
in. Electrical \& Computer Engineering
presented on $12 / 8 / 78$

Title: A Simulation Study of a Heuristic Technique for

Approximating Percentiles for Cascaded Independent Systems

## Redacted for Privacy Abstract approved:.. Dr! John Spragins

This thesis presents work done to verify the accuracy of a heuristic method for computing availability percentiles for cascaded independent systems. Previous work has provided a model for a single line that will be used as the basis for a simulation of cascaded and parallel systems of lines. The simulation generates cumulative distribution functions that are compared with the cumulative distribution function calculated using the heuristic technique. The results of this comparison show that for independant systems with the same individual availability density functions, the heuristic technique correctly models the composite cumulative distribution function in the areas of most interest to designers.

# A Simulation Study of a Heuristic Technique for Approximating Availability Percentiles for Cascaded Independent Systems 

## by

David Charles Squire

A THESIS
submitted to

Oregon State University
in partial fulfillment of the
requirements for the degree of

Master of Science

Commencement June 1979

APPROVED:

## Redacted for Privacy

## Redacted for Privacy

Head of Depaxtment of Electrical and Computer Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented_..-L2/8/38

Typed by Lori Ann Falkenhagen for.

## ACKNOWLEDGMENTS

My thanks to Dr. John Spragins for helping me over the rough spots.

My thanks also to Tektronix, Inc. for the use of the 4051 Graphic Computing System and the 4662 Plotter.

Special thanks to Lori Ann Falkenhagen for typing this thes is for me.

## TABLE OF CONTENTS

I. Introduction ..... 1
The Problem ..... 5
The Solution ..... 7
II. Description of the Heuristic Technique ..... 8
The Model .....  8
Results Prior to this Study ..... 15
III. Methodology of the Simulation ..... 16
Systems Simulation ..... 16
Heuristic Model Data Generation. ..... 20
IV. Results ..... 21
Summary of Results ..... 21
Plots of Results ..... 22
Analysis of Results ..... 28
V. Summary and Conclusion ..... 30
Bibliography ..... 32
Appendix ..... 34

## LIST OF ILLUSTRATIONS

## Figure

1. Experimental and Modeled Data Comparison ..... 10
2. Cumulative Distribution Function for a Single System ..... 22
3. Cumulative Distribution Function for Two Cascaded Systems ..... 23
4. Cumulative Distribution Function for Five Cascaded Systems ..... 24
5. Cumulative Distribution Function for Ten Cascaded Systems ..... 25
6. Cumulative Distribution Function for Two Ten-line Systems in Parallel ..... 26
7. Cumulative Distribution Function for Two Twenty- line Systems in Parallel ..... 27

# A Simulation Study of a Heuristic Technique 

 for Approximating Availability Percentiles for Cascaded Independent Systems
## I. INTRODUCTION

With the explosive growth of the data communications industry in the last decade, a great deal of effort has gone into the study of the reliability characteristics of voice grade telephone lines. Since there is a huge capital commitment in the existing voice grade telephone system, sound economics dictate that it be exploited to the hilt.

The first step in quantizing performance parameters of these lines involved the investigation of bit error rates assuming that the line under investigation was available and functioning. By the late sixties the focus of some studies shifted to the investigation and quantification of longer term failures affecting the availability of single lines and complex networks of lines. While the bit error rate studies dealt with methods of detecting and correcting a limited number of erroneous bits, the availability studies dealt with failures of the line lasting minutes or hours (1).

This paper will use Markov's definition of availability (1). That is, $A$, the availability, is the probability that a communication between two logical machines can be successfully carried out. If the operation cannot be carried out then the line is unavailable. Availability is a random variable representing the probability a line is operational.

Although the telephone operating companies have long recognized the need for information on the reliability of their networks the real impetus for developing a good reliability model came from IBM in the form of their "Supermarket Study" $(2,3)$. The IBM researchers found that line reliability data could be obtained, but that no one had collected it and used it to develop a reliability model for voice grade telephone lines.

The data used by IBM came from operational systems in several countries in North America and Western: Europe. These systems were monitored for periods of six months to ten years. For each line under study logs were maintained on their operation. The logs were used to record failures and their time duration. The thresholds on down time for declaring a line failure varied from one to ten minutes.

Using this data Markov et al developed the availability distribution function shown as the solid line in figure 1. Note that the function is actually a distribution function of unavailability (one minus the availability) and that the $x$-axis is logrithmic. This is done as a convenience and to present the distribution function in a more useful form. If a linear scale had been used the curve would have been compressed almost to a step function making the curves indistinguishable.

Once the line model was available attempts at designing highly reliable systems could be made. The first major consequence of IBM's work was their decision to go with decentralized processors rather than a single centralized processor in their supermarket system. This was a direct result of their conclusion, based on their model of phone line reliability, that the voice grade phone system would not be reliable enough for a system based on real time communication with a centralized computer.

At this stage in the evolution of the line model there are two important problems that have not been adequately solved (4). The first has to do with finding adequate techniques for computing reliabilities of systems with dependent communication line failures. Most of the work to this point assumed that
failures were independent and complex systems were modeled accordingly. Assume for example that a system designer adds redundant parallel lines to his system to increase its reliability to a predetermined level. Normally these redundant lines would be in the same cable, would run through the same central office, etc., as the primary lines. If one is cut it is highly probable that the other would be too. Further, if one line is malfunctioning, there is an appreciable probability a redundant line is also malfunctioning. In the worst case the redundancy based system would be no more reliable than a non-redundant one. Spragins has addressed this problem in several papers $(4,5)$.

The second problem has also been addressed by Spragins $(4,5)$.
This is the problem of developing techniques for handing systems with tremendously variable reliability parameters. Markov et al found that parameters such as line failure rate or percentage down time typically vary by three or four decimal orders of magnitude for different lines. A method of handling this problem has been proposed by Spragins and the validation of this technique is the subject of this thesis. The problem and its proposed solution are discussed in the following sections.

## A. The Problem

It has been observed that there is tremendous variablity in the availability of different voice grade telephone lines $(1,2,4)$. For example, Markov et al (1) found that average availability for a voice grade telephone line varies with its length, the type of data being transmitted, its country and whether it is a national or international line. The data they collected showed availabilities of individual lines ranging from greater than $99.9 \%$ to less than $90 \%$. This corresponds to a range of about three orders of magnitude base 10 for unavailability. Spragins points out (4) that, if all availability computations are based on mean values, there is a significant probability that the availability of a system will be much worse than was computed by the system designer. As a solution to this dilemma Spragins suggests that it would be better to design systems using percentile values of availabilities so that the percentage of installations given by the percentile number can be expected to have performance at least as good as set forth in the design specifications. The percentile value refers to the value of availability which $n \%$ of the possible availabilities exceed. For example, a 90 percentile availability of 0.99 means that $90 \%$ of the time the availability will be greater than 0.99 .

