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The classical theory of elasticity and plasticity does

not recognize explicitly the existence of a "transition

zone" between elastic and plastic states, which instead,

makes extensive use of ad-hoc, semi-empirical laws, such as

yield conditions, at the "yield surface" to match both the

extreme states. In the present investigation, it is shown

that these ad-hoc, semi-empirical laws turn out to be tot-

ally unnecessary if one appreciates the existence of a

"transition zone" introduced by Seth in recent years, which

is quite realistic from the point of view of physical con-

siderations. A transition phenomenon, being an asymptotic

one, should be dealt with as a limiting process, and so the

transition state should be obtainable from the basic system

of equations characterizing the elastic state as a limiting

case. The plastic state is similarly to be obtained from

the transition state when a certain parameter is made to
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approach zero.

In order to appreciate the existence of a transition

state, it is basically important at the outset to identify

the "transition points" from the differential system which

characterizes the physical phenomenon. It is examined in

this thesis how and in what manner transition is to be

understood in the case of physical phenomena. It is found

that there are three ways in which a transition could be

identified analytically:

at transition, the differential system character-

izing the elastic state should attain some criticality,

the complete breakdown of the macroscopic struc-

ture at transition should correspond to the degeneracy of

the material or spatial strain ellipsoid,

if we consider the plastic state as an image of

the elastic state, then at transition the Jacobian of

transformation is bound to behave singularly.

The last condition turns out to be the most general

one from which a general yield condition is deduced and it

is found that most of the yield conditions present in cur-

rent literature come out as special cases. Also, it has

been seen that our results take into account Bauschinger's

effect, while neither Tresca's yield condition nor von-

Mises yield condition does. It has also been shown that

transition fields naturally being non-linear in character,



are sub-harmonic (super-harmonic) fields.

Once one recognizes the "transition zone" as a separ-

ate state, the natural question of determining the consti-

tutive equation also arises. In order to answer this ques-

tion and to illustrate the procedure, four problems of

practical interest are discussed in detail. The problems of

elastic-plastic transition of shells and tubes subjected to

external pressure are solved. Further, by considering the

effect of a steady state temperature, the problems of

thermo-elastic-plastic transition of shells and tubes are

also solved. No yield conditions have been assumed. It is

found that if they exist, they come out of the differential

system as a consequence of the transition analysis. Some

of the results have been compared with those of the classi-

cal theory.

Possible scope of future work, where the transition

concept may be profitably exploited, has also been dis-

cussed.
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PART I

TRANSITION PHENOMENON IN CONTINUUM MECHANICS



THERMO - ELASTIC - PLASTIC TRANSITION

CHAPTER I

INTRODUCTION

1.1 Preliminary Remarks.

Transition from one state into another is a common

phenomenon in Nature. Boundary Layers, Shocks, elastic-

plastic transition, creep, fatigue, shadow-boundary, etc.

are some of the familiar examples of transition phenomena.

A state 'A' with some intrinsic properties of its

own changes to another state 'B' with different proper-

ties than that of 'A'. 'Why' and 'how' this change oc-

curs, are two of the principal questions in continuum mech-

anics which concerned the early research workers of this

subject. Noteworthy mentions are Coulomb Tresca, Saint

Venant, von-Mises, Lel/y, Hencky, Beltrami, Huber, Prandtl,

Reuss and many others. The recent workers in this field

are Drucker, Friedrichs, Howard, Green, Prager, Nadai,

Sachs, Bland, Hill, Johnson, Seth, Mellor, Thomas among

others. While the first question has been dealt with by

many authors successfully, the answer to the second ques-

tion still remains unsatisfactory. To be specific, let us

consider the elastic-plastic transition; the elastic state

when subjected to internal and external stresses, under

suitable circumstances, goes to plastic state whose intrin-

sic properties are basically different from those of the
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plastic state. Then a question arises. Is it reasonable

to assume that properties of the medium in the elastic

state change abruptly to those of the plastic state and

that can one divide these two states by non-differentiable,

singular or discontinuous surface, so called yield surface?

Most of the authors up to the present time are in com-

mon agreement that the situation is not so. A medium can

not change from state A into state B without passing

through an intermediate state T. Even from the early part

of the nineteenth century, Tresca, Stokes, Love and others

have studied about this intermediate state, but none of

these authors have explained the actual character of this

region. Recently Seth [1963] has given a thorough analyti-

cal treatment of this intermediate region. He has named

this intermediate region as 'Transition Region'. So A

passes into B through T. In a large number of cases A

and B may be treated as linear fields, but T is essen-

tially a non-linear field, since both A and B dovetail

into each other in T. This essentially non-linear transi-

tion region T remains untreated by research workers and

instead non-differentiable, singular surfaces are intro-

duced to connect the regions A and B. These, in turn

have necessitated the increasing use of ad-hoc, semi-

empirical laws, such as yield conditions, creep-strain laws,

jump conditions across shocks etc. These ad-hoc, semi-

empirical laws are based on long experimental results, but
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very few authors have ever tried to justify these ad-hoc

assumptions with analytical basis. Seth's approach towards

this end is an attempt at bridging the gap between seeming-

ly unrelated phenomena, the approach which is based on

sound mathematical ground.

At a transition, the fundamental structure of the med-

ium undergoes a change. The particles constituting the

material re-arrange themselves and give rise to spin, rota-

tion, vorticity and other non-linear effects. Hence a sort

of non-linear or non-conservative instability sets in due

to the non-conservative nature of the spin forces. That is

why T is always non-linear in character. This explains

why at boundary layer transition different types of spiral

formations or vortex motions are observed. This suggests

that at transition, non-linear terms are very important and

neglect of which may not represent the real physical pheno-

menon. Transition fields are, therefore, non-linear, non-

conservative and irreversible in nature and should not be

treated as superposition of effects.

In the classical theory of elasticity, in particular,

the displacements are assumed to be so small that the

squares and products of displacement gradients are neglect-

ed and the measure of strain thus becomes linear. But non-

linear terms are very important at transition state. Lin-

earization of problems has all the advantages of existence,
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uniqueness and stability. But it also has disadvantages in

that it may not be able to explain or represent all the

changes and phenomena occuring in a medium. For instance,

the well known effects such as the Kelvin and Poynting ef-

fects and the occurrence of secondary flows in an elliptic

tube cannot be explained by a linear theory. A natural

phenomenon is seldom the result of linearized superposed

effects. Any event in Nature is the result of a number of

others dovetailing into one another and hence any attempt

at the exact formulation of a physical problem essentially

produces non-linearity in the field equations.

1.2 Present Status of Elastic-Plastic Transition.

Tresca, as early as in 1868, assumed that there exists

a 'mid-zone' between the elastic and plastic regions as

against Saint Venant's two zone theory. This idea is em-

bodied in the remarks in Todhunter and Pearson's "History

of Elasticity and strength of Materials" [1893],

"Saint Venant distinguishes in his cylinder
only two zones, an elastic and plastic one,
but Tresca supplies a mid-zone... . Saint
Venant's discussion has the theoretical ad-
vantage, but it seems not improbable that
physically something corresponding to Tresca's
mid-zone has an existence".

Although Tresca's 'mid-zone' theory was ignored by

later research workers for the sake of analytical conven-

ience, it has long been felt, however, that such a 'mid-

zone' actually does exist! As for example in elasticity,
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the perfect elasticity is one extreme and the ideal plas-

ticity is another. The response of a majority of materials

to applied boundary traction and body forces is in between

these extremes and it is physically impossible to draw a

sharp line between the elastic and plastic states. It has

long been realized that the plastic yielding of an elastic

material is an asymptotic behavior and as a consequence

there arises a necessity of giving a unified treatment

which can describe both the behavior patterns under differ-

ent physical environments. So recent trends in continuum

mechanics exhibit an attempt at a global treatment of the

changes taking place in a medium. Several authors seem to

approach these transition problems in elasticity, plasticity

or in fluid mechanics introducing the idea of 'quick tran-

sition' zone and Inonuniformity'. These problems have

been treated by using perturbation techniques which are not

always satisfactory.

In 1954, Friedrichs [1955] in his address to 'The

American Mathematical Society' explains how asymptotic

phenomena occur in physical problems. His treatment of

these problems employs perturbation techniques to very

small regions called 'quick transition regions' and cannot

be used for global distribution phenomena.

A few more attempts have been made in this direction

notable of which are by Thomas, Green and Seth.
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In the Lelly-Mises theory the effect of elastic-strain

in the plastic range has not been taken into account. This

defect was removed in the Prandtl [1924] and Reuss [1930]

theory dealing with the general case. Then Thomas [1954,

1955] extended this theory which treats the case of com-

bined constitutive equations of elastic and plastic flow.

Green [1956] has developed a general theory of work-

hardening, incompressible materials as a special case of

Truesdell's theory of hypo-elasticity and has shown that a

yield condition is implied as an asymptotic approach for

infinite values of the strain. Based on this result, it

has been suggested that a physical condition of plastic

yielding can be predicted on the basis of the theory of

hypo-elasticity and that plastic yielding itself is a phen-

omenon associated with very large strains.

But none of the above authors have recognized transi-

tion state as a separate state like that of elasticity or

plasticity and hence did not consider the existence of con-

stitutive equation in the transition state.

In a series of papers, Seth [1962-1964] has given an

entirely different orientation to this interesting problem

of transition. He has developed a new 'Transition theory'

of elastic-plastic and creep deformation on sound analyti-

cal base.

The classical Theory of Elasticity and Plasticity as

has already been mentioned, divides the spectrum of deform-
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ation of solids into two distinct states, one in which the

deformation is recoverable and the other in which it is not.

In current literature, both elastic and plastic field equa-

tions are solved separately and later joined together by

the so called yield condition. Again in the behavior spec-

trum of materials perfect elasticity is one extreme and i-

deal plasticity is another and it is physically impossible

to draw a sharp line between these two states. It is

therefore natural to expect that any physically realistic

theory should include mid-zone or transition state. At

present, such problems like elastic-plastic deformation,

creep, fatigue, boundary layers, shocks are treated by as-

suming ad-hoc, semi-empirical laws with the result that

discontinuities, singular surfaces, non-differentiable re-

gions have to be introduced over which two successive

states of a medium are matched together.

Since transition from one state into another is an

asymptotic phenomenon as explained by many authors, Seth

has argued that at transition, the differential system gov-

erning the physical phenomenon should attain some sort of

criticality. Once the 'critical points' or 'Transition

points' are recognized, the asymptotic solutions at these

'Transition' points give the solutions corresponding to the

'Transition' states. However all the transition points

thus obtained from the differential system may or may not

correspond to any transition state. Further, in the case



of elastic-plastic deformation, the setting in of plasti-

city is intimately connected with the geometry of deforma-

tion rather than the state of stress at a point. For de-

finiteness, if in an axisymmetrical case, r' and r are

the distances of an element from the axis of symmetry be-

fore and after deformation respectively, then the elastic

property of the material at the point breaks down when the

3r'differential stretch -wT- becomes zero or infinity. The

material is then said to be in the transition state which

is supposed to be a 'mid-zone' between elastic and plastic

states. The material attains fully plastic state when it

tends to become incompressible, that is when Poisson's ra-

tio approaches T.

1.3 Objective of the Present Study

In order to explain the elastic-plastic transition, it

is first necessary to recognize the transition state as an

asymptotic one and in this thesis, it is our main aim to

eliminate the need for assuming semi-empirical laws, yield

condition, creep-strain laws, jump conditions etc. Further,

we consider the effects of a steady state temperature in

the elastic-plastic transition. We also obtain the con-

stitutive equation corresponding to the transition state.

In this investigation, we find that some of the already

known solutions of elastic-plastic problems come out as

special cases from our analysis.

8
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One of the most interesting results in this work con-

cerns the identification of the transition state. Seth i-

dentified the transition state in which the governing dif-

ferential system shows some criticality. Purushothama

[1965] explained that transition state corresponds to the

degeneracy of the reciprocal strain ellipsoid. Later

Hulsurkar [1967) indicated that this also can be identified

as the vanishing of the Jacobian of transformation. Both

Purushothama and Hulsurkar did not give all the analytical

details. Here these ideas are carried out in detail. Sur-

prisingly, all the three treatments lead to the same result

and the most general form of yield condition is obtained

from where all the existing yield conditions in the present

literature may be obtained as special cases.

1.4 Plan of the Present Investigation

We have divided our work into two parts. Part I is

devoted to the theory of elastic-plastic transition. In

Chapter 2, the classical theory of elasticity and plasti-

city is discussed briefly. A discussion on strain measure

in classical elasticity is also included in this chapter.

The general treatment of transition in cartesian coordi-

nate system is developed in Chapter 3. Here we find that

all classical yield conditions come out as special cases

from the most general yield condition which is obtained as

a result of transition analysis.
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In Part II, we apply the concept of transition to some

elastic-plastic and thermo-elastic-plastic deformation

problems. In Chapter 4, a shell which is made to yield un-

der pressure is discussed. In Chapter 5, we discuss the

elastic-plastic deformation of a tube with finite length

under pressure. Chapter 6 and 7 are devoted to shells and

tubes which are made to yield under pressure and tempera-

ture. Chapter 8 contains the summary, general discussion

and scope of further work.



CHAPTER 2

BASIC CONCEPTS OF THE THEORY OF ELASTICITY AND PLASTICITY

2.1 Classical Theory of Elasticity and Plasticity

Consider an elastic solid which is subjected to some

small external loads for which the deformation is elastic;

that is, upon the release of these loads the body resumes

its initial unstressed and undeformed state. The range of

stresses and strains for which this is true is known as the

elastic range. The elastic deformations for a linearly

elastic solid which is homogeneous and isotropic are gov-

erned by linear Hooke's law:

T =
XemmSkk + 2pekk (2.1.1)

where X,p are Lame's elastic constants, ekt is the in-

finitesimal strain tensor and T is the stress tensor.

Experiments indicate that when the external loads are

increased gradually, beyond a certain value of loads, the

elastic character of the body is destroyed; that is, upon

the release of loads the body will not reassume its ori-

ginal state and so retains some permanent deformations.

The critical combination of stresses for which the perma-

nent deformation would first set in may be expressed math-

ematically by a relation of the form

11
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= 0.
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This permanent deformation is known as plastic deform-

ation.

The theory of elastic-perfectly-plastic solids has two

regions: (1) the elastic region, for which Hooke's law is

valid and (2) the flow region, for which the following

constitutive equation

= Ad (Skt 2pdm, (2.1.3)

may be used, where dm, is strain-rate and A,p now may

be functions of d or its invariants. Both of these

regions are connected by the so-called yield surface.

For an isotropic and homogeneous elastic material, un-

til we reach the yield surface, the material is assumed to

remain homogeneous and isotropic. Therefore the yield con-

dition such as (2.1.2) should be expressible only in terms

of stress invariants:

f(I1 , 12 , 13) 0 (2.1.4)

I's being the three invariants of the stress tensor T...1]
It is argued that during yielding the material becomes in-

(2.1.2)

compressible so that I = 0. Moreover 13 is small, and

12



hence (2.1.4) should be of the form:

g(I ) = constant. (2.1.5)

There are several yield conditions assumed in the

classical theory which may be described in the following

three categories:

Maximum Stress Theory

According to this theory it is the maximum principal

stress in the material that determines plasticity and fail-

ure regardless of what the other principal stresses may be.

This cannot be a true picture of the facts because (a) if

this theory were correct, metals would yield under high

hydrostatic pressure, (b) fracture of a test speciman would

be expected to occur at right angles to the maximum stress.

Maximum Strain Theory (Saint Venant's Theory).

According to this theory, the maximum positive elas-

tic extension of the material in a stressed body deter-

mines failure by fracture or by plastic flow. This also is

not borne out by experiments.

Maximum Shear Theory

Following some results on the extension of metals,

Tresca, among others, concluded that failure should occur

on those planes in the materials, that are subjected to the

greatest shear stresses. This is often found to be the

case in practice; the most striking example being the form-

13
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ation of Liider's lines in iron and mild steel.

Tresca's yield condition is T11
-whereT33 =

T11 ' '

are principal stresses such that
T22 T33

T11
>

T22 '

which can-alternatively be expressed as

d 2

Tll = ' (2.1.6)

Tlld
being the deviatoric stress provided T22 = T33.

Note that Tresca's yield condition is not an invariant re-

lation unless two of the stresses are equal. Later modi-

fications of the shear stress theory are as follows:

Mohr's Theory or Guest's Law

This states briefly, that the maximum shear stress

determines the beginning of plastic flow independently of

the other components of shear stresses; that is when one

of these quantities T11
-in-

T22 ' T22 - T33 ' Tll - T33

creases to a certain value y. At the same time, according

to Mohr, the shear stress Ss in the planes of slip

reaches in the limit, a maximum value dependent on the nor-

mal stress Sn
acting on the same planes and also on the

properties of the material.

