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Increased temperatures due to anthropogenic-induced climate change may raise 

the threat of extinction for taxa with sessile life histories (e.g., plants) in the near 

future. Linking climate change models to demographic models may provide useful 

insights into the potential effects of environmental changes on rare plants, and 

therefore aid in their current and future conservation. Population demographers 

generally agree that mechanistic models from a reductionist perspective are necessary 

to test assumptions in population drivers.

For the first study, I assessed the climate vulnerability of a rare plant species, 

Pyrrocoma radiata, with a mechanistic model of four climatically-similar populations. 

I used environmentally-driven demographic models to estimate vital rates and 

population sizes from a nonlinear, nonparametric regression with local climate 

variables. I assessed the utility of this environmentally-correlated, stage-structured 

population matrix model compared to a stationary model of independent and 



identically-distributed environmental stochasticity. I then simulated future population 

projections based on climate conditions predicted by General Circulation Models 

(GCMs) under opposing emission scenarios. 

The second study hopes to answer population-level questions using a 

traditionally community-level method, non-metric multidimensional scaling, which 

considers correlation structure between response variables and can be used to find 

environmental correlates of the ordination axes. Demographic data on a threatened 

perennial, Astragalus tyghensis, were collected from five sites in the Tygh Valley, OR. 

I considered correlation structure between demographic vital rates to find 

environmental correlates of the ordination axes.

The search for an environmental driver of population vital rates was successful 

for the two study species. Previous year dry dormant season precipitation likely affects 

the fertility rates a year later in P. radiata populations, and dry growing season 

reference evapotranspiration rates positively correlated with a growth gradient in A. 

tyghensis. Based on predicted precipitation, P. radiata is expected to rapidly decline 

by 2050, but this may be due to biases in the two GCMs and reliance on only one 

environmental factor. The NMS ordination adequately captured most of the variation 

in transition elements for the years and populations from A. tyghensis demographics.  I 

provided support to the claim that model predictions can improve with the inclusion of 

mechanistic relationships. The inclusion of abiotic drivers in models used to predict 

population trends is supported by our study and may enhance predictive power in 

population viability assessments under changing climates.
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USING LOCAL CLIMATE TO EXPLAIN TEMPORAL VARIATION IN RARE 
PLANT POPULATIONS

CHAPTER 1

General introduction

Increased temperatures due to anthropogenic-induced climate change may 

increase the threat of extinction for taxa with sessile life histories (e.g., plants) in the 

near future (Parmesan 2003). The Intergovernmental Panel on Climate Change (2007) 

predicts drastic shifts in global temperatures, potentially cascading to increases in 

extreme weather events like hurricanes, droughts, and wildfires. Not only do we 

expect shifts in mean temperatures and precipitation, but also increased variability in 

climate and increased frequency of extreme weather (Easterling et al. 2000), which we 

currently witness on a global scale. Effects of shifting climates on species distributions 

is actively being studied to determine beneficial mitigation strategies for at risk 

species, such as relocation to new habitats with suitable microclimate conditions 

(Kreyling et al. 2011). Some species may have wide plasticity in traits, phenology, or 

migration to buffer these changes (Tingley et al. 2009), but others may need assistance 

through conservation efforts.

Previous attempts to predict species spatial distributions in changing climates 

utilized presence/absence data in bioclimatic envelope models (Pearson et al. 2002, 

Thuiller 2003). Originally, these habitat suitability models assumed species were 

limited by all factors in their historic, Hutchinsonian niche, and that their future 
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survival depends on maintaining all aspects of that niche (Hutchinson 1957). Some 

criticized this assumption in envelope models due to the reliance on correlations 

between species observations and habitat conditions to predict future occurrences 

without physiological mechanisms in the model (Pearson and Dawson 2003). Newer 

models now use combinations of life history, biotic interactions, and habitat (Jiguet et  

al. 2007, Keith et al. 2008), which may be a necessary complexity as some species 

have wider resiliency than predicted and could be limited by a few biotic or abiotic 

factors.

Demographers generally agree that mechanistic models from a reductionist 

perspective are necessary to test assumptions in population drivers (Crone et al. 2012). 

These drivers hopefully explain variation in life history stages, specifically in temporal 

variability. Traditionally, this variability was attributed to environmental stochasticity, 

and modeled through randomization of all deterministic population growth rates 

calculated from age- or stage-structured population matrices throughout the sampling 

period (Menges 2000, Caswell 2001). However, correlations among measured vital 

rates (growth, survival, fertility) may explain variation in population dynamics 

attributed to environmental stochasticity (Horvitz and Schemske 1995). We need more 

mechanisms to explain these correlations among population vital rates, such as density 

dependence, and correlations with time, such as disturbances. Fortunately many 

studies provide evidence to support population models driven by herbivory (Ehrlén 

1995), fire (Kaye et al. 2001, Quintana-Ascencio et al. 2003), hurricanes (Pascarella 

and Horvitz 1998), genetics (Picó et al. 2008), and climate (Saltz et al. 2006, Doak 
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and Morris 2011).

Here, I explain two studies that use climate drivers explicitly in demographic 

population matrix models of two rare plant species found in Oregon and Idaho. I used 

long-term (N ≥ 9) demographic data from multiple populations of two herbaceous 

perennials to find the best climate covariate of each species, and I then developed a 

mechanistic model that is applicable across populations in the species' range. I 

selected a single, parsimonious climate driver through two relatively novel variable 

selection methods. I then projected future population sizes for one species using 

climate predictions from two general circulation models in the IPCC fourth assessment 

report (2007).
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CHAPTER 2

Forecasting the effects of climate change on rare plant populations
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Abstract

Rare plants that are strongly limited by environmental factors may increase in 

extinction risk due to local climate shifts. Linking climate change models to 

demographic models may provide useful insights into the potential effects of 

environmental changes on rare plants, and therefore aid in their current and future 

conservation. Here, I assessed the climate vulnerability of a rare plant species, 

Pyrrocoma radiata, with a mechanistic model of four climatically-similar populations. 

I used environmentally-driven demographic models to estimate vital rates and 

population sizes from a non-linear, nonparametric regression with local climate 

variables. I assessed the utility of this environmentally-correlated, stage-structured 

population matrix model compared to a stationary model of independent and 

identically-distributed environmental stochasticity. I then simulated future population 

projections based on climate conditions predicted by General Circulation Models 

(GCMs) under opposing emission scenarios. Previous year dry dormant season was 

the best predictor of P. radiata population growth, suggesting a strong unimodal 

relationship. However, this relationship was not equally strong across all four study 

sites. Still, the climate-driven model more accurately and precisely matched the 

observed population trend compared to the null model (without climate drivers). 

