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Bilinear systems due to their variable structure properties

offer more versatility in modelling of nonlinear processes than

linear systems.

The state estimation problem for a continuous bilinear system

with a continuous observation model is studied and the results are

extended to the case where the observations are of a discrete nature.

It is shown that the optimal filter is of infinite dimension and a sub-

optimal solution based on the use of the conditional best estimate of

the state in the multiplicative term, rather than the actual state, is

proposed. The filter dimension is reduced to two and the mean and

the variance equations are provided.

A recursive maximum likelihood procedure operating on the



proposed filter is used for the parameter identification. Both the

likelihood functional and the gradient equations are provided.

Computation of the gradient is dependent on computing the partial

derivatives of the proposed filter equations with respect to the para-

meters.

Simulation of the sample functions of bilinear systems using

closed form solutions is discussed and a complete solution for the

scalar case is provided. Parametric conditions for obtaining closed

form solutions to the vector cases are supplied.

A number of numerical examples illustrating the feasibility and

performance of the proposed filter and parameter identification

schemes are included. Both scalar and multivariable computational

examples are considered.
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ON THE STATE AND PARAMETER ESTIMATION OF STOCHASTIC
BILINEAR SYSTEMS--A SUB-OPTIMAL FILTERING APPROACH

I. IN TR ODUC TION

1.1 Background and Motivation

The problem of estimating the states of a dynamical system

under noisy conditions has been a subject of great interest to

scientists in recent years. The application of estimation theory is

quite varied and its concepts have been successfully applied to space

technology, automatic control, operations research, and many other

diverse fields.

Modern state estimation theory originated with the work of

Wiener (W1), but the major development of the optimal recursive

linear filter by Kalman and Bucy (K3-4) supplied the basis for the

extensive study of the state estimation problem for linear dynamical

systems. The filtering problem for nonlinear systems is much more

complicated and some optimal nonlinear filtering results are avail-

able, as for example in (F4), (K7), (N1). In general, there are three

alternative approaches:

i) solving a set of partial differential equations in order to

determine the conditional probability density function. A

closed form solution to these equations is rarely available.

ii) solving an infinite number of stochastic differential equations to

determine the conditional moments of the process.



2

iii) solving an infinite number of stochastic differential equations to

determine the cumulants or quasi-moments of the process.

It is quite evident that a practically implementable optimal

nonlinear filter is rarely feasible. Faced with this dilemma

researchers have suggested several sub-optimal estimation tech-

niques (N1), (J1), (S3), (W3). The effectiveness of such approxi-

mations is obviously dependent on the type of system and nonlinearity

under consideration and the performance of these sub-optimal filters

has not been extensively examined.

Even though bilinear systems are almost linear, the optimal

filter for them is, in general, of infinite dimension with the notable

exceptions; the existence of specific structural properties (Ml),

(J5) or the absence of the multiplicative noise. It is the intent of this

thesis to examine the filtering problem for a general class of

bilinear systems without any geometric assumptions.

The parameter estimation or identification is obviously closely

related to the state estimation problem. There are several class-

ical techniques available; the least squares (A5), stochastic

approximation (S2), correlation analysis (F5), and maximum likeli-

hood (A4) are perhaps the most celebrated of these methods. It is

well known that the maximum likelihood technique provides the most

efficient estimates which are asymptotically convergent to the true
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value for the parameters. The parameter estimation problem for

bilinear systems has not been extensively studied. Baheti (B1)

studied the identification problem for bilinear systems with a single

input, single output and no multiplicative noise, while Balakrishnan

(B2) has addressed the same problem in a more general setting. It

is essential, in our opinion, to consider the case where the noise

enters in a multiplicative fashion, because as mentioned earlier, a

bilinear system reduces to a linear time varying system in the

absence of multiplicative noise.

It is, therefore, intended to develop an identification technique

to accommodate a general class of bilinear systems employing a sub-

optimal filtering approach.

In order to be both mathematically rigorous and able to use

the present results in the filtering theory, the problem will be

treated in an Ito calculus framework (I1-2).

1. 2 On the Importance of. Bilinear Systems

Consider a general nonlinear system described by the following

state space model

= F (x, u, t) ts[ to,



where

xeR
n is the state of the system,

ueR is the input to the system,

F is an n function.

Expansion of (1. 1) in a Taylor series around a nominal state

and control trajectory yields

. a5x = F (x, u, t) 5 x + aax a

X=Xn

F (x"u t) Su

x=x
u=--u

n

+ higher order terms.

u=u
n

4

(1. 2)

Clearly after a first order approximation one would be left with

a linear model. Linear systems have been extensively used for

modelling nonlinear systems. If one chooses to go a step further in

the Taylor series expansion, the most obvious choice is a term that

would include the product of the state and the control;

X=Xn
u =u

n

Su +axau F(' )
X=Xn
u=u

n

+ higher order terms.

X=Xn
u=u

n

Sx5u (1.3)

If one would choose to neglect the higher order terms in (1. 3)
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or they would simply vanish, one would have a system where the state

and the control enter linearly but the system is not linear in the

state and control simultaneously. Such a system is commonly

referred to as a bilinear system and can be described by the follow-

ing differential equation

where

= Ax + Cu + BL(x, u), (1. 4)

A is an nxn matrix,

C is an nxm matrix,

BL( ) is the bilinear operator.

The bilinear term can be written in any of the following two

forms:

or

m
BL(x' u) = E B.u.x,

i=1

n

BL(x' u) = E 171.x,u,
i=1

(1. 5)

(1. 6)



where

6

B. is an rum matrix,
1

is an nxm matrix
1

x = x2, , xn]

= u2, , um] T.

Equation (1. 5) is the more common one and a bilinear system

is generally represented by:

m
x = Ax + Cu + E B.u.x

i=1

(1. 7)

A schematic block diagram for a bilinear system is illustrated

in Figure 1.1.

As mentioned earlier, it is quite common to approximate a

nonlinear system with a linear model. There are, however, cases

where such an approximation could prove to be inadequate and

bilinear system models of the form (1. 7) might provide a viable

alternative. In addition, systems described by (1. 7) can be used to

model certain naturally occurring processes. A detailed review

of natural bilinear systems can be found in (M5). Bilinear models

have been also used in the design of a control system for nuclear

reactors (M6-7).



--I>
u(t)

C

B ( )

m

L(x, u) = E B.1 u.1 x

1 =1

BL(x, u)

Figure 1.1, Bilinear state diagram.



Equation (1. 7) can be written in the following foim:

m
= (A + E B.u.) x + Cu.

i=1
(1.8)

8

For a given set of inputs, one could look at (1. 8) as a time

varying linear system. The advantage of (1.8) over a linear system

is that the structure of (1.8) can be easily changed to accommodate

certain objectives by manipulation of the controls, whereas, a

linear system does not offer such flexibility. Due to this property

bilinear systems are also referred to as variable structure systems.

Principles of differential geometry have been extensively used

in the study of certain bilinear systems (B7-10).

Stochastic bilinear systems in addition to their application in

the modelling of nonlinear processes occur when there is uncertainty

associated with the parameters of a linear system.

1.3 Examples of Bilinear Systems

In this section a few examples where bilinear systems can be

used to model real world problems are provided.

1.3.1 Macro Economic Model

The following macro economic model is due to D'Alessandro

(D1).



y(t)

where

Consider the one sector growth model with a single output

y(t) = f(k(t), 1(t)), (1.9)

k(t) is capital goods,

1(t) is labor force.

The labor force is assumed to grow with a constant

exponential rate n;

9

1(t) = n 1(t). (1.10)

Define

s(t) current total saving ratio,

v constant rate of capital depreciation.

Then, the rate of change of capital goods can be modelled by

k (t) = s(t)y(t) - vk(t). (1.11)

Now, assuming a linear production model,

y(t) = ak(t) + bl(t), (1. 12)

(1.11) reduces to

k (t) = a s(t)k(t) + bs (t)1(t) - v k(t). (1.13)



Define

x
1

k(t),

x
2

1(t),

u(t) = s(t) = input to the system,

equations (1. 10) and (1. 13) can be modelled with the following state

space equation

=

or equivalently,

=

or

2

-v

(au(t) - v) xl + bu(t) x2

X +

a

nx2

The production equation can be written as

y(t) = ax
1

+ bx2 ,

10

, (1. 14)

ux . (1. 15)

y(t) = [a b] x . (1.16)

Equations (1. 15 -6) represent a bilinear system with a linear

output model.
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1. 3. 2 Phase Tracking Problem

The following example has been studied by (B12), (W2), Con-

sider a phase tracking problem where the phase eand the observation

z are described by

de(t) = (ncdt + q1/ 2(t) dw(t), e(o) = eo,

dz(t) = sin e(t)dt + r1/2(t) dv(t),

(1.17)

(1.18)

where v and w are independent Wiener processes independent of the

random initial phase eo. Let

x2 = cos e(t). (1.19)x
1

= sin e(t)

Then

dx
1

-q(t)/2 (Dc 0 q1/ 2(t

dx x + xdw(t) ,

dx2
c

-q(t)/2 -q1/2(t) (1. 20)

to,

dz(t) = [1 0 ] x + r 1/ 2(t) dv(t) . (1. 21)

Equations (1. 20-1) describe a stochastic bilinear system with

a linear observation model.

1.4 Synopsis

A brief summary of the contents of this thesis is presented
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here. The mathematical framework and the general tools required

throughout the text as well as a review of nonlinear filtering theory is

provided in Chapter II. For the sake of briefness, important

theorems are stated without proof, however, adequate references

are supplied. Chapter III is concerned with the estimation problem

for bilinear systems. A stochastic model for bilinear systems is

obtained and an optimal filter for a continuous bilinear system with a

continuous observation model in the presence of additive as well as

multiplicative state noise, in addition to observation noise is derived.

A moment truncation argument is presented to construct a sub-optimal

filter. The filtering problem for similar state conditions with discrete

observation is also examined. Chapter IV is devoted to the parameter

estimation problem for bilinear systems and a maximum likelihood

approach in conjunction with the proposed filter of Chapter III is

developed. A description of the identification algorithm is given

including expressions for the gradient equations. Chapter V contains

the simulation results. Closed form solutions to stochastic bilinear

differential equations are provided where they exist. The filtering

as well as the parameter identification schemes suggested in Chapter

III and IV are tested at the hand of a number of examples including

scalar, two dimensional, homogeneous, and nonhomogeneous cases.

The importance of data acquisition is also discussed.
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Chapter VI includes a summary of the results contained in this

thesis. A few concluding remarks as well as suggestions for pos-

sible future research in this area are also provided.
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II. REVIEW OF NONLINEAR ESTIMATION THEORY

2. 1 Mathematical Framework

Many random processes are almost Gaussian and have a flat

spectrum in the frequency range under consideration. Such processes

can be modelled by what is generally referred to as a white

Gaussian process. A zero mean white Gaussian process u(t) has the

following properties:

i) u(t) is a vector Gaussian random process,

ii) E[u(t)] = 0 ,

iii) cov [u(ti)uT(t2)] = Q(ti)6D(ti-t2)

where

E[ ] denotes the expectation operation,

5D( ) is the Dirac delta function.

It is important to notice that the zero mean white Gaussian

process is defined in terms of a Dirac delta function which is only

rigorously defined in an integral equation

co

co

6D (s)ds = 1 .

A Wiener process w(t) is defined in terms of the integral
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of a white Gaussian process u(t);

w(t) =
J

u(p)dp.

0

The Wiener process possesses the appealing property that

dw(t) is completely deterministic; i. e.

E[dw(t)] = 0 ,

T
E[dw(t)dw (t) = Q(t)dt.

Throughout this thesis we will use these definitions and con-

sider stochastic differential equations of the form

dx(t) = f(x, t) dt + G(x, t)dw(t), (2. 1)

to > 0 t to, cc).

Equation (2.1) is actually a shorthand notation for the integral

equation

rt
x(t) - x(t0) =f f(x, s)ds +f G(x, s)dw(s) (2. 2)

0 0
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where the first integral in (2. 2) is a regular Riemann integral. The

second integral, however, is not defined in the classical sense due

to the fact that dw(t) is not a function of bounded variation. Several

definitions for this stochastic integral (in itself a stochastic process)

exist , as for example,
t

I
2
=I

O

G(x, s)dw(s) L. I. M. G(x, t')[w( ti+1)
k cot

0

where L. I. M. denotes the limit in the mean square sense.

(2. 3)

If = t, is taken in (2. 3) the integral is referred to as an Ito

integral (I1- 2), while for tit = (ti+i + 1/2 the integral is called a

Stratonovich integral (S8-9). Ito's definition provides a zero mean

as well as other nice mathematical properties not possessed by the

Stratonovichintegral,however, ordinary rules of calculus are satisfied

by (2. 3) only if it is interpreted as a Stratonovich integral. If

Stratonovich' s definition is applied to (2. 2),it would correspond to a

system corrupted by a zero mean white Gaussian noise u(t) (C1)

f(x, t) + G(x, t) u(t) . (2. 4)

There exists a relationship between the system representations

employing the two integrals definitions as illustrated by the following

theorem.
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Theorem 2. 1: (Wong and Zakai (W4))

Consider the following Ito differential equation:

dx(t) f(x, t)dt + G(x, t)dw(t), (2. 5)

t> to .

There exists an equivalent Stratonovich equation to (2. 5) which

is described by

1
n m HG..

dt= (fi(x, t) E G ) t
k=1 j=1 k "k

+ Gi(x, t) dw(t) ,

(2. 6)

where the subscript i corresponds to the ith row.

