AN ABSTRACT OF THE THESIS OF

John L. Anderson for the degree of <u>Master of Science</u> in <u>Pharmacy</u> presented on April 27, 1983.

Title: <u>Pharmacokinetic Investigation of a Potential Drug</u>

Interaction: Aminophylline and Prednisone

Six subjects were administered oral aminophylline alone and with oral prednisone as well as prednisone alone. Although half of the subjects exhibited at least 25% reduction in theophylline bioavailability with concomitant prednisone based on uncorrected AUC calculation, the average relative bioavailability of theophylline was 100% when adjusted for changes in elimination rate constant ($f_{adj} = 1.00$). Differences in mean peak theophylline concentrations and mean time to individual peaks were small and not significantly different. Plasma concentrations of prednisolone from prednisone were decreased somewhat by concomitant aminophylline administration. The difference in mean peak concentrations (-9.7%) was statistically significant but time to peak was not affected. Total absorption based on uncorrected AUC calculations was not affected ($f_{rel} = 0.98$) but adjustment for changes in elimination rate constants resulted in a small but statistically significant decrease in prednisolone bioavailability when prednisone was administered with aminophylline ($f_{adj} = 0.93$). Pharmacokinetic Investigation of a Potential Drug Interaction: Aminophylline and Prednisone

by

John L. Anderson R. Ph.

A THESIS submitted to Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Sciences

Completed April 27, 1983

Commencement June, 1983

.

APPROVED:

Redacted for Privacy Professor of Biopharmaceutics and Pharmacokinetics in charge of major Redacted for Privacy Dean of the School of Pharmacy

Redacted for Privacy

Dean of Graduate School

Date thesis is presented April 27, 1983

Typed by Elaine Plaggert for _____ John L. Anderson

TABLE OF CONTENTS

INTRODUCTION		1
METHODS		4
RESULTS		7
DISCUSSION AND	CONCLUSION	10
ENDNOTES		13
TABLES		14
FIGURES		21
REFERENCES		23
APPENDIX I	THEOPHYLLINE ASSAY PROCEDURE	27
	THEOPHYLLINE STANDARD AND INDIVIDUAL CURVES	29
APPENDIX III	STEROID ASSAY PROCECURE	39
	PREDNISONE STANDARD AND INDIVIDUAL CURVES	40
	PREDNISILONE STANDARD AND INDIVIDUAL CURVES	50

.

LIST OF FIGURES

- FIGURE 1. Mean Plasma Theophylline Concentration vs. 21 Time With Fitted Curves
- FIGURE 2. Mean Plasma Prednisolone Concentration vs. 22 Time With Fitted Curves

•

LIST OF TABLES

TABLE]	1.	Treatment Schedule and Doses Administered	14
TABLE 2	2.	Comparison of Plasma Theophylline Concentrations	15
		After Administering Aminophylline Alone or With	
		Prednisone	
TABLE 3	3.	Comparison of Individual Pharmacokinetic and	16
		Bioavailability Parameters for Theophylline When	
		Administered Alone or With Prednisone	
TABLE 4	4.	Comparison of Plasma Prednisolone Concentrations	17
		After Administration of Prednisone With	
		Aminophylline or Alone	
TABLE 5	5.	Comparison of Individual Bioavailability and	18
		Pharmacokinetic parameters for Prednisolone	
		After Administering Prednisone With	
		Aminophylline or Alone	
TABLE (6.	Comparison of Plasma Prednisone Concentrations	19
		Following Administration of Prednisone with	
		Aminophylline or Alone	
TABLE 7	7.	Estimation of Relative Bioavailability for	20

Theophylline (from aminophylline) and Prednisolone (from Prednisone)

Pharmacokinetic Investigation of a Potential Drug Interaction: Aminophylline and Prednisone

INTRODUCTION

In 1978 Ayres¹ et al. reported three cases suggesting an interaction involving aminophylline and prednisone. Two cases described apparently reduced bioavailability of prednisolone from prednisone tablets when aminophylline tablets were given concomitantly. The third case described a decrease in half-life of theophylline from aminophylline tablets when prednisone tablets were given concomitantly.

Aminophylline, a salt form of theophylline, is widely used in the treatment of reversible obstructive pulmonary disease. The effectiveness of theophylline is related to plasma concentration,² as is toxicity.³ For drugs with minimum effective concentrations approaching toxic concentrations, like theophylline, factors altering bioavailability or elimination kinetics are important considerations. Several such factors have been identified for theophylline. Bioavailability can be affected by product formulation,⁴ diet, and fluid intake.⁵ Theophylline elimination can be influenced by age,⁶ diet,⁷ obesity,⁸ disease,⁹⁻¹¹ smoking^{12,13} and concurrent administration of other drugs¹⁴⁻¹⁷ or vaccines.¹⁸ Addition or subtraction of one or more of these factors may cause theophylline centrations or rise to toxic concentrations.

Prednisone, a synthetic corticosteroid, is often added to theophylline therapy during acute exacerbations of asthma. It is also indicated in a wide range of immune disorders so that coadministration with theophylline products is not uncommon. Prednisone is biotransformed in vivo to prednisolone which is considered to be the active metabolite.¹⁹ As with theophylline, various factors have been described which can alter bioavailability of prednisone or elimination of prednisolone.20-25 Although relationships between plasma concentrations and therapeutic or toxic effects are not well described for these steroids, alteration in bioavailability or elimination can adversly affect therapy. Differences in bioavailability of different brands of prednisone tablets have resulted in problems clinically.^{20,21} These differences appeared to be related to in vitro dissolution characteristics of the tablets and could be correlated to different rates of appearance of prednisolone in the systemic circulation.²² Enzyme induction resulting in an increased elimination of prednisolone has been related to decreased effectiveness.^{23,24} Inhibition of metabolism of prednisolone has also been described.²⁵

If the effects observed and reported earlier as a potential interaction do exist, then patients requiring one of these drugs chronically would have a risk of

adverse drug reactions if the other drug was added intermittently.

This study was undertaken to measure bioavailability and pharmacokinetic parameters of both theophylline (from aminophylline) and prednisolone (from prednisone) when given individually and in combination with each other.

METHODS

Approval was granted by the Committee for Protection of Human Subjects of Oregon State University and six healthy nonsmoking male subjects consented to participate. All subjects were between 21 and 35 years old and within 15% of their ideal body weight.^a Alcohol was forbidden during the entire study period. Beginning 48 hours before each study day all subjects abstained from xanthine containing foods and beverages. Subjects fasted from approximately 10 hours before until 4 hours following the beginning of each treatment. Water was allowed <u>ad lib</u> during this period. No other dietary restrictions were imposed. Subjects were requested to avoid heavy exercise on the study days.

Treatments were separated by 7 days. Treatment schedules and doses administered are shown in Table 1. The 3 way crossover design allowed each subject to serve as his own control. Samples of blood were collected over 24 hours following each dose at times 0.0, 0.25, 0.50, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 18.0 and 24.0 hours. Approximately 10 ml of blood was withdrawn at each sample time and placed in heparinized vacuum containers. Plasma was harvested immediately and frozen until time of assay.

Plasma samples were assayed for theophylline by an adaptation of the method of Desiraju and Sugita.²⁶ The

standard curve was constructed of 18 points over a range of 0 to 16 mcg/ml ($R^2 = 0.9971$). Mean inverse estimate of known concentrations was 100% of theory with a coefficient of variation in percent (CV%) equal to 9.3%.

Plasma steroid concentrations were assayed by the method of Loo and Jordan.²⁷ The standard curve for prednisolone was constructed of 21 points over a range of 0 to 1000 ng/ml ($R^2 = 0.9946$). Mean inverse estimate was 97% of theory with 6.4% CV. Prednisone was also eluted on these chromatograms. A standard curve for prednisone was constructed of 26 points over a range of 0 to 100 ng/ml ($R^2 = 0.9277$). Mean inverse estimate was 101.8% of theory but precision was poor (CV = 27%). Data were pooled from samples assayed on 5 different days. Standard curves for individual days (n ranged from 4 to 7) had a weighted mean inverse estimate of 100.2%.