Based on predicted precipitation for the four sites, P. radiata is not expected to rapidly 

decline by 2050, but this may be due to biases in the two GCMs and reliance on only 

one environmental factor. The inclusion of abiotic drivers in models used to predict 
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population trends is supported by our study and may enhance predictive power in 

population viability assessments under changing climates.

Introduction

Changes in global climate may cause shifts in species distributions by affecting 

vital rates and increasing extinction risk for locally adapted, rare and endangered plant 

populations (Parmesan 2006, Ohlemüller et al. 2008, Vitt et al. 2010). Climate 

forecasts for the next century predict increases in average temperature as well as 

extreme temperature events for most of the planet (Salinger 2005). Rare plants that are 

strongly limited by certain abiotic factors will be most at risk to local climate shifts. 

This may not be the case if phenotypically plastic species have wide niches and can 

buffer effects of the altered climate. Climate envelope models generally assume that 

abiotic conditions must remain within historic limits for continued species viability, 

while few have addressed the more mechanistic links between environments and 

population vital rates (Keith et al. 2008). Keith et al. (2008) coupled spatial stochastic 

population models to bioclimatic habitat models. Their results indicated complex 

interactions among life histories, disturbance, and distribution regulate the extinction 

risk for three plant species under climate change scenarios. Linking local climate to 

demographic population models may provide useful insights into potential effects of 

environmental changes on rare plants, and therefore aid in their current and future 

conservation.
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A useful and widely accepted method of assessing a population's viability is 

through its vital rates (survival, growth, and fertility) in demographic population 

projection models (Caswell 2001). These models have generally improved through 

long-term sampling, manipulative studies, and correlations to biotic and abiotic factors 

driving the population demographics (Menges 2000, Bakker et al. 2008, Crone et al. 

2011). Simulating population projections using stochastic processes adds uncertainty 

caused by environmental variation and tends to produce a wide estimate of population 

viability (Tuljapurkar 1990, Boyce et al. 2006). Recent studies have shown the 

importance of temporal correlations with population vital rates, indicating 

improvements in accuracy and precision of population predictions (Tuljapurkar and 

Haridas 2006). These typically mechanistic approaches link environmental factors 

such as nitrogen (Gotelli and Ellison 2006), disturbance (Evans et al. 2010), and soil 

moisture (Machinski et al. 2006) to population vital rates. The number of studies 

linking climate to demographic population models is increasing (Saltz et al. 2006, 

Jenouvrier et al. 2009, Dalgleish et al. 2011, Davison et al. 2010, Hunter et al. 2010, 

Doak and Morris 2011, Nicolè et al. 2011). However, to make strong inferences on the 

relationship to climate covariances, these reductionist models require wide time-series 

data on a species throughout its distribution.

Here, I assess correlations between observed seasonal weather patterns and 

population growth rates with eleven years of demographic data on a rare, endemic, 

herbaceous perennial. I developed a mechanistic model of population growth response 
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to climate with measurements obtained from local weather stations. I then simulate 

four plant populations for one focal species using the demographic and climate data to 

compare two hypothetical models. The relative difference among simulation outputs 

from these models gives an idea of the impact on these populations due to climate 

conditions. Our proposed model includes two levels of sophistication over traditional 

population projection models: a density dependent function based on an empirically-

supported relationship of seedling survival and adult fertility, and an environmentally-

driven population growth rate through a nonlinear regression model, backed by theory 

and statistically validated in this study.

Studies with mechanistic models of climate driven populations are increasing 

(Maschinski et al. 2006, Saltz et al. 2006, Dalgleish et al. 2011, Davison et al. 2010, 

Hunter et al. 2010, Nicolè et al. 2011), but non-linear relationships of vital rates and 

environments are rarely documented (Doak and Morris 2011, Jenouvrier 2012). Early 

attempts to explain plant demographics with climate covariates used a matrix selection 

method by associating matrices with extreme weather (Maschinski et al. 2006, 

Marrero-Gómez et al. 2007, Jenouvrier et al. 2009, Hunter et al. 2010). Studies using 

regression models found convincing relationships with vital rates and local climate 

factors (Saltz et al. 2006, Dalgleish et al. 2011, Nicolè et al. 2011). Dalgleish et al. 

(2011) and Nicolè et al. (2011) utilized stage-less, integral projection models 

(Easterling et al. 2000), a potentially more appropriate technique than stage-structured 

matrix models to demonstrate climate effects on plant population dynamics. Support 
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for non-linear effects on plant population growth may be increasing. A recent study by 

Doak and Morris (2011) found a non-linear trend between snow cover and two North 

American tundra plant populations, and Jenouvrier et al. (2012) found emperor 

penguins are at risk to anomalies in sea ice cover at both extremes.

For our assessment, I used a data set for a plant species with more than five 

years of demographic data to observe population trends due to environmental variation 

(Kaye and Pyke 2003, Ellis et al. 2012). I chose a rare, native herbaceous perennial, 

Snake River goldenweed (Pyrrocoma radiata) Nutt., Asteraceae, a narrow endemic 

found in the Snake River Canyon of eastern Oregon and adjoining Idaho, USA. P. 

radiata is listed as Endangered by the Oregon Department of Agriculture, as a Species 

of Concern by the U.S. Fish and Wildlife Service, and a Bureau of Land Management 

Special Status Species (Oregon Natural Heritage Program 2001). Population growth 

and reproduction are impacted negatively by livestock grazing and insect herbivory 

(Kaye 2002), while competition from exotic, annual forbs and grasses poses additional 

threats to population viability (Mancuso and Moseley 1993).

I asked three main questions:

1.) Are P. radiata population growth rates predictable from weather 

conditions? I expect plant population growth to have a nonlinear relationship to local, 

seasonal weather, as theorized by unimodal distributions along environmental 

gradients (Whittaker 1956).
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2.) Do models with climate drivers fit observed P. radiata population trends? I 

consider two population projection algorithms: one without climate variables (null 

model) and one with climate variables explicitly linked to population growth rates.

3.) How will climate change affect P. radiata population viability in the near 

future? I simulated 10,000 iterations of the climate-driven population algorithm using 

two opposing emissions scenarios to assess population viability while considering 

uncertainty in climate predictions.