Hencky von-Mises' Theory

According to this theory, the sum of the squares of

the principal stress differences should increase to a cer-

tain value before failure begins; that is, plastic strain

begins when



(111 - 122)2 (122 - 1.33)2 (133 111)2 =
2y2,

T1 - 133 =
1 v.5

15

(2.1.7)

where y is yield stress in tension.

If two of the principal stresses, say 122 and 133
are equal, then (2.1.7) reduces to the Tresca's yield con-

dition (2.1.6). Again, if, instead of assuming
122 = T33

1we take T33 = 7(T11 +22') which is known as principal

line theory, then (2.1.7) reduces to

(2.1.8)

which is again of the Tresca's form of yield condition.

The relation 122 = 133 is known as Haar-Kermen hypothesis.

Now, as far as the plastic range is concerned, two of

the most important theories are those due to Levy-Mises and

Prandtl-Reuss Theory. The first of these does not take in-

to account the elastic effects in the plastic range, while

the second does. Both of these currently used theories

divide the analysis into two separate parts, one for the

elastic region and the other for the plastic region. The

two regions are then joined together with a yield condition.

The Levy-von Mises equation may be expressed in the

form

d = T dXde..
ij

(2.1.9)



where d is the total strain-increment, dX is a sca-eij

lar factor of proportionality and Tijd is the stress

deviator. Since Levy and von-Mises used the total strain-

increment, and not the plastic strain-increment, these

equations are strictly applicable only to a fictitious

material in which the elastic effects are absent.

The constitutive equations of plasticity due to

Prandtl-Reuss is

deP = T d dX,
ij

T.

where deP is incremental plastic strain. Hence, theij

total strain increment is the sum of the elastic-strain

increment and the plastic strain increment. Thus,

de .= de.. + de..
13 13 13

dd
Tij 1-2a= Tijd' + 6. .d. .

2G 3E 13 ii

(2.1.10)

These are applicable to elastic-plastic materials. For

further details we refer to the books "Plasticity" by

Hill [1950], "Non-linear Theory of Continuous media" by

Eringen [1962], "Theory of Perfectly Plastic Solids" by

W. Prager and P.G. Hodge [1951].

16
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2.2. Strain Measure in Classical Elasticity Theory

That the strain-measure in elasticity is not uniquely

defined is clear from the existence of a number of strain

measures in use; e.g., Cauchy, Swainger, Hencky, Almansi

and Green measures. The basic principle of defining a

strain measure is to consider the difference of the squares

of line elements in deformed and undeformed states of the

material. An alternative approach is to define the stretch

as the ratio of the line elements in the deformed and the

initial configuration, and the strain measure as any func-

tion of the stretch, which vanishes when the stretch is

unity.

Seth [1962a ] has defined the generalized strain mea-

sure by the relation

1

X. = (1-n e .) (2.2.1)

X e1 being the principal stretches and principal

Almansi strains respectively and m and n are two con-

stants known as the measure index and the irreversibility

index respectively. This generalized strain measure when

m = 1, reduces to the known strain measures due to Cauchy,

Green, Hencky, Almansi and Swainger for the values of

n = -1,-2,0 2,1 respectively. Other strain measures can

be obtained by choosing different suitable values of m
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and n and then forming a linear combination. In visco-

elasticity, Narasimhan and Sra [1968] have introduced gen-

eralized measures of the deformation-rate involving velo-

city gradients but also those of a second deformation-rate

involving acceleration gradients and have successfully ex-

plained viscoelastic behavior of materials.

2.3 Constitutive Theory of Materials

There are some fundamental axioms essential in the de-

sign of a theory of continuous media. They are considered

to be self-evident as a result of our long experience with

the physical world. The basic principles upon which the

theory is constructed are:

Conservation of mass,
Balance of momentum,
Balance of moment of momentum,
Conservation of energy,
Principle of entropy,
Conservation of charge,
Faraday's Law of induction,
Ampere's Law.

These basic principles are valid for all materials irres-

pective of their constitution.

When different substances of the same mass and geom-

etry are subjected to the same external agents, the response

is generally observed to be different. This is caused

mainly by the differences in the constitution of the vari-

ous substances. Therefore in the description of physical

phenomena the constitution of bodies plays an essential and
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important role. It is, therefore, expected that those ba-

sic principles generally are not sufficient to predict uni-

quely the behavior of all substances under prescribed boun-

dary and initial conditions. In order to take account of

the nature of different materials, we must, therefore, find

additional equations identifying the basic characteristics

of the body with respect to the response sought. These e-

quations are known as constitutive equations which charac-

terize the constitution of the medium under consideration.

In the theory of continuous media this is done by intro-

ducing models appropriate to the particular class of pheno-

mena under scrutiny. There exists certain conditions and

invariance requirements [Eringen, 1962] which should b

satisfied by all such models.

The present trend of explaining experimental results

relating to irreversible phenomena such as elastic-plastic

transition, creep, fatigue, etc., consists in assuming com-

plicated constitutive equations, yield conditions, creep

strain laws, etc. The resulting constitutive equations

are found to involve many unknown response coefficients.

The main source of this trouble is the use of a linear or

a classical measure of strain, even though the strains oc-

curing in the experiments are non-linear in character.

Thus, the order of the strain measure used is not fixed

with the result that the constitutive equations involve un-
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known response coefficients and thus have become very com-

plicated. In order to eliminate the need for assuming un-

known response coefficients, yield conditions etc., Seth

introduced the generalized measure and transition concepts.

It has already been explained that constitutive equa-

tions for different media should be different. From a con-

tinuum view point, constitution should be understood in a

macroscopic sense. Hence the constitutive equations for

the elastic state of a solid should be basically different

from that of the plastic state. The fundamental structure

of the transition state undergoes a change as a result of

two states, elastic and plastic, dovetailing into each

other. As a consequence of the above fact, the constitu-

tive equations for the transition state should be different

from that of elastic and plastic states.



CHAPTER 3

GENERAL TREATMENT OF TRANSITION IN

ELASTIC-PLASTIC DEFORMATION

3.1 Preliminary Remarks

In the previous chapters we have explained how transi-

tion occurs in Nature as an asymptotic phenomenon. In this

chapter, our objective is to show how the transition state

can be identified. Both geometrical and analytical aspects

concerning the transition phenomena will be discussed in

detail, as identification of the transition state is basic-

ally important. Also, in this chapter we shall show that

transition fields are sub-harmonic (super-harmonic) fields.

3.2 Identification of the Transition State

When a material at a point has yielded, it is more

reasonable to expect that the material at the neighboring

points are on their way to yield, rather than assume that

they remain in the elastic state as completely opposed to

the plastic state of the nearby material. As the plastic

yielding of a material is a consequence of collapse of its

internal or macroscopic structure, the plastic yielding

will be complete or partial depending on the existing phy-

sical conditions. This leads us again to the recognition

of two material states: a transition state and a plastic

state.

21
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There are three different ways to explain how transi-

tion may occur from a state A to another state B:

At transition, the differential system
defining the elastic state A should
attain some criticality.

The complete breakdown of the macro-
scopic structure at transition should
correspond to the degeneracy of the
material (spatial) strain ellipsoid.
This means that the length of at least
one of the axes of the strain ellip-
soid should be zero or infinity.

If we consider the plastic state B as

an image of the elastic state A, under
the transformation

k
= xk(XKx ),

then at transition, the Jacobian of the
transformation whould be zero or infinity.
This means when transition occurs, one to

one correspondence between A and B no

longer holds.

In the next sections, we discuss the above-mentioned

modes of transition starting from the case (3) namely the

vanishing of the Jacobian of transformation which is the

more general one.

3.3 General Treatment of Transition Theory Corresponding

to the Vanishing of the Jacobian of Transformation

Consider the transformation

k K
xk = x (X ),

which maps the metric space A into metric space B. If

we identify B as the plastic state and A as the elas-
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tic state then the isomorphism of the transformation is

presumably destroyed, since this process is irreversible

and the material may change from elastic to the plastic,

creep or fatigue state. Hence the Jacobian of transforma-

tion is bound to behave singularly. The vanishing of the

Jacobian will, therefore, correspond to the transition

state from A to B.

When a continuum changes from a state A to another

state B, as has been explained before, the invariants of

the stress and strain tensors undergo some kind of a con-

straint. This constraint should be obtainable from the

condition, namely the vanishing of the Jacobian of trans-

formation, since the latter corresponds to the transition

state.

If u,v and w are the displacements along the rec-

tangular cartesian coordinate axes, then

X = x - u, Y = - v, Z = z - w,

(X,Y Z), (x,y,z) being the coordinates of a point in the

undeformed and deformed state respectively. Hence the

Jacobian



J =

J

auDV Dw
1 "

3x ax

Du DvDw
y

1 - -53r- ay

au Dv
Dz az

referred to the deformed state and

, Du Dv Dw
+ --

DX DX Tfc

Du , av Dw

Du Dv Dw-
1 +

z az az

referred to the undeformed state'.

From (3.3.1) we have

1 - 2e- 2e - 2e
xx xy xz

J2 = -2e
yx

1 -
2eYY

aw
Dz

- 2e
yz

- 2e- 2e 1 - 2e
zx zy zz

Du D D

where 1 - 2e = -2- +
u 2 +

Dv 2 +
W) 2

xx ax ax ax dX
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(3.3.1)

(3.3.2)

(3.3.3)



where

22,_ Du Du 4_ Dv 3v
- 2exy Dy Dx' a x Dy Dx Dy

Dw Dw
+ -- etc, .

3x Dy

From (3.3.3), if J = 0 which is a transition condition

corresponding to asymptotically large extensions, we have

1 k St,

= 6 e
1 1! k

1 kmknJ' = 8
2 2! 2, ne k m'

1 kmpf6nq
J' = 8 eee= det ek .

3 31 knqkmp

The symbols 8kmn and

deltas and are defined as

k m p
n

1- 2J' + 4J' - 8J' = 0
1 2 3 '

(3.3.4)

k m P q are generalized Kronecker
n

1(-1), when subscripts are distinct
numbers taken from 1,2,3,...
and the superscripts can be
brought to the same sequence
of the subscripts by an even
(odd) permutation;

0 otherwise.
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Referring to the principal axes of the strain ellip-

soid in the deformed state, we have from (3.3.4)

8J3 - 4J + 2J1 = 1, (3,3.5)

where

J1
= 1

+e2 +
e3 '

J2 =e11e22
+ e233 +

e11e3
,(3.3.5a)

1e22e33

e11 ' e22
and e33 being the principal strains. Rela-

tions similar to (3.3.5) could also be obtained from

(3.3.2).

The constraint (3.3.5) should hold at transition ir-

respective of any type of medium, isotropic, anisotropic,

homogeneous or heterogeneous and should come out from the

transition condition independent of the constitutive equa-

tions and the momentum equations. The strain (stress) in-

variants are, in general, independent of each other; a

functional relation exists between them only at the trans-

ition state because of the constraint.

Now from the constitutive equations

T.. = X6.. e + 211e..
13 13 aa 13

26



where e.. are principal strains.11

Hence

1 - 2a
I1

1 2J2=-7[(1+c0212 -012 - a)I ],
E-

1

3

LT3 = + a - a(1 + a)211 + a I1]'
E3

where the Ik's are stress invariants and Jk's are

strain invariants, E is Young's modulus of elasticity,

and a is Poisson's ratio.

Now from (3.3.5) we have

41(1 + a)313 - a(1 + a) 1112+ a213]1

4
- -7[(1 + a 212 - a(2 - a 12]

1

27

2+ -(1 - 2a)I = 1. (3.3.6)

we have

[ 11 - a(T22 T
)3,

1

e22 = f[T22 a(T11 T 3))'

1

e33 = f[T33 a(Tll T )11



and

= 211 - 612

T. = T../E, 1 /E = K1
1

K =It/
2 2

2

Then (3..3.6) becomes

8[(1 + a)3K3 +c(l+ a)2K - 7a(a2 - a + 1)K3
1

1 1

(3.3.7)4 12
+ 7[7(1 + a)2 - (1 - 2a)2 K] + 2(1 - 2a)K1 =

The invariant relation (3.3.7) among the stress invariants

should hold good at transition state. This condition in-

volves elastic effects. For the fully plastic state

1a + 7 (condition of incompressibility) we have from

(3.3.7)

13/E2 = K3

3K' + 2(27K3 + 2.11 K' - K3) = 2.
2 2 2 1

(3.3.8)

Equation (3.3.8) could be taken as the most general yield

condition for all types of media irrespective of their pro-

28

The relation (3.3.6) should hold at transition. Now

(3.3.6) can be rewritten in a simpler form using the fol-

lowing notations:

2 (T11 -T2
)2 +

2 - T33)2 + (T3 - T11)2



perties.

Rewriting (3.3.8) again we get

3[(T11- T22)2 + - T33)2 + (T11- T33)2]

(3.3.9)

+ 2[(2T11- T22- T33) (2T22-T11- T33)(2T33- T11- T22)] = 2.

The general form of the yield condition (3.3.9) given above

has been obtained independent of the equations of equili-

brium. Equation (3.3.9) can alternately be written as fol-

lows:

2
L2 + L + L2 + 2L1L2L = 2,
1 2 3

2 2 2

(T11d) + (T22d) + (T33d) + 6T1
2

(3.3.10)

dm d2
13 = V

(3.3.11)

a
where Li = (2T11 - T22 - T33), etc., and Tii are the

deviatoric stress tensors in the non-dimensional form.

It is interesting to note that (3.3.9) reduces to

Hencky-von Mises yield condition or Tresca's yield condi-

tion in some of the following special cases:

I. Principal Line Theory

For the principal line hypothesis one of the L's

vanishes and (3.3.10) reduces to Tresca's type:

29



(ii) 1:33 - T = xr,
11 1:11

<
T22

< T33 .- -

30

T11 - T33 = a constant, or
T1

= constant,

(3.3.12)

4

1:11 1:33
= -y, E = 2y,

3

where y is yield stress in tension.

II. Haar-Karman Hypothesis

In the Haar-Kaman hypothesis two of the stresses be-

come equal and again (3.3.10) reduces to the type (3.3.12

Now from (3.3.9) if Tll = T22 '

we get

2 3

3(T11 - T33) - 2(T11 - T33) = 1.

Solving the above equation we obtain

1
T11 - T33 = 1,l,-.

Hence we have corresponding to the roots,

(i) T33 - T = -2y,
11

Both ( ) and (ii) are yield conditions of Tresca's type.

While Tresca's yield condition or von-Mises yield condition

does not distinguish yielding in tension and in compres-



2

K2 =
3 '

(3.3.13)

2 8 2
(T11 - T )2 + (T22 - T33)2 + (T33 - -517

which is exactly of the same form as von-Mises yield cri-

terion:

or

4J2 - 2J1 + 1 = 0,

1
and in the limiting incompressible case (a 7),

from (3.3.8)

we get

(T11 - T22)2 + (T22 - T33)
22

"4- (T33 - T11)2 = 2Y

2y2 is replaced by

31

sion, we have from our analysis (i) representing yield

condition in compression and (ii) representing yield condi-

tion in tension.

III. Plane Strain

In this case e3 = 0, so that J3 =0, and we get

from (3.3.5) that

(3.3.14)

We notice here that the constant

82
. This is to be expected, as (3.3.14) is only a parti-

cular form of (3.3.8).



and

d 1
2T11 - T22 - 1 = 0'

or Tll = , or
d 2

Tll =

d2
2T22 - T11 - 1 = 0, or T22d = 25' , or T22 = -y.

3
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Longitudinal Strain

If T22 = 0, and T33 = 0, then we get from (3.3.9)

3T
2

+
3.= 1.

11
2T11,

This equation on solving yields the roots for Tll
as

T11 = - ,"
1

Hence Tll = -2y and T11 = y, which are yield stresses

in compression and tension respectively.

Plane Stress

In this case, suppose T33 = 0 and the yield condi-

tion (3.3.8) will reduce to

1
+ T22 + 1)(2T11 - T22 - 1)(2T22 - T11 - 1) = 0.

(3.3.15)

This yields the following three conditions:

T11 + T22 + 1 = 0, or T
a

= -1, or T = -
a aa
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The last two conditions are exactly Tresca's yield condi-

tion (2.2.7). It is interesting to not that in a number of

these cases the yield takes place through a deviatoric

principal stress taking on a maximum value.

It may be noted that it is only in the case of plane

strain (3.3.5) reduces exactly to the Hencky-von-Mises

8
form, the constant now being -y2 in place of the classi-

cal value 2y2. Also Tresca's yield condition is not an

invariant relation, unless two of the principal stresses

become equal; in that case Tresca's yield condition is a

special case of the von-Mises condition.

The yield condition (3.3.9), which is an invariant

relation, could be regarded as general yield condition for

all types of materials, irrespective of their properties.

While von-Mises or Tresca's yield condition does not take

into account of the distinction between the yield stress in

tension and yield stress in compression, (3.3.9) does, and

hence includes Bauschinger's effect.

It may be noted here that all the yield conditions

existing in the present literature so far are considered to

be self-evident as a result of long experimental conse-

quences. None of the authors in this field thus far has

ever tried to establish them on the basis of analytical

considerations. This is the first time such an attempt has

been made.



3.4 Transition Theory Corresponding to the Degeneracy
of the Material or Spatial Strain Ellipsoid

Consider any medium, isotropic or anisotropic, homo-

geneous or heterogeneous. Suppose X1<and xk are the

coordinates of a point before and after the deformation,

given by the transformation

x = xk(XK), k,K = 1 2,3.

If Gij , gi ..
are the fundamental metric tensors in

j

the two coordinate systems, the material strain ellipsoid

will be

k
dS2 = ckJ?, dxkdx ,

where Cauchy's deformation tensor cm, is given by

c = G (X) XK XL
k2, ,k ,2.

and

= 1 - 2e,

being the finite Almansi measure referred to the cur-

rent (strained) state. Referring to the principal axes of

the strain ellipsoid (3.4.1), we have

34

(3.4.1)

(3.4.2)

dS2 = c.. dyi dyi i = 1,2,3, (3.4.3)



T11 =T22.
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where c.. are the three principal values of the deforma-

tion ICk2,II. Also c corresponds to the reciprocal of

the square of the axes of the material strain ellipsoid.

Similarly we can derive the spatial strain ellipsoid (reci-

procal strain ellipsoid) which is dual to the material

strain ellipsoid.

Now transition will occur when at least one of the

c.. tends to zero or infinity. In other words, the ellip-
11
soid tends to become a cylinder, infinite sphere or a pair

of planes. This geometrical approach to the transition

state does not make use of any of the constitutive equa-

tions or dynamical equations of equilibrium.

Let us suppose that c11
+ 0 at a transition so that

if eii
denotes the principal strains and J1 J2

and

J are the strain invariants, we have from (3.3.5a) after
3

1
eliminatingand e33

, since
e22 ell = 7

8J3 - 4J2
+ 2J1 = 1. (3.4.4)

This is the same constraint as in (3.3.5), and we may car-

ry out the same analysis as in the previous section. For

1 1
another type of transition given by e11= 7 , e =

22
we

have
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Then we get results similar to Haar-Kaman hypothesis. If

1
all the three e11 ' e22

and e33 approach 7 , we get

hydrostatic pressure and (3.4.4) is always satisfied. The

case cll c°
only amounts to making e22 and e33 ap-

proach T.

It will be clear later that in the transition treat-

ment of elastic-plastic problems no yield condition needs

to be used. The above discussion has been given only to

show that the yield condition, when it exists, should come

out of the fundamental equations.

Thus we have shown that a transition may occur if at

least one of the axes of the strain ellipsoid becomes zero

or infinity. It would be interesting to see that the de-

generacy of the strain ellipsoid again is intimately con-

nected with the criticality of one or more of the functions

Xr, r = 11213; where

r r r
u = x - X r = 1 2 3;

u being the displacement vectors parallel to the coordin-

ate axes and xr, Xr being the coordinates of a point in

the deformed and undeformed state respectively.

SupposeXlhasanextremalvaluethenX1..=0.1

Now from the geometry of the problem we have

2
=

xdSdx. x ,cm,



where

Also

and

where

ak . a.3k = 61..3i

and

ark ajk = ajk ark i,j,k = 1,2,3.

c = G X
KL x

K L

a a

2eij
=6.. -fi Xfj

= 6.. - c. .

13

DP DXK
K k '

DX Dx

p being the spatial position vector. In order to refer

the strains to the principal axes of the strain ellipsoid,

we must have

erj = 0,

The relation (3.4.5) may also be rewritten as

2e.. = 6.. - (ark Xr,k)(ajk Xr,k),
13 13
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(3.4.5)

(3.4.6)



a21X2
+

a2
X2 +

a23
X2 = 0,

,x ,y ,z

2 2
a X + a + a X2 = 0

117 13 ,z '1 x 1
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Theaik 's are the direction cosines of the three prin-

cipal axes of the strain ellipsoid. We want to find the

three principal strains ell , e22 and e33 such that

eij = 0 for i j. Now

1 1
= -(a X +a Xi +a Xi )(a Xi +a Xi +a X ,2e1

,x 12 ,y ,z 1 ,x 22 ,y 2 ,z

,

(a11
X2 +a12

X2 +a
X2,z)ta

X2 +a22
X2 +a

,x ,y 'X ,y 2 2,z

3 3).(a X +a X3 +a X3 )(a X3 +a X3 +a
11 ,x 12 ,y 13 ,z ,x ,y 2 ,z

Similarly we can obtain expression for 2e13 and 2e23.

Also

2

2e11 = 1 -(a1X1 +a X1 +a13
X1 )

x, ,y ,z

2 2 22
-(a11 X +a X ,+a,x y ,z

32
-(a11X3 +a1

3

+a1
X ) .

,x ,y ,z

We notice from the above expression that all the shear

strains vanish if

X1. 0; i = 1,2,3 and X1 = X,X2= Y,X3= Z. (3.4.7)

(3.4.8a)

(3.4.8b)



These equations (3.4.7) and (3.4.8) are necessary and suf-

ficient to make= 0 for i j and e =eij 11 2'

Thus, we obtain the following principal strains:

e11

3 3 32
2e22 = 1 -(a21X,x + a22X,y + a23X,z)

= 1 - x3. x3. .,1

The second line on the right hand side follows from the

first on using the sum of the squares of (3.4.8c) and

(3.4.8d). A similar treatment gives

2 22e33= 1 - X1,1 fl

Hence we have shown that criticality of any one of the

functions Xr (r = 1,2,3) is intimately connected with

the degeneracy of the strain ellipsoid. A similar discus-

sion can be advanced using the criticality of X2 and X3

fy
+ a13X3,z = 0,

X3 + a3 + a X3 = 0.
,x 32,y 33 ,z
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(3.4.8c)

(3.4.8d)

If all the three functions become critical, then the strain

ellipsoid will just reduce to a point.



3.5 Multiple Transition Points

When a deformable solid is subjected to an external

loading system it has been observed that the solid first

deforms elastically. If the loading is continued plastic

flow may set in and if continued further, it gives rise to

time dependent continuous deformation known as creep de-

formation. The elastic-plastic and creep state represent

the transition state from the elastic state, as we have

seen and can be expected to occur at the critical points of

the field equations.

It may be possible that a number of transition states

may occur at the same critical point; then the transition

function will have different asymptotic values, and the

point will be a multiple one,each branch of which will then

correspond to a different state.

In general the material from elastic state can go over

into (1) plastic state, (2) or to creep state, (3) or first

to plastic state and then to creep and vice-versa, depend-

ing on the loading.

3.6 Subharmonicity (Superharmonicity) of Transition
Fields

Any transition in harmonic or biharmonic fields which

permeate natural phenomena, may be expected to exhibit it-

self in terms of the allied subharmonic or superharmonic

fields. The latter are non-linear and nonconservative and
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aT.. = Xe S.. + . - X. Xa .],
13 aa 13 13 ,1 ,J

41

their studies can be based on a few characteristic proper-

ties. Since we are interested in this work only in elastic

plastic transition, this section will be devoted to showing

that the elastic-plastic transition field is a subharmonic

(superharmonic) field.

For simplicity, we are using here a rectangular car-

tesian frame of reference. The deformation field is given

by

U =x -Xr (r = 1,2 3), (3.6.1)

where x and Xr being the deformed and undeformed co-

ordinates of a point respectively. If eij is the strain

tensor, then using Almansi strain measure we have

a
2e.. = U. . + u. . -U . u .

13 1;3 3;1 a;3 ;a.

= S..
13 ,1 ,3

the covariant differentiation reduces to ordinary partial

differentiation owing to the choice of rectangular carte-

sian coordinate system. The stress strain relation

T.. = Xe S.. + 2 e..
13 aa 13 13

becomes

(3.6.2)



where

2eact =
a a

4 X . i,j = 1,2,3. (3.6.2a)
VI. 11

Now in the absence of the body forces and if only a

steady state deformation is assumed, then the equilibrium

equations may be written as

T.. . = 0. (3.6.3)
17,3

Hence using equations (3.6.2) in (3.6.3) we obtain the fol-

lowing three equations:

(X + 2p) a 1 1 1 1

ax aa xy ,y
(e) =,J(X ; X) + J (X ; X )

xz ,z

+ J (X2; X2 ) + J (X2; X2 )

xy xz ,z

+ J (X3; X3 ) + J (X3 ; X3
,z)xy xz'

42

(3.6.5)

(3.6.4)

X + 2p a
)

1 1 1 1
X )= J (X-yx '

X)
,x

+ J (X ;

yz ,zp ay(eaa

+ J (X2 ;yx
X2 )

,x
+ J (X2 ;

yz
X2 )

,z

+ J (X3;
yx

X3 )
,x

+ J (X3 ;

Yz
X3 )

,z



and

J (X1; X1 ) =
xY

= lcJ. (Xr; Xreaa i 2 ij ,j

J. = 0 (no sum on i),
11

where

C = 2p 1 - 2a r,i,j = 1 2,3,

, etc.

(3.6.6)

The above three equations may be rewritten as

(3.6.7)

Now differentiating (3.6.4) with respect to y and

(3.6.5) with respect to x and then subtracting we get
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and

X + 2p a
(e = J (X1;

zx
X1 )

,x
+ J (X1;

zy
X1)azaa

+ J (X2;
zx

X2 )

,x
+ J (X2;

zy
X2 )

,y

+ J ;

zx
X3
,x

+ J (X3 ;
zy

X3 ).
1Y



and

v2x13 2
[X ; V

xy Jxy

J [X3 ; V2 X3 ] = 0. (3.6.8)
xy

A similar treatment will give

J [X1 ; V2X
yz

2
+ J [X; V2 X2 ]

yz

+ J [X3 ; V2 X3 ] = 0, (3.6.9)
yz

1
J [X ; + J [X2 ; V2 X2 ]
zx zx

+ J [X3 ; V2X ] = 0. (3.6.10)
zx

The equations (3.6.8) (3.6.9) and (3.6.10) could further

be written as:

r
V2X ] = 0, (3.6.11)

ij

J. = 0, (no sum on i),11

r,i,j = 1,2,3.

The general solution T of (3.6.11), when it exists, may
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be written in the form

2 r n(Xr)
V X -

r '

93(

which may be verified to satisfy the equation (3.6.11).

Here T may be any function of Xr; in particular

T = F1 (Xi) + F2(X2 + F3 (X3),

F1 , F2 , F3 being continuous functions of their argu-

ments.

The equation (3.6.12) shows the subharmonicity (super-

harmonicity) of the transition field.

The equations (3.6.7) can be integrated with the help

of equations (3.6.12) and thus we obtain

e = 1c(T - 1(Xr Xr )]
act 2 2 ,i

i,r = 1,2 3.

From (3.6.2a) and (3.6.13) we get the dilatation as

3
e - 7 (3.6.14)
aa

For the fully plastic state c + 0 and hence eact 4- 0,

which is a condition of incompressibility. It is generally

assumed that for the fully plastic state, the medium is in-
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(3.6.12)

(3.6.13)
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compressible which is also borne out by experiments. But

here, this result comes out from the transition analysis.



PART II

APPLICATION OF THE TRANSITION THEORY TO CERTAIN

ELASTIC-PLASTIC AND THERMO-ELASTIC-PLASTIC

DEFORMATION PROBLEMS



CHAPTER 4

ELASTIC-PLASTIC TRANSITION OF SHELLS

UNDER UNIFORM PRESSURE

4.1 Preliminary Remarks

This chapter is devoted to the study of elastic-

plastic transitions in shells under uniform pressure.

The solutions corresponding to the plastic state for

shells under pressure were originally given by Reuss

[1930], which were improved by Hill [1949].

Seth [1963] has obtained the stresses and strains in

the plastic state using his new theory of transition.

Later Hulsurkar [1966] has obtained the solutions for shell

and tube under uniform pressure using Seth's generalized

measure concept and has extended his solutions to creep de-

formation using Seth's transition theory. Purushothama

[1965] has solved the problem of plastic bending of rec-

tangular metal sheet into circular cylinder by using Seth's

[1963] transition concept.

The object of this chapter and the next is to show

that not only the stresses and strains may be obtained in

the transition and plastic states but also the constitutive

equation could be obtained in the transition state. We

have shown in the first part of this thesis that with any

deformable medium under an external loading system, we as-

sociate three states: (1) Elastic, (2) Transition, and
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(3) Plastic (or creep). We shall show that there does

exist a constitutive equation governing the transition

state and it may be obtained from the elastic state with an

asymptotic approach. The constitutive equation for the

plastic state will follow in a similar manner from the

transition state.

The onset of the plastic state is derived without

using any of the semi-empirical yield conditions. As the

deformation of the medium proceeds, the strain changes

from linear to non-linear in character. The classical

elastic-plastic model involves a yield condition at the

point A, as shown in the Figure 1, joining the elastic

and plastic states. It does not take into consideration

the non-linear part AB (Fig. 2) through which the transi-

tion takes place.



stress

elastic

strain

Figure 1

transition
1

elastic

0 strain

Figure 2

Stress-Strain Diagram.

plastic
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4.2 Basic Equations

The equations of equilibrium for a continuous medium

subjected to an external loading system are

where Tij
are stress

density of the medium,

is body moment and

becomes

ekR,mkkm

jk
T .

;3

ijk
m + + Tjk

= 0,

g E det gkk

1 when lam

e = ( -1 when }Um

0 otherwise.

jk
T . = 0.
ij

50

tensors, fk is body force, p is

m.. are surface couple stresses,
13

is an even permutation of 123,

is an odd permutation of 123,

In the absence of body forces the equation (4.2.1) reduces

to

(4.2.3)

When there are no body couples and couple stresses (4.2.2)



where

These equations hold good for any continuum isotropic ani-

sotropic, homogeneous or heterogeneous.

The constitutive equations given by Hooke's stress-

strain relation is

Tij =Xeaa 13S.. + 2pe.. ,

13

where e.. is the Almansi strain tensor and X,11 are
13

Lame's constants.

If u. is the deformation, the six components of eij

are functions of gradient of iii. Both stress and strain

should be referred to the strained framework and not to the

unstrained one. For the present discussion the unstrained

framework is of no consequence. The Almansi strain measure

which will be used here is given by

2eij = g. - G. + G .0a + G. u
lj lj a3 ;i ;j

IF-774 1,33
e.. =
13 i3 e1 .. are

3
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(4.2.5)

(4.2.6)

T. = T.. . (4.2.4)
1] J1



2 aw 2

- 14)

a1 Du2 w2+ (70

U2 U2
(1 - - (TO ,

Du Dw Dw,2 2 Dv Dv 2

2e = -
,

+ - - r -
rz Dz Dr 3r 3z Dr 3z

Dw Dv Dv u 2
2e =

1 Dw - + r Ti(1 - 7-6.)(1 - Fez F TT DZ

1 Du Du
F DO Dz '

2e =
1 Du

- Du)Dv Dv

re F TT' TT' -I- r TT(1 7T)(1 p2

1 Dw Dw
Dr DO
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physical components gij and Gij are metric tensors

corresponding to the strained and unstrained states res-

pectively. The equations (4.2.3), (4.2.5) and (4.2.6)

are sufficient to determine the fifteen unknowns.

For our future reference the strain components both in

cylindrical and spherical coordinate systems are tabulated

below. In cylindrical coordinate system:

(4.2.7)

u2 2 2

2err = 1 -(1 - -r-FE) (7t) (1

2eee = 1 -(1 -
Dv 2

(1
u2

- -r7) -

2 Dv 2w2
- -2ezz = 1 -(1 r TiT)



And in spherical coordinate system:

1
2e = z k -2 1 av v 2

2 . 2 [2'rr Dr or 2 3r r r sin e

22 11DV ur)
r

1 ,au - -
2/ay ru)- -717 r

2eee = 7'38

1 3w 2
(

4 . 2
- w cot 0)

30
r sin 0

1. 2
2e -

2 . 2
[2(1 + r sin 0.0 + sine cose.v)

$(1) 94)
r sin 0

/auw 2 1 av-2
3cp F -r72- 7T - cote.w)

1 3w .2 2

2 . 2
(Dyb + r sin 0.0 + sinO.cose.v) ],

r sin 8

3v 2v% v,
2e = --

re r 30 3r r) r'30 r

1 3v v 3v
- - (-Fe + ur)

1 9w w 9w
2 .

