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5 Compositions by H and Ĥ allow us to construct an instance at

R
k

, MP
R

k

(Y, ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 The case l = 3. The Euclidean polygon P1 is the convex hull of

{z, w} [ (
a

z0w \MP
P

(X,!)) and is determined by the vertices

z, ⇠1, ..., ⇠l, w. The Euclidean polygon P2 is determined by the

vertices z, ⇠1, ..., ⇠l, w, 0. . . . . . . . . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES (Continued)

Figure Page

7 We show that d(z, z0)  d(z, 0). Since d(z, 0)  d(z, ⇠) it follows

that in fact ⇠ = z0 and d(z, 0) = d(z, ⇠). . . . . . . . . . . . . . . . 55

8 Establishing a translation equivalence, �⇠

P

, that will perform gluing

along the sides s⇠
P

and s⇠̃
P

0 contained in the neighborhoods U
P

and

U
P

0 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Establishing an a�ne homeomorphism on an individual compo-

nent O
k

by composing IdO
k

(which has Jacobian M) with a lift of

the developing map on M · O
k

(which has Jacobian IdSL(2,R)). . . 80

10 The embeddings from M · (X̃, ⇡⇤!) needed to define the marked

periods for M · (X,!) can be built from the corresponding maps

dev
Q

on (X̃, ⇡⇤!) along with the map Id
X̃

(having Jacobian M�1)

and the lift of the R-linear action of M on C (having Jacobian M). 83



1

A NEW ALGORITHM FOR COMPUTING THE
VEECH GROUP OF A TRANSLATION SURFACE

1 Introduction

1.1 The Problem

A translation surface is an oriented connected topological surface together with

a discrete subset, the complement of which supports a ‘translation atlas’ of chart

maps to C for which the transition functions are translations. Such surfaces have

induced Lebesgue measure and flat metric from the Euclidean structure of C. The

discrete subset mentioned above consists of cone singularities in this flat metric

having cone angles that are integer multiples of 2⇡.

The translation atlas allows for a well defined notion of whether or not a

map between two translation surfaces is a�ne. A�ne maps between transla-

tion surfaces have constant Jacobian in local coordinates. For compact trans-

lation surfaces, the group of Jacobians for orientation preserving a�ne self-

homeomorphisms is called the Veech group of the surface. The Veech group

is a subgroup of SL(2,R) since compactness forces area conservation. There is

a natural action of SL(2,R) on the set of all translation equivalence classes of

translation surfaces, and the Veech group of a compact translation surface is the
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stabilizer of its equivalence class under this action.

Individual elements of the Veech group can provide information about the

geodesic flow along certain directions on the surface. Veech groups are in fact

discrete subgroups of SL(2,R). William Veech [Ve1] proved that when the Veech

group of a translation surface is large (specifically when it is a lattice subgroup of

SL(2,R) and so has finite co-volume with respect to Haar measure on SL(2,R)) a

dichotomy exists where the geodesic flow along a given direction on the surface is

either periodic(orbits are closed curves) or minimal (orbits are dense in the sur-

face). Furthermore, the Lebesgue measure on such surfaces is the unique invariant

measure for the flow along a minimal direction. Such surfaces are called lattice

surfaces. Along with providing a setting for interesting dynamics, translation

surfaces have also shown promise in the study of gas models [DHL].

This thesis addresses the need to identify structures related to a translation

surface with which calculations can be performed in order to answer questions

about the Veech group. Compact translation surfaces can be defined by identi-

fying sides of polygons. Our algorithms apply to polygons with side lengths in a

number field over Q so that exact arithmetic can be performed.

1.2 Previous Work

In the case of a lattice surface, the Veech group is finitely generated. Recent work

([Sch, Fin, Bo, SW, Mu, BrJu]) has produced algorithms for listing generators of

the Veech group in the this case.
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It is known that if a translation surface covers the flat torus with ramifica-

tion over a single point, then the surface is a lattice surface. Gabriela Weitze-

Schmithüsen [Sch] produced an algorithm for computing generators of the Veech

group for the case of such covers. Her algorithm relates membership in the Veech

group to a question about automorphisms of free groups. A generalization of this

approach to arbitrary finite coverings of a double n-gon or an n-gon was carried

out by her student Myriam Finster [Fin].

For the general case, algorithms have been developed [Bo, SW, Mu] that

produce a list of candidate members for the Veech group, then confirm or deny

membership for individual candidates using Delaunay triangulations of the sur-

face. The candidates arise as the elements of the group that stabilizes a partic-

ular cellular decomposition of the hyperbolic plane. This stabilizer is a (a priori

larger) group containing the Veech group. In the case of a lattice surface, the

Veech group has finite index in the candidate group and one can complete a list

of generators.

Another way to characterize elements of the Veech group itself is provided

in [BrJu], but work is required to utilize it for calculation. This characterization

is expressed in terms of automorphisms of a polygonal cell complex within the

space of all immersions of ellipses into the translation surface.

1.3 Our Approach

In contrast to previous algorithms used to compute Veech groups in the gen-
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eral lattice setting, we introduce a set admitting an easily computable action of

SL(2,R) and an element in that set whose stabilizer is precisely the Veech group

in question. We produce an algorithm that detects when the Veech group is a lat-

tice, and in this case computes a fundamental polygon for the action of the Veech

group on the hyperbolic plane. A standard result, essentially due to Poincaré (see

Theorem 3.5.4 in [Kat]), provides that a complete set of generators for the Veech

group can then be obtained from the side pairings associated to this fundamental

polygon. We thus provide an algorithm for explicitly computing the Veech group

of a lattice translation surface.

Our approach introduces a new computational framework used to formulate

a membership criterion for the Veech group of a compact translation surface

(X,!). We represent (X,!) on a certain non-compact translation surface O that

can be used to represent any translation surface within the SL(2,R) orbit of the

translation equivalence class of (X,!). The surface O has an easily computed

SL(2,R)-action. When this action is restricted to the translation surface rep-

resentations mentioned above, it corresponds to the SL(2,R)-action on the set

of equivalence classes of translation surfaces. The Veech group of a compact

translation surface is therefore the stabilizer of its representation on O.

In particular, we utilize the Voronoi decomposition of (X,!) subordinate to

its singular set. A copy of any given open 2-cell of the Voronoi decomposition can

be placed on O. This open 2-cell is completely determined by the directed saddle

connections lifted from (X,!) to O. The identifications required to reconstruct

(X,!) from the closures of these copies arise from pairing oppositely directed but
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otherwise identical directed saddle connections lifted from (X,!). The pairing is

recorded in the form of a Z2-action on the set of directed saddle connections lifted

to O. This Z2-set constitutes a representative of the equivalence class1 that we

call themarked periods of (X,!). As outlined above, the marked periods of (X,!)

contain a su�cient amount of information to recover the translation equivalence

class of (X,!), and are defined in a space that admits an easily computable

action of SL(2,R). The criterion for Veech group membership is satisfied if a

matrix stabilizes the marked periods of (X,!). In fact we show that a finite

subset of the marked periods of (X,!) is su�cient to determine all matrices in

the Veech group of (X,!) whose norm is bounded above by a given value.

As the norm bounds increase, our algorithm constructs ‘containment poly-

gons’ nesting down to a fundamental polygon for the action of the Veech group

on the hyperbolic plane. The fact that we know all elements satisfying the given

norm bound allows us to simultaneously track increasing metric balls within

which we guarantee that the containment polygons coincide exactly with the

fundamental polygon. In the lattice case this allows our algorithm completely

determine the fundamental polygon in finite time, thus providing us with a finite

generating set for the Veech group.

1.4 An Illustrative Example of the Membership Criterion

We now explore a restricted case in order to illustrate the criterion for Veech

1
There is some freedom in lifting the set of directed saddle connections.
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group membership. Consider a compact translation surface, (X,!), with one

singularity P of cone angle 6⇡. A combinatorial Gauss-Bonet theorem tells us

that such a surface has genus 2.

The Voronoi cellular decomposition of such an (X,!) has only one 2-cell.

The closure of any 2-cell in the corresponding decomposition of the universal

translation cover (X̃, ⇡⇤!) is a closed neighborhood of a singularity with piecewise

geodesic boundary and a 6⇡ cone singularity in its interior. Choose one such

closure and denote it by Poly(X). We will identify pairs of the geodesic pieces

of @Poly(X) in order to reproduce (X,!) as a translation surface. The shape

of Poly(X) is determined from a finite collection of saddle connections from the

singularity within Poly(X) to other singularities on (X̃, ⇡⇤!). Gluing data for the

reconstruction of (X,!) from Poly(X) is obtained by recording when two di↵erent

outgoing saddle connections from the singularity within Poly(X) correspond to

oppositely oriented but otherwise identical saddle connections on (X,!). Such

observations define a Z2-action on the set of saddle connections emanating from

Poly(X).

Let O
P

denote the translation surface formed by taking three copies of C,

slicing each along the negative imaginary axis, then gluing in a cyclic fashion to

produce a triple cover of C ramified over 0. Note that O
P

is a (non-compact)

translation surface with a single 6⇡ cone singularity. We can identify the saddle

connections emanating from the singularity in Poly(X) with line segments em-

anating from 0 2 O
P

. We can also carry over the Z2-action mentioned above

as well as identify Poly(X) with a corresponding polygon within O
P

. For the
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remainder of this subsection we will use these identifications without mention.

We record on O
P

the endpoints of the saddle connections emanating from its

singularity. These points along with the induced Z2-action constitute represen-

tatives of the marked periods of (X,!). We prove that only a finite subset of the

marked period representatives is needed to form Poly(X). The Z2-action defined

on this finite subset contains the information about which sides to identify in

Poly(X) in order to reproduce (X,!). Let ⇢ 2 R where B(0, ⇢) contains the

marked periods needed in order to form Poly(X) and reconstruct (X,!).

The R-linear transformations of C defined through elements of SL(2,R) can

be lifted to a�ne transformations of O
P

. If M 2 SL(2,R) has minimal Frobenius

norm ||M || =
p
2 then M 2 SO(2,R) and a lift of its action to O will preserve

B(0, ⇢). If the lifted action preserves the marked periods within B(0, ⇢) (which

includes the Z2-action), then M is in the Veech group of (X,!).

If ||M || >
p
2 we consider the singular value decomposition

M = O1 ·D ·O2 where O1, O2 2 SO(2,R) and

D =

2

6

4

t 0

0 t�1

3

7

5

with t 2 (1,1).

The image of B(0, ⇢) under the lift of the action of M will fail to contain B(0, ⇢)

as some lines through 0 will be contracted by a factor of t�1. In this case B(0, R)

with R > ⇢t is su�ciently large to ensure we can compare the image against

B(0, ⇢). We apply the lift of the action of M to the marked periods within
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B(0, R), pushing forward its Z2-action, then intersect the image with B(0, ⇢). If

the result is identical to the original marked periods within B(0, ⇢) then M is in

the Veech group. The value of R grows monotonically as the norm of M . Thus

the marked periods within a given B(0, R) can be used to determine all elements

in the Veech group whose Frobenius norm is bounded above by ||M ||.



