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Nomenclature 
g gravity, m s-2 
H height, m 
ṁ mass flow rate, kg s-1 

P pressure, Pa 
P* pressure, dimensionless 
R gas constant, J kg-1 K-1 
T temperature, K 
v velocity, m s-1 
Ẇ power, W 
y fraction of air not absorbed 
z elevation, m 
 
Greek Letters 
η efficiency 
ρ density, kg m-3 

 
Subscripts 
a air 
D downcomer 
R riser 
w water 
m air and water mixture 
ratio water/air 
P pump 
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1. Introduction and Background 
Hydraulic air compressors (HACs) are mechanisms that compress air using the 
downward flow of water [1]. Figure one shows a schematic for an example HAC. 
Water is collected tens of meters above the application height, at what are considered 
the inlet conditions, and then allowed to flow with gravity in a contained manner [2]. 
As the flow develops, the Venturi effect induces a lower pressure inside the 
downcomer shaft, which pulls air from the surroundings into the water, creating a 
bubbly mixture [3]. As these bubbles travel down, increasing hydrostatic pressures 
compress the air before it reaches the separation chamber and is extracted for use [4]. 
Historically, HACs have been used in mining applications since the technology was 
developed by Charles Taylor in 1890. 18 HACs have been reported, the largest was in 
Ontario Canada and supplied up to 25 silver mines with compressed air during its 70 
years of near continuous operation [2]. 
 

 
Figure 1. A generalized design for a hydraulic air compressor [1] 

 
Hydraulic air compressors have several advantages over the traditional mechanical 
versions. HACs operate nearly isothermally as opposed to traditional gas compressors 
that can only be said to operate nearly adiabatically [4]. A truly isothermal process is 
the theoretical ideal for compression work. HACs operate close to this ideal because 
the larger mass flow rate and specific heat value of water give it a higher thermal 
capacitance than the air [3]. Additionally, the air out of the separation chamber is 
dryer and cooler than traditional compressors, and it is often cleaner because it is free 
from machine oil or other contaminants [5]. Dryer air is better for many applications 
because the water vapor in moist air can freeze during depressurization. Cooler air 
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can also be more useful depending on the application. As a result of these benefits, 
HACs could soon become more common in industrial practices [2]. 
 
One area where hydraulic air compressors have a growing appeal is the energy sector. 
They are a method of compressing air that does not require the use of fossil fuels, and 
compressed air has the potential to be a valuable large scale energy storage technique 
[5]. Compressed air can be combined with gas turbines to produce power in a Brayton 
cycle [4]. Traditionally, this cycle is done using staged mechanical compressors, 
which heat the air significantly during each compression phase, resulting in efficiency 
loses. Compressed air is also a compliment to renewable energy sources because it 
can be used to store energy and balance load demands [6]. Coupling air compressors 
with technology like wind turbines allows excess energy from windy periods to be 
saved for moments of high electricity demand. The lack of these storage capabilities 
has been an obstacle to the replacement of fossil fuels in energy production. 
Researchers are also looking at HAC applications in wave and tidal energy 
production [5]. These would not harness water flows in the same way historic HACs 
have, but the constant supply of water and the energy potential of waves could prove 
useful. Overall, the possible applications of HACs are growing rapidly as people 
reconsider the technology, and many of these uses could be important to renewable 
energy. 
 
Due to the potential for hydraulic air compressors to become common use 
installations, understanding how to optimize their efficiency is an important area of 
research. It was determined that the ratio of the mass flow rates of water and air 
would be critical in understanding the relationship between the compression work out 
and the hydraulic work in [4]. Further research and analysis of historical HACs 
determined that there was an optimal mechanical efficiency based on mass flow ratios 
and delivery pressures, but it was noted that the reported efficiencies of many past 
HAC systems were likely overestimates because they did not account for air 
absorption during the compression [1]. The exact mass flow ratio is difficult to 
control because it depends on the entrainment mechanism [4]. However, it is 
important that the mass flow of water is at least three orders of magnitude greater 
than that of air so the flow can be considered isothermal [1]. Additional research has 
determined gas entrainment varies based on the velocity of the water and the 
geometry of the eductor. This work observed entrainments rates that equate to a flow 
ratio range of 1000 to 1700 [7]. 
 