Had (2. 5) been interpreted as a Stratonovich equation the

equivalent Ito equation would have been similar to (2. 6) with the only

exception being, the correction term would have had a positive sign.

As mentioned earlier the Ito integral and Ito differential equa-

tions do not satisfy the rules of ordinary calculus.

Lemma 2. 1: (Ito Differential Rule (II- 2)

Let x(t) be the unique solution of the stochastic differential

equation



dx(t) = f(x, t)dt + G (x, t) dw(t),

t > to .

18

(2. 7)

Let m(x, t) be a scalar valued real function, continuously dif-

ferentiable once in t and twice in x. Then, the differential dm satis-

fies

where

1dm(x, t) = mt(x, t)dt + mT (x, t)dx(t) +
2

tr (GQGTm )dt ,
xx

(2. 8)

m = m =am T r a m , , am
Jt a t ' x 3x

1
axn

m r---

XX

a
2m 82m

2 a xl a xnx
1

a m a
2m

a xnax
I 8x2

n

Ito calculus offers particularly nice properties which can be

exploited in estimation theory and for the remainder of this thesis all

stochastic differential equations will be interpreted as Ito equations

unless otherwise specified.

2. 2 Problem Statement

It is the intent of this chapter to examine the state estimation



19

problem for a general continuous nonlinear dynamic system with a

continuous or a discrete observation model.

2. 2.1 Continuous Estimation

Consider the dynamical system

dx(t) = f(x, t)dt + G(x, t)dw(t), (2. 9)

t 1 to, x (to) = xo ,

where

x(t) is an n vector of state variables,

f( ) is an n function,

G( ) is an n x m matrix valued function,

w(t) is an m vector of independent Wiener processes,

E[dw(t)dwT (0] = Q(t)dt,

w(t) is assumed to be independent of the random initial condition x0

E[x(td dwT(t)] = 0.

The states of (2.9) are not directly measurable and the following

observation model is assumed:

dz(t) = h(x, t)dt + dv(t), (2. 10)
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z(t) is a p vector of observations,

h( ) is a p function,

v(t) is a p vector of independent Wiener processes,

T
E[dv(t)dv(t)] = R(t) dt

It is also assumed that the observation noise is not correlated

with the state noise or the initial condition

T
Erdw(t)d v(t)j = 0,

E[x(to)dv(t)] = 0.

If the observations are made over the time period t0 < t < T

a realization Y can be defined as

Y = (z(s): t < s < T] (2. 11)

The problem of estimating the states of (2.9) x(t), based on

Y , is the continuous estimation problem. If t = T , the problem is

called the continuous filtering problem; if t > T, it is called the

continuous prediction problem.

2. 2. 2 Continuous-Discrete Estimation

Given the dynamical system in (2. 9), if the observations are



made only at discrete time points {ti} i = 1, 2, the

observation model becomes

where

21

y(k) = h(x(k), tk) + v(k), (2. 12)

t > t
k 0

y(k) is a p vector of discrete observations,

h( ) is a p function,

v(k) is a p vector of independent white Gaussian noise

sequences,

E[v(k)vT(j)] = R(k)6(k-j) ,

b(k-j) is a Kronecher delta function defined as:

1 k=j

8(k-j) =

0 lqj

If the observations are made over the time period

to < t
i

< t
1

the manifold Y is defined as:

Y1 = [y(0), y(1), , 'Y(1)]. (2.13)

Estimation of the states of (2.9) x(ti), based on Y1, is called

the continuous-discrete estimation problem. If i > 1 the problem is
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referred to as the continuous-discrete prediction, if i = 1, it is the

continuous-discrete filtering problem.

2. 3 Optimal State Estimation

The process x(t), which is the solution to (2.9), is obviously

a stochastic process. In order to solve the state estimation problem

in the continuous case the conditional density function p(x, t I YT and

in the continuous discrete case the conditional density function

p(x, t I Y )have to be determined.

For a linear system (f and h linear in state, and G function of

time only), the density function is Gaussian and can be easily

obtained. This is not, however, the case for a general nonlinear

system. We have so far neglected to define what constitutes a good

state estimator. Let

study

A

X(t T) = the best conditional estimate of the

= x(t) ;c(tIT) .

An estimate x( I° ) is considered good if, x( ) has a zero

mean (unbiased) and a small variance. It is then quite evident that

the knowledge of the mean and the variance of x( l ) is essential

for any state estimation. The "best" estimate evolves from the

following well known theorem.
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Theorem 2. 2:

Let p(x, t I Y) have mean X(t I ) = E[ x(t) I Y ]. Suppose p(x, t I Y. )

ti
is symmetric about its mean and unimodal (one peak), and let L(x)

be a class of convex cost functions, then, the optimal estimate of
Ax(t) in the sense of minimizing L(x), is the conditional mean x(ti ).

This theorem is based on a similar theorem due to Sherman

(S5-6) who provides a proof for the unconditional density function

p(x, t). Extension of the proof to the conditional case is obvious.

Throughout our discussion we will essentially have no informa-

tion about the shape of the conditional density functionp(x, tlY.) and

the conditional mean x(t I. ) will be regarded as the best estimate.

The following theorem provides a set of partial differential equations

for the evaluation of the density function p(x, t).

Theorem 2. 3:

Consider the dynamic system described by (2.9). In the absence

of any observations, the process x(t) is defined by the density function

p(x, t) which satisfies the following partial differential equation:

a
n a (py n n 2 T

a ( GQG )13
5113 ax + 2 E a x ax

i=1 i i=1 j=1 i j
, ( 2. 14)

which is generally known as the Fokker-Planck, or Kolmogorov's



forward equation. Let te( ) be an operator defined as:

n ( fi)
1

n n
a

2 ( GQGT)ij
oe( ) = E3x. 2 ax ax.i1 i1 j=1 i 3

then, (2. 14) can be written as

24

(2.15)

dp =1(p) dt (2.16)

Proof of this theorem can be found in any standard text on

estimation theory (J1), (S1).

A solution to (2. 16) is rarely available, but it provides an

important relationship which can be used to determine the equations

for the evolution of the moments of the process x(t).

Lemma 2. 2:

Consider the dynamic system of (2.9). Let m(x) be a scalar,

twice continuously differentiable function of the state vector x(t) and

define

= E[ m(x)] = fm(x)p(x, t)dx. (2.17)

Then, m(x) will obey the following differential equation:

1dm(x) = E[mTf] dt +-2 tr E[GQGTmxx] dt

where mx and m are defined in Lemma 2.1.xx

(2.18)



25

Proof: Since x(t) satisfies (2.9) and m(x) is a scalar function

of x(t), application of Ito's differential rule (Lemma 2. 1) and taking

expectations on both sides yields (2. 18).

Theorem 2. 4:

For the dynamic system of (2.9), in the absence of observa-

tions, the mean and variance of the process x(t) satisfy

d
dt x(t) = E[i(x, = t), (2.19)

T /N^= x(t)f x(t)f + fxT ;:xT(t)
+ GQGT , (2. 20)(t) -alt P(t)

where ,e\ denotes the expectation operation.

Proof: By respectively setting m(x) = x for the mean, m(x) =

x.x. for the variance, and recognizing the fact that

P(t) = ENx(t) - x(t)) (x(t) X(t))T]

= E[x(t)xT (t)] - x(t) xT(t),

(2.19-20) follow directly from Lemma 2. 2.

Let us now incorporate an observation process given by

dz(t) = h(x, t) dt + dv(t) . (2. 21)

The solution to the state estimation problem is now equivalent
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to determination of the conditional probability density function

p(x, t IY ), and the following theorem due to Kushner (K5), (K9) and

later Bucy (B11) provides an equivalent to the Kolmogorov's forward

equation for the case with observations.

Theorem 2. 5:

Consider the dynamic system of (2.9) and the observation

model (2. 21). The conditional probability density function p(x, tlYT)

satisfies the equation:

dp = oe(p)dt + (h(t) - h(t))TR-1(t) (dz(t) - h(t)dt)p, (2. 22)

t t0, p(to) = p0

where

is the Kolmogorov's forward operator,

R(t) is the covariance of the observation noise,

h(t) = E[ h(x, t) = f h(x, t)p(x, t I Y )dx .

It is worth noting that (2. 22) in the case of valueless or no

observations (R -1(t) = 0), reduces to Kolmogorov's forward equation,

as expected. It was mentioned that the solution to the Kolmogorov

forward equation is rarely available. A solution to (2. 22) is obviously

more difficult to achieve, and (2. 22) in its present form is of little

practical use. However, (2. 22) can again be used to determine the equations
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for the evolution of the moments of the process x(t) in the presence

of an observation process.

Lemma 2. 3:

Given the dynamic system of (2.9) and the observation model

(2. 21), let m(x) be a twice continuously differentiable scalar function

of x(t), then, m(x) = E[m(x) IY satisfies the following differential

equation:

1dna^ (x) = E[mTf +
2

tr (GQGT mom)] dt
x

+ (rn( x)h - na(x) h) T
R

-1(t)[ dz(t) - hdt] ,

t > to '

(2. 23)

where mx and m are defined in Lemma 2.1.
XX

Proof: This lemma was first proven by Kushner (K7) and

provides a tool for writing the equations for the conditional moments

of any order. The proof given here is that of Jazwinski (J1). By

definition,

thus,

= m(x)p(x, tlYT)dx,

dm(x) = f m(x)dpdx,
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dm(x) =fm(x) (p)dxdt + J m(x)(h-h) T
R

-1 (t)(dz(t)-lidt)pdx

= +12 (2. 24).
1

But, due to Lemma 2. 2,

I1 E[mf + 1 tr (GQGTmxx
dt.

x 2
(2. 25)

The second integral can be easily evaluated

12 = (m(x)h - m(x)h) R (t)(dz(t) hdt). (2. 26)

Combination of (2. 24-26) results in (2. 23).

Lemma 2.3 can be employed in determining the equations for

the evolution of the mean and covariance for the process x(t).

Theorem 2. 6:

For the dynamical system described by (2.9) and the observa-

tion model (2. 21), the conditional mean and covariance of the process

x(t) satisfy the stochastic differential equations

dX(t) = ) dt + (xhT( ) - ;31T( )) R -1(t)(dz(t) - h( )dt), (2. 27)



where

A A ^
(dP(t)).. [x.f. x.f. + f.x. - f.x. + (GQG )..

3 3 3 13

- (x.h x.h) T
R

-1(t) (hx. - hx.)1 dt

/.."Nt /"., /1 /1 T+ (x.x.h - x.x.h - x.x.h - x.x.h + 2x.x.h)
1 3 1 3 3 1. 1. 3

X( R 1(t) (dz(t) hdt)),

is the ith. element of the state vector x(t),

is the ith. row of n function f,

is the ij element of an n x n matrix.

Proof: To find the mean x(t) set

m(x) = x(t) ,

29

(2. 28)

then, (2. 27) follows directly from (2. 23). Determination of the

covariance is more complicated. By definition

thus,

."\T TP(t) = xx - xx ,

cst,xTdP(t) = d(xx ) - d(x ).

A ATSince x satisfies (2. 27), d(xx ) can be determined by applying

/TIto's differential rule to (2. 27) and dxx can be derived using
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m(x) = x.x. and applying Lemma 2. 3.

As can be readily seen, (2. 27-8) both involve conditional

expectation operations and this generally means that the mean and

covariance equations are dependent on the higher order moments

as well. The exception being, of course, the linear case and the

following theorem due to Kalman-Bucy (K4) provides the mean and

covariance for a linear system.

Theorem 2. 7:

Given the following linear system

dx(t) = F(t)xdt + G(t)dw(t) , (2. 29)

dz(t) = H(t)xdt + dv(t), (2. 30)

the minimum variance filter is given by

dx(t) = F(t)xdt + P(t)HT(t)R -1(t)(dz(t) - H(t)xdt), (2. 31)

P(t) = F(t)P(t) + P(t)FT(t) + G(t)QG
T(t) - P(t)H T(t)R

-1(t)H(t)P(t).dt

(2.32)

The proof is a special case of Theorem 2. 6 where due to the

Gaussian property of the resulting conditional density functiOn

p(x, t I Y ), the mean and covariance are the only independent condi-

tional moments. The covariance equation (2.32) is no longer a
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stochastic differential equation and is decoupled from.the equation

for the mean.

All the theorems stated thus far have dealt with the continuous

case. If the observations are made only at discrete time points a

continuous-discrete estimation problem results. This type of

estimation was introduced by Jazwinski (J2), and a complete treat-

ment of the subject can be found in (J1). There are, however, a few

items of direct interest in our discussion.

