, 6]2 where

∂

∂t
E = curlB

∂

∂t
B = −curlE (5.5.31)

E(0) = 0, B(0) = 100e−100((x−3)2+(y−3)2). (5.5.32)

We advance the solution to a final time of T = 2.5 to avoid reflections off of the boundary.

We will advance the solution using a second order stencil in B:

Bn+1
h = 2Bn

h −Bn−1
h − c2∆t2curlhc̃urlhB

n. (5.5.33)

Figures 5.8 and 5.9 show the B field at this time with different colorings, proportional

to B and proportional log10 |B| respectively. Subfigures (a) show the Yee scheme while

subfigures (b) show the m-adapted MFD. For the Yee scheme we see significant dispersion

in aligned with the x and y axis as high frequency content of the pulse lags behind the

front. In addition the Yee scheme also displays some of the wave dispersing ahead of the

front, although this is mostly visible in the log colored plot.

M-adapted MFD also shows some spurious oscillations lagging behind the wave front
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but the general effect is radially symmetric showing that reducing the order of dispersion

error reduces the anisotropy.

(a) (b)

FIGURE 5.8: Yee scheme and M-adapted MFD propagating a radially symmetric pulse

in free space generated by initial conditions E = 0 and B(0) = e−100|x−(3,3)T |2 on [0, 6]2.
We chose c = 1 and ν = 1

2 . We performed time integration until T = 2.5. (a) shows the
Yee Scheme and (b) shows the m-adapted MFD

(a) (b)

FIGURE 5.9: Same experiment as Figure 5.8 but coloring by log10 |H|.

To quantify these qualitative results we will sample the function Hh on a circle

which is roughly in the center of the wave front after 2.5 seconds. We can then plot the

amplitude of Hh to show the effect of numerical anisotropy. To compute errors we can
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compare course grid solutions to a very well resolved numerical approximation.

Consider the circle centered at xc = (xc, yc) of radius r, call this circle Γr(xc, yc).

Points in Γr(xc, yc) can be parameterized uniquely by

Γr = {(r cos θ + xc, r sin θ + yc), θ ∈ [0, 2π)}. (5.5.34)

Let {θn}Nn=1 be a collection of angles uniformly spaced in in [0, 2π). Define the sampled

points

ΓN = {(r cos θn + xc, r sin θn + yc) : 1 ≤ n ≤ N}. (5.5.35)

Call the collection of all barycenters of faces XF . A point x ∈ N lies in the face f if

the barycenter of f minimizes the distance to x over the collection of all barycenters. As

the reconstruction of Bh on every face is constant we are justified in stating that Hh’s

restriction to ΓN is Bh’s value at all faces in which points in ΓN lie.

For our experiment we choose our circle as Γ2.54(3, 3) (defined as (5.5.34)) and

compute a reference solution using the M-adapted MFD with h = 2−11. The amplitudes of

our computed waves for both the MFD and Yee schemes have obvious numerical anisotropy

at a resolution of h = 2−7 with the M-adapted MFD closer to reference than Yee. When

we double the resolution to h = 2−8 both schemes perform significantly better; however

M-adapted MFD is still closer to reference than the Yee scheme. In order to quantify this

visual improvement we consider the relative error

|BΓN −B?
ΓN
|

|B?
ΓN
|

, (5.5.36)

Where B?
ΓN

is the value of the reference solution. Here we see that the relative error of

the MFD is completely contained in the error of the Yee scheme at both resolutions. The

roughness of these diagrams is due to the piece-wise constant reconstruction of the field

Bh. See Figures 5.10 and 5.11 for results.
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h = 2−7 h = 2−8

FIGURE 5.10: We present the amplitude of the discrete field Bh along the circle of
radius 2.54 centered at (3, 3). We compute a reference solution with h = 2−11 using the
M-adapted MFD.

h = 2−7 h = 2−8

FIGURE 5.11: Point-wise relative error of the M-adapted MFD and Yee scheme along
the circle of radius 2.54 centered at (3, 3).
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5.5.4 Numerical Anisotropy in Debye Media

Similar to the previous experiment in this section we will consider the numerical

anisotropy of the ETMFD for a Debye medium.

Experiment 8. Consider a ETMFD TM formulation of Maxwell-Debye with the magnetic

field eliminated.

En+1
h = (1 + a1)Enh + a2Pnh − a1E

n−1
h − a2P

n−2
h − c2

0curlhc̃urlhE
n
h

Pn+1
h = b1E

n
h + b2P

n
h + b3

b2
(En+1

h − a1E
n
h − a2J

n
h )

E0
h = E−1

h = IFh(100 exp(−100((x− 3)2 + (y − 3)2)))

P 0 = IFh(0)

(5.5.37)

where the following definitions hold

c̃urlh = WE curlThMF , X =
1

τ

−ε∆ 1

ε0ε∆ −1

 , (5.5.38)

eX∆t =

a1 a2

b1 b2

 ,

(∫ ∆t

0
eXs ds

)
=

a3 a4

b3 b4

 . (5.5.39)

For this experiment we choose our model parameters c = 1, ε∆ = 4, τ = 1
2 . We will

show the function Eh restricted to the circle Γ0.8(3, 3). In order to quantify the numerical

anisotropy of the method we consider relative point-wise errors along this curve at time

T = 3. As we have no exact solution available we compre a course grid solution with

h = 2−7 to a reference solution computed with the ETMFD at a resolution of h = 2−10.

In this case we do not see significant difference between the EMTFD and a Yee scheme

with equivalent exponential time integration. In fact, the relative point-wise error for the

ET-Yee scheme seems to be outperforming the ETMFD. One possible explanation for this

is the dissipative nature of the Yee Scheme.

In the limit of infinite real wave numbers, the imaginary part of ω converges to the

value ε∆. Thus, high frequency content, which we constructed our initial conditions to



158

(a) (b)

FIGURE 5.12: We illustrate numerical anisotropy for a Debye medium. (a) shows the
amplitude of the electric field along the circle of radius 0.8 centered at (3,3). (b) shows
the relative error compared to a reference solution.

contain, are very quickly dissipated from the system. Thus, after even a short time, this

high frequency content will be removed from the wave resulting in mostly well resolved

frequencies and diminishing the importance of dispersion errors. See Figure 5.12 for

illustration. This plot shows the amplitude of the electric field along the circle Γ0.8(3, 3)

and the relative error of this solution compared to reference.

5.5.5 Numerical Anisotropy in Collisionless Cold Plasma

In order to illustrate the reduction of dispersion for a dispersive media, we consider

the case of cold plasma. In order to remove the smoothing provided by dissipation we

consider the collisionless, or non-dissipative case.

Experiment 9. We will now conduct an experiment identical to 8 for a collisionless cold
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(a) (b)

FIGURE 5.13: We demonstrate levels of numerical anisotropy for a collisionless cold
plasma. (a) shows the amplitude of the electric field along the circle of radius 2.01 centered
at (3,3). (b) shows the relative error compared to a reference solution.

plasma. Our second order TM formulation is given by

En+1
h = (1 + a1)Enh + a2Jnh − a1E

n−1
h − a2J

n−2
h − c2

0curlhc̃urlhE
n
h

Jn+1
h = b1E

n
h + b2J

n
h + b3

b2
(En+1

h − a1E
n
h − a2J

n
h )

E0
h = E−1

h = IFh(100 exp(−100((x− 3)2 + (y − 3)2)))

J0 = IFh(0)

(5.5.40)

This stencil is identical to the Maxwell-debye case although our parameters ai, bi wil lbe

different as the matrix X is defined as

X =

 0 −1
ε

εω2
P 0

 (5.5.41)

For this experiment we consider ε = µ = 1 and ω2
P = 12. We restrict E along the circle

Γ2.01(3, 3) and advance to a time T = 2.5. This radius was selected by looking for the

midpoint of a wave crest on the reference solution and then applied to the course grid

solutions. Our course grid was computed with a resolution h = 2−7 and a reference
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solution at h = 2−10 In this case we the ETMFD significantly outperforming the ET-

Yee scheme. It appears that the Yee scheme has values lagging significantly behind the

reference solution, resulting in close to one hundred percent relative error. See Figure

5.13.
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6 VON NEUMANN STABILITY ANALYSIS

FOR M-ADAPTED MFD

In this chapter we will prove that the M-Adapted methods constructed in Chapter 5

are stable– in particular we will show necessary conditions for stability using von Neumann

Analysis.

In Section 6.1 we will provide a brief introduction to von Neumann analysis. In

Section 6.2 we will prove necessary conditions for stability. In Section 6.3 we will present

numerical evidence of the sufficiency of our necessary conditions.

6.1 Preliminaries

Stability of a time integration method is roughly that numerical errors, both dis-

cretization and truncation, do not grow during time integration. We consider a classical

approach to proving the stability of the M-adapted MFD methods. In particular, we

proceed with a technique refered to as von Neumann Analysis. In von Neumann analysis

we seek to prove that the numerical scheme does not result in an increase in the am-

plitude of plane waves. In general this approach results only in necessary conditions for

stability – as certainly any stable method would be stable for plane waves. However, for

many discretizations the bound by von Neumann analysis will be exactly the sufficient

condition.

Definition 6.1.1. A polynomial p is a simple von Neumann polynomial if for every

root of zi of p, all of p’s roots lie within the closed unit disc of the complex plane and no

root on the unit circle is repeated.
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Definition 6.1.2. Assume some abstract numerical method can be written in the form

un+1
h = Ahunh (6.1.1)

where A is some linear operator. Assume bunh is an interpolation of a plane wave u0ei(k·x)

and all other degrees of freedom of unh are uniquely determined by uh,0. Let G be the

action of the numerical method restricted to uh,0 such that

un+1
h,0 = Gunh,0. (6.1.2)

We call the matrix G the amplification matrix of the numerical method. Further we

say that the numerical method satisfies the von Neumann stability criteria if and only

if the characteristic polynomial of G is a simple von Neumann polynomial.