9

1.5 Organization

Section 2 of this dissertation presents background materials. We define trans-

lation surfaces as well as a number of related objects. We define some of the

objects for the case of a compact translation surface only, including the Veech

group, the universal translation cover, the Voronoi cellular decomposition, and

the connected components of the auxiliary translation surface, O, associated to a

compact translation surface. These connected components are used to record the

‘marked periods’, which contain information regarding the geodesics connecting

the singularities of the surface. We also recall the standard action of SL(2,R) on

the set of all equivalence classes of translation surfaces, and show that the Veech

group is the stabilizer of the class of the surface under this action.

Section 3 introduces topological embeddings from star-shaped subsets of the

auxiliary surface O into the universal cover of a compact translation surface.

These embeddings are used to define the representatives of the marked periods

at each point of a compact translation surface. The union of a choice of represen-

tative from each point in the surface is used to define a full representative of the

marked periods. Theorem 7 identifies the set of all possible representatives of a

fixed surface as an equivalence class, which we define as the ‘marked periods’ of

the surface. The section concludes with a proof of Theorem 8 which states that

the marked periods are invariant under translation equivalence.

In section 4 we decompose a compact translation surface by ‘unzipping’ it
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along the 1-skeleton of its Voronoi decomposition. We show that the pieces

resulting from such a deconstruction can be independently cut from O using

a finite subset of the marked periods. Additional information encoded in the

marked periods for this finite subset can be used to determine the gluing scheme

required to reconstruct the surface up to translation equivalence. We thus prove

that a finite subset of the marked periods can be used to determine the translation

equivalence class of a surface.

Section 5 defines an SL(2,R)-action on the space containing the marked pe-

riods. Recall that SL(2,R) also acts on the space of all translation surfaces. We

prove Theorem 16 which establishes that the assignment of marked periods for

compact translation surfaces is equivariant with respect to these actions. We

combine this with the results of Section 4 to obtain a criterion for Veech group

membership. The membership criterion (presented in Theorem 18) can be used

to find all elements of the Veech group whose norm is bounded above by some

given value using a finite subset of the marked periods determined by this value.

Section 6 provides more background. Veech groups are subgroups of SL(2,R)

that project to ‘Fuchsian’ subgroups of SL(2,R)/{±Id}. We define Fuchsian

subgroups of SL(2,R)/{±Id}, and introduce the standard isometric action of

SL(2,R)/{±Id} on the hyperbolic plane. We also introduce a well-known ‘funda-

mental polygon’ associated to the action of a Fuchsian group on the hyperbolic

plane. We discuss how this fundamental polygon can be used to obtain a list

of generators for the group, and present a generalization of a theorem due to
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Poincaré (Theorem 21) that will play a part in determining when the construc-

tion of this polygon is complete.

Section 7 introduces an algorithm for computing Veech group elements that

produces a list of generators in finite time for the lattice case. Algorithm 7.1

is used for a restricted class of translation surface. Algorithm 7.2 applies to all

translation surfaces. Algorithm 7.2 alters the surface to insure that it satisfies

the conditions of Algorithm 7.1. The output resulting from applying Algorithm

7.1 on this new surface is then appropriately modified to obtain the elements

(generators in the lattice case) of the original surface.

Section 8 provides concluding remarks.
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2 Preliminaries

2.1 Translation Surfaces

We provide some basic definitions associated to translation surfaces. See [Zor]

for a general reference.

Definition 1. A translation surface is a pair (Y, ) of a connected Riemann

surface Y (without punctures) and non-zero holomorphic 1-form  defined on Y ,

such that the zeros of  do not have accumulation points in Y . The zeros of  

are called singularities and a point of (Y, ) that is not a singularity is called

a regular point. The order of a singularity P is given as the order of the zero

of  at P and is denoted by o(P ).

We pick an orientation for the complex plane C. Since holomorphic maps

preserve orientation, we can thus induce orientations on all translation surfaces.

If (Y, ) is a translation surface with singular set ⌃, then  induces a Eu-

clidean structure on Y \⌃ through a collection of local Euclidean chart maps to

C.
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Definition 2. Let (Y, ) be a translation surface with singular set ⌃.

If U is a simply connected neighborhood of Y \⌃ and y0 2 Ū is a chosen base

point, we define regular coordinates (⇣
y0) on U based at y0 by:

⇣
y0(y) :=

Z

y

y0

 .

If U is a simply connected neighborhood of some P 2 ⌃ we define singular

coordinates (⇣ 0
P

) on U by:

⇣ 0
P

(y) :=



(o(P ) + 1)

Z

y

P

 

�

1
o(P )+1

.

Note that in regular coordinates the 1-form  is represented as  = d⇣
y

o

,

regardless of base point y0. For a singularity P sitting on the boundary of a

regular coordinate chart we can base the regular coordinates at P . In this case

we have the relationships

⇣
P

= 1
o(P )+1

[⇣ 0
P

]o(P )+1

and

 = d⇣
P

= (⇣ 0
P

)o(P )d⇣ 0
P

.

The regular coordinates of a translation surface form a ‘translation atlas’ on

Y \⌃ for which the transition functions are translations. Such an atlas defined on

the punctured topological surface underlying Y \ ⌃ can be used as an alternate
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defining object for the translation surface (see [MasTab]).

The translation atlas provides the translation surface with a Lebesgue mea-

sure and flat metric induced from the Euclidean structure of C. The singular

set consists of cone singularities in this flat metric having cone angles that are

integer multiples of 2⇡.

An oriented Euclidean polygonal subset of the complex plane whose sides

are identified in order to define a closed surface may be given the structure of a

translation surface provided the identifications occur in a specific way. Each side

identification needs to be made with two sides that are parallel, of equal length,

and have opposite induced orientations as boundary pieces of the polygon. Such

a surface admits an atlas of chart maps to the complex plane whose transition

functions are translations, and as such defines a Riemann surface. If z is the

complex coordinate from the complex plane containing the polygon, then the

one-form given locally by dz defines a non-zero holomorphic one-form on this

Riemann surface, which defines a translation surface in the sense of Definition 1.

The local flat structure of such a translation surface is identical to the local flat

structure of the original polygon. Figure 1 depicts a translation surface given in

this way, that has genus two and contains exactly one singularity of cone angle

6⇡.

Utilizing the real vector space structure of C, the translation atlas allows for

a well defined notion of whether or not a map between two translation surfaces

is a�ne (i.e. R-linear plus a translation).
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Figure 1: Identifying like numbered edges of the polygon above defines a trans-
lation surface of genus two with one singularity of cone angle 6⇡.

Definition 3. A map between two translation surfaces that sends the singular

set of one into the singular set of another is called a�ne if it is represented as

an a�ne map in the regular coordinates of the two surfaces.

Remark 1. The linear part of an a�ne map is locally constant and given by the

Jacobian of a local representation. Since translation surfaces are connected, this

Jacobian matrix is the same regardless of where on the surface the restriction to

a regular local neighborhood is performed.

Definition 4. If (Y1, 1) and (Y2, 2) are translation surfaces, and

F : (Y1, 1) ! (Y2, 2) is an a�ne map, we denote the Jacobian of F by dF .
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Definition 5. Let (Y, ) be a translation surface.

We define the groups

A↵+(Y, ) :=

8

>

<

>

:

F : (Y, ) ! (Y, ) | F is an orientation preserving

a�ne homeomorphism

9

>

=

>

;

and

Trans(Y, ) := {F 2 A↵+(Y, ) | dF = Id}.

Definition 6. We define the map der : A↵+(Y, ) ! GL(2,R) by der(F ) := dF .

Note that the map der is a homomorphism. We can put the definitions above

into an exact sequence:

{Id
Y

} ,�! Trans(Y, ) ,�! A↵+(Y, )
der�! GL(2,R)

There is a naturally defined action of GL(2,R) on the space of all translation

surfaces. We will focus on the restriction to SL(2,R).

Definition 7. For M 2 SL(2,R) and a translation surface (Y, ), we define

M · (Y, ) to be the translation surface whose translation atlas is the result of

post-composing all of the chart maps from (Y, ) by M .

Remark 2. Note that if M 2 SL(2,R) and (Y, ) is a translation surface, then

Id
Y

: (Y, ) ! M ·(Y, ) is an orientation preserving a�ne homeomorphism with

der(Id
Y

) = M .
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We now define what it means for two translation surfaces to be translation

equivalent.

Definition 8. Two translation surfaces (Y1, 1) and (Y2, 2) are translation

equivalent if there is an orientation preserving a�ne homeomorphism

F : (Y1, 1) ! (Y2, 2) with dF = Id.

2.2 The Compact Translation Surface (X,!) and its Veech
Group

If (X,!) is a compact translation surface, then its singular set must be finite

since it cannot have any accumulation points in X. Also because area must be

preserved, all a�ne homeomorphisms from (X,!) to itself must have Jacobian

with determinant one. In this subsection we look at the group of linear parts of

such a�ne homeomorphisms.

Definition 9. If (X,!) is a compact translation surface then the Veech group

of (X,!) is given by:

�(X,!) := {M 2 SL(2,R) | 9 F 2 A↵+(X,!) such that der(F ) = M}

Veech groups are in fact discrete subgroups of SL(2,R). Though this is a

standard result (see Proposition 1.3 in [Mol]), it is also a consequence of Remark
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9 and Theorem 18. The Veech group of a generic surface is trivial or Z2 (see

Theorem 1.1 of [Mol]).

Remark 3. There is a left action of group SL(2,R) on itself through left multipli-

cation. Correspondingly there is a unique (up to scaling) left invariant measure

defined on SL(2,R) called Haar measure.

Definition 10. A subgroup of H  SL(2,R) is called a lattice subgroup if the

induced Haar measure on the coset space SL(2,R)/H is finite.

William Veech proved in [Ve1] that when the Veech group of a translation

surface is a lattice subgroup, a dichotomy exists where the geodesic flow along a

given direction on the surface is either periodic or minimal (orbits are dense). Fur-

thermore, the Lebesgue measure on such surfaces is the unique invariant measure

for the flow along a minimal direction. Such surfaces are called lattice surfaces.

Lemma 1. If (X,!) is a compact translation surface and M 2 SL(2,R) then

M 2 �(X,!) if and only if (X,!) and M · (X,!) are translation equivalent.

Proof. LetM 2 SL(2,R). By Remark 2 the mapG
M

:= Id
X

: (X,!) ! M ·(X,!)

is an a�ne homeomorphism with der(G
M

) = M and der(G�1
M

) = M�1.

Referring to Figure 2, it follows that there exists of an a�ne homeomorphism

F
M

: (X,!) ! (X,!)
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(X,!)
G

M

//

F
M

✏✏

M · (X,!)

HIdSL(2,R)vv

(X,!)

Figure 2: The map F
M

exists if and only if HIdSL(2,R)
exist.

with der(F
M

) = M if and only if there is an a�ne homeomorphism

HIdSL(2,R)
: M · (X,!) ! (X,!)

with der(HIdSL(2,R)
) = IdSL(2,R). Such an HIdSL(2,R)

is a translation equivalence.

2.3 The Universal Cover ⇡ : (X̃, ⇡⇤!) ! (X,!)

Let (X,!) be a compact translation surface and let ⇡ : X̃ ! X be the univer-

sal (topological) covering space of the topological space underlying the Riemann

surface X. The topological space X̃ can be endowed with a Riemann surface

structure by pulling back the local charts of X via ⇡, making ⇡ a holomorphism

of Riemann surfaces. We will denote this Riemann surface again by X̃. The pull

back of ! via ⇡ is a non-zero holomorphic 1-form whose zero set ⌃̃ := ⇡�1(⌃)

cannot have any accumulation point in X̃ due to the local homeomorphic prop-

erties of ⇡. Therefore (X̃, ⇡⇤!) is a translation surface with singular set ⌃̃ and

⇡ : (X̃, ⇡⇤(!)) ! (X,!) is a local translation equivalence.
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Definition 11. We call ⇡ : (X̃, ⇡⇤(!)) ! (X,!) the universal translation

cover of (X,!).