Several standards used in the construction of standard curves for theophylline were spiked with prednisone and prednisolone. Similarly, several steroid standards were spiked with theophylline. No interference in either assay was detected.

Individual plasma concentration <u>vs</u>. time curves for theophylline and prednisolone were fit to a one compartment open model with first order absorption and elimination.^{5,28,29} Points were weighted in the regression by the factor $1/y^2$. Curves for mean data <u>vs</u>. time were

similarly fit using a weighting factor of $1/\sigma^2$. Fits were accomplished using Expfit³⁰, a public procedure of the Prophet system. The data were well described by the model (mean R² for individual theophylline data = 0.9925 and for prednisolone data = 0.9949).

Area under the plasma concentration <u>vs</u>. time curve up to the time of the last sample (AUC_{O-T}) was determined by the trapezoidal rule. AUC from this time to infinity $(AUC_{T-\infty})$ was estimated by the quotient of the estimated concentration at the time of the last sample and the elimination rate constant (C_p/k_{el}) . Total AUC $(AUC_{O-\infty})$ was determined by the sum of these areas.

Differences in mean plasma concentrations and parameter estimates were tested with a "t" statistic for paired data. Differences occurring at $\alpha < 0.05$ were considered significant.

RESULTS

Mean concentrations of theophylline at each sampling time are shown in Table 2. Concentrations from time one hour and thereafter during treatment A (control) are greater than during treatment B but only 2 of 10 of the differences are statistically significant. Individual pharmacokinetic bioavailability parameters are shown in Table 3. Peak concentration and time to peak are very similar for both treatments. Theophylline elimination rate constants tended to increase with prednisone administration but the difference was not statistically significant. $AUC_{O-\infty}$ for theophylline tended to decrease with prednisone administration but this difference was not statistically significant. Curves fit to the mean theophylline concentration <u>vs</u>. time data are shown in Figure 1.

Mean concentrations of prednisolone at each sampling time are shown in Table 4. Mean concentrations at all sample times are very similar except at 1.0 and 2.0 hours, near the peak of the mean curves. Differences in prednisolone concentration after administration of prednisone with aminophylline at these sampling times were depressed statistically significantly compared to after administration of prednisone alone, (14.6% and 7.5% at 1.0 and 2.0 hours respectively). Individual bioavialability and pharmacokinetic parameters for prednisolone are shown in Table 5. The mean of the peak prednisolone concentrations observed in treatment C (control) was greater than that from treatment B. This difference (9.8%) was statistically significant. Differences in time to peak, elimination rate constant and $AUC_{O-\infty}$ were not statistically significant. Curves fit to the mean prednisolone concentration <u>vs</u>. time data are shown in Figure 2.

Plasma prednisone concentrations are shown in Table 6. Concentrations were higher in treatment C (control) than in treatment B at most sampling times. However, differences in mean concentrations were not statistically significant at any of the sampling times.

Estimates of relative bioavailability (f_{rel}) for theophylline (from aminophylline) and prednisolone (from prednisone) are shown in Table 7. Although half the subjects exhibited at least 25% reduction in AUC_{0- ∞} for theophylline when prednisone was administered concomitantly the difference between the mean f_{rel} (0.87) and a relatively complete bioavailability (1.0) was not statistically significant. The tendency towards an increased elimination rate of theophylline when administered concomitantly with prednisone (Table 3) could contribute to the decrease in f_{rel} (Table 7, column 2). To determine the extent of this contribution f_{rel} was adjusted (f_{adj}) as suggested by Gibaldi,³² to compensate for intrasubject variability in elimination rate constant between treatments. The results of this correction are also shown in Table 7 (column 3). This adjustment shows that the seemingly altered bioavailability based on $AUC_{O-\infty}$ ratios ($f_{rel} = 0.87$) is really not correct and the relative theophylline bioavailability from the aminophylline was not affected by concomitant prednisone ($f_{adj} = 1.00$, Table 7).

For prednisolone relative bioavailability following prednisone administration alone compared to concomitant administration with aminophylline, the initial estimates were near unity ($f_{rel} = 0.98$) and had a small range (Table 7, column 4). When the above correction for f_{rel} based on k_{el} variation between treatments was applied to prednisolone data, a small reduction in relative bioavailability was revealed ($f_{adj} = 0.93$). This reduction, although small, was highly statistically significant (p < 0.01).

DISCUSSION AND CONCLUSIONS

The relative bioavailability of theophylline from aminophylline was not statistically significantly affected by concomitant oral prednisone administration. Time to peak concentration, and individual peak concentrations measured were very similar for both treatments. However, there were considerable differences in plasma concentration vs. time profiles for theophylline and therefore differences in AUC_{O-m} ratios. These differences were due to a variation of the elimination rate of theophylline in the individual subjects which may or may not have been due to the concomitant prednisone. Overall these differences were not statistically significant. The tendency for the elimination of theophylline to increase with concomitant prednisone administration is consistant with an earlier report,¹ but can not necessarly be attributed to prednisone treatment. This is especially true since the range of variability reported here is within the range of intrasubject variability previously reported.³³⁻³⁵ Since the results do not attain statistical significance, one cannot conclude that concomitant prednisone administration affects the bioavailability or pharmacokinetic parameters of theophylline following administration of aminophylline. Consideration of the trends displayed in this report suggest that a repeat study with higher doses of con-

comitant administration of both drugs as reported earlier might be more revealing. Also, assuming the means and standard deviations of theophylline parameters observed here would hold in similar studies with larger populations, then a doubling of sample size would produce statistical significance in the altered $AUC_{O-\infty}$ ratios $(\alpha = 0.05, \beta = 0.03)^{36}$ without any change in study design. Of course, statistically significant effects do not necessarily mean there will be clinically significant effects. Based on the data herein, one must conclude that prednisone administered concomitantly with aminophylline in the single doses employed does not have clinically significant effects on theophylline bioavailability or pharmacokinetics.

Bioavailability of prednisolone from prednisone was statistically significantly affected by concurrent administration of aminophylline. Peak concentration and $AUC_{O-\infty}$ ratios when adjusted for changes in k_{el} were both statistically significantly depressed. The plasma prednisone concentration relationship to treatment is consistent with decreased absorption of prednisone resulting in decreased bioavailability of prednisolone rather than decreased conversion of prednisone to prednisolone but differences in mean prednisone concentrations were not statistically significant.

Differences observed in prednisolone pharmacokinetic

and bioavailability parameters were small and, in light of the paucity of information on pharmacodynamics of prednisolone, are hard to interpret. Again, as in the case of theophylline, additional study of this situation with higher and/or prolonged doses may yield more information. For the single doses studied, one must conclude that aminophylline administered concomitantly with prednisone does not clinically significantly affect prednisolone bioavailability or pharmacokinetics.

Until the influence which these drugs have on one another is further characterized, alteration of drug therapy when these two agents are administered concomitantly should be done with some caution in case the trends in Table 3 or Table 5 develop in the specific patient being treated. aIdeal body weight (males)= 50kg + 2.3kg/inch over 5'

.

•

Subject No.	Week 1	Week 2	Week 3
1,2	Aa	Bp	Cc
3,4	В	с	A
5,6	с	A	В

TABLE 1. Treatment Schedule and Doses Administered

^a200 mg aminophylline (1 x 200 mg Aminophyllin[®] tablet, Searle, lot #978-121) and 240 ml water.

b200 mg aminophylline (1 x 200 mg Aminophyllin® tablet, Searle, lot #978-121) and 20 mg prednisone (4 x 5 mg Deltasone® tablets, Upjohn, lot #465F9) and 240 mg water.

^C20 mg prednisone (4 x 5 mg Deltasone[®] tablets, Upjohn, lot #465F9) and 240 mg water.

