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ESSAYS IN EFFICIENCY AND PRODUCTIVITY ANALYSIS
OF ECONOMIC SYSTEMS

GENERAL INTRODUCTION

In this dissertation I am synthesizing some of ideas and results developed during

my last three years of research. I will do it in three main chapters, or three types of

essays, which in total integrate nine essays, dedicated to separate but related

research questions in the theory of Productivity and Efficiency Analysis (PEA) and

its applications to Industrial Organization. Let me concisely introduce you to the

subject, each of the chapters and each of the essays.

PEA is a modern and fast growing area in Measurement Economics.

Extensive research in this area has been around for about half of a century.

Numerous measures of efficiency and productivity have been offered by

researchers since then: The Farrell measure, the Russell measure, the additive, the

hyperbolic measures, and the measures based on the directional distance function

are among the most popular examples. It sounds logical to ask: How are all these

measure related? Are they ever equal? Do they differ significantly? What if two

researchers use the same data set to answer the same research question but choose

different efficiency measureswill their results be equivalent? Consistent? In

general or under some conditions?

Not surprisingly, these questions have been explored before (e.g., Fare,

Grosskopf and Lovell (1994), Fare and Grosskopf (2000)), but some open

questions remained. One of such questions sets up the first part of the dissertation;

it is devoted to establishing new relationships between some existing measures of

efficiency and productivity.

This first chapter opens up with Essay 1 that contains a paper co-authored

with Rolf Fare and Shawna Grosskopf. There, we establish precise relationships
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between the Farrell and the Russell technical efficiency measures1 as well as

between the directional distance function and the additive measure of technical

efficiency. This work gives a theoretical benchmark for comparison of various

measures, by discovering the necessary and sufficient conditions on the technology

that ensure the equivalence of the mentioned efficiency measures.

In Essay 2, I find a new relationship between the directional distance

function and Shephard's distance functions (reciprocals of the Farrell technical

efficiency measures). In particular, I find that constant returns to scale (CRS)

technology is a necessary and sufficient condition for this relationship. Applying

this discovery to measurement of productivity growth in economic systems (where

CRS is a common assumption), I introduce a new Total Factor Productivity (TFP)

index and show that it is a generalization of other existing TFP indexes, such as

Malmquist, Fisher and Tornqvist Productivity Indexes.

Essay 3 sheds some light into another area of PEA, scale efficiency

measurement. There, I follow the results of Fare and Grosskopf (1985) on duality

between the input-scale efficiency and cost-scale efficiency measures to derive the

necessary and sufficient condition on technology that ensures their findingthe

equivalence of the two types of measures. Such technology turns out to exhibit a

special case of the input homotheticitya property that I dub as the Input Scale

Homotheticity.

The second chapter of essays concentrates on a different subject in PEA

aggregation issues. Except for some studies (Li and Ng (1995), Russell and

Blackorby (1999), and Ylvinger (2000)), these issues were rarely explored in the

literature from a theoretical perspective. The questions there, however, are of

fundamental importance. For example, conclusions from comparison of efficiencies

of various groups (i.e., aggregation over firms) may crucially depend on the form of

aggregation in use. Also, the use of aggregate data (i.e., aggregation over inputs or

'The Russell measure was introduced in Fare and Lovell (1978). See also Russell (1985, 1990).
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outputs) may introduce a bias into the estimation of efficiency scores. Both of these

matters are discussed in this chapter.

The chapter starts with Essay 4, a paper co-authored with Roif Fare and

Shawna Grosskopf, where we determine a relationship between the aggregate and

individual efficiencies. Using the Koopmans (1957) theorem about the relationship

between the aggregate and individual profit functions, we determine the

relationship between the aggregate and individual efficiencies based on the

directional distance functions.

From a similar perspective, the aggregation problem in PEA is addressed in

Essay 5. Here, co-authored with Roif Fare, we find a way to determine the

relationship between the aggregate and individual Farrell-type efficiencies. Here,

we use a particular type of technology aggregation: when the aggregate production

possibility set is equal to the sum of individual production possibility sets. Such

aggregation enables us to show that the revenue function defined on the aggregate

technology is the sum of revenue functions defined on the individual technologies.

This is an analog to the Koopmans (1957) theorem used in the previous essay,

which becomes a keystone for determining the relationship between the aggregate

and individual revenue, technical and allocative efficiencies.

In Essay 6, the paper coauthored with Roif Fare, we use a similar technique

as in Essay 4 to show that the appropriate way of averaging Farrell-type efficiency

scores (consistent with their mathematical nature) is to use the weighted geometric

mean. Combining this with results from Essay 5, we are able to derive a system of

weights that can be price independent and that have economic theory background

and an intuitive interpretation.

So far, the focus was on the aggregation over decision-making units (firms,

countries, etc). Another course of aggregation is over goods (inputs or outputs)

this is the subject of Essay 7. There, co-authored with Rolf Fare, we address the

issue of bias in efficiency measurement due to input aggregation raised by Tauer

(2001). Specifically, we find that the sub-vector Farrell-type efficiency measure



will yield unbiased efficiency scores f and only tf there is no allocative inefficiency

in the subvector of inputs being aggregated.

All the above-mentioned papers were theoretical in nature, but motivated by

practical issues. In the third chapter of the dissertation, I make use of one of the

theoretical results to address an empirical question that challenges many industrial

organization economists: "What were, in practice, the primal causes of

concentration in a given industry?" In particular, I adopt and slightly modify the

techniques developed above (in the Essay 5) to measure the existence and the size

of economies of scale in the U.S. brewing industry. This industry experienced a

rapid and consistent rise in concentration for several decades, attracting attention of

government and antitrust officials who, in turn, were seeking an explanation from

economists.

Economists engaged in this issue have divided into two camps in their

explanations: (i) those supporting the view that concentration came out primarily as

a result of the existing economies of scale2, and (ii) those defending the demand

side cause as the primal reason for growing concentration3. Employing the PEA

methodology and data used by Tremblay and Tremblay (1985), I find evidence that

contradicts the argument of the former camp. That is, I find that although some

firms were experiencing some economies of scale, they were not the firms that

were causing the rise in concentration. In the conclusion of this empirical study, I

attempt to connect the pieces of evidence from these as well as other researchers'

results to construct a broader picture of the evolution of this industry. The resulting

picture is consistent with various explanations offered by economists defending the

demand side causes of concentration.

2 See for example, Horowitz and Horowitz (1965, 1967), Greer (1971, 1981) and Tremblay and
Tremblay (1985, 1987).

See for example Elzinga (1973, 1977), Scherer etal. (1975) Keiththahn (1978) and Lynk (1984).



5

THEORETICAL ESSAYS ON RELATIONSHIP OF VARIOUS
PRODUCTIVITY AND EFFICIENCY MEASURES

INTRODUCTION

An Overview

For a long time, economists had an interest in how to evaluate the

performance of an economic system (e.g., country, region, industry, firm, public

sector). Only recently, has such an interest culminated in a new and fast growing

area of economic thoughtefficiency and productivity analysis (EPA). Despite the

youth of its theoretical foundation, one can find numerous applications in almost

every branch of economics: macro-, micro- and environmental economics,

industrial organization, international trade, transportation economics and public

policy, to mention a just few.

On the theoretical side, researchers developed various measures for

evaluating efficiency and productivity, each fitting particular empirical issues and

data restrictions. An important question arises: How are the various measures

related to each other? This, first part of the dissertation aims to contribute to

answering this question.

Before introducing each paper in this section, let me give a brief historical

remark on the evolution of thought in the area of efficiency and productivity

analysis.

EPA: A Historical Retrospect

While the need for efficiency and productivity analysis existed throughout

the history of economic thought, most developments were made relatively recently.

Origins of the fundamental ideas on the concept of efficiency and/or its



measurement are found in seminal works of KonUs and Byushgens (1926), and

Koopmans (1951), Debreu (1952), Shephard (1953), Malmquist (1953), Farrell

(1957) to mention just a few.

One of the earliest formal concepts of production efficiency is found in

Koopmans (1951) who defines it as such production possibilities for which it is not

feasible to increase any of the outputs without simultaneously increasing any of the

inputs.

Perhaps the most substantial contributions to the origin of the subject are

due to Farrell (1957). In particular, he suggested and justified a way to measure the

technical, price (or a/locative) and overall efficiencies of a unit in economic system

(industry, country, etc.) relative to other similar units of the same system. The

technical efficiency measure he suggested was later named after him, and is also

often referred to as the Debreu-Farrell measure, for its conceptual relationship with

the seminal Debreu (1952) work.

Nevertheless, only since 1978 has this area received broad attention. Two

studiesby Fare and Lovell (1978) and by Charnes, Cooper and Rhodes (1978)

seem to be responsible for attracting such attention. Both studies emphasized the

relationship of the Farrell (1957) ideas to Shephard's (1953, 1970) approach to

production theory based on dualitythe connection that laid out a solid economic

theory foundation to the theory of EPA. Also, due to Charnes et al. (1978), the

computational approach to efficiency and productivity analysis via mathematical

programming obtained a new nameData Envelopment Analysis or DEA.

An interesting evolution of thought appeared in the discussion around the

measure of technical efficiency suggested by Farrell. This discussion starts with the

aforementioned study of Fare and Lovell (1978) who challenged the Farrell (1957)

approach and suggested an alternativethe Russell measure of technical

efficiency. The idea was to incorporate the Koopmans (1951) notion of technical

efficiency, which the Farrell measure failed to satisfy under some specific

technologies (e.g., Leontief technology).



Both the Russell measure and the critique itself triggered a series of studies

to rescue the Farrell approach and to criticize the new measure of efficiency (Kopp

(1981), Russell (1983, 1985, 1990), Zieschang (1984), Bol (1986)). Many

interesting properties of both efficiency measures were discovered due to these

studies (see Russell (1990)).

One intriguing questionHow are the Russell and the Farrell measures

related?was left open, however. (Exactly this question becomes the core of the

first paper of this section.)

A similar intention to incorporate the Koopmans (1951) notion of technical

efficiency is found in Charnes et al., (1985) when they introduced the additive

measure of technical efficiency. This had opened another questionHow this

additive measure related to other measures of efflciency?this question that is

studied in the first paper of this section.

While the Farrell approach was originally input oriented (i.e., decrease

inputs, for the same level of output) the methodology has been extended to the

output orientation, sub-vector orientation as well to a case of simultaneous

equiproportional input reduction and output expansion (e.g., see Fare et al. (1994)

for details).

Further, a more general perspective to measurement of technical and other

efficiencies came to EPA with the directional distance function (Chambers Ct al.

(1996, 1998)), which was known earlier as the benefit or shortage functions in

consumer welfare measurement (Luenberger, 1992). In particular, the directional

distance function allowed measuring efficiency with any orientation, which could

be specified with a certain directional vector. Again, an important question is how

such measure of efficiency is related to other measures. This question has already

been explored extensively, with a general conclusion that the directional distance

function is a generalization of the Shephard distance functions (e.g., Chambers et

al. (1996) Fare and Grosskopf (2000)). In the first and second papers of this

chapter, a few new relationships are discovered.



Besides the technical, allocative (price) and the overall efficiency measures

suggested by Farrell (1957), the theory has also been enriched with measures

evaluating productivity changes as well as the scale efficiency.

The measurement of productivity change has its own history. Early studies

go back to at least Fisher (1922). For a long time, two approaches have been

dominating there: (i) measurement based on the index numbers, and (ii)

measurement based on the parametric econometric estimation.

The two fields of EPAproductivity analysis and efficiency analysis

have merged perhaps with the seminal paper by Caves, Christensen and Diewert

(1982) who used the Shephard's distance function to define a productivity index,

naming it the Malmquist Productivity Index (MPI).

The earliest empirical implementation of the MPI is found in Fare et al.

(1989). Since then, MPI has received a huge attention from the empirical

researchers. On the other hand, theorists have been offering new productivity

measures, many of which were in the spirit of the MPI. Chung et al., (1997) for

example introduced the Malmquist Luenberger Productivity (input and output

oriented) indexes (MLPI) and Chambers et al., (1996) introduced its additive

analoguethe Luenberger Productivity index (LPI).

Again, a captivating question is: How are the various measures of

productivity change related? This question was extensively explored in Caves et al.

(1982), Diewert (1992) and Fare et al., (1997), to mention a few. The key result

was that the MPI is a generalization of such popular total factor productivity

indexes as Fischer, Tornquist and Hicks-Moorsteen productivity indexes.

A new relationship between productivity measures is discovered in the

second paper of this section. In particular, I show that the combination of the output

and input oriented MLPIs yields a measure that is a generalization of the MPI.

The history of the scale efficiency measurement goes back to at least

Førsund and Hjalmarsson (1974, 1979) who defined the scale efficiency measure as

the ratio of the Farrell technical efficiency measures estimated with respect to



constant and variable returns to scale assumptions. An alternative to this, perhaps

the most popular measure of scale efficiency, was introduced by Banker et al.

(1984) and recently elaborated by Sueyoshi (1999).

A dual approach to measuring the Førsund et al. type of scale efficiency was

introduced by Fare and Grosskops (1985). They also showed the necessary and

sufficient condition for equivalence of the dual and primal measures. This

condition opened another intriguing questionWhat type of technology is capable

of satisfying it?this question is explored in the third essay of this section, by

referring to the concept of homotheticity.

Finally, the following remark on the historical perspective of the EPA might

be appropriate at this stage: The two seminal studiesFare and Lovell (1978) and

Chames et al. (1978)virtually started two competitive schools of thought in

efficiency and productivity analysis. The former school tends to develop and

emphasize the economic theory foundation and economic interpretation of

theoretical and empirical discoveries in EPAand thus can be called as the school

of economists in EPA. The latter school tends to concentrate on the computational

issues and engineering interpretation of ideas and findingsand thus can be called

as the operational researchers' school in EPA. The present work follows a tradition

of the economists approach.

The rest of this introduction gives a foreword to each paper of the section.

Essay 1: Finding Common Ground: Efficiency Indices

Perhaps one of the most interesting questions about relationships between

various efficiency measures that remained open till now was: What is the

relationship between the Farrell and the Russell measures? Or, more specifically,

what type of technologies, if any, can ensure equivalence of these measures?

This question is answered in this first essay of the sectiona paper

coauthored with Roif Fare and Shawna Grosskopf. Formally, we find that these two
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(multiplicative) measures are equivalent if and only if technology is input

homothetic and of the Cob-Douglas form with symmetric weights. Then, a

'parallel' result is found on the side of the additive efficiency measures.

Specifically, we find that the directional distance function and the additive measure

of technical efficiency (Chames et al., 1985) would yield equivalent efficiency

scores if and only if technology is translation input homothetic and linear with

symmetric weights.

Another question that has not been explored was about the economic

interpretation of the Russell and the additive measures of technical efficiency

which we do by showing the cost interpretation via the duality theory in economics.

In general, this essay gives a theoretical benchmark for comparison of

various measures of technical efficiency, by discovering the conditions that ensure

their equivalence.

Essay 2: Directional and Shephard's Distance Functions: New Link and its
Implication to Productivity Measurement

In this paper, I find a new relationship between the directional distance

function and the Shephard's distance functions (reciprocals of the Farrell technical

efficiency measures). This discovery then helps me to find relationship of the

Malmquist-Luenberger Productivity Indexes (MLPI) to the Malmquist Productivity

Index (MPI), and thus to other Total Factor Productivity Indexes. In particular, I

find that under constant returns to scale and for a wide range of directions, the ratio

of the output oriented to input oriented MLPIs yields the output oriented Malmquist

Productivity Index, thus showing that the latter is a special case of the former.

In general, this essay gives a new link and a new productivity measure that

is more general than the MPIthe index that has been the most general so far.
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Essay 3: Scale Efficiency: Equivalence of Primal and Dual Measures

In this essay, I investigate conditions for equivalence of the primal and dual

measures of scale efficiency. Specifically, I follow the study of Fare and Grosskopf

(1985) on duality between the input-scale efficiency and cost-scale efficiency

measures. I find that the necessary and sufficient condition on technology that

ensures the equivalence of the dual and primal scale efficiency measures is that

technology must exhibit a special case of the input homotheticitya property of

technology that I dub as the input scale homotheticity.

Overall, this essay offers a precise fonnal interpretation of technological

properties that would ensure the equivalence between the scale efficiency measure

based on primal information (inputs and outputs) and the scale efficiency measure

based on the dual information (cost and outputs or revenue and inputs).

Altogether, this section makes a contribution to understanding more about

various measures of efficiency and productivity, and the author hope it also will be

fun to read.
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ESSAY 1: FINDING COMMON GROUND: EFFICIENCY INDICES

Valentin Zelenyuk'

This paper is coauthored with Rolf Fare and Shawna Grosskopf. (Valentin Zelenyuk is a primary
author.) We would like to thank W. W. Cooper, R. R. Russell and R. M. Thrall for their comments.
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Introduction

The last two decades have witnessed a revival in interest in the

measurement of productive efficiency pioneered by Farrell (1957) and Debreu

(1957). 1978 was a watershed year in this revival with the christening of DEA by

Charnes, Cooper and Rhodes (1978) and the critique of Farrell technical efficiency

in terms of axiomatic production and index number theory in Fare and Lovell

(1978). These papers have inspired many others to apply these methods and to add

to the debate on how best to define technical efficiency.

In this paper we try to pull together some of the variants that have arisen

over these decades and show when they are equivalent. The specific cases we take

up include: 1) the original Debreu-Farrell measure versus the Russell measurethe

latter introduced by Fare and Lovell, and 2) the directional distance function and

the additive measure. The former was introduced by Luenberger (1992) and the

latter by Charnes, Cooper, Golany and Seiford (1985). We also provide a

discussion of the associated cost interpretations.

Basic Production Theory Details

In this section we introduce the basic production theory that we employ in

this paper. We will be focusing on the input based efficiency measures here, but the

analysis could readily be extended to the output oriented case as well.

To begin, technology may be represented by its input requirement sets

x can produce y}, ye9, (1)
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where y e = E : Ym O,m = 1,...,M }denotes outputs and

x E denotes inputs. We assume that the input requirement sets satisfy the

standard axioms, including: L(0) = and L(y) is a closed convex set with both

inputs2 and outputs3 freely disposable (for details see Fare and Primont (1995)).

The subsets of L(y) relative toward which we measure efficiency are the

isoquants

IsoqL(y) = {x : x E L(y),Ax L(y),2 > l},y E (2)

and the efficient subsets

EffL(y) = : XE L(y),x' x,x x = x' L(y)},y E (3)

Clearly, EJJL(y) ç Iso qL(y) and as one can easily see with a Leontief technology,

i.e., L(y) = {(x1,x2) : min{x1,X2} y}, the efficient subset may be a proper subset

of the isoquant.

Next we introduce two function representations of L(y), namely the

Shephard input distance function and the directional input distance function, and

discuss some of their properties.

Shephard's (1953) input distance function is defined in terms of the input

requirement sets L(y) as

D,(y,x) = sup{A. : x/A. E L(y)}.

2 Inputs are freely disposable if X X E L(y) = X'E L(y).
Outputs are freely disposable if y' y L(y') c L(y).

(4)
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Among its important properties4 we note the following

i) D1 (y, x) 1 if and only if x E L(y), Representation

ii) D, (y, Ax) = AD (y, x), A. >0, Homogeneity

iii) D, (y, x) =1 if and only if x E Iso qL(y), Indication

Our first property shows that the distance function is a complete

representation of the technology. Property ii) shows that the distance function is

homogeneous of degree one in inputs, i.e., the variables which are scaled in (4).

The indication condition shows that the distance function identifies the isoquants.

Turning to the directional input distance function introduced by Luenberger

(1992), we define it as

D,(y,x;g) =sup{fl :(xJ3g)EL(y)}, (5)

where g E R' is the directional vector in which inefficiency is measured. Here

we choose = 1N
E R . This function D1 (y, x;1N) has properties that parallel

those of D(y, x), and are listed below. For technical reasons the indication property

is split into two parts. We note that we require inputs to be strictly positive in part

a) of the indication property. The proofs of these properties are found in the

appendix.

i) D, (y, x;1N) 0 if and only if x E L(y), Representation

ii) D1(y,x+a1';1IV) = D,(y,x;1N)+a, a >0, Translation

4For additional properties and proofs, see Fare and Primont (1995).

51n consumer theory he calls this the benefit function and in producer theory he uses the term
shortage function.
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iiia) f D1(y,x;1N) = 0 and x > 0, n = 1,...N, then x E IsoqL(y), Indication

iiib) x E Iso qL(y) implies D, (y, x;1N) = 0, Indication

Since we will be relating technical efficiency to costs, we also need to

define the cost function, which for input prices w E is

C(y, w) = min{wx : x e L(y) }. (6)

The following dual relationships apply

and

C(y,x) 1/D1(y,x) (7)
wx

C(y,x) wx b(y,x;l1"). (8)

Expression (7) which is the Mahler inequality, states that the ratio of

minimum cost to observed cost is less than or equal to the reciprocal of the input

distance function. Expression (8) states that the difference between minimum and

observed cost, normalized by input prices, is no larger than the negative of the

directional input distance function.

These two inequalities may be transformed to strict equalities by introducing

allocative inefficiency as a residual.

The Debreu-Farrell and Russell Equivalence

Our goal in this section is to find conditions on the technology

L(y),y E
91, such that the Debreu-Farrell (Debreu (1957), Farrell (1957))

measure of technical efficiency coincides with the Russell (Fare and Lovell (1978))
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measure. To establish these conditions we redefine the original Russell measure

and introduce a multiplicative version. We do this by using the geometric mean as

the objective function in its definition rather than an arithmetic mean. Thus our

multiplicative Russell measure is defined as

RM(y,x) = min{(fl2)h/N (%1xI,...,NxN) E L(y),O <A 1, n = l,...N} (9)

The objective function here is (fl"'1 2, )l / N in contrast to / N

from the original specification in Fare and Lovell (1978). For technical reasons we

assume here that inputs x = (Xi, . . ., x,) are strictly positive, i.e., x,> 0, n = 1, . . . ,N.

More specifically in this section we assume that for y 0, y 0, L(y) is a subset of

the interior ofR' 6

Note that the Russell measure in (9) has the indication property

RM(y,x)=1fandonlyfxEEffL(y) (10)

Recall that the Debreu-Farrell measure of technical efficiency is the reciprocal of

Shephard's input distance function, i.e.,

DF(y,x) = 1/D1(y,x) (11)

thus it is homogeneous of degree -1 in x and it has the same indication property as

D(y, x).

6 See Russell (1990) for a related assumption



Now assume that the technology is input homothetic7, i.e.,

D1(y,x) = D1(1,x)/H(y) (12)

and that the input aggregation function D(1 , x) is a geometric mean, so that the

distance function equals

N 1/ND(y,x)=(]Jx) /H(y). (13)
n=1

From (4) and the Representation property it is clear that the distance

function takes the form above if and only if the input requirement sets are of the

following form

L(y)=H(y).J:(fl)11,1= x (14)
I J H(y)

The Russell characterization theorem can now be stated; the proof maybe found

in the appendix.

Theorem 1: Assume that L(y) is interior to 9 fory O,y 0.

N 1/NRM (y, x) = DF(y, x) for all x E L(y) if and only if D (y, x) = ( fl x) / H(y).
n=1

Thus for these two efficiency measures to be equivalent, technology must

satisfy a fairly specific form of homotheticity - technology is of a restricted Cobb-

Douglas form in which the inputs have equal weights. This makes intuitive sense,

For details see Fare and Primont (1995).



19

since technology must be symmetric, but clearly not of the Leontief type. That is,

technology must be such that the Iso qL(y) =EffL(y). Of course, it is exactly the

Leontief type technology which motivated Fare and Lovell to introduce a measure

that would use the efficient subset EffL(y) rather than the isoquant Iso qL(y) as the

reference for establishing technical efficiency.

The Directional Distance Function and the Additive Measure

We now turn to some of the more recently derived versions of technical

efficiency; specifically we derive conditions on the technology L(y), y E 9 that

are necessary and sufficient for the directional distance function to coincide with a

"stylized' additive measure of technical efficiency.

The original additive measure introduced by Charnes, Cooper, Golany and

Seiford (1985)(hereafter CCGS) simultaneously expanded outputs and contracted

inputs. Here we focus on a version that contracts inputs only, but in the additive

form of the original measure. Although the original measure was defined relative to

a variable returns to scale technology, (see p. 97, CCGS), here we leave the returns

to scale issue open and impose only those conditions itemized in Section 2.

Finally, we normalize their measure by the number of inputs, N.

We are now ready to define the stylized additive model as

IN 1
A(y,x) = max IN: (x1 sl,...,xN EN) E L(y), (15)

n=1 J

where s, O,n=l,...,N.



This measure reduces each input x so that the total reduction
=i s, / N

is maximized. Intuitively, one can think of this problem as roughly equivalent to

minimizing costs when all input prices are equal to one. We will discuss this link in

the next section.

The additive measure and the modified Russell measure look quite similar,

although the former uses an arithmetic mean as the objective and the modified

Russell measure uses a geometric mean. The additive structure of A(y, x) suggests

that the directional distance function - which also has an additive structure - may be

related to it.8 To make that link we begin by characterizing the technology for

which these two measures would be equivalent. We begin by assuming that

technology is translation input homothetic,9 i.e., in terms of the directional distance

function we may write

D(y,x;l'T) = D(O,x;l1")F(y). (16)

Moreover, we assume that the aggregator function D1 (0, x;1
N) is arithmetic

mean so that the directional distance function may be written as

iN
D(y,x;F")= Xn F(y).N1 (17)

Note that from the properties of the directional distance function, it follows

that it takes the form required above if and only if the underlying input requirement

sets are of the form

Larry Seiford noted the similarity at a North American Efficiency and Productivity Workshop.

For details see Chambers and Fare (1998). Chambers and Fare assumed that F(y) depends on the
directional vector 1N Here we take it as fixed and omit it.



21

11N 1O+F(y), (18)
N, j

where = (x1 F(y),. . , Xj,j F(y)).

We are now ready to state our additive representation theorem (see appendix for

proof),

Theorem 2:

D1(y,x;1N) = A(y,x) for all x e C(L(y)) = { : = x+ 81N,x E L(y),8 o}

iNfand only if D(y,x;1'') = F(y).
N=i

Here we see that to obtain equivalence between the additive measure and

the directional distance function, technology must be linear in inputs, i.e., the

isoquants are straight lines with slope -1

Cost Interpretations

The Debreu-Farrell measure has a dual interpretation, namely the cost

deflated cost function. Here we show that the multiplicative Russell measure and

the additive measure also have dual cost interpretations.'0

10
It is straightforward to show that the original (additive) Russell measure also has a cost

interpretation, despite the claim by Kopp (1981, p. 450) that the Russell measure '...cannot be given
a meaningful cost interpretation which is factor price invariant.' In this section, we provide such a
cost interpretation.



22

Recall that we define the cost function

C(y,w) = min{wx : XE (19)

where w E are input prices. From the definition it follows that

C(y, w) wx, Vx E L(y). (20)

Now since DF(y,x) x E L(y) it is also true that

and

C(y,w) w(DF(y,x)x) = wx(DF(y,x)) (21)

C(y,w)/wx DF(y,x) (22)

Expression (22) is the Mahler inequality expressed in terms of the cost

efficiency measure (C(y, w)/wX) and the Debreu-Farrell measure of technical

efficiency, DF(y, x). This inequality may be closed by introducing a multiplicative

measure of allocative efficiency, AE(y, x, w), so that we have

C(y, w)/wX = DF(y, x)AE(y, X, w). (23)

To introduce a cost interpretation of the multiplicative Russell measure we

note that

(,%*1XA*NX)EL(y) (24)
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where X (n = 1, . . .,N) are the optimizers in expression (9). From the assumption

that the input requirement sets are subsets of the interior of R , it follows that X*,,

>0, n = 1 .....N. By (20) and (24) we have

C(y,w) (flwlxlfNwNxN) (25)

and by multiplication

or

N 1/NI * * I

C(y,w)Iwx 1 1IA,* I i% iw1x1 A NWNXN I

Ln=i ) IN \1/N J

(26)
iN *1

I I I wx I
i

wx I
[.n=i ) Ln=i } I

* * 1
2iw1x1 2NWXJtj IC(y, w) / wx RM (y, x{

I / N + + 1 / N I
(27)

(N '\ (N *"IIflA WX I[T''nI WXI
n=1 I n=1 I ]

Expression (27) differs from the Mahier inequality (22) in that it contains a

second term on the right hand side. This term may be called the Debreu-Farrell

deviation, in that if X,, =. . . = w, the deviation equals one. That is, if the scaling

factors X are equal for each n, then (27) coincides with (22). Again, the inequality

(27) can be closed by introducing a multiplicative residual, which captures

allocative inefficiency.
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Turning to the additive measure, we note that

(x1 s1,...,XN s,)eL(y) (28)

where s , n = 1,..., N are the optimizers in problem (15). Thus from cost

minimization we have

C(y,w) wxws'', (29)

where s
*

= (4',. . . , s,r ).From (29) we can derive two dual interpretations: a ratio

and a difference version.

The ratio interpretation is

*
wsC(y, w) / wx 1 ,
wx

(30)

which bears some similarity to the Farrell cost efficiency model in (22). Now if w =

(1,. . .,1), then it follows that the additive model is related to costs as

N

c(y,lN) <1 n=1 =1 A(y,x)
(31)

N N N

n=1 n=1 n=1

In this case we see that Debreu-Farrell cost efficiency (the left-hand side) is

not larger than one minus a normalized additive measure.
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The second cost interpretation is

C(y,w)wx ws, (32)

and when w = (1,. . .,1) we obtain

C(y,lN)_ >x
n=1 A(y,x) (33)

N

If we compare this result to (8), we see again, the close relationship between

the additive measure and the directional distance function.
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Appendix

Proof of (2.5):

i) See Chambers, Chung and Fare (1998, p. 354) for a similar proof.

ii)

D(y,x+al'';l")=sup{fl:(x_fi1''+ar")EL(y)}

= sup{,o : (x(f3+a)1") E L(y)}

=+a+supft:(x_p1" eL(y)p =13-a)

= D1(y,x;1")+a.



27

iiia) We give a contrapositive proof. Let x e L(y) with x, >0,n = 1,. . ., N and

x Iso qL(y) . Then Di(y, x)> 1, and by strong disposability, there is an open

neighborhood Ne (x) of x (e = min{xi D1 (y, x)x1,. . . , xN D1 (y, x)xN }) such that

N(x) E L(y). Thus Dj(y,x;lN) > 0 proving iiia).

iiib) Again we give a contrapositive proof. Let n1 (y, x;1 N) > 0 then

E L(y) and since the directional vector is 1N
= (1,...,l), each

x,,n = 1,...,Ncan be reduced while still in L(y). Thus D(y, x) > 1 and by the

Indication property for D(y, x), x Iso qL(y) . This completes the proof.

Remark on the proof of iiia): The following figure shows that when the directional

vector has all coordinates positive, for example then x, > 0, n = 1,. . ., N is

required. In the Figure 1, input vector a has Xj = 0, and D1 (y, x;1N) =0 , but a is

not on the isoquant.

X2

Figure 1. Remark on the proof of iiia).

xl



This problem may be avoided by choosing the directional vector to have ones only

for positive x 'S.

Proof of Theorem 1:

Assume first that the technology is as in (13), then

RM (y, x) = minfl1 2
/ N

: (x1 ,.. ., IX) E L(y), 0< 2 1, n = 1,. .,N

= min{(flN I : D(21x1,...,INxN) 1,0< I 1, n =n=1 ni

= min{N 2 :
(N 2xY/N /H(y) 1, 0< 2 l, n =n=1 '/

= min{(flh 2 (- 2 H(y)/(fl1 y/Ni0 <2 1, n 1,.n=1 '/ ''-n=1 'H

\1/N
=H(y)/(fl1 x) =1/D(y,x).

Since DF(y, x) =1 /Di(y, x) we have shown that ( 3) implies RM, x) =DF(x, y).

To prove the converse we first show that

RM(y,51x1oNxN)=RM(y,x)/(fl" S Y",o< 1,n=1,...,N. (34)\LLn=1 'H
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To see this,

= min{
(flNIN

:(1O1x1,...,ANONxN)

O<,% 1,O<8 1,n=1,...,N }

N -1/N
(fln=i ) min{ (n%

1/N
(I%lSlxl,...,2NSNxN)EL(y),n nj

O<, 1,O<8 1,n=1,...,N }

-.\1IN
S _l/Nmin{ (n1%4 :(2151x1,...,,.%NSNxN)EL(y),'-n=1 flJ

O<2 1,O<8 1,n=1,...,N }

= RM (y, x)(fl1 )_1 / N

where ) = = 1,...,N. Thus (34) holds.

Next, assume that the Debreu-Farrell and the multiplicative Russell

measures are equal, then

thus

and

RM(y,Slxl,...,8NxN)=RM(y,x)/(fl1Sfl =DF(y,Slxl,...,SNxN)

RM(y,x)=DF(y,8lxl,...,8NxN)l5,j"

DF(y, x) = DF(y, 81x1,. . . , SNXN )(FI o,
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Now we take8 = l/x,,n = l,...,N then

DF(y, x) = DF(y,1,. . . ,1)(fl1 )1 I N

Moreover, since the Debreu-Farrell measure is independent of units of

measurement (Russell (1987), p. 215),h1 x, can be scaled so that

x, >0,n=l,...,N. Thus bytakingH(y)=DF(y,1,...,1), and using (11) we have

proved our claim.

Proof of Theorem 2:

First consider

Ii N
= max Sn : (x1 -81 si,... N SN) e

uN= max (s +S) : (x1 (si +s1),...N (8N + EN))

iN
+A(y,x),Ni

where 0, 8, 0, n = 1,. . ., N.

H This was pointed out to us by R.R. Russell.
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This is equivalent to

iN
A(y, x) = + A(y, x1 8' xN 8N)Nr,1

Take 5 = x,, and define -F(y) A(y,O), then since equality between the directional

distance function and the additive measure holds,

1N
D(y,x;l")=A(y,x)=_ F(y).N1

Next, let x E C(L(y)), then for some x E Iso qL(y), and 8 0,

Dj(y,x;1N) = D(y,-i-8l";l") = D.(y;1N)+8

Since E IsoqL(y), D(y,x;l") = S

Next,

11N NA(y,x)max Sn: (xs)/NF(y)O
(Nzr1 n=1

uN N=max1s: (n+Sn)'1J'(Y)O
n=1

11N N 1=max s, :8+ fl/NF(y)sN
n=1 N

since E IsoqL(y), thus D1(y,x;l') = A(y,x).
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ESSAY 2: DIRECTIONAL AND SHEPIIARD'S DISTANCE FUNCTIONS:
NEW LINK AND ITS IMPLICATION TO MEASURING PRODUCTIVITY
CHANGES

Valentin Zelenyuk'

Abstract

In this study we reveal a new relationship between the directional distance function

and Shephard's (1970) distance functions. We then apply this result to show a

relationship between a productivity index defined in terms of the directional

distance function and other popular productivity indexes.

Keywords: Malmquist and Total Factor Productivity indexes, distance functions,

DEA.
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Introduction

Characterization of multioutput technology in production economics is often done

via Shephard's (1970) input or output distance functions, or their duals, the cost and

revenue functions (Fare and Primont, 1995). Recently, a more general

characterization was discoveredthe directional distance function2a dual to the

profit function, and a generalization of Shephard's distance functions (Chambers et

al., 1998).

In this study we unveil a new relationship between the directional and

Shephard's distance functions that exist under the constant returns to scale

technology (section 1). As an application (section 2), we then use this result to

show a relationship between a productivity index defined in terms of the directional

distance function and some popular productivity indexes.

Technology Characterizations

Let XE 9? N and y E 9?M be the vectors of inputs and outputs, respectively, and

define the technology set by: T {(x,y) : x can produce y}. We assume that T is a

closed set with 'freely disposable' inputs and outputs. In addition, we assume that

the 'no free lunch' and 'doing nothing is feasible' axioms3 hold.

To characterize T define the Shephard's output and input distance functions,

respectively, as

2 For an extensive exploration of the directional distance function see Chambers et al. (1996, 1998),
Briec (1999), Fare and Grosskopf (2000). It is also an analog of the shortage function introduced by
Luenberger (1992).

Technically, the free (or strong) disposability of inputs and outputs says: (x,y) E T and (x'-y2
(x,-y) => (x',y9 E T. The "doing nothing is feasible" axiom simply says: (0, 0) E T, while the "no free
lunch" axiom insures that: for any (x,y) E T if x= 0 then y = 0 (for details, see Chambers et al.
(1998) or Fare and Primont (1995)).
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D0(x,y) = inf {y: (x, y/ ) E T} and D1(y,x) = sup (A: (x/A, y) E T}. (1.1)

To obtain our main result, we make use of the following properties (Fare and

Primont, 1995):

(y,x) E T D0(x,y) 1 D(y,x) 1 (complete characterizations of?) (1.2)

D0(x,ky)= kD0(x,y) and D1(y,kx)= kD1(y,x), V k> 0 (homogeneity) (1.3)

CRS D0(kx,y) (1/k)D0(x,y), and D(ky,x)= (1/k)D1(y,x), V k> 0. (CRS) (1.4)

CRS D0(x,y) = 1 /D,(y,x) (reciprocal relationship under CRS) (1.5)

where, CRS means 'technology exhibits constant returns to scale', defined as: AT

T,V2>0.

Next, define the directional distance function

Dd(x,y;-g,g) = sup(O . (x-Og,y+Og) ET}, (1.6)

where (gx,gy) is some nonzero vector in !1?TT+xW+ that specifies the direction in

which the distance between observation (x,y) and the boundary of the technology

set T is measured. It was shown (Chambers et al., 1998) that Dd() is a complete

characterization of T. In particular,

(y,x) E T Dd('x,y;-g,g) 0, (gx,gy) 0, (g,g) 0. (1.7)

Moreover, D1(.) and D0() are special cases of DdQ. Specifically (see Chambers

et al., 1998), if the directional vector (-gx,gy) is (-x,0) or (O,y), then (1.6) reduces,

respectively, to:

Dd(x,y;-x, 0) 1-1/D1('y,x) or Dd('x,y; O,y) = 1/D0('x,y)l. (1.8)
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Note, that this relationship requires either the input or output direction to be

zero. Our goal is to find a similar straightforward relationship when both directions

are accounted for (i.e., nonzero). In the following theorem we find one such

relationship that exists under CRS. In contrast to (1.8), the relationship holds for

any direction (-gx,gy) that is positioned anywhere between (and including) the

directions in (1.8), i.e., a direction described by the linear combination (- czc,fly) =

a(-x,O) + f3(O,y), a, fi e W+. We formalize and prove this claim below.

Theorem.4 Let (-g, gy) = (-ar, fly) 0, afl EuIl'+, then T exhibits CRS

fand only if

Dd(x,y;-g,g) = (D1(y,x)-1) / (aD1(y,x)+/3,),

and

Dd(x,y;-g,g) = (1-D0('x,y)) /(flD0(x,y)+a).

Proof

""part:
suppose T exhibits CRS, then: Dd('x,y;-ar,fly) sup{O . (x-O(a) ,y+O(fly) e T}

(1.9)

= sup{O (x(1-aO,), y(1+/iO,)) E T} = sup{O . D'(y(1+/30), x(1-aO,)) 1] (by (1.2))

= sup{O . D.(y,x)(1-aO) (1+/30)} (using (1.3), and assuming CRS using (1.4))

= sup (0 : (D,(y,x)-1)/('aD(y, x)+fl) 0} = (D1(y,x)-1)/(aD1('y,x)+fl).

A special case of this theorem (when (zfl) = (1,1)) was independently discovered by Boussemart
et al (2001).



By the same logic, it follows that:

Dd(x,y;- a,/3y) sup [0 . (x -0(ctx), y+O(/3y) E T} = sup {0 . (x(1-aO), y(1 +,80)) E T}

= sup [0 . D0(x(1-aO), y(1+/30)) 1} sup{0 . D0(x,y)(1+J30) (1-aD)}

= sup{0 . 0 (1-D0(x,y)) /(/3D0(x,y)+a)} = (1-D0(x,y)) /(flD0(x,y)+a).

"<=" part: assume (1.9) is true, then after simple manipulations (1.9) is rewritten as:

D(y,x) = (1 +/3Dd(x,y; -ctx,13y))/(l-aDd(x,y; -ax,fiy)),

and (1.10)

D0(x,y) = (l-aDd(x,y; -ctx,/iy))/(l +/3Dd(x,y; -a,J3y))

D1(y,x)1/D0(x,y)

By (1.5), the last statement is true if and only if Texhibits CRS.

Q.E.D.5

In words, this theorem tells us that under the CRS one can use Shephard's

distance functions to solve explicitly for the directional distance function (and visa

versa) with any direction between (x, 0) and (0,y) determined by appropriate

selection of positive scalars a and /3. Since the assumption of CRS is often used in

many economic studies, we expect this theorem to find many applications in

analyses involving multi-output technologies--where Shephard's distance functions

are currently used. In the next section we illustrate one such application.
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An Implication: Measuring the Productivity Growth

Our goal here is to apply the theorem to the measurement of productivity changes

(growth or a decline) of an economic system (a country, region, industry, firm,

etc.). In particular we aim to show a relationship between a productivity index

defined in terms of the directional distance function on one side and some popular

productivity indexes on the other side. To show this relationship we use the

theorem proven above. Recalling that our theorem requires only the assumption of

CRS (in addition to standard regularity conditions), we note that this assumption is

a natural one in the theory of economic growth. It is also often used in empirical

productivity growth measurement if one takes the so-called 'economic approach'

(Diewert, 1992b, p. 243).

In general, the idea of measuring changes in the productivity of, say, a firm is

based on comparing its performance in one period relative to another. If this firm

produces one output using one input then a simple but intuitive measure of

productivity changes would be:

SFP = (y''/y') / (x'/x9, (2.1)

where the superscripts t, t+1 indicate the time periods in which x and y were

observed. Here, we call this measure the Single Factor Productivity (SFP) index

(e.g., labor productivity index). Intuitively, this index can be interpreted as the ratio

of 'single output index' to the 'single input index', or as the ratio of the 'average

products' in the two periods.

Although most technologies involve more than one output (input), the measure

in (2.1) is useful as a benchmark for construction and comparison of more general

productivity indexes that account for all the factors (inputs) and multiple outputs

(Diewert, 1 992a, 1 992b)the measures often called the Total Factor Productivity

Also note that if (zfl) = (0,1) or (zfl) = (1,0), then (1.8) follows immediately from the theorem.
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(TFP) indexes. The Fisher and Tornqvist productivity indexes are may be the most

popular examples of such generalization. Another generalization of the SFP is the

Maim quist Productivity Index (MPJ), a measure of productivity changes based on

Shephard's distance functions. For output and input orientations it is defined,

respectively, as6

1/2
t+1 (+1

, ,+i [(x' , y'')(D'(x , yMPI0=MPI0(xt,y,x )[ D(xt,y') J
D1(xt,yo)J] (2.2)

and

1/2
(+1 (+1

1 + 1+1
[(D:(yt1,xt+1)VD:+1(y ,x ) 11MPI =MPI(x,y,x ''
[I D;(yt,x') JI D'(y',x') ,J]

(2.3)

where D0(x',y') = inf {O . (x', y'/O) E T 3) and DiS(ji,xl) = sup (A: (x'/A, y') E T ]
are the distance functions (1.1) extended to the intertemporal framework so that

they relate observations (x,y) in period ito the technology in period s (1, s = t, t+1).

Using (1.5), it follows that under CRS it is always true that MPI0=1/MPI,. More

importantly, both are generalizations of SFP defined in (2.1) and of such TFP

indexes as the Fisher and Tornqvist productivity indexes (Fare, Grosskopf and

Roos, 1997, p. 140).

Alternatively, using the directional distance function characterization and

adopting the idea of Chung et al. (1997) we define the output and input based

Malmquist-Luenberger Productivity Indexes (with the directional vector (-g, gy) =

(-ox,/3y) O, z /3 e W+) as:

6 The origin of the idea of MPI is found in Caves, Christensen and Diewert (1982). Its computable
form via the linear programming dates back to Fare et at. (1989).

For details, see Berg, et al., (1992), and Fare and Grosskopf (1996).
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' 1/2(1+D1(xt,yf;_ax(,pyo)) 1
MLPI0

=[(1+pD(x' ,y ;axt ,j' ))(1+D'(x ,y
;_t

,Py )j
+1 (+1t+1 (+1+1 1+1+1 1+1

(2.4)

and

\ 1/2(1 _a(x',y';_ax',y')) (i a.D,'(x',yt;cxx',y')) 1

MLPI =[(i (x ;_ yt+1))( '(x ;_t+1,yt+1))j1+1 1+11+1 (+1 1+1

(2.5)

respectively. Here, Dds(xl,yl;gx,gy) = sup{ 0 . (x' - 0g,y' + 0g) E T S

} is the

directional distance function (1.6) extended to the intertemporal framework so that

it relates the observations (x,y) in period 1 to the technology in period s (1, s = t,

t+1). The corresponding extension of our theorem is trivial and therefore omitted.

(Also, note that if (-gx,gy) is (O,y) or (-x,O), then due to (1.8) the (2.4) or (2.5) is

reduced to (2.2) or (2.3), respectively.)

In the spirit of such TFP indexes as Fisher and Tornqvist, defined as ratios of

an 'output quantity index' to an 'input quantity index' (Diewert, 1992a, 1992b), we

use (2.4) and (2.5) to define a new measure: The Total Maim quist-Luenberger

Productivity Index

TMLPI MLPIO /MLPI1, (2.6)

Clearly, after collecting terms of MLPI1 /MLPIO, and applying the result (1.10)

of the theorem above, it follows that under CRS

TMLPI = MPIO Vx E W E wM (2.7)

Thus, TMLPI is the generalization of the MPIO. Recalling that MPIO is a

generalization of SFP and of such TFP indexes as the Fisher and Tomqvist



productivity indexes (Fare et al., 1997, p. 140), the result in (2. 7) also tells us that

so is the TMLPI.8

An important question now is whether TMLPI gives us anything new and

valuable that cannot be inferred from either MPIO or MPI1. It seems that it does. In

particular, TMLPI accounts for information about the weight of the output

orientation relative to the input orientation, described by the directional vector (-w,

fly). Our theorem showed that this weight does not matter under CRS, yielding (2.7)

and equivalence with the TFP for a single-output-single-input case. What if the

technology does not exhibit CRS, as it is assumed in some studies? Or, what if the

productivity index is decomposed into parts that are based on non-CRS

assumption?9 Then the measurement based only on the input orientation (i.e., using

MPIL) may give quite different conclusions from those obtained using only the

output orientation (i.e., using MPI0,). If the subject of study suggests that both

orientations are important, and if their relative importance can be characterized by

the direction of measurement (-ax, fly), then TMLPImight be a better choice.
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ESSAY 3: SCALE EFFICIENCY: EOUIVALENCE OF PRIMAL AND
DUAL MEASUREMENTS

Valentin Zelenyuk1

Abstract

43

In a recent paper, Sueyoshi (1999) examines relations between the primal and dual

measures of scale efficiency. As one of the approaches, he discusses the result of

Fare and Grosskopf (1985) who provided conditions for the equivalence of such

measures. Both papers opened a new question: What type of technology, if any, is

consistent with such a condition? I address this question here and answer it by

resorting to the concept of homotheticity.

Keywords: Scale Efficiency Measurement, Homotheticity, Duality.
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Introduction

Data limitation in empirical studies is more of a rule rather than an exception.

In production studies, for example, data on all inputs used in production are often

hard or even impossible to find. Due to duality theory in economics (e.g.,

Shephard, 1970), vital economic information on production technology (a relation

between inputs and outputs) can be retrieved from the cost-output data

information that is more often available to researchers than the input-output data.

In the context of production efficiency analysis, a methodology to extract some

technology information using the cost rather than input data was first discussed by

Fare and Grosskopf (1985). In their work, the authors provided conditions for

equivalence of the primal (based on input-output data) and dual (based on cost-

output data) scale efficiency measures. This condition requires that the input

allocative efficiency estimated under the constant returns to scale (CRS)

assumption is equal to that estimated under the variable returns to scale (VRS)

assumption. This same condition is also found in Sueyoshi (1999) and, informally,

in Seitz (1970). The goal of this paper is to determine what type of technology, if

any, is consistent with such a condition.

Theoretical Framework

Both Fare and Grosskopf (1985) and Sueyoshi (1999) deal with technologies

approximated with a convex disposal hull2. Here, to obtain general results, I follow

Shephard (1970) and Fare and Primont (1995) characterization of technology using

the input correspondence L: 91 -* 2 that assigns to each output vector E

the subset of all input vectors XE 9t+ that can produce this particular output level

y, i.e.,

2 Specifically, they use the activity analysis models or the data envelopment analysis method (DEA).
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L(y) = {x x can producey}, E . (1)

To characterize L, I use an implicit function F,: 1)t' x !hw+ W u {+x},

defined as

F1(y,x) = inf {2. Ax EL(y)}, (2)

and known as the Farrell (1957) input oriented measure of technical efficiency.

This function is a reciprocal of the Shephard's (1970) input distance function and,

given standard regularity conditions on L, completely characterizes L due to3,

L(y) = {x: Fi(y,x) 1}, E 9+. (3)

The measure in (2) is often used to construct the input oriented scale efficiency

measure4

S,(y,x) =F1(y,xIC)/F1(y,xV), (4)

where, here and later, notation "JC" ("I V") is used to indicate that the function

(correspondence) is estimated with the constant (variable) returns to scale

assumption5.

For the definition of the Shephard's distance function, regularity conditions and the proof of this
and other properties, see Fare and Primont, 1995.

' The origin of this measure goes back to at least Førsund and Hjalmarsson (1979). For alternative
ways of measuring scale issues in DEA, see, for example, Banker et al. (1984), Førsund (1997) and
Sueyoshi (1999).

For the ways the constant and variable returns to scale assumptions are defined and modeled in the
efficiency analysis framework, see Fare, Grosskopf and Lovell (1994). See also Sueyoshi (1999) for
a recent treatment.



46

The approach presented above is based on the input-output data, (x,y), and is

called the primal approach. To outline the dual approach, which is based on cost-

output data, let w be a vector of strictly positive input prices and define the cost

function as

C(y, w) = mini {wx : x E L(y)}, E : L(y)ø, w e 9t+. (5)

Given convexity of L(y), the dual analogue of (3) is (see Fare and Primont,

1995)

L(y)={x C(y,w)/wx 1, Vw>O}, (6)

i.e., given convexity the technology L can be completely characterized by the cost

function.

The cost efficiency measure, a dual analogue of (2), is defined as

CE(y, w,x) C(y, w) / wx. (7)

And the cost-scale efficiency (Fare and Grosskopf, 1985) is defined as

S(y,w,x) = CE(y,xIC)/CE1(y,xIV). (8)

Given convexity of L, the relationship between the two approaches is obtained

through the duality between F,(y,x) and C(y,w), which can be stated via the Mahler

inequality

C(y, w) / wx F1(y,x). (9)
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This inequality can be 'closed' by defining the allocative efficiency measure as the

'residual',

C(y,w) /wx F1(y,x) AE(y,x,w). (10)

The two measures of scale efficiency, S1(y,x) and S(y,w), are functions of

different variables and, in general, may yield different efficiency scores. There is,

however, a special case when they are equal. Specifically, from (4), (7), (8) and (9)

it follows that

S1(y,x) = S(y,w,x) fand only f AE(y,x,wIC) = AE(y,x,wI V). (11)

This is exactly the result reached by Fare and Grosskopf (1985) and Sueyoshi

(1999). An early reference for an intuitive explanation of this case is also found in

Seitz (1970).

An imperative question now is: What type of technology can ensure the

equivalence of these measures? That is, when is it true that AE(y,x,wC) =

AE(y,x,w V). An answer to this question is given in the next section.

Input Scale Homotheticity and Scale Efficiency Measurement

Consider a technology L(y) that satisfies the condition that will be referred to here

as input scale homotheticity (ISH) and defined as

L(yV)G(y)L(yIC), yE!1/+, (12)

where G(y) is some function G RM -. R+ consistent with standard regularity

conditions on L(y). Intuitively, this is a case when a characterization of a VRS

technology can be decomposed into two parts: (z) a CRS technology



characterization and (ii) some real valued function reflecting the scale of the

production activity.

Also note that ISH is related to the concept of input homotheticity6 (see Fare

and Mitchell, 1993, and Fare and Primont, 1995). In particular, recall that the input

homotheticily is defined as

L(y) = H(y)L(JN), y E (13)

for some function H: RM+ -' R+ consistent with standard regularity conditions on

L(y). Now, note that for a single-output and multi-input case, ISH implies that

L(yV)G(y)yL(1C), yEW'+. (14)

Rearranging and applying (ISH) to r.h.s. of (14) and then letting H(y) = G(y) y/

G(1,), yields

L(yV)H(y)L(1IV), yEW', (15)

implying that foryE W', the ISH technology is also input homothetic.

To see what implications such peculiar technology has towards the relationship

between primal and dual scale efficiency measures, note how this technology is

interpreted in terms of the cost function and the Farrell measure of technical

efficiency (see appendix for proofs)

ISH C(y,wIV)=G(y)C(y,wIC), yEW+,L(y)ØwE9 (16)

and

ISH F(y,xIV)G(y)F1(y,xIC), yEW"+,xE9f+. (17)

6 thank Roif Fare for this insightful comment.
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Using these results, it immediately follows that

ISH AE(y,x,wIC)=AE(y,x,wV). (18)

In words, the equivalence of input allocative efficiency estimated under the

CRS assumption to that estimated under the VRS assumption can happen if and

only if the technology is input scale homothetic. Combining this with the result

reached by Fare and Grosskopf (1985) and Sueyoshi (1999), and restated in (11),

yields the answer to the research question of this paper:

The equivalence of the dual and primal scale efficiency measures, i.e.,

S1(y,x) = S(y,w,x), can be achieved if and only if technology is input scale

homothetic. Moreover, note that in this case both scale efficiency measures equal

the reciprocal of G(y)the function reflecting the scale of the production activity

of such technology. Altogether,

S1(y,x) = S('y, w,x) = 1 / G(y) ISH. (19)

Concluding Remarks

In this note, I show that the necessary and sufficient condition for the

equivalence of primal and dual scale efficiency measures provided by Fare and

Grosskopf (1985) and Sueyoshi (1999) holds if and only if technology is of a

peculiar typeinput scale homothetic.

This study opens at least three directions for further research: (z) development

of empirical tests for identifying ISH technology, (ii) theoretical investigation of

how restrictive the assumption ofISH technology is, and (iii) identification of other

areas of application of ISH technology.
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Appendix 1: Proofs

Proof of (16)

"= ":

ISH= C(y,wIV) min{wx :x EL(yIV)} min{wx :x EG(y)L(yIC)) (by (ISH))

G(y) min'{wx' : x' EL(yC)} = G(y)C(y,wIC), where x'=x/G(y).

"=":
Now assume: C(y,wI V) = G(y)C(y,wC), then using the duality result (6):

L(yJV) {x: wx C(y,wV), Vw> 0) = {x: wx G(y)C(y,wIC), Vw>0)

G(y){x': wx' C(y,wC), Vw> 0) = G(y) L(yIC), wherex' x/G(y).

Q.E.D.

Proof of (17)

"=": ISH =' F1(y,xJ V) = inft{A, : xA E L(yI V)} = inf2{2 : xA E G(y)L(yIC))

(by (ISH))

= G(y) inf2'{2' xA' EL(yIC)} = G(y)Ft(y,xC), where 2'=AJG(y).



"": Now assume that F,(y,xI V) = G(y)F1(y,xIC), then using (3) yields:

L(yI V) = {x. F1(y,xI V) 1} = {x: G(y)F(y,xIC) 1}

= {x: Ft(y,x/G(y))IC) 1} (since F(y,x) is homogeneous of degree --1 in x)

= G(y) {x '. F1(y,x )IC) J} = G(y)L(yIC) (where x '= x/G(y)).

Q.E.D.
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THEORETICAL ESSAYS ON AGGREGATION ISSUES IN EFFICIENCY
AND PRODUCTIVITY ANALYSIS

INTRODUCTION

An Overview

Chapter 2 of this dissertation outlined various measures of efficiency and

productivity, their relationship and approaches to estimation. The objective of all

the measures so far was to give an efficiency estimate of a firm. While this is

important information to know, often researchers also want to have an idea on

efficiency of a group of firms. For example, researchers may want to know

efficiency of the entire industry or its representative sample, which then may be

compared to its potential, to its efficiency in a different period, to efficiency of the

same industry in another region, or to another industry. In addition, researchers

may be interested in comparing efficiencies of various groups in an industry. For

instance, in the next chapter I attempt to measure the scale efficiency of different

strategic groups in the same industry and the industry itself in order to understand

the relationship between the scale economies and rising industry concentration.

An important question is therefore: How to measure an efficiency of a

group? Many measures were suggestedmost of them are intuitive but

unfortunately ad hoc, in the sense that they were not derived from some type of

economic (optimization) problem or some aggregation consistency criteria. Strictly

speaking, without such economic or mathematical consistency background none of

the suggested measures can be thought of as appropriate. Moreover, if some

researcher's findings contradict the results of other researchers just because of using

a different way of aggregation then there is no rule that can tell whose results are

most accurate and reliable. In other words, a theory of aggregation over firms is

needed to derive measures of group efficiency justified by economic theory or/and

consistency criteria. Essays 4 through 6 make contribution into this theory.
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Another aggregation question often arises when information for empirical

work is available on a level of aggregation that is different from the one used in the

theory. For example, instead of data on inputs in production (e.g., labor, materials)

researchers may have only the corresponding cost data (e.g., labor cost, material

cost)i.e., the linearly aggregated input data with input prices being the weights.

An important question is how such an aggregation impacts the estimation results.

Answers to this question would constitute the theory of aggregation over goods

(inputs, outputs). Essays 7 and 8 attempt to contribute to building such theory for

the Farrell type measures estimated with the Data Envelopment Analysis (DEA).

Figure 2 presents a taxonomy of the contributions of each essay into various

aggregation theories for various efficiency measures.

Aggregation Theories

Aggregation Over Firms

Additive Multiplicative
Measures Measures
Essay 4 Essay 5

Aggregation Over Goods

Multiplicative
Measures
Essay 8

Figure 2. Taxonomy of the Aggregation Theories

Additive
Measures

(Not Explored)

The rest of this chapter is structured as following: I start with a few remarks

on the aggregation issues in economics, then discuss the evolution of these issues in
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the efficiency analysis, and then focus on contributions to these issues from the

essays of this dissertation.

Aggregation Issues in Economics

Aggregation issues play an important role in theoretical and applied

economic analysis. They frequently arise in empirical work where data often exist

on a different level of aggregation than what particular theory requires. The

objective of aggregation theories, in essence, is therefore to establish a theoretical

link explaining at least two main questions: (1) what are the consequences of using

more or less aggregated information than the theory requires, and (2) what are the

conditions under which these consequences may be eliminated or reduced. The

answers to these questions form the basis of aggregation theories. The two common

consequences that the aggregation theorists are looking for are: (i) the bias due to

aggregation (its size, direction, bounds, etc), and (ii) the properties preserved and

lost due to aggregation. Both undesirable and desirable consequences are

incorporated into 'consistency criteria,' which then are used to determine if a

particular aggregation is consistent (with the criteria) or not.

Among seminal examples of such aggregation theories in economics are:

the aggregation of capital (Klein, 1946 and Nataf, 1948), aggregation of consumer

goods (e.g., that rests on the Hicksian and functional separability concepts),

aggregation of consumer demands (Gorman, 1953), aggregation of production

functions, etc. In general, one can distinguish two aggregation problems often

studied in economic analysis: (1) the aggregation over individuals (e.g., firms,

consumers) and (2) the aggregation over goods (e.g., inputs, outputs, commodities).

In the area of Efficiency Analysis, both problems of aggregation have been

raised since the early stages of development of the area. Many fundamental

questions of the aggregation analysis, however, were tackled just recently. The goal

of the next subsection is to give more details of this evolution.
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Aggregation over Firms in Efficiency Analysis

Perhaps, the first to talk about the aggregation over firms was Farrell (1957)

himself, when he introduced the measures of technical and price (allocative)

efficiencies that were later named after him. He was interested in a measure of

efficiency of an industry. In his words,

if economic planning is to concern itself with particular
industries, it is important to know how far a given industry can be
expected to increase its output by simply increasing its efficiency,
without absorbing further resources. (p. 253.)

He particularly was motivated by a desire to create a measure that would

enable economists to compare an efficiency of an industry to the same industry in

another period or another country, or even to another industry. He called this

measure the Structural Efficiency of an Industry and defined it as

the technical efficiency of an industry with respect to a given
efficient isoquant [that] would be simply a weighted average
[weighted by output] of the [Farrell] technical efficiencies with
respect to the same isoquant of its constituent firms. (p. 261.)

There were other measures defined in the spirit of Farrell (1957). For

example, Carlson (1972) defines the "efficiency index for the industry" as the

weighted (by the actual output) arithmetic average of the individual efficiency

indices, where the latter are defined as the ratio of the actual to potential output for

each individual decision making unit (DMU). Clearly, if the potential output is

defined as the actual output multiplied by the Farrell technical efficiency score then

the Farrell (1957) and the Carlson (1972) industry efficiency measures are

equivalent. However, since the weights are the firms' output shares, both measures

are applicable only for a single-output technology.



57

Analogously to Carison (1972), Bjurek, Försund and Hjalmarsson (1990)

introduced a measure of the "saving potential of the whole sector" defined as a

weighted arithmetic average of the input saving measures, which are obtained, for

each DMU, as the ratio of potentially minimal to actually used input. Since the

weights for this measure were defined as the firms' input shares this measure is

applicable only for a single-input technology.

A different perspective on the industry measure is given in Försund and

Hjalmarsson (1974, 1979) who suggested

"... to construct an [arithmetic] average plant for the industry and
regard this average plant as an arbitrary observation on the same line
as the other observations and then compute [technical and scale
efficiency measures] for this average unit." (p. 300)

This latter measure attracted considerable criticism (e.g., see survey in

Ylvinger, 2000) that essentially was around the fact that this 'average unit' type of

industry efficiency measures may yield conclusions that the industry is not efficient

even if all its units are technically efficient. On the other hand, a constructive

approach to this measure is found in Li and Ng (1995), who were able to

decompose (under some conditions) the 'average unit' measure of FOrsund and

Hjalmarsson (1974, 1979) into the technical, allocative and reallocative

efficiencies.

Another approach to measuring the structural efficiency of an industry is

discussed in Ylvinger (2000). His goal was to determine the weights of

aggregation, which he did by choosing the weights to be the shadow prices from

the activity analysis models.

All of the mentioned measures were intuitive but essentially ad hoc: they

were not derived from concepts of economic theory or some mathematical

consistency criteria.

In fact, the controversies around the Försund and Hjalmarsson (1974, 1979)

measure were essentially the challenges from the classical aggregation question: Is



there a relationship between a measure that uses aggregate data (e.g., industry

average inputs and outputs) and the same measure used for each observation of the

disaggregated data. Formally and on a general level, this question was first raised

and answered by Blackorby and Russell (1999). Regrettably, they reached as they

themselves called "discouraging" conclusion. In particular, they found that there

does not exist an efficiency measure (satisfying the input or output homogeneity

property) for which one can establish a relationship between the case when this

measure uses the aggregate-over-firms data on inputs and outputs and when it uses

the disaggregated data. Their results were a bit less discouraging for the case when

only output or input is aggregated (over firms). Specifically, they found that

". . .very strong restrictions on the technology and/or the efficiency
index itself [e.g., homogeneous and linear technology for
aggregating the Debrue/Farrell efficiency measure] are required to
enable consistent aggregation (or disaggregation)." (i. 5).

Three essays of this chapter are dedicated to finding more optimistic

aggregation possibilities than the Blackorby and Russell (1999) results. Unlike the

ad hoc measures, here an emphasis is given to both consistency and economic

theory foundation for the aggregation.

Essay 4: Aggregation of the Nerlovian Profit Indicator

The chapter opens with Essay 4a paper co-authored with Roif Fare and

Shawna Grosskopf, in which we consider the case of aggregation of inputs and

outputs over firms. This is exactly the case where Blackorby and Russell (1999)

reached their non-existence result (for any efficiency measure homogeneous of

degree 1 in inputs or outputs). Our approach is different in two respects: (1) we

consider a different type of efficiency measurethe additive efficiency measure

based on directional distance functions, and (2) we aggregate over the optimal

points only, and then use duality in economics to decompose the aggregate overall
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efficiency measures into the technical efficiency and allocative efficiency

components.

Specifically, we first define the industry technology as the sum of the

individual technologies. Such a structure on the aggregate technology enables us to

use the Koopmans (1957) theorem telling us that the industry maximal profit equals

the sum of the maximal profits of all firms in the industry, which immediately

yields a solution to aggregation of Nerlovian measures of profit efficiency (as

defined in Chambers et al. (1998)).

Then, using the duality between the profit function and the directional

distance function we decompose the aggregate profit efficiency into two

components: (i) the sum of individual technical efficiencies, and (ii) the sum of

individual allocative efficiencies. We then address the standard aggregation

question: When does this sum of technical efficiencies equal the aggregate

technical efficiency (i.e., the one based on the aggregate-over-firms data)? We

show that the condition needed for this equality to hold is analogous to the

Blackorby and Russell (1999) restriction on the technology. We also show that if

this condition does not hold, then the difference between the two aggregate

measures is always one way and bounded: the former is always smaller than the

latter.

Overall, although for an 'exact' aggregation we still need quite restrictive

technology, in essay 4 we were able to find a practical way of computing the

aggregate technical efficiencyas the sum of the individual technical

efficienciesa way that is related to profit efficiency through the aggregate (sum

of individual) allocative efficiencies.

Essay 5: On Aggregate Farrell Efficiencies

In Essay 5a paper co-authored with Rolf Fare, we use a similar approach

to aggregation, except that this time we aggregate the Farrell-type efficiencies.

Specifically, we first define the industry output set as the sum of the individual



output sets. Such a structure on the aggregate technology enables us to derive a

revenue analogue of the Koopmans (1957) theorem (used in the previous essay):

Industry (group) maximal revenue equals the sum of the maximal revenues of all

firms in the industry (group). This fact immediately yields a solution to the

aggregation problem of revenue efficiency measures: The industry (group)

efficiency is the sum of revenue efficiencies of all firms in the industry (group)

weighted by the observed revenue shares of each firm.

Then, using the duality between the revenue function and the distance

function we decompose the aggregate revenue efficiency into two components: (i)

the sum of individual technical efficiencies weighted by actual revenue shares, and

(ii) the sum of individual allocative efficiencies weighted by technically efficient

revenue shares.

We then address the standard aggregation question: What is the relationship

between this weighted sum of technical efficiencies and the technical efficiency

based on the aggregate-over-firms data? In a single output case the answer is

precise: they are equal. Moreover, in this case they both are equal to the Farrell

(1957) "Structural Efficiency of an Industry" and to the industry revenue

efficiency. In a multiple output case, however, since the former depends on prices

while the latter does not, there is, in general, no relationship. Moreover, using a

simple example, we show that either of them can be bigger than the other.

Overall, although there is in general no 'exact' aggregation, we were able to

find a practical way of computing the aggregate technical efficiencyas the sum

of the individual technical efficiencies weighted by the revenue shareswhich is

related to the revenue efficiency through the aggregate (weighted sum of

individual) allocative efficiencies. In addition, we also find a way to go from the

revenue shares weights to the price independent weights.



61

Essay 6: Averaging Farrell Scores

Essay 6a paper co-authored with Roif Fareapproaches aggregation

problem from a purely mathematical standpoint. Specifically, we first postulate a

consistency criterion on the average Farrell technical efficiency measure to

preserve a multiplicative structure that exists on the disaggregate level and

formalize this criterion as a functional equation. The solution to this equation

becomes the weighted geometric average, and the objective of the paper becomes

to find the appropriate weights.

We find two types of weights: (1) the revenue share weights and (2) the

'average output share' weights. The first set of weights is determined by using the

result from essay 5, and then noting that the arithmetic average is the first order

Taylor series approximation of the geometric average (around unitythe threshold

level for efficiency measures). The second set of weightsprice independent

averages of firms' output sharesis derived from the first set by using the duality

reflection as in Comes (1992).

Aggregation over Goods in Efficiency Analysis

So far, the focus was on the aggregation over individuals (firms, countries,

etc). Another course of aggregation is over goods (inputs or outputs). Its

importance is often dictated by the data restrictions in empirical studies, where data

is frequently available in a more aggregated form than theory operates with. A

classical example would be the labor and material costs versus the physical amount

of each type of labor and material used, respectively. If a researcher obtains

efficiency results from using the aggregated data an appropriate question is: Would

the results be different if the disaggregated data were used? How different (larger,

smaller, etc)? How much different? In other words, will there be bias due to

aggregation? What is the direction of the bias? How large would be the bias?
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The problem of aggregation over commodities in efficiency analysis was

tackled at least since Numamaker (1985) and Thrall (1989) who showed how the

aggregation over inputs affects the computation of Farrell technical efficiency

scores. Later, from a theoretical standpoint, Fare and Lovell (1988) derived a

condition of unbiased aggregation over goods. Specifically, they conclude that the

Farrell-type efficiency indices are invariant with respect to input (output)

aggregation if and only if the cost (revenue) function is separable. Lovell, Sarkar

and Sickles (1988) empirically illustrate the validity of this conclusion. The

existence of the aggregation bias in empirical studies was also emphasized in

Thomas and Tauer (1994). An extension to this paper is recently found in Tauer

(2001), who by means of a simulated data example showed that this bias is

different for different types of aggregation (exact, Divisia, linear) and, remarkably,

that it increases as more and more inputs (outputs) are aggregated. This last paper

has inspired Essay 7 of this chapter

Essay 7: Input Aggregation and Technical Efficiency

Here, in a paper co-authored with RoIf Fare, we ask a standard aggregation

question: What are the conditions for an efficiency measure to have no aggregation

bias? As a result, we first reformulate the Farrell technical efficiency measure as a

subvector efficiency estimator and then derive necessary and sufficient condition

under which the linear aggregator of inputs (and a similar result can be shown for

aggregation of outputs) yields an unbiased outcome. This condition is interpreted as

a situation with no allocative inefficiency in the subvector of inputs that is

aggregated.
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In this note we show that the Nerlovian profit indicator may be aggregated over

firms into an industry measure of profit efficiency. We also provide conditions

under which the technical component of the indicator may also be aggregated.

Journal of Optimization Theory and Application,
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Introduction

The performance measure we consider here was introduced by Chambers,

Chung and Fare (1998) and named after Nerlove (1965) who had introduced a

related profit performance measure. What we are interested in are the conditions

under which the firm Nerlovian profit indicators may be aggregated into an

industry Nerlovian profit indicator. The first result follows directly from Koopmans

(1957) who proved that the industry profit function is the sum of firm profit

functions, which we show holds or the profit indicator as well. A more challenging

task is involved when we wish to consider aggregation of the components of the

Nerlovian profit indicator, namely allocative and technical efficiency. Although the

results are not as straightforward we can develop bounds and conditions under

which exact aggregation occurs.

We note that our success in aggregating stems in part from the fact that we

adopt what we call directional distance functions as our measures of technical

efficiency. The directional distance functions are closely related to what

Luenberger (1992) calls benefit functions in the consumer context. The advantage

of these for aggregation was noted by Luenberger (1992) 'The single normalization

of the benefit function theory can be applied to all consumers, while the distance

function approach requires that a given price vector be normalized differently for

each consumer.' (p.480) In our context, the advantage of directional distance

function is that we can choose one direction (and therefore one associated

normalization) for the evaluation of each firm's efficiency; the Shephard type

distance functions allow each firm to be evaluated in a different direction (namely

that consistent with its input or output mix).



The Details

We define the industry technology T as the sum of the firm

technologies, i.e.,

K
T= Tk, (1)

k=1

where = {(xk ,yk): input k E Rcan produce output y' }.

Koopmans (1957) proves that industry profit

fl(p, w) = max {py wx : (x, y) E T}. (2)
x, y

is the sum over firm profits, i.e.,

K
fl(p,w)= >nk(pw) (3)

k =1

where, given input and output prices (w, p), firm k' s profit is defined by

Uk(p,w)=ma4,yk_wxk:(xk,yk)ETk. (4)

By subtracting observed profit P>f y" wf1 k) from both sides of

(3) and normalizing with (pgy + wg,) where (gx,gy) is the direction in which

technical efficiency is to be measured yields



lI(p, w) (Kk - _(k - wxk)
(5)pg+wg k=1 pgy+wg

The left hand side is the industry measure of profit efficiency which is equal to the

right hand side which is the sum over firm profit efficiencies. These efficiency

measures, introduced by Chambers, Chung and Fare (1998) are called Nerlovian

measures of profit efficiency.

The Nerlovian profit efficiency index may be expressed as the sum of an

allocative and a technical component. The technical component is defined for

firm k as

bk(xk,yk;g,gy)=maxp:(xk_/3g,yk+/3gy)ET
(6)

where (g ,gy) is the directional vector. Luenberger (1995) calls this function (6) the

shortage function. This function takes values greater than or equal to zero for

feasible (x,y). As usual, the allocative efficiency index (AEc ) is defined as a

residual, thus for firm k we have

flk(p,w)_(pyk WX =AEk +ñk(xk,yk;g,gy) (7)
pg + wg

The industry decomposition is similar, with its directional distance function

defined on the industry technology T.

U(p,w)_(pf1yk _w ixkL
AE+D[ Yk;gxgyJ (8)

pgy+wg k=1 k=1
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Now (5), (7) and (8) together yield

J'K K " K
DI yk;gg bk(xkyk;gg) (9)

k=1 k=1 I k=1

if and only if the industry allocative efficiency component is the sum of its firm

components, i.e., AE = _1AEk.

Thus (5) and (9) show that we can derive aggregate industry efficiency from

firm efficiencies. Of course, our result in (9) rests on the condition that

AE AEk ,which may not be appropriate in some applications. If we relax

that assumption, we can still derive the following relationship:

JK K K.
D yk;gg Dk(xk,yk;g,gy) (10)

\..k=1 k=1 ) k=1

This result follows from the fact that

K' '(K K K Kk _j3kg yk +ñ"g)= D"g, + Dkgy lET (11)
k=1 k=1 k=1 k=1 )

and definition of the industry distance function. Thus, even if one is not willing to

assume that AE AEk , we have shown that the sum of the firm technical

efficiency measures based on directional distance functions will never be greater

than the corresponding industry technical efficiency measure. Note that (5), (8) and

(10) yield

>4.iAEkAE, (12)
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as a general result, so if each firm is allocatively efficient, i.e., AE = 0 for all k,

then since AE 0, then the industry is allocatively efficient as well.2

Finally, if we assume that (9) holds, for all xi" e 91' and y' E and let

(g. ,gy) = (1,1), then (9) is a Pexider functional equation in many variables. Its

solution is found in Acel (1966):

and

N M
= aflx/fl + bmYkm +Ck (13)

n=1 m=1

JK K '\ N K M K K
Dj xk,yl(;l,l1= (14)

k=1 k=1 ) n=1 k=1 m=1 k=1 k=1

where a, bm and ck are arbitrary constants. This result is the directional distance

function analog to the Blackorby and Russell (1999) aggregation result.
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In this paper we establish the fact that an industry maximal revenue is the sum of

its firms' maximal revenues. This fact enables us to discover conditions for

aggregation of Farrell efficiencies.
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Introduction

In his seminal paper, Farrell (1957, p. 261) introduced a concept of the 'structural

efficiency of an industry' by suggesting that "the technical efficiency of an industry

with respect to a given efficient isoquant would be simply a weighted average2 of

the technical efficiencies with respect to the same isoquant of its constituent firms."

His brief discussion of this concept and the final remark that "It is hoped to develop

this argument further elsewhere" (Farrell, 1957, p. 262) has been given different

interpretations in the literature on efficiency measurement. Ylvinger (2000)

provides a survey of the topic and points out that some interpretations yield

inconsistent measurements. An interesting discussion of industry efficiency is

found in Førsund and Hjalmarsson (1979).

Two recent papers, Blackorby and Russell (1999) and Li and Ng (1995),

have added to the understanding of the aggregate efficiency. Blackorby and Russell

(1999) derive conditions on the firm technologies that are required to aggregate

technical efficiency indexes. These conditions are quite stringent which is

summarized by "... there does not exist a technology set such that the widely used

Debreu (1951) / Farrell (1957) measure of technical efficiency can be

aggregated..." Blackorby and Russell (1999, p. 7-8). Li and Ng (1995) circumvent

the problem of Blackorby and Russell by introducing weights (the shadow output

prices) in their aggregation.

In this paper we take a new approach and start by observing that maximized

industry revenue equals the sum of maximized firms' revenues. We use this

equality to derive the industry efficiency measure from the firms' measures of both

technical and overall efficiencies. The resulting industry technical efficiency

2 Weighted by output. (This is the original footnote of Farrell, 1957 p. 261).
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measure is a multioutput generalization of the Farrell 'structural efficiency of an

industry' measure.

Multiple-Output Measures of Efficiency

The Farrell (1957) efficiency framework consists of three components, a technical,

an allocative and--depending on orientation--a cost or revenue component. The

product of the first two makes up the last. In this section we first study the revenue

component and show how the industry efficiency can be derived from the member

firms' efficiency. We then turn our attention to the technical measure and again

show how the industry measure is related to the firms' measures. The method we

develop here can also be applied to the Farrell input oriented or cost approach,

since one can prove that the industry minimum cost equals the sum of its firms'

costs.

The firm technology is given by its output sets

(2.1) PI(xk)
: can produce

kj, x" E

where xk = (XkJ ..... xr) E 9?V+ denote firm k's input vector and k
= (Yki, ... YkM) E

9'+ its output vector. We assume that there are k = 1, ... , K firms in the industry,

K> 1. (If K=1, then the industry consist of one firm and hence no aggregation is

required.)

The industry technology is defined as

(2.2)

i.e., it is the sum of firm's technologies. Note that in this setting there is no

reallocation of the inputs among the firms. We also note that the industry
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technology P (x', xK) inherits its properties from those of the different firm

technologies P(xk). Thus, if each Pk(xk) is a convex, compact set with inputs and

outputs freely disposable, then so is P (x', xA'). Note that each firm may have a

different technology P and use different input vectors x'.

Denote output prices byp= (pj, ..., PM) E (which we assume are the

same for all firms), then firm k's observed revenue is p/ and the industry revenue

equals py" . To define the industry revenue function and obtain an aggregation

theorem, it is crucial that all firms face the same price vector, p. The firm's

maximal revenue is defined as:

(2.3) Rk(xI, p)=max{py :

and its revenue efficiency is defined as the ratio of firm's k maximal revenue

R'(x", p) to its observed revenue py" , i.e., as

(2.4) R"(x', p)/pyIC

The industry maximal revenue is

(2.5) ¶R(x',..., xK, p)=max{py : y

and industry revenue efficiency is defined as the ratio of industry maximal to

industry observed revenue, i.e., as

(2.6) 9(x',..., xK, p)/py/(
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By their definitions, the firm and industry revenue efficiencies are bigger then or

equal to one.

To understand how (2.4) and (2.6) are related we observe first that the

industry maximal revenue (2.5) is the sum of the finns' maximal revenues (the

proof is given in the appendix), i.e.,

(2.7) 9(x',..., xK, p)=>R'(x",p).

Using (2.7) it follows that the industry overall output (or revenue)

efficiency is the share weighted average of the firms' overall output efficiencies,

i.e.,

R(x',..., x",
(2.8)

k=1

where the shares are defined by 5k
k

(The proof of (2.8) is given in the
Pk=IY

appendix.)

Blackorby and Russell (1999) introduced the concept of an aggregate

indication axiom (which is a special case of the agreement property for aggregating

functions in Aczél, 1990, p.24.), which in our framework states:

(x',..., xK,
=1 ifandonlyif

Rk(xk,p)
=1, k= 1, ... , K,

py
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R(x',..., xK,
)i.e., the industry is efficient ( = 1) if and only if each firm is

efficient. We note that since our efficiency measures (2.4) and (2.6) are all larger or

equal to one, our measure (2.8) meets the aggregate indication axiom.

To introduce the technical measures of efficiency we define the output

distance functions on P!c(xk), k = 1, ... , K and on cP('x', ..., x") respectively as

(2.9) D0k(xk,yIc) = inf
10k. (yk/0k) E

(2.10) cD0(x', ...,x",y)=inf{O:(y/O) EcP(xl,...,XK)}.

Following Fare, Grosskopf and Lovell (1985) we define the k's firm and the

industry output oriented Farrell measures of technical efficiency as the reciprocals

of (2.9) and (2.10), respectively. In addition to these two measures, we define the

share weighted output oriented industry technical efficiency as

K 1
(2.11) TE=jDk(XkYk).S'.

This is a multioutput generalization of the Farrell single-output "structural

efficiency of an industry", where instead of the output shares (Farrell, 1957, p. 261-

262) we use the revenue shares. In some ways, TE is not a "good" measure of

"technical" efficiency since it contains value information, and is not just a function

of inputs and outputs. However, as a part of revenue measure it enters quite

naturally, as we will see below.

If we formulate the Blackorby and Russell (1999) technical efficiency

aggregate indication axiom as:
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1
TE=l ifandonlyif D(xk,yk)' k=1, ... ,K.

then clearly our measure (2.11) satisfies this condition. This follows from the fact

that
k k

1 for all feasible (xk,yk), i.e., y" E P(x").
D0(x ,y )

To compare the two measures of technical efficiency, (2.11) and the

reciprocal of (2.10), note that in the single output (multiple input) case they are

equivalent to the industry revenue efficiency measure (2.6), and precisely represent

what Farrell (1957) called the Structural Efficiency of the Industry, i.e.,

K 1
TE 1 / cD0(x', ..., x', >j1yk).

k=1 D(xIc,yk)

Such equivalence however, in general cannot be established for the multiple output

K k

case. To see this, first note that
k k k belongs to the industry technology

k=1D0(X ,y )

'P (x', ..., x',), and if outputs are freely disposable, 1k /D, where

= maxk {D(xk,yk)}, is also in T(x', x",). Thus, it follows that

(2.12) (D0(x'..... xJC,
ylo) D.

i.e., the industry technical efficiency score 1/D0(x', ..., xK, 1yk) is at least as

large as 1 / D. In words, the industry is at least as inefficient as the most efficient

firm. Next, by an example we show that the following inequalities may hold.
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(2.13) 1/Dr < 1/'D0(x', ...,xK, k)

(2.14) TE < 1/cD0(x' xK, k)

Expression (2.13) tells us that firm's maximal efficiency score can be smaller than

the industry efficiency score. Expression (2.14) shows that the share-weighted

industry efficiency score TE may be smaller than the industry output oriented

Farrell measure of technical efficiency 1 / cD0('x',
yk) Figure 3

illustrates our cases.

2

y

3

1

0 1 2 3

Figure 3. Measures of technical efficiency.

yl

Output vector A = (2, 1/2) belongs to the output set P' and B = (1/2, 2)

belongs to output set P2. Both are efficient, so TE = 1, and D' = 1. The aggregate
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technology (P' + P2) contains A+B = (2.5, 2.5) as an interior point, thus 1 / D0 >

1, showing that (2.13) and (2.14) may hold.

By another example, we show that the inequality (2.14) may be reversed,

i.e.,

(2.15) 1 / D0(x', < TE,

may hold.

On the figure, if we take A = (1,0) andB = (0,2), then A belongs toP' andB

belongs to P2, with D 1/2 and D = 1 (using (2.9)). If prices are p = (10, 1)

then SA =10/12, S'1 = 2/12, and TE = 22/12. On the other hand, A+B = (1, 2) and its

efficiency score using (2.10) is cDi, 2/3, showing that (2.15) holds.

Thus, equivalence between (2.11) and the reciprocal of (2.10) in general

cannot be established for the multiple output case.

Let us now decompose the industry revenue efficiency into industry

technical and industry allocative efficiency components. Following Li and Ng

(1995), we define the aggregate measure of allocative efficiency as

K
(2.16) AE=AEl.Sk,

k=1

where

Rk(xc,
,)(2.17) AEk=D(xk,yk)

and the weights are
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k

(2.18)
p(yk,Dk(x

,y ))

p>K(yk /D(xk,yn1))

i.e., the weights are based on potential outputs (k
/D (x" yk)) rather than

observed outputs k

It now follows that the aggregate revenue efficiency can be decomposed

into aggregate allocative efficiencyAE and aggregate technical efficiency TE.

R(x',..., XK,

=AETE.(2.19)
P=i k

To verify that (2.19) holds, insert (2.11), (2.16), (2.17) and (2.18) into

(2.19), use the fact (2.7) and the result follows.

We pointed out above that the shares S k used in our definition of the output

oriented industry technical efficiency measure is price dependent. But in the case of

a single output it becomes price independent since

(2.20) Sk
k

k

k' k=1, ...,K.
P>k=IY k=IY

If we want to create multioutput price independent share-weights, we may

follow Comes (1992, p.42) and choose the prices as

(2.21) Pm =
K m = 1, ... , M
k=1Ykm

since then
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k 1 YkI Yk2 YW

J

(2.22) w M =1Yk1 + =1Yk2 =IYkM

k=1,...,K.Mm=i1y,j'

The resulting price independent weights are the sum of each firm's share of

each output normalized by the number of outputs M. They are non-negative and

sum to one. Similarly, the price independent weights for aggregation of individual

allocative efficiencies are

k k \
1 'M y/D(x ,y ) 1

(2.23)
çk

MIlyID:(X1c,yk)J' k=1, ... ,K.

In our illustrative example in the next section we compare these weights

with the price dependent share-weights.

A Numerical Illustration

In this section we introduce a numerical example and show how the

industry efficiency may be computed from the firms' efficiencies. We assume

there are twenty firms k = 1, ... , K, each using two inputs (xi, X2) to produce two

outputs (yj, y2). The output prices we use arep = 1 and P2 = 0.1. We compute the

revenue efficiency (2.4) for each firm, and the industry efficiency (2.6). We also

compute the technical and allocative efficiency components for firms and the

industry. We report our four sets of weights, the price dependent Sk and k and

the price independent w k and 1A. Finally, as a comparison we included the non-

weighted arithmetic average of the efficiency scores.

The computation of efficiency scores are done on OnFront using variable returns to scale.



Table 1. Revenue, Technical and Allocative Efficiency for Firms and Industry: A Hypothetical Example

k

X1
k

X2
k

YI
k Revenue Technical Allocative

S kS kFirms Efficiency Efficiency Efficiency w w
1 39.00 49.00 12.00 17.53 2.200 1.772 1.242 0.008 0.013 0.008 0.014
2 37.00 45.00 19.00 22.00 1.000 1.000 1.000 0.013 0.012 0.012 0.011
3 35.00 55.00 17.29 17.00 1.929 1.891 1.020 0.012 0.020 0.010 0.018
4 34.00 63.97 25.00 12.97 1.957 1.884 1.039 0.016 0.027 0.012 0.020
5 33.00 53.00 28.00 18.72 1.000 1.000 1.000 0.018 0.017 0.014 0.013
6 70.00 50.00 35.00 43.00 1.516 1.476 1.027 0.024 0.032 0.023 0.031
7 45.00 55.56 25.00 0.00 1.915 1.712 1.119 0.015 0.024 0.009 0.013
8 60.00 62.38 45.00 37.42 1.540 1.477 1.043 0.030 0.040 0.025 0.034
9 30.00 83.33 75.00 64.03 1.000 1.000 1.000 0.049 0.045 0.042 0.038

10 40.00 90.00 34.00 59.27 2.279 1.397 1.631 0.024 0.031 0.026 0.034
11 75.00 75.00 82.00 75.00 1.107 1.072 1.033 0.054 0.053 0.047 0.046
12 45.00 125.00 78.00 101.70 1.086 1.000 1.086 0.054 0.049 0.052 0.048
13 60.00 93.75 35.00 93.54 2.417 1.256 1.924 0.027 0.031 0.035 0.041
14 87.00 53.57 75.00 120.00 1.000 1.000 1.000 0.053 0.048 0.056 0.051
15 85.00 66.18 85.00 111.00 1.009 1.000 1.009 0.058 0.053 0.057 0.052
16 91.00 99.00 100.00 171.00 1.102 1.000 1.102 0.071 0.065 0.077 0.070
17 115.20 169.00 115.00 212.00 1.198 1.000 1.198 0.083 0.075 0.092 0.085
18 86.40 240.00 80.00 151.00 1.425 1.104 1.291 0.058 0.058 0.065 0.066
19 247.00 189.00 230.00 347.00 1.069 1.035 1.033 0.161 0.151 0.165 0.157
20 240.00 180.00 247.00 359.00 1.000 1.000 1.000 0.172 0.156 0.174 0.160

Non-weighted Arithmetic Average 1.437 1.254 1.140

Industry Efficiency 1.218 1.099 1.108

Industry Efficiency with price independent weights 1.223 1.090 1.122

Note: Price for y1 is normalized to 1, and price for y2 is set to 0.1.
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Appendix

Proof of (2.7). This proof is from Fare, Grosskopf and Kirkley (2001) and follows

the outline of Mas-Colell et al (1995).

k k k K k 1Let y EP (x ) be arbitrary, then EcP (x, ..., x") and since

xK, p) is the maximal revenue,

R(x',..., xK, p) Kk

Now, since k (k = 1, ..., K) is arbitrary, we have

(i) R(x1 xK, ) V" Rk(xk, )Lk=I

Conversely, let y P (x', x") be arbitrary, then by the definition of P (x',

x") there are E pk(xk) so that y Kk Hence, py =

k

=
k R" (x" , p), and by the arbitrariness ofy it follows that

(ii) R(x1,..., xK, p)'1R"(x",p)

From inequalities (i) and (ii) we get

xK, p) R' (xc , p) R(x' xK, 1p

and hence



R(x',..., x", p)=L1R"(x',p),

proving our claim.

Proof of (2.8). To verify (2.8) requires the following steps:

(i) R(x',..., xK, p)=>Rhc(xk,p)

(ii) multiply and divide the r.h.s. bypy", then

(iii) divide both sides by y" and (2.8) follows.



ESSAY 6: INPUT AGGREGATION AND TECHNICAL EFFICIENCY
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Abstract
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In this paper we define the notion of unbiased aggregation of inputs and provide a

necessary and sufficient condition for this to apply.
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In a recent article in this journal L. Tauer (2001, p. 295) wrote: "Using data

simulated from a random production function it is shown that technical efficiency

estimates computed by Data Envelopment Analysis are biased even if the exact

aggregator function is used to aggregate inputs."

By formulating the technical efficiency estimator as a subvector estimator we

can derive a necessary and sufficient condition under which the linear aggregator of

inputs yields an unbiased outcome. Hereby we have an explanation to why a linear

aggregation of inputs may introduce bias into the estimation of technical efficiency

scores.

Suppose there are k = 1, ... , K observations of inputs X" = (xkl, ... , x) E

and outputs = (Yki'...' y) E R' and their corresponding input prices wi". We

assume that W" = w E for all k, i.e., each firm k faces the same input prices.

Like in Tauer (2001) we assume that a subvector of inputs is aggregated using

pnces, i.e.,

(1) c=wx , k=1,...,K, and JN.

To define what we understand by an unbiased outcome of input aggregation,

define

(2) SP (ykxk')=min),

s.t. Yk'm , m = 1, ...,



ZkX ' = i,

ZkX Xk.fl , n = JT +1, ..., N,

zkO, k1,...,K,

and

(3) K(yk, CkJ,,, xk/,+I,...,xkN)minI%

s.t. ZkYkJII Yk'm , m = 1, ..., M,

ZkC k'ISi '

ZkO, k=1,...,K,

The first problem is the subvector input oriented Farrell (1957) measure of

technical efficiency (see Fare, Grosskopf and Love!! (1994)). The second prob!em

is the measure of technical efficiency, when some inputs are aggregated as in (1).

Aggregation is unbiased if and only if

(4) SP (ylc,xk') = K(y", Ck,,, xk,!I,...,xk.N).

To derive conditions for (4) to hold define the subvector cost function

(5) C(yk,w1,...,w, xk,I,...,xk,N) = min±w,x



s.t. Y'm , m = 1,

ZkXXfl , =j,...,

ZkXXk.fl , nN+1,...,N,

ZkO, k=1,...,K,

From (5) we have a subvector cost index of efficiency as

(6)
XkI .....XkN)

= (yk',Xk)x SAE

where SAEI is the subvector input allocative efficiency component.

Like in Fare and Grosskopf (1985), if w> 0, n = 1, ..., N, then

__________ = K(yk, Ck,, xknI,...,xkN)(7)
Ck,

Thus (4) holds if and only if SAE1 = 1, i.e., if and only if there is no allocative

inefficiency.

Hence, if the information on some inputs is available only in the aggregated

form as in (1), then the DEA technique in (3) will yield unbiased efficiency scores

if and only if there is no allocative inefficiency in the subvector of inputs that is

aggregated.
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Introduction

Individual Farrell scores may be decomposed into sub-scores. For example, Fare,

Grosskopf and Lovell (1994) multiplicatively separate the Farrell output oriented

measure of technical efficiency into three components, scale, congestion and "pure"

efficiencies. To preserve this decomposition in a multi-firm industry it is necessary

and sufficient that a weighted geometric mean is used. In this paper we show how

these weights are determined.

The Results

Let rk and 5k (k=1, 2 ) be firm k's two component measures of efficiency and let

their product q, = rksk be the Farrell output measure of technical efficiency.

Suppose we want to aggregate these measures into an industry measure while

preserving the multiplicative structure. This results in the following functional

equation

V(q1,q2)=V(r1 ,r2) V(s1,s2) (1)

Let us generalize this equation by introducing a set of parameters

z = (z1,...,z) E

U(q1,q2;z)=U(rj ,r2;z) U(s1,s2;z) (2)
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The solution to this equation is (see Aczél, 1990, p.27 and Eichhom 1978, p.94)

w1(z) w2(z)
U(q1,q2;z)_q1 q2 (3)

where Wk (z), are arbitrary functions of z.

The purpose of this paper is to determine the weights w1 (z) and w2 (z).

Define the industry output set as

P(x',x2)=P1(x')+P2(x2) (4)

where x' and x2 are input vectors for each firm and where P' (x') and P2 (x2) are

the firms output sets. We assume that each firm produces (for simplicity) two

outputs y' = (y11,y12) and y2 =(y21,y22), respectively.

The industry and firm's revenue functions are given by

and

R(x' ,x2 ,p) = max{p1y1 + p2y2 : (y1 ,y2) E P(x' ,x2)} (5)

Rk(xk,p)=max{plykl +P2Yk2 :

(y1,y2)PIC(xh1)} (6)

It is known, see e.g. Fare and Zelenyuk (2001), that

R(x',x2,p) = R'(x',p)+R2(x2,p) (7)

where p = (p1
,
p2) is the vector of output prices.
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From (7) it follows that the industry revenue efficiency is the share weighted

average of the firms' efficiencies, i.e.,

R(x',x2,p) R'(x',p) R2(x2,p)
S2, (8)s+

mC'11 +y21)+p2(y32 +y22) p1y11 +p2y12 p1y21 +p2y22

where Sk PIYkI +P2Yk2
, k = 1, 2. (9)

p1(y11 +y21)+p2(y12 +y22)

If we assume that firms are allocative efficient, then (8) becomes

q=q1S1+q2S2, (10)

where q is the industry technical efficiency score.

Approximate (3) around q1 = =1, then

U(q1,q2;z)=w1(z)q1 +w2(z)q2 (11)

Thus by taking q = U(q1 ,q2 ;z) we find that

w1(z)=S', w2(z)=S2. (12)

To make these weights price independent we first note that in the case of a single

output
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Y11 Y21
w1(z)= , w2(z)= (13)

yll +y2l yll +y2I

where z =(y11,y21).

Hence in the single output case we have shown that the weights should be the

output shares.

In the multi output case we rely on duality theory and note that the industry

normalized revenue function is

p1(y11 +y21)+p2(y12 +y22)=l (14)

To transform the prices into outputs we follow Comes (1992, p.42) and choose

1

pi= , i=1,2.
(y1, +y21)

If we insert these expressions in (9) and (12), we obtain the following price

independent weights

1 y21 y22w1(z)=!I_ 11 + Y12

,

w2(z)=-
y12+y2j2yI1 +y21 y12 +y22)

where z =(y11,y12,y21,y22).

These weights sum to one and are homogeneous of degree zero, and hence are

independent of the unit of measurement. They are the non-weighted average of

output quantity shares.



The obvious observations are that our method of finding weights generalizes to any

k = 1, ..., K and i = 1, ... , I. Also, of course, for the input oriented case the

corresponding weights are the non-weighted average of input quantity shares.
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EMPIRICAL APPLICATION OF EFFICIENCY AND PRODUCTIVITY
ANALYSIS TO INDUSTRIAL ORGANIZATION:

ESSAY 8: CAUSES OF CONCENTRATION IN THE U.S. BREWING
INDUSTRY: RECONCILING THE DEBATE WITH THE

DATA ENVELOPMENT ANALYSIS

Valentin Zelenyuk

Abstract

For almost 40 years, industrial organization economists have debated whether or

not cost or demand side factors are a more important cause of rising concentration

in US brewing industry. In this study data envelopment analysis is applied to a

panel of 22 firms form 1950 to 1985 to test cost-side forces. I find that only small

firms operated in the region of economies of scale. Large (national) firms who

grew rapidly in size and are responsible for most of the rise in concentration were

larger than needed to take advantage of all economies of scale. Altogether, I find

the cost-side justification for the rise in concentration to be inconsistent with the

data. Upon combining the key information about the industry from this and other

studies, I find these results consistent with economic theory and the demand-side

argument.



1. Introduction

There has been a tremendous structural change in the U.S. Brewing industry

from 1950-1990. The average size of a typical firm has increased about 14 times.'

While the total output of the industry was growing, the number of firms in the

industry was decreasing dramatically, with the greatest change in the period from

1950 to the end of 1970s. For example, in 1950, the industry consisted of 369 firms

while in 1977 it declined to 49 and then to 26 firms by 1998. These striking

changes were directly reflected into the 'four firm concentration ratio' of the

industry, which rose form about 21% in 1950 to about 62% in 1977 and about 95%

in 1996.

Previous research indicates two possible explanations for the increase in

concentration. One argument is the escalation of large economies of scale in the

late 1950s through 1970s. This argument suggests that large firms by growing

larger were becoming more efficient than their smaller competitors. This eventually

put smaller firms out of business.

An alternative explanation is that successful marketing (primarily product

differentiation and advertising) campaigns helped some firms increase their market

shares at the expense of other firms, some of which had to leave the market.

Chronologically, the debate goes back at least to Horowitz and Horowitz (1965)

who found no support for the economies of scale argument but did find some

support for the demand-side argument. Two years later, applying a different

technique Horowitz and Horowitz (1967) found that the scale economies are more

profound than in their previous study, but still not as important as the demand

forces. Greer (1971) pursued the same research question and concluded that the

main reason for concentration in brewing was the escalating product differentiation.

Ten years later, after numerous opposite views were expressed in the academic and

'Average size of a firm is computed as total output of the industry divided by the number of firms
in the industry.
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government literature, he compromised on allowing some "room for important

contribution from economies of scale" but still placed a "greater weight to product

differentiation than other analysts might think appropriate" Greer (1981, p. 89).

On the other hand, Elzinga (1973, 1977) provided evidence that supports

the economies of scale argument. Based on the "survivor test" he concluded that

economies of scale were the most important reason, with the product differentiation

playing the secondary and complementary role. Scherer et al. (1975) opinion was a

compromise between Greer and Elzinga, giving some favor to the latter author.

Elzinga views were also supported by other economists, including those on the

government side, for example by Keiththalm (1978) and Mueller (1978), who give

even greater weight to the economies of scale as the primal reason of

concentration.2

An interesting stimulus to the debate, was the lack of solid and consistent

estimates of scale economies (e.g., see critique by Greer, 1981, p. 90). Existence of

such estimates might have given some answers and perhaps stopped the debate.

Exactly this motivation seemed to attract applied econometric analysts to the issue.

Lynk (1984) found empirical support for the cost side reasoning. By

observing correlation between increasing concentration and increases in output

along with price decrease, he concluded that the change in industry structure was

due to "competitive expansion by the more efficient brewers [and not due to]

anticompetitive exclusion of equally efficient but smaller brewers."3 This reasoning

2 Specifically, Mueller advocated that the scale economies played the central role up to 1970, then
yielding to the influence of new marketing strategies launched by conglomerate of Philip Moms and
Miller Brewing Company.

Although he does not specif' what kind efficiency measure was used (technical, cost, scale, etc.) I
classify his arguments as those supporting the cost side reasoning for concentration. Note, that
although it may be tempting to conclude that the correlation between increases in concentration with
increases in output and decreases in price is likely to be caused by expansion of more efficient firms,
it is not necessarily true. Same phenomenon can arise from expansion of firms that are inefficient on
the cost or production side but successful on the demand or marketing side. That is, the same
correlation can be observed with the demand side causes playing the main role. I elaborate on this
argument in the last section of this paper.



convinced him that "concentration in brewing had been beneficial, rather than

harmful, to consumers" ( Lynk (1984, p. 45)).

Tremblay and Tremblay (1985, 1987) undertook econometric study of the

industry demand and cost structures (respectively). By estimating the translog

'average' cost function, they concluded that firms' growth was mostly due to

"superior marketing position", thus supporting the demand side argument. They,

however, also agreed on existence of some scale economies in the industry.

Unexpectedly, they also finds that large firms have had significantly greater unit

costs than smaller firms had, which seem to undermine the cost side reasoning for

the increase in concentration.

As a logical follow up in this debate, in the present study I question the cost

side reasoning of concentration. My a priori expectations are based on the

following logic. If economies of scale played an important role in the rise of

concentration, then one must observe large firms (i.e., those who influenced

concentration) to be on the decreasing portion of the average cost curve, during (at

least some of) the periods of increase in concentration. Otherwise, these firms were

experiencing diseconomies rather than economies of scale, and there must be some

other reasons for the increase in concentration (which may or may not be the

demand side reasons).

An important question in my analysis is the choice of the scale economies

measure. A relatively small number of observations per period encouraged me to

use somewhat modern approach to measure the scale economiesvia the

estimation of scale efficiencies using the non-parametric non-stochastic efficiency

measurement (Farrell, 1957, Fare and Lovell, 1978), also known as data

envelopment analysis or DEA (Chames et al., 1978). Loosely speaking, the

measure of scale efficiency is a relative indicator of how far a firm is from the

He conjectures that this is because larger ("national") producers operated on a higher (rather than
lower, as expected) cost flmction than smaller ("regional") producers. An alternative could be that
they operated far on the increasing portion of the same average cost function (a conclusion obtained
in the current study). Both results may depend on the empirical specification of the cost function. A
conclusion that the larger producers have had greater cost, however, seems to be unambiguous.



'best-practice' industry frontier associated with the minimum efficient scale, and

after one accounts for possible technical inefficiency of this firm. This way of

measuring the scale economies has some advantages and disadvantages, which I

will discuss in some detail in subsequent sections.

An important characteristic of present analysis is a dissection of industry

into two conceptually different groups. A review of previous studies of the US

brewing industry encouraged me to take into account the existence of strategic

groups. Following Peles (1971), Hatten and Schendel (1977), and Tremblay

(1985b, 1987), in this study I distinguish between national and regional producers.

The conclusions of the study are interesting and somewhat unexpected. I

found that the national producers constantly operated at substantial diseconomies

rather than economies of scale. On the other hand, the regional producers were

operating close to the minimum efficient scale level, although in some cases some

of them were not on the best-practice cost frontier.

Overall, the application of data envelopment analysis to the industry data

leads me to reject the cost-side reasoning hypothesis that the primary reason for

rising concentration was economies of scale. On the contrary, the firms that

significantly influenced the rise in concentration were generally oversized, but still

were growing despite experiencing diseconomies of scale. These results suggest

that other reasons must be tested, including the hypothesis suggested by Sutton

(1991), i.e., the hybrid of the demand side and cost side arguments.

The paper is organized as follows. In the next section, I outline the

methodology, its advantages and drawbacks. Then, I discuss the computational

results, their empirical implications, and present the overall understanding of the

studying phenomenon.
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2. Methodological Background

2.1. The Goals ofMeasurement

The goal of this paper is to test whether or not economies of scale were the

main or significant cause of rising concentration in the US brewing industry. In

effect, this will be done by analyzing whether or not large (national) and smaller

(regional) firms operated in the region of economies of scale in any period. If the

cost-side hypothesis is true, that is if economies of scale constituted an important

reason for rising concentration then one would expect the large and growing firms

(whose growth has impacted the concentration) to have economies of scale at the

time of growth, so that by growing more they would exploit the economies of scale

and get a cost advantage over the smaller firms.

The results of such a test clearly may depend on chosen appropriateness of

methodology and quality of the data. This sub-section is devoted to an intuitive

explanation of what I want to measure, and the rest of the section deals with the

technical details on how the measurement of scale is approached here. The second

issue, the data quality, will be addressed in the next section.

Frequently, the notion of economies (diseconomies) of scale is associated

with the decreasing (increasing) portion of a u-shaped long-run average cost (AC)

curve. The value of output where AC reaches its smallest value is often called the

minimum efficient scale (MES) level of output. Thus, one (and most common) way

to measure existence and size of economies of scale is by identifying the slope of

the AC function.

An alternative way to do this is to measure the distance (difference)

between the observed costs on the AC curve relative to the least possible costs

associated with the MES level of output. If there is no difference then the

economies of scale are fully exploited (assuming convexity of AC curve). If the

difference exists then the next step would be to determine its source. If it exists
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when output is below the MES level, then economies of scale are present (i.e., by

increasing output, AC may decrease) in the neighborhood of measurement. On the

other hand, if it is below then the diseconomies of scale are present (i.e., by

increasing output, AC may increase). Clearly, under convexity both derivative

method and the 'distance' method are equivalent qualitatively. Quantitatively,

however they are different, as will be seen when the latter method is defined

formally in the following sections.

To illustrate, consider Figure 4. Suppose for simplicity that all firms have

access to the same technology characterized by the long-run average cost function

AC(y,pV), where y is (single) output, andp is a vector of input prices. (Meaning of

identifier V after" J "and precise definitions is done later.)

The AC(y,pJC) is a 'virtual' AC curve that would exist if the technology

allowed producing any level of output at the costs associated with the MES of the

'true' AC curve, AC(y,pI V). That is, AC(y,pIC) is a constant returns to scale (CRS)

average cost curve (note, 'IC' stands for CRS) that goes through the minimum

point (acM, yMES) on the AC(y,pI V) curve.

Now, consider first the observation A '= (y4, a), where y4 is observed

output and aêA is observed average cost for some firm A'. Since it is on the

decreasing portion of the AC(y,pI V) curve, economies of scale are present for this

observation, and can be measured by the slope at point A' or by the distance

between A' and A Similarly, for the observation C' the scale economies can be

measured either by the slope at point C' or by the distance between C' and Cs.

Since C' is on the increasing portion of the AC(y,pI V) curve, diseconomies of scale

pertain to this observation. Finally, the scale economies for the observation B' can

also be measured either by the slope at point B' or by the distance between B' and
B*. Since B' is on the flat portion of the AC(y,p V) curve that coincides with

A C(y,p IC), no economies or diseconomies of scale are present for this observation.



AC

ac

aêA,aê

acMES, at

(

102

Figure 4. Measuring the Economies of Scale: Distance Approach

At this stage it is important to note two differences between the 'derivative

method' and the 'distance method'. First, the derivative method indicates

economies (diseconomies) of scale by giving a positive (negative) number, while it

takes an additional step to get such indication for the distance method. Second, for

any two observations (e.g., A' and C') having the same difference between

AC(y,pIC) and AC(y,pI V) is not related (in general) to the fact that these

observations have the same derivatives at these points, even in the absolute values.

Roughly, this means that the two methods are in general quantitatively not related

(although qualitatively they are). In this study I use the distance method.

There are many ways of measuring the distance. One simple and intuitive

way of measuring the existence and size of economies of scale as the distance

between the 'virtual' and 'true' average costs for a particular observation k is to
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take their ratio (another natural way would be to take the difference), i.e., formally

such approach gives the following measure:

AC(y',pIC)
(2.1.1) Average Cost Scale Efficiency

AC(yk
I
V)

which I dub as the 'average cost scale efficiency' measure (to distinguish it from the

cost scale elasticity concept based on the derivative method). Note that this

measure will give a number between zero and one (since by construction,

0 < AC(y",p
I
C) AC(y",p

I
V)). Unity will indicate that observation k is 'scale

efficient' or has 'no scale economies and diseconomies' (e.g. as observation B'). If

the number is less then unity, then the observation is dubbed as cost scale

inefficient with two (mutually exclusive) possibilities or sources for this

inefficiency: either due to scale economies or due to scale diseconomies. Additional

step is needed to identify the source of inefficiency. In the single output case

discussed here and given a U-shape AC curve, it is sufficient to compare the actual

output level of the observation to the MES level of output: If the former is smaller

(bigger) than the latter, then economies (diseconomies) of scale are present.

In our previous example, the average cost scale efficiency of observation A'

is al /acMES 1, for B'it is a3' /acMES = 1, and for C' it is al /acME 1. Also

note that although, in our peculiar example, (2.1.1) gives the same efficiency scores

for A' and C', the sources for inefficiency are conceptually different: for A' it is the

scale economies, while for C' it is the scale diseconomies.

Now, consider the possibility of cost inefficiency, namely that observations

do not necessarily 'lie' on the true cost curve, AC(yk,pI V), but somewhere above it.

That is, some firms may be inefficient in their use of inputs. Such observations are

called 'pure cost inefficient'. This type of inefficiency for a particular observation k

can be measured similarly as in (2.1.1), as the ratio of the 'true' average (minimal)
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costs to the actual (i.e., observed) average costs, ack, both associated with the

observed output y". Technically,

AC(y",pV)
(2.1.2) Pure Average Cost Efficiency =

ack

In our hypothetical example in Figure 1, it may be that firms' actual average

costs were, say, equal to ac. In this way, instead of A', B' and C', the actual

observations are A, B, and C.

A standard way of measuring the cost scale inefficiency for observations

with pure cost inefficiency is first to project the point onto the frontier (i.e., identify

the where the observations should have been if they were 'pure cost efficient': e.g.,

points A', B' and C' for A, B and C, respectively) and then measure the cost scale

efficiency from those points. Another way to look at this is to recognize that the

overall average cost inefficiency for a particular observation k, can be measured as

the ratio of the virtual minimal costs to the actual average costs, ack, where both

are associated with the observed outputyk, i.e.

AC(y",p IC)
(2.1.3) Overall Average Cost Efficiency =

ac"

and then can be decomposed into two sources (i) pure cost efficiency and, and (ii)

cost scale efficiency, i.e.,

(2.1.4) Overall Average Cost Efficiency
AC(y",p

I

V) AC(y",p IC)
ac" AC(y",pIV)

= Pure Average Cost Efficiency x Average Cost Scale Efficiency

Let us now extend the intuitive analysis of scale economies into the multi-

output framework. At the first glance, it may seem difficult since the average cost
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are usually defined as the total cost divided by the scalar output (for exception see

Baumol et al., 1988) and now there is a vector of outputs y. However, due to the

ratio form of these measures, applying this definition to all above formulas yields

measures defined in terms of the total costs, C(), rather than the average costs,

AC(.). Making appropriate changes I obtain the following decomposition of the cost

efficiency measures5

C(y",plV) C(y',pIC)
(2.1.5) Overall Cost Efficiency = x

C(yk,pIV)'

= Pure Cost Efficiency x Cost Scale Efficiency.

A general way to identify the source of inefficiency (i.e., whether the scale

inefficiency is due to economies or diseconomies of scale) is to use the procedure

outlined in Fare, Grosskopf and Lovell (1994), which will be outlined below, after

more precise treatment of the efficiency concepts and its measurement is

introduced.

2.2. The Means ofMeasurement: Firm 's Level

I start with a general framework, where each firm k (k = 1, . . . ,K) in an industry

consisting with K firms is allowed to have different technology characterized by its

input sets

(2.2.1) Lk(yc Ir)={xk: xk can produce yk with r RTS}, y"

Note, the type of measurement presented here is the cost or input oriented measurement, meaning
that all measurement is done by looking at the potential reduction of costs, keeping the output
constant.
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where xk = (xkJ, ..., xkj.,r) E W'+ denotes firm k's input vector and y" = (Yki, ..., yi
) W+ its output vector (k = 1, ... , K). The index r will stand for description of

the returns to scale (RTS) of the technology. Here, I allow for four types of returns

to scale: constant (r = C), non-decreasing (r = ND), non-increasing (r = NI) and

variable (r = V). The latter is the most general in the sense that it allows for

existence of any other RTS locally. For definitions of these types of RTS see

appendix or Fare, Grosskopf and Lovell (1994)). In particular, the following

relations between the technologies with different RTS are true (see Fare, Grosskopf

and Lovell (1994)):

(2.2.2) Lk(ykIV)cLc(yNI)Lk(ykIC) and

Lk(ykIV)Lk(ykIND)cLk(yklC), Vyk

Given L(y), the technical efficiency for a firm k is defined in Farrell (1957)

tradition as

(2.2.3) F.k(ykxk Ir)=min{,%" :
(xho)Ak ELk(ylc

Ir)}

Further, denote the input prices by p = (pi, ..., p4 E 9, (which I assume

are the same for all firms), then firm /c's observed cost is pxk c" and the firm's

minimal cost is defined as

(2.2.4) C'(y", plr)=min{px : xELk(yk Ir)}.

This functions can be used to define the Farrell-type measure of cost

efficiency as

(2.2.5a) F(ykcc r)=min{6" : (c')O" C"(y",plr)}
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which is easily reduced to the following closed form

(2.2.5b) Fk(ykck
I

r) = C"(y",p
I

r)/c"

Assigning particular returns to scale (CRS or VRS) to (2.2.5) gives two

types of measures of our interest: 'overall cost efficiency' and 'pure cost

efficiency,' respectively:

(2.2.6a) Fc(ykcc C) = C"(y",p
I

C)/c"

and

(2.2.6b) Fk(yl,cIc V)=Ck(yl,pV)/cI(

(Note that these are the measures that were intuitively described in the previous

section.)

Now, let c be the point on CE (yk
p I V) where the observations k should

be if it were pure cost efficient for the output level yk, i.e., k = c"F' (yk ck
I

V)

then, following the intuition developed in the previous section, the cost scale

efficiency is defined similar to (2.2.6a), as

(2.2.7)

Using this definition and noting that for any technology, F (yk ck) is

homogeneous of degree --1 in ck (as can be seen from its definition), I get

(2.2.8)
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which is the Fare and Grosskopf (1985) measure of 'cost scale efficiency'.

Substituting (2.2.6a), (2.2.6b) and (2.2.8) into (2.2.7) we get another interpretation

of the scale efficiencyone that was heuristically described in the previous section,

i.e.

C"(y",p IC)
(2.2.9) SE(y",c")=

C"(y',plv)

As in the previous section, the firm's 'overall cost efficiency' is decomposed as

(2.2.10) FI(ykcc c)Fk(ykck JV)xSE(y",c")

i.e.,

Overall Cost Efficiency = Pure Cost Efficiency x Cost Scale Efficiency.

Up until now I considered only individual or firms efficiencies. The next

section is devoted to development of the aggregate or industry (or group)

efficiencies.

2.3. Aggregation Issues

The issues of aggregation in efficiency analysis are especially important when the

analysis involves comparison of the efficiency of groups of observations. This is

precisely the case of our study, where a priori information encourages bisecting the

sample into two industry strategic groups: the national firms and the regional firms

(e.g., as in Tremblay, 1985b, 1987).

There are two important issues regarding aggregation: (i) what kind of

aggregation functions (additive, multiplicative, etc.) are appropriate for the cost

efficiency framework, and (ii) what set of weights is needed in the aggregation. It is

straightforward to show that both the quantitative and qualitative results of the
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aggregate analysis are dependent upon answers to each of these questions. Such

answers therefore must be justified with either economic andlor some technical

consistency criteria. In this study I follow the aggregation theory developed by Fare

and Zelenyuk (2002), adapting it to the measurement of the pure cost and cost scale

efficiencies. In this section I only present the results of such adaptation, while the

details are given in Appendix.

Let k = 1, . . .K be the index of firms in a given group (regional firms,

national firms, entire Industry, etc.) and let Sk
k

be the observed cost-
k=lc

share-weight of a firm k in this group. Let F' (k c" V) be the firm k pure cost

efficiency score, and thus define the efficient cost-share-weight of a firm k in the

"k c" .Fk(yIc,c!c V)
group of k= 1, ...K, firms asS rck CFck(yk,ck

conditions (see appendix), the following aggregate efficiency measures are

justified:

The group overall cost efficiency is obtained as

(2.3.1) F(y',..., K ickIC)=Fck(yk,ckIC).Sk.

The group pure cost efficiency is obtained as

(2.3.2) F(y',..., K, y1ck IV)=F(yk,ck IV).Sk.

The group cost scale efficiency is obtained as

C)S'
(2.3.3) SE(y',..., yK, 1ck);

V).S'
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or equivalently as

K
(2.3.4) 5Ec**(YIr_, K ickIC)=>SE(y,cIo).Slc

k=1

Thus, if one can estimate the individual scores for pure-cost, cost-scale and

overall cost efficiencies, then one can use the above formulas to obtain the

corresponding aggregate efficiencies. How to actually estimate the individual

scores is the subject of the next section.

2.4. The Means ofEstimation: Non-Stochastic-Non-Parametric Approach

Up until now I assumed that firms may have different technologies. Such

generality still enabled us to receive consistent aggregation results relating the

group efficiencies to the individual efficiencies. In empirical analysis, data

availability often forces researchers to assume that all firms have the same

technology, or make a weaker assumption that all firms have access to the same

technology. This is based on the maintained hypothesis that firms have access to

the best practice technology. In this study I use the non-stochastic-non-parametric

activity analysis models, also known as the data envelopment analysis (DEA)

models, to form such 'best practice cost frontiers.' All observations (firm's data)

will then be measured relative to this frontier.

To make things more precise, the minimum cost frontier for each particular

observation k', (k3 = 1, ... , K) can be estimated from the solutions of the following

linear programming (LP) problem (see Fare and Grosskopf (1985) for details):

(2.4.1)

s.t. Ykm m 1 ....
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ZkXJ,Xn , n=1,...,N.

ZkO, k=1. K,

where "hat" symbol hereafter will indicates that the function value for particular

observation is estimated.

To incorporate the concept of VRS and compute C(y", p
I
V), another

constraint, L1 Zk = 1, is added to the LP problem (2.4.1). Such LP problems for

each firm k, along with the fact that c" PXk, gives all information to obtain

the desired cost efficiency measures as

(2.4.2) ô(yk p C)Ic" and ((k p I V)/c"

Such an approach requires data on all outputs, all inputs and their prices.

Frequently, information on all inputs used in production for each firm may be

unavailable for a researcher or very costly to find. The observed cost data (e.g.,

available from balance sheets), c", may be much easier to obtain. In fact, this is

exactly the situation in our study. Fare and Grosskopf (1985) showed an alternative

way for obtaining the efficiency scores in (2.4.2). In particular, under the

assumption that all firms face the same prices they showed that

ê(yk plC)
(2.4.3) fi(y", ck'JC)= and

c"

O(y" pIV)
] (3,k' c"

I
V)

c"

where
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s.t. ZkYkJfl Yk'm m 1,..., M,

K

ZkCk2Ck.
k=1

ZkO, k=1 ..... K.

and (yI, c'' V) is computed as in LP problem (2.4.4) but with additional

constraint stating that = 1.

The estimates of the efficiency scores in (2.4.3) for each k are then used to

compute the cost scale efficiency scores for each firm as described in sub-section

2.2 (see (2.2.8)) and aggregated as described in sub-section 2.4. The results from

such estimation and aggregation procedures are discussed in the section 4, after I

describe the sources and features of the used data set.

Further, to reveal the source of inefficiency, two approaches can be used.

The simplest approach that works for the single output case is to identify the

interval of full scale efficiency (MES level of output) and then compare it with the

output level of a scale inefficient observation. If the output level of a scale

inefficient observation is greater than the MES level of output, then clearly the

source is the decreasing returns to scale. If it is smaller, then the source is

increasing returns to scale.

A more general approach that works for the multiple output case is to

compute the additional LP problems (2.4.4) with another constraint: zk 1,

thus obtaining F (k' NIRS) the cost efficiency measure obtained from the

activity model with the assumption of non-increasing returns to scale (e.g., see

Fare, Grosskopf and Lovell (1994) for details). If an observation k' is scale

inefficient (i.e., fi, (y', c'' I V) > F (k',
I
C)) and at the same time
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fr (y", c" I V) > fr (k crc' I NIRS) then the source of inefficiency is coming

from increasing returns to scale. If instead, F (y", c" I V) = fi (y", c" NIRS)

then it is coming from the decreasing returns to scale. To make our inference on the

source of scale inefficiency we use both approaches.

3. Data

The data set used in this study was received from C. Tremblay and V. Tremblay

(Department of Economics, Oregon State University). See Tremblay (1985) for

data sources and a description of the data. The data set is a panel consisting of 22

beer-producing companies for the period 1950-1985. 6 Table 2 gives a summary of

the data. From 1950-55, the sample of firms produced about 20% of industry

output. This number reached 50% by 1966 and 77% by 1985. This is due to the

increase in the output shares of largest firms in the industry.

The data sets for the groups of national and regional producers have three

main variables: c" the total cost of firm k, measured in thousands of dollars, k

the firm's output, measured in thousands of 31 gallon barrels of beer, and the

industry output (also measured in thousands of 31 gallon barrels of beer). In

addition, the data set also contains information on the number of firms in the

industry, the 'four-firm concentration ratio' index and the Herfindahi index of

concentration available from 1950 till 1998. The sample also includes observations

obtained from the survey of small regional producers. Two companies that agreed

to provide information under conditions of confidentiality. In order to maintain

their confidentiality, all firms in the sample are identified by numbers.

6
Some observations that had missing values for output or cost variables were eliminated from the

original data set for computational reasons.

Firm's total cost was obtained as the difference between the (deflated) total revenue and profit for
each particular firm, and then deflated to 1972 dollars using the 'wholesale price index' of the U.S.
Bureau of Labor Statistics.
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Table 2. Summary of the Data

Year

# of firms
in

Sample

# of firms
in

Population

Sample
Mean of
Output

Sample
Mean of Total

Costs
Industry
Output

Output Share
of Sample in
Population

1950 8 369 1947 61733 82923 19%
1951 8 348 2136 64663 83939 20%
1952 8 300 2329 75597 84959 22%
1953 8 288 2589 84985 86209 24%
1954 8 261 2350 80230 83488 23%
1955 9 246 2213 72962 85204 23%
1956 12 236 2326 75628 85257 33%
1957 12 210 2346 75854 84668 33%
1958 12 199 2455 81261 84758 35%
1959 12 194 2748 84502 88006 37%
1960 12 181 2770 85632 88314 38%
1961 12 177 2903 88869 89473 39%
1962 12 166 3142 98090 91700 41%
1963 11 153 3637 115686 94338 42%
1964 10 142 4288 134793 99312 43%
1965 9 130 5116 153053 101059 46%
1966 10 119 5214 151602 104938 50%
1967 12 109 4776 139375 107638 53%
1968 14 94 4938 145137 112190 62%
1969 15 89 4789 138103 117066 61%
1970 15 84 5177 146727 122750 63%
1971 13 81 6057 175397 128318 61%
1972 13 77 7081 210925 132740 69%
1973 13 67 7741 206544 139600 72%
1974 11 61 9691 239482 146850 73%
1975 10 55 10992 286663 150323 73%
1976 10 51 10802 244915 152773 71%
1977 10 49 11197 276093 159460 70%
1978 11 46 12184 553213 166169 81%
1979 10 41 15425 761882 172559 89%
1980 10 38 14744 810162 177934 83%
1981 8 36 18219 1085757 181917 80%
1982 7 34 23008 1436732 182332 88%
1983 8 33 19607 1350252 183809 85%
1984 7 34 21002 1407626 182682 80%
1985 7 34 20225 1388672 183046 77%

Mean 10.472 162 7726.8 349688.8 122741.7 193%
St.Dev. 2.2 92.6 6363.1 439227.9 37610.8 286%

Mm 7 49 1947.4 61733.4 82923.0 19%
Max 15 369 23008.0 1436732.1 183809.0 894%
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4. Beer Industry Characteristics

One remarkable fact about the U.S. Brewing Industry that inspired this study is the

dramatic decrease in the number of firms (see Figure 5). Imperatively, this decrease

coincided with the increase in the industry output (see Figure 6).
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Figure 5. Number of Firms in US Brewing Industry
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Figure 6. Total Output in the U.S. Brewing Industry

One implication of this concurrence is that that while some firms were leaving the

industry, some of the surviving firms were growing more than needed to take the

market share of the exiting firms.
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Figure 7, gives information on the time series of the total output of the four

largest (all national) firms. As one can see, the most successful was Anheuser

Busch, whose output was increasing at an exponential rate during the entire period

of study.8 Two other firms, Schlitz and Pabst seemed to be trying to keep up with

the industry leader, but only up to 1976, after which their output declined. The

information on second largest firm, Miller, is available only from 1978 till 1985,

and is telling us that it also could not keep with the expansion of the industry

leader.

In fact, the average size of a firm has increased from 1950 to 1977 by about

14 times. The resulting impact on industry concentration was also quite dramatic:

the 'four-firm concentration ratio' has increased from about 20% in 1950 to more

than 90% in 1990s (see Figure 8). The Herfindahi index presents a similar picture

of industry concentration in brewing (see Figure 9).

8 Exception was 1976the year of 100-day strike at Anheuser-Busch.

It is computed as the industry total output divided by the number of firms in the industry.
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Figure 9. Herfindahi Industry Concentration Index

What could have been the reasons for such a striking structural change? As

was mentioned previously, competing hypothesis that were dominating economists

debates to explain such phenomenon can roughly be classified into two general

types: the demand side and the cost side arguments, respectively. The goal of this

study is to test the cost side argument for rising concentration.



118

5. Estimation Results and Implications

In this section I apply techniques presented and developed in earlier

sections. In particular, I use the DEA models from section 2 to approximate the

cost frontier for each year and then estimate the corresponding efficiency scores

(2.4.3) for each observation in each year. Individual (i.e., for each firm) efficiency

scores are then aggregated over all firms to obtain the estimate of the industry

efficiency. Following Peles (1971), Hatten and Schendel (1977), and Tremblay

(1985b and 1987), I then decompose the industry into two strategic groups:

national'° and regional producers, and obtain efficiency scores for these groups.

The aggregation process was described in sub-section 2.4, where the appropriate

aggregating function and unique sets of weights were derived. The aggregate

efficiency scores for each group are then presented in Table 3, and depicted in the

Figures 10, 11, 12.

Figure 10 and columns 2-4 of the Table 3 give an aggregate picture of the

'overall cost efficiency'. When looking at the whole sample representing the

industry, one can see that its efficiency has been increasing from about 0.55 in early

1950s to about 0.65 in the late 1950s, and remained at that level (with some

fluctuations) for almost the rest of the study period, with the exception of increase

the late 1970's.

A more vivid picture comes with the bisection of the industry into its

strategic groups. On one hand, one can see that the aggregate 'overall cost

efficiency' of regional producers is decreasing (with some fluctuations) for most of

the period (starting in the middle of 1950s from about 0.87 to about 0.62 in 1975),

suddenly increased in 1978 (up to 0.91) and then went down to around 0.7. At the

same time, one can observe a different picture for national producers:

'°Natjonal firms are defmed to be Anheuser Busch, Miller, Pabst, and Schlitz.
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Table 3. Summary of Estimation Results

Overall Cost Efficiency Pure Cost Efficiency Cost Scale Efficiency

Year industry regional national industry regional national industry regional national

1950 0.54 0.81 0.42 0.90 0.88 0.91 0.60 0.92 0.46
1951 0.57 0.83 0.45 0.96 0.89 0.99 0.59 0.94 0.45
1952 0.58 0.85 0.46 0.96 0.92 0.98 0.61 0.92 0.47
1953 0.62 0.84 0.50 0.98 0.94 1.00 0.63 0.89 0.50
1954 0.65 0.88 0.51 0.93 0.95 0.91 0.70 0.92 0.56
1955 0.68 0.86 0.54 0.92 0.92 0.92 0.73 0.93 0.59
1956 0.64 0.79 0.55 0.83 0.89 0.79 0.77 0.88 0.69
1957 0.65 0.79 0.56 0.92 0.90 0.94 0.70 0.88 0.60
1958 0.63 0.81 0.53 0.89 0.90 0.88 0.72 0.90 0.60
1959 0.69 0.80 0.61 0.96 0.88 1.00 0.72 0.91 0.61
1960 0.68 0.80 0.61 0.96 0.90 1.00 0.71 0.89 0.61
1961 0.67 0.78 0.61 0.94 0.88 0.98 0.71 0.89 0.62
1962 0.68 0.72 0.66 0.89 0.72 0.99 0.77 0.99 0.66
1963 0.63 0.66 0.61 0.87 0.67 0.99 0.73 0.98 0.62
1964 0.61 0.64 0.60 0.84 0.65 0.95 0.73 0.98 0.63
1965 0.66 0.71 0.62 0.87 0.78 0.91 0.76 0.91 0.69
1966 0.66 0.70 0.63 0.87 0.80 0.91 0.76 0.88 0.70
1967 0.60 0.66 0.57 0.83 0.71 0.90 0.72 0.93 0.64
1968 0.66 0.70 0.64 0.84 0.74 0.90 0.79 0.95 0.71
1969 0.66 0.69 0.64 0.88 0.73 0.97 0.75 0.95 0.66
1970 0.68 0.71 0.67 0.89 0.73 0.98 0.77 0.97 0.68
1971 0.68 0.68 0.67 0.90 0.71 0.99 0.75 0.95 0.68
1972 0.67 0.67 0.67 0.88 0.69 0.98 0.76 0.97 0.68
1973 0.67 0.68 0.67 0.89 0.69 1.00 0.75 0.99 0.67
1974 0.56 0.64 0.52 0.92 0.73 1.00 0.60 0.87 0.52
1975 0.59 0.62 0.58 0.90 0.68 0.99 0.66 0.92 0.58

1976 0.72 0.77 0.69 0.93 0.77 1.00 0.77 0.99 0.69
1977 0.67 0.73 0.65 0.90 0.74 0.97 0.75 0.98 0.67
1978 0.78 0.91 0.75 0.94 0.94 0.95 0.83 0.98 0.80
1979 0.68 0.79 0.65 0.94 0.95 0.94 0.73 0.84 0.69
1980 0.67 0.78 0.64 0.94 0.92 0.94 0.71 0.85 0.68
1981 0.71 0.83 0.67 0.94 0.92 0.94 0.76 0.91 0.72
1982 0.69 0.78 0.66 0.95 0.95 0.95 0.73 0.82 0.69
1983 0.81 0.69 0.80 0.95 0.95 0.94 0.85 0.73 0.85
1984 0.64 0.76 0.61 0.93 0.88 0.94 0.69 0.86 0.65
1985 0.54 0.65 0.52 0.94 0.86 0.96 0.58 0.75 0.54
Mean 0.65 0.75 0.60 0.91 0.83 0.95 0.72 0.91 0.64
StDev 0.06 0.08 0.08 0.04 0.10 0.04 0.06 0.06 0.09

Mm 0.54 0.62 0.42 0.83 0.65 0.79 0.58 0.73 0.45
Max 0.81 0.91 0.80 0.98 0.95 1.00 0.85 0.99 0.85
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Figure 10. Aggregate Overall Cost Efficiency
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Its aggregate 'overall cost efficiency' score is fairly steadily (with some

fluctuations) increasing during almost all of the period. In particular, it increased

from 0.42 in 1950 to the average of about 0.65 in the rest of the period.

Interestingly, the 'overall cost efficiency' of both groups came close to each

other in 1962 and moved in the same direction since then (except in 1983). In

general, the average 'overall cost efficiency' over all periods was higher for

regional producers than for national ones (0.75 vs. 0.60).

At least two questions arise with these results. First, what was causing such

different (and then similar) pattern of efficiency distribution among groups?

Second, what was causing the fluctuations in efficiency of each group, especially

the sharp declines and rises? To answer these questions, I will use the

decomposition of efficiency into different sources. As described in Section 2, the

'overall cost efficiency' measure can be decomposed into two sources of

inefficiency: (1) due to economies (diseconomies) of scale and due to pure cost

inefficiency (i.e., due to a failure to be on or 'close' to the VRS frontier).

I will start with the source of primal interest of this studythe estimate of

the cost scale inefficiencyused to identify and measure the existence and size of

the economies (diseconomies) of scale. The estimation results of the aggregated
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cost scale efficiency for the industry and its two strategic groups are depicted in

Figure 11 and columns 8-10 of Table 3.
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Figure 11. Aggregate Cost Scale Efficiency

One can see a distinctive picture: On average, the firms representing the

group of regional producers were consistently more scale efficient than the

national producers in all years, except one. Specifically, the scale efficiency of

regionals was about 0.91, averaging over the whole period, while the nationals had

it only about 0.64. This indicates that the regionals, on average, were operating

very close to the MES output level, while the nationals were far from it. An

immediate question is: Where is this source of scale inefficiency coming from?

Namely, is it due to existing economies or diseconomies of scale? Additional step

to identify the source of scale inefficiency reveals that none of the national firms

experienced economies of scale with respect to the observed best practice frontier

in any year under the study. On the contrary, all scale inefficiency was coming

from diseconomies of scale, i.e., due to being oversized.

I will take a closer look on this issue, by looking at the efficiency of each of

the national firms, after considering the other source of the overall cost
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inefficiencythe 'pure cost inefficiency'. Columns 5-7 of the Table 3 and Figure

12 give an aggregate picture regarding this type of inefficiency for entire sample

(representing the industry) and with a bisection into the two strategic groups

(nationals and regionals).
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Figure 12. Aggregate Pure Cost Efficiency

Up to 1961, the 'pure cost efficiency' for the two strategic groups was similar (with

slight dominance by the nationals) and quite high: about 0.9, on average.

Interestingly, in earlier periods, like 1954-55 and 1957-58, the 'pure cost

efficiency' of both groups was nearly the same. After that, the nationals had

consistently higher efficiency (on average about 0.97) than the regional, (with the

average efficiency score being about 0.74).

It might seem surprising and even contradicting to earlier conclusions that

the nationals, who have just been convicted in being oversized and operating at the

huge diseconomies of scale level of output, and being 'overall less efficient' than

the regionals, are now having higher 'pure cost efficiency' standing. Is it really a

contradiction? No, it is not. Let's recall what the 'pure cost efficiency' measure is

really telling us in the context of data envelopment analysis. It gives information on

how far each firm is from the best practice VRS (cost) frontier. It is quite possible
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to have high "pure cost efficiency" but very low scale efficiency (and therefore low

overall cost efficiency), simply because the best practice VRS frontier always

passes through the largest firm (which also gets the highest weight in the

aggregation). Thus, if the largest firm is very inefficient it will still be "pure cost

efficient" (the inefficiency will show up in the scale and overall efficiency

estimate). For the second largest finns to be efficient, it just has to beat efficiency

of the largest firm, and so on. So it is possible for a group to have very high pure

cost efficiency and very low cost scale and overall inefficiency.

Let's now turn to a closer look at the efficiency of the four largest firms in

the sample. While Anheuser Busch was the industry leader in terms of volume of

production during all the period of study, and especially since late 1 960s, its overall

cost efficiency standing does not look so brilliant (see Figure 13). On the contrary,

most of the time it had the lowest (0.54 on average) overall cost efficiency among

the national producers (and in the entire sample). Miller, second largest, firm was

even less efficient when it appeared in the sample. Efficiency of the third largest

firm, Schlitz, was higher than that of Anheuser Busch and Miller, but still quite

low, 0.66 on average. Interestingly, the most efficient firm among the national

firms, was the smallest among themPabst, with average of 0.81. Notably, its

efficiency rapidly increased in 1959the first wave of rapid technological change

in the industry. A few years later Pabst become one of the most efficient firms in

the sample.1' Altogether, one can see that the larger the firm, the lower its overall

cost efficiency.

Also note that its efficiency was first low, than got even lower in 1958 right before the sharp
increase in efficiency, which may be a result of increase in cost due to large investment into more
efficient technology. Note that similar phenomenon is observed in 1974, period of the second wave
of major technological change, and early 1980's, the third wave.
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Figure 13. Overall Cost Efficiency of 4 Largest Firms

Turning attention to one of the source of the overall cost inefficiencythe

pure cost inefficiency, gives us a different picture. Anheuser Busch almost always

was on the best practice VRS frontier. However, as discussed above, it is just

because the DEA frontier always passes through the largest observation, by

construction.12 Schlitz, the second largest firm in the sample (till 1978), was also

close to the frontier for most of the years except for period between 1964 and 1968

(i.e., the period between the first and second waves of major technological change

in the industry). Miller, when appeared in the sample failed to ever be on the best

practice frontier.

A sudden dip in efficiency in 1956 happened because during that particular year it was not
Anheuser Busch that was the largest firm in the sample, but Schlitz.
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Finally, Figure 15 reveals that the largest source of the overall inefficiency

of national firms is coming from the cost scale efficiency. In particular, Anheuser

Busch was a true leader in terms of the cost scale inefficiency, with an average of

0.54 over the entire period. The second least efficient was Miller (average of 0.68),

then Schlitz (average of 0.73) and finally the most efficient in the group of

nationals was Pabst, with the average of 0.86
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Figurel5. Cost Scale Efficiency of 4 Largest Firms
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All the results of the undertaken efficiency analysis can be summarized as

follows. First, the largest (national) firms never experienced economies of scale

with respect to the best practice frontier. On the contrary, except for the smallest of

the national firms, Pabst, they were vastly oversized and experienced diseconomies

of scale. Second, despite the lowest scale efficiency, the largest firm, Anheuser,

continued to grow larger with an exponential rate, and was often presumed as the

most 'successful' firm in the industry. The other large firms also tried to grow

larger (but at some point failed keeping up with the leader). The only firm among

the largest that ever had perfect scale efficiency was the smallest of them, which

also decreased its scale efficiency (also due to diseconomies of scale) since late

1970's. Third, most of the regional firms experienced economies of scale, but they

were very smallas indicated by high cost scale efficiency estimates (i.e., they

operated close to MES level of output).

Clearly, even if the small regional producers were able to exploit all these

minor economies of scale, they would not increase the industry concentration as

dramatically as the expansion of the largest firms who had diseconomies of scale.'3

In other words, conditional on the data, my conclusion of this study is that the

hypothesis that the economies of scale were predominant causes for the rise in

concentration in the U.S. brewing industry during 1950-1985 must be rejected. The

key to success in the industry was not growth to exploit economies of scale but

something else.

13
In fact, the concentration can even decrease if the expansion of the regional firms will cause

contraction of the largest firms, say if measured by 'four firm concentration ratio'.
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6. Conclusions and further Speculations

It is not hard to see that the results of this study are consistent with economic

theory. These results provide a clearer picture of why the concentration rose so

dramatically in the US brewing industry. First, the analysis indicates that national

producers were operating on or close to the increasing portion of the best practice

average cost curve. Second, findings of Tremblay (1985b, 1987) in demand and

cost studies (respectively) give me another useful lead: the demand curve that a

typical national producer faced for its produce was flatter than that for a typical

regional producer with a slightly greater (estimated) intercept. (Intuitively, this

means that on average, national producers were able to sell more output than

regional producers were, for the same and every price.)

These two clues along with the standard microeconomic theory helps shed

some light on what could have been happening in the US brewing Industry. I

present this story in Figure 16.

The figure incorporates findings of Tremblay (1985b, 1987), by having the

demand curve that a typical national producer faced for its produce being flatter

than and above that for a typical regional producer (D's' vs. D'). The figure also

incorporates finding of present study that there existed (although minor) economies

of scale and diseconomies of scale, i.e., the average cost curve is "U-shaped."

Consequently, under such conditions, according to economic theory, the profit-

maximizing price of national producers must be greater than that of regional

producers. The profit maximizing choice of output level for firms facing D' is close

to MES level, as it was for the regional producers in our study. On the other hand,

the profit maximizing choice for firms facing D' (the higher and flatter demand

curve as national firms face) is at the level of substantial diseconomies of scale
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rather than at the MES or nearby level. This is exactly what we observed in our

study with the national producers, two of which were vastly oversized, despite

some expectations.

Economic theory predicts that any firm in the industry would strive to

expand its demand curve (say from D' to D') even for the price of incurring more

and more diseconomies of scale. Aggressive marketing campaigns like product

differentiation and excessive advertising could have been the tools for it. And, this

is exactly what was observed in the industry by researchers (Greer 1971, 1981 and
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Tremblay and Tremb lay, 1996) as well as by the public observing exploding

advertising, increasing variety, etc.

The shrinkage and failure of some firms can be also explained with this

picture. Since some firms were growing faster than the market growth, part of these

firms' expansions (shifts in the demands to the right, say due to successful

advertising) was at the cost of a reduction in market shares of other firms (shifts in

the demands to the left. At the extreme, some firms ended up with the demand

curves below the average cost AC (D'on the Figure 16), and therefore had to leave

the market in the long run.

Taking all the arguments together, the results of the past and current studies

unified with general predictions of economic theory encourage me to conclude that

the dramatic structural change in the US brewing industry was mostly driven not

from the cost reasons like scale economies but from some other sources. Possibly,

all the roads lead to the demand side causes like successful marketing tactics (e.g.,

product differentiation and advertising) that increased the market shares for some

firms and reduced or even deleted the shares of others. This demand-side argument,

however, can also be broadened to include the cost side as well.

Specifically, the phenomenon of rising concentration can be viewed as a

result of the strategic dynamic game between competing firms. Simply put, the

competing firms may play strategies to increase the demand they face for their

produce, but these endeavors might be reflected in higher cost, as we observed in

our study for the largest firms. Perhaps, among the best examples of such dynamic

games, where firms block the entry for and/or crowding out other firms by

excessive sunk cost into marketing campaigns is given by Sutton (1991). A new

challenge, of course, is to develop a test for verifying this hypothesis, but this is

beyond the scope of the present study.
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Appendix

To fulfill the task--find an economics-justifiable aggregation methods for cost

efficienciesI follow the aggregation approach suggested by Fare and Zelenyuk

(2002), adapting it to incorporate the concept of returns to scale.

A critical assumption of the approach is that the group (entire industry, a

group within an industry, etc) technology is defined as the sum of firm's

technologies
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(Al) l(y' K R)=Lk(yk Irk)

where

(A2) L'(y' Ir)={xk: can produce k with r RTS}, y"

with = (xkJ, ..., XkN) e 9+ denoting firm k's input vector, k
= (Yki, ..., y) E

W+ its output vector (k = 1, ... , K). The index r and R will stand for description

of the returns to scale (RTS) of the individual and aggregate technology. To be

precise, the following four types of RTS are considered (see Fare, Grosskopf and

Lovell (1994) for details):

(A3) CRS Lk(t.y)=t.Lk(y),Vt>O

(A4) NIRS Lk (t k) t Lk (yk) Vt 1

(A5) NDRS <> Lk(t.y)Dt.LIc(yI),Vt1

(A6) VRS > (Al) and -' (A2) and -i (A3)

where "-i" is the logical operator for "not".

As a result, the following is true (see Fare, Grosskopf and Lovell (1994) for details)

Lk(ykJV)Ji(ykINI)Ltc(ykIC) and

I
V) Lc(y

I
ND) ç Lc(yc

I
C), Vyk

The definition of RTS can also be generalized to the aggregate technology in (AL)

(A7) CRS L(t y',..., t K) L(y',..., yK)vt > 0

(A8) NIRS L(t .y',..., t .yK) t .L(y',..., YK)vt 1
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(A9) NDRS L(t y' ,..., t y) t .
K

), Vt 1

(AlO) VRS -' (A5) and (A6) and -1 (A7)

As a result, the following will be true,

L(y' K
I
V) c L(y' K NI) I(ji' K C) and

L(y' K
I
V) ç L(y',..., K ND) L(y' K V),V(y',..., K)

Note that the group technology L(y' y') inherits its properties from

those of the different firm technologies L"(y"). (For example, if each L1'(y') is a

convex, compact set with inputs and outputs freely disposable, then so is

L(y' K)) Thus clearly, R, an index describing the RTS of the group

technology resulted from the aggregation, in general depends on the RTS of the

individual technologies (ii) entering the aggregation. (Recall that in our general

framework, each firm may use different output vectors k and may have different

technology Lk (including different RI'S)). The following two general result can be

established, which will be useful in further derivations.

Lemma 1.

If all individual technologies exhibit CRS then the aggregate technology in (Al)

also exhibits CRS.

Proofi

Suppose every firm k (k = 1, ..., K) has CRS technology, then (and only then) by

(A3): Lk(t k
j C) = t .Lk(yk I C), t> 0, for every k. Thus,

I
C) = t Lk(yIc C), i.e. by (A7) this means that

L(t y1,...,
I
R) = t L(y',..., K R), implying that the aggregate technology

is also CRS. q.e.d.
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Lemma 2.

If all firms have VRS technology then the aggregate technology in (Al) is also

VRS.

Proofi

Suppose every firm k (k = 1, ..., K) has VRS technology, then (and only then) by

(A6), for some points x',..., xK : x' e Ll(yl),...,xK e LK(yK)the following will

be true:

(All) t>l: tx'etL'(y')L'(ty'),..., txCEtLC(yK)Ll(tyl),and

(Al2) Bz >1: x' E rL'(y') L'(zy'),..., xK E TL!c (K) L'(ry')

(A13) 8 >1: x' E 8L'(y') L'(öy'),..., Sx" E 8L"(y") L'(öy')

but (A9) implies that

K< K<oo

3t > 1: t E t
L" (k) Lk (tyk), and therefore

k=1 k=1 k=1

(A14) t > 1: t L(y' yK) L(t y' ,..., t
,K) (using (Al)).

Similarly, (A 12) implies that

K< K<' K<J>1:
k=1 k=1 k=1

and therefore

(A15) r>1: v.L(y',..., y")L(r.y',..., r.yK) (using(Al)).
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Analogously, (Al 3) implies that

28>0: 8xkE8Lk(yk)Lk(6ylc), 8>0,
k=I k=I k=1

and therefore

(A16) 28 > 0: 8. L(y' yK) L(8 y' ,..., 8 ),K) V8 > 0 (using (Al)).

Finally, note that (Al2) and (A13) and (A14) together imply that none of the (A7),

(A8), (A9) is satisfied, implying that this is the case of (AlO), i.e. aggregate

technology is also VRS. q.e.d.

Analogously to the disaggregated level (Al), the group minimal cost is defined as

(A17) C(y',..., K pIR)=min{px : xeL(y',..., K JR)}

and the group 'overall cost efficiency' is defined analogous to the firm's one (see

2.2.6a) as

K K -
(Al8a)F(y',..., y", ckIC)=min{G: (ck).OC(yl,..., K pIC)}

k=1 k=I

Immediately from this definition I get the closed form of the group 'overall cost

efficiency' measure

K
(A18b) (y ,..., y ck

yK, plc)I K

k=I
K

k=I
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Similarly, the group 'pure cost efficiency' is defined analogous to the firm's one

(see 2.2.6a) as

K 7K '\
(A19a) F(y',..., K ck

I
V) = min{O: I >c" 18 C(y',..., yK,

I
V)}

k=1 k=I )

from which it follows that

K C(y' K

(A19b) (l,, K ck IV)=
,..., y ply)

k=1
K

k=1

Defining the group scale efficiency on the aggregate technology is a bit

more tricky. Recall that while defining the individual scale efficiency, we first

adjust for the "pure cost efficiency" (to bring the observation to the frontier) and

then measured the scale efficiency from that "adjusted" point. On the aggregate

level, there are at least two ways to do the adjustment.

The first one, starts with aggregating the observed individual costs, ck

then correcting this cost for the industry pure cost inefficiency,

F(y',..., K,
1c1'

I
V), and then measuring the scale efficiency from that

point using F (.). Hence, letting C ck) . F (y1 yK, ck
I
V) (note

the resemblance with the definition on disaggregated level), one measure of group

cost scale efficiency can be defined as

(A20) SE(y',..., yK Kck).(yl yK, dc)
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Using this definition and homogeneity property of the l.h.s., I get the

following

P,(y',..., K Eick C)KVK(A21) SE(y',..., =1c F(y' K =lck IV)

C(y',..., K pJC)
by(A18b),(A19b)

C(y' K
ply)

i.e., it is the ratio of the group virtual minimal cost (associated with the group

constant RTS technology and group MES) to the group true minimal cost. Hence,

this measure can be used to decompose the group 'overall cost efficiency' as

(A22) P(y',..., y", 1c" I C)

i.e.,

= P,(y',..., yK
1c" V)xSE(y',..., yK, rick)

Aggregate Entire Cost Efficiency = Aggregate Pure Cost Efficiency

x Aggregate Cost Scale Efficiency

The second approach is to start not with aggregation, but with correcting the

observed individual costs for the pure (individual) cost inefficiency to get

= c"F"(y",c'
I

V), then aggregate it into the 'corrected' industry observed

costs, k and then measure the group scale efficiency from that "corrected"

point using the same F (.).The resulting measure is,

(A23) sE;(y',..., yK, yK, c1k IC),
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where c = c"F" (k c" V), from which it follows that

C(y',..., K plC)
(A24) sE:(y',..., K, 1ck)= Kk

i.e., it is also the ratio of the industry minimal cost (associated with the constant

RTS technology and industry MES) to the sum of individual cost corrected for pure

cost efficiency.

Both measures are intuitive and are the aggregate analogs of the

disaggregate measure of cost scale efficiency. They are however received by

different aggregation routes, particularly, by the order when the aggregation steps

in: before or after adjustment for pure scale inefficiency.

It is worthwhile to note at this point that this is not the only way the group

efficiencies might be defined. In particular, what we have done is first aggregated

individual technologies and then defined the group efficiency measure on it, using

the same efficiency measures as we used on the disaggregated level.

Alternatively, the group efficiencies may be defined as some aggregates of

the individual efficiencies. That is, perhaps there exist appropriate aggregating

functions Gf : RK _ 9, (i 1, 2, ...) for which we may derive the group pure

cost efficiencies from the corresponding individual efficiencies, i.e.,

K K K(A25) F(y',..., K c',..., c' lC)G1(P'(y',c1 lC),...,F (y ,c IC)),

I K I K(A26) Fc(y ,..., y , c ,..., c lV)G2('(y',c' V F" K K
I ,,., c (y ,c IV)),

and derive the group cost scale efficiency from the individual cost scale

efficiencies, i.e.,
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(A27) sE:(y1,...,
K 1,, cK)G3(sE(yI,cl),...,sE(yK,cK)).

Moreover, if (A25) and (A26) can be constructed, then another alternative

(forth!) definition of cost scale efficiency might be appropriate to consider:

I K I K
I K I K) IC)

(A28) ,..., y , c ,..., c
I K I K,c,...,c V)

i.e., this measure is defined analogous to (A21), but using (A25) and (A26) as the

components.

A challenging question now is: Which aggregate measures to choose for our

measurement? Ideally, one wants a group efficiency measure to be independent on

whether it is obtained by first aggregating the technologies and then defining the

efficiency measure on it or derived from the individual efficiencies. It turns out that

for the pure cost and cost scale efficiencies such ideal can be achieved! Leaving all

the manipulations that will follow aside, the key result that brings us to such an

ideal is stated in the following proposition.

Proposition 1. Minimal cost of a group (A17) is equal to the sum of the minimal

cost of all members of this group, i.e.,

K
(A29) C(y',..., K, pIR)=>Ck(yIc,pIrl).

k=1

Proof

This is a cost version of the proof from Fare and Zelenyuk (2002).

Let x1' E Lk(y), then x' E L(y1
yK) and hence
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Cy' K p)pixk=ipxIc,i.e.,

(A30) C(y',..., K p)1C"(y",p).

Conversely, let x E L(y' yK), then by definition there are E L" (yk) so that

x1x". Hence,px = p1x" =1pxk >j1C" (yk,p), and

(A31) C(y',..., K p)1Ck(yk,p)

Inequalities (A30) and (A 31) prove the claim. q. e. d.

To immediately see the implication of this proposition, let 8k represent the

cost-share weight of firm k (k = 1, ... , K) relative to the other firms in the group,

i.e.

(A32) Sk

then we get the following result.

Corollary 1. The group cost efficiency is the share weighted average of the firms'

cost efficiencies, i.e.,

K
(A33) P(y',..., K

>.1c' IR)=F"(y",c" Ir')S"
k=1
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Proofi

Divide both sides of (A29) by xc" and apply definition of cost efficiency)

This corollary tells us that (for the special form of aggregate technology in

(Al)) the group cost efficiency defined on the aggregate technology and that

derived from the individual efficiencies are equivalent. Lemma 1 and 2 above help

us being more concrete on the RTS in the result (A32). Namely,

K
(A33a) F(y1,...,

K y1ck IC)=F(y!c,ck C)S"
k=1

K
(A33b) F(y',...,

K 1k
I

V) =
I

V).Sk
k=1

thus obtaining a way to find the group overall and pure cost efficiencies from the

corresponding individual efficiencies. In other words, a solution to (A25) and

(A26) is found by choosing the aggregating function G," : * 9V, (i =1, 2) to

be weighted arithmetic average with weights defined in (A32).

Our next goal is to establish similar result for the cost scale efficiency. This

task, however, is more challenging since we have four alternative definitions here.

Corollary 2. The cost scale efficiency in definition (A20) can be obtained as

Fk(ykck IC).Sk
ick) k=1(A34) K

Fk(ykck IV).Sk
k=I

Proofi Substitute (A33a-b) into (A21).



143

Corollary 3. The two cost scale efficiencies in definitions (A20) and (A23) are

equal.

(A35) SE*(yI,..., K ick)= (l >..1ck).

Proofi

Starting from (A24),

y plC)
y ,..., y >ck) C(y',..., K

I

C) C(y',..., K

SE(' K
K

k
K = >ckp;k(yk,cIc

I

V)
k=1 k=I

Ck(yk,pIC)
ck(yk,pIC)k,k

k=1 C" k=1 by (A29)

kl k=i c" k=1

Fk(ykck IC)S"
k=1 (by definition of cost efficiency and (A32))

F(ykc( IV)S"

q. e. d.

To consider the third definition of cost scale efficiency given in (A27), let

k represent the adjusted for pure cost inefficiency cost-share-weight of firm k (k

= 1, ..., K) in the group, i.e.

(A36)
c" .F"(y",c"

I

V)

c" .F"(y",c"
I

V)'

then we obtain the following result:
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Corollary 4. If the cost scale efficiency in definition (A27) is such that

G R
K R' is the weighted arithmetic mean, where the weights are the cost

shares adjusted for pure cost inefficiency defined in (A36), i.e.,

K
(A37) (1 K fick IC)=SE(yk,ck).SJ(,

k=1

then (A27) is equal to the cost scale efficiency in definition (A20), i.e.,

K VK k(A38) (y',..., K C1ck) = (y ,..., y , I_k=IC ).

Proofi

Starting from result in Corollary 2, stated in (A34) we get

Fk(yk,ck IC) K
Fk(ykckIC).Sk kI

k=I

C"

K

k F"(y",c"V).S" F"(y"c"IV). Kk=I k=1
C"

k=I

KI(yk,ck IC) c".(y",c" IV)

k=iF (yk,ck IV) Fk(ykCk IV).ckJ
k=1

K
=

k1
q.e.d.

Note that since (A20) can be written as (A21), its relationship to the forth

definition of scale efficiency follows immediately from Corollary 4.

Finally, note that according to all the group efficiency measures outlined

here satisfy the Blackorby and Russell (1999) aggregate indication axiom (which is

a special case of the agreement property in Aczél, 1990, p. 24), stating that the

group is efficient if and only if all firms in the group are efficient.
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