2.4 The Connected Components of the auxiliary surface

In this subsection we introduce the translation surface used to record informa-

tion about the directed saddle connections starting at a particular singularity

of a compact translation surface. The disjoint union taken over such surfaces

associated to all the singularities on our compact translation surface will be the

auxiliary surface used to hold a representative of our compact translation surface

vis-a-vis this information.

We will now introduce terminology to track the number and type of singu-

larities on a compact translation surface. Due to a combinatorial version of the

Gauss-Bonnet theorem (see [Sch]), all translation surfaces of genus g must have

singularities whose orders sum to 2g � 2.

A compact translation surface (X,!) of genus g will have singularities whose

orders can be arranged into a non-decreasing sequence: i1  i2  ...  i
s

to form

the partition of 2g � 2: i1 + i2 + ...+ i
s

= 2g � 2.

Definition 12. Let H(i1, ..., is) be the collection of all translation equivalence

classes of translation surfaces containing exactly s singularities having orders

i1  ...  i
s

.
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Remark 4. There is an action of SL(2,R) on H(i1, ..., is) provided for by Defi-

nition 7. Lemma 1 tells us that �(X,!) = StabSL(2,R){(X,!)}.

Fix H(i1, ..., is) where i1  ...  i
s

. Let s represents the number of distinct

values of summands in the partition i1+...+i
s

= 2g�2, where for all k 2 {1, ..., s}

c
k

denotes the number of times that the k
th

value (given by q
k

) appears in the

partition. Thus q1 = i1 = ... = i
c1 6= q2 = i

c1+1 = ... = i
c1+c2 6= ... 6= qs =

i
s�cs+1 = ... = i

s

.

Definition 13. For all k 2 {1, ..., s} define the non-compact translation surface

O
k

:= (C, (q
k

+1)zqkdz). The point 0 2 O
k

is the only singularity, and is of order

q
k

.

We will use 0 as the base point for both the singular and regular coordinates

on O
k

. For (0-centered) sector neighborhoods having angle less than 2⇡ we use

the regular coordinates based at 0 given by

⇣0(z) =

Z

z

0

(q
k

+ 1)wq

kdw = zqk+1.

Defined on all of C are the singular coordinates ⇣ 00(z) = [(q
k

+1)
R

z

0
(q

k

+1)wq

kdw]
1

1+q

k .

There are multiple choices of root for ⇣ 00, but for simplicity we will take

⇣ 00(z) := (q
k

+ 1)
1

q

k

+1 z

where (q
k

+ 1)
1

q

k

+1 is the principal real root.
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Remark 5. The surface O
k

can be viewed as follows. Take q
k

+ 1 copies of the

complex plane and slice each along their negative imaginary axes. Denote the

resulting edges from the i
th

copy by l
i

and r
i

for left and right respectively. Then

identify (in the natural way) l1 with r2, l2 with r3, ... , and finally l
q

k

+1 with r1.

The resulting translation surface is O
k

.

Note in particular that one regular coordinate chart map is defined on any

(0 centered) sector of O
k

having angle as measured in regular coordinates of less

than 2⇡. On the underlying surface C this sector will have angle less than 2⇡
o(P )+1

.

It is a consequence of Theorem 3 that such chart maps extend to homeomorphism

when the boundary point, 0, is included in its domain.

Definition 14. Let proj
k

: O
k

! (C, dw) be given locally by

w = proj
k

(z) := ⇣0(z).

Then proj
k

: O
k

! (C, dw) is a translation cover ramified over 0 2 C.

Definition 15. For P 2 ⌃ let O
P

be a copy of O
k

where k 2 {1, ..., s} is such

that q
k

= o(P ). Similarly proj
P

will represent the map proj
k

in this case.
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2.5 Natural Metrics on (X,!), (X̃, ⇡⇤!), and OP for P 2
(X,!)

Let (Y, ) be an arbitrary translation surface with singular set ⌃. Using the

regular coordinates on Y \⌃ we can define a Euclidean Riemannian metric. The

associated geodesics will be represented in the regular coordinates as straight

lines. A distance can be defined on Y \⌃ using the infimum of the lengths of all

rectifiable (equivalently in this case piecewise linear) curves connecting two given

points. The completion of the associated metric space on Y \ ⌃ can be achieved

by simply re-inserting the isolated singularities of ⌃. In such a way we obtain a

classical metric on all of Y . The associated distance on Y can (also) be viewed

as deriving from the infimum of the lengths of all piecewise linear curves between

the given points, provided we understand that these curves may now connect at

singularities.

In this subsection we will define geodesics on all of (X,!), (X̃, ⇡⇤!), and

O
P

for P 2 (X,!). We will describe the local properties of such curves at

singular points, and see that geodesics uniquely realize the distance between

points within (X̃, ⇡⇤!) or O
P

due essentially to the simple connectivity of these

spaces. Distances between points in (X,!) are also realized by geodesics, though

uniqueness may not hold.

Definition 16. If (Y, ) is a translation surface with singular set ⌃, a geodesic

in (Y, ) is a path that is locally length minimizing over the set of all rectifiable
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curves with respect to the distance metric that  induces on Y (identified with

the metric completion of Y \ ⌃ as described above). We denote the length of a

geodesic � by l(�). A geodesic � that is purported to ‘connect the points’ x1

and x2 has domain of definition [0, 1] with �(0) = x1 and �(1) = x2.

Theorem 1. (see Theorem 8.1 in [Str]) The geodesics of a translation surface

(Y, ) with singular set ⌃ are curves consisting of open ended geodesics of the

Riemannian metric on Y \⌃ connected at the points of ⌃ in such a way that for

each connection point P 2 ⌃ the minimum angle (measured between the two legs

in the regular coordinates near P ) is greater than or equal to ⇡.

Figure 3: Example of a geodesic from a point X1 to a point X2 through a sin-
gularity of cone angle 6⇡. The two directed line segments are geodesics of the
Riemannian metric defined on the surface minus the singularity. Also shown is the
minimal angle formed at the singularity between the two pieces of the geodesic.

Proof. Suppose ↵ is a geodesic on (Y, ). Near regular points of (Y, ), ↵ must

be a geodesic of the Riemannian metric defined on Y \ ⌃. Suppose ↵ contains a

singular point P . Then the quadratic di↵erential on Y given by � =  2 has a zero

of order n = 2 · o(P ) at P . There is a natural metric associated to the so-called
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‘half-translation surface’ (Y,�) that is precisely the translation surface metric we

define above (see Definition 5.3 of [Str]). Therefore ↵ is also a geodesic of the

half-translation surface (Y,�). Applying Theorem 8.1 of [Str] to the geodesic ↵ of

(Y,�) we have that ↵ is seen in the singular coordinates near P to be two straight

lines passing into P connected by an angle of measure greater than 2⇡
n+2

= ⇡

o(P )+1
.

Therefore in regular coordinates this angle will be observed as greater than or

equal to ⇡.

Definition 17. For P 2 ⌃, let the radius of a point z 2 O
P

be the distance

from z to the singularity 0 2 O
P

.

Theorem 2. Any pair of points in (X̃, ⇡⇤!) or O
P

for any P 2 ⌃ are connected

by a unique geodesic.

Proof. The result holds true regarding (X̃, ⇡⇤!) by compactness ofX and Lemma

18.2 of [Str]. The uniqueness of a geodesic connecting two arbitrary points of O
P

is guaranteed by Theorem 14.2.2 of [Str] and simple connectivity ofO
P

. Existence

follows for O
P

= (C, (o(P ) + 1)zo(P )dz) by Corollary 18.2 of [Str], however we

could also simply construct the geodesic connecting two points using Theorem 1.

Given two points z1, z2 2 O
P

whose arguments using regular coordinates di↵er by

less than ⇡, we can simply connect the two points by a straight line drawn using

a single coordinate chart. If their arguments di↵er by ⇡ or more, the geodesic

connecting them is given by the concatenation of the geodesic connecting z1 to 0

and the line connecting 0 to z2.



26

Definition 18. We will refer to geodesics on a translation surface as lines.

A line connecting two singularities but containing no singularities otherwise is

defined as a saddle connection. For all P 2 ⌃, we denote the unique geodesic

map connecting points z1 and z2 in O
P

by
z1�z2. We denote the unique geodesic

map connecting points y1 and y2 in (X̃, ⇡⇤!) by
y1�y2. We denote the images of

these lines by [z1, z2] and [y1, y2] respectively.

Theorem 2 provides us with a natural concept of convexity in (X̃, ⇡⇤!) and

O
P

for each P 2 ⌃ .

Definition 19. If A ✓ O
P

for some P 2 ⌃ or A ✓ (X̃, ⇡⇤!), we say A is star

shaped with center w0 if w 2 A implies [w0, w] ✓ A. We say A is convex if

w1, w2 2 A implies [w1, w2] ✓ A.

2.6 The Voronoi Decomposition of (X,!)

We will utilize a cellular decomposition of (X,!) called the Voronoi decomposi-

tion subordinate to the singular set ⌃.

Definition 20. Let

F�3 := {x 2 X | d(x,⌃) is realized by three or more distinct geodesics},

F 2 := {x 2 X | d(x,⌃) is realized by exactly two distinct geodesics}, and

F 1 := {x 2 X | d(x,⌃) is realized by exactly one geodesics}.
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Also, for all P 2 ⌃, let:

F 1
P

:= {x 2 F 1 | the geodesic realizing d(x,⌃) terminates at P} and

F
P

:= {x 2 X | one of the geodesics realizing d(x,⌃) terminates at P}.

Notice that for P,R 2 ⌃ with P 6= R, we have that F 1
P

\ F 1
R

= ;. We also

have that
S

P2⌃ F
P

= X.

Remark 6. The F 1
P

for P 2 ⌃ constitute precisely the path components of F 1 and

are the open 2-cells of the Voronoi cellular decomposition of (X,!) subordinate to

the set ⌃. The open 1-cells and the 0-cells of this decomposition are respectively

the path components of F 2 and the elements of F�3. See [MasSm] for more

details.

2.7 Extending Local Coordinates to a Developing Map

It is possible to continuously extend a local coordinate chart on a translation

surface to a map that is no longer injective while preserving the property that

it restricts locally to a coordinate chart at regular interior points of A. In this

subsection we discuss the properties of such maps for the surfaces we are consid-

ering.

Given a simply connected subset A ✓ Y of a translation surface (Y, ). For

y0 2 A, the fact that  is a holomorphic 1-form allows for a well defined map
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dev
y0 : A ! C given for all y 2 A by

dev
y0(y) :=

Z

y

y0

 

The map dev
y0 is the unique continuous extension to all of A of any local chart

defined in a neighborhood of a regular point within A subject to the conditions

that it restricts to a local coordinate chart in some neighborhood of every regular

point of A and that it take y0 to 0. This map is called the ‘developing map’ on

A based at y0. Note that developing maps takes saddle connections of A to lines

of C.