	<u>Mean</u>	Theophyllin	e Concentration (m	ncg/ml)
lime (hours))	Aa	Bp	Significance ^c
0.0	0.0		0.0	
0.25	1.44	(0.35) ^d	1.51 (0.46)	NS
0.50	3.62	(0.60)	4.41 (0.31)	NS
1.0	5.12	(0.30)	5.07 (0.26)	NS
2.0	4.67	(0.09)	4.53 (0.36)	NS
3.0	4.26	(0.27)	3.75 (0.26)	s
4.0	3.70	(0.20)	3.36 (0.26)	NS
6.0	3.04	(0.16)	2.73 (0.21)	NS
8.0	2.42	(0.18)	2.16 (0.20)	NS
2.0	1.63	(0.11)	1.26 (0.18)	S
8.0	0.78	(0.10)	0.58 (0.15)	NS
4.0	0.44	(0.08)	0.28 (0.06)	NS

TABLE 2. Comparison of Plasma Theophylline Concentrations After Administering Aminophylline Alone or With Prednisone

^aTreatment A (Control)

^bTreatment B (prednisone administered concomitantly) ^CResults of paired "t" test (S = p < 0.05; NS = $p \ge 0.05$) ^dNumbers in parenthesis represent standard error of the mean

Peak Concentration (mcg/ml)		centration		Time of Peak (hrs) k _{el} (hr ⁻¹)		r-1,d		AUC (mcg/ml·hr)e		.)e	
Subject	Aa	₿p \$	Change ^C	A	в	A	B	Change ^C	A	в	% Change ^C
1	4.57	5.48	19.9	2.0	1.0	0.1047	0.1042	2 - 0.5	53	57	7.6
2	4.74	5.23	10.3	1.0	0.5	0.1305	0.1919	47.1	39	29	-25.6
3	6.30	5.04	-20.0	1.0	1.0	0.1309	0.1076	-17.8	61	45	-26.2
4	4.87	5.85	20.1	1.0	1.0	0.1270	0.1335	5.12	50	53	6.0
5	5.52	3.98	-27.9	0.5	1.0	0.0953	0.1201	26.0	54	40	-25.9
6	5.08	5.33	4.9	2.0	2.0	0.0947	0.1289	36.1	66	56	-15.2
хf	5.18	5.15	- 0.58	1.25	1.08	0.1139	0.1310	15.0	54	47	-12.96
SDg	0.64	0.63		0.61	0.49	0.0175	0.0320	1	9.1	10.	7
Signific	ance ^h 1	1S			NS		NS			NS	

TABLE 3. Comparison of Individual Pharmacokinetic and Bioavailability Parameters for Theophylline When Administered Alone or With Prednisone

^aTreatment A (control), ^bTreatment B (Prednisone administered concomitantly), ^C% Change is calculated: (B-A)/A, ^dElimination rate constant obtained by computer fitting of data using PROPHET, ^eArea under the curve from time 0 to infinity, ^fMean, ^gStandard deviation, ^hBased on paired t test (S = p < 0.05, NS = p \geq 0.05).

	Mean Prednisolone Concentration (ng/ml)						
Time (hrs)	Ba		(5р	Signifi	cance ^C	
0.0	0.0	0	0	. 00	· ·		
0.25	124 (28) ^đ	75	(12)	NS		
0.50	250 (20)	230	(22)	NS		
1.0	298 (14)	349	(13)	S		
2.0	284 (12)	307	(17)	S		
3.0	273 (21)	264	(21)	NS		
4.0	224 (21)	223	(19)	NS		
6.0	137 (12)	137	(11)	NS		
8.0	82 (9)	80	(4)	NS		
12.0	35 (4)	34	(6)	NS		

TABLE 4. Comparison of Plasma Prednisolone Concentrations After Administration of Prednisone With Aminophylline or Alone

^aTreatment B (Aminophylline administered concomitantly) ^bTreatment C (Control) ^cResults of paired "t" test (S = p < 0.05; NS = p \geq 0.05) ^dNumbers in parentheses represent standard error of the mean

Peak Concentra (mcg/m		entrati		Time of Peak (hrs)			k _{el} (hr ⁻¹)d		e
Subject	Ba	Cp	% Change ^C	B	С	В	C & Change ^C	B C %	Change ^C
1	301	394	-23.6	2.0	1.0	0.2364	0.2480 - 4.7	1953 2069	- 5.6
2	313	340	- 7.9	1.0	1.0	0.2331	0.2490 - 6.4	1628 1621	- 0.4
3	347	348	- 0.3	3.0	1.0	0.2496	0.2718 - 8.2	2059 2045	0.7
4	350	376	- 6.9	1.0	1.0	0.2414	0.2218 8.8	1916 2168	-11.6
5	288	316	- 8.9	1.0	1.0	0.2020	0.2136 - 5.4	1847 1802	2.5
6	339	376	- 9.8	2.0	2.0	0.2057	0.2282 - 9.9	2471 2446	1.0
xf	323	358	- 9.8	1.7	1.2	0.2280	0.2387 - 4.5	1979 2025	- 2.3
SD9	26	29		0.7	0.2	0.0196	0.0215	281 287	
Signific	anceh	S			NS		NS	. NS	

TABLE 5. Comparison of Individual Bioavailability and Pharmacokinetic Parameters For Prednisolone After Administering Prednisone With Aminophylline or Alone

^aTreatment B, ^bTreatment C, ^C Change is calculated: (B-C)/C, ^dElimination rate constant obtained by computer fitting of data using PROPHET, ^eArea under the curve from time 0 to infinity, ^fMean, 9Standard deviation,

hBased on paired t test (S = p < 0.05, NS = $p \ge 0.05$).

TABLE 6. Comparison of Plasma Prednisone Concentrations Following Administration of Prednisone With Aminophylline or Alone

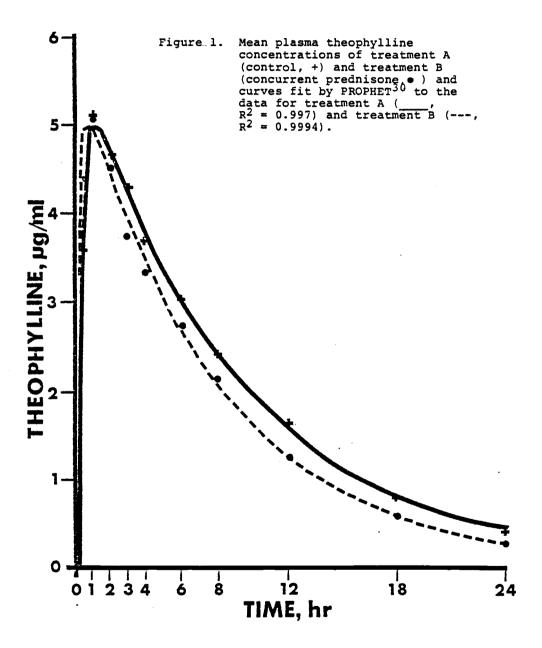
<u>Mean Prednisone C</u>	oncentration (ng	<u>/ml)</u>
Ba	Ср	Significance ^C
0.00	0.00	
2.1 (2.1) ^d	3.9 (2.9)	NS
15.5 (4.0)	10.3 (3.9)	NS
23.9 (6.0)	27.9 (4.6)	NS
27.0 (5.8)	34.7 (3.3)	NS
36.6 (2.7)	42.8 (3.7)	NS
36.7 (4.4)	38.4 (3.0)	NS
23.4 (3.0)	25.2 (3.3)	NS
10.3 (4.1)	15.9 (3.4)	NS
0.9 (0.9)	3.9 (2.5)	NS
	B^{a} 0.00 2.1 (2.1) ^d 15.5 (4.0) 23.9 (6.0) 27.0 (5.8) 36.6 (2.7) 36.7 (4.4) 23.4 (3.0) 10.3 (4.1)	0.00 0.00 $2.1 (2.1)^d$ $3.9 (2.9)$ $15.5 (4.0)$ $10.3 (3.9)$ $23.9 (6.0)$ $27.9 (4.6)$ $27.0 (5.8)$ $34.7 (3.3)$ $36.6 (2.7)$ $42.8 (3.7)$ $36.7 (4.4)$ $38.4 (3.0)$ $23.4 (3.0)$ $25.2 (3.3)$ $10.3 (4.1)$ $15.9 (3.4)$