Methods

Study species and demographic data

Growing seasons range from May to August with flowering from June to July, 

seldom to September. Seed production is vital to this species as plants do not 

reproduce vegetatively. Seedlings will germinate as early as May (Kaye and Meinke 

1992). This species is non-dormant, and seed does not survive over one year in seed 

banks (Kaye et al. 1990). Plants are herbaceous, with the exception of a woody 

taproot, and heights of erect flowering stems are mostly above 40 cm.

Populations are usually found in rocky, open soil, on south to west-facing, 

gentle to steep (> 50%) slopes, with elevations from 640 to 1830 m. Soil is slightly to 

very calcareous, often overlaying a shale formation. P. radiata occurs within a 

grazing-modified version of a sagebrush/grassland community consisting of Artemisia 

tridentata, Agropyron spicatum, and Poa sandbergii. The regional climate tends 
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toward mild, warm winters due to the Pacific Maritime air mass, and dry, hot 

summers.

Table 1. P. radiata population slope aspect, elevation, and geographic location.

Four populations were monitored for eleven years (Table 1), and ten stage-

structured demographic transition matrices (Leftkovitch 1965) (Eq. 1) were created for 

each year t to t +1 of study and for each population based on four life history stages : 

seedling, juvenile (≤ three leaves), vegetative (≥ four leaves), and reproductive (Kaye 

2002, Kaye and Pyke 2003, Ellis et al. 2012) (see appendix for matrices). Individual 

plant survival, leaf number, and flowering head number were recorded annually to 

calculate three types of life history vital rates: survival (S), growth (G), and fertility 

(F), where Aij = ƒ(F, S, G) (Eq. 1). The intrinsic population growth rate, λ, was 

calculated from the maximum eigenvalue of each transition matrix (Caswell 2001).

Eq. 1
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Climate drivers

Climate predictor estimates were calculated from PRISM (Parameter-elevation 

Regressions on Independent Slopes Model), a climate mapping system that uses 

measurements from weather stations, a digital elevation model, and expert knowledge 

of complex climatic extremes to produce continuous grid estimates of weather 

parameters (Daly et al. 1994). Our predictors included seasonal precipitation and 

maximum temperature estimated from monthly PRISM estimates at 30 arc-second 

(~800m) grid resolution, which was small enough to differentiate conditions at all four 

populations. Monthly precipitation and maximum temperature were totaled and 

averaged, respectively, across four life history seasons specific to P. radiata and its 

habitat: wet growing season (May-Jun), dry growing season (Jul-Aug),wet dormant 

season (Nov-Apr), and dry dormant season (Sep-Oct).  Wet seasons were those months 

with higher than mean annual precipitation, while growing seasons were those during 

which the species typically has green leaves (Kaye 2002). The climate predictors were 

then grouped into two time lags according to the current and next year's demographic 

monitoring, assuming there are instant and delayed effects from climate on the 

population (e.g., warm months might decrease seedling survival through increased 

evapotranspiration rates in the current year, while a drought the previous year might 

cause reproductive adults to allocate resources to survival and decrease fertility in the 

current year). Climate predictors used in variable selection totaled sixteen (2 climate 

drivers x 4 seasons x 2 time lags).
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Predictor selection

Analyses were conducted in R, version 2.15.1 (R Development Core Team 

2012), using scripts developed for this study and adapted from a similar study 

(Quintana-Ascencio et al. unpublished).

I used nonparametric regression with a local mean Gaussian weighting kernel 

to assess the best one-predictor, nonlinear model of population growth (McCune 

2006). A nonlinear regression was preferred over an ordinary least-squares regression 

due to an expected unimodal population growth across an environmental gradient. 

There are no coefficients in this nonparametric regression, which instead uses the 

predictor values and a tolerance level, or proportion of the predictor range, to produce 

nonlinear regressions. Because the data are fixed, tolerances are incrementally 

adjusted to find the best fit to the data, with constraints on over-fitting.

I chose the model with the highest cross-validated R2 (xR2) from a single 

climate predictor of λ averaged across all study populations for each year. Cross-

validation used a jackknife approach to calculate the ŷ values by excluding the ith data 

point in estimating ŷi (Antoine & McCune 2004). For weak models, xR2 values can be 

negative when the residual sum of squares is larger than the total sum of squares. A 

maximum of one variable was chosen for each model due to limited λ values collected 

for each site (N = 10). I constrained models by a minimum average neighborhood size 

(the average predictor kernel width) of 25% of the sample size (10 x 0.25 = 2.5 data 
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points in a local regression). This was a second overfitting protection applied to find 

the optimum tolerance in the local model kernel.

 After I chose the best climate predictor for the species, population models with 

the chosen predictor of λ were assessed for each of the four populations. Each 

population model was determined by the same minimum average neighborhood size 

(25% of N) as in the site-averaged population model. Model significance was checked 

with a randomization test to calculate an empirically-derived p-value (Manly 1997), 

although the small sample size limited the power of significance tests.

Simulations: External validation

To assess the validity of our climate-driven population assumption, I compared 

simulations of each population's sizes through time with two population projections: 

our environmentally-driven population growth (ED) model and an independent and 

identically-distributed environment (IID) model. The ED model assumes that vital 

rates are correlated with the environment, while the IID (or null) model assumes that 

each year's environment is unrelated to the previous year's environment, and all 

environments are equally likely in a given year (i.e., entire matrices are selected at 

random per iteration) (Caswell 2001, Kaye and Pyke 2003). Both models incorporated 

density dependence on population size by an exponential decay function (Eq. 2) of the 

previous year's fertility rate times the current year's seedling death rate, to estimate 

current year seedling survival rates. This is biologically reasonable assuming the 
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proportion of surviving seedlings increases when seed production is low the previous 

year, and vice-versa, which is supported by an observed negative correlation between 

the two vital rates for each population (Spearman rank correlations = -0.45, -0.72, 

-0.26, -0.35 for sites 1-4 respectively). The density dependent function was applied 

after vital rates were estimated or matrices were selected. Each population projection 

algorithm was run for 1,000 iterations to estimate the trajectory's 95% confidence 

intervals.