Theorem 3. An injective developing map is a homeomorphism onto its image.

Proof. We show that developing maps are open maps which gives us the result.

Specifically we show that every point in the domain of a developing map is con-

tained in a neighborhood on which the map is open. We will freely change the

base point in this analysis since translations are open maps.

Suppose that A is a simply connected subset of a translation surface (Y, )

and y0 2 A. Let dev
y0 be the developing map defined on A and based at y0. Let

y 2 A.

If y is a regular point, then A can be expanded to include a neighborhood of

y. The regular coordinate ⇣
y

map is a homeomorphism defined near y that will

agree exactly with dev
y

.

If y = P is a singular point of (Y, ), then the agreement of dev
y0 with all
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regular coordinates surrounding P implies that

dev
P

(⇣ 0
P

) = ⇣
P

= 1
o(P )+1

(⇣ 0
P

)o(P )+1

where ⇣
P

and ⇣ 0
P

denote the regular and (respectively) singular coordinates based

at P (see Definition 2). Since the self map of C given by w 7! 1
o(P )+1

wo(P )+1 is

an open map, this completes the proof.

Remark 7. Since X̃ is simply connected, there is a developing map defined on

all of (X̃, ⇡⇤!) for any chosen base point y0 2 X̃. We will exclusively be consid-

ering singular base points y0 = Q 2 e⌃ and will be interested in focusing on the

restriction of dev
Q

to a star shaped subset of (X̃, ⇡⇤!) with center Q. We will

denote this restriction again by dev
Q

. Further restrictions of this map, which are

occasionally considered, will have restrictions reflected in the notation.

Theorem 4. Let P 2 ⌃ and A ⇢ O
P

be the union of {0} and the open (0

centered) sector in O
P

having angle measured in regular coordinates that is no

more than ⇡. Then proj
P

|
A

and proj
P

|�1
A

send lines to lines. Furthermore proj
P

|
A

is a metric space isometric embedding.

Proof. Using the singular coordinates ⇣ 00(z) = (o(P ) + 1)
1

o(P )+1 z on

O
P

= (C, (o(P ) + 1)zo(P )dz) we see from Section 2 that

proj
P

(⇣ 0
P

) = 1
o(P )+1

(⇣ 0
P

)o(P )+1 = dev0(⇣
0
P

)

where dev0 is the developing map based at 0 2 O
P

. Since z 7! 1
o(P )+1

zo(P )+1 is
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injective on A, it follows that proj
P

|
A

is an injective developing map. Therefore

by Theorem 3 proj
P

|
A

is an embedding. The fact that proj
P

restricts to regular

neighborhoods to give Riemannian manifold isometries, together with the fact

that the restrictions of the angles at 0 2 A preclude the formation of lines con-

taining 0 at anything other than an endpoint, implies that proj
P

and proj�1
P

take

lines to lines. Since A is a convex subset of O
P

, it follows that proj
P

|
A

is a metric

space isometric embedding.

Definition 21. If A contains a directed saddle connection starting at a singularity

P 2 A, the image of this directed saddle connection under dev
P

gets an induced

direction and is called the development of the directed saddle connection.
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3 The Class of Marked Periods of (X,!)

The relative periods of ! (relative to the singular set ⌃) are an additive subgroup

of C generated by the endpoints to developments of directed saddle connections

in (X̃, ⇡⇤!). Our ‘marked periods’ are similar to this generating set, but are

obtained by replacing the developing map with a more discerning map which

distinguishes between saddle connections emanating from distinct singularities

and also distinguishes between distinct saddle connections emanating from the

same singularity but with identical developments. This latter case occurs when

the saddle connections are of equal length and the di↵erence in the angle with

which they come o↵ of their singularity Q is an integer multiple of 2⇡ measured

using regular coordinates.

Fix a partition of 2g � 2, i1 + i2 + ... + i
s

= 2g � 2, with i1  i2  ...  i
s

.

Let H(i1, ..., is) be the corresponding stratum of H2g�2. For this section we fix

an (X,!) 2 H(i1, ..., is) with enumerated singular set ⌃ = {P1, ..., Pk

}.

3.1 Lifting the Saddle Connections Starting at P 2 (X,!)
to OP

We wish to investigate the flat structure of (X,!) by considering the collection

of saddle connections on (X,!) emanating from each singularity P 2 ⌃. Fixing

a singularity P 2 ⌃ and lifting these paths starting at a particular chosen point
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Q 2 ⇡�1({P}) produces a star shaped subset of the universal cover.

In this subsection we use the developing map from the universal cover to

establish a collection of embeddings of this subset onto star shaped subsets of

O
P

. Selecting embeddings associated to all singularities on (X,!) gives us a

collection of star shaped subsets of the auxiliary surface
F

P2⌃ O
P

which will be

used to reconstruct (X,!). Due to the dependance on the choice of embedding,

we consider this data to be a representative of an equivalence class of such objects.

Theorem 5. Let P 2 ⌃ and choose Q 2 ⇡�1({P}). Let STAR
Q

be the union

of all directed saddle connections in (X̃, ⇡⇤!) starting at Q and all separatrices

starting at Q that do not otherwise pass through a singularity. Let TIPS
Q

denote

the endpoints of the directed saddle connections used to form STAR
Q

. Then

dev
Q

: STAR
Q

! C lifts via the ramified cover proj
P

: O
P

! C. The set of all

such lifts is an orbit under the left action of Trans(O
P

) on a particular lift. Each

of these lifts is an topological embedding that restricts to the open sub-translation

surface STAR
Q

\ TIPS
Q

⇢ (X̃, ⇡⇤!) to become a translation equivalence.

Proof. We know by Subsection 2.7 that dev
Q

is a continuous function with

dev
Q

(Q) = 0 that restricts to a neighborhood of Q, U
Q

to have the representation

dev
Q

(⇣ 0
Q

) = 1
o(Q)+1

(⇣ 0
Q

)o(Q)+1 = 1
o(P )+1

(⇣ 0
P

)o(P )+1

which is the same local representation as that of proj
P

in the singular coordinates

about 0 2 O
P

. Using the local singular coordinates ⇣ 0
Q

near Q, and the singular
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coordinates ⇣ 00 on O
P

we define o(P ) + 1 embeddings

{h
k

: U
Q

! O
P

| k 2 {0, 1, ..., o(P )} }

by

⇣ 00 = h
k

(⇣ 0
Q

) := ei
2k⇡

o(P )+1 ⇣ 0
Q

, where k 2 {0, 1, ..., o(P )}.

It is clear from the representations of dev
Q

|
U

Q

and proj
P

that h
k

is a lift of

dev
Q

|
U

Q

via proj
P

for all k 2 {0, 1, ..., o(P )}. Note that this constitutes all

possible lifts, given that the deck transformation group O
P

\{0} over C\{0} has

order (o(P ) + 1). In particular any lift of dev
Q

must equal one of these h
k

when

restricted to U
Q

. We use this fact in the next paragraph in order to provide for

the existence of o(P ) + 1 unique lifts of dev
Q

via proj
P

.

We start by proving that the restriction dev
Q

|STAR
Q

\{Q} maps to the punc-

tured plane C \ {0}. Suppose that y 2 STAR
Q

with y 6= Q and dev
Q

(y) = 0.

Note that STAR
Q

is star shaped with center Q so that [Q, y] ✓ STAR
Q

. Since

dev
Q

|STAR
Q

\(TIPS
Q

[{Q}) is a local Riemannian manifold isometry, and

[Q, y] \ (TIPS
Q

[ {Q})

contains at most the endpoints y and Q, it follows that dev
Q

([Q, y]) is the line

in C from 0 to dev
Q

(y) = 0. Since the line from 0 to 0 in C is the singleton {0},
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it follows that dev
Q

([Q, y]) = {0}. In particular

dev
Q

|
U

Q

([Q, y] \ U
Q

) = {0}

which is clearly a contradiction since y 6= Q. Therefore if y 6= Q then dev
Q

(y) 6= 0

and so indeed Im(dev
Q

|STAR
Q

\{Q}) ✓ C \ {0}.

We now use the standard lifting condition for maps from a path connected

and locally path connected space into the base of a cover, in order to establish

the extensions to all of STAR
Q

of the lifts of dev
Q

|
U

Q

found above. Since STAR
Q

is star shaped with center Q and contains an open neighborhood of Q, it follows

that STAR
Q

\ {Q} and O
P

\ {0} both have fundamental groups isomorphic to Z.

Fix base points for the fundamental groups ⇡1(STARQ

\ {Q}) and ⇡1(OP

\ {0})

given as y0 2 STAR
Q

\ {Q} and z0 2 O
P

\ {0}. Using again the local repre-

sentation of the map dev
Q

we see that the generator of ⇡1[STARQ

\ {Q}] maps

under [dev
Q

|STAR
Q

\{Q}]⇤ to the image under [proj
P

|O
P

\{0}]⇤ of the generator of

⇡1[On

\ {0}]. Thus dev
Q

|STAR
Q

\{Q} has o(P )+1 lifts via proj
P

|O
P

\{0} correspond-

ing to the o(P )+1 choices for where y0 gets sent within the set proj�1
P

({dev
Q

(y0)}).

These lifts must coincide with the lifts of dev
Q

|
U

Q

o↵ of Q. They therefore extend

to lifts of dev
Q

that send Q to 0 2 O
P

. If ddev
Q

is one of the lifts of dev
Q

, then

the complete set of lifts is {� �ddev
Q

| � 2 Trans(O
P

)} (recall that Trans(O
P

)

are the translation equivalences that restrict to O
P

\ {0} to be the group of deck

transformations for the (o(P ) + 1)-fold cover O
P

\ {0} over C \ {0}).

For any y 2 STAR
Q

, dev
Q

takes the line [Q, y] to a ray from 0 of equal length
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in C as argued above. Due to Theorem 4 lifts via proj
P

of lines starting at 0 2 C

are equal length lines in O
P

. Therefore all lifts of dev
Q

take lines [Q, y] in STAR
Q

to equal length lines starting at P in O
P

.

Letddev
Q

be a lift of dev
Q

. Suppose y1, y2 2 STAR
Q

withddev
Q

(y1) =ddevQ(y2).

Recall from above that ddev
Q

|
U

Q

= h
k

for some k 2 {0, ..., o(P )} and so ddev
Q

|
U

Q

is an embedding. Let

z 2 [ddev
Q

(Q),ddev
Q

(y1)] = [ddev
Q

(Q),ddev
Q

(y2)]

with z 6=ddev
Q

(Q) = 0 and z 2ddev
Q

(U
Q

). Since ddev
Q

|
U

Q

is injective it follows

that [Q, y1] \ [Q, y2] contains the line [Q,ddev
Q

|�1
U

Q

(z)] which has non-zero length.

The line [Q,ddev
Q

|�1
U

Q

(z)] uniquely extends using local translation coordinates in

(X̃, ⇡⇤!) to longer lines until a singularity is encountered. However there are no

singularities, other than possibly at the endpoints, in [Q, y1] and [Q, y2], and

l([Q, y1]) = l([ddev
Q

(Q),ddev
Q

(y1)]) = l([ddev
Q

(Q),ddev
Q

(y2))]) = l([Q, y2]).

Therefore in fact [Q, y1] = [Q, y2] and so y1 = y2 and ddev
Q

is injective.

