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ABSTRACT

The steady Reynolds stress and turbulent energy equations for steady, horizontally homogeneous mean
flow are used to relate the Reynolds stress #'w’ to the mean wind shear and heat fluxes in the planetary

boundary layer.

The resulting Reynolds stress demonstrates a § power dependence on the stress Richardson number
and a § power dependence on the flux Richardson number. Numerical results of Deardorff are used to
estimate vertical profiles of a heat flux function which results from the derivation. Such calculations and
certain observations suggest that the stress depends mainly on the flux Richardson number in the upper
part of the strongly heated boundary layer but more on the stress Richardson number in the lower part
of the weakly heated or stable boundary layer. The simple model developed appears to be inadequate in
the case of large—z/L where the shear generation of stress becomes negligible and turbulent transports of

stress may be significant.

1. Introduction

The parameterization of turbulent momentum trans-
ports is a fundamental problem inherent in analytical
and numerical models of atmospheric flow. In the
planetary boundary layer (PBL), a general approach
to this problem must include the important influence
of heat fluxes on turbulent momentum transports. Here
we restrict the definition of the PBL to include only
the subcloud layer if condensation occurs.

Theories which relate the Reynolds stress directly to
the mean wind shear can plausibly be modified to in-
clude heat flux effects as long as shear generation of the
stress remains significant. For example, an eddy
viscosity is often parameterized in terms of the turbu-
lent energy via a mixing length, where the turbulent
energy is calculated from a parameterized turbulent
energy equation which includes the heat flux term [see
Zilitinkevich et al. (1967) for a survey]. By simplifying
the turbulent energy equation further, the eddy
viscosity can be conveniently related to the Richardson
number. For instance, Obukhov (1946) assumed a
balance among buoyancy, shear production and energy
dissipation terms in a parameterized turbulent energy
equation to formulate

K/K,=C#(l—a Ri)?
oV
9z
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where K is the actual eddy viscosity, K, the classical

“neutral” eddy wviscosity, V the mean horizontal
velocity vector, Ri the Richardson number, / a length
scale characteristic of low-frequency energy containing
eddies, C. a coefficient in the dissipation term, and a the
inverse of the turbulent Prandtl number. When the
turbulent energy terms are left in flux form, the flux
Richardson number R; becomes the appropriate
stability parameter (Monin and Yaglom, 1971).

Observational studies of the surface layer (Plate,
1971; Wyngaard ef al., 1971) indicate that the influence
of heat fluxes on the stress, as represented by the non-
dimensional wind shear ¢,=k2(80/92)/us, can be
conveniently represented as a function of the similarity
argument z/L where

f—
o /(5
).

w'0’|, is the turbulent heat flux near the surface, 8 a
mean potential temperature, #, the surface friction
velocity and £ von Karmén’s constant. The particular
similarity function depends on the thermal stability
class. Yamamoto et al. (1968) concluded that surface
layer similarity theory could be extrapolated to
reasonably describe a case study of a heated PBL.
However, modification of eddy viscosity theory for the
entire PBL is not always useful since shear generation
of Reynolds stresses may locally become insignificant.
Observations indicate that shear generation is important
in stably stratified low-level flows (e.g., Metcalf and
Atlas, 1972; Lettau and Davidson, 1957), but can
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vanish in the strongly heated PBL (Lenschow, 1970).
As a result, the Reynolds stress in a convectively mixed
PBL may be nearly independent of the small local mean
wind shear (Deardorff, 1972a). In such cases the eddy
viscosity can be extremely large and/or negative.

There is also evidence that turbulent momentum
fluxes in a heated baroclinic boundary layer may be
locally ‘“‘countergradient’” (negative eddy viscosity)
above a region where the mean wind reaches a maxi-
mum (Lenschow, 1972). In fact, Lettau (1970) has
shown that even in the absence of heat fluxes, the
turbulence must satisfy certain coherence and similarity
restrictions before the turbulent diffusion of momentum
is purely gradient. Numerical calculations of Peterson
(1972) indicate that horizontal inhomogeneities in the
neutral boundary layer may also destroy a local shear-
stress relationship.