Eq. 2

To assess the utility of the ED model over the IID model, I calculated three 

measures of the difference between observed and estimated population sizes: accuracy, 

precision, and correlation. Accuracy was calculated as the ratio of change in observed 

population size due to the absolute difference between median estimated population 

size and observed size (Eq. 3). I similarly calculated precision as the ratio of change in 

the observed population size range due to the difference in the 97.5th and 2.5th 

quantiles of the estimated population sizes (Eq. 4). I measured correlation as the 

Spearman's rank correlation coefficient between observed and estimated population 

sizes for the period of observation (Eq. 5). I then calculated the means and standard 

errors among all iterations of accuracies, precisions, and correlations across all 

projected years (Table 3).

Eq. 3
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Eq. 4

Eq. 5

I constructed three vital rate matrices by individual plant survival (Stj), fertility 

(Ftj), and growth (Gtji) for each of the four stages at year t, because these vital rates, 

more than the transition matrix elements, represent the population measurements in 

the field. For each column (j) of the three vital rate matrices, I used the same climate 

variable in nonlinear, nonparametric regression models as above to estimate a new set 

of vital rates (ŷ). I then calculated a new transition matrix from each iterated 

bootstrapped vital rate estimate (Eq. 1) and cross-multiplied it by the previous year's 

stage structure vector, starting with the initial stage structure from year t, to produce 

the next year's stage structure (Caswell 2001). Uncertainty in model estimates was due 

to confidence around vital rates estimates predicted from 1,000 bootstrapped 

regressions of each vital rate and the climate driver.

Simulations: Climate predictions

To assess population viabilities under climate change scenarios, I extrapolated 

vital rates from climate predictions using the previous nonparametric regressions, and 

thus uncertainty was applied as in the external validation simulations. Climate 

predictions were from two General Circulation Models (GCMs), Hadley CM3 

(Gordon et al. 2000, Pope et al. 2000) and CSIRO Mk3 (Gordon et al. 2002), both 
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used in the fourth IPCC climate change assessment (IPCC 2007) and down-scaled to a 

30 arc-second resolution. Special report on emissions scenarios (SRES) A2 (increasing 

emissions) and B1 (reduced emissions) were chosen for the two GCMs, respectively, 

to represent the most pessimistic and optimistic forecasts for the region (i.e., the 

pessimistic forecast is Hadley CM3 SRES A2, and the optimistic forecast is CSIRO 

Mk3 SRES B1). Monthly climate predictions were averaged or totaled as mention 

above to match the chosen climate driver season interval.

I ran simulations using the ED population projection algorithm to compare 

outcomes in population size estimates among the two climate scenarios. The ED 

model used the same predictor chosen in the population models. Vital rates were 

estimated with the nonparametric regression models as in the external validation. 

These simulations were projected to the year 2050 and iterated 10,000 times to 

empirically estimate the population size trajectory's 95% confidence intervals.

To calculate the stochastic population growth rate log(λs), I took the log ratio of 

subsequent pairs of population sizes, log[N(t + 1) / N(t)], and calculated the arithmetic 

mean of all log ratios along the climate scenario time series. The mean log(λs) was 

calculated from the average of 1,000 iterations of log(λs), where each log(λs) was 

simulated from a bootstrapped regression of the vital rates. A 95% confidence interval 

around the mean log(λs) was empirically calculated from the iterations of log(λs). A 

log(λs) value of less than zero, or λs less than one, indicates a decreasing population.
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Results

Climate driver

Total precipitation in the previous year's dry dormant season had the highest 

xR2 (-0.13, R2 = 0.35) with site-averaged λ (Table 2). Mean maximum temperature in 

the previous year's dry growing season was the next best predictor of λ (xR2 = -0.14, 

R2 = 0.39) (see Appendix Table S6). Total precipitation for this season during all years 

of population monitoring ranged from 14.0 (driest year) to 66.7 (wettest year) mm 

across all sites.

The nonlinear regression of total dry dormant season precipitation on the site-

averaged deterministic population growth rate had a noticeable unimodal curve 

(Figure 1). Even the 95% bootstrapped variability bands retained a unimodal shape. 

The peak of the curve is around 34 mm of total precipitation, although the highest λ 

seems to correspond to around 32 mm. The nonlinear regressions of dry dormant 

season precipitation against each of the 17 vital rates showed that the fertility rate of 

reproductive adults was the only vital rate with a similar unimodal curve (Figure 2).

Table 2. Cross-validated R2 (xR2), R2, and p-values for each nonparametric model of 
P. radiata population growth rate from total precipitation in the previous year's dry 
dormant season. The site-averaged model statistics are on the first row.
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Figure 1. Nonlinear regression of seasonal precipitation on site-averaged population 
growth rates. 95% variability bands are estimated with 100 bootstrap regressions.

Simulations: External validation

All population size estimates were improved in the three metrics under the ED 

model over the IID model, with the exception of accuracy in the Site 3 model (Table 

3). The largest improvement in accuracy (5.12%) and precision (39.46%) was the in 

Site 1 model. ED models for sites 2 and 4 (0.608 and 0.824, respectively) had the 

largest improvement in correlation coefficients than those of IID models.

The ED model is better than the IID model at matching peaks and troughs of 

the observed population size (Figure 3). The lagged effect of precipitation on the 

population is apparent on years 1993 and 1998 where the population size estimation 

rises the following year in response to the previous year's precipitation around 30 mm.
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Simulations: Climate predictions

All population models projected slight population decreases by 2050 under the 

two emission scenarios. Population projections were similar across different GCMs 

under opposing emission scenarios. Median projection estimates decreased under the 

B1 than the A2 scenarios by 2050 for the site-averaged population (Figure 4). I 

estimated the mean λs to be below one for the SRES B1 and A2 scenarios, except for 

Site 1 under the A2 scenario (Table 4). The 95% confidence interval around mean λs 

overlapped one, except for Site 4 with an interval below one for both scenarios. The 

Site 3 model estimated the fastest decrease in population, with at least a 14% decrease 

under the A2 scenario, while the Site 1 model estimated at most a 13% increase in 

population size per year.

Table 4. Mean stochastic population growth rates (λs) with 95% confidence intervals 
of the mean, calculated from 1,000 iterations of P. radiata population projections 
under the ED algorithm. The average population λs is calculated from the average vital 
rates and climates across study populations. B1 is the optimistic emissions scenario 
and A2 is the pessimistic emissions scenario.
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Discussion

Climate driver

I found relatively strong relationships between population growth rate and a 

climate driver (Table 2). Kaye (2002) found P. radiata population growth linearly 

increased with fall precipitation in the same year, but flower and seed production 

positively correlated with winter and summer precipitation, respectively. This supports 

our findings that previous year precipitation may affect flowers production, followed 

by seedling recruitment the following year. Dalgleish et al. (2011) also showed a 

lagged climate effect on a sagebrush steppe, perennial bunchgrass population that was 

positively associated with previous year precipitation, yet this was a linear trend. 