We have shown that the restrictionddev
Q

|
U

Q

is a translation equivalence since

it is given explicitly as h
k

for some k 2 {0, ..., o(P )}. In local neighborhoods

about regular points, ddev
Q

|(STAR
Q

\TIPS
Q

) also restricts to be a translation equiv-

alence (restriction of dev
Q

composed with a local inverse of proj
P

). Hence the

injective mapddev
Q

|(STAR
Q

\TIPS
Q

) is in particular an open map and so a topological

embedding. Therefore it is a translation equivalence.
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3.2 Representatives of the Marked Periods at a Point

In this subsection we define a representative of the marked periods of (X,!) at

a singular point of (X,!) using a particular choice of lift (embedding) from the

last subsection. Other representatives are given by choosing di↵erent lifts.

Remark 8. If P 2 ⌃ and Q1, Q2 2 ⇡�1({P}) with ddev
Q1 being a choice of lift

for dev
Q1, then any lift ddev

Q2 of dev
Q2 satisfies ddev

Q2 = g �ddev
Q1 � �Q1

Q2
where

�Q1

Q2
2 Trans( eX, ⇡⇤!) is such that �Q1

Q2
(Q2) = Q1, and g 2 Trans(O

P

). Since

TIPS
Q2 = �Q2

Q1
(TIPS

Q1), it follows that

ddev
Q2(TIPSQ2) = g �ddev

Q1 � �Q1

Q2
� �Q2

Q1
(TIPS

Q1)) = g �ddev
Q1(TIPSQ1).

Definition 22. For P 2 ⌃, let Q 2 ⇡�1({P}), and let ddev
Q

be one of the lifts of

dev
Q

: STAR
Q

! C via proj
P

: O
P

! C. We define a representative at P of

the marked periods of (X,!) (given by ddev
Q

) to be:

MP
P

(X,!) :=ddev
Q

(TIPS
Q

) ✓ O
P

.

Note by Remark 8 that up to the action of Trans(O
P

), this definition is indepen-

dent of the choice of Q 2 ⇡�1({P}).

Remark 9. The fact that ⌃̃ has no accumulation points in X̃ implies that

MP
P

(X,!) has no accumulation points in O
P

. In contrast to this sparseness,

the directions (from 0 2 O
P

) for which you encounter an element of MP
P

(X,!)
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are dense in S1(see [Mas]).

Definition 23. For any P 2 ⌃ and r > 0 we call

MPr

P

(X,!) := {⇠ 2 MP
P

(X,!) | the radius of ⇠ is less than or equal to r},

a radius r bounded representative at P of the marked periods of (X,!).

Also let

MP>r

P

(X,!) := {⇠ 2 MP
P

(X,!) | the radius of ⇠ is greater than r}.

Definition 24. Let P 2 ⌃. For each representative at P , MP
P

(X,!), given by

a particular lift ddev
Q

for some Q 2 ⇡�1({P}), let ⇤
P

:=ddev
Q

(STAR
Q

). We also

label c⌘
P

Q := [ddev
Q

]�1 : ⇤
P

! STAR
Q

and ⌘
P

:= ⇡ �c⌘
P

Q : ⇤
P

! (X,!).

As the notation suggests, c⌘
P

Q is a lift of ⌘
P

(via the covering map ⇡). The

following diagrams are commutative.

⇤
P

c⌘
P

Q

Homeo.
//

⌘
P

%%

STAR
Q

⇡
✏✏

⇤
P

\MP
P

(X,!)
c⌘
P

Q

Trans. Eq.
//

⌘
P

**

STAR
Q

\ TIPS
Q

⇡
✏✏

X X

Figure 4: The set of all saddle connections from P 2 (X,!) lift via ⇡ starting at
Q 2 X̃ to form STAR

Q

. A star shaped subset ⇤ ⇢ O
P

embeds onto (X̃, ⇡⇤!) via
c⌘
P

Q.

Remark 10. We have that c⌘
P

Q|⇤
P

\MP
P

(X,!) is a translation embedding and

⌘
P

|⇤
P

\MP
P

(X,!) is a local translation embedding. Furthermore, ⌘
P

takes the out-
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wardly directed radial lines {[0, ⇠] | ⇠ 2 MP
P

(X,!)} bijectively onto the set of

directed saddle connections starting at P 2 (X,!).

3.3 Representatives of the Marked Periods

In this subsection we bring together the representatives of the marked periods at

each point in the singular set ⌃ to form a representative of the marked periods.

Recall from Section 2 that the stratum containing (X,!),H(i1, ..., is), consists

of all translation surfaces with s singularities of orders i1, ..., is. Recall that s

represents the number of distinct values of summands in the partition

i1 + ...+ i
s

= 2g � 2,

where for all k 2 {1, ..., s} c
k

denotes the number of times that the k
th

value

(given by q
k

) appears in the partition. Thus

q1 = i1 = ... = i
c1 6=

q2 = i
c1+1 = ... = i

c1+c2 6= · · · 6=

qs = i
s�cs+1 = ... = i

s

.

Fix an enumeration of the singular set ⌃ = {P1, ..., Ps

} for the remainder of this

section.
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Let

O =
G

c1 copies

O1 t
G

c2 copies

O2 t ... t
G

cs copies

Os.

Given an (X,!) 2 H(i1, ..., is) with singular set ⌃, recall from Definition 15 that
F

P2⌃ O
P

can be identified with O. There are many choices for this identification

however, since there is no canonical choice for which of the c
k

copies of O
k

we

identify with O
P

where k 2 {1, ..., s} such that o(P ) = q
k

.

Remark 11. The collection of all identifications of
F

P2⌃ O
P

with O is given by

Trans(O)◆ where ◆ :
F

P2⌃ O
P

! O is any given identification.

We now introduce some notation to track when two distinct marked periods

elements represent either end of the same saddle connection on (X,!).

Definition 25. Let {MP
P1(X,!),MP

P2(X,!), ...,MP
P

s

(X,!)} be a set consist-

ing of representatives (at respectively P1, P2, ..., Ps

) of marked periods of (X,!).

For P 2 ⌃ and ⇠ 2 MP
P

(X,!). Let P 0 2 ⌃ be such that P 0 = ⌘
P

(⇠). We define

⇠̃ 2 MP
P

0(X,!) to be the unique element such that ⌘
P

0�(0�
⇠̃

)(t) = ⌘
P

�(0�⇠)(1�t)

for all t 2 [0, 1]. Hence ⇠̃ 2 MP
P

0(X,!) and ⇠ 2 MP
P

(X,!) correspond to op-

positely directed saddle connections on (X,!).

Definition 26. Let {MP
P1(X,!),MP

P2(X,!), ...,MP
P

s

(X,!)} be a set consist-

ing of representatives (at respectively P1, P2, ..., Ps

) of marked periods of (X,!).

Furthermore let ◆ :
F

P2⌃ O
P

! O be a fixed identification. There is a Z2-action

on ◆(
F

P2⌃ MP
P

(X,!)) ✓ O generated by the action of the non-trivial element

✏ 2 Z2 \ {0} whereby if ⇠ 2
F

P2⌃ MP
P

(X,!) then ✏ · ◆(⇠) := ◆(⇠̃). Since this
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action is radius preserving, the subset ◆(
F

P2⌃ MPr

P

(X,!)) ✓ O for any r 2 R+

(see Definition 23) also inherits a well defined Z2-action.

We call the resulting Z2-space on ◆(
F

P2⌃ MP
P

(X,!)) ✓ O a representative

of the marked periods of (X,!) and denote it by MP(X,!). We call the

Z2-space on ◆(
F

P2⌃ MPr

P

(X,!)) a radius r bounded representative of the

marked periods of (X,!) and denote it by MPr(X,!).

The Z2-action defined on a representative of the marked periods relates the

points in each MP
P

(X,!) by keeping track of which singularity a particular

directed saddle connection terminates at and what other marked period repre-

sents traveling in the reverse direction along that same saddle connection. By

utilization of the Voronoi cellular decomposition of (X,!), we will show that

a representative of the marked periods completely determines the surface up to

translation equivalence . In fact the Z2-space defined on a finite subset will su�ce

for determining the surface.
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Remark 12. The selection of a representative of the marked periods for a particu-

lar (X,!) 2 H(i1, ..., is) with singular set ⌃ implicitly assumes a chosen enumera-

tion {P1, P2, ..., Ps

} of ⌃, a chosen set {MP
P1(X,!),MP

P2(X,!), ...,MP
P

s

(X,!)}

of representatives (at respectively P1, P2, ..., Ps

) of marked periods of (X,!), and

a chosen identification ◆ :
F

P2⌃ O
P

! O. The choice of representative at

each P 2 {P1, P2, ..., Ps

} assumes the selection for all k 2 {1, ..., s} of a point

Q
k

2 ⇡�1({P
k

}) and a lift c⌘
P

k

Q

k of ⌘
P

k

.

3.4 The Class of Marked Periods

A representative of the marked periods of the translation surface

(X,!) 2 H(i1, ..., is) is not a canonically defined object. We will show that the

collection of all representatives is formed by mapping a particular representative

by elements in Trans(O) and inducing Z2-actions through the bijections. This

indeed defines an equivalence relation on the set of all Z2-subsets of O.

In this subsection we introduce the canonical object of study, the equivalence

class of a particular representative associated to the equivalence relation discussed

above.

Definition 27. For P
i

2 ⌃, let Trans(O
P

i

) be identified with a subgroup of

Trans(
F

P2⌃ O
P

) whereby for F 2 Trans(O
P

i

) we extend the definition of F to

include F (z) := z for all z 2 O
P

with P 6= P
i

.

For P
i

, P
j

2 ⌃ with o(P
i

) = o(P
j

) = k, recall that O
P

i

:= O
k

=: O
P

j

. Here
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we let �
i,j

: O
P

i

! O
P

j

be given as IdO
k

.

Theorem 6. The group of translations Trans(
F

P2⌃ O
P

) is generated by

[

�

Trans(O
P

)|P 2 ⌃
 

[

�

�
i,j

�

�i, j 2 {1, ..., s}, o(P
i

) = o(P
j

)
 

.

Proof. Let F 2 Trans(
F

P2⌃ O
P

). By definition F must preserve the singular set

of
F

P2⌃ O
P

. In fact F at most permutes singularities of the same order. Hence

there is a � 2 h �
i,j

| i, j 2 {1, ..., s} ; o(P
i

) = o(P
j

) i such that � � F fixes all of

the singularities of
F

P2⌃ O
P

. Thus � � F is an a�ne di↵eomorphism that maps

each O
P

onto itself having an identity Jacobian in local translation coordinates.

Thus � � F = ⌧ 2 h
S

P2⌃ Trans(O
P

) i so that

F = ��1 � ⌧ 2
⌧

[

P2⌃
Trans(O

P

)
[

�

�
i,j

�

�i, j 2 {1, ..., s}o(P
i

) = o(P
j

)
 

�

.

Corollary 1. Let ◆ :
F

P2⌃ O
P

! O be a fixed identification. Let

T := ◆ �
⌧

[

P2⌃
Trans(O

P

)

�

� ◆�1,

and

S := ◆ �
⌧

�
i,j

| i, j 2 {1, ..., s}, o(P
i

) = o(P
j

)

�

� ◆�1.

Then the group Trans(O) is generated by T [ S.

