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Question answering forums like Reddit have been quite effective in 

improving social interaction and disseminating useful information. Community 

members ask a variety of questions related to a subject which are answered by 

other community members. The answers are given ratings by other members. In 

this thesis we study the problem of learning to recognize good answers using the 

community ratings as supervision. We design an attentive clustering neural 

network architecture to discriminate good answers from bad answers to a 

question. Taking advantage of the problem setting where there are usually many 

answers to the question that need to be scored,  we also develop a collective 

classification model which clusters similar answers together, and biases the 

learner so that the answers in the same cluster have similar scores. The proposed 

solution uses a wide convolutional neural network to learn the text representation 

and computes a normalized score based on the relationship between the question 

and the answer and the similarity of the answer to other answers in the same 

cluster.   Empirical results demonstrate that our collective classification model 

outperforms the baseline models and achieves the state-of-the-art performance 

in multiple benchmark domains. 

presented on December 11, 2018 

Prasad Tadepalli



©Copyright by Purbasha Chatterjee 

December 11, 2018 

CC BY SA 



    Answer Selection with Attentive Clustering 

by 

Purbasha Chatterjee 

A THESIS 

submitted to 

Oregon State University 

in partial fulfillment of 

the requirement for the 

degree of 

Master of Science 

Presented December 11, 2018 

Commencement June 2019 



Master of Science thesis of Purbasha Chatterjee presented on December 11, 

2018 

APPROVED: 

Major Professor, representing Computer Science 

Head of the School of Electrical Engineering & Computer Science  

Dean of the Graduate School 

I understand that my thesis will become part of the permanent collection of Oregon 

State University libraries.  My signature below authorizes release of my thesis to any 

reader upon request.  

Purbasha Chatterjee Author 



ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my advisor Prof. Prasad 

Tadepalli for his continuous support during all the stages of this thesis. I would 

like to thank him for all the guidance and emotional support offered during these 

last two years. I would like to thank John Walker Orr for his constant support 

and advice. 

I would like to express my appreciation and thanks to my friends and family 

members for their invaluable support in all my struggles and extending their 

support to continue my journey at OSU. 



TABLE OF CONTENTS 

Page 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1 

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

2.1 Information Retrieval Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   7   

2.2 Deep Learning Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9 

2.3 Attention Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   10 

3 Answer Selection by Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

3.1 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   12 

3.2 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

3.2.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

3.2.2 Convolutional Neural Network- Wide & Narrow. . . . . . . . . . . . . . . .  14 

3.2.3 Text Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

3.3 Attentive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   15 

3.3.1 Scoring and Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . .   17 

4 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

4.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

4.3 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

4.4 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    22 

5 Conclusions and Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    24 

6 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   25 



LIST OF TABLES 

Table  Page 

Table1:  An example of Question- Good Answer and Bad Answer pair . . . . . . 2 

Table2:  An example of two Good Answers . . . . . . . . . . . . . . . . . . . . . . .  . . . .  3 

   Table3: An example of Answers where the bad has the most common word... 4 

Table4:  An example of Question-Good Answer pair with no common words. . 8 

Table5: Dataset Statistics . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . 20 

Table6: Performance of different systems . . . .. . . .  . . . .  . . . .  . . . .  . . . .  . . . .     21 

Table7: Results of Attentive Clustering .. . . .  . . . .. . . .  . . . .. . . .  . . . .. . . .  . .   22 

   Table8:  Result of Attentive Clustering with different α . . . . . . . . . . . . . . . . .  

.

22 



LIST OF FIGURES 

Figure    Page 

Fig1:  Attentive Pooling . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . 

Fig2:  Attentive Clustering . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . 

16 

17 



1 

 

 

 

Chapter 1 

Introduction 

Question answering encompasses a broad research area in the field of natural 

language processing. Some of the proposed frameworks for question answering 

range from information-retrieval techniques to find the most relevant knowledge 

material or source, to methods for querying structured knowledge-bases or databases 

to generate an appropriate answer. One of the most popular challenges in this field 

is to select the most appropriate answers from the list of answers for a given question. 

With the advent of advanced search engines, community question-answer forums 

have received wide popularity, allowing people from different backgrounds to ask 

and answer questions from different fields. Most of the forums are open to all, and 

due to the shortage of restrictions on access these forums are filled with either 

relevant or irrelevant answers- increasing the amount of time spent by the reader to 

find the best answers for the given question. 

Apart from the above problem, chatbots are used widely as human assistants to ease 

the customer experience. These chatbots are expected to be well-trained to answer 

the customer's question with the most appropriate answer. A model with the ability 

to classify the answers for a given question as relevant and irrelevant can help the 

forums to list the answers from the most relevant answer to the most irrelevant one. 