Theorem 2. 8:

For the dynamic system of (2.9) with the observation model

(2. 12), if the conditional density function p(x, t ) exists and is

once continuously differentiable with respect to time, and twice with

respect to the state vector x(t), let h(. ) be continuous in both argu-

ments and bounded for each t. w 1. Then, between the observations,

p(x, t IY ) satisfies Kolmogorov's forward equation

dp(x, t IY,e) =pe(p) dt, (2, 33)

tk < t < t
2+1 '

p(x, to) = p(x0),

p(x, t2 I Y ) = initial condition.
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At an observation instant (t1), the conditional density function

satisfies the difference equation

where

p(y(e) lx(e)) p(x, t I Y )
X 1-1p(x, tai Y ) - fp(y(X) I s) p(s, t IY )ds

-13/2
P(Y(/) kW) ) I R (i)1

1/ 2
EXP(-2(Ae)-h())

T
R

-1
(i)

(y(i) h( )))

(2. 34)

(2. 35)

Proof (JI): Since no information is acquired between the obser-

vations, (2. 33) is a direct consequence of Theorem 2.3. In order

to prove the second part of the theorem, recall

p(x, t I = p(x, t I y(2), Yi_1) ,

applying Baye's rule

i
p(x, t I Y) =

P(Y(e) I Yi_l)

since the observation noise is assumed to be a white Gaussian

p(y(i) lx
'

Y ) p(x ' t
X

IY
h-1

)
-1

sequence, then,

P(Y(e) Ix, Y2 _1) = P(Y(,e) Ix) ,

(2. 36)

(2. 37)



in addition,

y(e) = h(x, t) + v(e) ,

thus,

v(,e) = y(X) h(x, t),

or equivalently,

p(y(,e) 1x) = pv(y(e) h(x, t))

where

1 -p /2 1/2 1 T -1
pv(s) = (-FT-r) IR(/)1 EXP(---2- s R (t)s).

where

Again, employing basic rules of probability

p(y(e) IY,e-1) =.11D(Y(/), s ds

P(Y(e), s Y/ _1) p(y(e) I s) P(s, tlY2_1).
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(2. 38)

(2.39)

(2.40)

(2.41)

Combining (2. 36-41) results in (2. 34-5) and the proof is

completed.

Theorem 2. 8 provides a set of differential and difference

equations for the evolution of the conditional density function p(x, t I Y.).

As was the case in the continuous problem, a solution to (2. 33-5)

is not generally available. However, Theorem 2. 8 provides a

mechanism through which the moments of the process x(t) can be

determined.
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Lemma 2. 4:

Hypothesis of Theorem 2. 7. Let m(x) be a twice continuously

differentiable scalar function of x(t). Then, between the observations

m(x) satisfies

dt m(x) = mTf + 1 tr (GQGT mxx )
x 2 '

t < t < ti+
1

At an observation at t

^ + m(x)p(y(/) I x)]m(x li) = m (x) -
E[13(YV) Ix)]

(2. 42)

(2.43)

A +where m (x) is the expected value of m(x) after the observation.

Proof: Equation (2.42) follows directly from Lemma 2.2. By

multiplying (2. 34) by m(x) and taking expectation on both sides, (2. 43)

is derived.

Results of Lemma 2. 4 can be used to determine the mean and

the covariance equations for the continuous discrete problem.

Theorem 2. 9:

Hypothesis of Theorem 2. 8. Between observations, the

conditional mean and covariance satisfy



x(t) = f(x, t) ,
dt
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(2. 44)

^ ^^P(t) = x(t)fT x(t)f + fx (t) - fxT
dt

(t) + GQG T
,

t-e< + <
e +1 '

and x(Xli), p(ili) serve as initial conditions.

At an observation instance

x(-011) - E[x(t)p(y(e) Ix)]
EiP(y(i) ix)]

(2.45)

(2.46)

Erx(i)xT(i)p(y(e) ix)] h
13(i re) - , !Mx 1,S).(2. 47)

E[ P(Y(i)
- x(t

ix)]

Proof: Equations (2.44-5) are due to Theorem 2.4 and

(2.46-7) are simple extensions of Lemma 2.4.

Solutions to (2. 44-7) are not generally available. However,

if the dynamics of the system are linear, the mean and covariance

equations can be obtained from the following theorem.

Theorem 2. 10:

For a dynamic system described by

dx(t) = F(t)xdt + G(t)dw(t) ,

y(k) = H(k) x(k) + v(k) ,

(2.48)

(2.49)
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the optimal minimum variance filter satisfies the following equations.

d-dTx(t1k) = F(t);c(t1k)

P(t 1k) = F( t)P( t 1 k) + P(t 1 k)F T(t)
+ G(t)QGT(t),

t < t < t
k k+1

and at an observation at tk

3c(k 1k) = 12(k ( k-1) K(k)[ y(k) - H(k);c(k 1k-1)] ,

P(k 1k) = P(k lk -1) - K(k) H(k) P(k 1 k-1) ,

where K(k) is the Kalman gain and is given by

K(k) = P(k 1 k-1) HT(k)[H(k)P(k 1 k-1)HT(k) + R(k)j
-1

(2.50)

(2. 51)

(2. 52)

(2. 53)

(2. 54)

Proof: The proof of (2. 50-1) is a simple exercise in the use

of Theorem 2.9. Derivation of (2. 52-4) depends on the normal

property of p(x, tlYk) for a linear system. Equations (2. 50-1) corres-

pond to the prediction problem while (2. 52-4) are the filtering

equations identical to the discrete Kalman filter (K3-4).

2. 4 Sub-optimal Filtering Strategies

We have been able to derive a set of differential or difference

equations for the mean and covariance of the optimal minimum
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variance filter. These equations involve expectation operations which

make them dependent on the higher order moments. To obtain the

optimal filter, in general, an infinite number of coupled moment

equations have to be solved. Such a filter is not computationally

feasible and a type of approximation is in order.

The problem of sub-optimal filtering has been addressed by

many authors, as for example in (K6), (S7), (S10-12). Most of the

techniques proposed are quite complicated and offer very little, if any,

improvement over the sub-optimal filters that will be considered

here.

2. 4. 1 Continuous Case

The optimal minimum variance filter for the linear system

described by (2. 29-30) is the famous Kalman-Bucy filter (K4). This

filter was derived in Theorem 2. 7 and the mean and the covariance

equations are given-by (2. 31 -2). The most common approach to the

derivation of a sub-optimal filter is to consider the linearized version

of the system equations. Suppose a nonlinear dynamical system is

described by

dx = f(x, t)dt + G(t)dw(t), (2. 55)
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and the observation model satisfies

dz(t) = h(x, t)dt + dv(t) , (2. 56)

where G( ) is only a function of time.

Now assume there exists a nominal trajectory xn satisfying

= f(xn, t), t > to (2.57)

xn(t0) x(t0) x0

and a reference observation vector zn. Define

6x(t) = x(t) - xn(t) ,

6z(t) = z(t) - zn(t) ,

then, 6x(t) and 5z(t) satisfy the following equations

Sx = F(t)6x + G(t) w'(t) ,

6z(t) = H(t) 5x + v'(t) ,

where v'(t) and w'(t) are white Gaussian processes and

8 f(F(t) = ax
x, t)

X=Xn

, H(t) - ax
8 h(x, t)

X=Xn

(2.58)

(2. 59)

(2. 60)
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Equation (2. 59) represents a linear system for which an optimal

filter can be obtained. The approximate mean value for the process

x(t) will satisfy the following equation:

x(t) = xn(t) + Sx(t) , (2. 61)

and this filter is commonly referred to as the continuous extended

or linearized Kalman filter. If the function f in (2. 9) is expanded

in a Taylor series around its mean

fi(x, t) = fi(x, t)
a f i(n, t)

axx=x

X a
2f(x, t)
xjaxk

X=X

x=

1
n n

x-x) + E E (x - x.)
j=1 k=1

(2.62)

and expectation is taken on both sides of (2. 62), neglecting higher

than the second order terms and remembering that the best estimate

is unbiased (E[x-x] = 0) , we have

n n a
2fi(x, t)

fi(x, t) = t) + 2 E E P
j=1 k=1

jk 3xiaxk
X=X

(2. 63)

A similar expression can be derived for x , t). However, to
1(

make any further simplifications, certain assumptions normally have

to be made about the structure of the conditional density function

p(x, t I Y. ).
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If the third and higher order moments are assumed to be

negligible, the resulting sub-optimal filter is called a truncated

second-order filter (B4),(J3-4), (S4). This filter is useful if the

conditional density function p(x, tlY) is symmetrical and concentrated

around its mean. The other possibility is to assume that p(x, tlY)

has Gaussian properties. Since the mean is zero (unbiased), all

odd moments vanish, and the fourth central moment can be expressed

in terms of the covariance P(t)

E[(xi-Xi)(xi-x i)(xk-Xk)(xixe)] = PikPu+ Pi +P kiPii (2.64)

and since the nonlinearities are only carried up to second order

terms, the higher than fourth central moments do not play any role

in the derivation of filter equations. This filter is known as the

Gaussian second-order filter (54). The two filters mentioned are the

most common approximations to the nonlinear optimal filter and both

reduce to the Kalman-Bucy filter if the dynamics and observations

are linear. In order to present these two filters in a compact form

the following notation is adopted (J1)

2
n n 3

2fi(x, t)
(Pa f)i =

jE 1 k
E

1
P .ik a xi a xk==

W23 h)ijk. E E ax axq=1 r=1 q r

n n a
2hk(x, t)

X = X

P. P.jr
x = x
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(Pa 2f)
= [(Pa

2f)1, , (Pa
2
f)n]

T

(P28 2h) = [(P 23 2
h)1, , (P2a 2h)

]
T

,

if g is a p-vector

(P 2a 2h):
g =

p
E (P2a 2h)..

gijk k
k=1

(n x n) .

With the above notation in mind, the truncated second-order

filter is given by

dx(t) = [f(;c, t) +12 (Pa 2f)] dt

(2. 64)
1

+ PH T
R

-1(t)[ dz(t)-(h(x, t) + 2 2h))dt] ,

dP = [FP + PF T
+ GQG - PH T

R
-1(t) HP] dt

1

2
P {(pa 2

h)
T

R
1(t)[dz(t) - (h(x, t) + 1 (pa 2h))dt] }, (2. 65)

2

where F and H are defined by (2. 60) for xn = x.

The Gaussian second-order filter has (2. 64) for the mean and

the covariance is given by

-dP = [FP + PF T
+ GQG T

- PHTR l(t) HP] dt

(2. 66)

+ (P23 2h):
{ R

-1(t)[ dz(t) - (h(5i, t) + 1 (P8
2h))dt] } .
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It should be noted that for a linear observation model both

filters will have identical equations for the mean and covariance,

however, GQG will have, in general, different results for the two

filters. Also, the mean and covariance equations are no longer

decoupled as in the linear case and the two equations have to be

solved simultaneously.

2. 4. 2 Continuous-Discrete Case

In the case where the observations are of a discrete nature

modelled by (2. 12),and G( ) is only a function of time, linearizing f

and h around a nominal trajectory (2. 60) - for small perturbations -

the system equations reduce to a linear model. A similar argument

to the one presented in the previous section can be used to determine

an approximation to the mean x(t). Such a filter is referred to as

the extended Kalman-Bucy filter for the continuous-discrete case.

The sub-optimal filter equations can be derived under similar condi-

tions on the density function p(x, tiY,e). The filter equations between

observations for the truncated second-order or Gaussian second-

order can be easily derived from the corresponding continuous filter

equations by setting R -1(t) = 0. Thus, between observations the mean

and covariance satisfy the following equations

d7-t-x(t) = f(X, t) +2 (P82 f) , (2. 67)



dt P(t) FP(t) + P(t)FT + GQGT .
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(2. 68)

Even though the mean and covariance equations are identical

for both filters, GQG T will, in general, be different for the two

approximations. There is still a need to devise an approximation

to the solutions of the difference equations (2. 46-7). By definition

x(k I k) = E[ x(k) lYk] = E[ x(k) I y(k), Yk-1] (2.69)

Equation (2. 69) suggests that x(k I k) is dependent on the

observation y(k). It would then seem logical to expand the mean and

covariance in a power series of the following type:

N
.51(k lk) = E a. (y(k) - ir(k))i ,

i 1

M
P(k1k) = E bi(y(k) - y(k)) i

,

i=1

(2.70)

(2. 71)

Awhere (y(k) - y(k)) corresponds to the useful information contained

in the new observation.

For a general vector equation, computation of the coefficients

in (2. 70 -1) becomes quite involved. For any practical purpose, the

expansions can only be carried out to two terms, in which case,

X(k I k) = a + B(y(k) - y(k)) , (2. 72)



p
[ P(k lk)]. = C. + E

2=1

D.. (y(k) - y(k))
1.3.g
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(2. 73)

The coefficients in (2. 72 -3) have been derived in (J1) and are

as follows

a = cc(k

(xhT x^:T
h ) [ ( h )(h f +R(k)}:l

C = P(k lk-1) -(xhT - XiiT) {[(h-lis)(h-c-i)T1A + R(k)}-1

X (hx - hx T
) ,

A
ED..= {RX. Bar[

J q
E (hr r )(x-^x.)h

q
]

9=1 r=1.

p
- E B. [(h -h )(x.-x.)h ]it r r J J qr=1

(2. 74)

(2. 75)

(2. 76)

(2. 77)

p
+ E B. B. [[(hr ) (h )h + Rrsh C.51 }

r,s =1 ir is s q q q

X {[(h-h)(h-h)T
]

1
+ R}

Equation (2. 77) clearly reveals the magnitude of the problem

in the determination of the coefficients for the update equations

(2.72-3). A further simplification would involve disregarding the

coefficients D.. . The resulting filter is referred to as a modified
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filter. Equations (2. 74 -6) have to be evaluated for the truncated

second-order or the Gaussian second-order filters. At an observa-

tion instance tk' the modified truncated second-order filter equa-

tions are given by

where

x(k ik) = x(k I k) + P(k I k-1)HT [ Xt]

y(k) - ( (x, t) +
2

(P8 h))] ,

P(k1k-1) = P(k f k -1) - P(kfk-1)HT[ Xt] -1HP(kik-1),

X
t

= HP(k I k-1)HT + R(k) - (pa 2
h)(133

2h)T
4

(2.78)

(2.79)

(2.80)

The modified Gaussian second-order filter is given by equations

identical to (2. 78 -9) with the exception that Xt has to be replaced

by X G defined as

X
G= HP(k I k-1)HT + R(k) + 1 (a

2hP 2a 2h).
2

(2. 81)

It is important to note that for a linear observation model, X t

and X G are identical. As a result, the two filters have the same

update equations and the only difference between the two would be due

Tto GQG .



III. STATE ESTIMATION FOR BILINEAR SYSTEMS

3. 1 Stochastic Models for Bilinear Systems

In this chapter we consider a general bilinear system

described by

where

m
(t) = A(t) + E 13.(t)ii.(t)]x(t) + C(t)u(t),

t > t0' x(t
0

) = x
0

,

x(t) is an n vector of state variables,

A(t) is an n x n matrix,

Bi(t) is an n x n matrix,

Tr(t) = [171(t), I72(t), . . . , iim(t)]

is an m vector of controls,

C(t) is an n x m matrix.
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(3. 1)

If the controls u(t) in (3. 1) are assumed to be corrupted by

some additive white Gaussian noise

u(t) = u(t) + n(t) (3. 2)



where

u(t) = [ u (0, , um(t)] T is an m vector of deter-.

ministic controls,

n(t) is an m vector of independent white Gaussian

disturbances with the covariance

E[n(t
1
)nT

(t 2)1= Q(t
1

)6
D

(t
1
-t 2) ,

then, the bilinear system of (3. 1) can be represented by:

Define

where

m m
(t) = (A(t) + E Bi(t)ui(t)) x(t) + E B.1 (t)n.1 (t)x(t)

i=1 i=1

+ C(t)u(t) + C(t)n(t)

m
f(x, t) = (A(t) + E B.(t)u.(t)) x(t) + C(t)u(t),

i=1

C(t)

BJ

1
Bi1(t)x + cu. . Bm(t)x + clm

G(x, t) =

B(t)x + c
n11

nB(t)x + cnm

corresponds to the ith. row of the matrix B..

(3. 3)

(3. 4)

(3. 5)

47
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Incorporating the notation of (3. 4-5), the bilinear system

of (3. 1) can be represented by

N = f(x, t) + G(x, t) n(t) , (3. 6)

t> t

the modelling problem of which was discussed in Chapter II. There

is a great deal of research and interest in determining a stochastic

differential equation driven by a Wiener process which would have

the same solution as (3. 6) in the mean square sense (B3), (Cl),

(M2). Clark (C1) claims (3. 6) corresponds to a Stratonovich

equation given by

dx(t) = f(x, t)dt + G(x, t)dw(t), (3. 7)

where w(t) is a Wiener process with a covariance

E[dw(t)dTw(t)] = Q(t) dt .

The Stratonovich equation, as discussed in Chapter II, is not

very appealing for estimation purposes and it is, therefore, desirable

to obtain the equivalent Ito equation for the bilinear system of (3. 3).

Application of Theorem 2.1 to (3. 7) yields the desired Ito equation.

Recall, the correction term for (3. 7) is given as

1
n m a G

E

.
11

2
Qkj G k a dt ,

E jk=1 j=1 xk (3. 8)



and after some matrix manipulations, the correction term to (3. 3)

can be written as

M M
, 1

E E . B ( t) B ( t ) x(t) dt.
2 i=1 j=1 3

Introducing the correction term in (3. 3), the following

bilinear Ito differential equation is derived:

m m m
dx(t) = [ (A(t) + E 13.(t) u(t) + E E Q, .B.(t)B.(t) x(t)

1. 3i=1 " 2 1 =1 j=1 13

where

m
+ C(t)u(t)] dt + z B.(t)x(t)dwi(t) + C(t) dw(t)

dw(t) = [dwi(t), , dwm(t) ] T.

Figure 3.1 represents a block diagram for a stochastic

bilinear system.
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(3. 9)

(3. 10)



n(t)

u(t) ii-o u(t) ii-

BL( , <

A

m
B L 1

(x,T1) = z B1 .T.T.x

i=1

Figure 3.1. Stochastic bilinear state diagram.

> h ( )

v(t)



3. 2 Problem Statement

Consider the stochastic bilinear system described by

m
dx(t) = [ (A(t) + E Bi(t)ui(t))x(t) + C(t)u(t)] dt

i=1

m
+ E Bi(t)x(t)dwi(t) + C(t)dw(t)

1=1

t > t
0

, x(t
0

) = x
0

.
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(3. 11)

To avoid excessive notation the correction term in (3.9) has

been omitted. There is no loss of generality since one can always

define

m
A(t) = A

0
(t) + E Q..B.(t)B.(t),

1j 1 j
j=1

(3. 12)

where A
0
(t) would correspond to A(t) in (3. 9).

The observation model can be either continuous

dz(t) = h(x, t) dt + dv(t) , (3. 13)

or discrete

y(k) = h(x(k), tk) + v(k), (3. 14)

where the dimensions in (3. 13 -14) are appropriately defined in

Chapter II.
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The objective of this chapter is to examine the problem of

state estimation for a general class of bilinear systems of the type

(3. 11) based on a set of observations given by (3. 13) or (3.14) and

to provide a computationally feasible filter algorithm in the case

where the observations are linear in the state. It is also intended

to reduce the sub-optimal filters of Chapter II for the bilinear case

and examine the implications of adopting such strategies.

3.3 The Optimal State Estimator for Bilinear Systems

As mentioned repeatedly throughout Chapter II, the state

estimation problem is completely solved if the conditional density

function p(x, t IY) can be found. Theorem 2. 5 provides the partial

differential equation for the evolution of this density function, but

as for the general nonlinear case, for bilinear systems, the solution

to this partial differential equation is available only in trivial cases.

Under certain assumptions on the motion of the state vector

(evolution on manifolds), the density function can be expanded in

terms of generalized harmonic functions (Ml), (W2). The method

becomes quite complicated as the dimension of the state vector gets

larger than two. In addition, certain structural properties must

be met to ensure that the motion will stay on the manifold. If such

assumptions are removed, the only direct approach to solving the
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estimation problem is via the moment equations.

3. 3.1 Continuous Case

Employing the notation of (3. 4-5) the bilinear system of (3. 11)

can be represented by

dx(t) = f(x, t) dt + G(x, t)dw(t) (3. 15)

The optimal minimum variance state estimation problem for

(3, 15) was addressed in Chapter II. Theorem 2, 6 provides the

equations for the mean and covariance for this system. These equa-

tions can be simplified for the bilinear case.

Define

m
F(t) = A(t) E B.(t)u.(t) ,

i=1 1 1

then, (3.11) reduces to

dx(t) = F(t)x(t) + C(t)u(t)] dt

m
+ E Bi(t) x(t)dwp) + C(t)dw(t),

i=1

for which (2. 27-8) can be written as

(3.16)

(3.17)



dx(t) (F(t)x(t) + C(t)u(t)) dt

T AA T+ (xh -xh )R -1(t)[ dz(t) - hdt] ,

dP(t). = [(F(t)P(t) + P(t) FT(t) + GQG ).

^ ^
)-(x.h - x.h7

R
-1(t)(hx. hx.)] dt

3

"
+ (x.x.h - x.x.h - x.x.h - x.x.h + 2x.x.h)

1 3 1 3 3 1 1 3 1. 3

X R 1(t) [dz(t) - hdt]
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(3. 18)

(3. 19)

Since G(x, t) in (3. 11) is a linear function of the state vector,

GQGT will only have up to second order terms in x(t) and its expect-

ation can be evaluated in terms of the mean and covariance functions.

Let us first consider the case where u(t) is a scalar. By definition

G(x, t) = B(t)x(t) + c(t) , (3. 20)

where G and c are n vectors. Consequently,

E[ GQGT] = E[(Bx + c) (Bx + c)T]Q

=
BxxTBT cxTBT BxcT T



However,

N,E[xxT] = E[ (x + x) (x + x) T
] ,

= P(t) + xx ,

which yields
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(3. 22)

T
GQG = Q[ BP(t)B T + Bxx B T + cx B T + Bxc T + cc T

(3. 23)

Equation (3. 21) can be extended to the case where there is

more than one input. Again, by definition

where

+G(x,t) = [ Bi.x , (3. 24)
3

i = 1 , , n,

j= 1,

B. corresponds to the ith. row of matrix B..
3

Consequently,

ni
(G(x, t)QGT(x, = E (B + c, )(Bj + c. ) ,t))ij r r tr r jrr=1

after lengthy matrix manipulations the expected value of GQGT can be

written as



where

m
T T ,,x -,x T T

GQG = E [Q.(B.PB. + B. B. )
i. I. 1 i i

i=1

cQr Bi : ;c1T + [ Bi : QCT

+ CQC
T

[ B. :x] = [B. x] ,

i = 1, n,

j = 1 , 110,
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(3. 25)

n x m (3. 26)

Equations (3. 23-26) have been derived without any assump-

tions about the conditional density function p(x, tiY).

Any further simplification of the filter equations would require

some knowledge about the nature of the observation function h(. ) .

As happens quite frequently the observation model is assumed to be

a linear function of the states

dz(t) = H(t)x(t)dt + dv(t) (3. 27)

Equation (3. 27) can now be used to further simplify the mean

equation (3. 17). By definition

h(x, t) = H(t)x(t) ,
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thus,

consequently,

fi(x, t) = H(t) X(t) ,

^" ^^xhT - xh T = E[ xx T
H

T T] -xx HT (t) = P(t)HT(t) ,

which reduces (3.18) to

dx(t) = (F(t)x(t) + C (t)u( t)) dt + P(t)HT(t)R -1(t)[ dz(t) - H(t)x(t)dt] .

(3. 28)

Before proceeding to simplify the covariance equations, it

is illuminating to consider the following scalar example.

Example 3.1:

Derive the optimal minimum variance filter equations for the

scalar bilinear system given by

dx(t) = (a(t)x(t) + b(t)) dt + (c(t)x(t) + e(t))dw(t), (3. 29)

t > t0 , x(t0) = x0 ,

with the linear observation model

dz(t) = h(t)x(t) + dv(t) . (3. 30)



Using (3. 24) the mean satisfies

dx = (a(t) x + b(t)) dt

(3. 31)

+ h(t)P(t)R 1(t)[dz(t) - h(t) x dt] .
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It is informative to derive the equations for the evolution of the

moments around the origin. Define

thus,

Mn(t) = E[ xn I Y ] , (3.32)

m(x) = xn ,

mx = nxn-1 , m = n(n-1)xxx
n- 2

Since m(x) is a scalar twice differentiable function of x, appli-

cation of It& s differential rule (Lemma 2. 1) and an expectation

operation on the resulting stochastic differential equation would yield

the desired conditional moment equations;

dMn(t) = [(na(t) + (n-l)nc 2(t)Mn + 2 n(n-l)e 2(t)Mn-2

where

+ (nb(t) + Q n(n- 1)c(t)e(t)) Mn -1] dt (3. 33)

+ h(t)R -1(t) (
Mn+1(t)

Mn(t) x (t)) [ dz(t) h(t) x(t) dt] ,

M
0

= 0 and M
1

= E[x] .
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It is interesting to note, the moments around the origin depend

only on the next higher order moment as well as the lower order

moments. Even though this property reduces the complexity of the

optimal state estimator for (3. 29) the dimension of the problem is

still infinite.

The second central moment for the process x(t) can be obtained

from (3.19). Since the observation is linear

(xh xh) R-1(t) - 1-;;) = h2(t)P2(t)R -1,

A2
- 'x 2x hx = h(t) (P(t) + ) x .

By definition

^P
3
(t) = E[(x-x) 3

] = E[x3] - 3P(t)x + x ,

and equation (3. 23) gives

(3.34)

(3. 35)

(3. 36)

,,
GQG = Q(c 2P(t) + c2x2 + 2ecx + e 2

). (3.37)

By employing the results of (3. 34 -7

2 2 ^2dP(t) = [(2a(t) + Qc (t)) P(t) + Qc (t)x (t) + 2Qc(t)e(t)x(t)

+ Qe 2(t) - h 2(OP 2
(OR

-1(t)] dt

+ h(t)P
3

(OR 1(t)[dz(t) - h(t)X(t) dt] .

(3. 38)
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For a scalar homogeneous bilinear system (b(t) = e(t) = 0), the

mean and covariance equations can be readily derived from (3. 31)

and (3. 38) by setting b and e equal to zero. In order to determine the

third order central moment P
3
(t), define

thus,

"P
4
(t) = E[ x - x) 4

4 "4 3" 3 2^= E[x + x - 4x x - 4xx + 6x x2
] ,

2 n 4P
4
(t) = E[x4] - 4M

3
x + 6M

2x
- 3x . (3. 39)

Applying Theorem 2. 4 and Lemma 2. 2 the equation for the

evolution of P
3
(t) is given

dP
3
(t) = [ 3a(t)P

3
(t) + 3c 2(t)P

3
(t) + 6c 2(t)P(t)x(t)

+ P(t)P3(t) + 2x(t)P 2(t)] dt

+ [P
4
(t) - 3P2(0] [ dz(t) - h(t)X(t)dt] .

(3. 40)

Equations (3. 38) and (3. 40) clearly show the interdependence

of the moment equations. Again, as in the moments around the

origin, any order central moment depends on the lower order central

moments as well as the next higher order one. If the conditional

probability density function p(x, t IY) is assumed to be normal, P3(t)

would vanish, as would (P
4

(t) 3P (t))



Let us return to the general vector case and try to simplify

the covariance equation (3. 19) for linear observations. It is quite

simple to show

Define

then,
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fi(X711R-1(t)(cx. - (P(t)HT(t)R-1(t)H(t)P(t)).. .
1

(3. 41)

P (t) = E[ (xi - X.)(x. - i.)(x
3.. J J

E[x.x.x = P + + + x P.. + x.x.x ,
1 ,0 3.. I. ,ye

(3.42)

(3.43)

where P3( ) is the third and P is the second central moment.

In order to determine the coefficient of the last term in (3. 19),

each one of the expectations has to be evaluated;

define

x.x
j
h = x.x.H(t)x = H(t)x.x.x,

1

P3(ij) =

3..

thus, (3.44) reduces to

x,x.h = H(t)[P3(ij) + x.P. + x.P. +
1

+
3 I. 13 3

(3. 44)

(3. 45)

(3. 46)



and the other terms are given by

x.x
j
h = H(t) (P. + x x. )x ,

1

^
x.x.h = H(t)x. P. ,

1 1 3

x.x.h = H(t) x. P. .
3 1 3 1
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(3. 47)

(3. 48)

(3.49)

The above results can be presented in the following theorem.

Theorem 3. 1:

The optimal minimum variance filter for the continuous

stochastic bilinear system (3. 11) with a linear observation model (3. 27)

satisfies the following equations

dx(t) [F(t) x(t) + C(t)u(t) ] dt

+ P(t)HT
(OR

-1(t)[ dz(t) - H(t) x(t) dt] ,

(dP(t) )ij = (F(t)P(t) + P(t)FT(t) + GQG
T

- P(t)HT(t)R- 1(t)H(t)P(t)) dt

+ P 3(i3)H
T

(OR
-1(t)[dz(t) - H(t) x (t)dt] ,

(3. 50)

(3. 51)

where GQG T is defined in (3. 25) and P3(ij) is given by (3. 45).

Proof: Equation (3. 50) is identical to (3. 28) which was derived

for the bilinear system of (3.11) under linear observation assumption.
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Employing results of (3. 41-9))derivation of (3. 51) is an exercise

in algebraic operations.

Equations (3. 50) and (3. 51) reiterate the fact that the filter is

dependent on the third central moment. As a matter of fact, it can be

proven that the nth. order central moment for (3. 11) is only dependent

on the (n+1) st. and the lower order moments (for a linear observation

model). This property, as in the scalar case, is a characteristic of

bilinear systems. It is, however, important to recognize that the

solution to the optimal filter is, in general, not available.

3. 3. 2 Continuous-Discrete Case

If the observations are made at discrete time points

y(k) = h(x(tk), tk) + v(k) , (3. 52)

then, the results of Theorem 2,9 can be used to derive the optimal

filter for the continuous-discrete case.

Theorem 3. 2:

The optimal minimum variance filter for the bilinear system

(3. 11) and the observation model (3.52) is given by

d x(t) = F(t) x (t) + C(t)u(t) , (3. 53)



dt P(t) = F(t)P(t) + P(t)FT(t) + GQGT,

t
k

< t< tk+1 ,
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(3. 54)

where GQG T is defined by (3. 25). At an observation point tk the

update equations are given by

Eix(k)p(y(k) I x(k))]
x(k I k) E [P(Y(k) I x(k))1

P(k lk) - Erx(k)x (k)p(y(k) x(k))]
E[p(y(k) lx(k)]

- x(k lk-1)x T (kik-1) .

(3. 55)

(3.56)

Proof: Equations (3.53-4) follow from Theorem 3.1 by setting

R
-1(t) = 0. Theorem 2.9 provided the update equations (for the

continuous-discrete case) which are identical to (3. 55 -6).

Equations (3. 53 -4) are no longer stochastic or dependent on the

higher order moments, so they can be evaluated using regular calculus

rules. It should be noted though, that the mean equation is inde-

pendent of the covariance and can be solved separately, however, the

covariance equation is dependent on itself as well as the mean due to

the term GQG T
. The difference equations (3. 55 -6) are still impos-

sible to solve explicitly and approximate solutions to them were

discussed in Chapter II. Even for a linear observation model there
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is no obvious simplification since the conditional density function

p(x, t y
k)

is not known.

3. 4 Sub-optimal Filter

As evident from the results of the preceding section, the

optimal filter is not computationally feasible. Even in the scalar

continuous case one is faced with having to solve an infinite number

of coupled Ito differential equations. In the continuous-discrete case

the solutions to the update equations involve determination of the

coefficients of an infinite series. In order to obtain any estimate

of the state, a sub-optimal filtering approach must be pursued.

The approximate techniques discussed in Chapter II can be

employed in the derivation of a sub-optimal state estimator for the

bilinear system (3. 11). The case where the observations are linear

is studied here.

3. 4. 1 Continuous Case

Consider the bilinear system (3.11) with the linear continuous

observation model (3. 27). It was proven in Theorem 3.1 that the

optimal minimum variance filter for such a system is given by (3. 50 -1)

and it was also mentioned that the central moment equations are

coupled to the moments of the next higher order. A logical



approximation, therefore, is to assume that for some n

Pn+1(t) = 0 .
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(3. 56)

Under such an assumption, the number of filter equations is

reduced to n, the last of which is no longer stochastic and the entire

set can, therefore, be systematically solved. There is, however, no

clear choice as to what n should be. This type of approximation can

be applied to any nonlinear system but is specifically suited to the

optimal filter for bilinear systems. It should be noted that even

though the moment equations are finite they are coupled Ito differ-

ential equations and have to be treated as such for any simulation

purposes. It is no secret that the simulation of stochastic differential

equations is quite complicated (R2) and renders a value of n > 2 in

(3.56) impractical. For n = 2, P3(t) = 0 is assumed and the following

sub-optimal filter is derived (truncated second-order).

Proposition 3.1:

For the bilinear system described by (3. 11) and the observation

model (3. 27) under the assumption that P3(t) = 0, the sub-optimal

filter equations satisfy

dS(t) (F(t)il(t) + C(t)u(t)) dt

+ P(t)HT(t)R 1(t)[ dz(t) H(t)x(t)dt] , (3. 57)
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dt P(t) = F(t)P(t) + P(t)FT(t) + GQG P(t)HT(t)R- 1(t)H(t)P(t) ,

(3. 58)
where GQG is given by (3. 25).

Since the bilinear system (3.11) and the observation model

(3. 27) only involve terms of first order in x(t),the filter equations do

not depend on the fourth order central moment. As a result, the

approximate filters in Chapter II (truncated second-order and

Gaussian second-order) will yield identical results for bilinear systems

with linear observation models. Proposition 3.1 provides the mean

and covariance equations for such an approximation.

Let us now consider the following scalar homogeneous stochastic

bilinear system

dx1(t) = axidt + bxidw(t) ,

t > t
0

x1(t0) = x
0

> 0

Er clw
2(t)] = dt.

(3.59)

It will be shown in Chapter V that (3. 59) has a solution given by

tx1(t) = x0 EXP(f (a - 1 b
2)ds +.1 bdw(s)) . (3. 60)

J to
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IThe correction term - 2 b 2 is due to the fact that

E[EXP(f bdw(s))) .EXP(1-2b2(t-to)) (3. 61)
to

Suppose (3. 59) is approximated by

where, by definition

dx
2

= a x
2
dt + bx

2
dw(t) ,

t > to
'

x2(t0)= x2(t0) = xo ,

(3. 62)

x2 = E[x2] (3. 63)

Employing the results of linear system theory, the solution for

the process x2(t) can be written as

t
x2(t) = xo EXP(1 ads) ,

to

and, consequently,

x2(t) x0 EXP(f ads) (1 +f bdw(s) ).
to to

(3. 64)

(3. 65)

There is a close relationship between (3. 60) and (3. 65) if the

exponential term in (3. 46) is expanded up to second order terms.
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The appealing feature of (3. 62) is that it represents a linear system

for which the optimal filter is known. With this property in mind,

the following approximation is suggested.

Proposition 3. 2:

A sub-optimal filter for the bilinear system of (3. 11) and (3. 27)

is given by

d;((t) = (F(t)X(t) + C(t)u(t)) dt

+ P(t)H T
(t)R

-1(t) [ dz(t) - H(t)x(t)dt] ,

(3. 66)

dt P(t) = F(t)P(t) + P(t)FT(t) + G1QG1T + P(t)HT(t)R 1(t)H(t)P(t),

(3. 67)
where (3. 11) is approximated by

m
dx(t) = (F(t)x(t) + C(t)u(t)) dt + E B.(t)dw.(t)X(t) + C(t)dw(t) , (3. 68)

i=1

consequently,

G1(x, t) = G 1(X, t) = [ (t) x(t) + C..], n x m (3. 69)ij

1, , n ,

j= 1, , M.
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The term G
1
QG 1T can be evaluated using (3.25) and (3.69 ),

T
1G

CQG

T -=EQ.B.x x- T
B.

T
+ Q[ B. x]

i=1

+ [ Bi QC + CQC , (3.70)

where [Bi .X] is defined by (3. 26).

The obvious difference between the filter of Proposition 3.2

and the truncated second-order filter is in the term GQG .

3. 4. 2 Continuous-Discrete Case

Even with the two sub-optimal filters presented in the preceding

section the continuous filter is not well suited for simulation purposes

on a digital computer. The continuous-discrete model offers a much

more appealing framework for the simulation of the state estimation

problem. Since the whole problem of parameter estimation addressed

in Chapter IV depends on the availability of estimates of the state

based on discrete observations, it is, therefore, essential to develop

a sub-optimal estimation strategy for the continuous-discrete case.

The techniques discussed at the end of Chapter II can obviously be

applied to the bilinear system (3.11) and the observation model

y(k) = H(k) x(k) + v(k) . (3. 71)



In this section a similar argument to Proposition 3. 2 will be

used to derive an approximation to the optimal filter.

Proposition 3. 3:

Consider the bilinear system (3. 11) with a linear observation

model (3. 71). Between the observations, the conditional mean and

covariance satisfy

d x(t) = F(t)x(t) + C(t)u(t) ,

dt P(t) = P(t)FT(t) + F(t)P(t) + GQG ,

71

(3. 72)

(3. 73)

where GQG T is defined by (3. 25). At an observation point tk, the

update equations are approximated by the equations for the linear

system

m
dx(t) = (F(t)x(t) + C(t)u(t)) dt + Bi(t)X(t)dwi(t) + C(t)dw(t), (3. 74)

i=1

consequently,

(k I k) = X(k I k-1) + K(k)(y(k) - H(t);(k I k-1), (3. 75)

P(k k) = P(k I 1(-1) - K(k)H(k)P(k I 1(-1) , (3. 76)

K(k) = P(k I k-1)HT(k) [H(k)P(k I k-1)HT(k) + R (k)] (3. 77)
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The filter equations involve no approximations between the

observations. The only approximation in Proposition 3.3 is the update

equations (3.75-77).

In Chapter II the modified (truncated and Gaussian) second-order

filters were derived as an approximation to a general nonlinear

continuous-discrete problem. It was mentioned that for linear obser-

vations the update equations for the two filters are identical. Since

GQG
T was derived (3. 25) without any assumptions about the condi-

tional density function, the two filters yield the same results for a

bilinear system with a linear observation model. The mean and

covariance equations are given by (3. 72 -77). Proposition 3.3 clearly

reveals the type of approximation involved in adopting the modified

truncated second-order sub-optimal filtering strategy. Any further

attempt in expansion of the series

N

E ai(Y(k) Y(k))i
i=1

would result in cumbersome mathematics which cannot be justified

computationally. It is, however, essential to test the proposed filter

under simulation conditions and this will be done in Chapter V.

It should be mentioned that the results of this chapter can be

easily extended to a much wider class of systems, as for example,

given by



73

m
dx(t) = ((A(t) + E B.(t)u.(t)) x(t) + C(t)u(t)) dt

1=1

(3. 78)m
+ E Di(t)dwi(t)x(t) + E(t)dw(t)

i=1

By changing Bi(t) and C(t) in G(x, t) to Di(t) and E(t), all

the theorems and propositions presented in this chapter can be

modified to accomodate (3. 78).
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IV, PARAMETER ESTIMATION FOR BILINEAR SYSTEMS

4.1 Introduction

In this chapter we address the problem of bilinear system para-

meter identification. As mentioned in Chapter I bilinear systems can

be used to approximate certain nonlinear physical processes. The

choice of a bilinear system as a model is assumed to stem from a

priori knowledge about the physical structure and behavior of the

process under consideration. There is no available theory at present

which would provide a systematic and straight forward mathematical

scheme for selecting a model in the identification problem. However,

whenever the controls are known to have a multiplicative effect on the

process, bilinear systems offer a logical choice for the model.

For the sake of mathematical rigor, the model used in this

chapter is again assumed to be a stochastic bilinear differential

equation of the Ito type driven by a Wiener process.

4. 2 Problem Statement

Assume that the model to be identified can be represented by the

stochastic bilinear differential equation
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m
dx(t) = ((A(t) + E B.(t)u.(t)x(t) + C(t)u(t))dt

i =1

(4.1)m
+ E Di(t)x(t)dwi.(t) + E(t)dw(t) ,

1=1

where the dimensions of A, B., and C are appropriately defined in

Chapter III and

D. is an n x n matrix,

E is an n m matrix .