Proof. Since ◆ is a translation equivalence, this follows from Theorem 6.
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The group hT i consists of translations of O that rotate individual copies of

O1, ...,Os by integer multiples of 2⇡. The group hSi permutes the individual

surfaces having the same cone angle within
F

P2⌃ O
P

, using the identity map on

their common base surface.

Definition 28. Let P 2 ⌃ and ⌥ := {A ✓ O |A is equipped with a Z2-action}.

If A1, A2 2 ⌥ let A1 ⇠ A2 if and only if there is an F 2 Trans(O) that takes A1

bijectively and Z2-equivariantly onto A2. Clearly ⇠ is an equivalence relation on

⌥. Let ⌅ := ⌥/ ⇠.

Note that any representative of the marked periods of (X,!), MP(X,!), is

an element of ⌥.

Theorem 7. If MP(X,!) 2 ⌥ is a representative of the marked periods of (X,!),

then MP(X,!) ⇠ A for some A ✓ ⌥ if and only if A is another representative

of the marked periods of (X,!).

If MPr(X,!) 2 ⌥ is a radius r bounded representative of marked periods of

(X,!), then MPr(X,!) ⇠ A for some A ✓ ⌥ if and only if A is another radius

r bounded representative of marked periods of (X,!).

Proof. Suppose MP(X,!) 2 ⌥ is a representative of the marked periods of (X,!),

and that A ✓ ⌥ is another representative of the marked periods of (X,!). Then

by Remark 8 there are g
P

2 Trans(O
P

) for all P 2 ⌃ and an identification

◆0 :
F

P2⌃ O
P

! O such that A = ◆0(
F

P2⌃(gP (MP
P

(X,!))) where for each

P 2 ⌃, g
P

(MP
P

(X,!)) is a representative at P of marked periods of (X,!) with

the map ⌘
P

� g�1
P

taking the role of ⌘
P

.
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Identifying g
P

for each P 2 ⌃ with an element of Trans(
F

P2⌃ O
P

) as in

Definition 27 we have a bijection

[◆0 � g
P1 � ... � gPs

� ◆�1] : MP(X,!) ! A

For each P 2 ⌃ and ⇠ 2 MP
P

(X,!) we have that 0�g
P

(⇠) = g
P

�0 �⇠.

Let ✏ 2 Z2 \ {0}. It follows that for any P
j

, P
k

2 ⌃, ⇠1 2 MP
P

j

(X,!), and

⇠2 2 MP
P

k

(X,!),

◆(⇠1) = ✏ · ◆(⇠2) ,

[⌘
P

j

� (0�⇠1)](t) = [⌘
P

k

� (0�⇠2)](1� t) for all t 2 [0, 1] ,

[⌘
P

j

� g�1
P

j

� g
P

j

� (0�⇠1)](t) = [⌘
P

k

� g�1
P

k

� g
P

k

� (0�⇠2)](1� t) for all t 2 [0, 1] ,

[(⌘
P

j

� g�1
P

j

) � (0�g
P

j

(⇠1))](t) = [(⌘
P

k

� g�1
P

k

) � (0�g
P

k

(⇠2))](1� t) for all t 2 [0, 1] ,

◆0(g
P

j

(⇠1)) = ✏ · ◆0(g
P

k

(⇠2)) ,

[◆0 � g
P1 � ... � gPs

� ◆�1](◆(⇠1)) = ✏ · [◆0 � g
P1 � ... � gPs

� ◆�1](◆(⇠2)).

Therefore we have an element [◆0 � g
P1 � ... � g

P

s

� ◆�1] 2 Trans(O) that takes

MP(X,!) bijectively and Z2-equivariantly onto A.

Suppose there is an A 2 ⌥ and a Z2-equivariant F 2 Trans(O) such that

A = F (MP(X,!)). Since T S = ST , it follows that there is a H 2 T and a

� 2 S such that F = � �H and thus A = �(H(MP(X,!))). By Theorem 5 and

Remark 8, (◆�1 � H � ◆)[◆�1(MP(X,!))] is the disjoint union of representatives

at P1, ..., Ps

2 ⌃ of marked periods for (X,!) . Since ◆0 := � � ◆ is another
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identification of
F

P2⌃ O
P

and O, it follows that

A = �(H(MP(X,!))) = (� � ◆) � (◆�1 �H � ◆)[◆�1(MP(X,!))]

is another representative of marked periods of (X,!).

Suppose MPr(X,!) 2 ⌥ is a radius r bounded representative of marked

periods of (X,!). Then there is a representative MP(X,!) containing MPr(X,!).

If A ✓ ⌥ is another radius r bounded representative of marked periods of

(X,!), and B � A is a corresponding representative, then the Z2-equivariant

bijection in Trans(O) known to exist from above between MP(X,!) and B will

restrict to become a Z2-equivariant bijection of MPr(X,!) and A.

Suppose A ✓ ⌥ and F 2 Trans(O) that takes MPr(X,!) bijectively and

Z2-equivariantly onto A. Let B = F (MP(X,!)) have Z2-action induced from

MP(X,!) using the fact that F is bijective. From above we know that B is a

representative of marked periods of (X,!). Clearly A is the result of taking all

of the elements in B that have distance less than r to the singularity of their

connected component, and imposing a Z2-action by restricting the original Z2-

action of B onto this subset. Thus in fact A is a radius r bounded representative

of marked periods of (X,!).

Definition 29. The marked periods of (X,!), denoted [MP(X,!)], is the

equivalence class in ⌅ consisting of all representative of marked periods

MP(X,!) 2 ⌥. Similarly for any r > 0, the radius r bounded marked pe-

riods of (X,!), denoted [MPr(X,!)], is the equivalence class in ⌅ consisting of
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all possible radius r bounded representatives MPr(X,!).

We show next that the class of marked periods depends only on the translation

equivalence class of the surface.

Theorem 8. If the translation surface (Y, ) 2 H(i1, ..., is) is translation equiv-

alent to (X,!), then [MP(X,!)] = [MP(Y, )].

Proof. Let ⌃
Y

correspond to the singular set of (Y, ). Let

⌃
X

= ⌃ = {P1, P2, ..., Ps

}

and

MP
P1(X,!),MP

P2(X,!), ...,MP
P

s

(X,!)

be representatives at these points of marked periods of (X,!) with corresponding

maps c⌘
P

k

Q

k for k = 1, ..., s. Let H : (X,!) ! (Y, ) be a translation equivalence

and Ĥ : (X̃, ⇡⇤!) ! (Ỹ , ⇡⇤ ) be a (translation equivalence) lift of H via the uni-

versal translation covers ⇡
X

: (X̃, ⇡⇤!) ! (X,!) and ⇡
Y

: (Ỹ , ⇡⇤ ) ! (Y, ). For

all k 2 {1, ..., s} let R
k

:= H(P
k

), S
k

:= Ĥ(Q
k

), and O
R

k

:= O
P

k

. Following the

construction described in Subsections 3 and 3.2, we see that for all k 2 {1, ..., s},

STAR
S

k

= Ĥ(STAR
Q

k

) and that c⌘
R

k

S

k := Ĥ � c⌘
P

k

Q

k is the result of choosing the

lift (c⌘
P

k

Q

k)�1 � Ĥ�1 of the developing map dev
S

k

= dev
Q

k

� Ĥ�1 restricted to

STAR
S

k

. Note that here ⇤
R

k

= ⇤
P

k

(see Figure 5).
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(⇤
R

k

= ⇤
P

k

)
c⌘
P

k

Q

k

Homeo.
//

c⌘
R

k

S

k

&&

⌘
R

k

88

⌘
P

k

))

STAR
Q

k

⇡
✏✏

Ĥ
Trans. Eq.

// STAR
S

k

⇡0
✏✏

X
H

// Y

Figure 5: Compositions by H and Ĥ allow us to construct an instance at R
k

,
MP

R

k

(Y, ).

Thus for all k 2 {1, ..., s}

MP
R

k

(Y, ) := (c⌘
R

k

S

k)�1(TIPS
S

k

)

=
h

(c⌘
P

k

Q

k)�1 � Ĥ�1
i ⇣

Ĥ(TIPS
Q

k

)
⌘

= MP
P

k

(X,!)

are representatives at R
k

of marked periods for (Y, ).

Given k 2 {1, ..., s} and ⇠1, ⇠2 2 MP
P

k

(X,!) we have that ⇠̃1 = ⇠2 if and only

if the corresponding directed saddle connections in (X,!) given by the geodesics

0�⌘
P

k

(⇠1) and 0�⌘
P

k

(⇠2) are the same saddle connection but oppositely directed.

Since the saddle connections corresponding to ⇠1 and ⇠2 considered as elements

of MP
R

k

(Y, ) are given by the geodesics H �0 �⌘
P

k

(⇠1) and H �0 �⌘
P

k

(⇠2) where

H is a homeomorphism, it follows that ⇠̃1 = ⇠2 as elements of MP
P

k

(X,!) if

and only if ⇠̃1 = ⇠2 as elements of MP
R

k

(Y, ). Finally, we choose an identifi-
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cation ◆ :
F

R

k

2⌃,

O
R

k

=
F

P

k

2⌃ O
P

k

! O, and get that ◆(
F

k=1,...,s MP
P

k

(X,!))

and ◆(
F

k=1,...,s MP
R

k

(Y, )) are representatives of marked periods for (X,!) and

(Y, ) respectively. It follows from the work above that ◆(
F

k=1,...,s MP
P

k

(X,!))

and ◆(
F

k=1,...,s MP
R

k

(Y, )) are equal as sets and are endowed with the same Z2

action. Therefore we have that

[MP(X,!)] =

"

◆

 

G

k=1,...,s

MP
P

k

(X,!)

!#

=

"

◆

 

G

k=1,...,s

MP
R

k

(Y, )

!#

= [MP(Y, )].
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4 Reconstructing (X,!) from its Marked Peri-
ods

For this section we consider an (X,!) 2 H(i1, ..., is) with singular set

⌃ = {P1, ..., Pk

}, having a fixed representative of marked periods MP(X,!) cor-

responding to the set
F

k

MP
P

k

(X,!). Recall that a choice of representative

MP(X,!) implicitly assumes the choice for each P
k

2 ⌃ of Q
k

and c⌘
P

k

Q

k (see

Remark 12).

4.1 Metric Properties of Embeddings from Subsection 3

For this subsection we fix k 2 {1, ..., s} and let P = P
k

and Q = Q
k

. Recall

that c⌘
P

Q : ⇤
P

! STAR
Q

⇢ X̃ is the embedding whose image is the union of lifts

beginning at Q of all saddle connections on (X,!) starting at P . The star shaped

subset ⇤
P

⇢ O
P

will be used to carve out building blocks for reconstructing

(X,!). This process will use the metric on O
P

, and will mimic a similar process

on (X̃, ⇡⇤!). In this subsection we therefore introduce a few facts regarding how

well metric information is carried over by the topological embedding c⌘
P

Q.

Theorem 9. The following hold:

1. If z 2 ⇤
P

then d(c⌘
P

Q(z), Q) = d(z, 0).

2. If z, w 2 ⇤
P

then d(c⌘
P

Q(z),c⌘
P

Q(w)) � d(z, w) with equality if and only if
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the interior of
a

z0w does not contain a point of MP
P

(X,!).