Additionally, this model can be used in chatbots to rank the answer's relevancy for 

the question asked. 

At the current time, the answer selection application is used widely in virtual 

assistants like Google Home and Amazon Alexa which query a large number of 
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knowledge-bases and answer the human-posed question by selecting the most 

appropriate answers returned.   

Answer Selection is one of the most challenging tasks because it requires the 

examination of a large set of answers before picking the best answer. Consider the 

following question and two possible answers in Table 1.  Typically, a question and 

several answers are available and the task for the system is to classify them into good 

or bad. We view this as a supervised learning problem where the training examples 

consists of a set of questions and several answers for each question labeled as ‘good’ 

or ‘bad’. The task is to learn to correctly distinguish good answers from bad answers 

on the test set.  

 

Question How does the Affordable Healthcare Act help me? 

Good 

Answer 

It helps you when you get cancer, and don't have to pay $100,000 

for chemotherapy.  Going into the relatively small amount of debt 

for that deductible is a much better place to be, financially. 

Further, before the ACA, insurance companies could deny coverage 

for preexisting conditions.  So if you had no medical insurance, and 

then found out that you had cancer, you would not be able to get 

insurance to cover that cancer. 

Bad 

Answer 

Thanks. That actually makes sense. Is that why insurance prices 

have risen? 

               Table1: An example of Question- Good Answer and Bad Answer pair 

 

These and similar techniques that weigh each word and analyze the appropriate 

similarity between both the pairs select the first one is the good answer. This has an 

obvious flaw in that the answers that do not add any new information might be 

scored highly as in Ans-1 above, while answers like Ans-2, which do not share any 

words with the question might be penalized. 
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Good 

Answer-1 

It helps you when you get cancer, and don't have to pay 

$100,000 for chemotherapy.  Going into the relatively small 

amount of debt for that deductible is a much better place to be, 

financially. 

Further, before the ACA, insurance companies could deny 

coverage for preexisting conditions.  So if you had no medical 

insurance, and then found out that you had cancer, you would 

not be able to get insurance to cover that cancer. 

Good 

Answer-2 

And 28 years old had access to healthcare insurance prior to the 

ACA...  more affordably and with  more options, especially for 

"hit by bus" catastrophic insurance. After the ACA they are 

paying more for their healthcare insurance because the system 

is set up to overcharge young adults to offset the cost for the 

elderly. 

The protection from pre-existing conditions with higher 

insurance costs.  Whether it is a positive or a negative for him is 

his determination.  As a young adult who has always had 

insurance (even paying for personal plans when not provided by 

my employer) I did not benefit from the ACA, it hurt me... the 

same story is replicated across much of the young adult 

community in America. 

Table2: An example of two Good Answers 

In traditional approaches in information retrieval, the answers are evaluated using 

TF-IDF-like (term-frequency X inverse document frequency) scores which highly 

score answers which share many common words with the questions.  In the above 

example we can observe that two good answers are similar to each other in the set 

of words used although they express different sentiments about the topic at hand. 

Most of the previous research work has focused mainly over the similarity of the 

question and answer. This ignores the fact that a good answer should provide some 
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new information not in the original question. In the extreme case, relying simply on 

word similarities gives the highest scores for answers that merely copy the question 

word by word, which should not be the case.  

Consider the example below: 

Question: Is there any hiking trail in Corvallis? 

Answer 1: Even I was wondering where is the best hiking place in Corvallis 

Answer 2: Yes, you can visit Bald Hill 

Answer 3: You can also visit Chip Ross Park which is known for scenic 

views 

 

Table3: An example of Answers where the bad answer has the most common 

words with the question.  

In the above scenario, previous model tends to rank Answer 1 higher than Answer 2 

because Answer 1 has the most common words with the question even though 

Answer 2 answers it best. Answer 2 and Answer 3 which answer the question 

appropriately do not have common words with the question but do have common 

words among them. 