Equation (4. 1) is slightly different from the bilinear system of

(3. 11) to accomodate a larger class of system models.

process w(t) in (4. 1) is assumed to have unit covariance

If the Wiener

E[dw(t)dTw(t)] = I(t)dt , (4. 2)

then, (4. 1) is equivalent to (3.11) under the following assumptions:

Di(t) = Q.1/2 B.(t) ,
1 1

(4. 3)

E(t) = Qi /2 C(t) , (4. 4)

where Q corresponds to the covariance of the Wiener process in

(3.11).

The output of the process is assumed to be a linear function of



the state vector x(t), which is sampled at discrete time points

{ti }

76

y(k) = H(k)x(k) + v(k) . (4. 5)

One can view v(k), a white Gaussian sequence, as the measure-

ment error induced by the recording device which cannot physically

respond to the rapid fluctuations in the output of the process. This

output can be stored and is available for batch processing.

The input to the system u(t) being a deterministic signal can

be recorded accurately and is also available for use in the parameter

estimation procedure.

It is further assumed that the order of the process x(t) is known.

In cases where this information is not available a series of tests on

models of different orders have to be performed (U1), (W5).

The Wiener process w(t) in (4. 1) can be viewed as the modelling

error with both additive and multiplicative effects. It can also be

treated as the corruption of the controls before they reach the plant

(a view taken in Chapter III in determination of a stochastic model

for a bilinear system).

Given the input-output information, it is desired to find esti-

mates of the parameters in (4. 1), and Figure 4.1 illustrates a

schematic diagram of the identification procedure.
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Figure 4.1. Schematic diagram of identification procedure.
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4. 3 On the Choice of the Parameter Estimation Scheme

As a starting point for our discussion of the parameter identi-

fication problem, note that in the absence of input noise, (4. 1) would

reduce to

m

dt
x(t) = (A(t) + E Bi(t)ui(t)) x(t) + C(t)u(t) , (4. 6)

i=1

thus reducing the bilinear system to a deterministic one. Equation

(4. 6) can be viewed as a linear time varying system for which the

parameter estimation problem has been extensively studied (El),

(A4) and needs no further discussion. Even in cases where only the

multiplicative noise can be neglected

m
dx(t) = ((A(t) + E B.(t)u." (t))x(t) + C(t)u(t))dt + E(t)dw(t),

i=1
(4. 7)

one is faced with a linear time varying system corrupted by a Wiener

process. The parameter estimation problem for (4. 7) can also be

handled using identification techniques for linear systems (B2).

The difficulty arises, however, when the noise does enter in

an additive, as well as, multiplicative fashion. From the discussion

of Chapter III, (4. 1) no longer depicts a linear system and the

optimal state estimator is of infinite dimension.

Faced with a nonlinear system identification problem a short
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survey of available methods is presented here (A5), (G3). Classical

nonparametric approaches which involve correlation, or power

spectra analysis are extremely difficult to apply to nonlinear cases,

particularly in the presence of a multiplicative noise component.

Alternatively, if the parameters are assumed to be time invariant,

one can define

then,

e = vector of all the parameters to be estimated,

el, e2,

d
dt 0= 0.

e
T

Equation (4. 1) can then be augmented to yield

dx

de

m
(A(t) + E B. (t)u,(t))x(t) + C(t)u(t)i=1 "

0

m
E D.(t)x(t)dw.1 (t) + E(t)dw(t)

i=1 1

0

(4.8)

(4.9)

dt (4.10)



By defining

n q n q

n A(t) 0 B.(t) 0

X(t) = , gi(t) =

q 0 : 0 q 0 0

n q m

5i(t) =

n

q

D.(t)

0

:
.

:

0

0

, C(t) =

n

q

C(t)

.

0

E(t) =

n

q

m

E(t)

0

n

H(t) = p H(k)
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, z= x1, . . ,xn ,e
q

. . ,e.] T,

q

0

equations (4. 5) and (4. 9) can be written as

m
dZ = ((A(t) + E i3i(t)ui(t))Z + C(t)u(t)dt

i=1
(4.11)

m
+ E D.(t) Zdwi(t) + ff(t)dw(t) ,

i=1

y(k) = H(k) Z(k) + v(k) . (4.12)
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Equations (4.11-2) represent a bilinear system of dimension

n + q with a linear observation model. However, very little is gained

by adopting this standard procedure (B5-6), (D2) since the parameter

estimation still requires a state estimator of even higher dimension

than the original system. With no finite dimensional filter available

in such cases the added dimensionality unnecessarily complicates any

of the discussed sub-optimal state estimation strategies.

The two most widely used parametric or direct methods in

parameter estimation are the least-squares and maximum likelihood

procedures. In the least-squares approach the output error is

minimized, but in the presence of state noise, the least-squares

method will generate biased estimates for the parameters. The maxi-

mum likelihood procedure does not suffer from such a disadvantage

and has been shown (A3) to be equivalent to a generalized least-squares

in which the filter gain function is determined by the dynamics of the

system.

It must, therefore, be concluded that perhaps the only available

technique which can accommodate a stochastic bilinear system (4. 1),

without undue computational requirements, is the maximum likelihood

approach.
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4.4 Properties of Maximum Likelihood Estimators

Given a set of N observations

Y = [Y(1), Y(2), Y(N)] (4.13)

and a set of parameters e, a likelihood functional L(Y, 0) can be

constructed. The maximum likelihood estimate of the parameters

0 is then defined as the maximizing 0 of L(Y, 0) for a given Y (El).

Since the logarithm is a monotonic function of its argument, the

maxima of the likelihood functional and its logarithm are identical;

max L(Y, 0) = max Ln[ L(Y, 0)] . (4. 14)

e e

A necessary condition for a (local) maximum is given by

(Ln(L(Y, 0))) = (4.15)

e=e

The estimate obtained in this fashion is, in itself, a random

variable and by defining

E[ e] = f(0) = e + b(e) , (4.16)

b(0) represents the bias in the estimate. If b(e) = 0, the estimate is

said to be unbiased. Since the estimate is a random variable it is

essential to have some idea about its mean and the dispersion around
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it. In the case of a scalar parameter, a lower bound on the variance

of the estimate can be derived (R1)

2

(1+ -T-10- b(0))
Var [6] > -

a 2 Ln(L(Y, 0))1
a0

(4.17)

Equation (4. 17) is commonly referred to as the Cramer-Rao

inequality. When the estimate is unbiased (b(0) = 0), the lower

bound reduces to

Var [ e] > 1

2

(Ln(L(Y, e))]

(4. 18 )

In the case where more than one parameter is involved a lower

bound similar to (4. 17) can be derived (El) and when the estimate

is unbiased

for

Coy [5] = E[(8-e) (E)--0)T] > J-1, (4.19)

a aJ = - E[ (-- Ln(L(.,. )))(-- Ln(L(.,. )))T],
e e (4, 20)

where J is called the Fisher information matrix. We also define

ek = estimate of 0 after k observations,

then, if for an arbitrarily small E



lim p [ 16k- e j < = 1,
k. co
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(4. 21)

ek is called a consistent estimate of O. It has been shown (A4), in

order for a process to be identifiable, it needs to have consistent

estimates. A necessary condition for having a consistent estimate

is that the Fisher information matrix be positive definite, thus,

ensuring the existence of a unique extremum for L(Y,e). It has been

shown that as the number of observations increase, the maximum

likelihood estimates become asymptotically unbiased, efficient

(achieve the lower bound on the covariance), and have asymptotic

normal behavior with a mean 0 and variance J1.

4.5 Maximum Likelihood Algorithm

In this section a maximum likelihood parameter estimation

procedure is developed for the bilinear system described by (4. 1)

with the linear observation model (4. 5).

Suppose the output of the system is observed up to time tN and

define the observation manifold

YN = [Y(1), Y(2),

Also, define

. . , y(N)1

e -- vector of unknown parameters ,

(4. 22)
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0= [all the elements of A, B.1 C, D., E, possibly

R and Q], T (4.23)

where e has q elements.

For the case under consideration a logical choice for the likeli-

hood functional is the conditional probability density function

P(YN 10),

L(Y, e) = p(Y I e) (4. 24)

e

As before edenotes the vector of the best parameter estimates,

is the maximizing value of e in

max p (YN I e) .

e
(4. 25)

Since

P(YN I 0) = P(Y(1), y(2),

using Baye's rule

Y(N) I 0) , (4. 26)

P(YN 10) = p(Y(N) IYN-1, 0) p (YN-1 0) , (4. 27)

after successive application of Baye's rule

P(Y N10) = P(y(N) I YN-1' 0) P(Y(N-1)IYN- 2' 0) p(y(1) 10) ,

(4.28)



or equivalently,

N

P(YN I e) = IT p(ycolYi_1, e)
i=i
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(4.29)

As mentioned in the previous section, taking logarithm of

(4. 29) does not affect the maximization results and 6 can be obtained

as the maximizing e of

or

N
Ln(p(YN le)) = Ln ( TT p(y(i) IYi -1,

0)) ,

i=1

N
Ln(p(YN I e)) = E Ln(p(y(i) e)).

i=i

(4. 30)

(4. 31)

Although greatly simplified, the parameter estimation problem

still requires an expression for the conditional density function

p(y(i) IYi e). The following theorem will shed some light on the

subject.

Theorem 4. 1: (Innovations Theorem)

Given the following observation model

y(k) = Z(k) + v(k) , (4. 32)

where v(k) is a white Gaussian sequence with a covariance

E[v(k)vT(j)] = R(k)6(k-j)
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Then the innovations process is defined as

v(k) = y(k) - Z(kik-1) = (k.11c.-1) + v(k) , (4. 33)

where

Z(k I k-1 = E[ Z(k) y(1), ,y(k -1)]

(k I k-1) = Z(k) - i(k k-1) ,

is a white sequence with

F[ v(k)] = E[ y(k) - Z(k k-1)1 = 0 ,

and

where

E[v(k)v T(3)1 = Pvv(k)8(k-j

(4. 34)

(4. 35)

(4. 36)

(4. 37)

Pvv(k) = E[ (y(k) - Z(k I k-1)(y(k) - Z(k I k-1)) T1
, (4. 38)

Pvir (k) = ERZ (k I k-1) + v(k))(Z (k I k-1) + v(k))T1

= 13'x,ZZ (k) + R(k) . (4. 39)

For a proof of this theorem see Kailath (K1-2). Similar results

are also available for the continuous case (K2) where the innovations

process is also shown to be Gaussian. The lack of continuity for a

discrete observation process renders the Gaussian assumption invalid,

in general. In cases where the observations are "dense enough",

however, the innovations process comes arbitrarily close to that of
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a continuous process. This implies that the innovations process can

be approximated by a normal density function if the sampling rate is

high and in such cases the density function has a zero mean and

P (.) for its variance. In any case, the innovations process contains

all the useful information contained in the observations,

y(k) E v(k) (4.

Application of Theorem 4.1 to the problem at hand yields

y(k) = H(k)x(k) + v(k) (4.

where the innovations process is defined as

(4.v(k) = y(k) - E[H(k)x(k)1Yk-1'1'-

40)

41)

42)

but

as a result,

E[ H(k)x(k) 1Yk-1 H(k)x(k f k-1) ,

v(k) = y(k) - H(k)x(k I k-1) . (4. 43)

The innovations process has a zero mean and a covariance

given by

Pvv(k) = E[ (H(k)x(k 1 k-1) + v(k))(H(k)x(k I k-1) v(k))T]

H(k) E[xx ] H T
(k) R(k) . (4. 44)



but from Chapter II

thus,

''tx TP(k) E[x= P(klk -1) ,

Pvv(k) = H(k)P(k)HT(k) + R(k)
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(4.45)

Since the observation noise is Gaussian and the sampling rate

is assumed to be high enough, the innovations process can then be

approximated by the following normal density function

P(v(k))
1 EXP v

T (k)P -1

.2.1 l2 2
vv

(2Tr)Z

(4.46)

where p1 corresponds to the dimension of the observation vector y(k).

Note that (4. 46) is actually a conditional density. function since

v(k) depends on the observations up to the last time interval

p(v(k)) = p(v(k) I . (4. 47)

A consequence of Theorem 4.1 was that the innovations process

and the observations contain the same information and it is, there-

fore, reasonable to assume that

p(v(k) fIrk-l 0) P(Y(k) lYk-l' 0)
(4.48)
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Equations (4. 46) and (4. 48), therefore, provide the conditional

density function required in the evaluation of the likelihood functional

(4. 31) if ;((k lk-1) and P(k Ik-1) required in (4. 43-4) are available.

The estimation problem for obtaining x(k lk-1) and P(k lk-1) was

addressed in Chapter III and it was shown that these conditional

moments are the solutions to a set of two ordinary differential equa-

tions. However, evaluation of these differential equations depends

on the determination of the initial conditions x(k-lik-1) and

P(k-1 lk-1) which involves non-existing closed form solutions to a

set of difference equations. The sub-optimal filters proposed in

Chapter III can, however, be employed to obtain an approximate

solution to the bilinear system parameter identification problem.

The approach suggested here is similar to that proposed by

Mehra (M3-4) in principle. Mehra, however, does not allow for

cases where the noise has a multiplicative effect in his derivation.

The state estimation and parameter identification problems can,

therefore, be simultaneously solved in a recursive manner; i. e.

parameter estimates in the previous iteration are used in the filter

construction and the process is repeated until the scheme converges.

Some error in the estimation of the parameters is inevitable since

a sub-optimal filter is employed.

The steps involved in the maximum likelihood parameter



estimation procedure are as follows.

Given a set of N observations define

M(j) = E[v(j)vT(j)]

Then from (4. 31), 0 (maximum likelihood estimate of the

parameters) is the maximizing 0 of

N
max E Ln

i=1
1

1 1 T -1
v (i)M (i)v(i)]

(27)2 I1 /2

.max 7 - 1 (p
1 Ln(27 ) + Ln IM(i) + v

T
(1)M

-1(i)v(i)) .
2

0 i=1
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(4.49)

(4.50)

Deleting constant terms, e is the maximizing e of the newly

defined likelihood functional

. .L(Y, 0) = E --1 (Ln I M(i) + v
T (i)M-1

(1.)v(1)) ,

i=1 2

where the maximization has to be performed subject to

(t I i-1) = (A(t) + E B.(t)u.(t))x(t) + C(t)u(t),
J Jj=1

P(t I i-1) = (A(t) + E B.(t)u.J (t))P(t I i-1)

+ P(t I i -1) (A(t) +E B.(t)u.(t))T + GQG ,

j=1 J J

(4. 51)

(4. 52)

(4.53)



and GQG T is defined by (3. 25),

v (i) = y(i) - H(i)x(i I i-1) ,

M(i) = H(i)P(i I i -1)HT(i) + R(i) ,

x(i Ii) = x(i I i-1) + K(i)v(i) ,

P(i I i) = P(i I i-1) - K(i)H(i)P(i I i-1) ,

92

(4. 54)

(4.55)

(4. 56)

(4. 57)

K(i) = P(i ti-1)HT(i)[H(i)P(i I i- 1)HT( + R(i)] -1. (4. 58)

This constrained maximization problem is, of course, non-

trivial and the subject of discussion in the next section.

4. 6 Maximization Procedures

The constrained maximization problem of (4. 51) subject to

(4.52-58) is actually an extremely difficult one. Often, the choice

of the optimization procedure will have quite an effect on the final

estimates of the parameters, particularly since the shape of the

likelihood functional hill might become quite irregular as the number

of the parameters increase. There is an enormous amount of

literature available on optimization techniques; see for example,

(Al), (C2), (F2), In general, the optimization algorithms suitable

for our purposes can be divided into two categories (A5), (El):
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i) Direct search methods.

ii) Gradient methods.

The choice of a particular optimization method is largely

dependent on the problem at hand and a short summary of three

procedures is provided here.

4. 6. 1 Relaxation Method

In this method the likelihood functional is maximized with

respect to each parameter individually. The procedure is then

repeated until convergence occurs. Although simple to implement,

computationally the relaxation method is known to experience con-

vergence problems (Al). This maximization algorithm is quite

appealing for our purposes when there are only a few parameters to

be estimated.

4. 6. 2 Steepest Descent Method

In this method the gradient of the likelihood functional with

respect to the vector of the parameters e is computed

a a 3
---ea L(. , ) = [5e L, --Tea L,

1 2

a T,e (4.59)



At every iteration the new parameter estimate is defined by

= e(i) + r
. a

a
L

e= e(i)
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(4. 60)

where r(i) is appropriately chosen to maximize the likelihood

functional along the gradient vector. This approach is known to have

very slow convergence properties near the optimum.

4. 6. 3 Newton-Raphson Method

The Newton-Raphson algorithm requires the calculation of both

the gradient and second order partial derivatives with respect to the

parameters. At each iteration the new estimates are obtained from

0(1+1) = e(1) - [a
2L

a eaeT
e=e(i) 0 =0(i)

) (4. 61)

For a large number of parameters the calculation of the second

partial derivative matrix and its inverse can be computationally quite

time consuming. An added bonus, however, is that the second partials

provide the Fisher information matrix, which is the lower bound on

the covariance of the estimates of the parameters. To obtain correct

results it is absolutely essential that the Hessian (matrix of second

order partials) be negative definite to ensure the existence of a



maxima. At points where the computed Hessian becomes non-

negative definite, the following adjustment can be made

Hessian = 02 L

a oa eT
0=0(1)
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- mI) , (4. 62)

where I is the identity matrix and m is a large enough positive

number that would make the Hessian negative definite. The con-

vergence of this approach is faster than the previous two methods

around the true optimum. However, having to make sure that the

Hessian is always negative definite is an added computational burden,

In cases where the a priori estimates of the parameters are not very

reliable, it might be a better idea to start off with another technique

and then switch to the Newton-Raphson algorithm as the estimates

start to converge.

Since both the steepest descent and Newton-Raphson methods

require the calculation of the gradient vector, the derivation of

general expressions for the gradient is provided below.

By definition

L(YN, 0) = -2 E v T (i)M -1 (i)v(i) + Ln IM(i) I ,

i=1

aL
a o 1-30

1
'

8 L
iTa eq

(4. 63)

(4. 64)
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Before proceeding with the derivation of the gradient equations,

a few remarks are in order.

or

Remark 1:

The covariance of the innovations process is symmetrical

E[ v(i)v TM] = E[v(i)vT(i)]T ,

M(i) = MT(i),

which is the property of the covariance function.

Remark 2:

-1LnIM(i) I= tr (M 3 M(i)).aek

To determine the gradient

a T -1 a a T -1L = E [ v (i)M (i) v(i) + v (i)m (i)v(i)
2

k

T -1 3 -1
v (i) M (i)Te; M(i)M(i)v(i)

a+ tr (M -1(i).76- M(i))] .

(4. 65)

(4. 66)

(4. 67)

(4. 68)



Since M(i) is symmetric

°

a
a e0 v (i)MT1(i)v(i) = v T (i)M -1(i) a

v(i) ,

k k
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(4.69)

a 1 T -1 3 T -1 a -1
L = E [2 v (i)1\4 (i)aev(i) - v M(i)M- 1(i)v(i)(i)v(i)

i=1
u

a+ tr (M-1(i)a6 M(i))]
k

But,by definition

hence,

(4. 70)

v(i) = y(i) - H(i)x(i i-1) (4. 71)

a

o
a

v(i) [
a

a H(i)x(i I i-1) + H(i)x(i 11-1).1,
k k

a ek

and with

M(i) = H(i)P(i l i-1)HT(i) + R(i) ,

a . a . T a P(i . T .mo.) -TT EiNpo.11-1)14 (1) + H(1)-6e (1)

T a
+

, H (i) .

(4.72)

(4.73)

Since the gradient of (4. 72 -3) also depends on x(ili-1)
3

3

k
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and 3 P(i I i-1), these partials are derived from the filter equations
ek

(4.52-8). Define

m
F(t) = A(t) + E B.(t)u.(t) , (4. 74)

J J

then

a a
e

s c ( t I i- l) F(t)x(t I i-1) + F(t)a x(t I i-1)
Ok ak aek

a
+ C(t)u(t) ,a ek

and

(4. 75)

a a aP(t I i-1) = F(t)P(t I i-1) + F(t) P(t I i-1) +e P(t ii-1)FT(t)
k

aek O
k

a
k

+
a F T(t) + a

GQG ,

x(i I i) = 1) +--- K(i)v(i ) + K(i) v(i)
a ek a ek a ek a ek

a aP(i Ii) I i-1) - K(i)H(i)P(i li-1)
a e

k
a e

k
a ek

(4.76)

(4. 77)

- P(i I i-1)HT(i)M-1(i) M(i)M-1(i). (4. 79)

Equations (4. 68 -79) now provide the necessary expressions for

the recursive computation of the gradient vector. In the Newton-

Raphson method it is also required to compute the second partials
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of the likelihood functional. Since the computations can be very

time consuming, the second order terms are neglected (M4).

a
N

a T -1 a . T. -1 . a -1. a
L =

i
E

= 1

(om v(i) - v (om ( . )a
1\4@m (i) 7-e-- vv.)

a dx
u ,e

T -1 -1- v (i)m (i)
a v(i)ae k

a
- tr (M 1 M(i)M-1(i) a M(i)) .

(4.80)

Equation (4.80) in conjunction with (4. 65 -79) provides an

estimate of the Hessian matrix. If the Hessian is negative definite

the estimates of the parameters can be improved by using

3
2 L 1 a

-1

e(i+1) = e(i)-
a ea eT I

e=e(i)
3e e=e(i)

) (4.81)

The parameter identification algorithm discussed in this

chapter must be tested under simulation conditions to provide

computational evidence of its feasibility.
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V. SIMULATION OF STOCHASTIC BILINEAR SYSTEMS

5. 1 Introduction

In this chapter the problem of simulating solutions to stochastic

bilinear differential equations is discussed and the effectiveness of

the proposed filter of Chapter III and the parameter estimation

algorithm of Chapter IV are illustrated at the hand of a few computa-

tional examples.

It is intuitively obvious that the value of any approximate method

should only be judged by its performance in computations and the

degree of difficulty involved in its implementation. It is, therefore,

essential to examine the performance of the sub-optimal state esti-

mator of Chapter III as well as the maximum likelihood parameter

estimator of Chapter IV (based on the filter) under simulation condi-

tions.

Any of the proposed algorithms require input-output information

for a stochastic bilinear system. Such data can be either collected

from a physical process known to exhibit bilinear properties or

simulated by a stochastic bilinear differential equation. Since no such

physical system data was available to us the simulation route had to

be followed. Solutions to Ito stochastic bilinear differential equations

can be generated using standard numerical techniques available for
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ordinary differential equations, but as mentioned in Chapter II, Ito

equations do not follow the rules of ordinary calculus and certain

adjustments or corrections are necessary to any numerical method

before it can be applied to stochastic cases (R2). There is, however,

a great deal of uncertainty about the convergence of such techniques

and even in cases where cover gence is assured there is no guarantee

that the limiting solution is that of the original stochastic differential

equation (B3). To avoid erroneous results we restricted ourselves

to cases where a closed form solution to the Ito bilinear differential

equation is available. This in no way implies that the proposed state

estimation and parameter identification techniques applicability are

limited to such cases. This precaution simply ensures the data

generated is indeed that of a stochastic bilinear system.

5. 2 Closed Form Solution

A closed form solution to a stochastic bilinear differential

equation of the form

m
dx(t) = ((A(t) + E B(t)u.(t))x(t) + C(t)u(t)) dt

i=1 1 1

(5. 1)
m
E D.(t)x(t)dwi(t) + E(t)dw(t) ,

i=1

is available only in certain cases as outlined on the following pages.
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5.2.1 Scalar Cases

Only results of direct relevance to previous discussions are

summarized here and for a comprehensive study of scalar stochastic

bilinear differential equations the reader is referred to (A2), (D3), (G2).

The following theorem provides the conditions for the existence

and uniqueness of solutions to scalar differential equations.

where

Theorem 5. 1:

Consider

dx(t) = f(x, t)dt + g(x, t)dw(t) , (5. 2)

x(to) = x(0) 0 , t > t
0

> 0
'

tN tN

I f(x, t) I dt < co f I g(n, t) I dt < co

to to

and x(0) is independent of all increments w(t) - w(t
0

) , there then

exists a unique solution x(t) continuous with probability 1, if the

functions f(x, t) and g(x, t) satisfy jointly:

1) the uniform Lipschitz condition in x,

If(x, t) - f(y, t) I + I g(x, t) - g(y, t) I < C1 Ix-y I , (5.3)



2) Fillipov's growth condition (F1)

I f(x, 012 + I g(x, 012 < C
2

(11-1x12) .
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(5.4)

For a proof see (G2).

It is simple to prove that for bounded parameters and inputs

a scalar bilinear stochastic differential equation does meet the condi-

tions of Theorem 5.1 and a unique solution is assured.

Theorem 5. 2:

Consider the homogeneous bilinear Ito differential equation

dx(t) = b(t)x(t)dt + e(t)x(t)dw(t) (5. 5)

x(to) = x(0) 0 , t _> to > 0 ,

if the conditions of Theorem (5. 1) hold, 5. 5) has a closed form

solution described by

x(t) = x(0) EXP[f (b(s) - e2(s))ds +f e(s)dw(s)] . (5.6)

0 0

A proof can be constructed using the transformation

y(t) = Ln(x(t)) and using Ito's differential rule (G2).

Equation (5. 6) provides a closed form solution to a homogeneous

stochastic bilinear differential equation and reveals that such a system

is strictly positive (negative) for all time if x(0) is positive (negative).
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This property has been used in the modelling of economic systems

(F3). It should be noted that the integrals involved in (5, 6) are no

longer of the Ito type and they can be evaluated using standard

numerical integration techniques. Equation (5. 6) also provides a

means for the determination of a discrete equation equivalent to (5. 5).

By definition

thus,

t. t.
1 1

x(t.i+1) = x(0) EXP [f (b(s) - 1 e
2(s))ds +f e(s)dw(s)]

to to
(5. 7)

ti+1 t.ti +l
1 2

X EXP [ f (b(s) -
2

e (s)) ds +f e(s)dw(s)] ,

t. t.
1 1

ti.+1 t
1+1

x(ti.+1) = x(ti)EXP [f (b(s) - 1
e

2(s)ds + e(s)dw(s)] .

t. t. (5.8)

Equation (5. 8) does not represent a discrete bilinear equation,

but it provides an important relationship that can be used in the

recursive generation of a closed form solution to (5. 5).

Theorem 5. 3:

Consider the inhomogeneous stochastic bilinear system des-

cribed by
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dx(t) = (a(t) + b(t)x(t)) dt + (c(t) + e(t)x(t)) dw (t), (5.9)

x(t
0
)=x(0)0, t>t

0
>0 ,

assuming conditions of Theorem 5. 1 hold, (5.9) has a closed form

solution given by

t t

x(t) = EXP { (b(s) - -1-2 e2(s)) ds + e(s)dw(s)}f
tt

0

1
o

X [x(0) EXP

0 0

(b(u) - 1 e
2(u)) du -

2
e(u)dw(u)

X [a(s) - c(s) e(s)] ds (5. 10)

+ f EXP{ - (b(u) - 2 e 2(u))du1

0
to

For a proof see (G2).

e(u)dw(u) } e(s)dw(s)] .

