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A Simulation Study of a Heuristic Technique

for Approximating Availability Percentiles

for Cascaded Independent Systems

I. INTRODUCTION

With the explosive growth of the data communications

industry in the last decade, a great deal of effort has

gone into the study of the reliability characteristics of

voice grade telephone lines. Since there is a huge capital

commitment in the existing voice grade telephone system, sound

economics dictate that it be exploited to the hilt.

The first step in quantizing performance parameters of

these lines involved the investigation of bit error rates

assuming that the line under investigation was available and

functioning. By the late sixties the focus of some studies

shifted to the investigation and quantification of longer term

failures affecting the availability of single lines and complex

networks of lines. While the bit error rate studies dealt with

methods of detecting and correcting a limited number of erroneous

bits, the availability studies dealt with failures of the line

lasting minutes or hours (1).
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This paper will use Markov's definition of availability (1).

That is, A, the availability, is the probability that a

communication between two logical machines can be successfully

carried out. If the operation cannot be carried out then the

line is unavailable. Availability is a random variable

representing the probability a line is operational.

Although the telephone operating companies have long

recognized the need for information on the reliability of their

networks the real impetus for developing a good reliability

model came from IBM in the form of their "Supermarket Study"

(2,3). The IBM researchers found that line reliability data

could be obtained, but that no one had collected it and used it

to develop a reliability model for voice grade telephone lines.

The data used by IBM came from operational systems in

several countries in North America and Western Europe. These

systems were monitored for periods of six months to ten years.

For each line under study logs were maintained on their

operation. The logs were used to record failures and their time

duration. The thresholds on down time for declaring a line

failure varied from one to ten minutes.
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Using this data Markov et al developed the availability

distribution function shown as the solid line in figure I.

Note that the function is actually a distribution function of

unavailability (one minus the availability) and that the

x-axis is logrithmic. This is done as a convenience and to

present the distribution function in a more useful form. If a

linear scale had been used the curve would have been compressed

almost to a step function making the curves indistinguishable.

Once the line model was available attempts at designing

highly reliable systems could be made. The first major

consequence of IBM's work was their decision to go with

decentralized processors rather than a single centralized

processor in their supermarket system. This was a direct result

of their conclusion, based on their model of phone line

reliability, that the voice grade phone system would not be

reliable enough for a system based on real time communication

with a centralized computer.

At this stage in the evolution of the line model there are

two important problems that have not been adequately solved (4).

The first has to do with finding adequate techniques for

computing reliabilities of systems with dependent communication

line failures. Most of the work to this point assumed that
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failures were independent and complex systems were modeled

accordingly. Assume for example that a system designer adds

redundant parallel lines to his system to increase its

reliability to a predetermined level. Normally these

redundant lines would be in the same cable, would run through

the same central office, etc., as the primary lines. If one

is cut it is highly probable that the other would be too.

Further, if one line is malfunctioning, there is an

appreciable probability a redundant line is also malfunctioning.

In the worst case the redundancy based system would be no more

reliable than a non-redundant one. Spragins has addressed

this problem in several papers (4,5).

The second problem has also been addressed by Spragins (4,5).

This is the problem of developing techniques for handling

systems with tremendously variable reliability parameters.

Markov et al found that parameters such as line failure rate

or percentage down time typically vary by three or four

decimal orders of magnitude for different lines. A method of

handling this problem has been proposed by Spragins and the

validation of this technique is the subject of this thesis.

The problem and its proposed solution are discussed in the

following sections.
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A. The Problem

It has been observed that there is tremendous variablity

in the availability of different voice grade telephone lines

(1,2,4). For example, Markov et al (1) found that average

availability for a voice grade telephone line varies with its

length, the type of data being transmitted, its country and

whether it is a national or international line. The data they

collected showed availabilities of individual lines ranging

from greater than 99.9% to less than 90%. This corresponds to a

range of about three orders of magnitude base 10 for

unavailability. Spragins points out (4) that, if all

availability computations are based on mean values, there is a

significant probability that the availability of a system will

be much worse than was computed by the system designer. As a

solution to this dilemma Spragins suggests that it would be

better to design systems using percentile values of availabilities

so that the percentage of installations given by the percentile

number can be expected to have performance at least as good

as set forth in the design specifications. The percentile value

refers to the value of availability which n% of the possible

availabilities exceed. For example, a 90 percentile

availability of 0.99 means that 90% of the time the availability

will be greater than 0.99.
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Finding percentile values requires integration of the

density function of a function of random variables representing

the way the availabilities of the individual lines combine. If

availabilities of individual lines are assumed to be independent

the availability of a system of cascaded or parallel lines can

be written as a sum of products of the availabilities of the

individual lines. Finding the density function of even the

product of two random variables is a complex matter, however,

as is illustrated by the general formulas below (5).

If z is a function of two random variables, x and y, then

the distribution function of z is given by:

F
z

(z) =
D
Is f (x,y) dxdy where D

z
is the region where

z
xy

the function of x and y is < z.

The joint density function, f
xy

(x,y) is given by:

f
xy

(x,y) = 92 F (x,y)
9x 9y

Since systems may have density functions based on products

or sums of many random variables the evaluation of the system

density function can be very difficult. Spragins (4,5) has

recognized this difficulty and has proposed a solution that is

described in the next section.



B. The Solution

Spragins (4,5) has proposed a heuristic approach for

approximating the density function of systems of voice grade

telephone lines. He has found that single line data can be

fitted reasonably well with a Beta density function. The

Beta density is defined as:

f
A.

(a
i

) = r (r + s) (r-1)

r (r) r (s) ai
(1-

0

7

(s-1)

(1)

elsewhere

(In this paper "A" denotes a random variable and "a" denotes

a specific value of the random variable used as an argument.)

Spragins assumed that if the density function for a single

line can reasonably be assumed Beta then the density function of

a system of lines can also be reasonably approximated by a

Beta density. This is a heuristic assumption; a guess. Once

having made the assumption he went on to show how to approximate

the density function for a system given the densities for the

individual lines. The purpose of this paper is to evaluate the

validity of this heuristic assumption using the technique of

simulation. Complex systems have been simulated assuming a

single line is characterized by a Beta density and the resulting

availability functions are compared with those computed using

the heuristic technique.
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II. DESCRIPTION OF THE HEURISTIC TECHNIQUE

A. The Model

It has been shown (4) that the Beta density function

provides a good fit to the measurement data on the availabilities

of single voice grade telephone lines. The experimental data

was collected and analyzed by Markov et al (1) and the Beta

model was developed by Spragins (4). A comparison of Markov's

data and Spragins' Beta model is shown in figure 1. For

convenience and ease of presentation unavailability (one minus

availability) is plotted on a horizontal log scale. The vertical

scale represents the probability that the unavailability is less

than a specified value. This is, in fact, a cumulative

distribution function on unavailability which is defined as

the integral of the probability density function. Thus, if we

want to find the 90th percentile availability we would go to

the vertical axis at 90% and find the corresponding unavailability

on the horizontal axis. This gives a percentile value for an

unavailability which will not be exceeded more than 10% of the

time. This is equivalent to finding an availability which will

be exceeded 90% of the time.

The Beta approximation in figure 1 falls away from the

experimental curve quite rapidly for availabilities greater than

99.5%, but this region is normally of little interest to the
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system designer who is interested in estimating the probability

his design will be unsatisfactory. As availabilities go higher

than 99.5%, moreover, the confidence in the measurement data

goes down because of the long observation periods required to

get statistically significant results. For example, an

availability of 99.9% corresponds to about two hours of down

time per year based on a two thousand hour year. The

observation period needs to be longer than three to four years

to get statistically significant results. Some of Markov's

data was taken over a period of several years of continuous

operation but most of it was taken over periods of less than

six months of continuous operation. When Spragins computed

the Beta approximation, the values of the mean and 90th percentile

were used to estimate the two parameters, r and s, that describe

the Beta distribution. This gave the values of r=50 and s=0.5.

(The experimental data has a mean availability of 0.99 and a

90th percentile availability of 0.974. Spragins' Beta

approximation has a mean of 0.990 and a 90th percentile value

of 0.973.) The object was to make sure of a good fit for the

high percentile availabilities (which correspond to lower line

availabilities) because that is the area of most concern to system

designers and the area where most confidence in experimental

data exists.
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The heuristic model assumes that the density function of a

complex system can also be approximated by a Beta density.

A complex system is any combination of lines in series and

parallel, or a more complex combination built up of series-

parallel or parallel-series blocks. What follows here is a

description of how Spragins computes the values of the Beta

density parameters, r and s, of a system given the Beta density

of a single line.

The Beta density was described in equation 1. The first

and second moments of this density can be expressed in terms of

the two parameters r and s as (6):

A. = r

r + s

AC2) = r Cr + 1
1

(r + s ) (r + s + 1)

(2)

(3)

11

Solving these equations for r and s allows us to express r and s

in terms of first and second moments as shown below:

r =
Ai (Ai - Ac2))

(2) 2

A."- (Ai)
1

(1 AT) - AS12))

s

(Ai)2

(4)

(5)
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The parameters (r,$) of the Beta density assumed for the

complex system can then be computed if the first and second

moments of the exact density for the complex system can be found.

These moments for composite systems are derived using the

procedures described below. Once they are known, the moments

are used to compute r and s using equations 4 and 5 above.

We assume here that the availabilities of different lines are

independent. For functions of the availabilities of these lines

this implies that:

f (Ai) g (Ai) = f (Ai) g (Ai)

We also know that whether availabilities are independent or not:

f(A1,A2...An) +g(A1,A2...An) = f(A1,A2...An) +g(A1,A2...An)

Hence, if the rth moment for cascaded lines is:

(r) ,1 .1 r
A ' = Jo Jo a .ar f (a )... f da da

n1 n Al 1 (An) 1'

then for independent cascaded lines:

N
1 r r)A(r) = n Jo a. f

A
(a.) da. = n Air)

. 1 1
i=1 i i=1



SO

N

A = n A.

i=1

(2)
A = n

i=1

A(2)

Similarly for parallel lines:

and

N

A = 1 R (1-Ai)

i=1

N

= 1 n (1-Ai)

i=1

N

= 1 R (1-A)

i=1

A
(2)

= n (1-A.)1
2

i=1 1

N N 2
= 1 - 2 n (1-A.) + n

i=1 1 1

(6)

(7)

(8)

N N

= 1 2 R (1-A.) + n (1-2A. + (9)
i=1 1 1=1

13
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Since we now have formulas for the first and second moments

of availability for systems that we are heuristically assuming

to be characterized by Beta densities, we can use equations 4 and

5 to compute r and s for the assumed system density function.

Systems more complex than simple series or parallel networks

could be analyzed using reliability block diagram reduction

techniques such as these suggested by Buzacott (8). For the

purpose of this study simple series parallel systems are thought

to be sufficient to demonstrate application of the techniques.

Spragins' heuristic modeling technique then consists of the

following steps:

1. Fit Beta density functions to experimental data to

determine the values of r and s for individual systems.

2. Compute the first and second moments of the individual

systems densities using (2) and (3).

3. Find the first and second moments of the composite

system densities using (6), (7), (8) and (9).

4. Compute the values of r and s for the composite system

density using (4) and (5).

5. The derived density function can then be used to

compute percentile availability values for the composite

system since only a single density function needs to be

integrated.



15

B. Results Prior to this Study

In two papers describing this technique (4,5), Spragins

has derived the Beta density r and s parameters for a single

line based on measurement data collected by Markov et al (1)

and by Provetero (2). Using the density function derived for

a single line the 90th percentile availabilities for one to ten

cascaded lines were calculated using the heuristic technique.

The results were tested by comparing them with products of the

mean availabilities and products of 90th percentile

availabilities. It is logical to assume that these functions

represent bounds on the true 90th percentile availabilities,

although this is difficult to prove rigorously. Since the

heuristically derived values fell between the two product

curves they thus appeared to be reasonable. Prior to the

time of the study reported here no other work has been done

to validate this technique.

The purpose of this study is to verify this technique

by taking the density function derived by Spragins (4,5) and

using it to simulate complex series and parallel systems by

assuming that all of the individual lines have the same

density function. The methodology and results of this

simulation are discussed in the next section.
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III. METHODOLOGY OF THE SIMULATION

A. System Simulation

The Beta distributed lines are simulated using what

Tocher calls the "Top Hat" method (7). This involves computing

the inverse of the cumulative distribution function (C.D.F.) so

that the availability becomes the dependent variable and the

probability becomes the independent variable. If the probabilities

are selected from a uniformly distributed random variable function

with values between zero and one then the corresponding

availabilities will follow the correct density function.

Virtually any textbook on computer simulation demonstrates the

validity of this technique.

The simulation was done in just this fashion. The C.D.F.

of the Beta density was inverted so that the availabilities

were given as a function of their probability of occurence.

(Actually, a table of values stored in a computer was used to

describe this function.) A random number generator computed a

probability between 0 and 1 which was used to look up an

availability. These availabilities then occured with

probabilities predicted by the Beta density function being

simulated. That is, they followed the assumed Beta density

function.
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The simulation was run on a Tektronix 4051 Graphic

Computing System using some modified statistical application

programs. The "PLOT 50 STATISTICS" application package has a

program called "Beta Tabled" (see appendix for program listings)

that computes the availability given the right tail probability.

This program was modified so that it would generate a table of

values for probabilities from 0.001 to 0.999 in steps of 0.001.

Uniformly distributed random numbers were generated using the

RND function on the 4051. All individual lines were assumed to

have the Beta distribution defined by r=50, s=0.5 (see section

II, A).

Access to these statistical programs was invaluable to this

study. There are published tables of Beta distributions (9) but

their use would have been extremely cumbersome and time consuming.

A random number table would have to be used and values from it

used to look up values of the availability. To do this 500 times

for a single system would have been painful. To do it 10,000

times for two ten-line systems in parallel would have been

impossible.

The simulation program works as follows. A complex system

is defined in this simulation study as any number of cascaded

lines which can be paralleled any number wide. For example, a

system can be defined as three five line systems in parallel.



-0 0
.-0-0-0-0
0-0-0-0 0

The current program doesn't handle structures more complex than

this. For example, it will not handle:

With the proper programming any system composed of arbitrary

configurations of independent lines could be simulated but

the program would be much more complex than was felt to be

necessary for this study.

Once the system has been defined a random number is

generated for each line and the corresponding availability is

selected from the tabulated data via the "Top Hat" method.

The system availability for this sample is then calculated

using the relationship:

N

A= II A.

i=1

for cascaded lines.

18



and

N

A = 1 n (1-A.)
i=1

for parallel lines.

19

These are formulas 6 and 8 derived in section II-A.

This process is repeated for the number of samples specified

at program run time. The cumulative distribution function is

then calculated by converting the availabilities to

unavailabilities and accumulating their occurrences into bins

which are specified at run time as "STEP SIZE". For example,

the bins for Figure 2 were in steps of 0.001 from 0.001 to 0.200.

The resulting distribution of availabilities is the probability

density function of the system based on frequency of occurrence.

To compute the cumulative distribution function the values in

the bin are simply accumulated starting at 0.001 and ending at

0.200. The resulting data is then plotted as shown in Figures

2-7.
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B. Heuristic Model Data Generation

The 4051 PLOT 50 Statistics package also has a program for

computing right tail probabilities given availabilities for

assumed Beta probability densities. This program was modified

to generate the dashed curves shown in Figures 2-7. The

parameters (r,$) of the Beta distribution for which right tail

probabilities are evaluated are computed using the heuristic

technique previously described in section II-A. The first

and second moments are computed using equations 6, 7, 8, 9

and r and s are then computed using equations 4 and 5.

Listings of the 4051 BASIC programs are in the Appendix.
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IV. RESULTS

A. Summary of Results

The results of the simulation of six different systems

are shown in Figures 2-7. Values of r and s and maximum error

differences are shown in Table 1. Maximum error for any system

was +6%. Error is defined as the difference between the model

data and the simulation data. The match between simulation

and heuristic model appears to be quite good.

Table 1. Summary of Results

System Samples r s Max. Diff.

1 cascaded 500 50 0.5 +2%

2 cascaded 500 49.75 1.0 +4%

5 cascaded 500 49.02 2.5 +6%

10 cascaded 500 47.83 5.0 -4%

2 10's in para. 500 282.19 2.55 -3%

2 20's in para. 500 171.20 5.76 -3%
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B. Analysis of Results

As can be seen in Figure 2 the simulation for a single line

matches the model within two percentage points for all values of

unavailability. This is the verification that the simulation

program does actually simulate availabilities obtained for a

single line with the assumed Beta density. This case does not

involve use of the heuristic model since the model is not

needed for the trivial case of a single line.

Figures 3-7 deal with increasingly complex combinations of

lines. Again the results are quite good. The conclusion must be

that the heuristic model will accurately model complex systems

so long as the assumptions that the single line Beta model is an

accurate model of a single line and that the line availabilities

are statistically independent and valid. Note also that in the

regions of interest to designers, say 80th percentile or above,

the differences between the model and the simulation and

between single line measurement data and the assumed Beta

density are both minimal.

The results of parallel combinations of systems are shown

in Figures 6 and 7. The differences in availability for ten

series systems (Figure 5) and for two ten line systems in
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parallel (Figure 6) at the same ordinate values are an order

of magnitude. Remarkable improvements in system reliability

might be possible if truly independent communication paths could

be established with reasonable costs. Although this is not

normally possible with currently available common carrier

systems (which tend to use common equipment for both a primary

line and its backup (1, 2, 4))it may be more practical in the

future as specialized common carrier systems, which might supply

the alternate paths, become more common.
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V. SUMMARY AND CONCLUSIONS

A simulation study has been done in an attempt to verify

that a heuristic model for studying the availability of complex

communication systems does accurately predict the cumulative

distribution function of the availabilities of these networks.

The results show that this is the case. With the provisos that

the single lines can be modeled by Beta distributions and that

they may be assumed to be independent, the heuristic model will

produce accurate results.

Since designers now assume independence and that all lines

are completely described by their mean availabilities this

technique should result in greatly improved predictions of system

availabilities. With this technique designers can use Beta

density functions for each line in their system, reflecting the

fact that Markov et al (1) have shown availabilities are random

variables with approximately this distribution. With the model

they can then derive a Beta density that approximates the

statistics of the complete system. With the density function

in hand they will then be able to compute percentile values for

specified availabilities and thus be able to apply some level of

confidence to their system specifications.
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Note, however, that independence for the availabilities

of different lines is assumed in this model and that in the

Introduction it was stated that dependence is more likely for

systems composed of telephone lines. Future work should be

aimed at removing the requirement of independence. Before this

can be done this dependency must be modeled. Spragins is

attacking this problem with the hope that his heuristic technique

can be extended to dependent systems.

Communications systems of the future will have much more

stringent requirements placed on reliability because of the

high cost and high visibility of down time. This will force

system designers to develop redundant systems that might truly

be independent. Multiple satellite links or multiple microwave

links or backup links using different communications median from

those used by the primary links might be examples. To prepare for

this possibility future investigation should include attempts to

generalize the technique to density functions that might model

other than voice grade telephone lines and to study extension of

the technique to systems including mixtures of different types of

communications channels.

The alternative approach is to reduce the need for real-time

access to remote locations by including more intelligence at

the node as in (3).
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APPENDIX

There are five programs listed in this appendix. All are

written in Tektronix 4051 BASIC. The first program, "Beta

Tabled Data File Generation", is a modified form of the Tektronix

PLOT 50 "Beta Tabled" application program. This program

generates the table of data that is accessed by the simulation

program. The second program, "Complex System Simulation and

Plot", accesses the table previously generated and does the

simulation. The results of the simulation are then plotted.

The third program, "Model Parameter Calculation", calculates

the values of r and s for use in generating the model curves.

The fourth program, "Plot of Specified Beta Unavailability",

takes the calculated values of r and s, computes the appropriate

Beta distribution and plots it as a dashed line. It also

computes and plots the error curve. The last program, "Graph

Generation Program", generates the titles and axis labels for

the plotted curves.
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BETA TABLED DATA FILE GENERATION

100 PRINT 'UBETA TABLED DATA FILE GENERATION'
118 PRINT gjA,Bg;

128 INPUT Fl, F2

130 PRINT IJSTART,STOP,STEP SIZE';

140 INPUT C,D,E

150 6=CD-C)/E+1.5

188 61=INT(6)

178 DIM JC2,61)

188 C=C-E

190 FOR H=1 TO 61

280 C-C+E

218 P=C

228 P8=P

238 IF Fl<8 OR F2<8 THEN 128

248 IF ABS0-0.5)>8.5 THEN 128

258 IF FI<F2 OR F1>F2 THEN 298

268 IF P<8.5 OR P>8.5 THEN 298
278 0=8.5

280 GO TO 418

290 A=F1

388 B=F2

318 X=A48

320 GOSUB 1698

338 Y4-AI

348 X=A

358 GOSUB 1690

368 Y4=Y441
378 X=B

388 6OSO3 1690

398 Y4=Y4-A1

488 GO TO 538

410 A1=104(7+INTC-LGT(0)))

428 0=INTCA1*0+0.5)/A1

438 JO,H)=P8
440 JC2,H)=1 -0

458 NEXT H

460 PRINT 'BONE FILE NUMBER";
478 INPUT R

488 FIND R

493 WRITE 838:J

588 PRINT 'BOONE.'
518 DV
528 60 TO 128

538 T7=8

540 IF P<8.5 THEN 590
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558 T7=A

560 A=8

578 B=T7

580 P=I -P

590 T8=1 4P>8.5)

680 PI=P*T84.(1-P)*(T80)

818 T=SOR(LOG(I /CP1*P1)))

628 X=2.515517+T*(8.882853+0.810328*T)

630 Y=1+T*(1.437288+T*(8.189269+8.081388*T))

640 Y=T-X/Y

650 Y=C2*T8-1)*Y

688 X=B*ABS(1.-1/(910)+Y*SOR(1/(94)))A3

678 XI=A+CB-I)*8.5

680 X2=2*X0*(4104-8)/(6+10)
690 X242+03110-21)*(8+2)-18*(6-1)*(8+X+8.5)
788 X242/(5768*XIA4)
718 X2=1+(B-1)10+1+X)*(1/(24*X1*X1)+X2)
728 X=X*X2

738 IF X/XI<58 THEN 768
748 X2=1.8&10
758 GO TO 778

768 X2=EXPC 4/X1)

778 042
780 GO TO 1858

790 XI=X2

880 GOSUB

818 YI=P -A1

828 Y2=YI

838 IF Yl*Y2<8 THEN 1890

848 IF Yl<8 THEN 990

850 X142
860 YI=Y2

878 X3=X2

888 IF X2=>8.I THEN 918

890 X2=18*X2

988 80 TO 958

918 IF 1 42<1 .-1/1.81 THEN 948

920 X2=X2*1.81

938 GO TO 958

948 X2=<X2+1)/2

958 042
960 GOSLO 1388

978 Y2=P41
980 GO TO 838

990 X241
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1888 Y2 -Y1

1818 IF X1<0.1 THEN 1848

1829 X1m8.9801

1838 60 TO 1850

1848 X1m8.898*X1

1858 Q=XI

1888 GOSUB 1308

1878 Y1mP-Al

GO TO 838

1898 IF ABS(Y1)>0 THEN 1128

1188 0-XI

1118 GO TO 1278

1128 IF ABSCY2)>9 THEN 1158

1138 QmX2

1148 60 TO 1278

1158 Qm(Y1*X241*Y2)/(Y1 -Y2)

1168 IF ABSCX1-X2)/Xl<1.8E-8 THEN 1278

1178 GOSUB 1380

1188 YmP-Al

1198 IF Y*Y2).8 THEN 1238

1298 X1 -X2

1218 Y1 -Y2

1229 60 TO 1248

1238 Y1 -Y1 /2

1248 Y2 =Y

158 X202
1268 60 TO 1898

1278 IF T7m8 THEN 1298

1288 Q =1-0

1298 GO TO 418

1300 REM EVALUATE CONTINUED FRACTION

1318 V1m8

1328 Alm(A+B)*Q/CA+1)

1338 IF Al /C1 -A1)>8 THEN 1390

1348 Vt-B

1358 B-A

1368 AmV1

1378 Q-1-0

1388 Alm(A+B)*(2/(A+1)

1398 A2mA1/(1 41)

1488 Im1

1418 B1 -A2

1428 B2-1+A2

1438 VmA+2,I

1448 A1mI*(B-I)4/(V*(V-1))
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1458 A1=A1*(1+A2)

1468 A2m41/(1+A1)
1478 B143102
1488 82=132+131

1498 A1a-CA+I)*(A+B+I)*0/(VIKV+1))

1588 A14111(1+A2)

1518 A2a-A1/(1+A1)

1528 B1=A21181

1538 82.62+81

1548 I=I+1

1558 IF ABS(B1/B2) >1.8E -9 THEN 1430

1568 UB*LOG(1.-0)+A*LOG(0)-LOG(A)

1578 A14.08(02)+Y4+U

1588 IF A1<-224 THEN 1618

1598 A1=EXP(A1)

1608 GO TO 1620

1618 Ala1

1628 IF V1=8 THEN 1888

1638 A1a1A1
1648 0=1-0

1858 V1aB

1668 B=A

1678 A=V1

1688 RETURN

1898 IF X<10 THEN 1728

1788 GOSUB 1820

1718 RETURN

1728 A2=18-INT(X)

1738 B1=1

1748 FOR I=0 TO A2-1

1758 B1a81,(X+I)

17e8 NEXT I

1778 X=X+A2

1788 GOSUB 1828

1798 X=X-A2

1808 AlaA1 -LOGCB1)

1818 RETURN

1828 AlsKX -0.5)*LOG(X) 4+8.54.0GC2*PI)

1838 AI=A1+1/(12*X)-1/(3604A3)+1/(12680A5)
1848 RETURN

1858 Na8

1888 1124

1878 GOSUB 1308

1888 Y1 ' -A1

1898 D141/EXPC(A-1)*LO6(0)+(B*-1)*LOG(10)+Y4)
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1908 APK(14)/0+0)-1)/(1.-0))/2
1918 A2nC201*A1+CA-1)/(0*0)+(B.-1)/(1.-0)A2)/8

1928 B1m(2*(14)/0"3+2*(5-1)/(1-0)A3)/24
1930 0141+D1*(1+D1101+01*(A2+1)1*81)))

1948 N.N+1

1958 IF ABSC01 -0)/01.0E-7 THEN 2800

1968 041
1978 IF T7n0 THEN 418

1980 0=1-0

1998 GO TO 418

2888 N=N+1

2818 0=01

2828 IF N>7 OR CO OR 01 THEN 2840
28:48 GO TO 1870

2848 042
2058 X2-0

2868 GO TO 798
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COMPLEX SYSTEM SIMULATION AND PLOT

180 REM THIS PROGRAM SIMULATES COMPLEX SYSTEMS AND PLOTS THEIR
118 REM CUMULATIVE DISTRIBUTION FUNCTION.

128 MIT
130 2=0

148 PRINT "LISERIES PARALLEL SYSTEM SIMULATION'

158 PRINT "s/NMBER OF SERIES SYSTEMS ';

168 INPUT N

178 PRINT 'AMBER OF PARALLEL SYSTEMS ';
188 INPUT NI

190 PRINT 'JSTARTING UNAVAILIBILITY ';

208 INPUT S

218 PRINT NENDING UNAVAILIBILITY ';
228 INPUT E

230 PRINT 'JSTEP SIZE ';

248 INPUT SI

258 PRINT %NUMBER OF SAMPLES ';
288 INPUT H

278 PRINT 'FILE ';
288 INPUT F8

290 DIM D(2,999)

380 FIND 11

318 READ 133:D

320 C=CESYS1
330 DIM T(C)

348 DIM T1(C)

358 FOR H=1 TO C
388 TWIG
378 T101)=0

388 NEXT H

390 REM GENERATE THE M SAMPLES OF THE CASCADED SYSTEMS
488 FOR I=1 TO M

410 A1=1

428 A2=1

438 REM CALCULATE THE CASCADED AVAILABILITY

448 FOR L=1 TO Nt

458 FOR J11 TO N

468 REM SELECT A SAMPLE VIA A UNIFORM RANDOM VARIABLE.
470 I1=INT(1880*RNIX-1))

488 IF 11=0 OR I1=1 THEN 478

498 S2=1.4)(2,I1)

588 REM COMPUTE THE AVAILABILITY
518 A1=A1*S2
528 NEXT J

538 A2=A2*(141)
548 Al=1
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558 NEXT L

588 A2 -1 -A2

578 REM ROUND THE UNAVAILABILITY.

588 U1mINT(1800,(1-A2)*1.8E-3/S1)

598 U2=U1/1080

688 IF U2<S THEN 850

618 IF U2>E THEN 410

828 T(U1)- T(U1) +1

me 60 TO 668
640 REM COUNT THE SAMPLES THAT ARE OUT OF THE PLOT WINDOW.
658 Z -Z +1

668 NEXT I

878 REM INTEGRATE THE DENSITY FUNCTION
688 T1(1)-Z

698 FOR L-2 TO C
788 TILL)mT(1-1)+T1CL -1)

718 NEXT L

720 REM GENERATE THE SEMILOG PLOT OF X OF LINES WITH EQUAL OR BETTER

738 REM AVAILIBILITYWN) AS A FUNCTION OF LOG(UWAVAIL1BILITY).
748 VIEWPORT 15,148,18,98

758 WINDOW LGT(1.0E-3),8,0,108 1

760 MOVE 01:LGT(S),T1(1)*188/M

778 FOR P-2 TO C

788 S0S+S1

790 DRAW 111:LGT(S),TI(P)*188/M

888 NEXT P

818 FIND F8

828 WRITE (133:T1

838 END
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MODEL PARAMETER CALCULATION

108 PRINT UMODEL PARAMETER CALCULATION'
118 PRINT %NUMBER OF CASCADED SYSTEMS ';
128 INPUT N

138 PRINT %/NUMBER OF PARALLEL SYSTEMS .;

148 INPUT NI

158 PRINT 'PARAMETERS OF SINGLE SYSTEM MODEL CA,B) ';
188 INPUT A,B

178 APKAAA+B))AN
180 A2=0*(A+1)/(CA+B)*(A4B+1)))AN

100 A3=141A1)ANI
208 A4=1-211(1ADAN1+0-2*A1+A2)ANI
218 A043*(A344)/(A443^2)
228 880(1A3)103A4)/(A4A3^2)
258 PRINT %MODEL A=I;AO
288 PRINT eLIMCOEL Bwg;B8

278 END
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PLOT OF SPECIFIED BETA UNAVAILABILITY

180 PRINT 'PLOT OF SPECIFIED BETA UNAVAILIBILITY.

118 INIT

128 PRINT 'lA,B ';

138 INPUT A,B

140 PRINT 'STARTING UNAVAILIBILITY ';

158 INPUT S

188 PRINT 'SENDING UNAVAILIBILITY ';

178 INPUT E

188 PRINT gLISTEP SIZE g;

198 INPUT SI

288 PRINT 'FILE ';
218 INPUT F8

220 GaINTC(E4)/S1)
238 DIM TC6)

248 DIN T1(6)

258 FOR Hat TO 6

280 TCH)=0

278 TI(H) -0

288 NEXT H

298 ZaS41
388 FOR R-1 TO 6

318 ZaZ+S1

328 0111 -Z

338 IF AO OR BO OR 0<8 OR 01 THEN 128
348 IF A>599 AND B>588 THEN 1258

358 XaA+B

388 GOSUB 1888

378 Y441
388 X -A

398 GOSUB 1888

488 Y4aY441
418 XaB

428 GOSUB 1888

430 Y44441
448 GOSUB 788

458 IF At-8 THEN 488

460 A2a18A(54INTC-LGT(A1)))

478 AIaINTCAI*A2+0.5)/A2

488 TCR)41
498 NEXT R

588 NI--I

518 N2160.5

528 N9-1

538 V8- 88/125

548 V811180.1/.4.6TC1.0E-1)



44

558 VIEWPORT 15,148,18,98

588 WINDOW L6TC1.0E-3),0,8,188.1

578 X4=LGTCS)

588 Y4=TC1)*180

590 GOSLO 1888

600 FOR P-2 TO G

618 SuS+S1

628 X4=LGT(S)

638 Y4=TCP) *1

640 GOSUB 1738

658 NEXT P

660 FIND F8

878 WRITE 1133:T

688 END

698 REM EVALUATE CONTINUED FRACTION

788 V1=8

718 A1=CA+6)*0/(A+1)

728 IF Al/C141)>8 THEN 780
738 V1=6

748 6=A

750 A-Vt

768 0-1-0

778 AI=OA+6)00/(A+1)

788 A2=A1/0 41)
798 I=1

880 6142
818 62=1+A2

828 V=A+2*I

838 AI=I*C6-I)14/CV*(V-1))

848 AI=A1*(1+A2)

858 A2=-A1/(i +A1)

860 61=61*A2

878 62=62+61

880 Alm.-CA+I)*(A464),0/CV*(V+1))

898 AI=A1110+A2)

988 A2=41/C1+A1)
918 61=A21161

928 62=62+61

938 I=I+1

948 IF ABSC61/62)>1844 THEN 828
958 U16111-06(142)+A*LOGC0)-LOGCA)

960 AI=LOGCB2)04+U
978 IF A1(-224 THEN 1800

988 A1=1 ...EXPCA1)

998 60 TO 1818
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1::: Al -1

1818 IF V1w0 THEN 1878

1828 A1-141
1838 0-1-0

1848 V1.6

1858 B-A

1888 A -Vt

1878 RETURN

1888 IF X<18 THEN 1118

1898 GOSUB 1218

1108 RETURN

1118 A2- 18- INTCX)
1128 B1-1

1138 FOR IwO TO A2-1

1148 B1wB1,(X+I)

1158 NEXT I

1168 X -X +A2

1178 GOSUB 1218

1188 X -X -A2

1198 A141.-LOG(81)

1298 REAM
1218 Alma -8.5)*LOG(X) -X+8.5*LOG(2*PI)

1228 A141+1/(12*X).-1/(3881IXA3)+1/(1208*XA5)

1238 RETURN

1248 REM NORMAL APPROXIMATION

1258 B1w(B-1/3+8.82/B)1104A-1/3+8.82/A)*(1.-0)+(8.824+8.81)/(A+B)

1288 X-0-8.5)/((A+B-1)*(1 -0))

1278 GOSUB 1438

1288 A2.082
1298 X-CA-8.5)/(CA+B-1)*0)

1388 GOSUB 1438

1318 A242+0 -0)*B2
1328 XwBI*SOR((1+A2)/((A+B-5/8)11C1 .4)'0))

1338 IF ABS(X)>28 THEN 1418

1348 Ta1/(1+8.2318419,ABS(X))

1358 A1wT*(8.31938153+1*( 4.368583782+1.781477937*T))

1388 A1841+TA4*( -1.82155978+1.33827429*T)

1378 Al60R(1/(2*PI))*EXP(4*X/2),A1
1388 IF X108 THEN 488

1398 Alwl -A1

1488 GO TO 458

1418 Ai-8

1428 GO TO 1388

1438 IF Xwe OR X-1 THEN 1488

1448 B2wC1-X*X+2*X*LOG(X))/(14)A2
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1458 RETURN

1468 B2A8

1478 RETURN

1488 REM ... DASHED LINE FOR X AND Y ENTRIES ...

1498 REM

1588 REM X4 ... X
1518 REM Y4 Y
1528 REM

1538 REM NI ... Dash length
1548 REM N2 ... Dash/(dash+space)
1558 REM

1568 REM N9 ... Display address
1578 REM V0 Y to X viewport ratio
1588 REM WO Y to X window ratio
1598 REM

wee REM ... Initialization for starting with dash ...
1618 N4A0

1828 60 TO 1858

1838 REM ... Initialization for starting with space
1648 N4AN2

1650 MOVE 1N9:X4,Y4

1000 X5-X4

1678 YSAY4

1880 X844
1698 YeAY4

1708 N8=ABSCNI)/(01>8)+(NI<0)*W8)/N2

1718 RETURN

1728 REM ... Branch point for drawing dashes and spaces
1738 XONO

1748 Y6NSORCCCY448)012/110)A2+0(448)A2)
1758 IF Y6A9 THEN 1788

1768 X6ACX4-X8)/Y6

1778 Y6A(Y4-Y8)/Y6

1788 N5ASORC(CY4-Y5)*VO/W0)"2+(X4-X5)^2)

1798 N6ACN2*(N4<N2)+CN4A>N2)-N4)*N8
1808 X545+X611015 MIN N6)
1818 Y545+Y8*(N5 MIN N6)
1828 IF N4->N2 THEN 1878

1838 REM ... Dash
1848 DRAW INO:X5,Y5

1858 60 TO 1880

1860 REM ... Space ...

1878 MOVE ONO:X5,Y5

1888 N4412IICN6ON5)*Cti4:112)+01445/t18),018>115)
1898 IF N6 <4N5 THEN 1788
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1000 N4=N4*(N4<1)

1918 X8-X4

1028 Y8-Y4

1938 RETURN
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GRAPH GENERATION PROGRAM

180 REM THIS PROGRAM GENERATES THE BASIC GRAPH FOR THE CUMULATIVE
118 REM DISTRIBUTION FUNCTIONS

128 WINDOW 8,158,8,188

138 VIEWPORT 8,158,0,180

148 MOVE 01:25,95

158 PRINT 'UPLOT ROUTINE'

168 PRINT %NUMBER OF SAMPLES ';
178 INPUT S4

188 PRINT 'IJSTARTING UNAVAILIBILITY ';
190 INPUT S

280 PRINT 'ENDING UNAVAlL1B1LITY ';
218 INPUT E

228 PRINT %/STEP SIZE ';
238 INPUT SI

248 PRINT 11,7:

258 PRINT OWCUMULATIVE DISTRIBUTION FUNCTION'
280 MOVE 01:25,92

278 PRINT 'TITLE ';
288 INPUT T$

298 PRINT 11:7$

383 PRINT %FILES
318 INPUT F8,F9

328 MOVE 01:25,89

338 PRINT 1I:"NUMBER OF SAMPLES-',S4
348 MOVE 01:15,10

358 DRAW 01:15,98

368 MOVE 01:15,10

378 DRAW 01:148,18

388 DRAW 01:148,98

398 MOVE 01:15,10

488 FOR I-1 TO 9

418 A818*I+18

428 MOVE 01:15,A

438 DRAW 01:17,A

448 MOVE 01:9,A-8.8

458 PRINT 01:I*18

460 NEXT I

478 MOVE 11:15,98

488 DRAW 11:17,98

498 MOVE 11:7.218,89.4

588 PRINT 01:108

518 MOVE 01:4,78

528 PRINT 11:112'

538 MOVE 01:4,73.5

548 PRINT 0I:'E'
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558 HOVE 01:4,71

566 PRINT P1:'R'

578 MOVE 11 :4,68.5

580 PRINT 01:1C'

590 MOVE 11:4,86

880 PRINT 01:1E'

818 MOVE 11:4,83.5

620 PRINT 01:'N'

630 MOVE 11:4,81

648 PRINT 01:11.1

650 HOVE 11:4,58

868 PRINT @WO'
878 MOVE 11:4,53.5

680 PRINT 01:'F'

690 HOVE 11:4,48.5

780 PRINT 01:'L'

718 MOVE 01:4,40

728 PRINT @WI'
738 HOVE 11:4,43.5

748 PRINT OWN'
750 HOVE 11:4,41

760 PRINT 01:"E'

778 MOVE 11:4,38.5

780 PRINT @WS'
790 FOR Is1 TO 9

888 MOVE 01:140,84+18
818 DRAW 01:138,8*I+18

820 MOVE 01:148.9,8*1+10-8.6

830 0 wa-5)*5

840 IF 00 THEN 980
850 IF 04 THEN 888
860 PRINT 01:1+%0
878 GO TO 918

880 PRINT 01:";0
898 GO TO 918

900 PRINT eh' -1;ABSCO)

910 NEXT I

920 MOVE 11:10.5,7

930 PRINT 01:'0.801'

940 HOVE 11:15+125/3,18

958 DRAW 11:15+125/3,11

980 MOVE 11:11.4+125/3,7
970 PRINT 01:'0.01'

980 HOVE 11:15+83.33,10

990 DRAW 11:15+83.33,11
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988 MOVE 61:12.3+83.33,7

818 PRINT 01:4.1'
828 MOVE 61:12.3+125,7

838 PRINT 01:'1.8'

848 MOVE 01:62.5+2.5,2

858 PRINT 01:'UNAVAILABILITY'

888 MOVE 61:25,88

878 MOVE 01:25,87

888 DRAW 01:31,87

898 MOVE 01:31.5,86

lee PRINT 01:':SIMULATION DATA'

118 MOVE 01:25,84

128 DRAW 01:27,84

138 MOVE 01:29,84

140 DRAW 01:31,84

158 MOVE 01:31.5,83

188 PRINT OW:MODEL DATA'
178 MOVE 01:15,18

188 FOR I-I TO 3

198 FOR 01 TO 18
288 MOVE 01:15+125/3111-6T(K)+125/3*CI-1),18

218 RDRAW 61:0,8.5

226 NEXT K

238 NEXT I

248 MOVE 01:148.5,76

258 PRINT 01:'P'

268 MOVE 01:148.5,73.5

278 PRINT !WE'
280 MOVE 01:148.5,71

298 PRINT 01:'R'

300 MOVE 01:148.5,68.5

318 PRINT @WC'
328 MOVE 01:148.5,66

338 PRINT 01:'E'

348 MOVE 01:148.5,63.5

358 PRINT @1:'W1

388 MOVE 01:148.5,61

378 PRINT 01:'T'

388 MOVE 01:148.5,56

398 PRINT 01:'D'

4ee MOVE 01:148.5,53.5

418 PRINT 01:'I'

428 MOVE 01:148.5,51

438 PRINT 01:'F'

448 MOVE 61:148.5,48.5
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1458 PRINT 81:11
1460 MOVE 91:148.5,46

1478 PRINT OWE'
1488 MOVE 01:148.5,43.5

1498 PRINT 11:1'
1508 MOVE 01:148.5,41

1518 PRINT OWE'
1528 MOVE 01:148.5,38.5

1538 PRINT OWN'
1548 MOVE 01:148.5.3e

1558 PRINT 81:6C'

1560 MOVE 11:148.5,33.5

1578 PRINT 01:1E1

1588 FIND F8

1598 C(E-S)/S1
1688 DIM T(C)

1618 DIM T1(C)

1828 READ 033:1

1638 FIND F9

1848 READ 033:11

1658 VIEWPORT 15,148,10,98

lam WINDOW LGT(1.8E-3),0,8,58.081

1878 MOVE 01:LGT(S),180*(71C1) -T(1)/34)+25

1888 FOR P-2 70 C

1698 SS+S1
1788 DRAW 81:L6T(S),110(T1(P)-T(P)/S4)+25
1718 NEXT P

1728 END