Peet-Mati Sööt from CMM Energy LLC has proposed that hydraulic air compressors 
could be staged to allow for their use in industrial applications that do not already 
have a large elevation change. These systems would pump water up to the top of the 
downcomer shaft in a closed loop design. The use of a pump could also be beneficial 
in expanding HAC potential beyond requiring a natural water flow. For example, 
these systems could be used on offshore wind turbines. As has been discussed prior, 
excess power from turbines could be used to compress air, and a pumped HACs could 
be an efficient way of accomplishing that goal. Additionally, the limitless supply of 
ocean water would be available for use in a pumped system. These ideas remain 
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theoretical for now, but the introduction of pumps and stages greatly expands the 
applications potential for HACs. The efficiency of staged HACs will be different than 
historic installations, so it is important to discover what will impact their 
performance. To examine this, a model has been designed to test how simulated 
HACs would respond to changes in design parameters. 
 

2. Model Design 
To determine the efficiency of a staged hydraulic air compressor, the compression 
work done will be compared to the pump work required to drive the system. Figure 2 
shows the simplified HAC design used for this analysis. It is assumed that the 
temperature and pressure of the air is equal to that of the water at the inlet. 
 

 
Figure 2. A simplified closed loop HAC  

 
The pipe is assumed to be large enough that friction losses can be ignored. Based on 
this assumption, the energy equation can be written in a simplified form. 
 

𝑃

𝑔𝜌
+

𝑣

2
+ 𝑧 =  

𝑃

𝑔𝜌
+

𝑣

2
+ 𝑧  

( 1 ) 
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Neglecting any change in velocity along the downcomer, the energy equation can be 
combined with the ideal gas equation of state to determine the temperature of the air 
at the bottom of the downcomer, Ta2. Ta1 is the air temperature at the inlet, HD is the 
height of the downcomer, and Ra is the gas constant for air. 
 

𝑇 =  𝑇 +  
𝑔𝐻

𝑅
 

( 2 ) 
 

The water pressure at the bottom of the downcomer, Pw2, is found using the energy 
equation, assuming no change in velocity. Pw1 is the water pressure at the inlet and ρm 
is the average mixture density. 
 

𝑃 =  𝑃 + 𝜌 𝑔𝐻  
( 3 ) 

 
The average mixture density across the downcomer, ρm, is assumed to be the average 
of the mixture density at the inlet, ρm1, and the mixture density at the bottom of the 
downcomer, ρm2. 
  

𝜌 =  
𝜌 + 𝜌

2
 

( 4 ) 
 

The mixture density for any point along the downcomer, ρmj, can be found by a 
manipulation of the conservation of mass. ρaj is the density of air at a point along the 
downcomer and can be found using the ideal gas law and assuming the pressure of 
the air is always equal to the pressure of the water. ρw is the density of water. 
 

𝜌 =  
1 +  �̇�

1
𝜌

+ �̇�
1

𝜌

 

( 5 ) 
 

The mass flow rate ratio, ṁratio, is defined as the mass flow rate of water, ṁw, over the 
mass flow rate of air, ṁa. 

�̇� =
�̇�

�̇�
 

( 6 ) 
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The difference in density between the downcomer shaft and the riser means 
hydrostatic effects do not cause the water to return to the elevation the downcomer 
inlet, HD, but instead to an intermediate height, HR. The pressure at HR is equal to the 
pressure at HD, so the pump head required to close the loop, Hp, can be expressed 
only in terms of HD and densities. 
 

𝐻 = (1 −
𝜌

𝜌
)𝐻  

( 7 ) 
 

The pump power required to operate a single stage, ẆP can be found using HP. ηP is 
the isentropic pump efficiency. 
 

�̇� =
�̇� 𝑔𝐻

𝜂
  

( 8 ) 
 
The coefficient of performance, η, can be found by taking the isothermal compression 
work over the pump work. y is the percent of air not absorbed into the water during 
compression. 
 

𝜂 =  
𝑦�̇� 𝑅 𝑇 ln (

𝑃
𝑃

)

�̇�
 

( 9 ) 
 

It was also of interest to look at a measure of the change in pressure, which was non-
dimensionalized for comparisons. 
 

𝑃∗ =  
𝑦�̇� (𝑃 − 𝑃 )

𝜌 �̇�
 

( 10 ) 
 

A computer simulation was created to understand how HD and ṁratio affect these 
measures of performance in a single stage and across multiple stages. This code can 
be found in Appendix A. 
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3. Results 
To better understand how the downcomer height, HD, and the mass flow ratio, ṁratio, 
affect η and P*, both equations can be rewritten.  
 