Finding percentile values requires integration of the density function of a function of random variables representing the way the availabilities of the individual lines combine. If availabilities of individual lines are assumed to be independent the availability of a system of cascaded or parallel lines can be written as a sum of products of the availabilities of the individual lines. Finding the density function of even the product of two random variables is a complex matter, however, as is illustrated by the general formulas below (5).

If $z$ is a function of two random variables, $x$ and $y$, then the distribution function of $z$ is given by:
$F_{z}(z)=\int_{D_{z}}^{\int} f_{x y}(x, y) d x d y$ where $D_{z}$ is the region where the function of $x$ and $y$ is $\leq z$.

The joint density function, $f_{x y}(x, y)$ is given by:

$$
f_{x y}(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}
$$

Since systems may have density functions based on products or sums of many random variables the evaluation of the system density function can be very difficult. Spragins $(4,5)$ has recognized this difficulty and has proposed a solution that is described in the next section.

## B. The Solution

Spragins $(4,5)$ has proposed a heuristic approach for approximating the density function of systems of voice grade telephone lines. He has found that single line data can be fitted reasonably well with a Beta density function. The Beta density is defined as:

$$
f_{A_{i}}\left(a_{i}\right)=\left\{\begin{array}{l}
\frac{\Gamma(r+s)}{\Gamma(r) \Gamma(s)} a_{i}(r-1)\left(1-a_{i}\right) \quad(s-1) \begin{array}{l}
0 \leq a_{i} \leq 1(1) \\
0
\end{array} \\
\text { elsewhere }
\end{array}\right.
$$

(In this paper "A" denotes a random variable and "a" denotes a specific value of the random variable used as an argument.)

Spragins assumed that if the density function for a single line can reasonably be assumed Beta then the density function of a system of lines can also be reasonably approximated by a Beta density. This is a heuristic assumption; a guess. Once having made the assumption he went on to show how to approximate the density function for a system given the densities for the individual lines. The purpose of this paper is to evaluate the validity of this heuristic assumption using the technique of simulation. Complex systems have been simulated assuming a single line is characterized by a Beta density and the resulting availability functions are compared with those computed using the heuristic technique.

## A. The Model

It has been shown (4) that the Beta density function provides a good fit to the measurement data on the availabilities of single voice grade telephone lines. The experimental data was collected and analyzed by Markov et al (1) and the Beta model was developed by Spragins (4). A comparison of Markov's data and Spragins' Beta model is shown in figure 1. For convenience and ease of presentation unavailability (one minus availability) is plotted on a horizontal $\log$ scale. The vertical scale represents the probability that the unavailability is less than a specified value. This is, in fact, a cumulative distribution function on unavilability which is defined as the integral of the probability density function. Thus, if we want to find the 90 th percentile availability we would go to the vertical axis at $90 \%$ and find the corresponding unavailability on the horizontal axis. This gives a percentile value for an unavailability which will not be exceeded more than $10 \%$ of the time. This is equivalent to finding an availability which will be exceeded $90 \%$ of the time.

The Beta approximation in figure 1 falls away from the experimental curve quite rapidly for availabilities greater than $99.5 \%$, but this region is normally of little interest to the
system designer who is interested in estimating the probability his design will be unsatisfactory. As availabilities go higher than $99.5 \%$, moreover, the confidence in the measurement data goes down because of the long observation periods required to get statistically significant results. For example, an availability of $99.9 \%$ corresponds to about two hours of down time per year based on a two thousand hour year. The observation period needs to be longer than three to four years to get statistically significant results. Some of Markov's data was taken over a period of several years of continuous operation but most of it was taken over periods of less than six months of continuous operation. When Spragins computed the Beta approximation, the values of the mean and 90th percentile were used to estimate the two parameters, $r$ and $s$, that describe the Beta distribution. This gave the values of $r=50$ and $s=0.5$. (The experimental data has a mean availability of 0.99 and a 90th percentile availability of 0.974. Spragins' Beta approximation has a mean of 0.990 and a 90th percentile value of 0.973 .) The object was to make sure of a good fit for the high percentile availabilities (which correspond to lower line availabilities) because that is the area of most concern to system designers and the area where most confidence in experimental data exists.

FIGURE 1


The heuristic model assumes that the density function of a complex system can also be approximated by a Beta density. A complex system is any combination of lines in series and parallel, or a more complex combination built up of seriesparallel or parallel-series blocks. What follows here is a description of how Spragins computes the values of the Beta density parameters, $r$ and $s$, of a system given the Beta density of a single line.

The Beta density was described in equation 1 . The first and second moments of this density can be expressed in terms of the two parameters $r$ and $s$ as (6):

$$
\begin{equation*}
\overline{A_{i}}=\frac{r}{r+s} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\overline{A_{j}^{(2)}}=\frac{r(r+1)}{(r+s)(r+s+1)} \tag{3}
\end{equation*}
$$

Solving these equations for $r$ and $s$ allows us to express $r$ and $s$ in terms of first and second moments as shown below:

$$
\begin{align*}
& r=\frac{\bar{A}_{i}\left(\bar{A}_{i}-\overline{A_{i}^{(2)}}\right)}{\overline{A_{i}^{(2)}}-\left(\overline{A_{i}}\right)^{2}}  \tag{4}\\
& s=\frac{\left(1-\overline{A_{i}}\right)\left(\overline{A_{i}}-\overline{A_{i}^{(2)}}\right)}{\overline{A_{i}^{(2)}}-\left(\overline{A_{i}}\right)^{2}} \tag{5}
\end{align*}
$$

The parameters ( $r, s$ ) of the Beta density assumed for the complex system can then be computed if the first and second moments of the exact density for the complex system can be found. These moments for composite systems are derived using the procedures described below. Once they are known, the moments are used to compute $r$ and $s$ using equations 4 and 5 above. We assume here that the availabilities of different lines are independent. For functions of the availabilities of these lines this implies that:

$$
\overline{f\left(A_{i}\right) g\left(A_{i}\right)}=\overline{f\left(A_{i}\right)} \overline{g\left(A_{i}\right)}
$$