- - w.cot8],
3r r 38

r sin

1 rdv
2

..11± - 2w cot0)-(41.4 y) -. "3(1)r sin 0 D8

1 Dv 9v
- + ru)(7,-- - cote.w)

ocP
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1 aw 3w
w cote)( + v sine cose + ur sin OH,

2 2 (98 94)
r sin 0

2e
1 au aw 2w 3u 3u w

= r sine NTT "1" 3r r) 3r(-57

1,9y v
2kr (7T cote.w)

1 9w w aw 2
( - )( + v sine cos e + ur sin 0)].

2 . 2 9r r 3(0
r sin 0

(4.2.8)

We shall refer to both (4.2.7) and (4.2.8) in the subse-

quent chapters.

4.3 Formulation of the Problem and Identification of the
Transition Points

In this article we consider a spherical shell of radii

a and b (a < b), subjected to a uniform external pres-

sure at either of the surfaces. Because of spherical sym-

metry of the shell we use a spherical coordinate system

(r,e,qb) in which the displacements are chosen as:

u = r(1-8), v = 0, w = 0,

where is a function of r = (x2 + y2 + z2)1/2 We
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and are single-valued functions of

1eee = eo = f(1 - 82],

, = 0,
r(1) '

e 00 ere

and the dilatation e = 1 - 8 - (r8' + 8) . The cor-
aa 2 2

responding stresses are given by (4.2.5)

3 2 1 2 2

Trr = X[ (r$' + 13) ] + P[1-(r13' + (3)
2 2

31
Te = T = X[7 - 2

- 7( +
)2]

+ u[l

aT2(T - Tee)rr rr - O.
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(4.3.1)

4.3.2)

The only equilibrium equation from (4.2.3) which remains

unsatisfied is

(4.3.3)

assume that T.. e..
13 13

class c(1) and u. and 8 are of class c(2) at any

point

from

P(r,8,(1)) in the shell in the

(4.2.8) we have

err = [1-(r8' + 82),

elastic range. Then

Ter = 0, = 0,
Tr(1)

= O.



From (4.3.3) and (4.3.2) we get

2
262 + (r6' + 6) + 2cfr2dr = K, (4.3.4)

2p 1 - 2a
K being any arbitrary constant and c = = l_a .

The prime indicates differentiation with respect to r.

Differentiating (4.3.4) with respect to r and divid-

ing by 6 and multiplying by r we get

d6 (P + 1)
dP

E2 + (2 + c)P + 3

1

where P = 9 From (4.3.5) we see that the possible

real transition points are

P = -1 and P =±

Suppose and r are the unstrained and strained

radii vectors of a point before and after deformation res-

pectively, then r' = r3 and

Dr' - r6' + 6 = 6(1 + P).

Dr'
Hence when P -1 then and so P = -1

Dr

corresponds to infinite extension. Similarly P = ± co

corresponds to infinite contraction. The strain ellipsoid

reveals that both above mentioned points are transition

points.

Dr
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(4.3.5)



4.4 Determination of the Stresses and Strains in the
Transition and Plastic States

We first observe that transition from the elastic to

plastic state may occur through any one of the following

branches:

T
rr

Tee and

Tee Trr.

In order to determine the stress or the stress-difference

through which transition occurs in a material, we examine

each of the above three cases separately. Then after ob-

taining the transition-values of the stresses and their

differences for all the three cases (a), (b) and (c) we

compare their values. The transition should occur obvious-

ly through the largest of these values since the material

yields at this largest value.

We shall follow the same technique throughout the rest

of this thesis and no further reference will be made.

Case 1: P ± 00, Infinite Contraction

In this case, the shell is subjected to an external

pressure on the inner surface and the outer surface is free

from external pressure. Now we shall consider the follow-

ing three cases mentioned above.

(a) Transition Through Trr
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Here we have from (4.3.2)

and thus the setting

2T 2
rr 8

R E 1 - 32c[2(1-c)+(l+P)2 ]3X+211 -

and taking logarithmic differentiation, we have

d(log R) -2cP(2+P)
dtlog r) 2(1-0+(1+P)2

Hence

R = AOr-2c as p ± co,

where A is any arbitrary constant, c -
1 - 2a

0 1-a

and is the Poisson's ratio of the material. Making use

of the boundary condition T
rr

= 0 when r = b, we get

T =
rr - +2]+[1-(ra' )

2
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2-c b 2c
T = (-3-)y [l() ] .
rr

The equilibrium equation (4.3.3) gives

b 2c,T.Trr
= (2-c)y() .ee

The pressure pi exerted on the inner surface is given by

(4.4.1) when r = a, as

b 2c 2-c
pi = [()

When fully plastic state is reached and we have

T
rr

= 4ylog -r--)

- T = 2y
00 rr

Pi = 4y1og(ii).

The corresponding classical values for the same situation

are

T0 Tv = y,ee rr

Pi 2y1og(b).

(4.4.1)

(4.4.2)

(4.4.3)
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The reason that our results involve values which are

twice the classical values is that the latter do not dis-

tinguish between yield stress in compression and yield

stress in tension, where as our results take into account

the Bauschinger effect.

When r = a, the principal stress difference

06 - Trr becomes maximum. Hence the yield first occurs

at the inner surface. Suppose after a certain time the

yield surface moves to a radius d0 '

then we have the

following zones:

Hence we have the following results corresponding to the

three regions:

Transition region: a < r < b.

For the transition region we have

T Y(2-c) Ei_(t)2c3,

rr

Tee Trt = y (2-c) (1-)2c,

both of which show work-hardening at the transition state.

Transition-plastic region:

For the transition region we have

60

(i) Transition region, a < r < b,

(ii) Transition-plastic region, a < r < b,

(iii) Fully plastic region, a < r < b,



2-c b 2c
T = y () (1 (r)rr

d < r < b
0

b 2c
Tee Trr = 17(2-c)(17)

and for the plastic region,

r -c
T = 4y1og(

2
-=-) + y(-

b2c
],

rr d
0 d0

Let

2Tee2
R E 1

3X+2p 3-2c[(1-c)(p+1)2+ (2-c)].

.

T - Tr = 2y.ee

(iii) Fully plastic state: (c 0)

In the fully plastic state

(b) Transition Through Tee .

we have

a < r < d0.
0

Then by applying the same technique as in (a) we obtain
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T
rr

= 4ylogL

a < r < b.

T60 - T
rr

= 2y



and

2-c b 2c
T- (---)y[1-(Trr c

,2-c, r 1 t 1-cT = k---)yLi-ki
00

b
Tee Trr = (2-c)y(T)2c .

Again it is clear that Tee T
rr

which is the larg-

est of the three quantities T
rr ' Tee ' (Tee Trr)

at-

tains its maximum at r = a. Hence yielding first starts

at r = a. We have the following results as before:

(i) Transition region:

For the transition region we have

rr c2-c)17 El- (bF)2c3
1

b 2c

Tee Trr
= (2-c)y(

(ii) Transition-plastic region:

For the transition region we have

2-c
T = )
rr c r

b 2c

Tee Trr = (2-c)17()

2c

a < r <b
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(4.4.3)

(4.4.4)

(4.4.5)



and

2-c
T = 4ylog +

,
b2c

],
rr

0 0

< r < d .

0

Tee Trr
= 2

for the plastic region.

(iii) Fully plastic region:

For the fully plastic state c + 0 and we obtain

Trr =
4y1ogE,

a <r < b.

T T = 2y.
AO rr

(c) Transition Through

Here let

T00 TeeR rr - 132[(P+1)2-1],

and the same procedure as before gives

r(-)2 '

(12)2c

T = -p. (4.4.6)
rr b

1-
a
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cPi b 2c
T T b 2c (T.-)ee rr

[1.-- (a-)

(4.4.7)



For the fully plastic state, we have

r,
Trr = pilog ./log -g ,

pi
T - T
ee rr

2 log(-g).

Thus for the fully plastic state

pi = 4y log /-:al . (4.4.7a)

From the above three cases, careful comparison shows

that transition first occurs through (Tee - T
rr)

if

b
(1 - c)()2c < 1 and the yield condition may be taken as

a

TAO -T = 2y.
rr

The asymptotic values of the strains are similarly

determined from

64

1 2
+ 6)err =

1 2eee = eo = 7[1 -

er are all zero.

(4.4.8)

and

ee



Hence

b 2c
1 - 2err = A0 (-)

r

1 1 b 2c
e -e = -(B - 3A0) (F)
rr 3 aa 6 0

1 b 2c
e -e = -(B - 3A ) (-)
rr ee 4 0 0 r

where e = err + e80 + e
(14 '

trary constants. Also

Let

2T 2
rr 2

R = 1 [(P+1) + 2(1-c)l,
3X+211 3-2c

e =ee (1)

1
- -2- as

hence it can be shown that A0 = B0'

Case : P + -1 Infinite Extension.

± co
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(4.4.8a)

and A0 ' B0
being arbi-

In this case, the shell is subjected to external pres-

sure on the outer surface and no pressure is assumed to be

present on the inner surface.

The following three types of transition may occur.

(a) Transition Through Trr:



then applying the same method as before we have when

P -* -1

y(2-c) r
1-c

T = [1 ()
rr c

a

Trr
-T _ y(2-c)

2(1-c) a'

here we have used the boundary condition, namely of r = a,

T =0.
rr

It is evident from the above results that ITeel is

the largest among all the stresses and that it becomes

maximum at r = b. Hence the shell begins to yield from

the outer surface. Hence we have the following results:

(i) Transition region:

For the transition region, we have

c/1 -c

rr (
c

y[1-()

a < r < b

(2-c) ,r
1-c

Trr Tee 2(1-c)Y'a'

The pressure at r = b which initiates transition is thus:

2-c
PO = Y (

1-c
) - 1].

(4.4.9)

(4.4.10)
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and
a

Trr = 2ylog F

-T
rr ee

for the plastic region.

(ii) Fully plastic region: (c -4- 0).

For the fully plastic state c 0 and we obtain

T
rr = 2ylog

a < r < b.
T ,T := y
rr ee

The plastic flow will commence at the outer surface of the

shell at pressure pi such that

a
= 2ylog ,

where y is yield stress in tension. The corresponding

classical value in a similar situation is also given by

api = 2ylog F .

(iii) Transition-Plastic region:

For the transition region we have,

67

-c

T
rr

Trr

-T
00

= Y(alc)[1-

y ( 2-c)
(r )

]

a < r < d
0

u0
+ 2ylog

dO

1-c

2(1-c) do



(b) Transition Through Teo:

Let

2T- 2ee 2

3X+2p 3-2c
[(1-c)(P+1)+ (2-c)].

A. similar treatment as before gives

T = 2-c)N7[1-
rr c 2

2-
Tee = (c y[1-(17c)*

c

and

2c
- T 2-c)y1)Tee rr

Hence for the fully plastic state, we get

Trr = 4ylog

a < r < b

0
= 2y.

rr

The above results show that
Tee

becomes maximum at

r = b. Hence yield first occurs at the outer surface.

We may again obtain the results for the three regions

as in (a).

RE

2c
Jr
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< r < b (4.4.12)

(4.4.13)



(c) Transition Through

By following the same procedure as before we have for

transition occuring through Tee Trr

where K is some parameter such that

-PO

where lim K and
c4,0

T pK[1-
rr

For the fully plastic state,

6Trr = 4y [1-()1,

a6
T - Trr = 2yK0 ()ee r

-T
00 rr

a 6-2c
p [1-(E)

po being the pressure applied on the outer surface of the

shell. And

pK a &.-2c
Tee - Trr = ;--(6-2c)(T.

a
6-2c1,

SO
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(4.4.14)

(4.4.15)

lim p
2

c-0-0



E being another parameter.

1
err 2

3 D1 a,

eaa
- - - - )
2 2 r

1 Dlfa
e00 = 7

where D, is some arbitrary parameter, and

a 6-2c
err - e00 E()
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We notice from the above results that even in the

fully plastic state they show work hardening. Hence tran-

sition through 'Teo -Trrl may lead to the creep state

[Hulsurkar, 1966].

Comparing all the results in (a), (b) and (c) in this

case, we conclude that keel is the largest one among

all. Hence transition has to occur through Tee.

The yield condition may then be taken as

'Tee Trrl = Y.

The asymptotic solutions for the strain corresponding

to P -1 may similarly be obtained from (4.4.8) and are

given below:

(4.4.16)



4.5 The Constitutive Equations in the Transition
and Plastic States

Since we recognize the transition state as a separate

state, like that of elastic and plastic ones, asymptotic

treatment should lead to the constitutive equations in the

transition state as well as in the plastic state. It has

been remarked before that transition in a certain material

may occur through any of the stresses or stress-differences

which ever among them first reaches an extremal value.

Further, their transitional paths may coincide or may be

distinct. The distinct transitional paths may generally

possess distinct constitutive equations. But if all these

paths lead to the plastic state, then they should be char-

acterized by a common constitutive equation irrespective

of their own transitional courses.

In the transition and plastic states the constitutive

equations involve only the deviatoric stresses and strains,

since to a reasonable degree of approximation, it has been

shown by Bridgman [1923] and verified by Crossland [1954]

that the hydrostatic pressure affects neither the initial

yield nor the plastic deformation itself. Now we obtain

the constitutive equations for the transition and plastic

states corresponding to the following cases.

71



Case 1; P 4 co .

Constitutive equation corresponding to transition

through (Te Trr"

In this case transition occurs through (Tee Trr"

hence the constitutive equation in the transition state

should be obtained corresponding to transition through

(T00 - T). Hence from (4.4.6) and (4.4.7) we obtain
rr

d 2 b 2c
T = -A(-
rr 3 r

where

Cpi

Hence we have

- 3AO d
e - T .
rr 4A rr

Similarly we may get

B - 3Ad
-

0 0 d
e00 4A

Tee = eo

b 2c

Also from (4.4.8a), we get

d 2 12c
err

= - . -{B - 3A0
b)

3 4 0

72

(4.5.1)

(4.5.2)



So the constitutive equation in the fully transition

state may be written as

eflT.,11 11

B0 - 3A0
,where n -

4A A0 ' B0
being arbitrary constants

and A being a parameter. For the fully plastic state

will be A1, where

1
A

-Pi

2log

Hence A1 = -2y by (4.4.7a). So for the fully plastic

state, the constitutive equation will be

id
Se.. = T..6 ,11 11

1 Ao = A ).= 4y 0

We may rewrite (4.5.4) as

.d 1 d
e = n Tii ii

the dot representing the time derivative, which is the

Levy-von Mises constitutive equation.
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(4.5.3)

( 4.5 . 4)

(4.5.4a)

where is a flow parameter and



one should not- expect to get the

In this case we have already noticed before that the

transition occurs through
T00.

Hence the consti-

tutive equation for the transition state should be obtained

through Tee. However, a common constitutive equation for

the fully plastic state has to be derived through all

branches of the transition, if they all go to plastic

state.

Now from (4.4.11), (4.4.12), (4.4.13) and (4.4.16)

we get

71)1 a -c d
e - Tee 4(2-c)y r ee
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If (4.5.4a) should be the constitutive equation for

the plastic state, then the same equation must result by

considering transitions through
Trr

and T as well.
00

Note that if the transition through Tee and T lead to
rr

some state different from that represented by the state

through (Tee
Trr)'

same constitutive equation in all the cases. But, however,

in this problem, transition through Trr and
T00

also

lead to the same equation as (4.5.4a).

Case : P 4 71

Constitutive equation corresponding to transition

through Tee



and

Since

a 2c
= 2(2-c)y + 3

where

D1 a -c d
rr 4(2-c)y r Trr

D
d 1 a -c d

e 0) 4(2-c)y r
T.

a -c
we can

express, (--) by some function of I. Hence we

may write the above equation as

e.. =11

which is the constitutive equation for the transition

state. The constitutive equation for the fully plastic

state thus becomes

d-
6e.. = flIT..6

11 11 0 '

lint fl =
C4-0

D1

8y

, 2c
y [1- ] ,
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(4.5.5)

(4.5.6)



and

lim = 1.
c-)-0

The equation (4.5.6) may then be written as

'd , de.=T1T..11 11

It can be easily verified that equations similar to (4.5.6)

can be obtained by considering the transition through

T and (T -T ) for the fully plastic state.
rr 00 rr



S
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CHAPTER 5

ELASTIC-PLASTIC TRANSITION OF TUBE

UNDER UNIFORM PRESSURE

5.1 Preliminary Remarks

This chapter is devoted to the discussion of elastic-

plastic transition in tubes under uniform pressure. Our

purpose here is to show, as in the previous chapter, that

a constitutive equation does exist in the transition state.

The onset of the plastic state is derived without intro-

ducing any semi-empirical conditions.

5.2 The Basic Equations

The fundamental equations discussed in §4.2 will re-

main valid here as well except the equilibrium equations

which take different form in cylindrical coordinate system.

We have listed already the strain components in the cylin-

drical coordinate system in equation (4.2.7).

5.3 Formulation of the Problem and Identification
of Transition Points

Consider a thick tube of radii a and b (a < b)

which is subjected to a uniform external pressure at either

of the surfaces. On account ofsymmetry of the problem,

we may assume the following displacements:



2]
'

2
d ]
0

e =0,
rz

wheredo is some constant to be determined. The corres-

ponding stresses are

T = e + 11[1-(r8' +
rr aa

2
T =e 11[1-a j,

ee aa

T = e + p[I
aaZZ

)2

e=
rr

1

2

e
00

= 1[1-8
2

zz
= 1-[ -

2

e
r0

, e
Oz
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u= r(1-8), v = w= z(1 -do),

21/2where r= x + y ) and d0 < 1. For the plane strain-

case, do = 1.

Using the Almansi strain measure from (4.2.7) we ob-

tamn



and

2e = 3 -
OM

The only equilibrium equation which remains to be satisfied

is

Putting (5.3.1) in (5.3.2) we get

+2+ c r '2dr = K,Jr
(5.3.3)

211where c = and K is some arbitrary constant of
X+211

integration. The equation (5.3.3) is a non-linear intego-

differential equation and no analytical solution has been

obtained so far.

Differentiating (5.3.3) with respect to r and put-

ting p = we get
13,

T
rr rr
Dr

22 2
-(rV +

)2
a

"P +1)
P + P( + 2)+2

The possible real transition points are given by

P = -1, P = + Co.

As before it can be shown that P 4- -1 corresponds to in-

finite extension and P ± co corresponds to infinite
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(5.3.2)

(5.3.4)



contraction.

5.4 Determination of Stresses and Strains in the
Transition and Plastic States

Case 1: P + = , Infinite Contraction

In this case the tube is subjected to external pres-

sure on the inner surface of the tube (a < b).

(a) Transition Through
Trr:

Let

For transition through Trr
, we have

1
T = A[1 - 1(rV +)2 l2

- -13 + -(1 - do2)
rr 2 2 2

+ p[1-(r(3' + )2 ].

,

R Do
CT

_ rr
- 132[(1 - c)+(1).+ 1)2],

where

= (3 - 2c)- dDo 02.

Hence

d(log R) cP(P + 2)
d(log r) - c)+(P + 1)2

80

from which it follows that R = A0 r-c as + co. The



boundary condition, Trr
=0 at r = b, gives

The equilibrium equation (5.3.2) gives

and

T = k D [

rr c

In like manner we may obtain

b c
T - T = p [D0() -
zz rr

In order to obtain
do

if F is the force applied

at the ends of the cylinder, then

J
b

F = 27r T rdr,
zz

a

a,b being inner and outer radius of the tube respectively.

Substituting the value of T in (5.4.5) we have
zz

F
2ffil

D[1-c)

1 2 2
- - a )

0[ 2

bc b2-
2-

-
2-c

81

(5.4.1)

(5.4.2)

(5.4.4)

(5.4.5)



When the tube becomes fully plastic the longitudinal force
which is to be applied at the ends of
the length unchanged is given by

F' = 2-Try [ (3 -
3

(Tr r=a

82

the cylinder to keep

Thus, in order to maintain the same length for the cylinder
the additional normal force required as predicted on the
basis of our transition analysis is given by

Tr[a p + 7y(a - 2)],2 2 2

while the corresponding classical value is [Bland 1956]

Tra2p.

For the fully plastic state c + 0,- and we get the follow-
ing results:

2
rr

r
7Y(3

2 )log F ,



The plastic flow starts at r =a where the pressure pi

is given by

For plane strain case, that is, for a tube of infinite

length do = 1 and we get

4
T = ylog E

rr3 b

T -
Trr

=yee 3

p! = y(3 - 2)log
2

3 a

2
T00 - T = f

zz 3

2
T - T = wy .
zz rr

The maximum principal stress difference in this case is

4

T00
T = f
rr 3

which is Tresca yield condition, y being yield stress in

tension. The von-Mises yield condition becomes2, 2 2 82
- Tee) +(T60 - T) 4.-(T - T =

rr zz zz rr
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(5.4.7a)

(5.4.8)

In general, it is seen from equation (5.4.2) that the tube

starts yielding at the inner surface r = a since



l'ee Trrl
becomes maximum at r = a.

When the plastic state has penetrated to a radius r = d,

we get the following three regions:

Transition region: a < r < b.

For the transition region, we have

T = Drr c

,b, c
T - T =ee rr 0 r

, 2

Tee TZZ = 11Uo

b c 2

Tzz Trr = "DO(F) dO

Transition-plastic region:

For the transition region d < r < b, we have

T = D [1 - (12
rr c 0

b c
Tee Trr = 1130(i7) '

T = pd
00 zz 02

b c
T = p -

zz rr

,b c
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And for the plastic region a < r < d, we have

2 r
) (

Trr 7Y(3 210g a D -
c 0

2r, , 2,

Tee
T = yLi - a 1,rr 3

2
2d02].

Tzz Trr = "ff 3 -

(iii) Fully plastic region: a < r <

For the fully plastic region, we get

2 2

rr 3
T = y(3 - d )log F ,

2r, , 2,
T - T = - u Jree rr 3 0

2 ,

Te
Tz = 7yuo

2
- T = y 3 - 2d 2].

zz rr 3 0

It is clear from the above results that none of the

relations is independent of do but we have
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1
T T

Te6 = T06
+

3 rr 0

2=

a result independent of do and which may, therefore, be

considered to be the yield condition. This holds good for

all end conditions on the plane ends.

(b) Transition Through Too:

In this case,

Tee = ),(2 1 2 - 1(r61 + 13)2 -
2 2 2

+ p[l - 6
2

-CT
Putting R E [ D0] = 82[1+(1 - c)(P + l)21 and

taking logarithmic differentiation with respect to r we

get:

1
-2P[c + (1 - c)--cP]

d(log R) 2

d(lbg r) 1 + (1 - c) (P +

Hence

pD -C
r ],

Oe [
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and the equilibrium equation together with boundary condi-

tion gives



then

In this case let

R

pD
c

T = 0[1 - ].
b

rr

And so we have the following:

pD0 b c
(T00ee

b c
T66 Trr = PDO(F)

T pd
66 zz 0

b c
T - T = p[D0 r- do2],
zz rr

which are identical with the results obtained in case (a)

and hence all the rest of the results obtained in case (a)

will follow automatically.

(c) Transition Through (Tee Trr):

2

T - Tee rr
P

d(log R)
-2P[PE + 2]

2

d(log r) (P + 1)2-1

2 2
- [(P + 1) -1],
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Hence

b c
T - T = pB (-ee rr 0 r

where B is some arbitrary parameter. From the equili-
0

brium equation we have

and

Bo

b c
[1- (F)rr c

The value of B0 may be obtained as

Cpi

p[(1-al)c-11

where pi is the pressure applied at the inner surface

r = a.

In like manner we get

Tee T =
rr

b c 2TT = P[B -d
zz rr 0 r 0
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(5.4.9)

(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)

The stresses in the plastic state can be obtained by allow-

ing c 4- 0. By following a similar procedure as in cases

(a) and (b), the three regions of interest namely, (i)

transition region, (ii) transition-plastic region and



(iii) the fully plastic region may be discussed.

The transition may occur also through Tzz

T zz -
Trr

or T - rr But, since we are considering
zz

only symmetric deformations, their asymptotic solutions

can not be determined uniquely. Moreover, it is not the

plan of this work to discuss these cases here. From the

foregoing results in (a), (b) and (c), it is clear that

IT - Tee
rrl is the largest in value among

Trr ' Tee ' IToe Tzzl , etc. in every case. Hence, the

transition should occur throughIT T00 rr
and

the yield condition may therefore be taken as

Case : P + -1 Infinite Extension

As has been explained earlier, this case corresponds

to the infinite extension and the tube is subjected to uni-

form pressure on the outer surface.

(a) Transition Through T .
rr

constant.

In this case let

R=1-.-1-rr F Dol= 32[(1 - c)+(P + 1)2].
p

1-c
Hence R = Air asp.+-1,where Al is an arbitrary

89

d 2
T =ee -y.

3



Using the boundary condition Trr = 0 at r = a, we get

r 1-c
T

- D [1-( ).
r r c 0

A similar procedure as before yields

1-c

Trr - T00
D ( )

1-c a

2
T -T = pd
rr zz

and

D0 r
1-c

2

T T = P[I7:-c-(a) -d0 3'zz 00

The maximum principal stress difference is again

Trr - T00
and depends on both r and do. For fully

plastic state c ÷ 0, and we get

2
Trr = -y(3

d0
2)log a ,

3

2
T - T In - , 2,= -yk.)
rr ee 3 0

2 2
T T = 7ydo.
rr zz
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In this case, the yield condition may be taken as

2
T -=rr 3

since this relation is independent of do.

For the case of plane strain do = 1, and we get

1-c
T

(2 - c
rrr

p(2 - c) r 1-c
= 1 - c (a)

T -
rr TO0

- TZ Z = p .rr

For the fully plastic state, we have

4 a
rr

= ylog

4 2= -y T - T = 717'

ZZTrr - Tee 3 ' rr

2

Tzz - Tee =

1Here T zz = -(Trr Tee) which is again the hypothesis of
2

principal line theory.
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Transition Through Tee:

and

Here

R E [-- T--
D0
] =2[1+(1 - c)(P + 1)2],

p uu

and a similar procedure as before gives the following

results:

c(3-c)
T =-D [1-(2.) ],rr c 0 r

c(3-c)
a

Tee Trr = p(3 c D

c(3-c)
],

T = E D[1-(l - c(3-c))*ee c 0

2T=, pdee zz 0 '

2-T = pd
rr zz 0

The results for the fully plastic state may similarly

be obtained when c tends to zero.

Transition Through (Tee Trr)*
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In this case let

R E
Trr Tee

is 2[1-(P + 1)2]



and we get

4-c
a

Trr TOO = PB1(i7)
as P -1. (5.4.14)

From the equilibrium equation using the boundary condition

rr
= 0 at r = a, we get

pB 4-c
1r, ,a,

T = 3,rr c-4

where
B1 is a parameter given by

Further we have

4-c
, 2

Tee T = pel0 -
zz 1 r

2T = pd
rr zz 0

B1 -
-p0(4-c)

Pl kb) J

and -1)0 = (Trr)

b c
1 - 2e = A ()

rr 1 r

1
e = - d 2),
zz 2 0
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(5.4.15)

r=b. (5.4.16)

(5.4.17)

(5.4.18)

(5.4.19)

The asymptotic values of the strains are given below.

For p + 03



(5.4.19) continued

For P -1:

Also we have

another parameter.

2 bC
aa

3 - d 2e = A1(

Ie ,60
=

2 A1
is a parameter.

1
e = - ,
rr 2

3 - d02 - 2e = A2(aF)c
aa

1
e = ]86 2 2 r

1
ezz = -[1-d02],2]

A2
is a parameter.

a 4-c
err - e = A3(00

12
e -e = -drr zz 2 0 '

a 4-c1
e - e = 02 - A3(ee zz 2

being
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(5.4.20)

(5.4.21)



5.5 The Constitutive Equations in the Transition
and Plastic States

Now we obtain the constitutive equations for the tran-

sition and plastic states corresponding to the following

cases.

Case 1: P +

We have already seen before in this case that transi-

tion first occurs through (Tee - Trr) if

b
(1 - c) c< 1, since then all the cases (a), (b) and

a

(c) (Tee T
rr)

reaches the largest value among the

others. Hence we should obtain constitutive equation for

the transition state through (Toe - Trr)

Constitutive Equation Corresponding to Transition
through (T T ).

ee rr

From (5.4.9), (5.4.10), (5.4.12), (5.4.13) and

(5.4.19) we get the following:

2 b c

ed =
1

d0- 2A1( d
T

rr 2p 2 b c rr
d0 - 2B0(

do2 + A (b---)

c
1 1 r d

ee- =
u 2p

d0
+ B0 ()c Tee
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and

If we choose A =
1 0 '

reduce to

d 1
d02 - A, (bF)c d

e = Tzz--
2P 2d 2 - B0 ()c0 r

then the above three equations

1 d
e.. = -- T..11 2p 11
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(5.5.1)

which is the constitutive equation which characterizes the

transition state. For the fully plastic state (5.5.1) be-

comes

'd
e..11

If transition occurs throughrr we may get from §5.4

the following equations:

2 - 2A (32)c
d 1 d0 1 r d

e = ,err 2p
d 2 - 2D0 (12)c

Trr
0 r

3d= T.. .
4y 11

b c
do2 + A ()d 1 1 r d

eee =
d + D (

2p ' 2 b c 00)
T

0 0 r

(5.5.2)

(5.5.3)



(5.5.3) continued

1e =
zz 21.1

Equations similar to (5.5.3) may be obtained if transition

Hence

if we take Al = Do. Consequently the constitutive equa-

tion for the plastic state will also be the same as

(5.5.2). Now by the foregoing relations we have

= D = Bo

which gives

- 2c)-(1 - c)d
2

b
2d02 - A1 d

2
D

b c zz
2d -

0 0 r

b c
[ (-a-) -1)
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(5.5.4)

cpi

occurs through Tee from §5A. The equations (5.5.3)

become



The pressure on the inside surface r = a necessary to

start plastic flow is

2

pi
! = -y(3 - d02)log .,3a

which is exactly the same pressure obtained in (5.4.7a).

Thus (5.5.4) is not an assumption.

Case 2: P -1

In this case also the transition occurs first through

(Tee T ) if
rr

-c

Constitutive Equation Corresponding to Transition
Through (T00 trr)

As before from (5.4.14), (5.4.15), (5.4.17), (5.4.18)

and (5.4.21) we have

a 4-c
do2 + 2A (--) d

err
d 1 3 r

.

211
d 2+ B4-c Trr
0 1 r

- 4A
a 4-c
(-)

d 1 0 3 r d
e00 T

ee 2P 2a 4-c ee
do
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(5.5.5)



(5.5.5) continued

a 4-c
2do2 - 2A (-)

d 1 3 r d
-

T .
ezz 21.1 '

2d
2 a 4-c zz

o
- B (-)

1 r

Choosing 2A3 = Bl , we obtain from (5.5.5)

1 d
e.. T. .
ii 2p ii

where

2A3 -
-p0 (4-c)

For the fully plastic state (5.5.6) becomes

3 d
e = T

4y
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(5.5.6)

(5.5.7)

All the other transitional paths also give the same consti-

tutive equation as (5.5.7) in the fully plastic state.

1_1[1
(g) 4-c



CHAPTER 6

THERMO-ELASTIC-PLASTIC TRANSITION OF SHELLS

SUBJECTED TO UNIFORM PRESSURE AND

STEADY STATE TEMPERATURE

6.1 Preliminary Remarks

The study of thermo-elasticity has lately received a

great impetus and is the object of considerable attention,

principally because of relatively recent technological

developments in the fields such as high-speed and space

flight, nuclear energy for power generation etc. In many

cases of machine design of steam turbines and diesel en-

gines, thermal stresses are of great practical importance.

The occurrence of very high temperature and pressure, par-

ticularly in the chemical plant, has led to new considera-

tions in the design of such containers.

The viscous and elastic properties of metals are

highly temperature-dependent. The situation becomes more

complicated particularly in the presence of pressure. The

material exhibits all sorts of in-elastic behaviors such

as plastic, creep, fatigue, buckling, etc. Metals sub-

jected to high pressure and temperature can very easily go

into creep state the consideration of which thus becomes

important in the design of oil and chemical plants, gas

and steam turbines, high speed structures involving areo-

dynamic heating and so on.

100
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The thermo-elastic plastic analysis has been studied

by Bland, Derrington, Nadai, Nowacki, Naghdi, Weiner,

Whalley among others. Bland [1956] using Tresca's yield

condition and its associated flow rule, obtained the solu-

tion for the stresses, the elastic and plastic strains

and the displacements when a thick-walled tube of work-

hardening material is subjected to internal and external

pressure and its surfaces are maintained at different

temperatures. In general, a numerical integration is

necessary, but the solutions can be expressed explicitly

when the work-hardening law is linear. Johnson and

Derrington [1958] have obtained an interesting result that

the yielding could be caused to occur at any given radius

or simultaneously at different positions in the tube (or

shell) by making an appropriate choice of temperature,

pressure and the inner and outer radii of the tube (or

shell).

Wilhoit [1958] has investigated the problem of a ring

arriving at the same conclusion as that of Johnson and

Derrington.

All the authors mentioned above who have investigated

these types of problems have employed the method of super-

position and have used ad-hoc semi-empirical laws.

In this chapter and the next, we shall show that

without resorting to any ad-hoc, semi-empirical laws one
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could arrive at those results existing in current litera-

ture as special cases by employing the transition theory.

6.2 Theory of Thermal Stresses

Thermal stresses may arise in a heated body either

because of non-uniform temperature distribution or external

constraints, or a combination of both. Since the effect of

external constraints is easily understood, we shall confine

our attention to that of non-uniform temperature.

Imagine a body B as made up of a number of small

cubical elements of equal size and shape which fit together

to form the continuum under consideration. If the tempera-

ture of the body is raised uniformly and the boundary of B

is unrestrained, then each element will expand uniformly in

all directions. Since they have still to fit together to

form the same continuous body, no stresses arise. If,

however, the temperature rise is not uniform each element

will expand by a different amount proportinal to its own

temperature rise. The resulting cubes of different size

cannot, in general, fit together. However, the body must

remain continuous, each element must restrain the distor-

tions of its neighbors and as a result, stresses must

arise.

The total strains at each point of a heated body are

thus made of two parts. The first part is a uniform ex-

pansion proportional to the temperature raise 0 consist-



ing of only normal strains. If the coefficient of expan-

sion of the material is a, the normal strain in any

direction is equal to al). The second part comprises o

strains required to maintain the continuity of the body as

well as those arising from external loads. We now start

with a quasi-linear Hooke's law of isothermal elasticity

and the response coefficients X, are taken as constant

and temperature-independent.

6.3 The Basic Equations

The constitutive equation, which will be used here,

is given by the modified Hooke's law:

T.. = Xe 6.. + - w66.
a

.

13 a 13 13 13
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(6.3.1)

where w = (3X + 211)a , a being the coefficient of therm-

al expansion and 6 is the rise of temperature. The

temperature of any element of a body under elastic stress

is, by virtue of the first and second laws of thermodyna-

mics, subjected to the following transient heat conduction

equation:

K6;11 = pcE + w00eaa , (6,3.2)

where K, p, CE and
eaa are thermal conductivity,

density, specific heat at constant deformation, and dila-
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tation of the elastic solid under consideration respective-

ly.

The equations (6.3.1), (6.3.2) together with (4.2.1),

(4.2.2) and (4.2.6) form the basic equations for coupled

thermoelasticity. In the classical theory, it has been

shown by Weiner [1957], that the above formulation leads to

an unique solution.

Yield functions

For the temperature-dependent case von-Mises yield

condition may be written as:

=ldd 2
f(-r. , e) _ T. - [K(e)] 0, (6.3.3)

where K(e) is the yield stress of the material in simple

shear at temperature e.

The Tresca yield condition may be stated in terms of a

set of three yield functions. If
Ili T22

and T33

are the three principal stresses then the three yield func-

tions are defined as follows:

f1(T11 ' T22 ' T33 ' 0) IT11 1-2K(0) = 0,

f2(T11 ' 22 ' '
T

T33 E - T331-2K(e) o,

(6.3.4)



(6.3.4) continued

f3(T11 ' T22 ' T33 ' 6) 1- IT2 - 13
1-2K(0) = 0.

6.4 Formulation of the Problem and Identification of
the Transition Points

We consider here a shell of radii a and b (a < b)

subjected to uniform pressure on either of the surfaces and

a steady state temperature e applied on the internal sur-

face r = a of the shell. Further, if we assume that

there are no body forces, body couples and couple stresses

acting on the shell and if only a steady state deformation

case is considered, then the basic equations discussed in

§6.3 will take the following forms:

and

Tij = Xe d + 2 e. - w86..
aa

S.
13 13

KO,.. = 0

T= 0,
ij ;i

T.. = T...
lj

(6.4.1)

(6.4.2)

(6.4.3)

(6.4.4)

On account of the spherical symmetry of the problem under

consideration, the displacement field may be taken as:
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and

ei. = 0 for i j.j

The dilatation e is given by
aa

1

aa - 7(

the prime indicating the differentiation with respect to

r. We have the following stresses from (6.4.1):

3 2 12 2
T = A[- - - (r8' + 8) ] + p(1-(r8' + 8) I-w8,rr 2 2

r3 1Toe = To = nr7 2
- -f(r8' + 8)2] + Pfl 2iwer

u = r(1 - 8), v = 0, w = 0, 8 = f(r),

1/2
where r = u2 + y2 + z2) . Then (4.2.8) gives

1 2

err = 7[1-(13 (3'r) ]'

e = eee

2
+ r8')
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(6.4.5)

T T T = 0, W = a(3A + 21-1).r8 r(P 0(1)
(6.4.6)
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The equation of equilibrium which remains to be satisfied

is

aT
2(T

-T
rr

)

rr ee
0. (6.4.7)

3r

The temperature field obtained from (6.4.2) is

00a b
= [ 1],b-a r

where

for r = b

0 for r = a.
0

Now (6.4.7) with the help of (6.4.6) yields the following

intego-differential equation

2K
2$2 + (rfP + $)2 + + 2cjir$12dr = K, (6.4.9)

where

wce ab
0 2p 1 - 2u

p(b-a) .4_- and Q A 2p 1 a0

1Substituting z = F and differentiating with respect to

z we get from (6.4.9)



Letting again

z = et

and

288' + 28" (z8' - 8) + Ko - cz812 = 0. (6.4.10)

2p(p' + .12=p) [(p"

1
t

13=p/çe2

we obtain from (6.4.10) the following equation:

1 , 1
Tp)(p - 7p)]

2
1c(pi + p) + 1 = 0.
2

(6.4.11)

The prime in (6.4.11) indicates differentiation with res-

pect to t. The equation (6.4.11) on further substitution

pl .32p = q

yields

(a - 1) - 11)

1E - P P 2
dq 2 1

c) (ap) _ ap
2

- 2

Here we observe that in the elastic domain 13 # 0 by

108

(6.4.12)



assumption, Ko is always finite and r 0, so division

by p (p = kiVF/Vic) is permissible. Finally, putting

a .F 1. Q
P P

we get from (6.4.12),

Q(F 1)(FdQ

dFF3-(2 + c)F2+ 3F + Q2

From (6.4.13) it may be observed that some of the possible

transition points of the differential system of the problem

under consideration are

1F = 1, F = 7 , F = ±

There may be other transition points obtained from the

roots of the denominator of (6.4.13). But in this thesis,

we do not plan to discuss in detail, instead restrict our

analysis to only those transition points given above.

Thus the possible transition points may also be written as

p= z P = -1, P = ± CO

where P = = -F. In order to study further about the

CO

(6.4.13)
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nature of these points, we consider the reciprocal deforma-

tion ellipsoid:



- 2err )dr2+(1 - 2eee)d62+(1 - 2e )d2cP = K2,

which may be written with the help of (6.4.5) as

B2(1 - F)dr2 +
2 2 2+ d = K2.

Hence we now identify these possible transition points

given above as follows:

(i) F = 1: Here, one of the axes of the ellipsoid

will be infinity, so the ellipsoid becomes a cylinder; con-

sequently F = 1 is a transition point.

(ii) F = op: Here, one of the axes of the ellipsoid

becomes zero; so the ellipsoid reduces to a pair of planes.

Hence F = 00 are transition points.

1
(iii) F = : In this case, the ellipsoid becomes2

B2 dr2 B2 2 B2 2+ 6 + dcp = 1,
2K2 K2 K2

K being any constant. Also F = 221 gives

A

)/i7
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where A is an arbitrary constant. Since r cannot be



From (6.4.6) we have,

2 2
2T = (3X + 20-2XP.2- (re' + -2P(ra' + a)rr

- 2 1),
31:)(r

where

w0 a
0

b -a13o
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1zero or infinity, we conclude that F = -2. is a regular

point. Hence the transition points are F = t co and

F = 1, the former corresponds to infinite contraction and

the latter corresponds to infinite extension.

6.5 Determination of Stresses and Strains in the
Transition and Plastic States

We shall determine now the stresses and the strains in

the transition and plastic states corresponding to the

transition points mentioned in §6.4.

Case 1: F + 00 , Infinite contraction

In this case, the shall is subjected to uniform pres-

sure and steady state temperature on the interior surface

of the shell.

(a) Transition Through
Trr



Let

2T 2(3 2rr (

R =
I-)

1 3A+2p 3A+2p
1

3A+2p'r '

2X
(32+

X+2p
3A+2p (r(3'+ f3)

then

R=
- 2cE2(1 c)"4-(1 F) 3'
(32

2

Taking logarithmic differentiation with respect to r we

get

d(log R) -2cF2 + 4cF + 2Q2
d(log r)

2(1-c)+(l-F)2

Hence the solution for T as F = may be obtained
rr

using the boundary condition namely, at r = b
Trr

= 0,

as

(2-c) b 2c
T =rrbY[(1-(F)

The equation of equilibrium (6.4.7) gives

b 2c b
T (2-c)Yk)T F

Therefore

b 2-Tee = T" = (2-c)y(i)2c +(-7-c )[1-(br..)2c ]
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(6.5.1)

(6.5.2)



-0f3 - 1J.
2r
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(6.5.3)

For the fully plastic state c + 0 and we get the follow-

ing

where 60* = lim a .
c+0

When a material changes from elastic to plastic state

the bulk modulus K = 1(3X + 2p) becomes large. It has
3

been shown by Rosenfield and Averbach [1956] that the co-

efficient of expansion, attains its maximum just after

the material crosses it's elastic limit and becomes very

small when the material reaches the fully plastic state.

Hence w[=. a(3A + 2] reaches a finite fixed value, how-

ever small. We denote this number by wo. Hence

= lim a(3X + 2p),
c+0

and so

w0 60
a

b-a

T =4ylog - - *(p. -rr b

0 b
'ee Trr = 2Y -7-(rl'

(6.5.4)

(6.5,5)

is finite. If the temperature is moderate and the pressure

is very high, then



* 0,

because high pressure reduces the coefficient of expansion

[Clark, 19661. However, we do not consider (30* to be

zero in our work which still needs more experimental evi-

dence.

Returning to our original discussion, from (6.5.2), it

is clear that the value ofITee - Trr is the largest a-

mong all other stresses, and attains its maximum at r = a.

Hence the yield will occur at r = a and the yield stress

in this case is

*
y* = 2y 0 bN.

2
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(6.5.6)

The interpretation of (6.5.6) shows that presence of pres-

sure and temperature on the same surface of the shell slows

down the yield; because in the absence of outcoming heat in

§4.4, the yield stress in compression is found to be 2y.

The material in the presence of the outcoming heat needs

more stress to yield whence

y* > 2y.

Now we can write y* as

w0 60y* = 2y + b
a

2(a- - 1)



where w = lim w. The above result shows that y* de-
c+0

pends on both 00 , the ratio of radii and yield
a

stress in compression 2y. Hence a thick-walled shell re-

quires more heat to yield than a thin-walled shell, so long

as the pressure remains constant in both the cases.

[Wilhoit, 1958].

Derrington and Johnson [1958] have shown that if pres-

sure and temperature are applied separately on the inner

surface of a thick-walled spherical shell, yield occurs

first at the inside radius in each case. But if both pres-

sure and temperature are applied together on the inner sur-

face, it has been shown that the onset of yield may be

caused to occur at any desired radius by making a suitable

choice of pressure, temperature and thickness of the shell.

An immediate inference from these results is that an out-

ward heat flow induces shear stresses opposite in nature to

those caused by the pressure. This leads to the idea of

"stress-saving"; that is, by introducing a suitable temper-

ature gradient, the stresses due to pressure may be re-

duced. This idea is very important in modern applied sci-

ence.

From (6.5.5) it can be seen that the onset of yield

depends on eo , if a,b remain fixed. If 00 is small

r(a < r< b) is small, and vice versa since y* is fix-

ed. Hence by proper choice of 00 the shell may be made
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to yield at r = a, r = b or anywhere in the body of the

shell. This is again in agreement with Derrington and

Johnson's investigation.

The yield function in this case may be taken as

f(Trr Tee T '

6 *
0 b

E I Tee - Trrl 2- r) 2Y - 0'

which is of Tresca's type of yield function.

(b) Transition Through Tee:

Here let

From (6.4.6) we have

3
T := - 12.ee 2

R 1 -

21
7(6 + r6') l+P(1 -

2
6 )-06 (- - 1).

r

2Tee 2o0
a2r 2-c 1-c 2

3A+211 751-777r = ' '3-2c '

-577E(1-F )].

Taking logarithmic differentiation with respect to r

we get

d(log R) -2(c(1-c)F2 + cF - (1-c)Q2
d(log r)

(2-c)+(l-c)F2

The solution for
T00

may be obtained when F + co as

T00 -20) (b 1).
oe c Bor o F
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The equation of equilibrium (6.4.7) with the help of the

boundary condition for
Trr

gives

c°0 b 2c 130 2b
trr 1), (6'5'7)

c$0 b 2c b,2-Tee= y}(1-c)(i) -00(F - 1),(6.5.8)k Y(1-{1-ITI7FT-

Coa b2 r30,13,+ -2-kp017 IIT:77574 r
Toe rr

= (2-

b 2c

Te
Trr = 1.1131(E) ,
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(6.5.9)

(6.5.10)

For the fully plastic state c -4- 0 and we get the corres-

ponding solutions. The yield function here may be taken as

f(Trr T86 ' TOO
Li !Tee Trr 2y =

Thus the yield functions obtained for transitions through

T andare the same.rr Tee

(c) Transition Through (t Trr).

Here

R
Tee rr _22[(1 F) -1],

and a similar procedure as before gives,



where,Bl is a parameter. The equilibrium equation and

the boundary conditions give

and so

T - Trr

Pi b 2c
. [1 lf2c

-

cp. , 2c

2c r'

(g) -1]

For the fully plastic state c 0 and we have

log (E-)

T =
rr b

log (a-)

Pi
v*

TO0 Trr b
2log

a
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(6.5.10a)

(6.5.11)

(6.5.12)

(6.5.13)

where y* is the yield stress in tension for the thermo-

elastic-plastic case. Both the transitions through Tee

and
Trr show work-hardening. Only the transition through

(T00
Trr)

lead to a yield condition of the Tresca type.

From (6,5.13) we get the pressure pi when the yield

starts as

pi 2y*1og(11). (6.5.14)

From the foregoing results in this case we have no-



ticed in each case (a), (b) and (c) that ITO°
Trrl is

the largest in value among all the stresses or

their differences. Hence transition should occur

through kee Trrl'

Case 2: F 1, Infinite extension

In this case the shell is subjected to uniform pres-

sure on the external surface of the shell and a steady

state temperature on the internal surface.

(a) Transition Through Trr

From (6.4.6) we have

b
2T = (3A+24)-(2)032 + (A+211)(r0'+$)2-213 - 1].rr 0 r

and a similar procedure as in Case 1 yields:

c AOr

2
1-c 1-c,-c

Trr
= kE)y[1-Air e ] - - 1).0 r

The equation of equilibrium (6.4.7) gives

A r
0

1-c 1-c

r 1 2(1-c)

Aor
(2-c)

[1 + ---]
rTee

T = - A17
r

a, 0 b
2 r
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(6.5.15)

For the fully plastic state c 0 and it can be seen from

(6.5.15) that (Tv
Trr)

goes to infinity. In order



that (t may remain finite, we must have Ao E 0.

Hence rewriting the above equations for Trr and

(Tee - T
rr

) and using the boundary condition for
Trr

at

r = a, we get

-
T = Z!2=21.11_11

we
0c r

1c
rr c L' T77771("E) J- 1)f30 1.(- '

(6.5.16)

cw8 1-c

rr 68 (2-c)y)(1-c y -(3 12T].0 r
0 2-c

T - = -[(1

(6.5.17)

The maximum principal stress difference occurs at r = b

which can be seen from (6.5.17).

For fully plastic state,

a
Trr = 2ylog - *( 1),

r

rr
T T86 = y -
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(6.5.17a)

If y is yield stress in tension in the thermo-elas-

tic-plastic case, then at r = b

*
0

Y = Y 2
(6.5.18)

The equation (6.5.18) shows that in the presence of

out flowing heat at the internal surface and tensile stress

at the external surface, the shell begins to yield earlier

than the case when only tensile force is applied at the



The results corresponding to the transition through

may be obtained following a similar procedure as be-

fore and may be given below:

2c2-c a0(2b-a)
T ( y[1-{l c 11-, i
rr 2a (2-c)y'

Tee 'Err = (2-c)y(1
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external surface. This result is a contrast to that when

both temperature and pressure are applied at the internal

surface. Rewriting the equation (6.5.18) we have

W 60
Y

2(- - 1)
a

which shows that depends on 00 and the radii of the

shell. Again, we notice that the above equation leads to

the same conclusion as in Case 1; that is, the larger the

thickness of the shell the higher is the temperature neces-

sary to start the yielding.

If both pressure and temperature are applied on the

external surface of the shell a similar phenomenon is ex-

pected to occur as the case when both of them were applied

on the internal surface.