3. If z 2 ⇤
P

and d(z, 0)  d(z, ⇠) for all ⇠ 2 MP
P

(X,!), then

d(c⌘
P

Q(z), Q) < d(c⌘
P

Q(z), y) for all y 2 X̃ \ STAR
Q

.

Proof. Let z 2 ⇤
P

and y = c⌘
P

Q(z). As established in the proof of Theorem

5, (c⌘
P

Q)�1 = ddev
Q

takes the line [Q, y] to a line segment of equal length from

0 2 ⇤
P

. Since the distance between two points in either ⇤
P

or O
P

is realized as

the length of the unique geodesic connecting them, statement 1 follows.

Suppose z, w 2 ⇤
P

.

If z = 0 or w = 0, then statement 2 is true by statement 1 and the fact that
a

z0w has empty interior.

If neither of z or w is 0 and the legs [z, 0] and [0, w] make an angle at 0 that

is greater than or equal to ⇡, then by Theorem 1 [z, 0] [ [0, w] = [z, w] and so

d(z, w) = d(z, 0) + d(0, w). In Theorem 5 we showed that c⌘
P

Q|⇤
P

\MP
P

(X,!) is a

translation equivalence. Since 0 2 ⇤
P

\MP
P

(X,!) it follows that the map c⌘
P

Q

preserves angles at 0 2 O
P

between two legs of a geodesic through 0. Therefore

[c⌘
P

Q(z), Q] [ [Q,c⌘
P

Q(w)] = [c⌘
P

Q(z),c⌘
P

Q(w)] and so

d(c⌘
P

Q(z),c⌘
P

Q(w)) = d(c⌘
P

Q(z), Q) + d(Q,c⌘
P

Q(w)).
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Therefore by statement 1 we have that

d
⇣

c⌘
P

Q(z),c⌘
P

Q(w)
⌘

= d
⇣

c⌘
P

Q(z), Q
⌘

+d
⇣

Q,c⌘
P

Q(w)
⌘

= d(z, 0)+d(0, w) = d(z, w).

The equality [z, 0][[0, w] = [z, w] also implies that the interior of
a

z0w is empty.

Hence statement 2 holds in this case.

Suppose neither of z or w is 0 and the legs [z, 0] and [0, w] make an angle at

0 that is less than ⇡.

Since c⌘
P

Q is continuous and c⌘
P

Q(MP
P

(X,!)) ⇢ ⌃̃ , the fact that ⌃̃ has no

accumulation points in X̃ implies that
a

z0w \MP
P

(X,!) is finite. Let

{⇠1, ..., ⇠l} ⇢
i

z0w \MP
P

(X,!)

be such that the polygon determined by the vertex sequence: z, ⇠1, ..., ⇠l, w is

equal to the convex hull of {z, w} [ (
a
z0w \MP

P

(X,!)) (see Figure 6).

Let P1 and P2 be the Euclidean polygons determined by the vertex sequences:

z, ⇠1, ..., ⇠l, w and z, ⇠1, ..., ⇠l, w, 0 respectively. Then the convexity of P1 implies

that the internal angles at all of the vertices ⇠1, ..., ⇠l within P2 have measure

greater than or equal to ⇡. Since P2 ✓ ⇤
P

and c⌘
P

Q takes all of ⇠1, ..., ⇠l to

singularities of (X̃, ⇡⇤!) (which have total angle greater than or equal to 4⇡),

it follows from Remark 10 that the internal angles at all of the vertices ⇠1, ..., ⇠l

within P2 become the (minimal) angles between the legs of the piecewise geodesic

[c⌘
P

Q(z),c⌘
P

Q(⇠1)][ [c⌘
P

Q(⇠1),c⌘P
Q(⇠2)][ ...[ [c⌘

P

Q(⇠
l

),c⌘
P

Q(w)]. Therefore by The-

orem 1 the path [c⌘
P

Q(z),c⌘
P

Q(⇠1)] [ [c⌘
P

Q(⇠1),c⌘P
Q(⇠2)] [ ... [ [c⌘

P

Q(⇠
l

),c⌘
P

Q(w)] is



52

Figure 6: The case l = 3. The Euclidean polygon P1 is the convex hull of
{z, w} [ (

a
z0w \ MP

P

(X,!)) and is determined by the vertices z, ⇠1, ..., ⇠l, w.
The Euclidean polygon P2 is determined by the vertices z, ⇠1, ..., ⇠l, w, 0.

a geodesic of (X̃, ⇡⇤!).

Again using Remark 10 we have that

d(c⌘
P

Q(z),c⌘
P

Q(w)) = d(c⌘
P

Q(z),c⌘
P

Q(⇠1)) + d(c⌘
P

Q(⇠1),c⌘P
Q(⇠2)) + · · ·

· · ·+ d(c⌘
P

Q(⇠
l

),c⌘
P

Q(w))

= d(z, ⇠1) + d(⇠1, ⇠2) + ...+ d(⇠
l

, w)

� d(z, w).

It is clear that equality holds if and only if MP
P

(X,!)\
a
z0w ⇢ [z, w]. Since

MP
P

(X,!)\ [0, z] and MP
P

(X,!)\ [0, w] contain at most z and w respectively,
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equality holds if and only if the interior of
a
z0w does not contain a point of

MP
P

(X,!). This completes the proof of statement 2.

Suppose that there is a z 2 ⇤
P

with d(z, 0)  d(z, ⇠) for all ⇠ 2 MP
P

(X,!),

but there exists a y 2 X̃ \ STAR
Q

such that d(c⌘
P

Q(z), Q) � d(c⌘
P

Q(z), y).

We first establish the fact that for any point z0 2 STAR
Q

the geodesic

[c⌘
P

Q(z0), y] remains outside of STAR
Q

once it exits. In other words

[c⌘
P

Q(z0), y] = [c⌘
P

Q(z0), y
0] [ [y0, y]

where

[c⌘
P

Q(z0), y
0) ⇢ STAR

Q

and

(y0, y] ⇢ X̃ \ STAR
Q

with the point y0 either being a point of TIPS
Q

or lying in X̃ \STAR
Q

. Any two

points in STAR
Q

can be connected by a geodesic lying within STAR
Q

either by

concatenating their geodesics to 0 (if the angle between these paths is su�ciently

large) or by otherwise constructing a path using a convex Euclidean polygon as

in the proof of statement 2. Hence there is only one connected component of

[c⌘
P

Q(z0), y] \ STAR
Q

and so the geodesic [c⌘
P

Q(z0), y] indeed remains outside of

STAR
Q

once it exits.

We now construct a Euclidean triangle in O
P

that can be used to analyze the

inequalities that we have assumed.
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Let [c⌘
P

Q(z), y] \ (STAR
Q

\ TIPS
Q

) = [c⌘
P

Q(z), y0) where the right hand ‘)’

denotes an open ended geodesic. Let z0 2 O
P

denote the right hand limit point

of the path (c⌘
P

Q)�1[c⌘
P

Q(z), y0). Then z0 lies on a line in O
P

from 0 through a

point ⇠ 2 MP
P

(X,!).

The geodesic from Q to y can be formed in the following manner. Let

Q0 = c⌘
P

Q(⇠)The geodesic [c⌘
P

Q(z), y] can be expressed as

[c⌘
P

Q(z), Q0] [ [Q0, Q00] [ ... [ [Q(j), y],

where Q(i) is the unique singularity such that the line [Q(i�1), Q(i)] extends to

contain the point where [Q(i), y] leaves STAR
Q

(i) for all i. In particular this

construction shows by uniqueness of geodesics that indeed the line [Q, y] leaves

STAR
Q

at a point on the extension of [Q,Q0] and so d(Q, y) > d(0, ⇠).

Suppose that the line [z, 0] makes an angle with [0, ⇠] that is greater than or

equal to ⇡. Then the path [c⌘
P

Q(z), Q] [ [Q, y] is a geodesic in (X̃, ⇡⇤!). This

contradicts the assumption that d(c⌘
P

Q(z), Q) � d(c⌘
P

Q(z), y). Thus [z, 0] makes

an angle with [0, ⇠] that is less than ⇡.

Therefore [z, 0],[0, z0], and [z0, z] form a Euclidean triangle with ⇠ 2 [0, z0] (see

figure 7). Note the possibility that the interior of this triangle contains points of

MP
P

(X,!).

Using statements 1 and 2 we get that:

d(z, z0)  d(c⌘
P

Q(z),c⌘
P

Q(z0))  d(c⌘
P

Q(z), y)  d(c⌘
P

Q(z), Q) = d(z, 0)



55

Figure 7: We show that d(z, z0)  d(z, 0). Since d(z, 0)  d(z, ⇠) it follows that
in fact ⇠ = z0 and d(z, 0) = d(z, ⇠).

We also have that d(z, 0)  d(z, ⇠) which together imply that the point z00 in

figure 7 indeed lies on the line [0, z0].

Furthermore d(z, z0)  d(z, 0) implies that

d(z00, z0)  d(z00, 0),

and the fact that d(z, 0)  d(z, ⇠) imply the middle inequality of

d(z00, z0)  d(z00, 0)  d(z00, ⇠)  d(z00, z0). (1)

Therefore d(z00, ⇠) = d(z00, z0) and so in fact ⇠ = z0. Hence the Geodesic

[c⌘
P

Q(z), y] exits STAR
Q

at the point c⌘
P

Q(⇠). Since y /2 STAR
Q

this implies that

d(c⌘
P

Q(z), y) > d(c⌘
P

Q(z),c⌘
P

Q(⇠)) � d(z, ⇠).

Inequality 1 also implies that d(z00, 0) = d(z00, ⇠) so that d(z, 0) = d(z, ⇠). There-
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fore we finally have that

d(c⌘
P

Q(z), Q) = d(z, 0) = d(z, ⇠) < d(c⌘
P

Q(z), y)

which is a contradiction, and so completes the proof of statement 3.

4.2 Unzipping (X,!) along the Voronoi 1-Skeleton, Pro-
ducing

F

P2⌃DP

We now establish sets in O
P

for each P 2 ⌃ that map translation equivalently

to the open 2-cells of the Voronoi decomposition of (X,!). The closures of

these sets serve to represent the building blocks resulting from ‘unzipping’ (X,!)

along its Voronoi 1-skeleton. Our goal is to establish the fact that these building

blocks can be independently constructed within eachO
P

using a radius r bounded

representative of the marked periods. We thus show that a finite collection of

marked periods determines the surface up to translation equivalence.

Definition 30. For P 2 ⌃ let

D
P

:= {z 2 O
P

|d(z, 0)  d(z, ⇠) 8 ⇠ 2 MP
P

(X,!)},
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and

C
P

:= {z 2 O
P

|d(z, 0) < d(z, ⇠) 8 ⇠ 2 MP
P

(X,!)}.

Remark 13. Let P 2 ⌃. Clearly we have that C
P

✓ D
P

. If z 2 O
P

\ ⇤
P

,

then 0�z(t) = ⇠ 2 MP
P

(X,!) for some t 2 [0, 1). Thus d(z, 0) > d(z, ⇠) and so

z /2 D
P

.Thus C
P

✓ D
P

✓ ⇤
P

.

We will next relate D
P

and C
P

(for each P 2 ⌃) to sets within (X̃, ⇡⇤!) via

the embeddings c⌘
P

Q.

Lemma 2. Let P = P
k

and Q = Q
k

for some k 2 {1, ..., s}. Then the following

hold.