We also know that whether availabilities are independent or not:

$$
\left.\left.\overline{f\left(A_{1}, A_{2} \ldots A_{n}\right)+g\left(A_{1}, A_{2} \ldots A_{n}\right)}=\overline{f\left(A_{1}, A_{2} \ldots A_{n}\right.}\right) \overline{+g\left(A_{1}, A_{2} \ldots A_{n}\right.}\right)
$$

Hence, if the rth moment for cascaded lines is:

$$
A^{(r)}=s_{0}^{1} \cdots s_{0}^{1} a_{1}^{r} \ldots a_{n}^{r} f_{A_{1}}\left(a_{1}\right) \ldots f_{\left(A_{n}\right)} d a_{1} \ldots d a_{n}
$$

then for independent cascaded lines:

$$
\overline{A^{(r)}}=\prod_{i=1}^{N} \quad s_{0}^{1} a_{i}^{r} \quad f_{A_{i}}\left(a_{i}\right) d a_{i}=\prod_{i=1}^{N} \overline{A_{i}^{(r)}},
$$

$$
\begin{align*}
& \bar{A}=\prod_{i=1}^{N} \overline{A_{i}} \quad,  \tag{6}\\
& \overline{A^{(2)}}=\prod_{i=1}^{N} \overline{A_{i}^{(2)}} . \tag{7}
\end{align*}
$$

Similarly for parallel lines:

$$
\begin{align*}
\bar{A} & =1-\underset{i=1}{N}\left(1-A_{i}\right) \\
& =1-\overline{\sum_{i=1}^{N}\left(1-A_{i}\right)} \\
& =1-\underset{i=1}{N}\left(1-\overline{A_{i}}\right)
\end{align*}
$$

and

$$
\begin{align*}
\overline{A^{(2)}} & =\left\{1-\prod_{i=1}^{N}\left(1-A_{i}\right)\right\}^{2} \\
& =1-2 \prod_{i=1}^{N}\left(1-A_{i}\right)+\prod_{i=1}^{N}\left(1-A_{i}\right)^{2} \\
& =1-2 \prod_{i=1}^{N}\left(1-\overline{A_{i}}\right)+\prod_{i=1}^{N}\left(1-2 \overline{A_{i}}+\overline{A_{i}^{(2)}}\right) \tag{9}
\end{align*}
$$

Since we now have formulas for the first and second moments of availability for systems that we are heuristically assuming to be characterized by Beta densities, we can use equations 4 and 5 to compute $r$ and $s$ for the assumed system density function.

Systems more complex than simple series or parallel networks could be analyzed using reliability block diagram reduction techniques such as these suggested by Buzacott (8). For the purpose of this study simple series parallel systems are thought to be sufficient to demonstrate application of the techniques.

Spragins' heuristic modeling technique then consists of the following steps:

1. Fit Beta density functions to experimental data to determine the values of $r$ and $s$ for individual systems.
2. Compute the first and second moments of the individual systems densities using (2) and (3).
3. Find the first and second moments of the composite system densities using (6), (7), (8) and (9).
4. Compute the values of $r$ and $s$ for the composite system density using (4) and (5).
5. The derived density function can then be used to compute percentile availability values for the composite system since only a single density function needs to be integrated.
B. Results Prior to this Study

In two papers describing this technique $(4,5)$, Spragins has derived the Beta density $r$ and $s$ parameters for a single line based on measurement data collected by Markov et al (1) and by Provetero (2). Using the density function derived for a single line the 90th percentile availabilities for one to ten cascaded lines were calculated using the heuristic technique. The results were tested by comparing them with products of the mean availabilities and products of 90 th percentile availabilities. It is logical to assume that these functions represent bounds on the true 90th percentile availabilities, although this is difficult to prove rigorously. Since the heuristically derived values fell between the two product curves they thus appeared to be reasonable. Prior to the time of the study reported here no other work has been done to validate this technique.

The purpose of this study is to verify this technique by taking the density function derived by Spragins $(4,5)$ and using it to simulate complex series and parallel systems by assuming that all of the individual lines have the same density function. The methodology and results of this simulation are discussed in the next section.

## A. System Simulation

The Beta distributed lines are simulated using what Tocher calls the "Top Hat" method (7). This involves computing the inverse of the cumulative distribution function (C.D.F.) so that the availability becomes the dependent variable and the probability becomes the independent variable. If the probabilities are selected from a uniformly distributed random variable function with values between zero and one then the corresponding availabilities will follow the correct density function. Virtually any textbook on computer simulation demonstrates the validity of this technique.

The simulation was done in just this fashion. The C.D.F. of the Beta density was inverted so that the availabilities were given as a function of their probability of occurence. (Actually, a table of values stored in a computer was used to describe this function.) A random number generator computed a probability between 0 and 1 which was used to look up an availability. These availabilities then occured with probabilities predicted by the Beta density function being simulated. That is, they followed the assumed Beta density function.

The simulation was run on a Tektronix 4051 Graphic Computing System using some modified statistical application programs. The "PLOT 50 STATISTICS" application package has a program called "Beta Tabled" (see appendix for program listings) that computes the availability given the right tail probability. This program was modified so that it would generate a table of values for probabilities from 0.001 to 0.999 in steps of 0.001 . Uniformly distributed random numbers were generated using the RND function on the 4051. All individual lines were assumed to have the Beta distribution defined by $r=50, s=0.5$ (see section II, A).

Access to these statistical programs was invaluable to this study. There are published tables of Beta distributions (9) but their use would have been extremely cumbersome and time consuming. A random number table would have to be used and values from it used to look up values of the availability. To do this 500 times for a single system would have been painful. To do it 10,000 times for two ten-line systems in parallel would have been impossible.

The simulation program works as follows. A complex system is defined in this simulation study as any number of cascaded lines which can be paralleled any number wide. For example, a system can be defined as three five line systems in parallel.


The current program doesn't handle structures more complex than this. For example, it will not handle:


With the proper programming any system composed of arbitrary configurations of independent lines could be simulated but the program would be much more complex than was felt to be necessary for this study.

Once the system has been defined a random number is generated for each line and the corresponding availability is selected from the tabulated data via the "Top Hat" method. The system availability for this sample is then calculated using the relationship:

$$
A=\prod_{i=1}^{N} A_{i} \quad \text { for cascaded lines }
$$

and

$$
A=1-\prod_{i=1}^{N}\left(1-A_{i}\right) \quad \text { for parallel lines. }
$$

These are formulas 6 and 8 derived in section II-A.
This process is repeated for the number of samples specified at program run time. The cumulative distribution function is then calculated by converting the availabilities to unavailabilities and accumulating their occurrences into bins which are specified at run time as "STEP SIZE". For example, the bins for Figure 2 were in steps of 0.001 from 0.001 to 0.200 . The resulting distribution of availabilities is the probability density function of the system based on frequency of occurrence. To compute the cumulative distribution function the values in the bin are simply accumulated starting at 0.001 and ending at 0.200. The resulting data is then plotted as shown in Figures 2-7.