𝜂 =  
𝑦𝑅 𝑇 ln (

𝑃
𝑃

)

�̇� 𝐻
𝑔(1 −

𝜌
𝜌

)

𝜂

 

( 11 ) 
 

𝑃∗ =  
𝑦(𝑃 − 𝑃 )

�̇� 𝐻
𝑔(1 −

𝜌
𝜌

)

𝜂
𝜌

 

( 12 ) 
 

For all simulations, the inlet temperature and pressure were set as 300 K and 100 kPa 
respectively, the density of water was assumed to be 1000 kg/m3, the acceleration of 
gravity was assumed to be 9.81 m/s2, the isentropic pump efficiency is assumed to be 
0.85, and the percent of air not absorbed into the water was assumed to be 0.95. 
 
The performance metrics were investigated for a single stage before moving to 
multiple stages. Figure 3 shows a plot of P* vs downcomer height at four different 
mass flow rate ratios. For each ṁratio tested, P* always increases with increasing HD. 
This is because larger values of HD cause a greater hydrostatic pressure at the bottom 
of the downcomer, which results in a greater pressure difference. Looking at the 
equation for P*, there is an HD term in the denominator from diving by pump work, 
but the change in pressure in the numerator must be more impactful as the plot 
indicates a positive relationship between height and P*. The ṁratio plots cross when HD 

is about 35 meters, meaning that height is where having a lower ṁratio goes from 
resulting in a lower P* to resulting in a higher P*. A lower ṁratio results in a lower 
mixture density, which primarily affects the overall pressure change in the 
downcomer and the pump head in the riser. A lower flow ratio results in a lower 
pressure change and a greater pump head, both of which would expect to result in a 
lower P*. However, the plot suggests there is a more influential interaction between 
HD and ṁratio that results in lower a P* for larger values of HD at larger values of ṁratio. 
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Figure 3. P* vs HD at varied ṁratio  

 
Figure 4 shows a plot of η vs HD at four different values of ṁratio. For all the 
simulated mass flow ratios, η decreases as height increases. This is because 
increasing HD will increase the pump work needed to close the loop at a faster rate 
than increasing the isothermal compression work done by the system. This can be 
seen by examining the equation for η. The pump head needed to close the loop will be 
a specific fraction of the downcomer height that is determined by ṁratio, so the 
denominator will increase in a mostly linear fashion. It can also be seen that the 
compression work in the numerator will increase in a logarithmic fashion. The result 
of the ratio of these terms is the negative relationship seen in the plot. All of the plots 
converge on 0.81 as height goes to zero. This is because the assumed value of y and 
the isentropic pump efficiency remain constant while the other variables remove 
themselves in this edge case. The product of y and the isentropic pump efficiency is 
0.8075. 
 
There were additional interesting observations about this plot. There is an inflection 
point in each line, which means there is a downcomer height where the size of the 
increase in η from decreasing HD begins to diminish. This could be useful information 
for optimization. Additionally, higher mass flow rates seem to be impacted more by 
changes in height. This is likely a result of the higher mixture density having a greater 
overall effect when it acts across larger heights. It is important to note that ṁratio and 
HD do not work independent of each other. The trend of performance characteristics 
being dependent on interactions between HD and ṁratio was seen in Figure 3 as well. 
Finally, Figure 4 shows the relationship between η and HD works opposite the 
relationship between P* and HD. The most efficient systems come from the smallest 
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HD values and therefore have the smallest overall pressure changes, while the larger 
heights result in the greatest pressure changes and the least efficient systems.  
  

 
Figure 4. η vs HD at varied ṁratio  

 
After observing the opposing trends in the relationship between HD and the two 
performance metrics, it was of interest to consider a combination η and P* that could 
indicate an optimal balance between pressure increase and system efficiency. Figure 5 
shows a plot of ηP* vs HD at four values of ṁratio. The plot shows a peak HD for each 
ṁratio that could be considered optimal. Figure 4 shows that the lower flow ratios have 
inflection points at higher values of HD, which supports the idea that HACs with low 
ṁratio values are optimized at larger heights. This could be because the lower mixture 
density needs more height to develop the optimal pressure change. Looking at the 
equations, the peak is likely a result of the interaction between P* increasing from the 
mostly linear pressure difference term and η decreasing as the logarithmically 
increasing pressure ratio term is outpaced by the pump work. The lower mixture 
density would appear to cause this interaction to develop slower and peak later.  
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Figure 5. ηP* vs HD at varied ṁratio  