Ranking and classification tends to be one of the most important fields of machine 

learning. These ranking problems are generally sub-categorized to pointwise 

ranking, pairwise ranking and listwise ranking. Point-wise approach (Severyn et al, 

2015) is the simplest and is an effective method to build a ranking model. While 

training, point-wise ranking considers the instances of question, answer and the 

score, say in the form of (qi, ai , yi ). This data is used to train a binary classifier: f(w, 

g(qi, aij)) → yij , where g(.) maps question-answer pair to a feature vector and w is a 

vector of model weights. The decision function f(·) computes a dot product between 

the weight w and a text representation of a pair produced by g(·). While testing, the 

learned model is used to classify the unknown pairs (qi, aij), producing a raw score 

which is then used to rank the answer for the given question against the set of all 

answers. 
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The second approach is the pairwise-ranking (Santos dos et al, 2016) method which 

is more advanced than the pointwise method. In this method, the model is trained 

such that it can rank the good answers higher with a good margin than a bad answer 

in the following manner: 

f(w, g(qi, aij)) ≥ f(w, g(qi, aik)) + ∈, 

where aij is a good answer and aik is a bad answer. On the other hand, pointwise 

approach is given as: 

f(w, g(qi, aij)) → yij 

This calculates a raw score yij which is then used to rank the answers for a given 

question. This approach does not utilize a margin by which a good answer should be 

ranked higher than a bad one. So, if a bad answer score is high then it would be 

ranked higher than a good answer. Hence, pairwise approach works better practically 

because predicting relative order is closer to ranking nature than predicting a 

relevance score.  

The most advanced approach is the listwise ranking (Cao et al, 2007). This method 

considers a list of answers as a single instance in learning for a given question.  

In the recent years, many deep learning models have been proposed for answer 

selection method (Yu et al, 2014; Feng at al, 2015; Severyn et al, 2015) which 

represents the text using convolutional neural network or recurrent neural network. 

These text representations are then used to give a matching score by utilizing a 

similarity function for the two texts (Yu et al, 2014; Hu et al, 2014; dos Santos et al, 

2015; Wang et al D. N., 2015; Severyn et al, 2015; Tan et al, 2015). Furthermore, 

models using attention and interaction (Zhang et al, 2017) were introduced which 

could capture the detailed information using pair-wise ranking method. 

Despite these innovations and performance improvements, all these methods focus 

on the similarity of question to the answer and ignore the similarities between 

different answers. Our hypothesis in this work is that similarities between the answer 

words is just as important for selecting good answers if not more so. 
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Our research proposes a novel approach by combining the instances of pairwise and 

listwise ranking approaches Our main contribution is a new “Attentive Clustering” 

model, which first uses hard clustering to group similar answers together and uses 

soft clustering to modulate the scores of question-answer pairs. Together, they take 

into account the answer similarities to collectively classify the candidate answers. 

The intuition behind clustering is that similar answers tend to have similar scores. 

Hence, if a given question has two or more relevant answers then they will have 

similar scores. On the other hand, irrelevant answers tend to vary a lot and thus will 

tend to have different scores. So, considering the similarity measure between the 

answers will increase the score between good answers and penalize the bad ones. 

Additionally, we also introduce a new dataset collected from the subreddit ”Explain 

like i’m five” containing natural questions and answers from its community with 

average answer length of more than 400 compared to other community question 

answering data of average answer length less than 100. It contains a large number 

of relatively long answers for each question. We show that Attentive Clustering 

outperforms all state-of-the-art results on this dataset sometimes with significant 

margins. 
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Chapter 2 

Related Work 

Some of the previously proposed techniques for answer selection range from 

information retrieval methods to machine learning methods which involve tailoring  

features manually by using semantic, syntactic or lexical similarity. These methods 

tend to calculate similarities between the question-answer pair by using bag-of-

words (BOW), longest common substring or by word overlap ratio. 

Recently, many deep learning methods achieved significant success in the field of 

natural language processing including question answering. These methods use deep 

neural network for distributed representation and then calculate the similarity 

between the pair at literal level. Current state-of-the-art methods incorporate 

attention mechanisms in a neural network architecture. These models learn to pay 

attention to relevant sections of the answers. 

2.1 Information Retrieval Approaches 

Initially, answer selection model was based on finding the semantic similarity and 

developed features manually using techniques such as: 

• cosine similarity: captures the similarity between two words vectors by 

calculating cosine angle between them 

• jaccard similarity: captures the common words between two sentences) 

between two documents  

• GESD (Geometric mean of Euclidean and Sigmoid Dot product): It 

combines L2-norm and inner product where L2-norm is the forward-line 
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semantic distance between a pair and the inner product computes the angle 

between two sentences vector 

• BM25: ranks the documents based on the common terms of the query 

matching with each document  

• tf-idf: rank the terms higher that are frequent in the document but lowers the 

rank of the terms that are common in most of the documents; e.g lowers the 

rank of the articles, prepositions. 

These models generally utilized lexical databases such as WordNet which were 

language dependent and prohibited the model to learn the required relevancy. 

Some of the recent attempts at answer selection scores the relevancy of an answer to 

the question by mapping the question and answer pair into an n-dimensional vector 

space, and then calculating the cosine similarity or GESD (Geometric mean of 

Euclidean and Sigmoid Dot product) similarity between them. This intends to score 

the answer high if it is relevant and low if the answer is irrelevant. But these methods 

fail to capture the examples like below: 

Question: Is there any hiking trail in Corvallis? 

Answers: Yes, you can visit Bald Hill 

Table5: An example of Question- Good Answer pair with no words in common 

In the above answer, although the answer has been answered appropriately, due to 

the lack of word-level similarity, there is a high chance to rank it as bad by the above 

model. 
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2.2 Deep Learning Approach 

(Feng at al, 2015) proposed vectorizing questions and answers using convolutional 

neural network and then use them for calculating GESD similarity between them. 

Some other authors for example (Yu et al, 2014; Severyn et al, 2015) proposed the 

method of scoring QA pair using neural network representations. Similarly, (Tan et 

al, 2015) suggested vectorizing questions and answers using recurrent neural 

network). (Qiu, 2015) introduced an approach of learning similarity between 

question and answer using convolutional neural network which encodes the sentence 

in the semantic space followed with interaction modeled at tensor (geometric object 

describing relation between vectors) layer.  In (Wang et al D. N., 2015) proposed a 

model of recurrent neural network which would convert the model to learning to 

rank problem after a joint feature vector is determined from a joint long short-term 

memory (LSTM) which links to question and answer. 

(Severyn et al, 2015; Wang et al Z. M., 2016; Tay, 2017) have proposed an approach 

to score the question answer pair using pointwise ranking (described in chapter 1). 

It learns the lexical and semantic interaction among question and answer vectors and 

scores them. But these models fail to capture the in-depth context of the question 

and answer vector interaction. For example; the same two words could have 

completely different context in question and answer. The context could be properly 

derived by giving appropriate amount of weight to the surrounding words in the 

sentence. The deep neural network utilizes the embedded words for the text 

representation. 

One of the most commonly used embedding technique is word2vec (Mikolov, 2013) 

which is a neural embedding model. The process of calculating the probability 

distribution to get the vector representation of a word given a surrounding word is 

known as Continuous Bag of Words(CBOW). Precisely, it tries to predict the target 

word by considering the context of the surrounding word. In CBOW we can even 
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consider multiple words in the context to calculate the multinomial distribution of 

the target word. An alternative to CBOW with multiple words in context is known 

as Skip-Gram model where one predicts n number of words given a single target 

word as input.  

Another most widely used approach inspired from word2vec is Global Vectors for 

word representation (Glove).  Glove (Pennington, 2014) helps to locate the words 

with similar context by mapping the word vector representation in a n-dimensional 

word space. Most of the unsupervised algorithms are based on word frequency and 

co-occurrence counts of the words. It produces a word vector with a meaningful 

structure by preserving the similarities of the words in the vector distance. It also 

minimizes the loss of the representation in lower dimensions that explains most of 

the variance of high dimensional data. 

2.3 Attention Mechanism 

Some of the promising attention-based mechanisms have been shown for NLP tasks, 

such as caption generation (Xu et al, 2015), machine translation (Bahdanau et al, 

2015; Sutskever et al, 2014) and factoid question answering (Hermann et al, 2015). 

Later (Tan et al, 2015) proposed attention mechanism incorporated into the model 

using bi-directional long short-term memory, focusing on particular parts of the 

answer depending on question embedding. (Santos dos et al, 2016) introduced an 

approach of attentive pooling over convolutional and recurrent neural architecture 

which was a two-way attention mechanism for discriminative model training. 

(Zhang et al, 2017) proposed a combined approach of attention and interaction 

approach which learned the interaction of each pair of candidates and applied 

attention mechanism to measure the importance of each candidate answer. (Su et al, 

2017) introduced enhanced embedding with word overlap along with attentive 

pooling and (Bachrach et al, 2017) introduced an approach of attention mechanism 

using a combined global and local view. This made the attention mechanism 
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dependent on global embedding of the answer which was attained susing a separate 

model. 

Other than attention mechanism,  feature engineering of heuristics coupled with deep 

learning architectures has proven to be an efficient approach for ranking question 

and answer (Chen et al, 2017; Mohtarami, 2016). Some of the feature engineering 

introduced semantic and lexical relationships. These relationships like expressive 

rules can support sentence matching to capture the essential  aspects of the 

information which are not captured by the underlying learning approach (Mihaylov 

et al, 2016; Belinkov, 2015; Tay, 2017) . 
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Chapter 3 

Answer Selection by Semantic Analysis 

In this chapter we look at the formal definition of answer selection, community 

question answering and different types of similarity analysis. We describe our  

method to solve the answer selection problem and provide an extensive evaluation 

of the proposed method. 