## B. Heuristic Model Data Generation

The 4051 PLOT 50 Statistics package also has a program for computing right tail probabilities given availabilities for assumed Beta probability densities. This program was modified to generate the dashed curves shown in Figures 2-7. The parameters ( $r, s$ ) of the Beta distribution for which right tail probabilities are evaluated are computed using the heuristic technique previously described in section II-A. The first and second moments are computed using equations $6,7,8,9$ and $r$ and $s$ are then computed using equations 4 and 5. Listings of the 4051 BASIC programs are in the Appendix.

## IV. RESULTS

## A. Summary of Results

The results of the simulation of six different systems are shown in Figures 2-7. Values of $r$ and $s$ and maximum error differences are shown in Table 1. Maximum error for any system was $+6 \%$. Error is defined as the difference between the model data and the simulation data. The match between simulation and heuristic model appears to be quite good.

Table 1. Summary of Results

| System | Samples | r | s | Max. Diff. |
| :--- | :---: | :---: | :---: | :---: |
| 1 cascaded | 500 | 50 | 0.5 | $+2 \%$ |
| 2 cascaded | 500 | 49.75 | 1.0 | $+4 \%$ |
| 5 cascaded | 500 | 49.02 | 2.5 | $+6 \%$ |
| 10 cascaded | 500 | 47.83 | 5.0 | $-4 \%$ |
| $21^{\prime}$ 's in para. | 500 | 282.19 | 2.55 | $-3 \%$ |
| $220^{\prime}$ s in para. | 500 | 171.20 | 5.76 | $-3 \%$ |

FIGURE 2


FIGURE 3
CUMULATIVE DISTRIBUTION FUNCTION


FIGURE 4
CUMULATIVE DISTRIBUTION FUNCTION


FIGURE 5


FIGURE 6


FIGURE 7
CUMULATIVE DISTRIBUTION FUNCTION
THO TWENTY LINE SYSTEMS IN PARALLEL


## B. Analysis of Results

As can be seen in Figure 2 the simulation for a single line matches the model within two percentage points for all values of unavailability. This is the verification that the simulation program does actually simulate availabilities obtained for a single line with the assumed Beta density. This case does not involve use of the heuristic model since the model is not needed for the trivial case of a single line.

Figures 3-7 deal with increasingly complex combinations of lines. Again the results are quite good. The conclusion must be that the heuristic model will accurately model complex systems so long as the assumptions that the single line Beta model is an accurate model of a single line and that the line availabilities are statistically independent and valid. Note also that in the regions of interest to designers, say 80 th percentile or above, the differences between the model and the simulation and between single line measurement data and the assumed Beta density are both minimal.

The results of parallel combinations of systems are shown in Figures 6 and 7. The differences in availability for ten series systems (Figure 5) and for two ten line systems in
parallel (Figure 6) at the same ordinate values are an order of magnitude. Remarkable improvements in system reliability might be possible if truly independent communication paths could be established with reasonable costs. Although this is not normally possible with currently available common carrier systems (which tend to use common equipment for both a primary line and its backup (1, 2, 4)) it may be more practical in the future as specialized common carrier systems, which might supply the alternate paths, become more common.

## V. SUMMARY AND CONCLUSIONS

A simulation study has been done in an attempt to verify that a heuristic model for studying the availability of complex communication systems does accurately predict the cumulative distribution function of the availabilities of these networks. The results show that this is the case. With the provisos that the single lines can be modeled by Beta distributions and that they may be assumed to be independent, the heuristic model will produce accurate results.

Since designers now assume independence and that all lines are completely described by their mean availabilities this technique should result in greatly improved predictions of system availabilities. With this technique designers can use Beta density functions for each line in their system, reflecting the fact that Markov et al (1) have shown availabilities are random variables with approximately this distribution. With the model they can then derive a Beta density that approximates the statistics of the complete system. With the density function in hand they will then be able to compute percentile values for specified availabilities and thus be able to apply some level of confidence to their system specifications.

Note, however, that independence for the availabilities of different lines is assumed in this model and that in the Introduction it was stated that dependence is more likely for systems composed of telephone lines. Future work should be aimed at removing the requirement of independence. Before this can be done this dependency must be modeled. Spragins is attacking this problem with the hope that his heuristic technique can be extended to dependent systems.

Communications systems of the future will have much more stringent requirements placed on reliability because of the high cost and high visibility of down time. This will force system designers to develop redundant systems that might truly be independent. Multiple satellite links or multiple microwave links or backup links using different communications median from those used by the primary links might be examples. To prepare for this possibility future investigation should include attempts to generalize the technique to density functions that might model other than voice grade telephone lines and to study extension of the technique to systems including mixtures of different types of communications channels.

The alternative approach is to reduce the need for real-time access to remote locations by including more intelligence at the node as in (3).

## BIBLIOGRAPHY

1. Markov, J.D., Doss, M.W., Mitchell, S.A., "A Reliability Model for Data Communications", Proceedings of the IEEE International Conference on Communications, June 1978.
2. Provetoro, J., "Availability of Voice Grade Private Wire Telephone Lines", Proceedings of the IEEE Fall Electronics Conference, October 1971.
3. Hippert, R.O., Palounek, L.R., Provetoro, J., and Skatrud, R.O., "Reliability, Availability and Serviceability Design Considerations for the Supermarket and Retail Store Systems", IBM Systems Journal, Vol. 14, No. 1, pp 81-95, 1975.
4. Spragins, J., "Reliability Problems in Data Communications Systems", Proceedings of the ACM/IEEE Fifth Data Communications Symposium, Snowbird, Utah, September 1977.
5. Spragins, J., unpublished notes.
6. Papoulis, A., Probability, Random Variables and

Stochastic Processes, McGraw-Hill, New York, 1965.
7. Tocher, K.D., The Art of Simulation, The English Universities Press Ltd., London, 1963.
8. Buzacott, J.A., "Finding the MTBF of Repairable Systems by Reduction of the Reliability Block Diagram", Microelectronics Reliability, Vol. 6, pp 105-112, 1967.
9. U.S. Department of Commerce, National Bureau of Standards, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Government Printing Office, p. 945, 1964.

## APPENDIX

There are five programs listed in this appendix. All are written in Tektronix 4051 BASIC. The first program, "Beta Tabled Data File Generation", is a modified form of the Tektronix PLOT 50 "Beta Tabled" application program. This program generates the table of data that is accessed by the simulation program. The second program, "Complex System Simulation and Plot", accesses the table previously generated and does the simulation. The results of the simulation are then plotted. The third program, "Model Parameter Calculation", calculates the values of $r$ and $s$ for use in generating the model curves. The fourth program, "Plot of Specified Beta Unavailability", takes the calculated values of $r$ and $s$, computes the appropriate Beta distribution and plots it as a dashed line. It also computes and plots the error curve. The last program, "Graph Generation Program", generates the titles and axis labels for the plotted curves.

## beTA TABLED DATA FILE gENERATION

```
100 PRINT "LIBETA TABLED DATA FILE geNERATION"
110 PRINT 'لA,B';
128 INPU F1,F2
130 PRINT "LSTART,STOP,STEP SILE";
140 INUT C,D,E
150 G=(D-C)/E+1.5
160 6/=INT(G)
170 DIM J(2,61)
180 C=C-E
190 FOR H=1 TO 61
200 C=C+E
210 P=C
228 P8=P
230 IF FI<Q OR F2<O THEN 120
248 IF ABS(P-0.5)>0.5 THEN 120
258 IF FI<F2 OR FI>F2 THEN 220
260 IF P<C.5 OR P>8.5 THEN 290
270 0 = 8.5
280 60 T0 410
290 A=F1
380 B"F2
310 X=A+B
320 60SUB 1600
330 Y4-Al
340 X=A
350 6054B 1690
360 Y4-Y4-AI
370 X=8
388 EOSLB 1600
390 Y4-Y4-A1
400 60 TO 538
410 A1=18^(7+INT(-LGT(O)))
4 2 0 0 = I N T ( A 1 M 0 + 0 . 5 ) / A 1 ~
430 J(1,H)=PQ
440 J(2,H)=1-0
4 5 0 ~ N E X T ~ H ~
460 PRINT "GDDNE.....FILE MMBER";
4 7 0 ~ I N P U T ~ R ~
4 8 0 ~ F I N D ~ R ~
498 MRITE P33:J
500 PRINT 'GDONE."
5 1 0 \text { END}
520 00 TO 120
530 77=0
540 IF P<6.5 THEN 500
```

```
550 T7=A
568 A=B
570 B=T7
580 P=1-P
500 T8=1-(P)0.5)
600 P1-PmT8+(1-P)m(T8-0)
610 T=SRR(LOG(1/(P1mP1)))
620 X=2.515517+T#(0.882853+0.018328*T)
630 Y=1+T#(1.437288+T*(0.189268+0.801388mT))
640 Y T-T-X/Y
650 Y=(2mT8-1)wY
660 X=B*ABS(1-1/(9*B)+Y^SCR(1/(9*B)))~3
670 X = = + (B-1) %. .5
680 X2=2mXmXn(4mB-X-8)/(B+1+X)
690 X2=X2+(13*B-21)m(B+2)-10m(B-1)m(B+X+0.5)
760 X2=X2/(5760mX1^4)
710 X2=1+(B-1)m(B+1+X)m(1/(24mX1mX1)+X2)
720 X=X=X2
730 IF X/X1<50 THEN 700
740 X2=1.8E-10
750 00 TO 770
760 X2=EXP(-X/X1)
770 0-x2
780 60 TO 1850
790 X1=X2
800 60S4B 1300
818 YI=P-AI
828 Y2=Y1
830 IF YI:Y2<6 THEN 1890
840 IF YI<B THEN }99
850 XI=X2
800 YI=Y2
870 X3=\2
880 IF X2=>0.1 THEN }91
890 X2=18*X2
988 60 T0 }95
910 IF 1-X2<1-1/1.01 THEN }94
820 X2=X2*1.81
938 60 T0 958
940 X2=(X2+1)/2
050 0=X2
960 EAS1B 1390
970 Y2-P-A1
880 60 TO }83
980 X2=XI
```

```
1080 Y2=Y1
1810 IF XI<0.1 THEN }184
1828 XI=0.98*XI
1030 60 TO 1850
1840 XI=0.698*XI
1858 0=X1
1060 EOSUB 1300
1078 YI=P-AI
1880 60 TO 838
1000 IF ABS(Y1)>0 THEN 1128
1180 0=X1
1110 00 TO 1278
1128 IF ABS(Y2)>8 THEN 1158
1130 0=X2
1140 00 TO 1270
1150 0=(Y1wX2-X1*Y2)/(Y1-Y2)
1160 IF ABS(X1-X2)/XI<1.8E-6 THEN 1270
1170 60SUB 1360
1188 Y=P-A1
1190 IF Y#Y2% THEN 1230
1280 XI=X2
1210 Y1=Y2
1220 60 TO 1240
1230 YI=YI/2
1240 Y2=Y
1250 X2=0
1260 00 TO 1890
1270 IF T7-0 THEN 1290
1280 Q=1-0
1290 E0 TO 410
1300 REM EVALUATE CONTINUED FRACTION
1310 V1=0
1320 A1 =(A+B)*0/(A+1)
1338 IF A1/(1-A1)>0 THEN 1350
1348 VI=B
1350 B=A
1388 A=v1
1370 0=1-0
1388 A1=(A+B)*D/(A+1)
1390 A2=A1/(I-AI)
1400 I=1
1410 B1=A2
1428 B2=1+12
1430 V=A+2kI
1448 Al=I*(B-I)*Q/V*(V-1))
```

```
1450 A1=A|#(1+A2)
1460 A2=-A1/(1+A1)
1478 B1-B1MA2
|480 B2-B2+B1
1490 A1= (A+I)m(A+B+I)*O/(V*(V+1))
1500 A1=A1*(1+A2)
1518 A2=-A1/(1+A1)
1528 B1=A2*B1
1538 B2-B2+81
1540 I=I+1
1550 IF ABS(B1/B2)>1.8E-8 THEN 1430
1560 U~B*LOG(1-0)+A*LOG(0)-LOG(A)
1578 A1-LO6(B2)+Y4+U
1580 IF Al<-224 THEN 1610
1590 A1 =EXP(A1)
1600 E0 TO 1620
1818 A1=1
1628 IF VIm0 THEN }168
1638 Al=|-A|
1640 O=1-0
1658 VI=B
1668 B=A
1678 A=VI
1680 PETURN
1698 IF X<10 THEN }172
1780 EOSUB 1828
1718 RETURN
1728 A2=10-INT(X)
1738 B1=1
1740 FOR I=0 TO A2-1
1758 B1-B|*(X+I)
1760 NEXT I
1770 X=X+A2
1788 E0SUB 1820
1780 X=X-A2
1800 Al=Al-LOG(B1)
1818 RETURN
1828 Al=(X-0.5)mLOG(X)-X+0.5mL0G(2mPI)
1830 A = =Al +1/(12mX)-1/(360mX^3)+1/(1260m X^5)
1840 RETURN
1858 N-8
1880 02=0
1878 60SLB 1300
1880 YI-P-AI
1800 DI=Y1/EXP((A-1)wLOG(Q)+(B-1)wLOG(1-Q)+Y4)
```