 
With an understanding of how to select optimal heights, the next area of focus was 
how adjusting the value of ṁratio would affect η. Figure 6 shows a plot of η vs ṁratio 
for three different HD values in meters. The plot shows that η decreases as ṁratio 
increases. This is likely a result of less air being available to be compressed at higher 
flow ratios. As the ratio increases, ρm goes to ρw, and the mixture becomes closer to 
pure water. Less air being compressed gives a lower overall compression work. The 
ṁratio term in the denominator represents this relationship because it will drive η to 
zero as it increases. This also means that η will increase with lower flow ratios. 
However, there will be a physical limit to this trend because at some much smaller 
value of ṁratio, buoyancy forces would overcome the drag from the water and air 
would escape the stream. This phenomenon is not captured well by the model but is 
not of great concern because HACs are limited by the amount of air they can entrain 
via the eductor. Effectively, the mass flow ratio is already within the physical limits 
of the air water interaction for real systems. To account for this, the analysis was 
restricted to ranges where ratios were seen as reasonable based on prior findings.  
 
Also of interest, the mass flow ratio has more of an effect when it is over a larger 
height. This is likely a result of the pressure term because that is what depends on 
both HD and ṁratio, a relationship that was observed during the analysis of HD. Again, 
this is caused by the fact that ṁratio affects the density which can then have a greater 
impact on delivered pressure with a greater height. 
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Figure 6. η vs ṁratio at varied HD (m) 

 
After understanding how η was affected by varied flow ratios, the next question was 
how η was affected by staging. Figure 7 shows η vs ṁratio over multiple stages. For 
this plot, HD was held at 10 meters for each stage. Each subsequent stage inlet is set 
to the outlet conditions of the ṁratio that resulted in the highest η for the prior stage. 
The major notable pattern is η increasing for each subsequent stage. The primary 
difference between stages is starting pressure, meaning the process is more efficient 
when operating at higher pressures. This could be because a higher inlet pressure 
means a higher mixture density with close to the same amount of air flow. When 
looking at the equation for η, driving the density ratio in the denominator to one 
would drive the entire denominator to zero. An opposite trend would result from the 
pressure ratio in the numerator also going to one at higher inlet pressures, which 
drives the log of this value to zero, but this must happen at a slower rate. The plot 
indicates the higher density is more beneficial for η overall. 
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Figure 7. η vs ṁratio over consecutive stages 

 
After discovering the positive effect staging has on η, there was interest in creating a 
design tool that takes a desired mass flow rate of air and delivery pressure and returns 
the ideal configuration for a staged hydraulic air compressor system. This tool also 
takes inlet conditions, a maximum height for the stages, and a range of possible mass 
flow ratios. 
 
Figure 8 shows the relationship between the number of stages required for an HAC 
system to reach set delivery conditions and the average η and total pump power for 
each separate system. By examining this plot, it is clear that the average η improves 
with additional stages while the total power required decreases. This would indicate it 
is better to operate pumped HACs in a staged manner because it is more efficient and 
uses less power overall. It is important to note the marginal benefit of each additional 
stage decreases quickly. This means the economics and logistics of additional stages 
will likely determine how many stages would be necessary for a specific application, 
but for most, a handful of stages will be ideal. This graph was made using a series of 
results from the design tool that were sorted based on the number of stages they 
required. The highest η and corresponding pump work were selected for each set of 
results with the same number stages required. This means the delivery conditions 
were held constant, but the reported mass flow ratios and heights are variable from 
one point on the plot to another. This plot was meant to be an overall summary of 
results from comparing design tool outputs and a more detailed explanation of the 
process that created it can be found below. 
 



14 
 

 

 
Figure 8. The best average η and corresponding total pump power for each set of design tool outputs 

that had an equal number of stages required. 
 
The design tool works by creating a range of height values from 2 meters to the given 
max and then breaking this and the mass flow ratio range into separate sets of evenly 
spaced values. It then runs these vectors through the HAC simulation that was 
developed. This outputs a series of arrays for values like pressure out and η. The tool 
then looks through the array and throws out any values that do not meet the delivery 
pressure requirement. If no values meet the delivery conditions, it will select the 
highest pressure output, add an additional stage, and repeat this process. It was 
decided to select the highest pressure output when delivery condition are not met 
because analysis of staged HACs indicated higher pressures were more efficient. 
Once it finds one or more configurations that can meet the delivery conditions, it will 
compare the values of η and select the highest one. The tool then returns the number 
of stages required, the mass flow rate of air required into the first stage, the optimal 
configuration of flow rate and height for each stage, and the pressure, η, and pump 
work values resulting from each stage. 
 
In order to explore how staging effects η, the design tool was used to generate results 
for a series of inputs that only varied the max allowable height. The desired output 
pressure and flow rate were 200 kPa and 0.2 kg/s respectively. The range of mass 
flow ratios given was 1000 to 2000. The inlet conditions were 300 K and 100 kPa. 
 