(b) Transition Through

(6.5.19)

(6.5.20)

(2b-a) 2c 8 -I
(2-) -112(2a (2-c)y7 +)r 2 r '



For the fully plastic state c 0 and we get from the a-

bove equations

0* 2b 4b 11

Trr =
4ylog +

2 a - r '

and

*
0 b

Tee T
rr

= 2y +
2 r

(c) Transition Through (Tee Trr)

The stresses in this case may be obtained as before

and are given below:

-PO r 2c-6
T
rr 2c-6] a

r 2c-6
T ee 2c-6 [1+(2-c)(-g) 7,

[I- (-a-)

-p (3-c) , 2c-6

Tee Trr 2C-6 'ai
, a' N

[1- (--b) ]a
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6.5.20a)

(6.5.21)

(6.5.22)

(6.5.23)

where po is the pressure applied at the external surface.

For the fully plastic state, we get

6

[1-* ]

Trr = -PO 6

[1- (b--) ]



and

From the above results we again notice that

ITee Trr I is the largest in value in each

the cases (a), (b) and (c) than any other stress or stress-

difference. Hence transition should occur through

IT ee T 1*rr

Now, the asymptotic solutions for the strains in the

transition state may be obtained:

F CO:

From (6.4.5) we have

1- 2err= 32[1 F]2.

Hence

d[log(1-2e )]rr- 2[ CF 2F - Q2
],

d(log r) (1 - F)2

from which we obtain

-3p()6
Tee T

1-1
rr 6 (P

2c

err
=

71[1-D1(i)
] as F -0- ± Co,

where
D1

is a parameter. In like manner we get

1 b 2c
e =-[3 - D1(i) ],au 2
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(6.5.23a)

(6.5.24)

(6.5.25)



(6.5.25) continued

1
e = - = e ,ee 2 14

eee - err =

F -+ 1:

Here the values of the strains, obtained as before

are:

e = 1[3 - D2 (9c-")],aa 2 r

1
e = - ,rr 2

1 a ce = e - -[1 -
r) ifee op 2

a 6-2c
eee - err = KO(F.

2c

6.6 The Constitutive Equation for the Transition
and Plastic States

We shall now obtain the constitutive equation for the

transition and plastic states corresponding to the follow-

ing cases:

Case 1: F 4. co

124

(6.5.26)

In this case we have shown earlier that the transition

first occurs through (T - T )ee rr '
since (T00Trr) is

the largest one among all the stresses and it attains its

maximum earlier than the other stresses or stress differ-



Cpi
B1 2c

[ -1]

Hence the constitutive equation for the transition state is
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ences. Hence the constitutive equation for the transition

state should be obtained through the transition of

(Tee Tr) Hence from (6.5.10), (6.5.10a), (6.5.24) and

(6.5.25) we get the following equations:

d 1 d
e =rr

2pB1
Trr

DI
d

ed -ee 2pB ee

d D1d
eq5(p =

4
r

PD1 "

where

given by

e.. = X T..11 1 11 I

where

D1
X = .

1 2pB1

(6.6.1)

Now allowing, as before, c 0 in the above equation

for the transition state we obtain the constitutive equa-

tion
'd
e.. = AIT..11 1 11 I

where
D log

xv _
Pi 2y*1

(6.6.2)



by using the equation (6.5.13). Thus the constitutive

equation (6.6.2) takes the form

'd D1 d

and represents-the fully plastic state since the propor-

tionality factor between the stress and strain-rate is ob-

viously a constant 1-1717 .

Now, if we consider transition through Trr , the

equations (6.5.1), (6.5.2), (6.5.3), (6.5.24) and (6.5.25)

yield

f2(I1)

(eii - Ty-g, T 6.6.2a)

e.. = f (I )T..11 1 1 11

where

b
2c

D1(
2c

2(2-c)y(j) +

I1
being the first stress invariant. Similarly, the con-

stitutive equation for the transition state through Tee

,b,2c

c 2c
2(2-c)y{1

121 b
2(2-c)yT) 130(F)*
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(6.6.3)

We now notice from (6.6.1), (6.6.3) and (6.6.4) that the

may be obtained from

and (6.5.25) as:

where

(6.5.7), (6.5.8),

e.. =f (I )T..11 2 1 11 '

(6.5.9), (6.5.24)

(6.6.4)



'd D1
e. T. I

2ITIL - qr1

13* b
where the yield function ITP - TP I= 2y + ( ),ee rr 2 r
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constitutive equations for the transition states obtained

by the transition through (Tee Trr" Trr
and T

AO

respectively, do not lead to the same equation which is not

unexpected.

Again allowing c to go from the transition state

to the neighboring state, we have from equations (6.6.3)

and (6.6.4) the constitutive equation

(6.6.5)

being a function of r.

It is important to note here that transition through

rr or T does not lead to the constitutive equationee

similar to that of (6.6.2) when c 0. This implies that

transition may or may not occur through these branches.

In that case, when the transition actually occurs in a mat-

erial either through Trr or through Tee , the result

(6.6.5) implies that the material might go into either

creep or fatigue or some other state. Otherwise, there

can be no transition at all through Trr and Tee.

Case 2:

In this case, from (6.5.21), (6.5.22), (6.5.23) and

(6.5.26) we obtain



and

where

-p0 (3-c)

2c-6
[1-(a..)

Hence the constitutive equation in the transition state

obtained from the above equations is:

where

A -

0 d
e =T
rr A rr

K0 d
e = Tee A ee

K0 d
e04)

TOO

e.. = A T..11 2 11

where

K0
2 A

6

K [(a) -11
0 b -

X' -
2

3P0

'de.. = X T..11 2 11
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(6.6.8)

(6.6.9)

(6.6.10)

(6.6.11)

The constitutive equation for the fully plastic state

may be obtained from (6.6.11) as

(6.6.12)

Now the constitutive equations for transition states,

obtained through the transition of Trr and Tee , have
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entirely different forms. Moreover, they do not become id-

entical with (6.6.12) even when c 0, implying that

after the transition state the material may go into any one

neighboring states, creep, fatigue, etc.



CHAPTER 7

THERMO-ELASTIC-PLASTIC TRANSITION OF TUBES SUBJECTED

TO UNIFORM PRESSURE AND STEADY STATE TEMPERATURE

7.1 Preliminary Remarks

This chapter is devoted to a discussion of thermo-

elastic-plastic transition in tubes under uniform pressure

and a steady state temperature.

As has already been mentioned in chapter 6, this prob-

lem has been solved by several authors in which the prin-

ciple of superposition and ad-hoc, semi-empirical laws have

been used. In our analysis the principle of superposition

does not hold as the strain measure which will be taken for

our discussion is not linear and also we do not assume any

ad-hoc, semi-empirical laws such as yield conditions.

The basic equations mentioned in §6.2 will remain va-

lid in this chapter as well, except that the equation of

equilibrium will be expressed in a cylindrical coordinate

system.

7.2 Formulation of the Problem and Identification of the
Transition Points

We consider a tube of internal and external radii a

and b (a < b) subjected to uniform pressure and a steady

state temperature 6 applied on the inner surface r = a.

Further, if we assume that there are no body forces, body

couples and couple stresses acting on the tube, and if only
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and

rr

1
e = [1- (32ee 2

1- 2
e = [1-d ]

zz 2 0 '

+2

ere ' eOz erz = 0,

1e =( + O.)2-12+ 1(1-d0
2),

aa 2 2

the prime indicates the differentiation with respect to r.

The stresses obtained from (6.4.1) and (7.2.1) may be writ-

ten as:

Trr 2

2
X[1-1(r

2
(3' + (3) - 7 4- (1-d02)]

+ p[1-(r' + )2)-w
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a steady deformation problem is considered, the basic equa-

tions discussed in §6.3 may be written as in (6.4.1),

(6.4.2), (6.4.3) and (6.4.4). On account of axial symmetry

of the problem, the displacement field may be chosen as

u = r(1-13), v = 0, w = z-(1-d0), = f(r),

where r = (x2 + y2 )1/2' d0
(<1) being a constant to be

determined. By using the Almansi strain measure given by

(4.2.7) we have the following expressions for strain:

(7.2.1)

(7.2.2)



(7.2.2) continued-

1- 1
T = Afl--(r8' + 8)2

1 2
- 713 + 7(1-d02)]ee 2

+ p(127-8 )we,

T = X[1 - + )2
1

- -62 + - 1-d 2)]
1 1

zz 2 2 2 0

and TT T =0.
zr re ' Oz

The temperature field obtained from (6.4.2) is

8 log -
0 r

e

where

for r = b

=

too, for r =

the only equilibrium equation which remains to be satis-

fied is

b
log -

a

Trr Tee

we,
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0, (7.2.3)

the other two equations are satisfied identically. Substi-

tuting (7.2.2) in (7.2.3) we have

++ 2-Kolog r + r = K, (7.2.4)
2

atrr
Dr



where

2w00 2p
0 X+2p

(X+2p)log(a--)

and c -

Setting log r= z in (6.2.4) and then differentiating

with respect to z, we have

21313' + 2(3 + V)(13" + (3')-K0 + c
0

(7.2.5)

Setting again

13 =111Z p
0 '

and

dQ
dF

p pi q,

the equation (7.2.5) yields

22(q - p)p + 2qq + c(q - p) =1,

which may also be put in the form

QF(F - 1)

3 c 2
F3-(l-)F2 -(c-1)F-( 7 + 1)
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(7.2.6)

where a = F and 1.= Q. We assume here, as in the pre-

vious chapters, that 13 belongs to c.(2) and does not van-

ish throughout the elastic domain. Hence division by p

= ) in (7.2.6) is permissible. From (7.2.6) it may
/R-

0
be observed that some of the possible transition points of

the differential system of the problem under consideration
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are F =0, F = 1 and F =± co. There may be other tran-

sition points given by the roots of the expression in the

denominator of (7.2.6). But in this thesis we shall re-

strict, for purposes of illustration, our discussion only

to the above-mentioned transition points.

Now it can be shown that

F = 1+ P,

r6'where P Hence, F -0- 0 implies P -0- -1, 1

implies P 0 and F ± co implies P -0- 00. In order to

study further about the nature of these points, we consider

the reciprocal strain ellipsoid

(1-2e rr2)dr2 + (1-2e0e + (1-2e )d2 = K2
zz z

(where K is some constant) which may be rewritten with the

help of (7.2.1) as

Fdr + + d 2dz2 = K2.
2 2 2

0

It may be seen from (7.2.7) that F = 0 and F = co are

transition points; for the first case the ellipsoid becomes

a cylinder and for the second case the ellipsoid tends to

become a pair of planes. The third point F = 1 is a reg-

ular point, because, then the ellipsoid (7.2.7) becomes

2 2
2d02

2 2(34:11-1-13.Fd..c1=-Kde

(7.2.7)

where 6 becomes some constant. Since F = P + 1, F = 0



and

Equation (7.2.2) may be rewritten

R = P,2[(1 - c)+F2],

where

R E
Trr

Do - 130log r ,
p

2 we0
D = (3 - 2c)-(1 - c)d
0 ' 0 b

log a-

- 2p
c X + 2p

Taking logarithmic differentiation with respect to r we

have from (7.3.1)
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corresponds to infinite extension and F = co corresponds

to infinite contraction.

7.3 Determination of Stresses and Strains in the
Transition and Plastic States

We shall determine now the stresses and the strains in

the transition and plastic states corresponding to the

transition points mentioned in §7.2.

Case 1: F + ± 00 Infinite Contraction

In this case the tube is subjected to uniform pressure

and a steady state temperature on the inner surface of the

tube.

(a) Transition Through
rr:

(7.3-.1)



Hence

c
R = A0 r as F ± 00,

T = E Drr c 0

2
d(log R) -cF2 + c + Q
d(log r)

where Ao is some arbitrary constant. The boundary condi-

tion,
Trr

=0 when r = b, and (7.3.1a) gives

then the equation of equilibrium (7.2.3) with (7.3.2)

yields

b c
(T00 - Trr) = D0

11(--) + .
r 0

Applying the same technique as above we may get

,
T - T =
06 zz

pu
02 '

T - Tzz = md02 - 11D0
(L)c-

6o*rr r

(1-c) + F2

c - 60log .
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(7.3.1a)

(7.3.2)

(7.3.3)

(7.3.4)

(7.3.5)

The yield starts at r= a corresponding to the largest of

these stresses and their differences. The pressure for

which the material starts to yield may be obtained from

(7.3.2) and thus

Pi-
0 b c

(.-g) -1] + (8010g(e.,



while in chapter 5 the cooresponding pressure was

where

2
T - t= -yd60 zz 3 0

D 1.1 c
0 bca -11'
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Hence it is clear that the outward flow of heat opposes the

yielding. The same phenomenon which has been observed in

chapter 5, that yielding may start anywhere in the shell

depending on the pressure, temperature and the ratio of the

radii may also be seen to occur in this problem.

In the fully plastic state c + 0 and from (7.3.2)

through (7.3.5) we have

2
Trr = [-v(3-d02 ) + 88]log ,

34

2tee rrg(3-d02 ) + at) r

* 4 2

Tzz Trr = 2Y (30 - 7Yd0

None of the above results in (7.3.6) is independent of

d0 '
hence no relation may be used as yield condition;

however

(7.3.6)

8*
d 2 0t00 -yee 3

which is independent of do and therefore may be used as

yield condition.

We may add here that while considering this problem,



Bland [1956] has assumed
Trr

< T <
T88

in both the- zz -

elastic and plastic state. But in our transition analysis

this result comes out automatically.

(b) Transition Through

Here we have

T00
x[i 7(rv r3)2_ l2

+ - d02)]
1

p[1-- 82] + 801og F ,

and hence

cT08
R E [- D0] = 132[1. + (1 - c)F2].

A similar technique as before and use of the boundary con-

dition, Trr = 0 when r = b, yield the following results

in the transition state:

T =E.
rr c

T - Tee = p
rr

Do

2
T - T = pd
00 zz 0 '

c
T - T = d - P [p0 - - ]rr zz

2

p 0

bc
) (F) ] - 8

0
[log - + 1],

r

b
J
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The cooresponding results in the fully plastic state may be

obtainedfrom (7.3.7) letting c 4--.0 and are given below:



2

Trr = -117(3-d02 )1°g E.'
0* (1g F + 1) ,

2 2

Tee Trr = 7Y(3-d0 ) 130*

2, 2
TOO - Tzz = 757a

4

Tir Tzz = 7Yd 2- 2Y - *'

The yield condition again may be taken as

*
2 0

ee 3

(c) Transition Through (-re T ):
rr

We may write here

- T
rr 00

R
TE2 - F2

and obtain as in (a) and (b)

rr = pA0r-c as F -I- 00_ ,

-b-cA0
being a parameter.

(7.3.8)

where
A,0

is an arbitrary constant. The equation of

equilibrium (7.2.3) with (7.3.8) and boundary condition,

Trr = 0 when r = b, yield

pB bC0
T = [1 -rr
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Hence (7.3.8) may be rewritten as

T - T =
bC
-4ee rr (7.-3.10)

The parameter B0 may be obtained from (7.3.9) using the

condition

(T )
rr r=a

Hence

Cp.

-Pi

b c
PI(g) -1]

A similar treatment as before gives

and

Tee T =zz

Trr Tzz = Pd

Now, we find from (a), (b) and (c) by comparison that

ITee Trrl
attains its largest value in each case if_

b
(1 - c)

()C
< 1. Hence transition occurs through

a

IT00 - T
rr

I in the problem under

Case 2: F 0, Infinite Extension

In this case the tube is subjected to a uniform pres-

sure on its external surface and a steady state temperature

on its interior surface.

In the rest of this section, we shall only state the

discussion.
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and

Here we obtain in the transition state the following

results:

cwe 1-c
Trr = [1.)0 -

Or
)(--) ]-(3 log ,

c p a

cwe0 - pD I-c
0 r

Tee Trr 1-c 3(g) N:1

2
T Trr zz

tee TZZ = 4
2

T - T =rr zz

In the fully plastic state c 0 and we have

2
T
rr

= w000 (3-d02)ylog --
0

- (3 *log
a

T T = y(3-d 2) - * ,
2

ee rr 3 0

141

results obtained in (a), (b) and (c). The same may be ver-

ified easily in like manner as in Case 1 (a b c). Only the

boundary condition will differ from that in Case 1.

(a) Transition Through
Trr:

(7.3.13)

(7.3.14)



None of the above relations in (7.3.14) is independent of

d0 '
but

which is independent of do. Hence this may be taken as

the yield condition.

(b) Transition Through Tee:

The solutions for the transition state in this case

are:

T =JL
rr c

d 2
(30*

T = - -7-rr

0 b
c(3-c)

0
-

p
(log - + 1)}(1.-

a

(3 [log - + 11,

{p0 - 0
2.0 (log /I + 1)}(
p a

c(3-c)

(7.3.15)

- (7.3.16)

- a
0[log + 1],

c(3-c)

TOO - Trr = "3-c)(130 Tc780(19g 1)44 0 '

T -
rr zz = 11(110

T00 Tzz = pdo2 .

In the fully plastic state and we have

142



where-

-(3-c)P0

Trr = 2y(3-d02

2 2TT. = -yd .ee zz 3 0

(c) Transition Through (Tee
rr),

In this case, the stresses in the transition state are

obtained as

Trr = 3-c
0

4-c
a

+ *
0

4-c
141 - (E-)

a 4-c
T60 Trr =.11A0(T)

,

02
T T = PG
6 6 zz '

T T =
rr zz

In this case when c 0 we obtain the following results

from the above equations:
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(7.3.18)

(7.3.19)

(7.3.20)

(7.3.21)

(7.3.22)



2

Trr
' = A0(1 -

2 ratil108 - T =rr 3 0 r

2 2

T60 - TZZ =-7Yd0

2
, 02T - T = -yu

rr zz 3

We now compare the above results in (a), (b) and (c) and

find that ITee - Trrl attains the largest value in each

case. Hence transition should occur through Ire- T6 rrl.

Also we determine the strains in the transition state.

The strains in the plastic state may be obtained letting

0.

For +00.

1-eee = 7,

1

ezz [1 -

a)43,

The strains in this case are calculated following the

same technique as employed in the foregoing cases. Hence

from (7.2.1) we have

1 b
err = -[1 - E 1,

2
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(7.3.24) continued

and

1 b
eaa = -[3-d02 - E()],2

where E is some arbitrary parameter. Also we have

and

Also

1 b c
e -e
66 rr 2 r

12
e e = -d
66 zz 2 0

1
err - e = -[d 2

- E ].
zz 2

For F

The strains in this case are as follows:

e =
rr

1

c
e = -[3-d02 - G(=.) ]aa 2 r

1 a
eee = -[1 - G(-.) ],2

1
= -[1 -

ezz 2

where G is an arbitrary parameter.
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and

Case 1: + co

a 4-c
e H(-)rr

- eee =

e - e
rr zz

12
eee - e =

0
-H(

zz 2 r

H being another arbitrary parameter.

7.4 The Constitutive Equations for the Transition
and Plastic States

We shall now obtain the constitutive equation for the

transition and plastic states corresponding to the follow-

ing cases.

4-c
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(7.3-.27)

It has already been remarked before that transition

should occur through 'Tee Trrl' since in all the three

possible cases (a), (b) and (c)
IT00 Trr

I attains the

largest value among all the stresses and their differences.

Hence, we should obtain the constitutive equation corres-

ponding to the transition through
'TOO Trrl

Constitutive Equation Corresponding to the
Transition Through t

The constitutive equations for the transition state

may be obtained from the equations (7.3.9), (7.3.10),

(7.3.11), (7.3.12) and (7.3.25) and are given below:



and

b c2E()d 1 r d
e = -- . T
rr 23.1

2 b
c rr

d - 2B0(F)

c
2 bd + E (-4 de

d 1 0 :r= - .ee 211
2 b

COO
dO + POE')

2 b C

d 1 2d0 - E()
r d

e = --.. T
zz 2P

2 b c zz

2d0 - B0
()
r

If we choose now
0

= E, then all the equations in

(7.4.1) reduce to

1 d
e =T ,
ii 2p ii

which is, therefore, the constitutive equation for the

transition state. The parameter E is then given by

cpi
E=

b
P (e -1]

For the fully plastic state the constitutive equation

may be obtained from (7.4.2) as

'd 3 d
eii = 4y Tii
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tained corresponding to the transition through IT°

Constitutive Equation Corresponding to theTransitionT Iue rr

The constitutive equations for the transition state

may be obtained from (7.3.18), (7.3.20), (7.3.21), (7.3.22)

and (7.3.27) in the following manner:

errrr

4-c
2

d + 2H(f)

4-c Trr
2- A0()

4-c
2- 4H(a)d

=
r- d

e00
211 4-c 08

do2
T+2A0()r

a

- T I.
rr

(7.4.4)
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It is again important to note that transition through
rr

or
T80

does not lead to the constitutive equation similar

to that of (7.4.3), since when c + 0, any one of the

states creep, fatigue, etc., may be reached the neighbor-

ing state after the transition occurs.

Case 2: F 0

It was observed before in this case that transition

should occur through kee T
rri

since in all the cases

(a), (b) and (c), ITee T
rrI

attains the largest value

among all the stresses or stress-differences. Accordingly

in this case also, the constitutive equation should be ob-



(7.4-.4) continued

A-c
a2d 2- 2H(-)

d
=

1 0 r d
e
zz 2p 4-c Tzz

2d02 + A (4-0 r

and

The equations in (7.4.4) reduce to

1 d
e = T
ii 2p ii

4-c
2i[1 - (g) ]

The constitutive equation for the plastic state may be

obtained from (7.4.5) as

'd 3 de. = T
4y rr
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(7,4.5)

(7.4,6)

The transition through the other branches Trr
and

Tee may not lead to the plastic state, as has already been

explained in Case 1, since no constitutive equation like

(7.5.6) may be derived.

if we assume 2H = -
0*

The parameter H now may be ob-

tamed from (7.3.18) as

3-c)po



CHAPTER 8

SUMMARY, DISCUSSION AND SCOPE OF FURTHER WORK

The necessity of increasing use of ad-hoc semi-empiri-

cal laws in the classical theory of elastic-plastic transi-

tion lies in the fact that the latter does not recognize

the existence of the transition state between elastic and

plastic ones. We have shown in this thesis that assump-

tions of yield conditions in such problems become uneces-

sary once we recognize that the transition from elastic to

plastic state, as explained by Seth, is an asymptotic pro-

cess and that transition state is a separate state which

can not be replaced by a yield surface as has always been

done in the current literature. This treatment in the

classical theory amounts to divide two extreme properties

of a material by a sharp line which is physically impos-

sible.

It has been clear from our work that identification of

the transition state is basically important. There are, at

present, three ways to identify the transition state. The

most general one among all is the vanishing of the Jacobian

of transformation from elastic state to plastic state. An

invariant relation among the strain (stress) invariants is

obtained from this condition and it is found that most of

the yield conditions present in current literature are ob-

tainable from it as special cases. Also our results in-
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clude the Bauschinger's effect while the classical yield

conditions fail to account for it.

The classical theory of elasticity and plasticity

makes use of linear strain measure. But we have shown that

transition fields are sub-harmonic (super-harmonic) fields

and that they are non-linear and non-conservative in char-

acter and hence it is very important that a non-linear

strain measure such as the Almansi measure should be used

in the constitutive equation.

The recognition of "transition state" or "mid-zone" as

a separate state necessitates to show the existence of the

constitutive equation for that state. In this context, we

have used Seth's transition theory to obtain the stresses

and strains in the transition state and the same may be ob-

tained for the plastic state when a certain parameter

, 1-2c%
C 1-a

where is the Poisson's ratio of the material, is made

to approach zero. From these solutions the constitutive

equations for both transition and plastic states are ob-

tained, the latter takes the form of the Levy-von-Mises

equation.

In order to illustrate our concept and procedure we

have solved four problems of practical interest. The first

two problems are those of shells and tubes subjected to
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uniform external pressure and the last two are those of

shells and tubes subjected to uniform external pressure and

also a steady state temperature. It has been shown that

transition may occur through any of the stresses or their

differences. Hence, it is found necessary to obtain the

asymptotic solutions corresponding to all the possible

branches of transition. The stress or stress difference

which attains the largest value among others at transition

should be used to derive the constitutive equation for the

transition state and in the limiting form for the plastic

state. Some of the results obtained in these problems are

compared with those of classical theory to show that the

transition analysis provides a satisfactory scientific

basis for explaining these irreversible phenomena. The re-

sults obtained for the thermo-elastic-plastic problems con-

form with some of the known experimental results of

Johnson, Derrington and Wilhoit. Some of the solutions of

the problem of the tube under pressure and steady state

temperature given by Bland and others may also be obtained

from our results as special cases.

In nature transitions do occur frequently and the ex-

isting classical theory fails to explain them successfully.

Thus the transition theory, as it stands, now can be fruit-

fully exploited to explain a variety of physical phenomena

and hence has a very wide application in all applied

sciences.



BIBLIOGRAPHY

Bland, D.R. 1956. Elasto-Plastic thick-walled tubes of
work-hardening material subjected to internal and ex-
ternal pressures and to temperature gradients. Journ-
al of the Mechanics and Physics of Solids 4:209-229.

1957. The associated flow rule of Plasticity.
Journal of the Mechanics and Physics of Solids 6:71-
78.

Bleich, H.H. 1957. On the analysis of non-linear viscoelas-
tic structures with temperature gradients. Technical
Report No. 3, Department of Mathematics, Columbia Uni-
versity.

Boley, A.B. 1958. The thermal stresses. In: Structural
Mechanics, Proceedings of the First Symposium on Naval
Structural Mechanics, Stanford University, 1958. New
York, Pergamon 1960, p 378-406.

Boley, A.B. and J.H. Weiner. 1960. Theory of thermal stres-
ses. New York, Wiley, 586 p.

Bridgmann P.W. 1923. The compressibility of thirty metals-
as a function of pressure and temperature. Proceed-
ings of the American Academy of Arts and Sciences 58:
163-242.

Clark, S.P., Jr. 1966. Handbook of physical constants. Rev.
ed. New York, Geological Society of America. 587 p.

Crossland, B. 1954. The effect of fluid pressure on the
shear properties of metals. Proceedings of the Insti-
tution of Mechanical Engineers 169:935-944.

Drucker, D.C. 1956. Stress-strain relations in the plastic
range of metals: Experiment and basic concepts. Rheo-
logy 1:97-119.

1958. Plasticity. In: Structural mechanics; Pro-
ceedings of the First Symposium on Naval Structural
Mechanics. New York, Pergamon. p. 407-455.

Elam, F.C. 1935. Distortion of metal crystals. Oxford,
Clarendon. 182 p.

153



Oxford, Clarendon. 356 p.

1953. A new method for determining the yield
criterion and plastic potential of ductile metals.
Journal of the Mechanics and Physics of Solids 1:271-
276.

Hill, R., E.H. Lee and S.J. Tupper. 1947. The theory of
combined plastic and elastic deformation. Proceedings
of the Royal Society of London, Ser. A, 191:278-303.

Hulsurkar, S. 1966. Transition theory of creep of shells
under uniform pressure. Zeitschrift fur Angewandte
Mathematik und Mechanik 46:431-437.

1967. On the transition theory of elastic-plas-
tic and creep deformations. Ph.D. thesis. Kharagpur,
India, Indian Institute of Technology. 118 numb.
leaves.

Johnson W. and M.G. Derrington. 1958. The onset of yield
in a thick-spherical shell subject to internal pres-
sure and uniform heat flow. Applied Science Research,
Sec. A, 7:408-420.

154

Eringen, A.C. 1962. Nonlinear theory of continuous media.
New York, McGraw Hill. 477 p.

Friedrichs, K.O. 1955. Asymptotic phenomena in mathematical
physics. Bulletin of the American Mathematical Society
61:485-504.

Green, A.E. 1956a. Hypoelasticity and Plasticity. I. Pro-
ceedings of the Royal Society of London, Ser. A, 234:
46-59.

1956b. Hypoelasticity and Plasticity. II. Journ-
al of Rational Mechanics and Analysis 5:725-734.

Hill, R. 1949. General feathers of plastic-elastic problems
as examplified by some particular solutions. Journal
of Applied Mechanics 71:295-300.

1950. The mathematical theory of Plasticity.

Johnson, W. and P.B. Mellor. 1966. Plasticity for mechani-
cal engineers. New York, Van Nostrand. 412 p.



155

Kammash, T.B., S.A. Murch and P.M. Naghdi. 1960. The elas-
tic-plastic cylinder subjected to radially distributed
heat source, lateral pressure and axial force with
application to nuclear reactor fuel elements. Journal
of the Mechanics and Physics of Solids 8:1-25.

Laks, H., C.D. Wiseman, 0.D. Sherby and J.E. Dorn. 1957.
Effect of stress on creep at higher. temperature.
Journal of Applied Mechanics 79:207-213.

Love, A.E.H. 1927. A treatise on the mathematical theory of
elasticity. Cambridge, University Press. 643 p.

N6dai, N. 1931. Plasticity. New York, McGraw-Hill. 349 p.

1963. Theory of flow and fracture of solids.
Vol. 2. New York, McGraw-Hill. 705 p.

Naghdi, P.M. 1960. Stress-strain relations in plasticity
and thermoplasticity. In: plasticity: Proceedings of
the Second Symposium on Naval Structural Mechanics.
New York, Pergamon. p 121-169.

Narasimhan, M.N.L. and K.S. Sra. 1968. Generalized measures
of deformation-rates in non-Newtonian hydrodynamics.
International Journal of Non-linear Mechanics. (in
Press)

Nowacki, W. 1962. Thermoelasticity. Vol. 3. New York,
Pergamon. 628 p. (International Series of Monographs
on Aeronautics and Astronautics. Division I. Solid and
Structural Mechanics, vol. 3)

Prager, W. 1953. Singular yield conditions and associated
flow rules. Journal of Applied Mechanics 75:317-320.

Prager, W. and P.G. Hodge, Jr. 1951. Theory of perfectly
plastic solids. New York, Wiley. 264 p.

Purushothama, C.M. 1965. Elastic-plastic transition.
Zeitschrift fur Angewandte Mathematik und Mechanik 45:
401-408.

Prandtl, L. 1924. Spannungsverteilung in Plastischen
Korpern. In: Proceedings of the First.International
Congress for Applied Mechanics, Delft,- 1924.'Delft

' 1925. p. 43-54.



156

Reiner, M. 1948. Elasticity beyond the elastic Limit. Amer-
ican Journal of Mathematics 70:433-446.

Reuss, A. 1930. BerUcksichtigung der elastischen Formander-
ung in der plastizitatstheorie. Zeitschrift far
Angewandte Mathematik und Mechanik 10:266-274.

Rosenfield, A.R. and B.L. Averbach. 1956. Effect of Stress
on the expansion coefficient. Journal of Applied Phy-
sics 27:154-156.

Seth, B.R. 1935. Finite strain in elastic problems. Philo-
sophical Transactions of the Royal Society of London,
Ser. A, 234:231-264.

1962a. Generalized strain measure with applica-
tions to physical problems. In: International Sympo-
sium on Second-order Effects in Elasticity, Plasticity
and Fluid Dynamics, Haifa, 1962. New York, Macmillan,
1964. p 162-172.

1962b. Transition theory of.elastic-,plasticde-
formation, -creep and relaxation. Nature 195:896-897.

1963a. Elastic-plastic transition in shells and
tubes under pressure, Zeitschrift fur. Angewandte
Mathematik und Mechanik 43:345-351.

1963b. Simple cases of transition phenomenon.
In: Transactions of Eighth Congress_of_ArmyMathema-
tics Research Centre, Durham p. 409-447.

1964a. Elastic-plastic transition in torsion.
Zeitschrift fur Angewandte Mathematik und Mechanik
44:229-233.

1964b. Generalized strain and transition con-
cepts for elastic-plastic deformation, creep and re-
laxation. In: Proceedings of the Eleventh Internation-
al Congress of Applied Mechanics. Berlin, Springer-
Verlag, 1966. p. 383-389.

1964c., Transition phenomenon-in_physical prob-
lems. Bulletin of Calcutta Mathematical Society 56:
83-89.

1966. Measure-concept in mechanicsInternation-
al Journal of Non-linear Mechanics 1:35-40.



York', Academic. 267 p.

Todhunter, I. and K. Pearson. 1893. History of elasticity
and strngth of materials. Vol. 2, part I. New York,
Dover, 762-p.

Weiner, J.H. 1957. A uniqueness. theorem for.the_Coupled.
thermoelastic problems. Quarterly of Applied Mathema-
tics 15:102-105.

Wilhoit, J.C. 1958. Elastic-plastic stresses in rings under
steady state radial temperature variation. In: Pro-
ceedings of the Third United State National Congress
of Applied Mechanics. New York, American Society of
Mechanical Engineers, 1958. p. 693-700.

157

Thomas, T.Y. 1954. Interdependence_of_the_yield condition
and stress-strain relations. for plastic flow. Proceed-
ings of the-National Academy of Science, (Washington
D.C.) 40:593-597.

1955a. Combined elastic and Prandtl-Reuss strao-
strain relations. Proceedings. of. NationaL Academy of
Science, (Washington D.C.) 41:720-726.

1955b. Combined elastic and von Mises stress-
strain relations. Proceedings of the National Academy
of Science, (Washington D.C.) 41:908-910.

1961. Plastic flow and fracture of solids. New