As an alternative to relating the stress directly to the
mean shear, one can employ the Reynolds stress
equations and complementary temperature (or den-
sity) variance and flux equations (Corrsin, 1956;
Stewart, 1959). A number of investigators [ see Reynolds
(1970) for a survey | have constructed parameterized
forms of the Reynolds stress and various comple-
mentary equations from which the Reynolds stresses
can be numerically computed. The present study will
employ a simple version of the Reynolds stress and
turbulent energy equations, similar to those in Ayra
(1972a), to relate the Reynolds stresses 'z’ and v'w’ to
the local wind shear and heat fluxes, where ', v" and w’
are the velocity fluctuations in the x, ¥ and z directions.
The philosophy of the present development of a
Reynolds stress relationship will be somewhat analogous
to Deardorff’s (1972b) derivation of the countergradient
heat flux formulation. Unfortunately, to apply the
Reynolds stress and turbulent energy equations to PBL
flows, a number of assumptions and parameterizations
are necessary which cannot be rigorously justified.
Since the total consequence of the various assumptions
is uncertain, this development will be used only to
suggest a simple format for the stress formulation. To
complete the relationship, an unknown factor which
has dimensions of length and absorbs certain unknown
coefficients will be estimated independently from re-
sults due to Deardorff (1972a) and Lenschow (1970).
It will be found that where both shear generation and
turbulent heat fluxes are significant, a modified eddy
viscosity can be defined which depends on the flux
and stress Richardson numbers. When shear genera-
tion is not significant, a modified eddy viscosity is not
appropriate.

2. The Reynolds stress equation

The behavior of various terms in the Reynolds stress
equation (e.g., Monin and Yaglom, 1971) is quite un-
certain for the PBL. Wyngaard ¢t al. (1971) computed
these terms from observations in a surface layer thought
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to be horizontally homogeneous. Their analysis seems
to indicate an approximate balance between shear
production, buoyancy production or destruction, and
destruction by the pressure fluctuation term. Although
the pressure fluctuation term was not measured directly,
its importance was argued deductively. Observations
by Lenschow (1970) in a convectively mixed PBL
indicate that the shear generation term may become
locally insignificant at higher elevations. Based on the
above observational studies we simplify the more
complete stress equation to the form

_ U g 37 op
— 't '8, — 5! <u'-——i—w’———> =0, (1)
dz 0, 0z dx '

where 8, and j are respectively a mean virtual potential
temperature and a mean density in the PBL, p’ and 8,/
are the fluctuating pressure and virtual potential tem-
perature, and U is the mean velocity in the x direction.
This equation could be formally derived by making
the Bousinessq assumption, assuming stationarity and
horizontal homogeneity of the mean velocity field, and
neglecting viscous, Coriolis and triple correlation terms.
The pressure fluctuation term will be parameterized as
ap’ ap’ — ‘
' ‘(u’-—l—w'—) =Cpl lqu'w’, 2)

0z dx

where C,, is an empirically determined coefficient and
¢’/2=3(u"*+2"2+w") is the turbulent kinetic energy.
This parameterization was originally developed
by Rotta (1951) for the pressure strain rate
pp (9’ / s+ 0w! /dx) part of the pressure fluctuation
term. The justification of such a parameterization is
based on the general belief that 1) the pressure strain
rate term tends to produce isotropy, thus reducing
anisotropic moments such as #'w’; and 2) the rate of
destruction of such anisotropic moments is proportional
to the magnitude of the anisotropic moments them-
selves. In a more general treatment, Lumley and
Khajeh-Nouri (1973) and Lumley (1970) develop a
functional expansion for the pressure fluctuation term
based on a “weak anisotropy” approximation. The
lowest order term of this expansion is analogous to the
right-hand side of (2) provided that one adopts certain
scaling arguments whereby e=¢*/(Cd) (see Tennekes
and Lumley 1972), where ¢ is the viscous dissipation of
turbulent energy. The importance of this lowest order
term is central to the present development. Higher
order terms in the functional expansion of Lumley and
Khajeh-Nouri as well as additional terms suggested for
the pressure strain rate term (Lilly, 1967; Crow, 1968;
Daley and Harlow, 1970; Reynolds, 1970) will not be
considered in the present simplified analysis.

Substituting (2) into (1) and solving for #'w’, we
obtain
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- U g
w'w' = C,,,‘Vq“(—w’2 —+7—u’0v’>.

0z 0,
This expression defines the equilibrium Reynolds stress
which results from a balance between shear generation,
the buoyancy term, and the parameterized pressure
destruction term. Employing the stress Richardson
number R;, we obtain

— U
ww' = —lig(1—Ry)—
Jz

h=1C, W/ g?)

g __oU
RSE'__%Iou/ /<w/2_>
[ dz/ J

v

where /; is proportional to / except for a dependence on

the anisotropy through the factor w?/¢%. The format
K~Iq has been used in a large number of boundary
layer studies some of which are summarized in
Zilitinkevich et al. (1967). The modification in (3) due
to the stress Richardson number represents the direct
buoyancy production or destruction of Reynolds stress.

3. The turbulent energy equation

To close the relationship between the Reynolds stress
and mean wind shear, a turbulent energy relationship
will now be formulated from the turbulent energy
equation. Results due to Lenschow (1970, 1972) and
Wyngaard and Coté (1971) indicate that the most
important terms in the turbulent energy equation in the
atmospheric boundary layer include shear production,
buoyancy production or destruction, viscous dissipa-
tion, and the triple correlation term. Metcalf and Atlas
(1972) concluded that in a stably stratified layer, un-
steadiness due to Kelvin-Helmholtz type waves may
also be important. Lenschow (1972) found horizontal
advection of turbulent energy to be important in a case
study of air mass modification. Again, we will presently
consider only stationary, horizontally homogeneous
flow. The pressure fluctuation term, which cannot be
measured directly, is thought to be less important and
is also neglected in this study.

The triple correlation term is apparently quite
significant in the surface layer where it transports
upward an excess of turbulent energy generated by
shear production (Wyngaard and Coté, 1971), and
near the top of the PBL where it deposits turbulent
energy to help compensate for energy dissipation and
buoyancy destruction associated with entrainment or
growth of the mixed layer (Lenschow, 1970). One might
expect the triple correlation term to be particularly
important in a baroclinic PBL where the shear may
vanish and reverse sign with height.

The triple correlation term is generally parameterized
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as a diffusive type term (e.g., Monin and Yaglom, 1971).
However, this parameterization yields a nonlinear
turbulent energy equation which prevents local solu-
tion. If such a parameterization is reasonable, then
large transports of stress or turbulent energy imply
that the stress is determined by shear and heat fluxes
on a larger scale. In this case a local shear-stress rela-
tionship is less meaningful. In order to relate the stress
to local shear and heat fluxes, the triple correlation term
must presently be neglected, which may be the most
serious omission of this development.

In a separate treatment of the turbulent energy
equation, the diffusive type parameterization of the
triple correlation term was included and the turbulent
energy was numerically computed on a grid system
using Newton’s iteration method for a system of non-
linear equations. These results indicate that for neutral
barotropic flow with zero shear at the top of the PBL,
this term decreases the turbulent energy in the lowest
part of the PBL and increases turbulent energy near
the top of the PBL. In the rest of the PBL, percentage
changes in the turbulent energy profile due to this term
are generally small for a wide range of suspected values
of the coefficient of the turbulent energy diffusion term.
Peterson (1972) has shown that the parameterized
triple correlation term may be particularly important
in a horizontally inhomogeneous surface layer.

With the assumptions discussed above, the turbulent
energy equation simplifies to

— U g
—u'w ——+(§_ 00, —e=0,
0z »

where € is parameterized as ¢*/(Cd) as discussed pre-
viously. The use of a separate equation to predict e or /
appears to significantly improve turbulence models
(Jones and Launder, 1972; Lumley and Khajeh-Nouri,
1973). For the sake of simplicity, such an equation is
not included in the present study.

Employing the flux Richardson number, the turbu-
lent energy equation reduces to the common form

Y
w'w’ —a—(l —Rp)+¢/(Cd)=0
Z

g oU
Ry=— w’@,,’/ u'w ——)
0 9z

v

4)

4. The stress relationship

Solving for the turbulent energy from (4) and substi-
tuting into the Reynolds stress equation (3), we obtain

10
—(1—-R)}(1—R,)? i
Jz , (5)

Z

u’w’ = _122

122‘—“: Ceiléll"s"
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where I, is a parameter which has dimensions of length
and will be determined later. By determining /, inde-
pendently, the above derivation is used only to suggest
a format for relating the Reynolds stress to heat fluxes
and mean wind shear;thus, the employment of certain
unproven parameterizations is less crucial. Formulation
(5) differs from previous theories in that direct heat flux
effects are represented by the stress Richardson number.
This is the appropriate Richardson number representing
direct heat flux effects since it is defined from the
Reynolds stress equation itself, while the derivative
and flux Richardson numbers can be defined only in
terms of the turbulent energy equation. The flux
Richardson number still enters into the formulation

since the vertical heat flux influences %’ and thus the
shear generation of the Reynolds stress. Although the
Reynolds stress exhibits only a square-root dependence
on the flux Richardson number, changes in the flux
Richardson number may dominate stress variations
in certain flow situations, as will be discussed later.
Relationship (5) could be simplified by assuming a
relationship between R, and R, such as is empirically
formulated in Wyngaard et al. (1971). Such an assump-
tion may be necessary in modeling situations where

'8, is not generally computed.

Relationship (3) indicates that the effective eddy
viscosity increases (decreases) as —u/6,” and @'6,” be-
come more positive (negative). Note that if both #'¢,
vanishes (R,=0) and »’8," vanishes (R;=0), Eq. (5) re-
duces to the classical mixing length formulation.
Neglecting the influence of heat fluxes on /;, relationship
(5) also indicates that as R,— 1 or Ry — 1, turbulence
cannot be maintained against buoyancy destruction.
Observations indicate that R,/R; for stably stratified
flow is greater than unity and as large as ~4, in which
case (5) implies a critical R; as low as 0.25. The influence
of direct buoyancy destruction of stress on the critical
R;, via destruction of shear generation of turbulent
energy, has been emphasized by Ayra (1972a). He
predicted a critical R; of 0.15-0.25. While shear
generation directly supports only the fluctuating
velocity in the mean shear direction, the other turbulent
energy components depend on shear generation through
the pressure fluctuation terms.

In the other extreme where buoyancy generation
dominates, results due to Lenschow (1970),' Businger
et al. (1971) and Deardorff (1972a) indicate that
w'8,’/w'8,’ and R,/R; become small. If R,/R,becomes
sufficiently small, (5) becomes approximately
Udu

2

w'w' (1-R)*

ww' = —l*—
dz

This is the form predicted by Obukhov (1946) and
Monin and Yaglom (1971). However, the above PBL

1 Lenschow’s horizontal heat fluxes and %’? data are unpublished.
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observations and numerical simulations suggest that
the R, term can be neglected only locally in the upper
part of the strongly heated PBL.

When mean wind shear nearly vanishes, such as in
the interior of a convectively mixed layer, the eddy
viscosity formulation is no longer appropriate. Mean
shear on a larger scale and fluctuating wind shear may
still generate Reynolds stresses indirectly through other
terms. The role of wind shear as free convection is
approached is currently a subject of debate (Ayra,
1972b; Wyngaard et al., 1972). In the present simplified

.model, the stress is supported entirely by heat flux

generation when shear generation vanishes. In this
case, the resulting stress relationship may represent an
intolerable over-simplification. Tennekes (1970) has
suggested that for large —z/L, high-frequency, heat
flux transporting eddies may only weakly interact with
the slower momentum transporting eddies [see also
Tennekes (1971) and Businger (1971) for further
discussion ]. Results of Wyngaard e/ al. (1971) and
Deardorff (1972b) indicate that buoyancy generation
of stress relative to buoyancy generation of turbulent
energy decreases significantly with increasing —z/L.
Since Lenschow (1970) found the turbulent transport
of turbulent energy to be important in a case study
heated PBL, one might speculate that turbulent
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Fic. 1. The stress Richardson number R, for various stability
classes (as indicated by the ratio of z;, the inversion height, to L,
the Monin-Obukhov length for moist unsaturated air), as calcu-

lated from Deardorff’s (1972a) nondimensional profiles of #’8” and

" dU/dz, where U is the flow parallel to the surface stress. Values
are shown only for z/z;<0.8, since values in the upper part of
Deardorfi’s model may be strongly influenced by the zero shear
upper boundary condition at z/z;=1. Terminated dashed arrows
indicate that R, approaches a large number at next level of compu-
tation due to very small wind shear. Values for flow perpendicular
to the surface stress are not shown as they were considerably
smaller and were strongly influenced by the zero shear upper
boundary condition.
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transport of stress also becomes important for large
—z/L. The present simplified development indicates
that the vertical shear of the mean wind and Reynolds

stress vector puw'w'i+pr'w'j are aligned when the hori-
zontal heat flux perpendicular to the shear vanishes.
Analyses due to Johnston (1970) indicate that the stress
and shear vectors may not necessarily be closely aligned.
There is no general agreement on the relationship
between these shear and stress directions in the PBL,
as is indicated by conflicting analyses of the ‘‘Leipzig
Wind Profile” (Lettau, 1950; Swinbank, 1970; Carson
and Smith, 1973).

While the stress and flux Richardson numbers
represent direct effects of heat fluxes on the stress and
turbulent energy, heat fluxes may also influence the
stress indirectly by modification of coefficients in the
pressure fluctuation and turbulent energy dissipation
terms. Due to this type of coupling, neglect of turbulent
transports, and other approximations in the above
development, we cannot expect J, to be completely
independent of the heat fluxes. In the next sections /,
and the heat flux function will be estimated inde-
pendently of the above development.

5. The heat flux function

The heat flux function, ®= (1—R,)}(1—R,)}, repre-
sents the direct modification of the stress due to tur-
bulent heat fluxes. In the unstable case (upward heat
fluxes), the increase of —R; with height and heating
may be largely responsible for the increase of ® with
height and heating, even though & exhibits only a
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Fi16. 2. The flux Richardson number R; as calculated from Dear-
dorff’s (1972a) nondimensional profiles of #'w’ U /dz and Dear-

dorff’s specified nondimensional heat flux w'0'=[1— (3;/2)]%
See Fig. 1 for further explanation. Lenchow’s (1970) case study
corresponds approximately to —z/L=31.5.
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F1c. 3. The heat flux function @ calculated from R, and R pro-
files (Figs. 1 and 2). See Fig. 2 for further explanation.

square-root dependence on R,. This is due to the fact
that —R; increases much more rapidly with height
than —R,. This behavior is evident in Figs. 1-3 which
show Ry, R, and & calculated from PBL numerical
simulations of Deardorff (1972a). In fact, in the middle
and upper portions of the strongly heated PBL, R,/R;
decreases to O(1073) which is also consistent with
observations of Lenschow (1970). Similarly, surface
layer measurements analyzed by Wyngaard ef al. (1971)
indicate that R,/R; becomes much less than unity
as —g/L—w 3Kz,

It is noteworthy that in the strongly heated PBL’s,
the importance of shear generation decreases dramati-
cally with height in a transition region. The height of
this transition relative to —L is greater than 1 and
increases with increasing —z;/L. This transition divides
the heated PBL into two layers. In the upper layer 1)
shear generation is unimportant, 2) R,/R; is small, 3)
free convection scaling is useful (Deardorff, 1972a), and
4) an eddy viscosity formulation is inappropriate. In the
lower layer, shear generation is generally significant al-
though its significance decreases considerably with in-
creasing heat flux.

If the stress is large at the top of the PBL one might
expect a third layer adjacent to the PBL top where
shear generation is again significant. Deardorff’s data do
not reflect this feature because of the zero shear upper
boundary condition. The importance of allowing non-
zero stress at the top of the PBL has been recently
emphasized by Deardorff (1973). Significant stress at
the top of the PBL may be induced by entrainment of
different velocity fluid from above an inversion capping
the PBL, or may result from moist convection-induced
turbulent transports across a lifted condensation level
capping the PBL.

In contrast to unstable cases, R;/R; in stable flow
remains approximately constant or increases with
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¥16. 4. The function Iy calculated from @ (I'ig. 3) and Dear-

dorff’s (1972a) numerical values of dU/9z and #'w’. The triangles
indicate that shear generation of the stress is less than 5%, of the
buoyancy generation. The right ordinate zf/#, is for the neutral
case only; the neutral case I, is not shown for zf/u,>0.275 be-
cause the stress was insignificant. See Fig. 2 for further explanation.

increasing height and increasing stability, as is indicated
by measurements of Ayra and Plate (1969), Webster
(1964) and Wyngaard e al. (1971). As a result, ® de-
pends more on R, than R,. These measurements also
indicate that R, increases (and therefore & decreases)
with increasing height and increasing negative heat
flux. In summary, the heat function.® is more dependent
on R, at lower levels and near neutral or stable condi-
tions while ® is more dependent on R, at higher eleva-
tions with stronger heat fluxes.

6. The function /,

Values of I, calculated from data due to Deardorff .

(1972a) are shown in Fig. 4. In the weakly heated PBL,
both the magnitude of /, and the height of maximum /,
increase with increased heat fluxes. In the strongly
heated PBL, further increases in heat fluxes result in a
decrease in I,, as the heat flux function increases faster
than the stress. The dependence of I, on heat fluxes is
related to the various assumptions and parameteriza-
tions leading up to (5). For example, one might expect
the relative importance of turbulent transports of both
turbulent energy and Reynolds stress to increase with
increasing turbulent energy. In (5) such effects would
have to be absorbed by variations in /..

In the lowest part of the PBL, where shear generation
is important, J; increases approximately linearly with
height with a slope of about 0.35 in neutral conditions
and about 0.5 in the heated PBL. Above this layer in
the transition where the importance of shear generation
decreases rapidly with height, 8%,/32>>0. This feature
of I, is generally not present in mixing length profiles
developed for the neutral boundary layer (e.g., Lettau,
1962 ; Blackadar, 1962).
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Fig. 4 also shows Cd=g/¢ calculated from e values
for the heated PBL due to Lenschow (1970). Lenschow
used the Kolmogoroff hypothesis for the inertial sub-
range to determine the turbulent energy dissipation.
Cd is considerably smaller than the corresponding /, for
the strongly heated PBL, and is less height-dependent.
Physical interpretation of the differences between I,
and C. is not appropriate, since the existence of a
physical meaning of /; is not obvious.

7. Further discussion

The intent of the above analysis is to relate the
Reynolds stress to local wind shear and heat fluxes in
a manner which is simple yet consistent as possible
with the physics of the Reynolds stress equation. It is
clear that formulation (5) has more general application
than classical eddy viscosity and mixing length theories,
especially when the heat flux terms are important.
However, when turbulent transports of the Reynolds
stress and turbulent energy (triple correlation terms)
and certain pressure fluctuation terms are important,
one cannot categorically claim usefulness for relating
the stress to the local shear and heat fluxes. Here the
use of bulk boundary layer properties (Csanady, 1972)
or layer integration (e.g., Geisler and Kraus, 1969;
Lavoie, 1972) may be more profitable.

A second disadvantage of (5) is that the behavior of

horizontal heat fluxes and w'? cannot be easily related
to typical model variables since their behavior in the
PBL is not well known.

Greater availability of measurements of PBL fluctu-
ating quantities in the future may increase our knowl-
edge of the behavior of these variables as well as allow
reinement of the more complete parameterized Rey-
nolds stress and turbulent energy equations. The result-
ing improvement of the more complete models may
suggest improvements for simple stress relationships.
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