Figure 9, 10, and 11 show a graphical summary of the design tool results for a max 
height of 15, 10, and 5 meters respectively. Figure 9 shows a single stage that ran at 
an ṁratio of 1325, had an η of 0.776 and required 4880 W to power the pump. Figure 
10 shows a system that uses two stages. The first is 10 meters tall, operates at an ṁratio 
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of 2000, had an η of 0.783 and required 2545 W. The second is 4 meters tall, operates 
at an ṁratio of 1000, had an η of 0.808 and required 1268 W. Figure 11 shows a 
system that required three stages. The first is 5 meters tall, operates at an ṁratio of 
2000, had an η of 0.801 and required 1379 W. The second is 5 meters tall, operates at 
an ṁratio of 2000, had an η of 0.804 and required 1117 W. the third is 3.86 meters tall, 
operates at an ṁratio of 1020, had an η of 0.808 and required 1224 W. 
 

 
Figure 9. The design tool results for a max height of 15 m 

 

 
Figure 10. The design tool results for a max height of 10 m 
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Figure 11. The design tool results for a max height of 5 m 

 
By examining the design tool returns for these specific instances, it is clear that the η 
for each stage increases when there are multiple stages in the system. A trend towards 
lower total pump power can also be seen. At this point, it was beneficial to 
understand how average η and total pump power respond to variation in max 
allowable height, and how these values correlated to the number of stages required.  
 
Figure 12 shows the stages required and average η for a series of design tool requests 
with different max heights. Each point represents an HAC system determined by the 
tool, just like those represented more in depth in Figures 9-11. The line shows how 
many stages are needed in those systems. When examining the point at 10 meters, it 
appears that 2 stages are needed and the average η is about 0.797, which agrees with 
Figure 10.  Overall, the efficiencies seem to be improving with additional stages. The 
reason there is an increase in average η before a second stage is added is because the 
tool selects the best value at each stage, not the best overall average. Another 
important observation is the drop in η just before a second and third stage is added.  
 

 
Figure 12. The design tool results for stages required and average η vs the max allowable height 
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Figure 13 shows the stages required and total pump power for a series of design tool 
requests with different max heights. The total power varies inconsistently within each 
category of required stages. This is mostly because pump power itself is not being 
prioritized, so the tool’s selection process does not create a smooth pattern for this 
particular output. However, there is a drop in total power used at the height just 
before an additional stage is needed, similar to the pattern seen in Figure 12.  
 

 
Figure 12. The design tool results for stages required and total power vs the max allowable height 

 
Investigation of the phenomenon occurring just before an additional stage was added 
showed that it is a result of how the tool selects HAC configurations. As the 
maximum allowable height gets closer to the cutoff that will require an additional 
stage, there reaches a point when the desired pressure can be reached only with an 
inefficient configuration because better ones are now too tall. This forces the tool to 
pick a worse configuration because it has no other options. 
 
The variability of the average η without adding a stage makes it difficult to determine 
the overall pattern of η with respect to stages. However, all these results can be 
grouped based on the number of stages required, and a best η can be selected from 
each grouping. This was the process used to generate Figure 8.  
 

4. Conclusion 
The results of the single-stage analysis of hydraulic air compressors showed that η 
decreases and P* increases with increasing HD. The product, ηP*, was used to 
determine the ideal height for an HAC operating at a given flow rate. It was also 
found that η decreases with increasing ṁratio. The results of multi-stage analysis 
showed that η increases with subsequent stages. 
 



18 
 

 

These results were used to guide the development of a design tool that could take 
input and delivery conditions and return an optimized HAC system. Analysis of the 
output of this tool for a variety of maximum allowable heights was used to determine 
that overall, staging HACs will increase the average η and decrease the total pump 
power required for a system. This suggests staged HACs could be viable alternatives 
to the traditional design.  
 