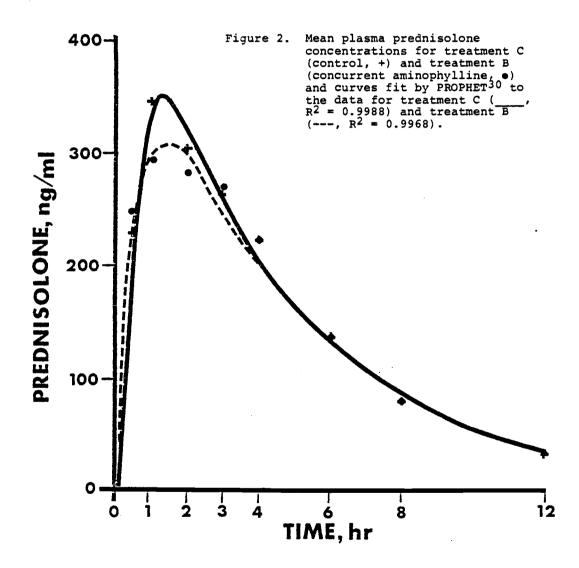
^aTreatment B (Aminophylline administered concomitantly) ^bTreatment C (Control) ^CResults of paired "t" test (S = p < 0.05; NS = $p \ge 0.05$) ^dNumbers in parentheses represent standard error of the mean

Theophylline			<u>Predni</u>	solone
Subject	^f rel ^a	f _{adj} b	frel	fadj
1	1.08	1.08	0.94	0.90
2	0.74	1.09	1.00	0.94
3	0.74	0.61	1.01	0.93
4	1.06	1.11	0.88	0.96
5	0.74	0.93	1.02	0.96
6	0.85	1.16	1.01	0.91
Xc	0.87	1.00	0.98	0.93
SDd	0.16	0.20	0.06	0.03
Significance ^e	NS	NS	NS	S

TABLE 7. Estimation of Relative Bioavailability For

Theophylline and Prednisolone (From Prednisone)


 $\begin{array}{c} & \text{AUC}_{T} \\ \text{a}_{\text{Estimate of relative bioavailability } \overline{\text{AUC}_{C}} & \text{where } \text{AUC}_{T} = \text{AUC}_{O-\infty} \\ \text{for the treatment period and } \text{AUC}_{C} = \text{AUC}_{O-\infty} & \text{for the control} \\ \text{period.} \end{array}$


^bEstimate of relative bioavailability adjusted with respect to elimination rate, f_{rel} . $(f_{rel}) \ge (k_{el-T}/k_{el-C})$. Where k_{el-T} is k_{el} from the treatment period and k_{el-C} is k_{el} from the control period

CMean

^dStandard Deviation

eResults of two tailed "t" test (S = p < 0.05; NS = $p \ge 0.05$)

REFERENCES

- Ayres JW, Freundlich M, Makker S, et al. A potential clinically significant adverse drug interaction: prednisone and aminophylline, paper presented at the Academy of Pharmaceutical Sciences Meeting. Montreal, Canada. May 13-18, 1978.
- 2. Mitenko PA, Ogilvie RL. Rational intravenous doses of theophylline. New Eng J Med. 1973; 289:600-3.
- 3. Hendeles L, Bighley L, Richardson RH, et al. Frequent toxicity from IV aminophylline infusions in critically ill patients. Drug Intel Clin Pharm. 1977; 11:12-8.
- Weinberger M, Hendeles L, Bighley L. The relation of product formulation to absorption of theophylline. New Engl J Med. 1978; 299:852-7.
- 5. Welling PG, Lyons LL, Craig WA, et al. Influence of diet and fluid on bioavailability of theophylline. Clin Pharmacol Ther. 1975; 17:475-80.
- Hendeles L, Weinberger M. Poisoning patients with intravenous theophylline. Am J Hosp Pharm. 1980; 37:49-50.
- Kappas A, Anderson KE, Conney AH, et al. Influence of dietary protein and carbohydrate on antipyrine and theophylline metabolism in man. Clin Pharmacol Ther. 1976; 20:643-53.
- Gal P, Jusko WJ, Yurchak AM, et al. Theophylline disposition in obesity. Clin Pharmacol Ther. 1978; 23:438-44.
- 9. Jeanne JW, Chick TW, Miller BA, et al. Apparent theophylline half life fluctuations during treatment of acute left ventricular failure. Am J Hosp Pharm. 1977; 34:408-9.
- Piafsky KM, Sitar DS, Rangnor E, et al. Theophylline kinetics in acute pulmonary edema. Clin Pharmacol Ther. 1977; 21:310-6.
- 11. Piafsky KM, Sitar DS, Rango RE, et al. Theophylline disposition in patients with hepatic cirrhosis. New Engl J Med. 1977; 296:1495-7.

- 12. Hunt SN, Jusko WJ, Yurchak AM. Effect of smoking on theophylline disposition. Clin Pharmacol Ther. 1976; 19:546-51.
- Jenne J, Nagasawa H, McHugh R, et al. Decreased theophylline half life in cigarette smokers. Life Sci. 1975; 17:195-8.
- 14. Weinberger M, Hudgel D, Spector S, et al. Inhibition of theophylline clearance by troleandomycin. J All Clin Immunol. 1977; 59:228-31.
- 15. Roberts RK, Grice J, Wood L, et al. Cimetidine impairs the elimination of theophylline and antipyrine. Gastroenterology. 1981; 81:19-21.
- 16. Zarowitz B, Szefler S, Lasezkay G. Effect of erythromycin base on theophylline kinetics. Clin Pharmacol Ther. 1981; 29(5):601-5.
- 17. Manfredi RL, Vesell, ES. Inhibition of theophylline metabolism by long term allopurinol administration. Clin Pharmacol Ther. 1981; 29(2):224-9.
- 18. Renton KW, Gray JD, Hall RI. Decreased elimination of theophylline after influenza vaccination. Can Med Assoc J. 1980; 123:288-90.
- 19. Haynes RC, Murad F. Adrenocorticotropic hormone; adrenocorticosteroids and their synthetic analogs; inhibitors of adrenocortical steroids biosynthesis. In: Gilman A, Goodman L, Gilman A, eds. The pharmacological basis of therapeutics. New York Macmillan. 1980; :1466-96.
- 20. Campagna FA, Cureton G, Mirigian RA, et al. Inactive prednisone tablets USP XVI. J Pharm Sci. 1963; 52:605-6.
- 21. Levy G, Hall NA, Nelson E. Studies on inactive prednisone tablets USP XVI. Am J Hosp Pharm. 1964; 21:402.
- 22. Sullivan TJ, Sakmar E, Wagner JG. Comparative bioavailability: A new type of <u>in vitro</u> - <u>in vivo</u> correlation examplefied by prednisone. J Pharmacokinet Biopharm. 1976; 4:173-81.
- 23. Brooks SM, Werk EE, Ackerman SJ, et al. Adverse effects of phenobarbital on corticosteroid metabolism in patients with bronchial asthma. New Eng J Med. 1972; 286:1125-8.

- 24. Petereit LB, Meikle AW. Effectiveness of prednisolone during phenytoin therapy. Clin Pharmacol Ther. 1977; 22:912-6.
- 25. Szefler S, Rose JQ, Ellis EF, et al. The effect of troleandomycin on methylprednisolone elimination. J Allergy Immunol. 1980; 66(6):447-51.
- 26. Desiraju RK, Sugita ET. Determination of theophylline and its metabolites by liquid chromatography. J Chromatogr Sci. 1977; 15:563-8.
- 27. Loo J, Jordan N. High performance liquid chromatographic analysis for synthetic corticosteroids in plasma. J Chromatogr. 1977; 143:314-6.
- 28. DiSanto AR, DeSante KA. Bioavailability and pharmacokinetics of prednisone in humans. J Pharm Sci. 1975; 64(1):109-12.
- 29. Sullivan TJ, Sakmar E, Albert K, et al. <u>In vitro</u> and <u>in vivo</u> availability of commercial prednisone tablets. J Pharm Sci. 1975; 64(10):1723-5.
- 30. Johnson C. "Expfit" In: Perry, AM, Wood, JJ. The Prophet System Public Procedures Notebook. Bolt Beranek and Newman Inc. Cambridge, MA. March 17-24, 1979.
- 31. Wagner, JG ed. Bioavailability. In: Wagner, JG. Fundamentals of Clinical Pharmacokinetics. Hamilton, IL: Drug Intelligence Publications, Inc. 1975; :337-58.
- 32. Gibaldi M. Bioavailability. In: Gibaldi M, Perrier D, eds. Pharmacokinetics. New York: Marcel Dekker, Inc. 1975; :129-74.
- 33. Lueng P, Kalisker A, Bell TD. Variation in theophylline clearance rate with time in chronic childhood asthma. J Allergy Clin Immunol. 1977; 59:440-4.
- 34. Walson PD, Strunk RC, Tuassig LM. Intrapatient variability in theophylline kinetics. J Pediatr. 1977; 91:321-4.
- 35. Ginchansky E, Weinberger M. Relationship of theophylline clearance to oral dosage in children with chronic asthma. J Pediatr. 1977; 91:655-60.

36. Dixon WJ, Massey FJ. Probability of accepting a false hypothesis. In: Dixon WJ, Massey FJ, eds. Introduction to Statistical Analysis, 3rd Edition. New York: McGraw-Hill. 1969; :263-82. APPENDICES

APPENDIX I - THEOPHYLLINE ASSAY PROCEDURE

A. INTERNAL STANDARD SOLUTION

 β -Hydroxyethyltheophylline (100 mg) is dissolved in 100 ml distilled water. One ml of this solution is transfered to a 100 ml volumetric flask and acetonitrile (chromatographic grade) is added to bring to 100 ml volume. Final concentration = 10 mcg/ml. STORE IN REFRIGERATOR.

B. SAMPLE PREPARATION

1) Vortex each plasma sample 10-15 sec.

 2) Combine 0.3 ml plasma with 0.3 ml internal standard solution in pointed centrifuge tube.
 3) Vortex 10-15 sec.

4) Centrifuge @ 2000 RPM X 10 min.

5) Separate supernatant from pellet and store on ice until injection.

C. CHROMATOGRAPH SPECIFICATIONS

- 1) Mobile Phase
 - a) add 0.82 gm NaOAc to a 1.0 L volumetric flask and qs to 1.0 L with distilled water
 - b.) adjust pH to 6.6 with HAc or NAOH
 - c) add 70 ml chromatographic grade acetonitrile to a 1.0 L volumetric flask.
 - d) qs to 1.0 L using aqueous solution (above)
 - e) filter and de-gas

C. (con't)

- 2) Pump (Waters Assoc. Inc, Model V # M-6000) at 2
 ml/min
- 3) Column/Pre-column
 - a) Waters C₁₈ µ-Bondapak column
 - b) C_{18} µ-Bondapak pre-column also used.
- 4) Detector (Waters Assoc Inc. Model 440) = 280 nm Sensitivity = 0.005
- 5) Recorder mV = 10, paper speed = 16 / hr
- D. Injection
 - a) Injector Waters Assoc Inc, model # UK6
 - b) Injection volume 25 μ l

	ACTUAL ²	<u>drug</u> 3	<u>IS</u> 4	PHR ⁵	<u>INV</u> 6	<u>&THEO</u> 7
1	0.42	19	202	0.094	0.46	109.5
2	0.64	29	196	0.148	0.79	124.5
3	0.85	33	205	0.161	0.87	102.7
4	1.06	42	211	0.199	1.10	104.0
5	2.12	65	177	0.367	2.12	100.1
6	4.24	153	211	0.725	4.29	101.3
7	8.47	214	136	1.573	9.44	111.4
8	12.71	195	96	2.031	12.22	96.1
9	16.95	186	66	2.818	16.99	100.3
10	0.42	14	187	0.075	0.35	82.0
11	0.64	22	177	0.124	0.65	101.9
12	0.85	27	180	0.150	0.80	94.8
13	1.06	34	194	0.175	0.96	90.3
14	2.12	63	192	0.328	1.88	89.0
15	4.24	129	188	0.686	4.06	95.8
16	8.47	142	100	1.420	8.51	100.4
1 7	12.71	188	93	2.022	12.16	95.7
18	16.95	120	42	2.857	17.23	101.7
						•

APPENDIX II - THEOPHYLLINE STANDARD CURVES¹ (pg 83)

 $X = 100.1^{8}$ $VAR = 86.4^{9}$ $S.D. = 9.30^{10}$ $CV\& = 9.29^{11}$

FOOTNOTES FOR THEOPHYLLINE STANDARD CURVE

- 1 Results of regression of PHR on actual: $R^2 = 0.9971$; Intercept = 0.017; Slope = 0.165.
- ² Actual concentration of sample (mcg/ml)
- 3 Drug Height of drug peak on chromatogram (mm)
- 4 IS Height of internal standard peak on chromatogram (mm)
- 5 PHR Peak Height Ratio (Drug/IS)
- 6 Inverse Inversly estimated concentration calculated from PHR and regression parameters by the equation: Inverse = (PHR - Intercept)/slope
- 7 %THEO Percent of theoretical concentration: (Inverse/Actual)100 = %THEO
- 8 Mean percent of theoretical concentration
- ⁹ Variance of the mean
- 10 Standard deviation of the mean
- 11 Coeffecient of variation as a percent of the mean

APPENDIX II (con't)

DETERMINATION OF FACTOR TO ACCOUNT FOR 'AGING' OF THEOPHYLLINE SAMPLES

Approximately one years time separated the freezing of the samples and their final assay for theophylline. To determine what, if any, allowance should be given to account for degradation. The following was done.

5 Spiked plasma samples that had been used in early workup of the standard curve and had been frozen with the subjects samples were reassayed. Their initial labeled concentrations and inversely estimated concentrations are shown below.

	LABEL (mcg/ml)	INVERSE (mcg/ml)	&THEO
1	1	0.77	77.3
2	2	1.52	75.8
3	3	2.51	83.7
4	4	3.33	83.3
5	6	4.91	81.8

x 80.4
VAR 12.75
S.D. 3.57

APPENDIX II (con't)

Based on this observation a factor of 1/0.80 would be used to scale up theophylline concentrations determined from subjects samples to account for degradation of the drug in samples over time.

Summary:

Plasma theophylline concentrations from subjects samples were determined by the equation:

INVERSE = $(PHR - 0.17)/(0.165 \times 0.80)$

TABLE AII-1: PLASMA THEOPHYLLINE CONCENTRATIONS FOR

SUBJECT 1

SAMPLE #	DRUG Pk	ISPk	PHR	INVERSE
TREATMENT	A			
1 2	 54	 193	.280	0
2 3	75	167	. 449	2.12 3.41
4 5	MISSING 88	146	.603	4.57
6	94	174	.540	4.10
7 8	85 59	166 148	.512 .399	3.88 3.03
9	44	156	.282	2.14
10 11	40 27	171 189	.230 .143	1.78 1.08
12	11	199	.055	0.42

TREATMENT B

1				0
2	71	151	.470	3.57
3	99	166	.596	4.52
4	104	144	.722	5.48
5	103	170	.606	4.60
6	77	142	.542	4.11
7	99	200	.495	3.76
8	75	176	.426	3.23
9	54	156	.346	2.63
10	37	158	.234	1.78
11	24	161	.149	1.13
12	10	176	.057	0.43

•

SUBJECT 2

SAMPLE #	DRUG Pk	ISPk	PHR	INVERSE
TREATMENT	A			
1 2 3 4 5 6 7 8	9 49 110 91 74 67 51	140 159 176 156 156 160 161	.064 .308 .625 .583 .474 .419 .317	0 0.49 2.34 4.74 4.42 3.60 3.18 2.01
9 10 11 12 TREATMENT	MISSING 26 10 5 B	167 164 138	.156 .061 .036	1.18 0.46 0.27
1 2 3 4 5 6 7 8 9 10 11 12	21 93 87 67 78 48 36 26 12 	146 135 137 134 185 131 133 145 161	.144 .689 .635 .500 .422 .366 .271 .179 .075	0 1.09 5.23 4.82 3.79 3.20 2.78 2.06 1.36 0.57 0 0

TABLE AII-3: PLASMA THEOPHYLLINE CONCENTRATIONS FOR

SUBJECT 3

SAMPLE	DRUG Pk	ISPk	PHR	INVERSE
TREATME	NT A			
1				0
2	46	157	.292	2.21
3	83	133	.624	4.73
4	142	171	.830	6.30
5	79	129	.612	4.64
6	123	175	.702	5.33
7	98	168	.583	4.42
8	70	164	.426	3.23
9	61	152	.401	3.04
10	38	169	.224	1.70
11	12	145	.082	0.02
12				0