3.1 Problem Statement 

Answer selection defines a problem where a given question has a set of candidate 

answers and each of this answer is either relevant or irrelevant  to the question. We 

assume a set of questions from the subreddit which is a community question-

answering (CQA) forum. When a user posts a question, many answers are posted by 

other users. These answers from the CQA is utilized in our model and ranked 

according to their relevance to the question considering their context similarity. 

An answer could be similar to the question either in terms of semantics or syntax. 

When the two sentences share a common meaning irrespective of their structure, 

then the two sentences are said to be semantically similar. Some of the common 

semantic similarity approaches are cosine similarity, jaccard similarity, tf-idf, etc. 

Syntactic similarity is the degree to which the set of words of both the sentences are 

similar. A common approach is to look at the dependency parses and then group the 

sentences according to the parse nodes. Another approach is to POS tag the sentence 

and then compare with the POS tag of the other sentence for similarity. Part-of-

speech (POS) tag assigns a label to each word indicating its part of speech. 
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3.2 Approach 

To deal with the text data, initially each word of the sentence is embedded into an 

n-dimensional space. Embedding the word to n-dimension space helps to learn a 

representation of the text where words with similar meaning are embedded close to 

each other (using Euclidean distance metric to measure the closeness). The 

embedded words are then mapped to a neural architecture followed by a pooling 

method to get a proper text representation. 

3.2.1 Word Embedding 

In natural language processing, word embedding is a process of embedding a set of 

words into a vector of real numbers. It is a feature learning technique where words 

of similar meaning are mapped close to each other. The logic behind word 

embedding is to capture the semantic or contextual information of the text. One of 

the simplest methods to achieve this is one-hot encoding. In this method a set of 

documents or sentences is collected and then the occurrence of each word is counted. 

The output matrix consists of document as the row and word as the column. 

Another approach is tf-idf  where each term in the document is weighted. If a term 

occurs frequently in one document that term is given a higher weight but when terms 

occur frequently in different documents, then the weight of that term is reduced 

considering that they do not contain any useful information. Basically, term 

frequency (tf) is the ratio of number of times term t appears in a document by the 

total number of terms in the document and inverse document frequency (idf) is 

calculated as logarithmic of ratio of total number of documents by the number of 

documents  with term t in it. 
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The first layer in representing the QA text after passing through embedding layer 

converts each input word w into a real-valued word vector embedding w ∈ Rd where 

d is the dimension of the embedding. The embedded words are represented as a 

column vector in an embedding matrix Wi ∈ Rd x |v| , where v is the vocabulary size. 

For a given input pair of question-answer (q, a), where the question q contains N 

tokens/ words and the given answer contains M tokens, the output of the word 

embedding layer is given as: 

qe = [eqw1 eqw2 eqw3 eqw4  . . . . . . eqwN ] and ae = [eaw1 eaw2 eaw3 eaw4  . . . . . . eawM ]  

 

 

3.2.2 Convolutional Neural Network- Wide & Narrow: 

Convolutional networks use the feature extractor as the initial layer which convolves 

the input. It performs convolution (*) between the input matrix and the filter. 

Considering t ∈  R|j| is the input where ti denotes to single feature value of the i-th 

word in the sentence and j is the length of the input. This 1-D convolution performs 

dot product with the filter vector f ∈  R|k|, outputting: ci = tT t(i−k+1:i).f, where c is 

convolutional output and f is the filter vector of size k. According to the narrow 

convolution, it restricts the width of the filter ≤ j. The narrow convolution output is 

the subset of the output of the wide convolution. The wide convolution ensures to 

yield valid values even when j ≤ k and handles the words at the boundaries with 

equal weight. In general, wide convolution can be computed by padding the sentence 

with j-1 zeros to control the variable input length. It also ensures that it always 

generates a non-empty and a valid output c. 

3.2.3 Text Representation: 

The given input is parsed through the word embedding to map each word of the 

sentence to a distributional vector. Here, we have used Glove embedding with 50-

dimensional space. The embedded sentence is then fed to the wide convolutional 
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neural network with 128 filters with sizes of [1,2,3,5]. The convoluted embedded 

matrix for question is computed as:  Q = W1Xq + b1 where Q ∈ Rf x N. Similarly, for 

answers the convoluted embedded matrix would be computed as: A = W1Xa + b1 

where A ∈ Rf x M; where W1 and b1 are parameters to be learned by the model and Xq  

=[x1 x2 x3 ….. xN] containing xk ∈ Rdi where k-th word is centralized and surrounded 

by i sequence of word embeddings. 

3.3 Attentive Clustering 

The baseline model exhibits the property of attentive pooling. In general, we tend to 

use either max-pooling, which extracts the maximum value of the input area or 

average pooling which extracts the mean of the input area. Pooling does not affect 

the convolutional depth rather it helps to reduce the spatial dimension of the input. 

Instead of using a simple max pooling we extended the attentive pooling (Santos dos 

et al, 2016) method along with clustering. The attentive pooling computes the 

attention vector by utilizing the similarity score between the projected sequences of 

the input pair. This bilinear similarity measure is followed by a non-linear activation. 

For a given input (q,a) we compute the matrix Q ∈ Rf x N and A ∈ Rf x M. Then we 

perform element-wise activation as follows: Z=σ(Q𝑇P1A) where P1∈ Rf x f is the 

parameter to be learned by the model and σ  is the activation function. This is 

followed by a row-wise and column-wise max pooling. This generates the vector 

[𝑧𝑞]𝑗 = 𝑚𝑎𝑥
1<𝑛<𝑁

[𝑧𝑗,𝑛] and [𝑧𝑎]𝑗 = 𝑚𝑎𝑥
1<𝑚<𝑀

[𝑧𝑚,𝑗] where each element j represents the 

important score of the vector 𝑧𝑎 for the context surrounding the jth word. This is 

followed by a softmax function which generates the attention vectors 𝜎 
𝑎 and 𝜎 

𝑞as 

follows: [𝜎𝑗
𝑎] =

ⅇ
[𝑧𝑎]𝑗

∑ ⅇ[𝑧𝑎]𝑚
(1<𝑚<𝑀)

  and [𝜎𝑗
𝑞] =

ⅇ
[𝑧𝑞]𝑗

∑ ⅇ[𝑧𝑞]𝑛
(1<𝑛<𝑁)

 . The final 

representation is calculated by considering the dot product between convolved 

output and the attention vector: xq=Q𝜎 
𝑞 and xa=A𝜎 

𝑎 . Ultimately, cosine similarity 

between xq and xa is computed: 𝑠𝑞𝑎 =
𝑥𝑞⋅𝑥𝑎

‖𝑥𝑞‖‖𝑥𝑎‖
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Fig1: Attentive Pooling 

The above attentive pooling model has been extended by clustering the answers for 

a given question. For a given question, all its corresponding answers are clustered 

by using K-means clustering. Here, k is treated as a hyperparameter and computed 

as 𝑘 = {

𝑛𝑎

10
+ 1; 𝑖𝑓 ̇ 𝑛𝑎 % 10 < 5

𝑛𝑎

10
+ 2;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 ; where na is the number of total answers each 

question contains. While training, for each good answer we pick the cluster the 

candidate answer belongs to. Then for each answer in the cluster, we perform the 

attentive pooling to get the representation pair of question and the answer. Finally, 

this pair is used to compute the cosine similarity between the pair: 𝑠𝑞𝑐 =
𝑥𝑞⋅𝑥𝑐

‖𝑥𝑞‖‖𝑥𝑐‖
 

Apart from capturing the similarity metric only between question and answer, we 

also capture the similarity between answers. This enables the model to rank answers 

with similar contexts similarly.  Thus, we also apply the attentive pooling on the 
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candidate answer and each answer in cluster as a pair. While applying attentive 

pooling, we use different parameters for element-wise activation Z=𝜎(𝐴𝑇𝑃2𝐶) ; 

where A is the candidate answer, C is the answer from the cluster and 𝑃2 is the 

parameter to be learned. Following the same attentive pooling approach, we compute 

the cosine similarity between the pair given as: 𝑠𝑎𝑐 =
𝑥𝑎⋅𝑥𝑐

‖𝑥𝑎‖‖𝑥𝑐‖
 .The three scores 

computed from the network are then used to calculate the final score of the candidate 

answer with respect to question.  

 

Fig2: Attentive Clustering 

3.3.1 Scoring procedure and training: 

The given input is passed through the network and scores s(q,a), s(q,c) and s(a,c) 

are obtained. All these scores are combined to calculate the final score between the 

pair of question and the candidate answer. The final score is computed as: 

𝑠 = [𝛼 (
∑(𝑠(𝑞, 𝑐) .  𝑠(𝑎, 𝑐))

𝛴𝑠(𝑎, 𝑐)
)] + (1 − 𝛼) . 𝑠(𝑞, 𝑎) 
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where 𝛼 is the hyperparameter denoting the amount of weight given to the similarity 

measure between question-answer and answer-answer pair. 

The network is trained on a set of training samples by minimizing a pairwise ranking 

loss function. For each sample, two pairs of input are considered that is (q,a+) and 

(q,a-) where a+ denotes a relevant answer with good score and a- denotes an irrelevant 

answer for the question. The objective function of the network is the hinge loss 

which is defined as: 

L = max{0,m-(s+ - s-)} + |𝜆|2 

where m is the margin and s+ denotes the score between (q,a+)  and s- denotes score 

between (q,a-).  While training for each sample we select a pair of relevant answer 

as the candidate answer and the question to obtain the score s+. Simultaneously, we 

randomly sample an irrelevant answer and calculate its score s- with respect to the 

question. These scores are used for calculating the above pairwise ranking loss. 𝜆 is 

the regularization term. Here we have used l2-norm. 

It might appear that there is a relation between pairwise ranking loss and the SVM 

loss function. The SVM loss function for binary problem is given as: ξi = max (0, 1 

− yif(xi)) where ξi ≥ 0 . It is an approximation of hinge loss. The multiclass loss 

function is given as ξi =∑j≠yi max(0,sj−syi+Δ). These are two approaches for 

maximizing the margin in the loss function (Tsochantaridis, 2005). 

First, the loss function can be generalized by re-scaling the slack variables. When a 

margin constraint is violated with a high loss then it is penalized by multiplying the 

margin violation by the loss or by scaling the slack variable with inverse loss. This 

yields 𝑚𝑖𝑛
𝑤∈𝑅𝑑

‖𝑤‖2 +
𝐶

𝑁
∑ 𝑚𝑎𝑥 (0,1 − 𝑦𝑖𝑓(𝑥𝑖)

𝑁
𝑖 )  where ‖𝑤‖2  is the regularization 

parameter. This approach scales the constant C and slack ξi that acts as a trade-off 

between error minimization and margin maximization. 
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The other approach is margin re-scaling  where margin constraint is given as: yif(xi)  

≥ Δ (yi ,y)−ξi ; where Δ is the loss associated with a prediction y. This scaling 

formulation is not invariant under scaling of the loss function but also requires to 

scaling the feature map. Thus, this scaling approach is rarely used. Basically, if we 

consider m=1 and difference of the score s+ - s- , which is equivalent to yif(xi) then 

by approximation we get the loss function of SVM. In our approach the slack is not 

re-scaled as the margin is considered to be constant or a hyperparameter. 

Considering the margin re-scaling we observe yif(xi)  ≥ Δ (yi ,y)−1- yif(xi) which on 

simplification gives us Δ (yi ,y)≤ 1.  

While learning the text representations, weight parameters are learned for 

embedding each word. These learnt embeddings  are convolved. with kernel feature 

map whose weights are again learnt in the training process. The similarity matrix is 

calculated between the pairs by using a weight parameter learnt by the model. The 

above-mentioned steps consider gradient with backpropagation to update the weight 

that minimizes the loss function. Since we have used a batch size of 1 along with a 

clustering method it increases the computation time of the model by (b+c) times 

where b is the batch size and c is the cluster size as compared to attentive pooling. 
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Chapter 4 

Experiments 

4.1 Dataset 

We have applied attentive clustering to set of 13,104 training samples. The raw data 

was collected from a sub-reddit “Explain like I m five”. We analyzed the data and 

found that most of the good scoring answers were posted within 24 hours of question 

posted. The answer thread started diminishing after 48 hours of the post and hence 

we filtered out the data points which were posted after 48 hours. The answers with 

less than 4 words along with no noun and less than 2 verbs were also filtered out. 

The data were further processed for the test data by removing the questions which 

had less than 4 answers. 

Data Number of unique 

questions 

Number of samples Avg. length of 

answers 

Avg. length 

of questions 

Train 1595 13104 467 94 

Dev 398 3226 465 86 

Test-1 713 9040 427 85 

Test-2 735 9030 419 87 

Table5: Dataset Statistics 

 

4.2 Experimental Settings 

The texts were tokenized, lemmatized and POS tagged using NLTK (Steven, 2009). 

We padded the questions and answers with their maximum length for wide 

convolution. We utilized Glove embedding of 50 dimensions for word embedding. 

The out of vocabulary words were initialized randomly. The window size of CNN 

was taken as [1,2,3,5] with 128 filters. We adopted stochastic gradient descent 
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optimizer for optimizing the objective function. The learning rate is taken as 1.2 and 

batch size is 1. We have considered loss margin as 0.1 and score weight α as 0.4. 

We have collected the test data from the same subreddit but the year when the 

questions were posted is different. We collected 18070 samples and split them into 

2 test sets. None of the samples from train or dev data are present in any of the test 

samples. The number of answers for a given questions in test-1 set ranges from 4-

156 and for test-2 it ranges from 4-172. 