Future work should be done to explore how variable absorption rates might affect 
staged systems, especially if the water is recycled continuously. Further work could 
also be done to explore how the geometry of the piping and the design of the eductor 
might influence the ideal configurations. Additionally, work could be done to find 
other ways to represent the efficiency over multiple stages beyond an average and 
optimize the output of a single stage beyond ηP*. Finally, the design tool was built 
primarily for analysis, improvements could make it more user friendly for actual 
design.  
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Appendix A: Code 
This appendix includes the Python code used to simulate individual and staged 
hydraulic air compressors and the design tool that was created to select 
configurations. It also includes the code used to make the graphs found in the results 
section. 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Constants 
g = 9.81  # gravity in m/s^2 
density_water = 1000  # In kg/m^3 
R = 287  # J/(kg*K) 
 
 
def hac_output(test_heights, mass_flow_ratio, diameter=0.15, velocity=5, 
temp_i=300, pressure_i=100000, 
               ise_pump_eff=0.85, y=0.95): 
    """ 
    hac_output takes a vector of test downcomer heights and mass flow ratios ([flow of 
water]/[flow of air]) and returns 
    the final temperature, final pressure, pressure change from inlet to outlet,  a non-
dimensional pressure change, a 
    coefficient of performance, pump work, mass flow of water, and mass flow of air 
for a single stage. It can also take 
    pipe diameter, water velocity, inlet temperature and pressure, isentropic pump 
efficiencies, and values of y (the 
    percent of air no absorbed into water by Henry's law). 
 
    :param test_heights: a numpy array of downcomer heights to be tested 
    :param mass_flow_ratio: a numpy array of mass flow ratios to be tested 
    :param diameter: optional pipe diameter to determine mass flow of water (m). 
    :param velocity: optional water velocity to determine mass flow of water (m/s) 
    :param temp_i: inlet temperature (K) 
    :param pressure_i: inlet pressure (Pa) 
    :param ise_pump_eff: isentropic pump efficiency 
    :param y: percent of air not absorbed into water by henry's law 
    :return: final temp and pressure, pressure difference, non-dimensional pressure 
difference, coefficient of 
    performance, pump work, mass flow rate of water, mass flow rate of air. 
    """ 
    # pre define variables for later code 
    pressure_f = 0 
    average_density = 0 
    pressure_check = np.ones(len(test_heights)) 
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    # reshape test_heights array into 1xn row vector 
    test_heights = np.reshape(test_heights, (1, len(test_heights))) 
    # reshape mass_flow_ratio into a nx1 column vector 
    mass_flow_ratio = np.reshape(mass_flow_ratio, (len(mass_flow_ratio), 1)) 
 
    # find the cross-sectional are of the pipe (m^2) 
    area = np.pi / 4 * diameter ** 2 
    # calculate mass flow rates of water and air (kg/s) 
    mass_flow_water = density_water * area * velocity 
    mass_flow_air = mass_flow_water/mass_flow_ratio 
 
    # inlet pressure is initial guess for final pressure (Pa) 
    pressure_f_start = pressure_i 
    # find density of air at inlet using ideal gas laws (m^3/kg) 
    density_air_1 = pressure_i / (R * temp_i) 
    # find temperature final of air using ideal gas law (m^3/kg) 
    temp_f = temp_i + g * test_heights / R 
    # calculate the density of the air and water mixture (using conservation of mass?) 
(m^3/kg) 
    density_mix_1 = (1 + mass_flow_ratio) / (1 / density_air_1 + mass_flow_ratio / 
density_water) 
 
    # iterative loop to find the final pressure 
    while pressure_check.any() > 0.01: 
        # find the density of air at the bottom of the downcomer using assumed final 
pressure (m^3/kg) 
        density_air_2 = pressure_f_start / (R * temp_f) 
        # find the density of the mixture at bottom of downcomer (m^3/kg) 
        density_mix_2 = (1 + mass_flow_ratio) / (1 / density_air_2 + mass_flow_ratio / 
density_water) 
        # find the average of the mixture density using the densities at the inlet and 
bottom of the downcomer (m^3/kg) 
        average_density = (density_mix_2 + density_mix_1) / 2 
        # find final hydrostatic pressure using the average density (Pa) 
        pressure_f = pressure_i + test_heights * g * average_density 
        # check if new calculated pressure matches old guess and update final pressure 
to new value 
        pressure_check = abs(pressure_f - pressure_f_start) 
        pressure_f_start = pressure_f 
    # find height difference between inlet and riser shaft water height from hydrostatic 
effects (m) 
    pump_head = (1 - average_density / density_water) * test_heights 
    # work done by pump to overcome pump (W) 
    pump_work = mass_flow_water * g * pump_head / ise_pump_eff 
    # compute coefficient of pressure as isothermal compression work over pump work 
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    hac_efficiency = y * R * temp_i * np.log(pressure_f / pressure_i)/(mass_flow_ratio 
* g * pump_head / ise_pump_eff) 
    # find pressure change of air from inlet to outlet (Pa) 
    pressure_diff = pressure_f-pressure_i 
    # multiply pressure difference by volumetric flow rate of air at the inlet and divide 
by pump work 
    non_dim_pressure_diff = 
mass_flow_air*pressure_diff*y/(density_air_1*pump_work) 
 