$1990 \mathrm{Al}=((1-A) / 0+(B-1) /(1-a)) / 2$
1918 A2=(2*A1*A1+(A-1)/(0*0)+(B-1)/(1-0)2)/6
$1928 B 1=\left(2 *(1-A) / Q^{\sim} 3+2 *(B-1) /(1-0) \sim 3\right) / 24$$193801=0+D 1 *(1+D \mid *(A 1+D 1 *(A 2+D \mid * B 1)))$
$1848 \mathrm{~N}=1 \mathrm{l}+1$
1858 IF ABSCOI-0)/CD1.BE-7 THEN 2800
$19680=01$
1978 IF T7=0 THEN 418
1888 O=1-0
18980070418
$2808 \mathrm{~N}=\mathrm{N}+1$
$20180=01$
2828 IF ND7 OR O<O OR OSI THEN 2840
2838 60 TO 1870
2840 O 0 ©
$2858 \times 2=0$
2008 ©0 TO 798

## COYPLEX SYSTE SIMLLATION AND PLOT

```
160 REM THIS PROGPAM SINULATES COMPLEX SYSTEHS AND PLOTS THEIR
110 REM CUMULATIVE DISTRIBUTION FLNCTION.
128 INIT
130 Z=8
140 PRINT 'LISERIES PARALLEL SYSTEM SIMLATION'
150 PRINT 'MNBER OF SERIES SYSTEHS';
160 INPU N
170 PRINT 'NNHBER OF PARALLEL SYSTESS';
180 INPUT NI
190 PRINT 'LSTARTING UNAVAILIBILITY ';
280 INPUT S
210 PRINT 'JENDING UNAVAILIBILITY ';
220 INPUT
230 PRINT "LSTEP SIZE ';
240 INPUT SI
250 PRINT 'MNHBER OF SAMPLES';
280 INPT M
270 PRINT '\FILE ';
280 INPUT F8
290 DIM D(2,899)
320 FIND 11
310 READ E33:D
328 C=(E-S)/S1
330 DIM T(C)
340 DIM TI(C)
350 FOR H=1 TO C
360 T(H)=0
370 TI (H)=0
380 NEXT H
390 REM GENERATE THE M SAMPLES OF THE CASCADED SYSTEMS
400 FOR I=1 TO M
410 A1=1
420 A2=1
430 REM CALCLLATE THE CASCADED AVAILTBILITY
44 FOR L=1 TO NI
450 FOR J=1 TO N
460 REH SELECT A SNMPLE VIA A UNIFORY RANDOH VARIABLE.
470 II=INT(1800mPND(-1))
480 IF II=0 OR II=1 THEN }47
490 S2=1-D(2,II)
508 REN COIPUTE THE AVAILABILITY
510 Al=A1*S2
5 2 0 ~ N E X T ~ J ~
530 12=12=(1-A1)
540 Al=1
```

```
550 NEXT L
560 A2=1-A2
570 REM ROUND THE UNAVAILABILITY.
580 UI=INT(I808*(I-A2)#1.8E-3/SI)
598 U2=UI/1880
608 IF U2<S THEN 650
810 IF UNDE THEN 410
628 T(UI)=T(U1)+1
630 60 T0 660
648 REM COUNT THE SAMPLES THAT ARE OUT OF THE PLOT UINDOY.
650 z=2+1
860 NEXT I
870 REM INTEGRATE THE DENSITY FLNCTION
880 TIC()=Z
690 FOR L=2 TO C
700 TI(L)=T(L-1)+TI(L-1)
7 1 0 \text { NEXT L}
720 REN GENERATE THE SEILLOG PLOT OF X OF LINES UITH EOUNL OR BETTER
730 REH AVAILIBILITY(CN) AS A FUNCTION OF LOG(UNAVAILIBILTTY).
740 VIEIPORT 15,140,10,88
750 UTNDON LGT(1.0E-3),8,8, 100.801
760 MOVE O1:LGT(S),TI(1)M188/M
770 FOR P=2 TO C
780 S-S+S!
790 DRNK (1:LGT(S).TI(P)m100/M
8 0 0 ~ N E X T ~ P ~
810 FIND F8
820 URITE P33:TI
830 EN
```


## HODEL PARAFETER CALCULATION

```
160 PRINT 'LTHOOEL PARANETER CNLCULATION'
118 PRINT 'NMHBER OF CASCADED SYSTESS';
128 IPPT I
130 PRINT '&MHBER OF PARALLEL SYSTEMS';
140 INPUT NI
150 PRINT '&PARNYETERS OF SINGLE SYSTEM HODEL ( }\,B\mathrm{ , ';
160 INPUT A,B
170 Al=(A/(A+B))~N
180 A2=(A*(A+1)/((A+B)*(A+B+1)))~N
190 A3=1-(1-A1)NN!
280 A4=1-2*(1-A1)NN1+(1-2*A1+A2)NN
218 А0=A3#(A3-A4)/(A4-A3`2)
228 B8=(1-A3)*(13-A4)/(A4-A3'2)
250 PRINT 'YODEI A=';10
260 PRINT 'NHOEI B=';BO
270 END
```


## PLOT OF SPECIFIED BETA LNAVAILABILITY

```
100 PRINT 'LIPLOT OF SPECIFIED BETA LNAVAILIBILITY'
110 INTT
120 PRINT 'LH,B ';
130 INPUT A,B
140 PRINT 'LSTARTING UNAVAILIBILITY ';
150 IPPT
160 PRINT 'JENING UNAVAILIBILITY ';
170 INPUT E
180 PRINT 'USTEP SIZE ';
190 INPUT SI
290 PRINT 'FIIE ';
210 INPTT F8
220 G=INT(CE-S)/SI)
230 DIN T(G)
240 DIN TI(G)
250 FOR H=1 TO G
280 T(H)=8
270 TI(H)=8
288 MEXT H
298 Z-S-SI
300 FOR R=1 TO G
310 z=2+S1
320 0=1-2
330 IF A<A OR BCO OR OCO OR DOI THEN I2O
348 IF AD500 AND B\500 THEN I250
350 X=A+B
360 gasUB 1880
370 Y4-Al
380 X=A
390 EOSUB 1080
400 Y4-Y4-Al
410 X=8
420 GOSIB 1080
430 Y4-Y4-Al
440 coslB 788
450 IF Al=8 THEN 480
460 A2=10^(5+INT(-LGT(A1)))
478 Al=INT(A | A 2+0.5)/A2
480 T(R)=Al
4 9 8 \text { NEXT R}
500 NI=-1
510 N2=0.5
520 M9-1
530 v8-80/I25
540 Mem100.1/-LGT(1.0E-3)
```

```
550 VIEMPORT 15,140,18,80
560 UINDON LGT(1.6E-3),8,0,180.1
570 X4=LGT(S)
580 Y4-T(1)*180
590 60SUB 1600
600 FOR P=2 TO 6
618 S~S+SI
620 X4FLGT(S)
630 Y4-T(P)*100
640 EOSUB 1738
858 NEXT P
6 6 0 \text { FIND F8}
670 LRITE $33:T
680 END
688 REM EVALUATE CONTINUED FRACTION
788 VI=0
710 A1=(A+B)m( / (A+1)
720 IF Al/(1-Al)>0 THEN 780
730 VI=B
740B=A
750 A=V1
760 O=1-a
778 A1=(A+B)mQ/(A+1)
780 A2=A1/(1-A1)
780 I=|
800 B1=A2
810 B2=1+A2
820 V=A+2mI
830 Al=I*(B-I)w(V/V*(V-1))
840 Al=Al*(1+A2)
858 A2=-A1/(1+A1)
800 B1=81:A2
870 B2=82+B1
880 Al=-(A+I)m(A+B+I)wO/(Vm(V+1))
890 Al=Al*(1+A2)
900 A20-A1/(1+A|)
910 B1=12mB1
920 B2=B2+B1
930 I=I+1
940 IF ABS(B1/B2)>(0^-8 THEN 820
850 U-BWLO6(1-Q)+AwLO6(Q)-L0G(A)
900 Al=LOO(B2)+Y4+U
970 IF Al<-224 THEN 1880
988 Al=1-EXP(A1)
890 60 TO 1010
```

```
1000 Al=1
1818 IF VI=0 THEN 1878
1828 Al=|-Al
1838 Q=1-0
1848 V1=B
1050 B=A
1088 A=V!
1878 RETURN
1888 IF X<18 THEN 1110
1890 EOSUB 1218
1180 RETURN
1110 A2=18-DNT(X)
1128 Bl=1
1130 FOR I=0 TO A2-1
1140 B1~B1m(X+I)
1150 NEXT I
1160 X=X+12
1178 EOSUB 1218
1188 X=X-A2
1190 A1=A1-LOG(BI)
1200 RETURN
1218 AI=(X-0.5)wL06(X)-X+0.5mL06(2mPI)
1220 A1=A 1+1/(12mX)-1/(360mX^3)+1/(1260mX^5)
1238 RETURN
1240 REM NORHAL APPPOXIMATION
1250 B1=(B-1/3+8.82/B)m0-(A-1/3+0.02/A)*(1-0)+(0.82*0+8.81)/(A+B)
1260 X=(B-8.5)/(CA+B-1)m(1-Q))
1278 EOSUB 1430
1288 A2=0*B2
1290 X=(A-8.5)/(C}(A+B-1)*a
1300 EOSUB 1438
1318 A2=A2+(1-0)*B2
1320 X=B1 %SCR((1+A2)/(CA+B-5/6)m(1-Q)mQ))
1338 IF ABS(X)>20 THEN 1418
1340 T=1/(1+0.2318419#ABS(X))
1350 A1=T*(0.31838153+Tm(-8.350563782+1.781477937%T))
1360 A1=A1+T^4*(-1.82155978+1.33027429*T)
1378 A1 =SRR(1/(2mPI))mEXP(-X*X/2)mA1
1388 IF X=>0 THEN }48
1308 Al=1-AI
1400 60 TO 450
1418 Al=0
1428 00 TO 1380
1430 IF X=0 OR X=1 THEN 1430
1448B2=(1-X"X+2#XWL06(X))/(1-X)^2
```

```
1450 RETURN
1460 82=0
1478 RETURN
1480 REH ... DASHED LINE FOR X AND Y ENTRIES ...
1490 REM
1500 REM X4 \ldots. X
1518 REM Y4 ... Y
1528 REM
1538 REM NI ... Doch lonath
1540 REM N2 ... Dash/(daehtepace)
1550 REM
1580 REM M9 ... Dipploy addrass
1570 REM Ve ... Y to X vieuport ratlo
1588 REM W0 ... Y to X window ratio
1508 REM
1800 REM ... Initialization for storting ulth dach...
1818 N4-0
1820 60 TO 1850
1039 REM ... Initialization for sterting with spoce ...
1840 N4-N2
1858 MOVE MM:X4,Y4
1680 X5=\times4
1678 Y5=Y4
1888 X8=X4
1890 Y8-Y4
1700 N8=ABS(NI)/(CNI>日)+(N1/09)w10)/N2
1710 RETURN
1720 REM ... Branch point for drowing dathes and apoces ...
1738 X6=0
1748 Y8-SOR(C(Y4-Y8)#YG/N0)^2+(X4-X8)~2)
1758 IF Y8=0 THEN 1780
1760 X6m(X4-X8)/Y6
1778 Y6=(Y4-Y8)/Y6
1789 N5=SOR(C(Y4-Y5)*VO/N0)^2+(X4-X5)^2)
1790 N6=(N2m(N4/N2)+(N4=-N(2)-N4)**18
1800 X5=\5+X6m(N5 MIN N6)
1818 Y5=Y5+Y6%(N5 KIN N6)
1820 IF N4=N2 THEN }187
1830 REM ... Doath
1840 DRAH MN9:X5,Y5
1858 00 TO 1880
1880 REM ... Spoce
1878 HOVE MN:X5,Y5
1888 N4-N2w(N6<-45)m(N4N12)+(N4+N5/N8)m(N6>N5)
1890 IF NG<-N5 THEN 1788
```