Other studies indicating a unimodal pattern with precipitation are rare, but a few note 

unimodal relationships between mean annual precipitation and rain use efficiency 

(Paruelo et al 1999, Yang et al 2010).

Fertility rates of reproductive adult plants had the strongest nonlinear 

relationship with precipitation in the previous year's dry dormant season or a late into 

the dry growing season. The inherent properties of the nonparametric regression local 

mean weighting kernel constrained other vital rates from extrapolation past their 

observed range, where weaker regression estimations approached the mean of 

observed vital rates. Hence, our ED model is mostly driven by changes in fertility 

originating from changes in precipitation. Precipitation appears to have a lagged effect 

on fertility through resource allocation by reproductive adults.

A manipulative study is needed to determine if precipitation has a direct or 
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indirect effect on next year's fertility. Reproductive adult plants could be allocating 

resources directly from early dormant season rainfall, or rainfall could be affecting 

herbivory rates on P. radiata and thus indirectly affecting populations (Kaye 2002). 

Likewise, runoff from intense rain events could also increase soil, litter, and seed loss 

(Descheemaeker et al. 2006, Cerdà and Garcı́a-Fayos 2002) causing negative effects 

on fecundity from high precipitation.

A potential predictor not considered in this study is the variability within the 

seasonal climate drivers. The assumption here is that plant populations are more 

affected by extreme than average climatic events (Boyce et al. 2006, Verboom et al. 

2010). Extreme cold periods, for example, even if a rare event in the growing season, 

may be enough to decimate seed production or seedling recruitment. Precipitation in 

the dry dormant season was mostly attributed to intense rainfall over 10 mm during 

one or two days for eight of the ten study years according to measurements collected 

from two local remote automated weather stations at Dead Indian Ridge, ID and 

Morgan Mountain, OR. These events may be obscured in averages and totals, yet this 

daily variance may serve as climatic driver in some species.

Microclimate may also play an important role in determining the viability of 

plant populations. Topographic aspect and tree or shrub canopy shade will have direct 

effects on plants by altering solar exposure, with potentially larger temperature 

variation than expected from anthropogenic climate change (Suggitt et al. 2011). 

Larger shrubs and trees may ameliorate the detrimental effects of localized climate on 

smaller herbs through facilitation by insulation, litter, or protection from herbivores.
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Simulations: External validation

Accuracy, precision, or trend match all improved under the ED model 

compared to the IID model (Table 3). The validation procedure indicates a robust 

estimate of P. radiata population sizes and provides support for models that include 

temporal covariates rather than considering all years independent and identically-

distributed. Quintana-Ascencio et al. (unpub.) found similar results using nine 

different plant species under a linear regression ED model. To our knowledge, no 

other study has explicitly compared population projections between these two 

environmental stochasticity models. Gotelli and Ellison (2006) related the two 

approaches, deemed stationary for the IID model and non-stationary for the ED model, 

by their determinants of extinction risk. They summarized that for the stationary 

stochastic model (IID), extinction risk is affected by variances and covariances of 

matrix elements, and for the non-stationary stochastic model (ED), extinction risk is 

affected by the initial population structure and the coefficient or linking function of the 

time-series model to population vital rates.

Simulations: Climate predictions

Rainfall is more difficult to predict than temperature, yet global water vapor is 

expected to increase by 7% for each degree centigrade increase, leading to around 1-

2% increase in precipitation volume (IPCC 2007). The Pacific Northwest might see 

more rainfall from higher water vapor as well as melted snow from higher 
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temperatures. The predicted response of P. radiata populations to precipitation in the 

prior year's dry dormant season was very similar by 2050 for both forecast scenarios. 

Dry growing season rainfall predictions under the two GCMs and their opposing 

emissions scenarios ranged from 8.4 to 87.8 mm and 6.6 to 117.1 mm and averaged 

34.0 and 38.8 mm for the A2 and B1 scenarios, respectively. These scenarios predict a 

slight decrease (-0.05 mm) under the optimistic B1 and a slight increase (0.01 mm) 

under the pessimistic A2 in dry dormant season rainfall for these four populations, 

which may explain the greater decline of the B1 over the A2 scenario (Figure 4).

Even with slightly higher predicted precipitation for the optimistic scenario, 

the population projections generally overlapped. This trend was consistent across all 

the populations due to the small differences in precipitation in the downscaled 

predictions, therefore a site-averaged population model was deemed more 

conservative for the relatively small spatial differences. The mean stochastic 

population growth rates indicated a decreasing population size in the near future 

(Table 4), suggesting that average seasonal changes in precipitation in the dry dormant 

season alone may cause a rapid decline or extinction in P. radiata in the short-term. It 

also suggests that the worst-case scenario of greenhouse gas emissions has higher 

uncertainty than the best-case scenario in the next 30-40 years, but comparable median 

projections.

Conclusion

Future management of P. radiata may need to track the frequency of high and 
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low precipitation events during the dry season, and, more importantly, track the years 

when fertility rates are higher than average for each population. The four populations 

evaluated here all had higher than average fertility rates during the same years, despite 

their differences in elevation, slope, aspect, and plant density.

The inclusion of abiotic drivers in models used to predict population trends is 

supported by our study. I incorporated multiple validations of each model to protect 

from over-fitting observed data, and I chose one environmental driver as a simple and 

parsimonious predictor of population vital rates. This is one of the first studies (Doak 

and Morris 2011) to utilize nonlinear, nonparametric regression to predict population 

vital rates by fitting trends to data instead of data to an assumed trend. Our results 

from the climate predictions under our ED model suggest that P. radiata population 

sizes will not drastically differ among forecast emission scenarios, and it supports 

including biotic or abiotic environmental covariates in population projection models to 

improve their predictive power (Crone et al. 2011).
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Abstract

 The threat to plant populations by changes in climate is expected to increase as 

global temperatures rise. However, populations may not be driven by all abiotic 

factors in their current range, which is the assumption of most climate envelope 

models. Determining which abiotic factors are correlated with population vital rates is 

a more reductionist approach to predicting species ranges and extinction risk under 

future climates. This study hopes to answer population-level questions using a 

traditionally community-level method, non-metric multidimensional scaling, which 

considers correlation structure between response variables and can be used to find 

environmental correlates of the ordination axes. I modeled plant population growth 

using annual, demographic measurements to track individual survival, growth, and 

fertility (vital rates) as a differential change in those measurements. Demographic data 

on a threatened perennial, Astragalus tyghensis, were collected from five sites in the 