    return [temp_f, pressure_f, pressure_diff, non_dim_pressure_diff, hac_efficiency, 
pump_work, mass_flow_water, 
            mass_flow_air] 
 
 
def staged_hac(max_height, mass_flow_range, pressure_out, flow_air_out, t_i, p_i): 
    """ 
    staged_hac is a function to determine how many stages are needed to meet a given 
pressure and air flow rate out 
    when given a set of restrictions about height and mass flow ratios. 
    :param max_height: The max height of a given stage 
    :param mass_flow_range: the range of mass flow ratios to test across 
    :param pressure_out: the desired final pressure of the air 
    :param flow_air_out: the desired mass flow rate of air 
    :param t_i: inlet temperature 
    :param p_i: inlet pressure 
    :return: returns the number of stages, the required air intake rate at the first stage, 
and lists of mass flow 
    ratios, heights, pressures, etas, and pump work values for each stage 
    """ 
    # set aside variables for use in output 
    h_values = [] 
    mr_values = [] 
    pressure_values = [] 
    eta_values = [] 
    pump_work_values = [] 
 
    # create arrays of height and mass flow ratios to test 
    h = np.linspace(1, max_height, 50) 
    m_r = np.linspace(mass_flow_range[0], mass_flow_range[1], 50) 
 
    # start at stage 1 
    stage = 1 
 
    # Loop while the pressure into the next stage (p_i) is less than the requested 
pressure out 
    while p_i < pressure_out: 
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        # run a simulation for the given conditions 
        sim = hac_output(h, m_r, temp_i=t_i, pressure_i=p_i) 
 
        # if any output pressures are greater than the requested pressure out, set aside all 
required information 
        if np.any(sim[1] > pressure_out): 
            # create an array of the eta values 
            etas = sim[4] 
            # set any eta value equal to zero if the pressure is not above the requested 
pressure out 
            etas[sim[1] < pressure_out] = 0 
            # find the index of the highest eta value from the reduced list 
            best_eta_index = np.unravel_index(etas.argmax(), etas.shape) 
            # append output lists with appropriate values 
            mr_values.append(m_r[best_eta_index[0]]) 
            h_values.append(h[best_eta_index[1]]) 
            eta_values.append(etas[best_eta_index]) 
            pressure_values.append(sim[1][best_eta_index]) 
            pump_work_values.append(sim[5][best_eta_index]) 
            # set p_i to a pressure higher than the out pressure so the loop will terminate 
            p_i = sim[1][best_eta_index] 
        # if no pressure is high enough 
        else: 
            # find the highest pressure output from the simulation array results 
            best_p_index = np.unravel_index(sim[1].argmax(), sim[1].shape) 
            # set conditions to the output of the highest pressure out simulation 
            t_i = sim[0][0][best_p_index[1]] 
            p_i = sim[1][best_p_index] 
            # append appropriate values for output 
            mr_values.append(m_r[best_p_index[0]]) 
            h_values.append(h[best_p_index[1]]) 
            pressure_values.append(sim[1][best_p_index]) 
            eta_values.append(sim[4][best_p_index]) 
            pump_work_values.append(sim[5][best_p_index]) 
            # add a stage 
            stage = stage + 1 
            # while loop will repeat because outlet pressure is not high enough 
    # calculate the air in required assuming a y value of 95 for each stage 
    air_in = flow_air_out/(0.95**stage) 
    # return parameters 
    return [stage, air_in, mr_values, h_values, pressure_values, eta_values, 
pump_work_values] 
 
 
def stage_analysis(): 
    # graph eta vs mass flow ratio at h = 4 over three stages 
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    h = np.array([10]) 
    m_r = np.linspace(1000, 1800, 100) 
    x = m_r 
    stages = 3 
    p_i = 100000 
    t_i = 300 
    for i in range(stages): 
        sim = hac_output(h, m_r, temp_i=t_i, pressure_i=p_i) 
        y_cop = np.reshape(sim[4], len(x)) 
        plt.plot(x, y_cop, label=('Stage ' + str(i+1))) 
        index = np.argmax(y_cop) 
        t_i = sim[0] 
        p_i = sim[1][index] 
    plt.legend() 
    plt.xlabel('Flow Ratio') 
    plt.ylabel('\u03B7') 
    plt.tight_layout() 
    plt.savefig('Stage.jpg', bbox_inches='tight') 
 
 
def efficiencies_vs_height(): 
    # graph height vs eta, P_star and eta*P_star 
    h = np.linspace(1, 100, 50) 
    m_r = np.linspace(1000, 2500, 4) 
    x = h 
    string_list = ['1000', '1500', '2000', '2500'] 
    for i in range(4): 
        string = '$' + string_list[i] + '$' 
        sim = hac_output(h, np.array([m_r[i]])) 
        y_cop = np.reshape(sim[4], len(x)) 
        y_non_dim_p = np.reshape(sim[3], len(x)) 
        plt.plot(x, y_cop*y_non_dim_p, label=string) 
    plt.xlabel('H (m)') 
    plt.ylabel('\u03B7P*') 
    plt.legend() 
    plt.savefig('COP_P_Star_vs_H', bbox_inches='tight') 
 
 
def efficiencies_vs_flow_ratio(): 
    # graph flow ratio vs eta and P_star 
    h = np.linspace(10, 70, 3) 
    m_r = np.linspace(1000, 3000, 100) 
    x = m_r 
    string_list = ['10', '40', '70'] 
    for i in range(3): 
        string = '$' + string_list[i] + '$' 
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        sim = hac_output(np.array([h[i]]), m_r) 
        y_cop = np.reshape(sim[4], len(x)) 
        y_non_dim_p = np.reshape(sim[3], len(x)) 
        plt.plot(x, y_cop*y_non_dim_p, label=string) 
    plt.xlabel('Flow Ratio') 
    plt.ylabel('\u03B7 P*') 
    plt.legend() 
    plt.savefig('COP_P_Star_vs_Flow_Ratio.jpg', bbox_inches='tight') 
 
 
def stages_vs_power(): 
    """ 
    This function runs a series of simulations for a set of conditions with a variable 
max allowable height. It takes 
    the result of these simulations and groups them categorically based on the number 
of stages required to meet outlet 
    conditions. It them graphs the number of stages vs the maximum possible eta from 
all configurations that result in 
    a given number of stages and the corresponding total power required. 
    :return: 
    """ 
    # define array of max heights to test 
    max_h = np.linspace(2, 50, 500) 
    # define arrays for use later 
    stages_needed = np.zeros(len(max_h)) 
    total_power = np.zeros(len(max_h)) 
    average_eta = np.zeros(len(max_h)) 
 
    # get simulation results for each max height 
    for i in range(len(max_h)): 
        # for each max height value run the simulation to determine the most optimal 
configuration 
        sims = staged_hac(max_h[i], [1000, 2000], 200000, 0.2, 300, 100000) 
        # save the stages needed, total power and average of the etas across stages for 
each simulation 
        stages_needed[i] = sims[0] 
        total_power[i] = sum(sims[6]) 
        average_eta[i] = np.average(sims[5]) 
 
    # convert stages to integer type variable to be usable in inequality later 
    stages_needed = stages_needed.astype(int) 
    # create empty arrays for graph values 
    max_etas = np.zeros(max(stages_needed)) 
    min_powers = np.zeros(max(stages_needed)) 
    x = np.zeros(max(stages_needed)) 
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    # loop through each set of heights requiring the same number of stages 
    for i in range(max(stages_needed)): 
        # create copies of arrays to save original data 
        temp_power = total_power.copy() 
        temp_eta = average_eta.copy() 
        """if the simulation did not return the number of stages being considered in this 
iteration of the loop set the 
        power value to infinity and the eta value to zero. This negates all values not 
associated with a set number 
        of stages""" 
        temp_power[stages_needed != i+1] = np.inf 
        temp_eta[stages_needed != i + 1] = 0 
        # find the max eta and the index where it occurs for each set of heights with a 
given stage number requirement 
        max_etas[i] = max(temp_eta) 
        index = np.argmax(temp_eta) 
        # save the corresponding total power required 
        min_powers[i] = temp_power[index] 
        # make the x-axis for plotting 
        x[i] = i+1 
    # graph the average eta and total power vs stages needed 
    fig, ax1 = plt.subplots() 
    ax2 = ax1.twinx() 
    ln1 = ax1.scatter(x, max_etas, label='Average \u03B7') 
    ax1.set_xlabel('Stages') 
    ax1.set_ylabel('Average \u03B7') 
    ln2 = ax2.scatter(x, min_powers, c='r', label='Power') 
    ax2.set_ylabel('Power (W)') 
    lns = [ln1, ln2] 
    labs = [ln.get_label() for ln in lns] 
    ax1.legend(lns, labs, loc=7) 
    plt.savefig('Total_Power_vs_Stages.jpg', bbox_inches='tight') 
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