1				0
2	7	179	.039	0.30
3	69	158	.437	3.32
4	101	152	.665	5.05
5	94	153	.614	4.66
6	MISSING			
7	48	140	.343	2.60
8	42	141	.298	2.26
9	41	165	.249	1.89
10	27	194	.139	1.05
11	15	168	.089	0.68
12	7	132	.053	0.40

TABLE AII-4: PLASMA THEOPHYLLINE CONCENTRATIONS FOR

SUBJECT 4

SAMPLE #	DRUG Pk	ISPk	PHR	INVERSE
TREATMEN	A TI			
1 2				0
2 3	44	207		0
			.212	1.61
4	117	182	.642	4.87
5	108	174	.620	4.70
6	102	183	.557	4.23
7	85	187	.454	3.44
8	65	174	.373	2.83
9	52	181	.287	2.18
10	36	189	.190	1.44
11	16	197	.081	.61
12	8	215	.037	. 28

1				0
2	39	164	.238	1.81
3	117	169	.692	5.25
4	131	170	.771	5.85
5	118	161	.733	5.56
6	78	162	.481	3.65
7	83	161	.516	3.91
8	65	159	.409	3.18
9	51	152	.336	2.55
10	20	145	.136	1.05
11	13	181	.072	0.55
12	8	198	.040	0.30

TABLE AII-5: PLASMA THEOPHYLLINE CONCENTRATIONS FOR

SUBJECT 5

SAMPLE #	DRUG Pk	<u>ISPk</u>	PHR	INVERSE
TREATMENT A				
1				0
2	37	173	.213	1.62
3	91	125	.728	5.52
4	80	127	.629	4.77
5	82	135	.607	4.61
6	80	168	.476	3.61
7	62	144	.430	3.26
8	74	168	.440	3.34
9	45	157	.286	2.17
10	36	150	.240	1.82
11	17	155	.109	0.83
12	13	162	.080	0.61

1				0
2	28	155	.180	1.37
3	73	140	.521	3.95
4	72	137	.525	3.98
5	61	143	.426	3.23
6	61	142	.429	3.25
7	58	146	.397	3.01
8	60	182	.329	2.50
9	49	178	.275	2.09
10	30	155	.193	1.46
11	11	165	.066	0.50
12	5	151	.033	0.25

TABLE AII-6: PLASMA THEOPHYLLINE CONCENTRATIONS FOR

SUBJECT 6

SAMPLE	DRUG Pk	ISPk	PHR	INVERSE
TREATMEN	NT A			
1				0
2	20	190	.105	0.80
3	101	186	.543	4.12
4	115	178	.646	4.90
5	128	191	.670	5.08
6	109	175	.622	4.72
7	105	200	.525	3.98
8	73	161	.453	3.44
9	66	193	.342	2.59
10	40	165	.242	1.84
11	25	182	.137	1.04
12	14	169	.083	0.63

1				0
2	25 ⁺	195	.128	0.97
3	106	191	.555	4.21
4	118	171	.690	5.23
5	116	165	.703	5.33
6	110	184	.598	4.54
7	97	180	.539	4.09
8	78	187	.417	3.16
9	59	183	.322	2.44
10	34	159	.214	1.62
11	13	158	.082	0.62
12	7	169	.041	0.31

APPENDIX III. STEROID ASSAY PROCEDURE

- A. Internal Standard Solution Methylene Chloride containing β -hydroxyethyltheophylline in a concentration of 400 ng/ml.
- B. Sample Preparation
 - 1) Vortex each plasma sample 10 15 sec
 - 2) Combine 2.4 ml plasma with 8 ml internal standard in a 50 ml erlenmyer flask
 - 3) Shake gently for 15 min
 - 4) Transfer to centrifuge tube and spin @ 2000 RPM x 10 min
 - 5) Aspirate top layer (aqueous and particulate)
 - 6) Transfer 6.4 ml of organic solution to a pointed centrifuge tube with screw cap tops.
 - 7) Evaporate to dryness under N_2 stream (gently warm tips of centrifuge tubes in water bath @ 50°C)
 - 8) Reconstitute with 50 μ l mobile phase
 - 9) Tightly cap tubes and wrap with parafilm and store on ice until injection
- C. Chromatograph Specification
 - 1) Mobile phase mix
 Glacial Acetic Acid 2.0 ml
 Ethanol 50.0 ml
 Methylene Chloride 300.0 ml
 Hexane qs 1.0 l

filter and de-gas place mobile phase reservoir on a magnetic stirrer and keep a bar spinning slowly in the solution

- 2) Pump (Water Assoc Inc, Model # M6000) 3 ml/mn
- 3) Column/precolumn normal phase µ-porasil columns
- 4) Detector (Waters Associate Inc, Model # 440) = 254 Sensitivity = 0.005
- 5) Recorder MV = 10, paper speed = 8"/hr

D. Injection

- 1) Injection Waters Assoc Inc, Model # UK6
- 2) Injection volume = 25 μ l
- E. Glassware Preparation All glassware were prepared for use by soaking in No-Chro-Mix[®] according to manufacturers recommended procedures

<u>Actual²</u>	Drug ³	<u>is</u> 4	PHR ⁵	<u>INV</u> 6	<u>%THEO</u>	$7 \frac{1NV_p}{10}$	<u>&THEOp</u> 17
	8.5 8.5 18.0 26.0 26.0	66 42 66 74 61	0.1288 0.2024 0.2727 0.3514 0.4262	86.3		34.8 54.2 72.9 93.8 113.6	172.0 179.1 103.1
						Var = 3 S dev = 3	00.31 ⁸ 88.89 19.710 19.6 ¹¹
20.2 30.3 50.5 70.7 101.0	5 9 20 20 37	78 82 98 72 8	0.1096 0.2041 0.2778	30.27 52.19 69.28	97.59 99.89 103.34 97.99 100.27	29 54.7 74.3	87.1 97.9 108.4 105.1 109.8
						X = 9 Var = S dev = CV% =	99.8 ¹² 5.23 2.29 2.29
	11 25 34.5 42	101 143 10 16	0.1089 0.1748 0.3255 0.3962	44.03	87.22	29.5 47.0 86.9 105.7 $x = 10$	116.7 93.0 114.8 104.7 00.86 ¹³
						~	

Var = 103.8 S dev = 10.1 CV% = 11.04

APPENDIX IV (con't)

<u>Actual²</u>	Drug ³	<u>15</u> 4	PHR ⁵	<u>INV</u> 6	<u>&THEO</u> 7	INVp ¹⁶	<u>&THEO</u> p ¹⁷
30.3	7	125	0.0560	32.20	99.78	15.44	50.96
40.4	13	135	0.0963	41.96		26.13	64.68
50.5	16	122	0.1311	50.38		35.36	70.02
60.6	21	126	0.1667	59.01		44.80	73.93
70.7	28	130	0.2154	70.80		57.72	81.64
80.8	30	133	0.2256	73.27		60.34	74.79
101.0	27	74	0.3649	106.99		97.38	96.41
							00.58 ¹⁴ 30.17 5.49 5.46
19.54	6.5	82	0.0793	19.43	99.45	21.62	110.65
29.31	13.0	22	0.1066	26.60	90.74	28.86	98.47
39.08	16.0	12	0.1429	36.12	92.43	38.49	98.49
48.85	24.0	23	0.1951	49.84	102.03	52.34	107.14
58.62	23.0	93	0.2473	63.54	108.39	66.18	112.90

X =	98.61 ¹⁵
Var =	52.04
S dev =	7.21
CV% =	7.31

STATISTICS OF POOLED CURVE

FOOTNOTES FOR APPENDIX IV

1. See footnotes 8,12,13,14 for individual regression parameters and 17 for pooled regression parameters 2. Actual prednisone concentration of sample (ng/ml) 3. Drug - Height of drug peak on chromatogram (mm) 4. IS - Height of Internal Standard Peak (mm) 5. PHR - Peak Height Ratio (DRUG/IS) 6. Inverse - Inversely estimated concentration 7. % THEO Percent of theoretical concentration: (Inverse/Actual)100 = %THEO 8. X - Mean &THEO based on regression analysis of 5 points. Results of regression of PHR on actual: $R^2 = 0.9486$; Intercept = 0.07699; Slope = 0.003189. VAR - Variance of the mean 10. SDEV - Standard deviation of the mean 11. CV% - Coeffecient of variation as a percent of the mean 12. X - Mean %THEO based on regression analysis of 5 points. Results of regression of PHR on actual: $R^2 = 0.9988$; Intercept = -0.0289; Slope = 0.00431113. X - Mean %THEO based on regression analysis of 4 points. Results of regression of PHR on actual: $R^2 = 0.9741$; Intercept = -0.0018; Slope = 0.00401 14. X - Mean %THEO based on regression analysis of 7 points. Results of regression of PHR on actual: $R^2 = 0.9723$; Intercept = -0.0770; Slope = 0.0041315. X - Mean %THEO based on regression analysis of 5 points. Results of regression of PHR on actual: $R^2 = 0.9849$; Intercept = 0.0052; Slope = 0.00381

- 16. INVp Inversly estimated concentrations based on pooled standard curve
- 17. %THEOp Percent of the theoretical concentrations
 for pooled standard curve
- 18. X Mean %THEO based on regression analysis of 26
 points.

Results of regression of PHR on actual: $R^2 = 0.9277$; intercept = -0.00221; Slope = 0.00377

TABLE AIV-1	INDIVIDUAL PLASMA FOR SUBJECT 1	PREDNISONE	CONCENTI	RATIONS
Sample #	Drug PK	IS Pk	PHR	Inverse
<u>Treatment B</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 (3) 10 9 11 15 14 10 	96 94 119 107 98.5 112 111.5 131.5 	0.0840 0.0841 0.1117 0.1339 0.1256 0.0760	0 0 22.87 22.89 30.22 36.10 33.92 20.75 0 0 0
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 7 12 21 23 23 17 12 7 6 8	108 148 128 119 129 122 120 121 114 137 114	0.0473 0.0938 0.1765 0.1783 0.1885 0.1417 0.0992 0.0614 0.0438 0.0702	0 13.13 24.47 47.40 47.88 MISSING 50.59 38.17 26.80 16.87 12.20 19.21

TABLE AIV-2	INDIVIDUAL	PLASMA	PREDNISONE	CONCENTRATIONS
	FOR SUBJECT	C 2		

<u>Sample #</u>	Drug PK	<u>IS Pk</u>	PHR	Inverse
Treatment B				
1	0	98		0
2 3	0	101		0
3	8	96.5	0.0829	22.58
4	19	110.5	0.1719	46.18
5 6	20	131	0.1527	41.09
	24	135	0.1778	47.74
7	20	115	0.0739	46.71
8 9	11 5	130 118	0.0846 0.0424	23.03 11.83
10	0	115	0.0424	0
11	0	110		Ö
12	0	100		õ
TREATMENT C				
1	0	110		0
2	4	110	0.0364	10.24
2 3 4	6	141	0.04255	11.87
4	9	110	0.0818	22.28
5	15 20	112 117	0.1339 0.1709	36.10 45.92
6 7	16	99.5	0.1608	43.24
8	8	91	0.0879	23.90
9	3	110	0.0273	7.82
10	0	120		0
11	0	105		0
12	0	110		0

TABLE AIV-3	INDIVIDUAL PLASMA FOR SUBJECT 3	PREDNISONE	CONCENTR	ATIONS
Sample #	Drug PK	IS Pk	PHR	Inverse
<u>Treatment</u> B				
1 2 3 4 5 6 7 8 9 10 11 12	0 0 4 9 12 14 16 11 10 2 0 0	115 94 125 109 100 98 85 86 127 114 108 93	0.0320 0.0826 0.1200 0.1429 0.1882 0.1279 0.0787	$0 \\ 0 \\ 9.07 \\ 22.50 \\ 32.42 \\ 38.49 \\ 50.51 \\ 34.52 \\ 21.46 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 0 10 13 7.5 16 10 5 0 0 0	62 125.5 113 115.5 124 67 127 91 115 145 113 130	0.0866 0.1048 0.1119 0.1260 0.1099 0.0435	0 0 23.56 28.39 30.28 34.01 29.74 12.13 0 0

ENTER AT TONC -~

TABLE AIV-4	INDIVIDUAL PLASMA FOR SUBJECT 4	PREDNISONE	CONCENTR	ATIONS
Sample #	Drug PK	IS Pk	PHR	Inverse
Treatment B				
1 2 3 4 5 6 7 8 9 10 11 12	0 5 12 14 14 14 13 7 3 0 0 0	128 113 133 127 154.5 116.5 122 138 140.5 100 133 103	0.0442 0.0902 0.0945 0.0906 0.1207 0.1066 0.0507 0.0214	$\begin{array}{c} 0\\ 12.31\\ 24.51\\ 25.65\\ 21.62\\ 32.46\\ 28.85\\ 14.05\\ 6.25\\ 0\\ 0\\ 0\\ 0\end{array}$
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 4 13 16 15 18.5 12 12 0 0 0 0	133 121 117.5 134 139 121 143 128 132 127 113	0.0340 0.0970 0.1151 0.1240 0.1296 0.0938 0.0909	0 9.61 26.32 31.12 33.48 34.96 25.47 24.70 0 0

TABLE AIV-5	INDIVIDUAL PLASMA FOR SUBJECT 5	PREDNISONE	CONCENTR	ATIONS
Sample #	Drug PK	<u>IS Pk</u>	PHR	Inverse
Treatment B				
1 2 3 4 5 6 7 8 9 10 11 12	0 0 6 12 14 18 11 9 0 0 0 0 0	162 112.5 118 125 112 133 138 130 106 116 111 112	0.0508 0.0960 0.1250 0.1353 0.0797 0.0692	0 0 14.07 26.05 33.73 36.48 21.73 18.94 0 0 0
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	$ \begin{array}{c} 0 \\ 0 \\ 6 \\ 13 \\ 14 \\ 25.5 \\ 7 \\ 5 \\ 6.5 \\ 0 \\ \\ 0 \end{array} $	119 113 113.5 106 98 130 110 99 135 98 	 0.0529 0.1227 0.1429 0.1962 0.0636 0.0505 0.0481 	0 0 14.62 33.13 38.49 52.63 29.70* 10.71* 7.23* 0 0 0

* Calculated by separate standard curve

TABLE AIV-0	FOR SUBJECT 6	PREDNISONE	CONCENTR	ATIONS
Sample #	Drug PK	IS Pk	PHR	Inverse
Treatment B				
1 2 3 4 5 6 7 8 9 10 11 12	0 0 0 0 15 9 7 8 3 0 0	149 125 123 183 118 145 63 65 97 159 113 163	0.1034 0.1429 0.1077 0.0825 0.0189	0 0 0 28.01 38.48 29.15 22.47 5.60 0
Treatment C				
1 2 3 4 5 6 7 8 9 10 11 12	0 0 6 13 23 27 18 12 5 	106 139 128 114 136 141 144 138 121 124 127 132	 0.0526 0.0956 0.1631 0.1875 0.1304 0.0992 0.0403 	0 0 14.55 25.94 43.85 50.32 35.18 26.89 11.28 0 0

TABLE AIV-6 INDIVIDUAL PLASMA PREDNISONE CONCENTRATIONS

APPENDIX V PREDNISOLONE STANDARD CURVE1

<u>Actual²</u>	Drug ³	IS ⁴	PHR ⁵	Inverse	6 <u>%THEO</u> 7
402.66 604.00 805.33 1016.66 62.90 251.60 629.00 1006.40 100.66 151.00 201.33 251.67 302.00 503.33 704.67 1006.67 97.74 146.12 194.80 243.80	31 82 118 125 10.5 67 138.5 199 21 37 50 51 66 122 173 137 15 30 36 40	40 66 74 61 101 143 106 106 131 125 135 122 126 130 133 74 82 122 122 122 122 93	0.7750 1.2424 1.5946 2.0492 0.1040 0.4685 1.3066 1.8774 0.1603 0.2960 0.3704 0.4180 0.5238 0.9385 1.3008 1.8514 0.1829 0.2459 0.3214 0.4301	404 642 822 1054 61 247 675 966 90 159 197 221 275 487 672 953 101 134 172 228	100.23 106.30 102.04 103.64 97.34 98.25 107.28 95.99 89.36 105.42 97.92 87.98 91.19 96.75 95.34 94.64 103.83 91.45 88.37 93.36
292.20	60	123	0.4878	SD	87.97 = 96.88 ⁸ = 38.819 = 6.2310 = 6.4311
1- Results of regression of PHR on actual: $R^2 = 0.9946$; Intercept = 0.016; Slope = 0.00196					
2- Actual concentration of sample (ng/ml)					
3-11 See Appendix II					

•

PREDONISOLONE STANDARD CURVE (con't)

Subject 5 TxB samples 7-12.

These samples were not treated correctly during the extraction phase. The result was that a double volume of internal standard solution was added. A separate standard curve was constructed to analyze these points.

PREDNISOLONE STANDARD CURVE $(2x \text{ IS })^1$

<u>Actual²</u>	Drug ³	<u>154</u>	PHR ⁵	Inverse ⁶	8THEO7
40.26 80.53	6.0 8.0	194 110	0.0392	33.63 96.01	83.52 119.22
161.06	26	235	0.11063	152.60	94.75
302.00	51	238	0.21428	307.30	101.75

 $X = 99.81^8$

1) Results of regression or PHR on actual: $R^2 = 0.9955$; Intercept = 0.00839; Slope = 0.00067

2) Actual concentration of sample (ng/ml)

3-8) See Appendix II

TABLE: AV-1	INDIVIDUAL PLASMA FOR SUBJECT 1	PREDNISO	LONE CONCEN	TRATIONS
Sample #	Drug PK	<u>IS Pk</u>	PHR	Inverse
Treatment B				
1 2 3 4 5 6 7 8 9 10 11 12	0 39 61.5 59 56.5 58 42 33 3 	96 94 119 107 985 112 111.5 131.5 96 	0 0.4149 0.5168 0.5514 0.5736 0.5179 0.3767 0.2510 0.0313 	0 219.85 271.84 289.49 300.81 272.40 200.36 136.22 MISSING 24.13 0 0
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	$ \begin{array}{c} 0 \\ 11 \\ 60.5 \\ 90 \\ 77 \\ \\ 53 \\ 32.5 \\ 19 \\ 4.5 \\ 2 \\ 0 \\ \end{array} $	108 148 128 119 129 122 120 121 114 137 114	0.0743 0.4727 0.7563 0.5969 0.4344 0.2708 0.1570 0.0395 	0 46.07 249.34 394.03 312.74 MISSING 229.80 146.33 88.27 28.32 0 0

•

TABLE: AV-2	INDIVIDUAL PLASMA FOR SUBJECT 2	PREDNIS	SOLONE CONCE	NTRATIONS
Sample #	Drug PK	<u>IS Pk</u>	PHR	Inverse
<u>Treatment B</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 28 56.5 66 65 53 35 22 12 4 	98 101 96.5 110.5 131 135 115 130 118 115 110 100	0.2772 0.5855 0.5973 0.4962 0.3926 0.3043 0.1692 0.1017 0.0348	0 149.59 306.89 312.91 261.33 208.50 163.42 94.49 60.05 25.92 0 0
Treatment C				
1 2 3 4 5 6 7 8 9 10 11 12	0 11 55 71.5 58 51 31 16 13 3.5 0 0	110 110 141 110 112 117 99.5 91 110 120 105 110	0.1000 0.3901 0.6500 0.5179 0.4359 0.3116 0.1758 0.1182	0 59.18 207.19 339.80 272.40 230.56 167.14 97.86 68.47 0 0

TABLE: AV-3	INDIVIDUAL PLASMA FOR SUBJECT 3	PREDNIS	SOLONE CONCE	NTRATIONS
Sample #	Drug PK	<u>IS Pk</u>	PHR	<u>Inverse</u>
<u>Treatment</u> B				
1 2 3 4 5 6 7 8 9 10 11 12	0 4 40 50 53 65 46 23 19.5 6 0	115 94 125 109 100 98 85 86 127 114 108 93	0.0426 0.3200 0.4587 0.5300 0.6633 0.5412 0.2674 0.1535 0.0526	0 29.90 171.43 242.19 278.57 346.58 284.29 144.59 86.48 35.00 0
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 15 30 77 76.5 37 56 23 14.5 6 3 0	62 125.5 113 115.5 124 67 127 91 115 145 113 130	0.1195 0.2655 0.6667 0.6169 0.5522 0.4409 0.2527 0.1261 0.0414 0.0265	0 69.13 143.62 348.32 322.91 289.90 233.11 137.09 72.5 29.29 21.68 0

TABLE: AV-4	INDIVIDUAL PLASMA	PREDNISOLONE	CONCENTRATIONS
	FOR SUBJECT 4		

<u>Sample #</u>	Drug PK	<u>IS Pk</u>	PHR	Inverse
Treatment B				
1 2 3 4 5 6 7 8 9 10 11 12	0 33.5 59.5 85 77 57.5 49 36 18 4 0 0	128 113 133 127 154.5 116.5 122 138 140.5 100 133 103	0.2965 0.4474 0.6693 0.4984 0.4936 0.4016 0.2609 0.1281 0.0400	$\begin{array}{c} 0\\ 159.44\\ 236.43\\ 349.64\\ 262.45\\ 260.00\\ 213.06\\ 141.28\\ 73.52\\ 28.57\\ 0\\ 0\end{array}$
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 12 47 96.5 80 58 58 32 20	133 121 117.5 134 139 121 143 128 132 127	0.0992 0.4000 0.7201 0.5755 0.4793 0.4056 0.2500 0.1515	0 58.78 212.25 375.51 301.79 252.70 215.10 135.71 85.46 0 0

TABLE: AV-5	INDIVIDUAL PLASMA FOR SUBJECT 5	PREDNISOLONE CONCENTRATIONS			
Sample #	Drug PK	IS Pk	PHR	Inverse	
<u>Treatment B</u>					
1 2 3 4 5 6 7 8 9 10 11 11 12	0 25 63.5 68.5 56 58 49 29 14 6 0 0	162 112.5 118 125 112 133 138 130 106 116 111 112	0.2222 0.5381 0.5480 0.5000 0.4361 0.3551 0.2231 0.1321 0.0517	0 121.53 282.70 287.76 263.27 230.66 189.34 121.99 75.56 34.54 0 0	
T <u>reatment C</u>					
1 2 3 4 5 6 7 8 9 10 11 12	0 27 62 64 47.5 53 15 9 7.5 0 0 0	119 113 113.5 106 98 130 110 99 135 98	0.2389 0.5463 0.6037 0.4847 0.4077 0.1364 0.0909 0.0556	0 130.05 286.89 316.17 256.58 216.17 191.06* 123.15* 70.46* 0 0	

* Calculated by separate standard curve

•

TABLE: AV-6	INDIVIDUAL PLASMA	PREDNISOLONE	CONCENTRATIONS
	FOR SUBJECT 6		

Sample #	Drug PK	IS Pk	PHR	<u>Inverse</u>
Treatment B				
1 2 3 4 5 6 7 8 9 10 11 12	0 14 53 106 76 88 35 22 20 13 0 0	149 125 123 183 118 145 63 65 97 159 113 163	0.1120 0.4309 0.5792 0.6441 0.6069 0.5556 0.3385 0.2062 0.0818	0 65.31 228.01 303.67 336.79 317.81 291.63 180.87 113.37 49.90 0 0
T <u>reatment C</u>				
1 2 3 4 5 6 7 8 9 10 11 12	0 21 68 70 98 89 83 47 20 9 0	106 139 128 114 136 141 144 138 121 124 127 132	0.1511 0.5313 0.6140 0.7206 0.6312 0.5764 0.3406 0.1653 0.0726	0 85.26 279.23 321.43 375.82 330.20 302.25 181.94 92.50 45.20 0