1800 N4N4m(N4<1)
$1818 \times 8=\times 4$
$1828 \mathrm{Y}=\mathrm{F} 4$
1938 RETURN

GRAPH GENERATION PRDERAM

180 REA THIS PROGPRM GENERATES THE BASIC GRAPH FOR THE CUMULATIVE 118 REA DISTRIEATION FUNCTIONS
128 UINDOU 8,158,8, 188
130 VIELPORT $8,150,8,160$
140 MOVE 11:25,95
150 PRINT "LTPLOT ROUTINE"
160 PRINT "SNYBER OF SAPPLES';
170 INPUT S4
180 PRINT "LSTARTING UNAYAILIBILITY ";
180 INPUT S
200 PRINT "ENDING UNAVAILIBILITY ';
218 INPUT E
220 PRINT "USTEP SIZE ':
238 INPUT SI
248 PRINT 11.7:
250 PRINT O1:"CUHULATIVE DISTRIBUTION FUNCTION•
288 HOVE 1:25,82
278 PRINT 'ITITLE ';
280 INPUT TS
290 PRINT II:TS
300 PRINT "FILES ';
310 INPT F8,F9
320 MOVE 11:25,89
330 PRINT O1: "NMHBRR OF SAMPLES=',S4
348 MOVE II:15, 10
350 DRAK 11:15,90
368 MOVE O1:15, 10
378 DRAN 11:140, 10
380 DRAM E $1: 140,90$
390 HOVE 11:15, 10
400 FOR I=1 TO 9
$410 \mathrm{~A}=8 \mathrm{mI}+10$
420 HOVE $1: 15, A$
430 DRAW 1 1: 17,1
440 MOVE 11:9, A-9.6
450 PRINT OI:IW10
468 NEXT I
478 MOVE 1: 15, 90
488 DRAK 11:17,90
490 HOVE $11: 7.218,89.4$
508 PRINT 1 : 100
510 MOVE P1:4,76
520 PRINT 11 : "P'
530 MOVE 11:4,73.5
540 PRINT II: 'E'

```
550 HDVE 11:4.71
560 PRINT 11:"R"
578 HOVE P1:4,68.5
5 8 0 \text { PRINT (1:"C"}
590 MOVE E1:4,06
600 PRTNT 11:"E"
618 MOVE 11:4,63.5
620 PRINT II: "N"
630 HOVE 11:4,61
648 PRINT 11:"T"
650 MOVE 11:4,56
660 PRINT 11:"O"
670 HOVE E1:4,53.5
680 PRINT PI:'F'
690 MOVE P1:4,48.5
780 PRINT 11:"L"
718 HOVE 11:4,46
720 PRINT P1:"I'
730 MOVE II:4.43.5
74 PRINT O1:"N"
750 MDVE E1:4,41
700 PRINT \1:"E"
770 HOVE E1:4,38.5
700 PRINT El:'S"
790 FOR I=1 TO }
808 INVE O1:140,8mI+18
810 DRAW ह1:138,8*I+10
820 MOVE E1:140.9,8mI+18-0.6
830 0=(I-5)*5
840 IF O<0 THEN }90
858 IF O=8 THEN }88
800 PRINT 11:"+";0
878 60 TO }91
888 PRINT 11: ":0
890 60 TO 910
800 PRINT 11:"-";ABS(O)
810 MEXT I
928 HOVE II:18.5.7
930 PRINT 11:"0.801"
840 HOVE II: 15+125/3.10
850 DRAH 11:15+125/3,11
800 HOVE E1:11.4+125/3,7
970 PRINT 11:"0.01"
980 MOVE E|: 15+83.33, 18
990 DRNU \1:15+83.33,11
```

```
1000 MOVE II:12.3+83.33.7
1810 PRINT 11:'0.1'
1828 MOVE O1:12.3+125,7
1830 PRINT 01:"1.0"
1840 POVE O1:62.5+2.5,2
1850 PRINT 11:"UNAVAILABILITY'
1060 MOVE E1:25,86
1078 MOVE P1:25,87
1880 DRAN P1:31,87
1698 MOVE P1:31.5,86
1160 PRINT 11:':SIMLLATION DATA'
1110 MOVE P1:25,84
1120 DRAN 11:27,84
1138 HOVE O1:29,84
1140 DRAW 11:31.84
1150 MOVE P1:31.5,83
1180 PRINT 11:':HODEL DATA"
1178 MOVE O1:15,10
1188 FOR I=1 TO 3
1180 FOR K=1 TO 10
1200 MOVE O1:15+125/3wL6T(K)+125/3*(I-12,10
1218 RDRAM P1:0,0.5
1220 NEXT K
1239 NEXT I
1240 MOVE P1:148.5,76
1250 PRINT 11:'P'
1268 MOVE O1:148.5,73.5
1278 PRINT P1:'E'
1280 MOVE OI:148.5.71
1290 PRINT 11:'R'
1308 MOVE OI:148.5,68.5
1310 PRINT E1:'C'
1320 MOVE P1:148.5,68
1330 PRINT O1:'E'
1348 MOVE OI:148.5,03.5
1350 PRDNT O1:'N'
1380 MOVE PI:148.5,81
1378 PRINT 11:'T'
1380 MOVE OI:148.5,56
1300 PRINT O1:"D'
1400 MOVE OI:148.5,53.5
1418 PRINT O1:'I'
1420 HOVE PI:148.5.5I
1430 PRINT 1:"F'
1440 MOVE II:148.5,48.5
```

```
1458 PRINT 11:'F'
1468 MDVE Q1:148.5,48
1478 PRINT 11:'E"
1488 MDVE P1:148.5,43.5
1490 PRINT ह1:'R'
1500 MDVE PI:148.5,41
1518 PRINT 11: 'E"
1528 MOVE \I:148.5,38.5
1530 PRINT 11:"N"
1548 MOVE EI:148.5,36
1550 PRINT el:'C'
1560 MOYE II:148.5,33.5
1578 PRINT PI:'E"
1588 FIND F8
15%8 C=(E-S)/S!
1608 DIH T(C)
1618 DIM TI(C)
1628 READ E33:T
1630 FIND F9
1840 READ 033:T1
1650 VIEMPORT 15,149,18,80
1688 WINDOW LGT(1.8E-3),0,0,58.881
1670 MOVE 11:LGT(S),180w(T1(1)-T(1)/S4)+25
1680 FOR P=2 TO C
1600 S=S+SI
1780 DRAW 11:LGT(S), 180m(T1(P)-T(P)/S4)+25
1718 NEXT P
1728 END
```