Tygh Valley, OR from 1991 to 2000, and climate data was spatially and temporally 

interpolated from weather station data as total precipitation, mean temperature (dew 

point, minimum, and maximum), and mean reference evapotranspiration rates across 

eight biologically relevant seasons. Two axes that were highly correlated with 

population growth and fertility explained 75.2% and 15.2% of the variation, 

respectively, in individual transition rates in a non-metric multidimensional scaling 

ordination. The asymptotic population growth rates for each transition matrix covaried 

along both axes, towards increasing growth (R2 = 74.2%) and fertility (R2 = 1.4%), 

and average reference evapotranspiration rates during the dry-growing season had the 
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strongest association with both axes combined (R2 = 32.8%). This ordination approach 

gives demographers the ability to analyze multiple transition rates at once and to 

further overlay environmental or biotic gradients in the ordination space to assess their 

linear relationships. Climate may explain a large portion of the variation in A. 

tyghensis population growth, specifically in transitions to larger and smaller-sized 

plants. By identifying important environmental drivers of population growth, this 

represents a mechanistic improvement over previous approaches, with emphasis on 

biological realism necessary to project population risk given severe, predicted climate 

change.

Introduction

The threat to plant populations by changes in climate is expected to increase as 

global temperatures rise (Parmesan 2006, Ohlemüller et al. 2008). The 

Intergovernmental Panel on Climate Change (2007) predicts a global temperature 

increase by about 0.2°C per decade, and a likely increase in the frequency of extreme 

heat and precipitation. Some argue that plants already threatened with extinction may 

need to be moved to more suitable environments (McLachlan et al. 2007). However, 

populations may not be driven by all abiotic factors in their current range, which is the 

assumption of most climate envelope models (Keith et al. 2008). One or two 

environmental factors could largely drive population persistence, while others are 

relatively negligible. Determining which abiotic factors are correlated with population 

vital rates is a more reductionist approach to predicting species ranges and extinction 
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risk under future climates, but long-term time series of abiotic conditions and 

population demographics are needed for accurate predictions.

Previous studies explicitly modeled environmental effects on plant populations 

in hopes to increase accuracy in projection estimates of population risk (Menges and 

Dolan 1998, Menges 2000, Kaye et al. 2001). In a five year experimental study, Kaye 

et al. (2001) found that populations of a wetland perennial, Lomatium bradshawii, 

were positively effected by fire disturbance. Longer studies rarely have experimental 

designs to determine environmental effects on populations. Environments in these 

studies are thus assumed completely stochastic or based on a reasonable correlate to 

explain the temporal variation, yet few have assessed if plant populations correlate 

with environments (Maschinski et al. 2006, Dalgleish et al. 2010, Davison et al. 2010, 

Doak and Morris 2011, Nicolè et al. 2011) because sample years are generally much 

fewer than the number of predictors. The mean vital rates of the population (response 

variables) also tend to exhibit an inherent correlation structure (e.g., the transition rate 

of a stage to a larger plant is negatively correlated to the rate of the same stage to a 

smaller plant).

To overcome the limitation of multiple, correlated response variables, I utilized 

multivariate ordination to find the best explanatory variable of stage-structured 

population transition matrices from ten years of demographic data across five 

populations of a rare, endemic, native perennial. A similar approach was previously 

used by Silvertown et al. (1992, 1996), where elasticities of population mean stasis, 

growth, and fertility rates are axes on a two-dimensional, triangular ordination, each 
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scaled to one. Silvertown et al.'s mechanistic, reductionist method is analogous to 

Grime's descriptive CSR theory (Grime 1977), but results from the two ordinations do 

not correlate well, although their populations were not at equilibrium (i.e., at stable 

stage distributions) and from different regions (Silvertown et al. 1992). The larger 

issue with the triangular ordination is the inherent negative association between stasis 

and growth that is inherent in the transition rate calculations (Caswell 2001). This 

study hopes to answer population-level questions using a traditionally community-

level method, non-metric multidimensional scaling, which considers correlation 

structure between response variables and can be used to find environmental correlates 

of the ordination axes.

Demographic data on a threatened herbaceous perennial, Astragalus tyghensis, 

were collected from five populations in the Tygh Valley, OR from 1991 to 2000 

(Carlson and Kaye 2001).

This study intends to answer two questions:

 Can I simplify the correlation structure in a stage-structured matrix model 

of Astragalus tyghensis?

 Do Astragalus tyghensis stage-structured matrices strongly covary with 

climate?

Methods

I modeled plant population growth using annual, demographic measurements 

to track individual survival, growth, and fertility (vital rates) as a differential change in 
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those measurements. Mean vital rates of each year constitute the elements in a square 

transition matrix based on the species' life history, where the matrix dimensions 

depend on the number of age (Leslie 1945) or size (Lefkovitch 1965) classes assumed 

in the life history; the latter formally called a stage-structured matrix. These matrices 

can then be used in forecasts of population extinction risk, and have relevant attributes 

of typical square matrices, such as left eigenvectors representing reproductive values 

and dominant eigenvalues representing asymptotic growth rates.

Annual measurements were taken of individual plant diameters (cm), longest 

stem lengths (cm), inflorescence counts, and apparent herbivory (binary) within 15 

permanent, 5 x 5m plots. Fruit and seed counts were estimated from a sub-sample of 

plants each year per site. Plant longest stem length from previous to subsequent years 

determined growth to five successive, arbitrary stages (seedlings and four reproductive 

sizes) (Carlson and Kaye 2001). The probabilities of individuals surviving and 

transitioning among stages parametrized the vital rate transition matrix. Inflorescence 

counts and first year germinants determined the average, individual fertility for each 

stage within the matrix. Three transitions (seedlings remaining seedlings, seedlings 

becoming stage four plants, and seedlings becoming stage five plants) were excluded 

from analysis due to their impossible or improbable chance of occurrence. There were 

45 total transition matrices for the study (9 year-to-year transitions x 5 sites). The 

dominant eigenvalue, or asymptotic population growth rate, was calculated for each 

matrix (Caswell 2001).

Climate data was provided through PRISM (Daly et al. 1994) as an 800 x 800 
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m grid of modeled, total monthly precipitation (mm), and mean monthly temperature 

(°C) (dew point, minimum, and maximum). Monthly precipitation and temperature 

estimates were totaled and averaged, respectively, across wet and dry, and growing 

and dormant seasons, as well as the four combinations of these biological seasons 

(wet-growing, dry-growing, wet-dormant, and dry-dormant). A synthetic climate 

factor, reference (without specific plant coefficients) evapotranspiration (ET) 

(mm/month), was calculated using the FAO 56 Penman-Monteith equation (Penman 

1948, Monteith 1965, Allen et al. 1998) with environmental variables from PRISM 

temperatures, Remote Automated Weather Stations (Wamic Mill, OR station) mean 

wind speed (m/s), and University of Oregon Solar Radiation Monitoring Laboratory 

(Madras, OR station) global solar radiation (MJ/m2). ET rates were also averaged 

across the eight biological seasons.

To answer the study questions, the demographic data were arranged in a 45 x 

22 matrix (P) of interannual transitions for each plant stage (Table 5). The climate data 

were structured in a 45 x 46 matrix (CF) of mean and total, seasonal climate measures, 

year and site groupings, asymptotic population growth rates, and first difference (year 

[t + 1] - year [t]) total seedling plant counts and herbivory rates. Before analysis, the P 

matrix was relativized by maximum values of population variables (columns) 

respectively. This was done in order to remove the strong bias of fertility rates 

(generally greater than one) compared to survival and growth rates (between zero and 

one). Also this retained the interannual (row) variation by not altering the population 

variable ranks across years. Outlier analysis confirmed that no interannual mean vital 
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rate Euclidean distances fell outside of three standard deviations of the mean vital rate 

distance in all years, which supported the use of Euclidean distances in the ordination.

All analyses were conducted in PC-ORD v6.02 (McCune and Mefford 2011). 

A blocked multi-response permutation procedure (MRBP) (Mielke 1984) using 

median alignment and Euclidean distance was conducted to test the null hypothesis of 

no difference in population variables between years within sites (blocks) for the P 

matrix.

Nonmetric multidimensional scaling (NMS) (Kruskal 1964, Mather 1976) was 

used to ordinate the P matrix because of the method's versatility in handling nonlinear 

relationships. Euclidean distance measure was used based on its emphasis of variation. 

The NMS was first run on autopilot mode under the thorough setting with ties 

penalized. The axis scores were saved and used as starting coordinates to rerun the 

NMS using 100 runs with real data, each with 500 iterative steps, rotation to 

orthogonal principal axes, and the number of axes determined by the autopilot NMS.

1 2 3 4 5

1 - 2,1 3,1 4,1 5,1

2 1,2 2,2 3,2 4,2 5,2

3 1,3 2,3 3,3 4,3 5,3

4 - 2,4 3,4 4,4 5,4

5 - 2,5 3,5 4,5 5,5

Year N

Ye
ar

 N
+1

Table 5. Transition matrix structure for A. tyghensis.
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Climate factors were checked for covariance with ordination scores by vector 

overlays of each climate factor in the ordination space. Factors were considered 

biologically relevant if they explained at least 25% of the variation in all ordination 

axes combined using the Pythagorean theorem (hypotenuse length of R2 values 

between the variable and axes). Statistical significance of environmental factor 

regressions was disregarded in this case due to the focus on biological significance and 

the small likelihood of non-significance at R2 ≥ 0.25.

Results

Vital rates differed strongly between years while controlling for sites in P (A = 

0.18, p < 0.001). The final NMS on P, using the autopilot axis scores as starting 

coordinates, cumulatively explained 90.4% of the variation in the transition rates, with 

75.2% attributed to axis one and 15.2% to axis two. The NMS on autopilot produced a 

two-dimensional ordination of the P matrix, supported by a randomization test using 

250 iterations (p = 0.004), with a final stress of 13.59 and a final instability of 0 based 

on the standard deviations in stress over the last ten iterations.

Individual transition rates were strongly associated with both axes in the NMS 

on P (Table 6). The strongest was growth from stage four to five plants (R2 = 66.8%), 

which was positively correlated with axis one, but barely noticed on axis two. 

Retrogression of plants from stage three to two had the strongest negative correlation 

(R2 = 61.3%) with axis one. This was a general trend for growth and retrogression 

transitions along axis one, dubbed the growth axis (Figure 5). Fertility of stage five 
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plants had the strongest positive correlation (R2 = 36.8%) with axis two, while growth 

from stage two to five plants had the strongest negative correlation (R2 = 15.4%) with 

axis two. Fertility transitions were generally associated with axis two, with a few 

exceptions. The asymptotic population growth rate, lambda, correlates along both axes 

(R2 = 74.2%), towards increasing growth (R2 = 74.2%) and fertility (R2 = 1.4%) 

(Figure 5). First difference seedling counts correlated with the combined axes (R2 = 

26.8%), which was positively associated to axis one (R2 = 24.4%) and axis two (R2 = 

11.0%).

According to the final, two-dimensional NMS ordination on P (Figure 5), 

average ET during the dry-growing season had the strongest association with both 

axes combined (R2 = 32.8%), with most of its correlation on axis one (R2 = 32.7%); 

other factors were not visible due to R2 values below the 25% criteria. The second 

strongest association with the combined axes was average ET during the dry season 

(R2 = 24.1%). These two ET variables were positively correlated with axis one and 

slightly negatively correlated with axis two. Total precipitation during the dry-dormant 

season and average dew point temperature during the wet-growing season had the 

strongest negative associations with axes one (R2 = 7.3%) and two (R2 = 7.6%) 

respectively. First difference, average herbivory had the strongest, positive correlation 

with axis two (R2 = 7.3%).
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Figure 5. NMS ordinations of matrix transition rates in vital rate space, with 
population growth (lambda) and evapotranspiration in dry-growing season (e.dg) 
vector overlays. Transition rates are in reference to Table 5.
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Table 6. Correlations of transitions rates with the first and second axes of the 
population transition rates ordination. Bold values are biologically relevant based on 
R2 > 0.25.
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Discussion

Climate may explain a large portion of the variation in Astragalus tyghensis 

population growth, specifically in transitions to larger and smaller-sized plants. Nearly 

33% of the variation in population stage transitions was explained by dry-growing 

season evapotranspiration alone. This is reasonable given the nature of the synthetic 

variable, which uses three temperature variables from the CF matrix, and 

mechanistically, given the physiological relevance of water loss from plant surfaces. 

The IPCC (2007) predicts increased ET rates in the geographic range of A. tyghensis 

during its growing season. Therefore this species may persist well in its current 

locations as climate changes, due to the positive correlation between the climate driver 

and the population vital rates.

Extremely dry years could negatively affect A. tyghensis vital rates, but I found 

no strong relationships with rainfall and instead observed a positive correlation with 

reference ET, a function of temperature, humidity, wind speed, and solar radiation, and 

population vital rates. This was supported by the strong correlation between the 

growth axis scores and the lambda vector, which had a similar vector angle to the 

climate factor. Our calculation of reference ET, by definition, did not include a 

vegetation component. Actual (here I mean vegetative) ET is measured at the plant 

stomata where gas exchange occurs. Sumner and Jacobs (2005) showed that reference 

ET was about 1.5 to 2 times higher than actual ET in low rainfall months, which was 

explained by a strong positive linear relationship to leaf-area-index (LAI). Thus plant 
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LAI and abundance should directly affect vegetative ET rates, not necessarily the 

reverse. The dry-growing season for A. tyghensis occurs during June and July when 

the population LAI might be lower than in the wet season, causing an overestimation 

of ET rates. I did not measure LAI in our study, although reference ET calculations 

were consistent for all seasons and years, potentially alleviating any overestimation 

bias on annual variation. Still, the question of what might explain a positive 

relationship between reference ET and population growth is unanswered. There could 

be direct effects on photosynthesis by solar radiation or indirect effects through 

suppression of competing plants, especially invasives that may not tolerate extreme 

abiotic conditions.

A high proportion of the variation in the P matrix was explained in the two 

axes. The strength of the second axis to describe a fertility pattern was weak compared 

to the growth pattern in the first axis. Even though the population transition rates were 

removed from the demographic matrix structure and rescaled to new values, they 

maintained information about the population as interpreted in the ordination scores. 

This ordination approach gives demographers the ability to analyze multiple transition 

rates at once and to further overlay environmental or biotic gradients in the ordination 

space to assess their linear relationships. It  also addresses the correlated axes criticism 

towards Silvertown et al.'s (1992) elasticity ordination triangle (Caswell 2001). This 

method however does not account for interacting or nonlinear relationships among 

environmental factors, which may be behind the mechanisms involved in regulating 

population fluctuations. One could, however, use axis scores as dependent variables in 
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population models with interacting factors.

Identifying important drivers of population growth through population 

transition or vital rate ordinations may improve efforts to prioritize conservation of 

many threatened and endangered populations, either through in situ protections or 

identification of appropriate sites for assisted migration. The transition rates that have 

the strongest positive and negative covariance with either population growth or 

fertility ordination scores may indicate the transitions in the plant's life history that 

have the strongest effect on population growth or fertility. Likewise, environmental 

drivers with strong positive or negative covariance with the ordination scores may 

describe which factors affect or are affected by plant growth or fertility. By identifying 

important environmental drivers of population growth, this represents a mechanistic 

improvement over previous approaches, with emphasis on biological realism 

necessary to project population risk given severe, predicted climate change.
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CHAPTER 4

General conclusions

The search for an environmental driver of population vital rates was successful 

for the two study species. Previous year dry dormant season precipitation likely affects 

the fertility rates the following year in Pyrrocoma radiata populations, and the 

relationship was strongly unimodal. Dry growing season reference evapotranspiration 

rates were positively correlated with a vital rate gradient representing population 

growth in Astragalus tyghensis, possibly due to solar radiation increasing stomatal 

function or stressful conditions negatively affecting interspecific plant competitors. In 

both studies a single climate driver explained > 30% of the variation in population 

growth, and, with the exception of one moderately-associated competing driver of A. 

tyghensis, all other climate variables had weak relationships with the species. Our 

variable selection process benefited from the long-term data sets across multiple sites. 

The combined models for population growth, with population as a blocking factor, 

gave us more power when selecting the best climate driver than if I used one site 

alone; not many demographers have this luxury (Dalgleish et al. 2011). However, 

these populations were spatially located in a small enough geographic area that 

climate did not vary much among sites, which meant regressions were idiosyncratic 

when vital rates varied among sites.

For choosing a climate driver, our demographic ordination produced two 

gradients from transition element space, which simplified the variable selection step as 
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both response gradients (growth and fertility) were orthogonal, and thus uncorrelated. 

The NMS ordination adequately captured most of the variation in transition elements 

for the years and populations from the A. tyghensis data set. Still, I have two concerns 

with the ordination approach: 1) I should have used vital rates instead of transition 

elements from the population matrices because they represent actual field 

measurements, and 2) I wanted the ability to consider nonlinear relationships with 

environmental factors and ordination gradients. The first concern can be addressed 

through algebraic manipulation, but the second concern needs a different approach 

that might combine the two studies in this thesis to produce new estimates of 

population vital rates or sizes.

I provided support to the claim that model predictions can improve with the 

inclusion of mechanistic relationships (Crone et al. 2011) (Table 2). Stationary 

stochastic models (IID) still have potential given their simplicity (Gotelli and Ellison 

2006), but as demographic data sets increase with more sample years, I expect non-

stationary stochastic models (ED) to increase for predictive purposes due to higher 

accuracy and precision than stationary stochastic models. I also expect to see more 

comparisons of competing model approaches as long-term data sets become more 

common and accessible. With computer-intensive simulations rarely a limitation in 

current studies, a comparison of recent advances in population projection models is 

now possible. A comparison of Bayesian (Evans et al. 2010), integral projection 

(Ellner and Rees 2006), diffusion approximation (Varughese 2009), and structured 

matrix models (Caswell 2001), either through direct simulations on a set of species or 
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through a meta-analysis, would be interesting, although sufficient comprehension of 

all modeling approaches by even a few authors seems to be the limiting factor.
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Table S2. Pyrrocoma radiata population sizes for the study populations.

Table S3. Pyrrocoma radiata initial population stage counts. S – seedlings, J – 
juveniles, V – vegetatives, R – reproductives.

Table S4. Pyrrocoma radiata deterministic population growth rates.
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Table S6. Climate variable model selection results. The highest cross-validated R2 

(xR2) was the selection criterion.
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Table S8. Astragalus tyghensis deterministic growth rates for the study populations.

Table S9. Astragalus tyghensis dry growing season reference ET rates for the study 
populations.