1. We have that

n

y 2 (X̃, ⇡⇤!) | d(y,Q)  d(y, S) 8 S 2 ⌃̃ \ {Q}
o

✓ c⌘
P

Q(⇤
P

).

2. If z 2 ⇤
P

then

z 2 D
P

i↵ d(c⌘
P

Q(z), Q)  d(c⌘
P

Q(z), S) for all S 2 ⌃̃ \ {Q}.

3. If z 2 ⇤
P

then

z 2 C
P

i↵ d(c⌘
P

Q(z), Q) < d(c⌘
P

Q(z), S) for all S 2 ⌃̃ \ {Q}.

Proof. Let P = P
k

and Q = Q
k

for some k 2 {1, ..., s}. Suppose y /2 STAR
Q

.
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Recall that STAR
Q

contains all of the images of geodesics starting at Q that do

not intersect points of ⌃̃. Thus
y

�
Q

(t) 2 ⌃̃ \ {Q} for some t 2 [0, 1). Hence there

is an S 2 ⌃̃ \ {Q} such that d(y,Q) > d(y, S) which proves statement 1.

Let z 2 D
P

. By Theorem 9 statement 3 and the fact that ⌃̃ \ {Q} lies in

the closure of X̃ \ STAR
Q

, it follows that d(c⌘
P

Q(z), Q)  d(c⌘
P

Q(z), S) for all

S 2 ⌃̃ \ {Q}.

Suppose z /2 D
P

so that there is a ⇠ 2 MP
P

(X,!) such that d(z, ⇠) < d(z, 0).

If [z, ⇠] ⇢ ⇤
P

then
a

0⇠z has interior that does not contain any points of

MP
P

(X,!). Therefore if S = c⌘
P

Q(⇠) then S 2 ⌃̃ \ {Q} and by Theorem

9 it follows that d(c⌘
P

Q(z), S) = d(z, ⇠) < d(z, 0) = d(c⌘
P

Q(z), Q). If [z, ⇠] is

not contained within ⇤
P

then following the proof of Theorem 9 the interior of
a
0⇠z contains a point ⇠1 2 MP

P

(X,!) such that [z, ⇠1] is contained in ⇤
P

and

d(z, ⇠1) < d(z, 0). Following the above argument using ⇠1 instead of ⇠ completes

the proof of statement 2.

To prove statement 3 we now need only establish the fact that if z 2 D
P

then

d(z, 0) = d(z, ⇠) for some ⇠ 2 MP
P

(X,!) if and only if

d(c⌘
P

Q(z), S) = d(c⌘
P

Q(z), Q)

for some S 2 e⌃ \ {Q}.

Suppose that z 2 D
P

and that d(z, 0) = d(z, ⇠) for some ⇠ 2 MP
P

(X,!). If

the interior of
a

0⇠z contains a point of MP
P

(X,!) then there is a ⇠1 2 MP
P

(X,!)

such that d(z, ⇠) < d(z, 0) contradicting the fact that z 2 D
P

. Therefore the inte-
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rior of
a

0⇠z does not contain a point of MP
P

(X,!) so by Theorem 9, S = c⌘
P

Q(⇠)

satisfies d(c⌘
P

Q(z), S) = d(c⌘
P

Q(z), Q).

Suppose z 2 D
P

and d(c⌘
P

Q(z), S) = d(c⌘
P

Q(z), Q) for some S 2 e⌃ \ {Q}.

We know that [c⌘
P

Q(z), S] ⇢ STAR
Q

, for otherwise we have a contradiction to

Theorem 9 statement 3. Therefore (c⌘
P

Q)�1[c⌘
P

Q(z), S] is a geodesic in ⇤
P

and in

particular letting ⇠ = (c⌘
P

Q)�1(S) 2 MP
P

(X,!) we have that

d(z, ⇠) = d(c⌘
P

Q(z), S) = d(c⌘
P

Q(z), Q) = d(z, 0).

We would like to finally relate the sets D
P

and C
P

(for each P 2 ⌃) to the

Voronoi structure on (X,!) via the map ⌘
P

. In order to make the final step from

(X̃, ⇡⇤!) to (X,!) we require a lemma that ensures the number of geodesics that

realize the minimal distance from a point y 2 X̃ to the singular set ⌃̃ on X̃ is

the same as the number of geodesics that realize the minimal distance from the

point ⇡(y) to the singular set ⌃ on (X,!).

Lemma 3. Let P = P
k

and Q = Q
k

for some k 2 {1, ..., s} and let x 2 X. Let

X := {↵ a geodesic on (X,!) |↵(0) = x 2 X,↵(1) = P 2 ⌃, and l(↵) = d(x,⌃)}

and

Y := {� a geodesic on (X̃, ⇡⇤!) | �(0) 2 ⇡�1({x}), �(1) = Q, and l(�) = d(y, ⌃̃)}.
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If ⇡⇤ : Y ! X is given by ⇡⇤(↵) := ⇡ � ↵, then ⇡ is a bijection between Y and X

that sends line segments of (X̃, ⇡⇤!) ending at Q and realizing the distance to ⌃̃

to equal length lines of (X,!) ending at P realizing the distance to ⌃.

Proof. Let ⇡⇤ : Y ! X be given by ⇡⇤(↵) := ⇡ � ↵. Let � 2 Y with

y := �(0) 2 ⇡�1({x})

and �(1) = Q. Since ⇡ is a local translation equivalence, we have that ⇡ � � is a

geodesic segment on (X,!), having the same length as �, with

(⇡ � �)(0) = ⇡(y) = x

and

(⇡ � �)(1) = ⇡(Q) = P.

Suppose that l(⇡��) 6= d(x,⌃). Let ↵0 be a geodesic on (X,!) with ↵0(0) = x

and ↵0(1) = P 0 2 ⌃ such that l(↵0) = d(x,⌃) < l(⇡ ��). Let �0 be the lift of ↵0 to

(X̃, ⇡⇤!) starting at y . Then �0 is a geodesic connecting some y to some Q0 2 ⌃̃

having the same length as ↵0. Thus

l(↵0) = l(�0) � d(y, ⌃̃) = l(�) = l(⇡ � �)

which is a contradiction. Therefore l(⇡ � �) = d(x,⌃) and so ⇡⇤ is well defined.

If �1, �2 2 Y such that ⇡⇤(�1) = ⇡⇤(�2) then �1 = �2 by uniqueness of path
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lifting for a specified endpoint. Thus ⇡⇤ is injective.

We now prove that ⇡⇤ is surjective. Suppose that ↵ 2 X . Let � be the lift of

↵ to (X̃, ⇡⇤!) ending at Q (i.e. ��1 is the lift of ↵�1 starting at Q). Then � is a

geodesic of (X̃, ⇡⇤!) with y := �(0) 2 ⇡�1({x}) and �(1) = Q. If l(�) > d(y, ⌃̃)

then there would be a geodesic connecting y and ⌃̃ that projects to (X,!) in

order to establish a geodesic connecting x and ⌃ with length less than ↵ which

would be a contradiction. Thus � 2 Y and so ⇡⇤ is in fact bijective.

We now relate C
P

and D
P

(for each P 2 ⌃) to cells within the Voronoi

decomposition of (X,!) subordinate to the set ⌃.

Theorem 10. Let P 2 ⌃. Then ⌘
P

(D
P

) = F
P

, ⌘
P

(C
P

) = F 1
P

, and

⌘
P

|
C

P

: (C
P

, proj⇤
P

(dz)|
C

P

) ! (F 1
P

,!|
F

1
P

)

is a translation equivalence.

Proof. Let P = P
k

and Q = Q
k

for some k 2 {1, ..., s}, and define

A := {y 2 (X̃, ⇡⇤!) | d(y,Q)  d(y, S) for all S 2 ⌃̃ \ {Q}}

and

B := {y 2 (X̃, ⇡⇤!) | d(y,Q) < d(y, S) for all S 2 ⌃̃ \ {Q}}

By Lemma 2 we have that

⌘
P

(D
P

) = ⇡ �c⌘
P

Q(D
P

) = ⇡(A)
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and

⌘
P

(C
P

) = ⇡ �c⌘
P

Q(C
P

) = ⇡(B).

Since the points of A are starting points of lines realizing the distance to ⌃̃

and ending at Q and points of F
P

are starting points of lines realizing the distance

to ⌃ and ending at P , it follows by Lemma 3 that ⌘
P

(D
P

) = ⇡(A) = F
P

.

We will establish that ⇡(B) = F 1
P

by first showing that any two distinct

points of A that lie in the same fiber over X must lie in A \ B. This will imply

that ⇡(B) ✓ F 1
P

since any point of F
P

\ F 1
P

has at least two distinct geodesics

connecting it to P and realizing the distance to ⌃. The starting points of the

lifts of these geodesics to X̃ with endpoint Q will be distinct points of A that lie

in the same fiber. The fact that F 1
P

✓ ⇡(B) is again the result of Lemma 3.

Suppose that two distinct points y1, y2 2 A satisfy ⇡(y1) = ⇡(y2). Applying

the unique deck transformation of the cover (X̃, ⇡⇤!) ! (X,!) that takes y1 to

y2, to the line segment [y1, Q], we obtain a new line segment [y2, S] with S 6= Q.

Thus we have a S 2 ⌃̃ \ {Q} with d(y1, Q) = d(y1, S) so that y1 2 A \ B. By a

symmetric argument we have that y2 2 A \B. Therefore ⇡|
B

is injective, and we

have that ⌘
P

(C
P

) = ⇡(B) = F 1
P

.

Note that ⌘
P

|
C

P

= ⇡|
B

�c⌘
P

Q|
C

P

. However c⌘
P

Q|
C

P

is an embedding, and ⇡|
B

is an injective local embedding (which is also an embedding). Thus ⌘
P

|
C

P

is also

an embedding. Since ⌘
P

|
C

P

is a composition of local translation equivalences, it

follows that ⌘
P

|
C

P

: (C
P

, proj⇤
n

dz|
C

P

) ! (F 1
P

,!|
F

1
P

) is a translation equivalence.
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4.3 Constructing DP using a Finite Subset of MPP (X,!)

We now show that for each P 2 ⌃ that the set D
P

can be constructed using a

finite subset MPr

P

(X,!) ⇢ MP
P

(X,!) for a particular r 2 R+ that depends on

(X,!) (recall the definition of MPr

P

(X,!): Definition 23).

Definition 31. For P 2 ⌃, and ⇠ 2 MP
P

(X,!), let

⌦0,⇠ := {z 2 O
P

| d(z, 0)  d(z, ⇠)}

and let

[0, ⇠]? := The perpendicular bisector of the line segment [0, ⇠]

Theorem 11. Let P 2 ⌃. For ⇠ 2 MP
P

(X,!), let

loc(0, ⇠) := {z 2 O
P

| d(z, 0) = d(z, ⇠)}.

Then loc(0, ⇠) = @⌦0,⇠ and loc(0, ⇠) = [0, ⇠]?.

Proof. Let P 2 ⌃ and ⇠ 2 MP
P

(X,!).

Suppose z 2 O
P

where [z, 0] makes an angle at 0 with [0, ⇠] that is greater

than or equal to ⇡. By Theorem 1 it follows that [z, ⇠] = [z, 0] [ [0, ⇠]. Thus

z /2 loc(0, ⇠) since d(z, ⇠) = d(z, 0) + d(0, ