
AN ABSTRACT OF THE THESIS OF

 Purbasha Chatterjee for the degree of Master of Science in Computer Science

Question answering forums like Reddit have been quite effective in

improving social interaction and disseminating useful information. Community

members ask a variety of questions related to a subject which are answered by

other community members. The answers are given ratings by other members. In

this thesis we study the problem of learning to recognize good answers using the

community ratings as supervision. We design an attentive clustering neural

network architecture to discriminate good answers from bad answers to a

question. Taking advantage of the problem setting where there are usually many

answers to the question that need to be scored, we also develop a collective

classification model which clusters similar answers together, and biases the

learner so that the answers in the same cluster have similar scores. The proposed

solution uses a wide convolutional neural network to learn the text representation

and computes a normalized score based on the relationship between the question

and the answer and the similarity of the answer to other answers in the same

cluster. Empirical results demonstrate that our collective classification model

outperforms the baseline models and achieves the state-of-the-art performance

in multiple benchmark domains.

presented on December 11, 2018

Prasad Tadepalli

©Copyright by Purbasha Chatterjee

December 11, 2018

CC BY SA

 Answer Selection with Attentive Clustering

by

Purbasha Chatterjee

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirement for the

degree of

Master of Science

Presented December 11, 2018

Commencement June 2019

Master of Science thesis of Purbasha Chatterjee presented on December 11,

2018

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering & Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Purbasha Chatterjee Author

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Prasad

Tadepalli for his continuous support during all the stages of this thesis. I would

like to thank him for all the guidance and emotional support offered during these

last two years. I would like to thank John Walker Orr for his constant support

and advice.

I would like to express my appreciation and thanks to my friends and family

members for their invaluable support in all my struggles and extending their

support to continue my journey at OSU.

TABLE OF CONTENTS

Page

1 Introduction . 1

2 Related Work . 7

2.1 Information Retrieval Approach . 7

2.2 Deep Learning Approach. 9

2.3 Attention Mechanism. 10

3 Answer Selection by Semantic Analysis . 12

3.1 Problem Statement. 12

3.2 Approach. 13

3.2.1 Word Embeddings . 13

3.2.2 Convolutional Neural Network- Wide & Narrow. 14

3.2.3 Text Representation. 14

3.3 Attentive Clustering . 15

3.3.1 Scoring and Training Procedure . 17

4 Experiments. 20

4.1 Dataset. 20

4.2 Experimental Settings . 20

4.3 Result. 21

4.4 Analysis. 22

5 Conclusions and Future Work. 24

6 Bibliography. 25

LIST OF TABLES

Table Page

Table1: An example of Question- Good Answer and Bad Answer pair 2

Table2: An example of two Good Answers 3

 Table3: An example of Answers where the bad has the most common word... 4

Table4: An example of Question-Good Answer pair with no common words. . 8

Table5: Dataset Statistics 20

Table6: Performance of different systems 21

Table7: Results of Attentive Clustering 22

 Table8: Result of Attentive Clustering with different α

.

22

LIST OF FIGURES

Figure Page

Fig1: Attentive Pooling

Fig2: Attentive Clustering

16

17

1

Chapter 1

Introduction

Question answering encompasses a broad research area in the field of natural

language processing. Some of the proposed frameworks for question answering

range from information-retrieval techniques to find the most relevant knowledge

material or source, to methods for querying structured knowledge-bases or databases

to generate an appropriate answer. One of the most popular challenges in this field

is to select the most appropriate answers from the list of answers for a given question.

With the advent of advanced search engines, community question-answer forums

have received wide popularity, allowing people from different backgrounds to ask

and answer questions from different fields. Most of the forums are open to all, and

due to the shortage of restrictions on access these forums are filled with either

relevant or irrelevant answers- increasing the amount of time spent by the reader to

find the best answers for the given question.

Apart from the above problem, chatbots are used widely as human assistants to ease

the customer experience. These chatbots are expected to be well-trained to answer

the customer's question with the most appropriate answer. A model with the ability

to classify the answers for a given question as relevant and irrelevant can help the

forums to list the answers from the most relevant answer to the most irrelevant one.

Additionally, this model can be used in chatbots to rank the answer's relevancy for

the question asked.

At the current time, the answer selection application is used widely in virtual

assistants like Google Home and Amazon Alexa which query a large number of

2

knowledge-bases and answer the human-posed question by selecting the most

appropriate answers returned.

Answer Selection is one of the most challenging tasks because it requires the

examination of a large set of answers before picking the best answer. Consider the

following question and two possible answers in Table 1. Typically, a question and

several answers are available and the task for the system is to classify them into good

or bad. We view this as a supervised learning problem where the training examples

consists of a set of questions and several answers for each question labeled as ‘good’

or ‘bad’. The task is to learn to correctly distinguish good answers from bad answers

on the test set.

Question How does the Affordable Healthcare Act help me?

Good

Answer

It helps you when you get cancer, and don't have to pay $100,000

for chemotherapy. Going into the relatively small amount of debt

for that deductible is a much better place to be, financially.

Further, before the ACA, insurance companies could deny coverage

for preexisting conditions. So if you had no medical insurance, and

then found out that you had cancer, you would not be able to get

insurance to cover that cancer.

Bad

Answer

Thanks. That actually makes sense. Is that why insurance prices

have risen?

 Table1: An example of Question- Good Answer and Bad Answer pair

These and similar techniques that weigh each word and analyze the appropriate

similarity between both the pairs select the first one is the good answer. This has an

obvious flaw in that the answers that do not add any new information might be

scored highly as in Ans-1 above, while answers like Ans-2, which do not share any

words with the question might be penalized.

3

Good

Answer-1

It helps you when you get cancer, and don't have to pay

$100,000 for chemotherapy. Going into the relatively small

amount of debt for that deductible is a much better place to be,

financially.

Further, before the ACA, insurance companies could deny

coverage for preexisting conditions. So if you had no medical

insurance, and then found out that you had cancer, you would

not be able to get insurance to cover that cancer.

Good

Answer-2

And 28 years old had access to healthcare insurance prior to the

ACA... more affordably and with more options, especially for

"hit by bus" catastrophic insurance. After the ACA they are

paying more for their healthcare insurance because the system

is set up to overcharge young adults to offset the cost for the

elderly.

The protection from pre-existing conditions with higher

insurance costs. Whether it is a positive or a negative for him is

his determination. As a young adult who has always had

insurance (even paying for personal plans when not provided by

my employer) I did not benefit from the ACA, it hurt me... the

same story is replicated across much of the young adult

community in America.

Table2: An example of two Good Answers

In traditional approaches in information retrieval, the answers are evaluated using

TF-IDF-like (term-frequency X inverse document frequency) scores which highly

score answers which share many common words with the questions. In the above

example we can observe that two good answers are similar to each other in the set

of words used although they express different sentiments about the topic at hand.

Most of the previous research work has focused mainly over the similarity of the

question and answer. This ignores the fact that a good answer should provide some

4

new information not in the original question. In the extreme case, relying simply on

word similarities gives the highest scores for answers that merely copy the question

word by word, which should not be the case.

Consider the example below:

Question: Is there any hiking trail in Corvallis?

Answer 1: Even I was wondering where is the best hiking place in Corvallis

Answer 2: Yes, you can visit Bald Hill

Answer 3: You can also visit Chip Ross Park which is known for scenic

views

Table3: An example of Answers where the bad answer has the most common

words with the question.

In the above scenario, previous model tends to rank Answer 1 higher than Answer 2

because Answer 1 has the most common words with the question even though

Answer 2 answers it best. Answer 2 and Answer 3 which answer the question

appropriately do not have common words with the question but do have common

words among them.

Ranking and classification tends to be one of the most important fields of machine

learning. These ranking problems are generally sub-categorized to pointwise

ranking, pairwise ranking and listwise ranking. Point-wise approach (Severyn et al,

2015) is the simplest and is an effective method to build a ranking model. While

training, point-wise ranking considers the instances of question, answer and the

score, say in the form of (qi, ai , yi). This data is used to train a binary classifier: f(w,

g(qi, aij)) → yij , where g(.) maps question-answer pair to a feature vector and w is a

vector of model weights. The decision function f(·) computes a dot product between

the weight w and a text representation of a pair produced by g(·). While testing, the

learned model is used to classify the unknown pairs (qi, aij), producing a raw score

which is then used to rank the answer for the given question against the set of all

answers.

5

The second approach is the pairwise-ranking (Santos dos et al, 2016) method which

is more advanced than the pointwise method. In this method, the model is trained

such that it can rank the good answers higher with a good margin than a bad answer

in the following manner:

f(w, g(qi, aij)) ≥ f(w, g(qi, aik)) + ∈,

where aij is a good answer and aik is a bad answer. On the other hand, pointwise

approach is given as:

f(w, g(qi, aij)) → yij

This calculates a raw score yij which is then used to rank the answers for a given

question. This approach does not utilize a margin by which a good answer should be

ranked higher than a bad one. So, if a bad answer score is high then it would be

ranked higher than a good answer. Hence, pairwise approach works better practically

because predicting relative order is closer to ranking nature than predicting a

relevance score.

The most advanced approach is the listwise ranking (Cao et al, 2007). This method

considers a list of answers as a single instance in learning for a given question.

In the recent years, many deep learning models have been proposed for answer

selection method (Yu et al, 2014; Feng at al, 2015; Severyn et al, 2015) which

represents the text using convolutional neural network or recurrent neural network.

These text representations are then used to give a matching score by utilizing a

similarity function for the two texts (Yu et al, 2014; Hu et al, 2014; dos Santos et al,

2015; Wang et al D. N., 2015; Severyn et al, 2015; Tan et al, 2015). Furthermore,

models using attention and interaction (Zhang et al, 2017) were introduced which

could capture the detailed information using pair-wise ranking method.

Despite these innovations and performance improvements, all these methods focus

on the similarity of question to the answer and ignore the similarities between

different answers. Our hypothesis in this work is that similarities between the answer

words is just as important for selecting good answers if not more so.

6

Our research proposes a novel approach by combining the instances of pairwise and

listwise ranking approaches Our main contribution is a new “Attentive Clustering”

model, which first uses hard clustering to group similar answers together and uses

soft clustering to modulate the scores of question-answer pairs. Together, they take

into account the answer similarities to collectively classify the candidate answers.

The intuition behind clustering is that similar answers tend to have similar scores.

Hence, if a given question has two or more relevant answers then they will have

similar scores. On the other hand, irrelevant answers tend to vary a lot and thus will

tend to have different scores. So, considering the similarity measure between the

answers will increase the score between good answers and penalize the bad ones.

Additionally, we also introduce a new dataset collected from the subreddit ”Explain

like i’m five” containing natural questions and answers from its community with

average answer length of more than 400 compared to other community question

answering data of average answer length less than 100. It contains a large number

of relatively long answers for each question. We show that Attentive Clustering

outperforms all state-of-the-art results on this dataset sometimes with significant

margins.

7

Chapter 2

Related Work

Some of the previously proposed techniques for answer selection range from

information retrieval methods to machine learning methods which involve tailoring

features manually by using semantic, syntactic or lexical similarity. These methods

tend to calculate similarities between the question-answer pair by using bag-of-

words (BOW), longest common substring or by word overlap ratio.

Recently, many deep learning methods achieved significant success in the field of

natural language processing including question answering. These methods use deep

neural network for distributed representation and then calculate the similarity

between the pair at literal level. Current state-of-the-art methods incorporate

attention mechanisms in a neural network architecture. These models learn to pay

attention to relevant sections of the answers.

2.1 Information Retrieval Approaches

Initially, answer selection model was based on finding the semantic similarity and

developed features manually using techniques such as:

• cosine similarity: captures the similarity between two words vectors by

calculating cosine angle between them

• jaccard similarity: captures the common words between two sentences)

between two documents

• GESD (Geometric mean of Euclidean and Sigmoid Dot product): It

combines L2-norm and inner product where L2-norm is the forward-line

8

semantic distance between a pair and the inner product computes the angle

between two sentences vector

• BM25: ranks the documents based on the common terms of the query

matching with each document

• tf-idf: rank the terms higher that are frequent in the document but lowers the

rank of the terms that are common in most of the documents; e.g lowers the

rank of the articles, prepositions.

These models generally utilized lexical databases such as WordNet which were

language dependent and prohibited the model to learn the required relevancy.

Some of the recent attempts at answer selection scores the relevancy of an answer to

the question by mapping the question and answer pair into an n-dimensional vector

space, and then calculating the cosine similarity or GESD (Geometric mean of

Euclidean and Sigmoid Dot product) similarity between them. This intends to score

the answer high if it is relevant and low if the answer is irrelevant. But these methods

fail to capture the examples like below:

Question: Is there any hiking trail in Corvallis?

Answers: Yes, you can visit Bald Hill

Table5: An example of Question- Good Answer pair with no words in common

In the above answer, although the answer has been answered appropriately, due to

the lack of word-level similarity, there is a high chance to rank it as bad by the above

model.

9

2.2 Deep Learning Approach

(Feng at al, 2015) proposed vectorizing questions and answers using convolutional

neural network and then use them for calculating GESD similarity between them.

Some other authors for example (Yu et al, 2014; Severyn et al, 2015) proposed the

method of scoring QA pair using neural network representations. Similarly, (Tan et

al, 2015) suggested vectorizing questions and answers using recurrent neural

network). (Qiu, 2015) introduced an approach of learning similarity between

question and answer using convolutional neural network which encodes the sentence

in the semantic space followed with interaction modeled at tensor (geometric object

describing relation between vectors) layer. In (Wang et al D. N., 2015) proposed a

model of recurrent neural network which would convert the model to learning to

rank problem after a joint feature vector is determined from a joint long short-term

memory (LSTM) which links to question and answer.

(Severyn et al, 2015; Wang et al Z. M., 2016; Tay, 2017) have proposed an approach

to score the question answer pair using pointwise ranking (described in chapter 1).

It learns the lexical and semantic interaction among question and answer vectors and

scores them. But these models fail to capture the in-depth context of the question

and answer vector interaction. For example; the same two words could have

completely different context in question and answer. The context could be properly

derived by giving appropriate amount of weight to the surrounding words in the

sentence. The deep neural network utilizes the embedded words for the text

representation.

One of the most commonly used embedding technique is word2vec (Mikolov, 2013)

which is a neural embedding model. The process of calculating the probability

distribution to get the vector representation of a word given a surrounding word is

known as Continuous Bag of Words(CBOW). Precisely, it tries to predict the target

word by considering the context of the surrounding word. In CBOW we can even

10

consider multiple words in the context to calculate the multinomial distribution of

the target word. An alternative to CBOW with multiple words in context is known

as Skip-Gram model where one predicts n number of words given a single target

word as input.

Another most widely used approach inspired from word2vec is Global Vectors for

word representation (Glove). Glove (Pennington, 2014) helps to locate the words

with similar context by mapping the word vector representation in a n-dimensional

word space. Most of the unsupervised algorithms are based on word frequency and

co-occurrence counts of the words. It produces a word vector with a meaningful

structure by preserving the similarities of the words in the vector distance. It also

minimizes the loss of the representation in lower dimensions that explains most of

the variance of high dimensional data.

2.3 Attention Mechanism

Some of the promising attention-based mechanisms have been shown for NLP tasks,

such as caption generation (Xu et al, 2015), machine translation (Bahdanau et al,

2015; Sutskever et al, 2014) and factoid question answering (Hermann et al, 2015).

Later (Tan et al, 2015) proposed attention mechanism incorporated into the model

using bi-directional long short-term memory, focusing on particular parts of the

answer depending on question embedding. (Santos dos et al, 2016) introduced an

approach of attentive pooling over convolutional and recurrent neural architecture

which was a two-way attention mechanism for discriminative model training.

(Zhang et al, 2017) proposed a combined approach of attention and interaction

approach which learned the interaction of each pair of candidates and applied

attention mechanism to measure the importance of each candidate answer. (Su et al,

2017) introduced enhanced embedding with word overlap along with attentive

pooling and (Bachrach et al, 2017) introduced an approach of attention mechanism

using a combined global and local view. This made the attention mechanism

11

dependent on global embedding of the answer which was attained susing a separate

model.

Other than attention mechanism, feature engineering of heuristics coupled with deep

learning architectures has proven to be an efficient approach for ranking question

and answer (Chen et al, 2017; Mohtarami, 2016). Some of the feature engineering

introduced semantic and lexical relationships. These relationships like expressive

rules can support sentence matching to capture the essential aspects of the

information which are not captured by the underlying learning approach (Mihaylov

et al, 2016; Belinkov, 2015; Tay, 2017) .

12

Chapter 3

Answer Selection by Semantic Analysis

In this chapter we look at the formal definition of answer selection, community

question answering and different types of similarity analysis. We describe our

method to solve the answer selection problem and provide an extensive evaluation

of the proposed method.

3.1 Problem Statement

Answer selection defines a problem where a given question has a set of candidate

answers and each of this answer is either relevant or irrelevant to the question. We

assume a set of questions from the subreddit which is a community question-

answering (CQA) forum. When a user posts a question, many answers are posted by

other users. These answers from the CQA is utilized in our model and ranked

according to their relevance to the question considering their context similarity.

An answer could be similar to the question either in terms of semantics or syntax.

When the two sentences share a common meaning irrespective of their structure,

then the two sentences are said to be semantically similar. Some of the common

semantic similarity approaches are cosine similarity, jaccard similarity, tf-idf, etc.

Syntactic similarity is the degree to which the set of words of both the sentences are

similar. A common approach is to look at the dependency parses and then group the

sentences according to the parse nodes. Another approach is to POS tag the sentence

and then compare with the POS tag of the other sentence for similarity. Part-of-

speech (POS) tag assigns a label to each word indicating its part of speech.

13

3.2 Approach

To deal with the text data, initially each word of the sentence is embedded into an

n-dimensional space. Embedding the word to n-dimension space helps to learn a

representation of the text where words with similar meaning are embedded close to

each other (using Euclidean distance metric to measure the closeness). The

embedded words are then mapped to a neural architecture followed by a pooling

method to get a proper text representation.

3.2.1 Word Embedding

In natural language processing, word embedding is a process of embedding a set of

words into a vector of real numbers. It is a feature learning technique where words

of similar meaning are mapped close to each other. The logic behind word

embedding is to capture the semantic or contextual information of the text. One of

the simplest methods to achieve this is one-hot encoding. In this method a set of

documents or sentences is collected and then the occurrence of each word is counted.

The output matrix consists of document as the row and word as the column.

Another approach is tf-idf where each term in the document is weighted. If a term

occurs frequently in one document that term is given a higher weight but when terms

occur frequently in different documents, then the weight of that term is reduced

considering that they do not contain any useful information. Basically, term

frequency (tf) is the ratio of number of times term t appears in a document by the

total number of terms in the document and inverse document frequency (idf) is

calculated as logarithmic of ratio of total number of documents by the number of

documents with term t in it.

14

The first layer in representing the QA text after passing through embedding layer

converts each input word w into a real-valued word vector embedding w ∈ Rd where

d is the dimension of the embedding. The embedded words are represented as a

column vector in an embedding matrix Wi ∈ Rd x |v| , where v is the vocabulary size.

For a given input pair of question-answer (q, a), where the question q contains N

tokens/ words and the given answer contains M tokens, the output of the word

embedding layer is given as:

qe = [eqw1 eqw2 eqw3 eqw4 eqwN] and ae = [eaw1 eaw2 eaw3 eaw4 eawM]

3.2.2 Convolutional Neural Network- Wide & Narrow:

Convolutional networks use the feature extractor as the initial layer which convolves

the input. It performs convolution (*) between the input matrix and the filter.

Considering t ∈ R|j| is the input where ti denotes to single feature value of the i-th

word in the sentence and j is the length of the input. This 1-D convolution performs

dot product with the filter vector f ∈ R|k|, outputting: ci = tT t(i−k+1:i).f, where c is

convolutional output and f is the filter vector of size k. According to the narrow

convolution, it restricts the width of the filter ≤ j. The narrow convolution output is

the subset of the output of the wide convolution. The wide convolution ensures to

yield valid values even when j ≤ k and handles the words at the boundaries with

equal weight. In general, wide convolution can be computed by padding the sentence

with j-1 zeros to control the variable input length. It also ensures that it always

generates a non-empty and a valid output c.

3.2.3 Text Representation:

The given input is parsed through the word embedding to map each word of the

sentence to a distributional vector. Here, we have used Glove embedding with 50-

dimensional space. The embedded sentence is then fed to the wide convolutional

15

neural network with 128 filters with sizes of [1,2,3,5]. The convoluted embedded

matrix for question is computed as: Q = W1Xq + b1 where Q ∈ Rf x N. Similarly, for

answers the convoluted embedded matrix would be computed as: A = W1Xa + b1

where A ∈ Rf x M; where W1 and b1 are parameters to be learned by the model and Xq

=[x1 x2 x3 ….. xN] containing xk ∈ Rdi where k-th word is centralized and surrounded

by i sequence of word embeddings.

3.3 Attentive Clustering

The baseline model exhibits the property of attentive pooling. In general, we tend to

use either max-pooling, which extracts the maximum value of the input area or

average pooling which extracts the mean of the input area. Pooling does not affect

the convolutional depth rather it helps to reduce the spatial dimension of the input.

Instead of using a simple max pooling we extended the attentive pooling (Santos dos

et al, 2016) method along with clustering. The attentive pooling computes the

attention vector by utilizing the similarity score between the projected sequences of

the input pair. This bilinear similarity measure is followed by a non-linear activation.

For a given input (q,a) we compute the matrix Q ∈ Rf x N and A ∈ Rf x M. Then we

perform element-wise activation as follows: Z=σ(Q𝑇P1A) where P1∈ Rf x f is the

parameter to be learned by the model and σ is the activation function. This is

followed by a row-wise and column-wise max pooling. This generates the vector

[𝑧𝑞]𝑗 = 𝑚𝑎𝑥
1<𝑛<𝑁

[𝑧𝑗,𝑛] and [𝑧𝑎]𝑗 = 𝑚𝑎𝑥
1<𝑚<𝑀

[𝑧𝑚,𝑗] where each element j represents the

important score of the vector 𝑧𝑎 for the context surrounding the jth word. This is

followed by a softmax function which generates the attention vectors 𝜎
𝑎 and 𝜎

𝑞as

follows: [𝜎𝑗
𝑎] =

ⅇ
[𝑧𝑎]𝑗

∑ ⅇ[𝑧𝑎]𝑚
(1<𝑚<𝑀)

 and [𝜎𝑗
𝑞] =

ⅇ
[𝑧𝑞]𝑗

∑ ⅇ[𝑧𝑞]𝑛
(1<𝑛<𝑁)

 . The final

representation is calculated by considering the dot product between convolved

output and the attention vector: xq=Q𝜎
𝑞 and xa=A𝜎

𝑎 . Ultimately, cosine similarity

between xq and xa is computed: 𝑠𝑞𝑎 =
𝑥𝑞⋅𝑥𝑎

‖𝑥𝑞‖‖𝑥𝑎‖

16

Fig1: Attentive Pooling

The above attentive pooling model has been extended by clustering the answers for

a given question. For a given question, all its corresponding answers are clustered

by using K-means clustering. Here, k is treated as a hyperparameter and computed

as 𝑘 = {

𝑛𝑎

10
+ 1; 𝑖𝑓 ̇ 𝑛𝑎 % 10 < 5

𝑛𝑎

10
+ 2; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ; where na is the number of total answers each

question contains. While training, for each good answer we pick the cluster the

candidate answer belongs to. Then for each answer in the cluster, we perform the

attentive pooling to get the representation pair of question and the answer. Finally,

this pair is used to compute the cosine similarity between the pair: 𝑠𝑞𝑐 =
𝑥𝑞⋅𝑥𝑐

‖𝑥𝑞‖‖𝑥𝑐‖

Apart from capturing the similarity metric only between question and answer, we

also capture the similarity between answers. This enables the model to rank answers

with similar contexts similarly. Thus, we also apply the attentive pooling on the

17

candidate answer and each answer in cluster as a pair. While applying attentive

pooling, we use different parameters for element-wise activation Z=𝜎(𝐴𝑇𝑃2𝐶) ;

where A is the candidate answer, C is the answer from the cluster and 𝑃2 is the

parameter to be learned. Following the same attentive pooling approach, we compute

the cosine similarity between the pair given as: 𝑠𝑎𝑐 =
𝑥𝑎⋅𝑥𝑐

‖𝑥𝑎‖‖𝑥𝑐‖
 .The three scores

computed from the network are then used to calculate the final score of the candidate

answer with respect to question.

Fig2: Attentive Clustering

3.3.1 Scoring procedure and training:

The given input is passed through the network and scores s(q,a), s(q,c) and s(a,c)

are obtained. All these scores are combined to calculate the final score between the

pair of question and the candidate answer. The final score is computed as:

𝑠 = [𝛼 (
∑(𝑠(𝑞, 𝑐) . 𝑠(𝑎, 𝑐))

𝛴𝑠(𝑎, 𝑐)
)] + (1 − 𝛼) . 𝑠(𝑞, 𝑎)

18

where 𝛼 is the hyperparameter denoting the amount of weight given to the similarity

measure between question-answer and answer-answer pair.

The network is trained on a set of training samples by minimizing a pairwise ranking

loss function. For each sample, two pairs of input are considered that is (q,a+) and

(q,a-) where a+ denotes a relevant answer with good score and a- denotes an irrelevant

answer for the question. The objective function of the network is the hinge loss

which is defined as:

L = max{0,m-(s+ - s-)} + |𝜆|2

where m is the margin and s+ denotes the score between (q,a+) and s- denotes score

between (q,a-). While training for each sample we select a pair of relevant answer

as the candidate answer and the question to obtain the score s+. Simultaneously, we

randomly sample an irrelevant answer and calculate its score s- with respect to the

question. These scores are used for calculating the above pairwise ranking loss. 𝜆 is

the regularization term. Here we have used l2-norm.

It might appear that there is a relation between pairwise ranking loss and the SVM

loss function. The SVM loss function for binary problem is given as: ξi = max (0, 1

− yif(xi)) where ξi ≥ 0 . It is an approximation of hinge loss. The multiclass loss

function is given as ξi =∑j≠yi max(0,sj−syi+Δ). These are two approaches for

maximizing the margin in the loss function (Tsochantaridis, 2005).

First, the loss function can be generalized by re-scaling the slack variables. When a

margin constraint is violated with a high loss then it is penalized by multiplying the

margin violation by the loss or by scaling the slack variable with inverse loss. This

yields 𝑚𝑖𝑛
𝑤∈𝑅𝑑

‖𝑤‖2 +
𝐶

𝑁
∑ 𝑚𝑎𝑥 (0,1 − 𝑦𝑖𝑓(𝑥𝑖)

𝑁
𝑖) where ‖𝑤‖2 is the regularization

parameter. This approach scales the constant C and slack ξi that acts as a trade-off

between error minimization and margin maximization.

19

The other approach is margin re-scaling where margin constraint is given as: yif(xi)

≥ Δ (yi ,y)−ξi ; where Δ is the loss associated with a prediction y. This scaling

formulation is not invariant under scaling of the loss function but also requires to

scaling the feature map. Thus, this scaling approach is rarely used. Basically, if we

consider m=1 and difference of the score s+ - s- , which is equivalent to yif(xi) then

by approximation we get the loss function of SVM. In our approach the slack is not

re-scaled as the margin is considered to be constant or a hyperparameter.

Considering the margin re-scaling we observe yif(xi) ≥ Δ (yi ,y)−1- yif(xi) which on

simplification gives us Δ (yi ,y)≤ 1.

While learning the text representations, weight parameters are learned for

embedding each word. These learnt embeddings are convolved. with kernel feature

map whose weights are again learnt in the training process. The similarity matrix is

calculated between the pairs by using a weight parameter learnt by the model. The

above-mentioned steps consider gradient with backpropagation to update the weight

that minimizes the loss function. Since we have used a batch size of 1 along with a

clustering method it increases the computation time of the model by (b+c) times

where b is the batch size and c is the cluster size as compared to attentive pooling.

20

Chapter 4

Experiments

4.1 Dataset

We have applied attentive clustering to set of 13,104 training samples. The raw data

was collected from a sub-reddit “Explain like I m five”. We analyzed the data and

found that most of the good scoring answers were posted within 24 hours of question

posted. The answer thread started diminishing after 48 hours of the post and hence

we filtered out the data points which were posted after 48 hours. The answers with

less than 4 words along with no noun and less than 2 verbs were also filtered out.

The data were further processed for the test data by removing the questions which

had less than 4 answers.

Data Number of unique

questions

Number of samples Avg. length of

answers

Avg. length

of questions

Train 1595 13104 467 94

Dev 398 3226 465 86

Test-1 713 9040 427 85

Test-2 735 9030 419 87

Table5: Dataset Statistics

4.2 Experimental Settings

The texts were tokenized, lemmatized and POS tagged using NLTK (Steven, 2009).

We padded the questions and answers with their maximum length for wide

convolution. We utilized Glove embedding of 50 dimensions for word embedding.

The out of vocabulary words were initialized randomly. The window size of CNN

was taken as [1,2,3,5] with 128 filters. We adopted stochastic gradient descent

21

optimizer for optimizing the objective function. The learning rate is taken as 1.2 and

batch size is 1. We have considered loss margin as 0.1 and score weight α as 0.4.

We have collected the test data from the same subreddit but the year when the

questions were posted is different. We collected 18070 samples and split them into

2 test sets. None of the samples from train or dev data are present in any of the test

samples. The number of answers for a given questions in test-1 set ranges from 4-

156 and for test-2 it ranges from 4-172.

4.3 Results

System Test-1 Test-2

MAP (%) MRR (%) MAP (%) MRR (%)

Word Embedding 57.08 62.62 59.02 65.02

Learning to rank short text

pairs (Severyn et al, 2015)

64.99 72.48 66.40 74.49

Applying deep learning to

answer selection (Feng at al,

2015)

67.46 73.77 68.81 75.67

Attentive Pooling (Santos dos

et al, 2016)

69.30 76.73 71.25 79.92

Attentive Clustering 71.21 79.70 73.15 82.42

Table6: Performance of different Systems

Learning to rank short text pairs (Severyn et al) computes the pointwise interaction

between question and answer representations by wide convolution neural network

for similarity measure. Applying deep learning to answer selection (Feng at al)

creates QA-CNN where the similarity measure between a question and answer is

being computed for the column max pooled vectors of the convolutional

representations. Attentive Pooling (Santos dos et al) computes the similarity measure

between the attentive pooled representations of the input pair.

22

Attentive

Clustering

Train Dev Test-1 Test-2

69.39 76.62 66.04 71.69 71.20 79.71 73.15 82.41

Table7: Result of Attentive Clustering

We also captured the results for different α values to observe the importance of

taking into account answer-answer similarity compared to the question-answer

similarity.

α Test-1 Test-2

MAP MRR MAP MRR

0.0 70.82 79.13 71.82 80.07

0.2 70.83 79.17 72.40 81.74

0.4 71.20 79.71 73.15 82.41

0.5 71.32 79.83 72.80 81.53

0.7 71.04 78.92 72.59 81.29

1.0 71.01 79.05 72.31 80.72

Table8: Result of Attentive Clustering with different α

4.4 Analysis

In Table 6 we present the experimental results of the performance of different

systems over the subreddit dataset. The results are observed in terms of mean

average precision (MAP) and mean reciprocal rank (MRR) , the metrics normally

used for ranking problem. MAP is the overall mean of the average precision where

23

average precision is measured by computing the precision at every correctly returned

result and then calculating the average of it.

𝑀𝐴𝑃 =
∑ 𝐴𝑃(𝑖)𝑞

𝑖=1

𝑞

where 𝐴𝑃 =
∑ 𝑃(𝑖)𝑛

𝑖=1 ×𝑟(𝑖)

𝑛𝑟
 and 𝑟(𝑖) is the indicator function equaling to 1 when the

answer 𝑃(𝑖) is relevant and is the precision at 𝑖 for all questions q.

The mean reciprocal rank (MRR) computes the quality of the ranking by considering

the highest spot at which the first relevant answer has been placed. It is a statistical

measure for evaluating the complete list of answers produced for the given question,

ordered by the probability of the correctness (Craswell, 2009). MRR is the average

of the reciprocal ranks produced for each question which is given as:

𝑀𝑅𝑅 =
1

|𝑞|
∑

1

𝑟𝑎𝑛𝑘i

|𝑞|

𝑖=1

where ranki is the highest rank secured by as relevant answer for a question q.

According to Table 6 our attentive clustering system outperforms all the above

baseline models, achieving state-of-the-art performance. We also captured the

results for different α values in Table 8 to observe the importance of answer

similarity. The result demonstrates that it is important to give weightage to the

similarity measure between question-answer as well as answer-answer pair.

24

Chapter 5

Conclusions and Future Work

In this thesis, we developed a model which computes the score for the answers and

rank them for a given question. We presented attentive clustering for answer

selection which extends the attentive pooling for discriminative model training. It

learns to compute the semantic similarity measure from the representations of the

question-answer and answer-answer pairs. We demonstrated that attentive clustering

with wide convolutional neural network helps the model to make better evaluations

of the answers. The clustering of the answers and using their similarities to modulate

the scores of question answer pairs modestly improves the performance of the

model.

The model currently treats k for k-means as a hyperparameter. A further research

can be carried out for learning the best value of k. Currently, the model has been

applied over cleaned data. We could further extend the system to work on the raw

and noisy data. Currently, the model is applied on a clean and processed data.

Additionally, the model currently employs supervised learning. We could further

explore how to apply answer selection with unsupervised data. The model could be

further improved by annotating the question with interrogation category that is

whether the question is Where, Why, Who, this could probably improve the semantic

analysis by searching the relevant tokens in the answers.

25

Bibliography

Bachrach et al, Y. Z.-G. (2017). An Attention Mechanism for Neural Answer

Selection Using a Combined Global and Local View. arXiv:1707.01378v4.

Bahdanau et al, D. C. (2015). Neural machine translation by jointly learning to align

and translate. ICLR.

Belinkov, Y. M. (2015). A continuous word vector approach to answer selection in

community question answering systems. Proceedings of the 9th

International Workshop on Semantic Evaluation, (pp. 282–287).

Cao et al, Z. Q.-Y.-F. (2007). Learning to rank: From pairwise approach to listwise

approach. Proceedings of the 24th International Conference on Machine

Learning, ICML (pp. 129–136). NY, USA: ACM.

Chen et al, D. F. (2017). Reading wikipedia to answer open domain questions. . In

Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics, (pp. 1870–1879). Vancouver, Canada: ACL.

Craswell, N. (2009). Mean Reciprocal Rank. In LIU L., ÖZSU M.T. (eds)

Encyclopedia of Database Systems. Boston, MA: Springer.

dos Santos et al, C. B. (2015). Learning hybrid representations to retrieve

semantically equivalent questions. ACL.

Feng at al, M. X. (2015). Applying deep learning to answer selection: A study and

an open task. arXiv preprint:1508.01585.

Hermann et al, K. M. (2015). Teaching machines to read and comprehend. In

Advances in Neural Information Processing Systems 28, (pp. 1684–1692).

Hu et al, B. L. (2014). Convolutional neural network architectures for matching

natural language sentences. Advances in Neural Information Processing

Systems (NIPS).

Mihaylov et al, T. N. (2016). Ranking relevant answers in community question

answering using semantic similarity based on fine-tuned word embeddings.

SemEval@ NAACL-HLT, (pp. 879–886).

26

Mikolov, T. S. (2013). Distributed representations of words and phrases and their

compositionality. . Advances in Neural Information Processing

Systems(NIPS).

Mohtarami, M. B.-N. (2016). Neural-based Approaches for Ranking in Community

Question Answering. Proceedings of SemEval (pp. 828-835). San Diego,

California: Association for Computational Linguistics.

Pennington, J. S. (2014). Glove: Global vectors for word representation.

Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP).

Qiu, X. H. (2015). Convolutional neural tensor network architecture for community-

based question answering. IJCAI, (pp. 1305–1311).

Santos dos et al, C. T. (2016). Attentive pooling networks. arXiv preprint

arXiv:1602.03609.

Severyn et al, A. M. (2015). Learning to rank short text pairs with convolutional

deep neural networks. Proceedings of SIGIR. Santiago, Chile: ACM.

Steven, B. L. (2009). Natural Language Processing with Python. O'Reilly Media

Inc.

Su et al, Z. a. (2017). Enhanced Embedding based Attentive Pooling Network for

Answer Selection. Proceedings of the 6th Conference on Natural Language

Processing and Chinese Computing.

Sutskever et al, I. V. (2014). Sequence to sequence learning with neural networks.

Advances in Neural Information Processing Systems.

Tan et al, M. d. (2015). Lstm-based deep learning models for nonfactoid answer

selection. CoRR, abs/1511.04108.

Tay, Y. ,. (2017). Cross temporal recurrent networks for ranking question answer

pairs. CoRR abs/1711.07656.

Tsochantaridis, I. J. (2005). Large Margin Methods for Structured and

Interdependent Output Variables. Journal of Machine Learning Research 6,

1453–1484.

27

Verberne et al, S. B.-A. (2008). Using Syntactic Information for Improving Why-

Question Answering. Creative Commons Attribution-Noncommercial-Share

Alike 3.0.

Wang et al, D. N. (2015). A long short-term memory model for answer sentence

selection in question answering. Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing.

Wang et al, M. M. (2010). Probabilistic tree-edit models with structured latent

variables for textual entailment and question answering. The Proceedings of

the 23rd International Conference on Computational Linguistics.

Wang et al, Z. M. (2016). Sentence similarity learning by lexical decomposition and

composition. Proceedings of COLING 2016, the 26th International

Conference on Computational Linguistics: Technical Papers.

Wikipedia. (2018, October). Retrieved from

https://en.wikipedia.org/wiki/Mean_reciprocal_rank

Xu et al, K. B. (2015). Show, attend and tell: Neural image caption generation with

visual attention. In Proceedings of the 32nd International Conference on

Machine Learning, ICML, (pp. 2048–2057). Lille, France.

Yih et al, W.-t. C.-W. (2013). Question answering using enhanced lexical semantic

models. Proceedings of the 51st Annual Meeting of the Association for

Computational Linguist.

Yu et al, L. H. (2014). Deep learning for answer sentence selection. NIPS Deep

Learning Workshop.

Zhang et al, X. ,. (2017). Attentive Interactive Neural Networks for Answer

Selection in Community Question Answering. Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence.