4.3 Results 

System Test-1 Test-2 

MAP (%) MRR (%) MAP (%) MRR (%) 

Word Embedding 57.08 62.62 59.02 65.02 

Learning to rank short text 

pairs (Severyn et al, 2015) 

64.99 72.48 66.40 74.49 

Applying deep learning to 

answer selection (Feng at al, 

2015) 

67.46 73.77 68.81 75.67 

Attentive Pooling (Santos dos 

et al, 2016) 

69.30 76.73 71.25 79.92 

Attentive Clustering 71.21 79.70 73.15 82.42 

Table6: Performance of different Systems 

 

Learning to rank short text pairs (Severyn et al) computes the pointwise interaction 

between question and answer representations by wide convolution neural network 

for similarity measure. Applying deep learning to answer selection (Feng at al) 

creates QA-CNN where the similarity measure between a question and answer is 

being computed for the column max pooled vectors of the convolutional 

representations. Attentive Pooling (Santos dos et al) computes the similarity measure 

between the attentive pooled representations of the input pair. 
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Attentive 

Clustering 

Train Dev Test-1 Test-2 

69.39 76.62 66.04 71.69 71.20 79.71 73.15 82.41 

Table7: Result of Attentive Clustering 

 

We also captured the results for different α values to observe the importance of 

taking into account answer-answer similarity compared to the question-answer 

similarity.  

 

α Test-1 Test-2 

MAP MRR MAP MRR 

0.0 70.82 79.13 71.82 80.07 

0.2 70.83 79.17 72.40 81.74 

0.4 71.20 79.71 73.15 82.41 

0.5 71.32 79.83 72.80 81.53 

0.7 71.04 78.92 72.59 81.29 

1.0 71.01 79.05 72.31 80.72 

Table8: Result of Attentive Clustering with different α 

 

4.4 Analysis 

In Table 6 we present the experimental results of the performance of different 

systems over the subreddit dataset. The results are observed in terms of mean 

average precision (MAP) and mean reciprocal rank (MRR) , the metrics normally 

used for ranking problem. MAP is the overall mean of the average precision where 
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average precision is measured by computing the precision at every correctly returned 

result and then calculating the average of it.  

𝑀𝐴𝑃 =
∑ 𝐴𝑃(𝑖)𝑞

𝑖=1

𝑞
 

where 𝐴𝑃 =
∑ 𝑃(𝑖)𝑛

𝑖=1 ×𝑟(𝑖)

𝑛𝑟
  and 𝑟(𝑖) is the indicator function equaling to 1 when the 

answer 𝑃(𝑖) is relevant and is the precision at 𝑖 for all questions q. 

The mean reciprocal rank (MRR) computes the quality of the ranking by considering 

the highest spot at which the first relevant answer has been placed. It is a statistical 

measure for evaluating the complete list of answers produced  for the given question, 

ordered by the probability of the correctness (Craswell, 2009). MRR is the average 

of the reciprocal ranks produced for each question which is given as: 

𝑀𝑅𝑅 =
1

|𝑞|
∑

1

𝑟𝑎𝑛𝑘i

|𝑞|

𝑖=1

 

where ranki is the highest rank secured by as relevant answer for a question q. 

According to Table 6 our attentive clustering system outperforms all the above 

baseline models, achieving state-of-the-art performance. We also captured the 

results for different α values in Table 8 to observe the importance of answer 

similarity. The result demonstrates that it is important to give weightage to the 

similarity measure between question-answer as well as answer-answer pair.  
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Chapter 5 

Conclusions and Future Work 

In this thesis, we developed a model which computes the score for the answers and 

rank them for a given question. We presented attentive clustering for answer 

selection which extends the attentive pooling for discriminative model training. It 

learns to compute the semantic similarity measure from the representations of the 

question-answer and answer-answer pairs. We demonstrated that attentive clustering 

with wide convolutional neural network helps the model to make better evaluations 

of the answers. The clustering of the answers and using their similarities to modulate 

the scores of question answer pairs modestly improves the performance of the 

model. 

The model currently treats k for k-means as a hyperparameter. A further research 

can be carried out for learning the best value of k. Currently, the model has been 

applied over cleaned data.  We could further extend the system to work on the raw 

and noisy data. Currently, the model is applied on a clean and processed data. 

Additionally, the model currently employs supervised learning. We could further 

explore how to apply answer selection with unsupervised data. The model could be 

further improved by annotating the question with interrogation category that is 

whether the question is Where, Why, Who, this could probably improve the semantic 

analysis by searching the relevant tokens in the answers. 
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