Derivation of an equivalent discrete model for (5. 10) is still

possible but due to unnecessary complex notation it will not be pre-

sented here.

5. 2. 2 Vector Cases

The closed form solutions for the vector cases are rarely
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available. However, under certain parametric conditions such

solutions can be obtained.

Theorem 5. 4:

If any finite collection of real square normal matrices

A0, A1, , Am commute pairwise, then there exists a

bounded 'oundednonsingular matrix P such that P -1 A.P s are diagonal for

all i = 0, . . . , m.

For a proof see (G1).

Consider the homogeneous bilinear system

m m
dx(t) = (KW + E B(t)u, (t)) x(t)dt + E Ei(t)x(t)dwi(t) ,

i =1 i= 1

x (to) = x(o) 4 o , t > to > 0

(5. 11)

if the matricies A, B . and C. commute pairwise, then according

to Theorem 5. 4, they can be diagonalized simultaneously. Define

-1
A P=P1AP, 13.=P B.P, C.= -1C.P,

y(t) = Px(t) , (5. 12)

thus

dy(t) = (A(t) + E B(t)u.
1

(t)) x(t)dt + E C(t)x(t)dwi(t) .
1=1 1=1

(5. 13)
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Since (5. 13) involves n decoupled scalar stochastic differential

equations it can be solved using (5. 6) and the inverse transformation

x(t) = P -1 y(t) , (5. 14)

will provide the solution for the vector x(t).

Lemma 5. 1:

A Lie algebra of real matricies °Cis solvable iff there exists

a nonsingular matrix P such that P-1A.P is upper triangular for all

AiE oe.

For proof see (S2).

Consequently, if A, Bils, and Ci's in (5. 11) do generate a

solvable Lie algebra, they can be upper triangularized simultaneously.

Using this property a closed form solution for the two dimensional

solvable cases with a single input can be obtained (F3).

For example, consider the two dimensional system

dx(t) = A(t) x(t)dt + T3(t)x(t)dw(t) , (5. 15)

where TA-(t) and i3(t) generate a solvable Lie algebra and can be upper

triangularized according to Lemma 5.1. Define

y(t) = P(t) x(t) ,

A(t) = P 1(t)A(t)P(t) , B(t) = P 1(t)B(t)P(t) ,
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where
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dy(t) = A(t)x(t)dt + B(t)x(t)dw(t) , (5. 16)

A(t)

all a
12

0 a22

B(t) =

b
11

b
12

b
22

A solution for y
2
(t) can be easily obtained using the scalar

homogeneous results of (5. 6). Now define the quotient process

y
1
(t)

z(t) - y
2
(t)

(5. 17)

Since the initial conditions were nonzero, there is danger of

degeneracy. Using Ito's differential rule a scalar inhomogeneous

stochastic equation in terms of z(t) can be derived and then solved

using (5. 10). Consequently,

y
1
(t) = z(t)y

2
(t) ,

x(t) = P-1 (t)y(t) ,

and the closed form solution for x(t) is obtained.

5.3 Importance of Data Generation

As mentioned earlier all the data tested had to be generated on a



109

digital computer. It was, however, of absolute importance to make

certain the noise sequences generated by the computer indeed met

the assumptions made about them. Let us return to the homogeneous

scalar case

dx(t) = b(t)x(t)dt + e(t)x(t)dw(t) (5. 18)

x(t0) = x(0) 4 0. , t > t
0

> 0. .

Taking expectation of (5. 18),

d
dt x (t) = b(t)x(t) ,

or equivalently,

x(t) = x(0) EXP [

0

(5. 19)

b(s)ds] (5. 20)

Recall the closed form solution to (5. 18)

x(t) = x(0) EXP[ f (b(s) - 1 e2(s))ds +/ e(s)dw(s)] , (5. 21)

taking expectation of (5. 21)

;cm = x(0) EXP

to

(b(s) -1 e
2 (s))ds1 E[EXP[f e(s)dw(s)] j,

to (5. 22)
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where

E[ EXP[ e(s)dw(s)1] = E[ 1 + e(s)dw(s) + 12- ( e(s)dw( s))
2

+.

t0 t0 t0 (5. 23)

Since w(s) is a zero mean Wiener process all odd terms vanish and

E[EXP[ I e( s )dw( s)] = EXP[ e2(s)ds] . (5. 24)

It is now clear as to why the correction term must be included

in the closed form solution. It should be noted that (5. 24) is only

true if the process w(s) has a zero mean. In generating the noise

sequences on a digital computer, care must be taken to ensure

the zero mean property assumed about it. If the mean is not

corrected the expected value of the closed form solution will be dif-

ferent from that of the original equation and serious problems in the

parameter estimation algorithms occur.

5. 4 Simulation Results

In this section we present a few of the many tests that were

performed to determine the effectiveness of the proposed state and

parameter estimation algorithms. Figure 5.1 provides a flow



Initialize x and 0

Bring in new observations

Yes

Use filter to
evaluate x, P, L( )
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Stop

Change 0 according to
maximization procedure

Use filter to evaluate
P, L( )

Yes No

Figure 5. 1. Flow chart of state and parameter
estimation procedure.
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chart of the steps involved in the identification procedure.

Example 1:

Consider the scalar homogeneous bilinear model

dx(t) = au(t) x(t)dt + bx(t) dw(t), (5. 25)

x(0) = 10.,

with the observation model

y(k) = x(k) + v(k) . (5. 26)

The data was generated for a = -2., b = 1. , Q = 0.09. ,

R = 1.0, Dt = 0.01, and u(t) = 3. Figure 5.2 provides the plots

of the exact solution as well as the estimates of the state using the

sub-optimal filter of Chapter III. It is easy to see that even in the

presence of quite a large observation noise the filter tracks the actual

state very closely.

Example 2:

Consider the system of example two

dx(t) = a u(t)x(t)dt + bx(t)dw(t) , (5. 27)

y(k) = x(k) + v(k) . (5. 28)
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Figure 5.2. State estimates for a scalar homogeneous
bilinear system.
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The data was generated for the following parameters

a= -2.0, b= 1.0, R =0.16, Q= 1.0,

Dt = 0.01, x(0) = 10. , u(t) = 3.

First,the noise generated was not corrected for a zero mean

and Figure 5.3 shows the estimates for a and b as being incorrect.

The data was then generated for the same parameters but the noise

was corrected and Figure 5.3 reveals that the estimates of a and b

improved considerably. The same problem was simulated for a

time varying input u(t) = Set and the parameter estimates did not

differ much from the constant input case.

The identification algorithm recursively provides the estimates

of the state. Figure 5.4 presents the result of such a filter after

the parameters were estimated for 100 observations. The para-

meter estimates of Figure 5.3 are very close to the true value and

the state estimates of Figure 5.4 follow the exact solution quite

accurately.

Example 3:

Consider the inhomogeneous scalar bilinear system

dx(t) = (au(t)x(t) + cu(t)) dt + (bx(t) + e) dw(t) , (5. 29)
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b
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R
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Figure 5.3. Parameter estimates for a scalar bilinear system.
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Figure 5.4. State estimate for a scalar homogeneous
bilinear system.
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with the observation model

y(k) = hx(k) + v(k) . (5. 30)

The data was generated for the following parameters

a = - 3 , b = 1 , c = 2, e = 0.6

R = O. 36, Q = 1, DT = 0.01, x(0) = 10,

u(t) = 3e-1. 5t

The results of the parameter identification procedure are

presented in Table 5.1 and the parameter estimates after 100 obser-

vations were used to generate the state estimates of Figure 5.5.

The state estimates are quite satisfactory and the error of

around 10% in the parameter estimates can be attributed to the use

of a sub-optimal filter as well as a small number of observations.

It is, however, important to realize that the effectiveness of any

parameter estimation algorithm should be judged on how well the

identified model can approximate the states of the original process.

As shown in Figure 5. 5 the state estimates closely follow the actual

values thus making the 10% error in the parameters tolerable.

Example 4:

Consider the two dimensional Abelian bilinear system described

by
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dx(t) = Ax(t)u(t) dt + Bx(t)dw(t) , (5. 31)

with the observation model

y(k) = hx(k) + v(k) , (5. 32)

where

-1. 6. 0.8 -1.2

A = B =

-0. 5 -5. 0.1 1.1

u(t) = 3et,

h= [0.25 0.5], Dt = 0.01, R = 0.16, Q= 1.

The matricies in (5.31) can be diagonalized using P-1AP and

P-1BP where

1. 2.

0. 5 3.

The diagonalized version is used to generate the data and the

identified parameters are provided in Table 5. 2. Again, using the

parameter estimates after 100 observations, the state estimates of

Figure 5. 6 for x
1

and Figure 5. 7 for x2 are provided. Most

parameters are within a 10% error range which, from the large
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number of sample runs made, seems to be the best one could do

especially when there are a large number of parameters to be

identified. The state estimates are very close to the exact solution

which confirms that the identification method used is providing a

rather accurate model for the original process.



Table 5. 1. Parameter estimates for a scalar inhomogeneous
bilinear system,

Observations

10

20

-6. 1

-3. 5

0. 1

0.4

9. 9

10.0

0. 7

1. 3

1. 0

1.0

0, 66

0.5

30 -5. 2 1.1 10.0 O. 6 1. 0 O. 3

40 - 4. 5 1.0 3.6 0.5 1.0 0.48

50 -4.5 1.0 4.9 1.2 1.0 0.5

60 -4.4 1. 1 4.7 0.6 1.0 0,44

70 -3. 7 1. 0 2. 2 0. 8 1. 0 O. 44

80 -3.8 1.1 2.4 1.2 1.0 0.38

90 -3, 8 1. 1 2. 4 0. 9 1. 0 O. 38

100 -3. 6 1. 0 2. 2 0. 8 1.0 0.38

Initial
Guess -0. 5 2. 0 1. 4 1. 0 0. 6 0. 56

True
Value -3.0 1.0 2.0 0.6 1.0 0.36

120
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Figure 5. 5 State estimates for an inhomogeneous scalar
bilinear system.



Table 5. 2. Parameter estimates for a second order bilinear system.

Observations all alt a21 a22 i)
11 b12 b21 b22

40 -2.0 3.0 -0.25 -4.2 0.5 -1.5 0.125 1.65

50 -1.85 3.9 -0.325 -4.45 0.5 -1.8 0.15 1.7

60 -1.125 5.7 -0.475 -5.05 0.5 -1.8 0.15 1.7

70 -0.85 6.9 -0.575 -5.05 0.7 -1.2 0.1 1.5

80 -0.85 6.9 -0.575 -5.04 0.7 -1.2 0.1 1.5

90 -0.85 6.6 -0.575 -5.04 0.7 -1.2 0.1 1.5

100 -1.0 6.6 -0.55 -5.04 0.7 -1.2 0.1 1.5

Initial
Guess -5.0 0.0 0.0 -6.0 3.0 0.0 0.0 3.0

True
Value -1.0 6.0 -0.5 -5.0 0.8 -1.2 0.1 1.1
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Figure 5.7. State estimates for a second order bilinear
system.
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VI. CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

In this thesis a systematic study of the state and parameter

estimation problems for a general class of bilinear systems in the

presence of additive as well as multiplicative state noise was

presented. A computationally feasible solution to both problems

was proposed and tested at the hand of a few examples.

6.1 Summary of Results

The state estimation problem for stochastic bilinear systems

was first addressed and an optimal filter for a continuous state and

observation model was derived. Even though the filter is infinite

dimensional, an implementable filter could be obtained exploiting

the appealing structural property that a given moment equation is

coupled only to the next higher order moment as well as the lower

order moments (for a linear observation model). Since no solution

to the optimal filter is available, a sub-optimal procedure was

proposed using a moment truncation argument. A second sub-optimal

filter based on the use of the conditional best estimate of the state

rather than the state itself in the multiplicative noise term was

developed for the continuous case. The results were extended to the
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continuous-discrete case. The underlying assumptions in using such

an approximation were carefully analyzed.

The proposed continuous-discrete filter was employed in the

derivation of a maximum likelihood parameter estimation algorithm.

A complete set of equations for the evaluation of the likelihood

functional as well as its gradient were provided.

A discussion of the importance of closed form solutions in the

simulation of the filter and identification algorithms was presented.

Closed form solutions for both scalar and certain vector cases were

supplied. The importance of ensuring a zero mean in the generation

of the noise sequence was emphasized.

Finally, a few examples were provided in which the perform-

ances of the proposed algorithms were examined for homogeneous

scalar, inhomogeneous scalar, and homogeneous vector cases. The

state estimator performed admirably and the parameter estimates

were satisfactory.

6. 2 Suggestions for Future Research

The following topics present themselves as logical extensions

of our research:

1) testing the performance of the continuous sub-optimal

filters of Chapter III and including the third order moment.
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2) since the density function p(x, t) for the homogeneous case

is known to have log normal properties (skewed), it is

worthwhile to examine the state estimation using the mode

(maximum likelihood estimate) as the best estimate of the

state rather than the mean.

3) developing an on-line identification algorithm where the

observations do not have to be stored for future iterations.

4) derivation of closed form solutions to a larger class of

bilinear stochastic differential equations and testing the

performance of the algorithms for such cases.
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