This condition on the characteristic polynomial of G guarantees that the matrix G

has eigenvalues which lie in the closed unit disc, and as the minimal polynomial divides

the characteristic polynomial, that no roots of modulus one are repeated.

To illustrate why this stability condition is necessary consider an abstract amplifica-

tion matrix G. Suppose that (λ,x) is an eigenvalue/vector pair such that |λ| > 1. Choose

u0
0,h = x. Then we have

‖un0,h‖ = ‖Gnu0
0,h‖ = |λ|n‖u0

0,h‖. (6.1.3)

Taking the limit of n → ∞ shows that the norm of this solution will grow exponentially.

One might suggest that as long as you avoided the eigenvector x in initial conditions the

method may be practical. However, given that numerical errors are made at every step,

we will eventually add some small error εx to the value un+1
h which would later come to

dominate the entire solution due to its exponential growth.

We will make use of the following lemma.

Lemma 6.1.1. A quadratic polynomial, z2+β1z+β0 is a simple von Neumann polynomial

if and only if



163

1. |β0| = 1, β1 = β0β1, and |β1| < 2 or

2. |β0| < 1 and |β1 − β0β1| < 1− |β0|2.

where z is the complex conjugate of z ∈ C.

6.2 Stability Analysis for M-adapted MFD

Having developed the minimal dispersion method from our family of MFD for free

space we must now address the stability of this method. Our optimization of dispersion

properties did not take into account stability, thus it is now left to us to prove that our

choice of parameters is a stable one.

Theorem 6.2.1. A necessary condition for the M-Adapted MFD for Maxwell’s

Equations in Free Space, is νx, νy satisfying the bound

0 ≤ max{νx, νy} <
1√
2
. (6.2.1)

Proof. We will proceed with a standard von Neumann analysis approach. That is we

assume an initial condition which is a real valued plane-wave in space. We will then

rewrite the discrete time evolution as a matrix acting on a few degrees of freedom in a cell

f En+1
(e1,e2)

H
n+3/2
f

 = G

En
(e1,e2)

H
n+1/2
f

 (6.2.2)

where G is the amplification matrix. We will call the method stable if ‖Gn‖ is bounded in

some operator norm. A necessary condition for this is that the spectral radius ρ(G) ≤ 1.

We will construct a mapping from the pair (En
(e1,e2), H

n+1/2
f ) to the pair (En+1

(e1,e2), H
n+3/2
f ).

Ampere’s law is the most simple.

En+1
h = En

h +
∆t

ε
WE curlhMFH

n+1/2
h (6.2.3)
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We will have to substitute this step into the equation for Hn+3/2 and derive

H
n+3/2
h = H

n+1/2
h − ∆t

µ
curlhE

n+1
h , (6.2.4)

= H
n+1/2
h − ∆t

µ
curlh

(
En
h +

∆t

ε
WE curlhMFH

n+1/2
h

)
, (6.2.5)

=
(
I− c2

0∆t2curlhWE curlThMF

)
H
n+1/2
h − ∆t

µ
curlhE

n
h, (6.2.6)

By assuming a plane wave Ansatz we arrive at G given as follow:.

G =

 I ∆t
ε ∆x∆yWE curl

?
h

−∆t
µ curlh 1− c2

0∆t2∆x∆ycurlhWE curl
?
h

 (6.2.7)

The characteristic polynomial of G is given as

pG(z) := (1− z)(z2 −
(

2− c2
0∆t2∆x∆ycurlhWE curl

?
h

)
z + 1). (6.2.8)

We will now attempt to apply the Lemma 6.1.1 to prove that the quadratic has roots in

the unit disc.

β0 = 1 and β1 = −
(

2− c2
0∆t2αh2curlhWE curl

?
h

)
. (6.2.9)

We will now simplify the coefficient β1. As curlhWE curl
?
h is 1× 1 we have

c2
0∆t2∆x∆ycurlhWE curl

?
h = c2

0∆t2∆x∆yTr(curlhWE curl
?
h) (6.2.10)

= Tr(WE curl
?
hcurlh) (6.2.11)

as the trace is invariant under cycle permutations. We calculated Tr(WE curl
?
hcurlh) in

Theorem 5.4.4, c.f. Equation (5.4.51). As we are considering the M-adapted scheme we

have w1, w2, w3 as in Theorem 5.4.7. Carefully reducing this expression results in the

following form:

β0 = 1 β1 = −
(

2− F (sin2 kx∆x

2
, sin2 ky∆y

2
)

)
, (6.2.12a)

F (x, y) =
4

3

(
ν2
xx(3 + (1− ν2

x)x− ν2
yy) + ν2

yy(3 + (1− ν2
y)y − ν2

xx)
)
, (6.2.12b)
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where we again consider

νx =
c0∆t

∆x
, νy =

c0∆t

∆y
. (6.2.13)

By assuming that 0 ≤ νx, νy ≤ 1 we know that the function F is maximized on [0, 1]2 at

the point (1, 1)

F ≤ 4

3
(4− ν2

x − ν2
y)(ν2

x + ν2
y). (6.2.14)

The condition |β1| < 2 reduces to the bound

0 < (4− ν2
x − ν2

y)(ν2
x + ν2

y) < 3. (6.2.15)

The matrix WE is SPD if the matrix of parameters

C =

w1 w2

w2 w3

 (6.2.16)

is positive. If W is SPD then F = c2
0∆x∆ycurlhWE curl

?
h is positive. Assuming parameters

per Theorem 5.4.7 we have that C is SPD for ν2
x ≤ 4 α2

1+α2 . Therefore νx ≤ 2 implies the

bound from below.

(4− ν2
x − ν2

y)(ν2
x + ν2

y) ≤ 2(4− 2ν2)ν2. (6.2.17)

By choosing

ν <
1√
2

(6.2.18)

we then have

2(4− 2ν2)ν2 < 3. (6.2.19)

Q.E.D.
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We will now extend this stability result to include the case of a linear polarization

media. Instead of proving stability for a full system, we will instead prove stability for a

representative problem– namely for a conductive media whose conductivity can be complex

valued. This result is approximately proving stability for a diagonalizable system but

neglecting the effects of coupling between the different eigenmodes of the matrix X.

Theorem 6.2.2. Consider Maxwell’s equations with complex conductivity r, i.e a Maxwell-

Ampere Law given by

∂

∂t
E = rE +

1

ε
curlH. (6.2.20)

A necessary condition for stability of the M-adapted ETMFD for this scheme is

Re(r) ≤ 0, |Im(∆tβ)| � 1, max{νx, νy} <
1√
2
. (6.2.21)

Proof. Here we have absorbed the factor of ε−1 into the quantity r which is a complex

number. We will proceed similarly to Theorem 6.2.1. Applying the ETMFD to this model

we have the following amplification matrix for plane waves E and H.En+1
(e1,e2)

H
n+3/2
f

 = G

En(e1,e2)

H
n+1/2
f

 , (6.2.22)

G =

 er∆tI 1−er∆t

εr ∆x∆yWE curl
?
h

−∆t
µ er∆tcurlh 1− c2

0∆t e−r∆t−1
r ∆x∆ycurlhWE curl

?
h

 . (6.2.23)

As before we must show that the spectral radius of G is bounded by 1 and that the charac-

teristic polynomial is a simple Von-Neumann polynomial. The characteristic polynomial

of G is given by

pG(z) = (er∆t − z)p2(z), (6.2.24)

p2(z) =
(
z2 −

(
1 + er∆t − c2

0∆t
er∆t − 1

r
∆x∆ycurlhWE curl

?
h

)
z + er∆t

)
. (6.2.25)
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The characteristic polynomial has a root at er∆t. Therefore the spectral radius will exceed

one if Re(r) > 0. This is our first and simplest stability constraint. We will now consider

the roots of p2. For this polynomial we have our coefficients

β1 =

(
1 + er∆t − c2

0∆t
er∆t − 1

r
∆x∆ycurlhWE curl

?
h

)
, β0 = er∆t. (6.2.26)

To apply Lemma 6.1.1 we have two cases. The first case we is Re(r) = 0 in which case

|er∆t| = 1. For Re(r) < 0 we have |er∆t| < 1.

Re(r) = 0: In this case we seek to prove that 0 < |β1| < 2 and β0β1 = β1. Manipulating β1 we

can rewrite it similarly to Equation (6.2.12).

β2 = 1 + ez − ez − 1

z
F

(
sin2 kx∆x

2
, sin2 ky∆y

2

)
(6.2.27)

where z = r∆t and F is defined as in (6.2.12). Further note that as F is real valued

F = F . We will now show β0β1 = β1. As Re(r) = 0 we have that z = −z.

β0β1 = ez(1 + e−z − e−z − 1

−z
F ), (6.2.28)

= 1 + ez − 1− ez

−z
F, (6.2.29)

= β1. (6.2.30)

If z = r∆t� 1 then we have

β2 ≈ 2− F (6.2.31)

which is exactly the quantity manipulated in Theorem 6.2.1. We would therefore

have the bound

0 < |β1| < 2 (6.2.32)

for max{νx, νy} < 1√
2
.
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Re(r) < 0: As Re(r) < 0 we have β0 < 0. We must show that |β1 − β0β1| < 1 − |β0|2. Let

z = r∆t. We have

1− |β0|2 = 1− e2Re z (6.2.33)

|β1 − β0β1| = −
∣∣∣∣1− e2Re z − F

(
ez − 1

z
− ez

ez − 1

z

)∣∣∣∣ . (6.2.34)

Note that the assumption |∆t Im(r)| � 1 give us the approximate identity∣∣∣∣1− e2Re z − F
(

ew − 1

z
− ez

ez − 1

z

)∣∣∣∣ ≈ ∣∣∣1− e2Re(w)−
∣∣∣ (6.2.35)

Note that the right hand side is a real quantity so we can now work with equivalent

absolute values.

−(1− e2Re(z)) < 1− e2Re(z) − F (1− eRe(z))

(
eRe(z) − 1

Re(z)

)
< 1− e2Re(z)

0 < F (1− eRe(z))

(
eRe(z) − 1

Re(z)

)
< 2(1− e2Re(z))

0 < F

(
eRe(z) − 1

Re(z)

)
< 2(1 + eRe(z))

(6.2.36)

Note that the term eRe(z)−1
Re(z) is positive as Re(r) < 0. Therefore as long as F is

positive we satisfy the lower bound. We also have the bound

F
eRe(z) − 1

Re(z)
≤ F ≤ 4

3
(4− ν2

x − ν2
y)(ν2

x + ν2
y). (6.2.37)

We therefore only need show

(4− ν2
x − ν2

y)(ν2
x + ν2

y) < 3 (6.2.38)

which is satisfied by the condition

max{νx, νy} <
1√
2

(6.2.39)

as was demonstrated in Theorem 6.2.1.

Q.E.D.



169

6.3 Numerical Demonstration of Stability

6.3.1 Free Space

In this section we will check the sufficiency of the stability conditions developed in

Section 6.2. We will present two experiments. The first experiment will compute the norm

of the stability matrix ‖Gn‖ as n grows. In the second experiment we will show that for

Courant numbers ν slightly larger than 1√
2

the method exhibits exponential growth.

Experiment 10. The amplification matrix for the M-adapted MFD for free space.

G =

 I −c2
0∆tWE curl

?
h∆x∆y

∆tcurlh 1− c2∆t2curlhWE curl
?
h∆x∆y

 . (6.3.1)

The matrix G carries a plane wave in space from one time step to the nextEn+1
(e1,e2)

H
n+3/2
f

 = G

En
(e1,e2)

H
n+1/2
f

 . (6.3.2)

Therefore if ‖Gn‖ stays bounded as n→∞ we know that plane wave solutions will grow

in time. In Figure 6.1 we compute the quantity ‖Gn‖ for the Courant number ν = 1√
2

when c = 1, α = 1 and h is chosen to guarantee a certain number of points per wavelength

of resolution. We consider plane waves with k = 4 and consider ten angles in (0, 2π)

although there is no difference in each curve to the eye.

This experiment shows that the norm of the amplification matrix stays bounded

through many time steps suggesting our stability bound is sufficient. In Figure 6.1 we

see that the matrix norm appears larger for lower resolution (12 ppw) rather than the

higher resolution (48 ppw). Both resolutions exhibit oscillation in the matrix norm, but

the reduced rate of oscillation in higher resolution case is due to smaller time steps.

Experiment 11. In this experiment we show that violating the necessary stability condition

developed in Theorem 6.2.1 leads to instability. By choosing Courant numbers ν slightly
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FIGURE 6.1: We show ‖Gn‖ for 10 angles of propagation in (0, 2π) for 12 and 48 points
per wavelength of resolution at ν = 1

2 . In both cases the norm of the matrix is bounded.
The slower rate of oscillation in the higher resolution graph is due to the smaller time
steps necessitated by higher resolution.

larger than the stability bound 1√
2

we show that an approximation of the Fourier mode

exhibits exponential growth after a period of apparent stability. See Figure 6.2 for demon-

stration. While the Fourier mode appears stable at the value ν = 1√
2

we recommend a

smaller time step to guarantee the method remains stable, namely ν = 1
2 .
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FIGURE 6.2: Here we show the magnitude of Ex(0, 1/2) for a Fourier mode on [0, 1]2.
As we increase ν past the stability condition the method becomes unstable resulting in
exponential growth in the solution after a period of seeming stability.

6.3.2 Linear Polarization Media

Experiment 12. A major question raised by this analysis is just how well the oscillations

of X must be resolved.

In Figure 6.3 we present a numerical experiment where we calculate the maximum

of |β1| for a mesh with min{νx, νy} = 1
2 for several aspect ratios. Note that there is a

fairly large window where this value is bounded above by two, i.e. the method will be

stable. This calculation suggests that ∆tIm(r)� 1 is an overly restrictive requirement and

tighter bound should be possible. However, this plot also confirms that there is a resolution

requirement to guarantee stability. If a medium has very fast natural oscillations, these

oscillations must be resolved relatively well, for example when α = 1 we recommend

∆tIm(r) < 4.

Experiment 13. We will now numerically demonstrate the sufficiency of these conditions.

That is we will show ‖Gn‖2 stays bounded for large n. We consider both a dissipative and

a conservative mode and choose min{νx, νy} = 1
2 and show that ‖Gn‖ stays bounded. See

Figure 6.4 for results.
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FIGURE 6.3: Here we show the maximum of |β1| when r = ib, min{νx, νy} = 1
2 , and

α ∈ {1, 1/2, 2}. This suggests that the condition |∆tIm(r)| � 1 may be overly restrictive
as the method should be stable for relatively poor resolution of a given mediums resonance
frequency.

FIGURE 6.4: Illustrates that the norm of the amplification matrix stays bounded over
a large number of time steps. Here the Courant number is chosen as min{νx, νy} = 1

2 ,

h = 10−2, and k is chosen so that there are 12 points per wavelength. Ten directions of
propagation are chosen in each plot with angle θ ∈ (−π/2, π/2). Note that the norms of
the matrix powers stay bounded, although the value of this bound depends upon material
parameter r as well as mesh parameter α.
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7 MAGNETOHYDRODYANMIC

GENERATORS

A fundamental technique for generating electricity is the moving of a conductor in

the presence of a magnetic field. For example, a simple electric turbine works by spining

a magnet near a coil of wire which produces electricity. In essence the magnet pushes

electrons in the wire inducing a current. A magnetohydrodynamic generator operates

on much the same principle with a major difference – instead of a solid we choose our

conductor to be a plasma.

An MHD generator consists of several components. First is the channel– for example

a long tube or rectangular cylinder. The wall of the tube is composed of both electrically

insulating material and electrode material. The copper electrodes will be highly conductive

(σ ≈ 107 S
m) while the insulators will ideally be perfect dielectrics. The cross section of

this generator will exapand helping to mitigate the growth of boundary layers in the fluid.

A magnet is positioned above the channel. While this could be a permanent magnet,

typically one considers a high temperature super conducting magnet in order to apply a

magnetic field on the order at least 1 tesla(T) to the flow. A combustor and nozzle are

affixed to the upstream end of the channel while the downstream end either empties into

a void space or could be piped to a secondary electrical power generator – for example

a steam cycle. When used in this configuration – MHD generation followed by steam

generation– we refer to the MHD generator as a topping cycle. Electrodes will be wired

together through a resistive load. This will cause a potential difference across the generator

and allow the extraction of current from the plasma.

This topping cycle approach is desirable in part because modern clean burning

oxyfuel combustors – i.e. burners which mix liquid or gaseous oxygen with their fuel in

order to combust as much of the fuel as possible – produce a working fluid significantly
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hotter than most traditional turbines can be safely operated at. Example temperature

ranges for oxyfuel combustion range from 2500 to 3000 K. MHD power generation operates

well at higher temperatures due to the increased electrical conductivity of the working

fluid. The topping cycle application is what we consider here. MHD power generation

from a combustion product on its own may be only about 20% efficient, although estimates

change depending on specific application. However, when used as a topping cycle on

a high efficiency steam cycle, the efficiency of the MHD generator and the turbine is

theoretically 52% compared to the efficiency of just the turbine which is only 40%. This

dramatic increase in thermodynamic efficiency is the primary reason to consider MHD

power generation.

The conductivity of the plasma is due primarily to temperature. In essence the

hotter the gas the more likely it is to ionize – or have electrons freed from their constituent

atoms. In order to aid in ionization, alkali or alkaline earth metals are added to the flow

and vaporized. These seed ions allow for higher ionization of the gas by reducing the

ionization potential of each chemcial component in the flow. For our problem of interest

we are considering oxyfuel fired kerosene seeded with potassium carbonate.

However, MHD technology has high life cycle costs due in part to the high material

failure rate of the generator. At 2500 K the walls of the channels need to be cooled or they

could melt. Consider an example where a working fluid at 2500 K while the water cooled

casing will be held at 500 K. This will result in sharp temperature gradients at the plasma

wall interface. Given that conductivity is linked strongly to temperature– this results in a

sharp decrease in electrical conductivity. Despite this drop in conductivity, the potential

difference still remains across the channel. In order to resolve this difference, arcs form

at the electrode fluid interface to create a conductivity “bridge” across which current can

flow. When large, these arcs can vaporize the surface of the electrode resulting in material

damage.
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One of the major goals of the research presented here is to produce a computational

assessment of the feasibility of detecting when arcs occur. As measurement inside the

channel is impossible, and as the literature suggests that no change in current density or

potential difference is detected despite the effects of arcing being observed, we will instead

consider the magnetic field perturbations due to the high current densities at the arc. An

important first step is to determine the sensitivity of the magnetic fields outside of the

channel to arc-like current densities inside the channel. If external magnetic fields are not

very sensitive then they would not a good indicator of arcing.

In Section 7.1 we will develop a model for an equilibrium MHD generator. In Section

7.2 we will prove the well-posedness of the electromagnetic fields in this model and show

that the magnetic field depends continuously on the electrical conductivity of the fluid. In

Section 7.3 we will perform numerical experiments exploring the sensitivity of magnetic

fields to a heuristic arcing model. In Section 7.4 we present numerical solutions of the

equilibrium MHD model presented in Section 7.1. Work in this section is an extension of

results appearing in [8].

7.1 Equilibrium Generators

In this section we will develop a partial differential equation model for a Magneto-

hydrodynamic Generator channel. Our modelling relies upon the following assumptions.

The Generator is in Equilibrium We make this assumption as we are interested in

the long term behavior of the MHD generator system. Given that this particular

power extraction scheme is ideally run continuously for long periods of time this

assumption should give us a sense of the ideal performance of the machine. Further,

given the large dissipative effects in place in the channel – for example electric fields

being quickly dissipated – this analysis may have use for linearization around the
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equilibrium.

This assumption is most likely not valid for in the case of arcing which is intuitively

a far from equilibrium effect. However, we see this non-physical model as a first step

in a more accurate approach.

Low Magnetic Reynolds Number The Magnetic Reynold’s number is defined as

Rmag = σµ0UL (7.1.1)

where U is a characteristic velocity of the flow, L is the characteristic length of the

geometry, σ is the electrical conductivity of the material, and µ0 the permeability

material. The magnetic Reynold’s number measures the relative ratio of induction

(UL) to magnetic diffusivity (σµ)−1. For our geometries and boundary conditions

the reference length is L = O(100mm) the length of the channel, U = O(200m
s ),

σ = 60 S
m , and given the permeability of free space is µ0 = π2.5 × 10−5 N

A then the

Magnetic Reynolds number is Rmag ≈ 10−2.

Since our estimate of the magnetic Reynolds number is significantly less then unity

we assume that if the magnetic field B can be decomposed into B = B0 +Bi, where

B0 is the applied magnetic field and Bi is the induced magnetic field, then we have

|Bi| � |B0|.

This assumption will linearize some effects as B0 will be fixed: reducing the influence

of the electromagnetics on the fluid flow.

7.1.1 Generator Geometry

To develop a model of a generator in equilibrium we will first consider the physics of

the actual MHD system – namely the coupling between fluid mechanics, electromagnetics,

and thermodynamics. Before we delve into the equations with which we will model the

system we must first develop some notation to describe the geometry. See Figure 7.1
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for three simple configurations. We we will primarily focus on the segmented Faraday

configuration 7.1.c.

(a) (b)

(c)
FIGURE 7.1: Here we show three prototypical MHD generator configurations – (a) a
Faraday channel, (b) a Hall channel, and (c) a segmented Faraday Generator. Pink areas
denote the channel which contains the working fluid. Yellow areas are the conductors.
Black lines represent wiring connections and resistors. The resistive parts of the casing
are not pictured.

The channel is an open tube with either a round or square cross section. We call

the space within the channel Ωchan. Fluid will flow into the channel through the inflow

boundary Γin and out through the outflow boundary Γout. The wall-channel interface will

be referred to as Γwall. We refer to the generator casing– which is comprised of electrodes as

Ωcase. See Figure 7.2 for an illustration. If we were to model the heat transfer in the entire
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generator casing we would consider insulating segments their own subdomain. Inncluding

electrical effects in this region as well is non trivial as jumps in electrical conductivity amy

remove all precision for a naive approach.

FIGURE 7.2: We show a cross section of a segmented Faraday channel. Boundaries,
interfaces, and subdomains are labeled.

7.1.2 Model Formulation

We consider a generator whose working fluid is the product of oxyfuel combustion–

namely a gas which is a mixture of the chemical species resulting from burning methane

(or natural gas or kerosene) in an extremely oxygen rich environment. This fluid is com-

pressible and non-isothermal as inflow gas is assumed to be much hotter than the walls of

the channel which are cooled. A model of this flow is given as follows:

∂

∂t
ρu + ρu · ∇u = divτ −∇p+ F Conservation of Momentum

∂

∂t
ρ = −div(ρu) Conservation of Mass

ρC

(
∂

∂t
T + u · ∇T

)
= divK∇T +Q Heat Transfer

(7.1.2)

In typical developments of MHD equations instead of heat transfer one considers an equa-

tion of energy conservation , c.f. [51]. Unfortunately, COMSOL, the commercial software

we use to simulte the fully coupled fluid flow and electromagnetic model we will develop
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in this chapter, does not provide functionality for energy conservation. Therefore we con-

sider the heat transfer as a proxy for energy conservation – especially as ρCρT has units

of energy density (given that the volumetric heat flux has units power density). The fluid

mechanical variables are given by u the fluid velocity, τ the stress tensor, p the pressure,

and F external volume force density. The thermodynamic variables are T the tempera-

ture, ρ the gas density, C the heat capacity, K the heat conductivity, and Q is the internal

heat flux (rather than the boundary flux which may be described by specific boundary

conditions). The equilibrium assumption removes all time derivatives:

−divτ + ρu · ∇u +∇p = F Conservation of Momentum

div(ρu) = 0 Conservation of Mass

−divK∇T + ρCu · ∇T = Q Heat Transfer

. (7.1.3)

The model is presently incomplete – namely we are lacking a constitutive model for ρ and

τ . We use the linear correction to the strain tensor for compressible flows

τ = ν(∇+∇T )u− 2

3
νdivuI. (7.1.4)

The simplest constitutive law which relates ρ to T and p by the ideal gas assumption

ρ =
p

RT
(7.1.5)

where R is the temperature dependent specific gas constant which is roughly the amount of

energy added to a gas by heating the gas by a particular temperature. More sophisiticated

models will require chemical calculations for every species in the flow in order to generate

a numerical gas law. We recognize that the use of ideal gas is a modelling error and look

to include more sophisticiated models in the future.

Additional coupling between fluid mechanics and thermodynamics is imposed by the

heat flux Q. We wish to couple heating with gas expansion, frictional heating viscosity of
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the fluid, and Joule heating from the presence of currents.

Q = Qp +Qν +Qj , (7.1.6)

Qp = −T
ρ

∂ρ

∂T

∣∣∣
p
u · ∇p, (7.1.7)

Qν = τ : ∇u (7.1.8)

Qj = J ·E (7.1.9)

The first heat flux is the heat due to the expansion of the gas. We will deal with the

pressure term. We calculate the derivative of the ideal gas law with respect to T .

∂p

∂T
= ρT

∂R

∂T
+RT

∂ρ

∂T
+Rρ. (7.1.10)

As we are assuming fixed pressure the right hand side is zero. Solving for ∂
∂T ρ we arrive

at

∂ρ

∂T
= − ρ

R

∂R

∂T
− ρ

T
. (7.1.11)

Applying this identity to the definition of Qp we have

Qp =

(
T

R

∂R

∂T
+ 1

)
u · ∇p. (7.1.12)

The heating due to viscosity uses the double dot product (the Fröbenius inner product).

We therefore have

τ : ∇u :=

3∑
i=1

3∑
j=1

τ ij
∂ui
∂xj

(7.1.13)

=
∑
i

∑
j

ν

(
∂ui
∂xj

+
∂uj
∂xi

+
2

3
δij∇ · u

)
∂ui
∂xj

. (7.1.14)

While the scalar equation may be useful for implementation, intuitively the term τ : ∇u

states that we create heat when viscosity slows the flow. The Joule heating term roughly

accounts for the heat flux due to currents flowing through a resistor.

Lastly we need to provide a model for F. As we are discussing magnetohydrodynamics

we also include electromagnetic effects. In the channel we will have both current densities
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J and magnetic fields B. We use the classical Lorentz Force to account for interactions

between the electromagnetic and fluid components:

f = ρcu×B = J×B (7.1.15)

where f is the volumetric force density, u is the conductor velocity, and ρc is the charge

density.

For the variables which are not governed by equations, namely R, ν, C,K, ρ the gas

constant, viscosity, heat capacity, heat conductivity, and gas density we assume empirical

relations that describe these variables as functions of temperature and pressure.

We use stationary Maxwell’s equations to describe the electromagnetic fields present

in the generator: 
curlH = J divB = 0

curlE = 0 divD = ρc

(7.1.16)

We equip this formulation with the following constitutive laws:

B = µH No Magentization, (7.1.17)

D = εE No Polarization, (7.1.18)

J = σ(E + u×B) + ηJ×B Generalized Ohm’s Law. (7.1.19)

Here σ is the electrical conductivity and η is the electron mobility. In addition we assume

that B = Bi + B0 where Bi is the magnetic field induced by the currents in the generator

and B0 is an applied, known, external field. We assume that these induced fields are

negligible compared to the applied field.

We can formulate a magnetostatic system immediately where B = curlA, assuming

the Coulomb gauge condition divA = 0. Applying the Helmholtz decomposition to both
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Bi and B0 we have

Bi = curlAi +∇ψi, (7.1.20)

B0 = curlA0 +∇ψ0. (7.1.21)

Combining these two formulas with the Coulomb gauge assumption we have

curlA = curlA0 + curlAi +∇ψ0 +∇ψi. (7.1.22)

This condition implies that ∇ψ0 +∇ψi = 0. We will now combine these conditions with

Ampere’s law,

curlµ−1B = curlµ−1
(
curlA0 + curlAi

)
. (7.1.23)

This yields 
curlµ−1curlAi = J− curlµ−1A0

divAi = −divA0.

(7.1.24)

A first impulse to determine J may be to solve an electrostatic problem for E. However,

give that the permittivity of strong conductors is approximately 0 this leads to problem

which is very difficult to compute. Instead we will eliminate E from Ohm’s Law and

prescribe J’s divergence from the continuity equation. Note that as curlE = 0 we have

E = ∇V where V is the voltage. We will now rewrite Ohm’s law explicitly.

J = σ(E + u×B) + ηJ×B (7.1.25)

J ≈ σ(E + u×B0) + ηJ×B0 (7.1.26)

(I + η[B0]×)J = σ(E + u×B0) (7.1.27)

J = σ
1

1 + η|B0|2
(I + η2B0B

T
0 − η[B0]×)(E + u×B0) (7.1.28)

Where [B0]× writes a cross product as a linear operator defined for an arbitrary vector
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valued funciton by

[B0]× =


−Bz By

Bz −Bx

−By Bx

 , B0 = (Bx, By, Bz)
T . (7.1.29)

This last statement can be proven using the identity [B0]2× = B0B
T
0 − |B0|2I. We now

define the effective conductivity tensor for the Hall effect as

σ =
σ

1 + η2|B0|2
(1 + η2B0B

T
0 − η[B0]×). (7.1.30)

This formulation is similar to the standard development of generalized Ohm’s Law, c.f.

[48], but we have formulated it in purely vectoral form rather than componentwise. The

continuity equation for charge states that

∂

∂t
ρc = −div J. (7.1.31)

However, as ∂
∂tρc = 0 we have div J = 0. Define the quantity Ji = σ∇V . Now apply the

divergence condition to Generalized Ohm’s law.

0 = divJ = div σ(∇V + u×B) (7.1.32)

divJi = −div σu×B. (7.1.33)

We can then find the current J using the mixed Poisson equation

J = Ji + σu×B, (7.1.34)
σ−1Ji −∇V = 0

divJi = −div σu×B

. (7.1.35)

We now have a model for the bulk of the fluid flow, heat transfer, electric currents,

and magnetic fields. We pose the fluid flow and heat transfer equations only in Ωchan. We

pose the electric currents model in Ωcase ∪ Ωchan. The magnetostatics are well posed on

all of R3 however we will limit ourselves to a large box containing all of Ωcase ∪ Ωchan.
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As most of our domains are finite we must introduce boundary conditions. To

account for the inflow of gas into the channel we have

u = u0 on Γin. (7.1.36)

In general we select u0 to point purely along the channel. In order to allow the fluid to

leave the domain freely we prescribe

p = 1 atm on Γout. (7.1.37)

On the walls of the channel we apply the no-slip boundary condition on the walls.

u = 0 on Γwall. (7.1.38)

On the both the walls and the inflow boundary we prescribe the temperature; namely

T = Tin on Γin, (7.1.39)

T = Twall on Γwall. (7.1.40)

Our typical assumption is that Tin = 2500 K while Twall = 500 K. For the outflow boundary

we assume

n · ∇T = 0 on Γout (7.1.41)

as n · ∇T ≈ u · ∇T at the outflow and we desire that no heat enter the domain against

the fluid flow. For the current density on ∂(Ωcase ∪ Ωchan) \ (Γin ∪ Γout) we prescribe an

insulating boundary condition

J · n = 0 =⇒ Ji · n = −σu×B · n. (7.1.42)

At the inflow and outflow we prescribe that all the current entering the domain is given

by

J · n = n · σu×B, (7.1.43)
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that is

n · Ji = 0. (7.1.44)

It should be mentioned that we have included wires with electrodes connecting loaded

with resistors. These connections are also in essence boundary conditions although we

will in general model them as wires connected by periodic boundary conditions coming

out of the ends of our electrodes. Our resistors will be a box on the wire with a prescribed

conductivity.

For the magnetostatic equations we solve on a super-domain which includes both

the channel and casing. We prescribe a non-physical boundary condition A× n = 0 and

make the domain large enough that errors near the boundary do not pollute the magnetic

field close to the channel.

We describe the full model for the equilibrium MHD generator as follows.

Fluid Mechanics (7.1.45)

−∇ · τ + ρu · ∇u +∇p = J×B0 ∈ Ωchan

τ = ν(∇+∇T )u + ν 2
3divuI

div(ρu) = 0 ∈ Ωchan

ρ = RT
p ∈ Ωchan

−divK∇T + ρCu · ∇T = Q ∈ Ωchan

Q = Qp +Qν

Qp =
(
T
R
∂R
∂T + 1

)
u · ∇p

Qν = τ : ∇u

(7.1.46)
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Ohm’s Law (7.1.47)

J = Ji + σu×B0

σ−1Ji −∇V = 0 ∈ Ωchan ∪ Ωcase

divJi = −divσu×B0 ∈ Ωchan ∪ Ωcase

σ = σ
1+η2|B|2 (I + η2B0B

T
0 − η[B0]×)

(7.1.48)

Magnetostatics (7.1.49)

Bi = curl(Ai + A0)−B0

B0 = curlA0 +∇ψ0

curlµ−1curlAi +∇λ = J− curlµ−1curlA0 ∈ Ω

divAi = −divA0 ∈ Ω

(7.1.50)

Boundary conditions are collected in Table 7.1.

TABLE 7.1: Boundary conditions for an equilibrium MHD generator.

Condition Boundary Condition Boundary

u = u0 Γin u = 0 Γwall

p = p0 Γout T = Tin Γin

T = Twall Γwall n · ∇T = 0 Γout

J · n = 0 ∂(Ωchannel ∪ Ωcase) J · n = σu×B Γin ∪ Γout

Ai × n = 0 ∂Ω
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7.2 Well Posedness of Elliptic Electromagnetic Prob-

lems

In this section we will prove well-posedness of the stationary electric current and

magnetic field models developed in the previous section. We rely heavily on the mixed

space theory – famously referred to as the Babushka-Brezzi-Kovalevskaya theory. Further

we will show that induced magnetic fields Bi depend continuously on electrical conduc-

tivity.

Theorem 7.2.1. Let A : V → V ′ and B : V → W ′ be continuous operators from the

Hilbert spaces V,W to their duals. In addition

• A is non-negative and V -coercive on KerB: there is an α > 0 such that

Av(v) ≥ α‖v‖2V , v ∈ KerB (7.2.1)

• B is bounding, i.e. it is injective and

inf
q∈W

sup
v∈V

|Bv(q)|
‖v‖V ‖q‖W

≥ β > 0 (7.2.2)

Given these conditions then ∀f ∈ V ′ and g ∈ W ′ there exists a unique pair (v, p) ∈

V ×W s.t.

Au+ B′p = f ∈ V ′

Bu = g ∈W ′
(7.2.3)

Which obey the following a priori estimate.

‖u‖V ≤
1

α

(
‖f‖V ′ +

1

β
(‖A‖L(V,V ′) + α)‖g‖W ′

)
(7.2.4)

‖p‖W ≤
1

β
(‖f‖V ′ + ‖A‖L(V,V ′)‖u‖V ) (7.2.5)

Proof. A comprehensive proof may be found in Boffi, Brezzi, Fortan [5]. Q.E.D.

We will now use this formulation to prove existence and uniqueness of our electric

current and magnetostatic models.
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7.2.1 Well-Posedness of Electric Currents

Define the following subspace of H1. Let Γ = ∂Ω.

U = {f ∈ H1(Ω) :

∫
f = 0} (7.2.6)

We will seek our voltage V ∈ U . The variational formulation of the stationary electric

current system is posed as follows:
∫

Ω
σ−1J ·Ψ−

∫
Ω
∇V ·Ψ =

∫
Ω

F ·Ψ ∀Ψ ∈ L2(Ω)

−
∫

Ω
J · ∇φ =

∫
Ω
fφ+

∫
Γ
gφ ∀φ ∈ U

(Mixed-Electric Currents)

Lemma 7.2.2. The bilinear form A(F,G) =
∫

Ω σ
−1F ·G is coercive and continuous on

L2(Ω) for σ essentially positive and bounded and for β ∈ L∞(Ω).

Proof. We define the vector field β = ηB0. Coercive: Fix F ∈ L2(Ω).

A(F,F) =

∫
Ω

1

σ
(I + [β]×)F · F (7.2.7)

=

∫
Ω

1

σ
|F|2 +

∫
G

1

σ
(β × F) · F (7.2.8)

=

∫
Ω

1

σ
|F|2 (7.2.9)

≥ ‖σ‖−1
L∞(Ω)‖F‖L2(Ω) (7.2.10)

This relies on β × F · F = 0 pointwise a.e. and σ ∈ L∞(Ω).

Continuous: Fix f ,g ∈ L2(Ω).

|A(f ,g)| ≤
∣∣∣∣∫

Ω

1

σ
(f · g + β × f · g)

∣∣∣∣ (7.2.11)

≤ 1

ess inf σ

(∣∣∣∣∫
Ω

f · g
∣∣∣∣+

∣∣∣∣∫
Ω
β × f · g

∣∣∣∣) (7.2.12)

≤ 1

ess inf σ

(
‖f‖L2(Ω)‖g‖L2(G) +

∣∣∣∣∫
Ω
β × f · g

∣∣∣∣) (7.2.13)

Note that |β × f |2 ≤ |β|2|f |2 point-wise a.e. Therefore if we desire β × f ∈ L2(Ω) it is

sufficient to require require β ∈ L∞(G).

|A(f ,g)| ≤
1 + ‖β‖2L∞(Ω)

ess inf σ
‖f‖L2(Ω)‖g‖L2(Ω) (7.2.14)
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As the bilinear form is bounded and linear, we have shown continuity. Q.E.D.

Lemma 7.2.3. Let W = L2(Ω). The bilinear form C : V ×W→ R defined by C(v, f) =∫
G∇v · f is continuous and obeys the famous inf-sup conduction.

Proof. Inf-Sup We wish to show that ∃c such that

inf
u∈U

sup
f∈W

C(u, f)

‖u‖U‖f‖W
≥ c > 0. (7.2.15)

Fix u ∈ U .

sup
f∈W

C(u, f)

‖f‖W
≥ C(u,∇u)

‖∇u‖W
(7.2.16)

= |u|H1(G). (7.2.17)

On ths space U a Poincare-Friedrich’s estimate holds, i.e. C−1
p.f.‖v‖H1 ≤ |v|H1 ≤

Cp.f.‖v‖H1 for some Cp.f. > 0. This follows from the fact that u ∈ U =⇒
∫

Ω u = 0. As

functions with the same gradient form an equivalence class which differ by a constant, the

average value condition imposes that on U all those equivalence classes must have that

constant equal to zero,

inf
u∈U

sup
f∈W

C(u, f)

‖f‖W
≥ 1

Cp.f.
. (7.2.18)

Therefore the inf-sup condition holds.

Continuity : Fix u ∈ U and f ∈W.

C(u, f) =

∫
G
∇u · f (7.2.19)

≤ |u|H1‖f‖W (7.2.20)

≤ Cp.f.‖u‖V ‖f‖W (7.2.21)

Therefore the map is continuous. Q.E.D.

Theorem 7.2.4. The variational electric currents for an equilibrium MHD generator are

well posed when u × B0 ∈ H(div,Ω). In addition the strong equations hold, (7.1.48), in

the sense of L2
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Proof. Let F = 0, f = −∇ · u × B0, and g = 0. By Lemma 7.2.2, Lemma 7.2.3, and

Theorem 7.2.1 Ji is the unique solution to the problem
∫

Ω
σ−1Ji ·Φ +

∫
Ω
∇V ·Φ = 0 ∀Φ ∈ L2(Ω) (a)∫

Ω
Ji · ∇ψ =

∫
Ω

divσu×B0ψ ∀ψ ∈ U. (b)

(7.2.22)

Further we have ‖Ji‖ depending continuously on ‖divσu×B0‖. The function Ji trivially

equals σ∇V in the sense of L2 by (a). We will now show that given divσu×B0 ∈ L2 we

have Ji ∈ H(div,Ω) with its gradient given by divσu×B0. Let ψ ∈ C∞0 ∩ U . Then∫
Ω

Ji · ∇ψ = −
∫

Ω
divJi · ψ =

∫
Ω

divσu×B0ψ. (7.2.23)

Therefore we must have divJi = −divσu ×B0 in the sense of L2. Now testing against a

general ψ ∈ U we have ∫
Ω

Ji · ∇ψ =

∫
Ω

divσu×B0ψ, (7.2.24)∫
Γ

Ji · nψ = 0. (7.2.25)

Therefore we have that Ji has zero normal component on all boundaries.

We have the function J = Ji+σu×B0 ∈ H(div,Ω) by closure of the space. Further,

divJ = 0 and J · n = n · σu×B0 on Γin ∪ Γout. Q.E.D.

Theorem 7.2.5. Solutions to the electric current model depend continuously on σ. I.e.

the mapping from the convex subset of

Cj : K = {c ∈ L∞(Ωσ) : lim inf c ≥ c0} → L2(Ωσ), (7.2.26)

where Cj(σ) is the solution to the PDE
∫

Ω
σ−1Ji ·Ψ−∇V ·Ψ = 0 ∀Ψ ∈ L2(Ωσ)∫

Ω
J · ∇ϕ =

∫
Ω

divσu×B0ϕ ∀ϕ ∈ U
(7.2.27)

is continuous for B0 ∈ L∞(Ω) and divσu×B0 ∈ H(div,Ω).
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Proof. Let (V (· : σ),J(· : σ)) be the unique solution to
∫

Ω
σ−1J ·Ψ−∇V ·Ψ = 0 ∀Ψ ∈ L2(Ω)∫

Ω
J · ∇ϕ =

∫
Ω

divσu×B0ϕ ∀ϕ ∈ U
(7.2.28)

Consider the difference between a solution with data σ+∆σ where ess inf ∆σ ≥ − c0
2 .

Let ∆J = J(· : σ + ∆σ)− J(· : σ) and ∆V = V (· : σ + ∆σ)− V (· : σ). The functions ∆J

and ∆V are the unique solution to the following variational problem
∫

Ω

1

σ + ∆σ
(I + [β]×)∆J ·Ψ−∇∆V ·Ψ =

∫
Ω

∆σ

σ(σ + ∆σ)
(I + [β]×)J(· : σ) ·Ψ∫

Ω
∆J · ∇ϕ = −

∫
Ω

div
∆σ

σ(σ + ∆σ)
(I + ββT − [β]×)u×B0ϕ

(7.2.29)

Applying the a priori estimate of the mixed space formulation we have

‖∆J‖L2(Ω) ≤ ‖∆σ‖∞
1 + ‖β‖2∞
ess inf σ

(
‖J(· : σ)‖L2(Ω) (7.2.30)

+
1

Cpf

(
1 + ‖β‖2∞
ess inf σ

− Cpf
) ‖div‖H(div,Ω)

ess inf σ
‖u×B0‖L2(Ω)

)
. (7.2.31)

Therefore by letting ‖∆σ‖∞ → 0 we force ‖∆J‖2 → 0. Note that dependence on ∆V is

built into the a-priori estimate on ∆J.

Q.E.D.

7.2.2 Well Posedness of Magnetostatics

We consider a variational formulation of the Magnetostatics problem (7.1.50)
∫

Ω
µ−1curlAi · curlΦi +

∫
Ω
∇λ ·Φi =

∫
Ω

J ·Φ, ∀Φ ∈ H0(curl,Ω)∫
Ω

Ai · ∇ψ =

∫
Ω
fψ, ∀ψ ∈ H1

0(Ω)

. (7.2.32)
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We will prove the well-posedness using a mixed space approach. Define operators

H : H0(curl,Ω)→ H0(curl,Ω)′, (7.2.33)

Hµ−1u(v) =

∫
Ω

curlu · curlv, (7.2.34)

G : H1
0 → H0(curl,Ω)′, (7.2.35)

Gv(u) =

∫
Ω

u · ∇v. (7.2.36)

Lemma 7.2.6. The operator H is coercive on the kernel of G and continuous on H(curl,Ω)

for µ−1 ∈ L∞(Ω) and essentially positive.

Proof. Coercive: The condition A ∈ Ker(G) is exactly that A has weak divergence equal

to zero a function in L2. Therefore A ∈ H0(curl,Ω)∩H(div,Ω). As n×A ∈ L2(Γ)

we have the estimate

‖curlA‖L2(Ω) + ‖divA‖L2(Ω) + ‖n×A‖L2(Γ) ≥ Cp.f.‖A‖L2(Ω). (7.2.37)

This result is discussed in detail in Monk’s book [39]. We know that divA = 0 and

n×A = 0 therefore we have

‖curlA‖L2(Ω) ≥ Cp.f.‖A‖L2(Ω). (7.2.38)

This is sufficient to show H is coercive on KerG as

HA(A) ≥ ess inf µ−1‖curlA‖L2(Ω) ≥ ess inf µ−1 Cpf
1 + Cpf

‖A‖H(curl,Ω). (7.2.39)

Continuity Is immediate,

HA(B) ≤ ‖µ−1‖L∞‖curlA‖L2(Ω)‖curlB‖L2(Ω) (7.2.40)

≤ ‖µ−1‖L∞(Ω)‖A‖H(curl,Ω)‖B‖H(curl,Ω). (7.2.41)

Q.E.D.

Lemma 7.2.7. The operator G is continuous and obeys the inf-sup condition.
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Proof.

Continuity : Again this property is immediate,

Gv(u) ≤ ‖u‖L2‖∇v‖L2 ≤ ‖u‖H(curl,Ω)‖v‖H1(Ω). (7.2.42)

Inf-Sup: This proof follows from the immediately from the case where our domain is L2(Ω).

Note that from the Hilbert complex we know that ∇u ∈ H(curl,Ω) for every u ∈ H1(Ω)

as curl∇ = 0. Fix u ∈ H1(Ω).

sup
u∈H(curl,Ω)

Gv(u)

‖u‖H(curl)
≥ G(v,∇v)

‖∇v‖L2

(7.2.43)

= ‖∇v‖L2 (7.2.44)

As H1
0 (Ω) has a Poincare Friedrich’s |v|H1(Ω) ≥ Cp.f‖v‖H1(Ω) we have

G(v,∇v)

‖∇v‖L2

≥ Cp.f.‖v‖H1(Ω) (7.2.45)

which implies that

inf
v∈H1(Ω)

sup
u∈H(curl,Ω

Gv(u)

‖v‖H1‖u‖H(curl)
≥ Cp.f. (7.2.46)

Q.E.D.

Theorem 7.2.8. The magnetostatics problem for equilibrium MHD generators (7.1.50)

assuming A0 ∈ H(curl,Ω) ∩H(div,Ω) and A× n is in L2(Ω).

Proof. Choosing J = J − curlA0 and choosing f = divA0 we have Ai is the unique

solution of the following variational problem,
∫

Ω
curlAi · curlΦ +

∫
Ω
∇λ ·Φ =

∫
Ω

(J− curlcurlA0) ·Φ ∀Φ ∈ H0(curl,Ω)∫
Ω

Ai · ∇ψ =

∫
Ω

divA0ψ ∀ψ ∈ H1
0 (Ω)

(7.2.47)

by Lemmata 7.2.6 and 7.2.7 and Theorem 7.2.1. Q.E.D.
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Theorem 7.2.9. If J is defined as in Theorem 7.2.4 and Bi = curlAi as defined in 7.2.8,

the Bi depends continuously on J.

Proof. We have constructed Ji such that J is divergence free. This gives us that curlcurlAi =

J− curlcurlA0. Consider Ai(σ) being the induced magnetic potential from J(σ). Define

∆Ai = Ai(σ + ∆σ)−Ai(σ) and ∆J similarly and ∆Bi = curl∆Ai. As every J is diver-

gence free we have ∆J is divergence free. The change ∆Ai obeys the following variational

problem 
H∆Ai(Φ) = 〈∆J,Φ〉H0(curl,Ω)

G′∆Ai(ψ) = 0

. (7.2.48)

We have dropped the Lagrange multiplier λ as we know it to be zero. The a-priori error

estimate for mixed space systems then implies that

‖∆Bi‖L2(Ω) ≤ ‖∆Ai‖H(curl,Ω) ≤ α‖∆J‖L2(Ω). (7.2.49)

As ∆J depends continuously on σ taking ∆σ → 0 will result in ∆Bi → 0. Q.E.D.

7.3 Heuristic Arcing

In MHD Generators a major challenge is the formation of arcs at the electrode-fluid

interface. These arcs can be attributed to a boundary layer effect: namely that sharp

drop in fluid temperature from the bulk flow to the electrode (which is cooled) causes a

sharp drop in electrical conductivity. Because the electrical conductivity is low but there

is still a potential difference being forced across the channel, currents seek a way to resolve

this potential by “jumping the conductivity gap” resulting in arc formation. These arcs

in essence gather ions from the fluid, vaporize the electrode, or most likely will locally

ionize gaseous seed (for example potassium carbonate) in the boundary layer in order
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to create the conductivity necessary to sustain the discharge. If the electrode surface is

vaporized then we are clearly damaging the electrode – resulting in expensive damage to

the generator.

Finding an accurate model for arcing is complicated and may be computationally

impractical except on a very large computer. For this reason we will consider heuristic

arc models. The heuristic that we use is the addition of artificial conductivity in the

boundary layer. This approach is relatively sensible in that arcs create their own conduc-

tivity. In this section we will analyze the sensitivity of magnetic fields to these heuristic

arcs as a proof of concept of the detection of arcs from perturbations in the magnetic field

outside of the channel.

7.3.1 Magnetic Fields and Parameterized Currents

In our first investigation of the sensitivity of magnetic fields to arcing we have

implemented a lowest order 3D MFD discretiztion of the magnetostatics equations. Here

we have solved the following discrete variational problem:
[curlhAh, curlhΦh]F + [∇hλh,Φh]E = [Jh,Φh]E ∀Φh ∈ Eh ∈ E

[Ah,∇hψh] = 0 ∀ψh ∈ Vh

(7.3.1)

Using a uniform cubic mesh of a cube and imposed Dirichlet type boundary conditions

on both Ah and λh for simplicity. In order to determine the viability of the response of

the induced magnetic flux density to changes in the current density we will perform a

sensitivity analysis. There are number of features of current densities which are suspected

to occur in MHD Generator channels which we would like to be able to detect.

Total Current Given that the current is extracted from the channel by the load applied

across the electrodes, this will be a design parameter for the generator.

Current Density Experimental evidence from legacy MHD research suggests that the

destructive macro-arcs which form at electrodes will have much denser current pro-
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files than the diffuse state. As our long term goal is to detect the location of the

arcs inside the generator and facilitate an understanding of their dynamics, this is

perhaps the most critical parameter for sensitivity.

Direction of Current Density It is known from earlier MHD work that the Hall effect

causes a tilt to the current density, pointing the current slightly in the direction of

the fluid flow [23]. Sensitivity to this parameter would allow one to estimate the

magnitude of the Hall effect near the sensor.

Given these three features, we have developed the following parameterized current

profile

J(x; Jm, s, θ) = v
Jm√
2πs2

exp

(
1

2s2

∣∣(I− vvT
)
x
∣∣2) , v =


cos θ

sin θ

0

 . (7.3.2)

This current density is a Gaussian around the line passing through the origin pointing in

the direction (cos θ, sin θ, 0)T . The parameter Jm (A/m2) controls the total current in the

system, the parameter s (m) controls the spread of the density profile, and θ controls the

tilting of the arc due to the Hall effect. A significant feature of this formulation is that the

profile is naturally divergence free as all variation happens orthogonally to the direction

the vector field is pointing.

To perform our sensitivity analysis we fix two parameters and vary the third. We

compute actual magnetic flux density values instead of derivatives in order to additionally

inform the necessary specifications of measurement equipment. We assume our domain is

[−1, 1]3, the magnetic permeability is constant and on the order of 10−6 (which is on the

order of magnitude of air at STP) and we measure the magnetic flux density at the origin

and at (0, 0.25, 0). The center result is to estimate the magnitude of fields very close to the

arc, while the short distance away is to demonstrate the effect of measuring outside the
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channel near where sensors would be placed. The sensitivity results are depicted in Figure

7.3. Figure 7.3(a) shows high sensitivity to Jm, while Figure 7.3(b) shows an increasing

sensitivity to s in the limit toward smaller diameter, i.e., dense arcs. Finally, Figure

7.3(c) shows some interesting phenomenon. Namely when we measure the magnetic flux

density inside the arc we see that increasing the intensity of the arc as s decreases. A

short distance away however we see that when the s decreases past some critical value

(s ≈ 0.2) the magnetic flux will decrease as well. This is consistent with exact solutions

of the magnetic field using a Biot-Savart law for current along an infinite line which is the

limit of this current distribution as s→ 0.
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FIGURE 7.3: Analysis of the sensitivity of the induced magnetic flux density to the three
current density parameters: Jm, s, and θ.

7.3.2 Back-powered Channel with Artificial Conductivities

In order to increase the complexity of our underlying model we have used an equilib-

rium MHD model for a generator assuming that B0 = 0. In addition, as this experiment

will be adding an arcing heuristic rather than examining areas where arcs are likely to

form in the generator we neglected the effect of Joule heating in this model. To simulate

the current paths which might lead to arcing, we pump current into the system through

a non-homogeneous boundary condition on Ji in two electrodes.
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To create a heuristic for arcing we will add a parameterized artificial conductivity

to a physical conductivity σb(T, p). This physical conductivity was produced by solving

for the chemical equilibrium for the combustion products of oxyfuel-methane combustion

using a code provided by collaborators at the National Energy Technology Laboratory.

The arc conductivity is parameterized as

σa(x) = σmax exp(−s‖(I− vvT )(x− xc)‖2 − `‖x− (xc + rv)‖), (7.3.3)

xc = (xc, 0, 0)T , (7.3.4)

v = (0, cos θ, sin θ)T . (7.3.5)

For this experiment we solve the non-isothermal hydrodynamics in order to generate

the conductivity profile σb. All of our solutions in this section were computed using

COMSOL Multiphysics commercial software.

For our simulations we choose our inflow velocity to be u0 = (300m
s , 0, 0), our

inflow temperature to be 2500 K, our wall temperature to be 500 K. We add 15 A of

current in through the inflow wire and ground the outflow wire. In Figure 7.4 we show

the temperature profile across the channel (in the y direction) and along the channel (x

direction). The temperature distribution appears to have a “top hat profiles” along every

cross section and the temperature drops along the length of the channel – although non-

linearly. This non-linear decrease may be non-physical but the general cooling trend can

be attributed to the non-physical cooled wall boundary condition that we are applying.

Figure 7.5 shows the cross sectional conductivity of the channel in the absence of the arc

conductivity and with it present. Figure 7.6 shows the log of the current density norm

and several stream lines. The inflow current enters through the wire on the left while the

ground is on the right.

We seek to determine how the parameterization of σa will perturb the magnetic field.

To do so we solve for J and B on a grid in the xc, θ plane and generating many distinct arc

configurations. We choose σmax = 107 (as if the arc were vaporizing the electrode), and
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(a) (b)

FIGURE 7.4: Temperature profiles for a back-powered channel: (a) is the profile along
the centerline of the channel while (b) temperature profile across the channel

.

(a) (b)

FIGURE 7.5: Conductivity profiles in the case of no arcing (a) and heuristic arcing (b).
Figure (b) shows the log10(σ).
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FIGURE 7.6: Current densities and streamlines in a back-powered channel. 15 A are
added by in the left wire while the right wire is grounded at 0 V. This figure shows a
heuristic arc at both electrodes.

.

we choose ` = 5 and s = 20. We measure the magnetic field at 5 equally spaced points

around the outer boundary of the electrode. See Figure 7.7 for the configuration.
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FIGURE 7.7: Magnetic field measurement configuration for the back-powered channel.

Having established both our measurements and our model parameters we will now
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show sensitivities for the grid of xc, θ values. We show the difference between a magnetic

field with arcing at a particular location and a generator without arcing. Call Bi(·; xc, θ)

the induced field from an arc at (xc, θ) and define the induced field without arcing Bi,0.

At each sensor we will plot the quantity

∆Bxi(·; xc, θ) = ei · (Bi(·; xc, θ)−Bi,0) (7.3.6)

which is the difference in the xi direction.

Figure 7.8 shows the sensitivity of ∆Bxi . This experiment shows that in general

the magnetic field is more perturbed by increasing xc. Further, we see that by changing

the angle θ we can change the sign of the perturbation. This is true for all sensors and

roughly states that the direction of the magnetic field is sensitive to the position of the

arc. This may suggest moving forward that features like the Hall effect– which distort

the orientation of the current density paths, should also distort the magnetic field. It is

also worth noting that we expect, in this case, that an increase in the inflow current will

linearly scale the magnitude of the magnetic flux.

7.4 3D Currents in Equilibrium Generators

In this section we will create numerical simulations of current densities arising

in equilibrium MHD generators, namely by finding approximate solutions to equations

(7.1.46) and (7.1.48). The purpose of this section is to provide qualitative validation for

the model – namely by showing that the model captures qualitative features which are

well known in the field. We will consider a segmented Faraday generator geometry. We

used COMSOL to generate the numerical solutions in this section.

This situation is different from the backpowered channel experiment primarily from

the introduction of the applied field B0. We chose B0 = (0, 0, B0)T and select B0 as a
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FIGURE 7.8: Sensitivity of magnetic fields to σa in a back-powered channel. First column
is component x, second is component y, third is component z. Rows represent sensors
moving counter clockwise starting opposite the wire.
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difference of logistic curves:

B0 =
Bmax

2

(
1

1 + e−k(x−x`)
− 1

1 + e−k(x−xr)

)
(7.4.1)

where Bmax = −2 T and k, xr, x` are tuned so that the magnetic field is “on” before the

first segment begins and “off” before the channel ends. In the presence of the magnetic

field produces two major effects – first it creates current in the channel due to the flow, it

introduces the Lorentz force thus strongly coupling the magnetic fields and currents to the

fluid flow, and finally it introduces the Hall effect which makes the effective conductivity

anisotropic. In this experiment, in contrast with the backpowered channel, we do not

neglect Joule-heating effects introducing another dimension of coupling between the fluid

flow (through the heat equation) and electromagnetics.

We will begin by investigating some cross sectional properties of the channel. First

let `1 be the line pointing in the +x direction passing through the center of the channel

and let `2 be the line pointing in the +y direction likewise centered in the channel. On

these lines we will show physical quantities normalized by their maximum value. This

is done to emphasize qualitative properties rather than specific values. In Figure 7.9 we

show quantities on `1. We see that along the length of the channel quantities such as

velocity, temperature, pressure, and gas density are almost constant. All of the values

appear correlated with constant behavior in the end regions and approximately linear

behavior along the length of the channel. This may be due to the very short length of

the channel (120 mm). This figure also shows that both heat flux and the x component

of the Lorentz force are strongly activated in the inter-electrode space. However, we

see interesting jumps in the end regions – for example heating in the end regions. This

heating may be due to end-region eddy currents. In addition these two quantities both

exhibit numerical oscillations suggesting that sophisticated stabilization strategies may be

necessary for low resolution realizations of these quantities.

In Figure 7.10 we show variables on along `2. We see that the x component of
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velocity exhibits a strong top hat behavior. We also see a somewhat sinusoidal behavior

or in the y component of velocity. We see strong boundary layer features in the gas density,

effective conductivity, temperature, and heat flux.

Next we will explore current paths with early two-dimensional modelling of MHD

generators, c.f. [16, 47]. In Figure 7.11 we show the voltage and current density paths in
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FIGURE 7.9: Normalized values on an line in the x direction centered in the channel.
(Left) We show temperature, x component of velocity, and gas density. (Right) We show
the x component of the Lorentz Force and heat flux.
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an xy plane passing through the center of the generator. We see that there is a voltage

difference in both the x and y direction of the channel. Interestingly we see a roughly

uniform change in voltage across every electrode (roughly 20 V). In addition we see the

current concentration at the corners of the electrodes. This agrees qualitatively with

[16, 47]. In addition we see strong eddies in the end regions– large vortical structures

outside of the electrodes. This phenomenon is referred to in the literature, c.f. [16], as

a end region eddy. See Figure 7.12 for a 3D realization of this feature. Note the strong

non-uniformity in all directions. These features may be the reason for the positive heating

observed in the end regions, c.f. Figure 7.9. In two dimension these features have been

observed in [16].

In addition we want to highlight some of the advantages of a 3 dimensional simu-

lation rather than reduced dimensional models of the generator. In particular we show

normalized current density and normalized heat fluxes at the electrode-fluid interface in

Figure 7.13. We observe that both the current densities and heat flux concentrated at

one end of the electrode instead of being uniformly distributed across the electrode. This

suggests where arcing is most likely to occur–namely at the edge of the electrode. In addi-

tion, the anisotropic heat flux makes it clear that the Dirichlet type boundary conditions

for temperature are non-physical. For an accurate model it may be necessary to also solve

the heat transfer in the casing in order to more accurately represent the temperature in

the fluid.
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FIGURE 7.11: Surface coloring is the voltage while stream lines are current paths. Note
concentration of currents at edges of electrodes.
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FIGURE 7.12: 3D current path in end region eddy. Vortical structures may reduce
efficiency do to Joule heating

FIGURE 7.13: Normalized current densities |J|/max |J| at fluid-electrode interface. Cur-
rent densities concentrated at the edges of the electrode rather than being uniformly
distributed. Further the heat source Q appears to concentrate where J is concentrated
suggesting that the Joule heating is dominant in the boundary region.
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8 CONCLUSIONS

The products of this thesis are as follows. We have introduced the theory of low order

mimetic finite difference methods in a way which highlights the simlarities of the MFD to

the VEM. We have developed a framework for creating M-adapted MFD discretizations

for Maxwell’s Equations with general linear polarization laws. These schemes are truly

explicit, relying on a generalization of mass lumping which simultaneously eliminates the

need to solve a linear system at every time step and preserves a set of free parameters for

optimization. These M-adapted schemes have super convergent dispersion error at fourth

order rather than second order guaranteed by MFD family. Further we have found that

the optimal parameters for free space and for polarization media are identical as long as

one employs exponential time differencing. We have also found that M-adaptation is not

possible for time averaged differencing.

We found that the error of the M-adapted schemes is very senstive to initial con-

ditions but were able to demonstrate theoretically optimal convergence and dispersion

errors by discretely eliminating a variable. We hypothesize that this sensitivity is due to

the fact that we have optimized for plane waves which do not truly have initial conditions.

Our numerical demonstrations have shown that the reduction of dispersion also reduces

the numerical anisotropy of the method compared to the Yee scheme. We have proven

that these schemes obey conditional stability constraints identical to the Yee scheme on

rectangular meshes. Numerical experiments illustrate that these stability estimates are

sufficient as well as necessary.

Lastly, we have developed a model for equilibrium MHD generators. We have proven

that the electromagnetic fields in this model are well posed and that magnetic fields

depend continuously on electric currents, which in turn depend continuously on electrical

conductivity. We developed a simple heuristic for arcing – namely the addition of non-
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physical conductivity. By parameterizing this heuristic we have quantified the sensitivity

of magnetic fields to this heuristic. We found that for a heuristic arc magnetic fluxes are

most sensative to an increase in the arc location deeper into the channel and geometrically

sensitive to the orientation of the arc.

8.1 Open Probems

In this section we pose several open problems that can guide future research in

the construction and analysis of MFD methods and the modeling and analysis of MHD

generators.

1. The M-Adapted MFD discretizations are very sensitive to initial conditions in first

order formulation. Can a quadrature for calculating initial conditions, or some more

sophisticated method, be developed to guarantee optimal order convergence?

2. The stability analysis technique provided only necessary conditions. However, one

could prove necessary and sufficient conditions for stability if one employed en-

ergy analysis. Consider Leap frog time staggering and MFD applied to Maxwell’s

equations in free space. The following quantity is provable constant at every time

step

Enh = ‖En
h‖2E + [H

n+1/2
h , H

n−1/2
h ]F . (8.1.1)

By proving conditions under which Enh is a norm, i.e. by proving that [Hn+1/2, Hn−1/2]F

is positive, then we would have necessary and sufficient conditions for stability. This

argument requires an exact calculation or a very tight estimate of

‖WE curlThMF curlh‖E (8.1.2)

where the above norm is the operator norm induced by [·, ·]E .
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Once this problem is solved it will be interesting to investigate stability for the

ETMFD. While this energy estimate proof essentially follows the proof for the Yee

scheme it is unclear how to define the discrete energy for the ETMFD. Can this

be done for a general polarization law or will we have to consider a case by case

approach?

3. In this thesis we developed M-adaptation to increase the accuracy of methods. How-

ever, there are two equally obvious other objectives – namely stability and compu-

tational complexity. The stability optimization problem would require necessary

and sufficient conditions for stability for the entire mimetic family. Once devel-

oped is there an optimal member? Can this approach be extended to unstructured

polyhedral meshes?

In terms of computational efficiency, we already know that on square and rectangular

meshes there exists a choice of parameters which diagonalizes the matrix WE ,f .

Can an algorithm be developed which creates diagonal WE ,f for a general polygonal

mesh? Will the degeneracy of the mesh effect stability? What are the computational

trade offs between the optimization (which seems like it will be done at compute

time rather than off line) and the improvement in the efficiency of the scheme? For

what size problem would this approach be practical?

4. Can the M-adaptation procedure be extended to non-commuting meta-materials?

In this case Maxwell’s equations are posed as
u = Xu +Dv

v = Yv −Du

(8.1.3)

where

u =

 E

Pm

 , v =

 H

M`

 , D =

curl 0

0 0

 . (8.1.4)
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I am calling the material non-commuting as I assume that X and Y do not commute.

5. An answer to the previous question would allow for the development of M-adapted

uniaxial perfectly matched layers. Does dispersion reduction improve the perfor-

mance of the PML?

6. Can an immersed interface method be created which allows for dispersion reduction

using M-adaptation in a domain with piecewise constant material models? This

would allow for accurate solutions and also offset the inability of square and rectan-

gular meshes to accurate model complex geometry.

7. Are the theoretical optimal geometries for MHD generators, which were developed

with 0 dimensional calculations, actually optimal? This problem is a topology opti-

mization problem on the MHD generator. Here the objective function would be the

generator efficiency

EFF =

∫
resistors

σ−1J · J∫
channel

(u×B)Tσ(u×B)

=
Pavailable

Pideal
(8.1.5)

This quantity is related to a zero dimensional design parameter called the loading

factor. The parameter space might be the ratio of electrode thickness to insulator

thickness and the conductivity in the resistors. In addition, an important design

parameter for the MHD generators is the maximum current density at the electrode-

fluid interface.

8. When we developed our MHD model we focused on the use of heat transport rather

than energy conservation. Our modeling decision was made primarily to best use the

features readily available in COMSOL. A thorough investigation of the similarities

and differences between the two possible models is an important next step.

In addition, if heat transport rather than energy conservation is a reasonable model,
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heat transfer in the casing may be very important in accurately modelling the tem-

perature in the channel.

9. Can a multi-fluid description of the plasma in an MHD generator be used to explain

arc formation on short time scales? In this formulation we would assume all the

species in the flow, as well electrons and ions, are miscible but simulate each with

an independent formulation of Navier-Stokes
ρi
Dui
Dt

= −∇ · τ i +∇pi + αiρi(E + u×B)

∂

∂t
ρi = −∇ · (ρiui) +R(ρi, ρj , T )

(8.1.6)

Here αi is a proportionality between mass density and charge density of each species.

Here we would for account for both the entire Lorentz force acting on each species

and would account for the Hall effect very naturally. The function R is a reaction

term which would account for non-equilibrium chemistry and the conversion of one

specie to another. We would then couple these n fluid terms to Maxwell’s Equations

as follows. 

∂

∂t
E = −1

ε
J + c2curlB

∂

∂t
B = −curlE

J =
∑

i αiρiui.

(8.1.7)

In addition we would need to describe the thermodynamics of the system to extract

temperatures for use in the reaction term. This would rely on the following heat

equation. 
ρCp

(
∂

∂t
T + u · ∇T

)
= −divK∇T +Q

ρ =
∑

i ρi

(8.1.8)

Correctly formulating the function u is not immediately obvious. Will the temper-

ature advect with mean of the velocity or the sum of the velocities of all species?
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This model is obviously significantly more complex. However, it may be able to

account to describe significantly more complex physics at the electrode wall -fluid

flow interface. Perhaps this formulation would allow the description of arcing as a

boundary layer instability.
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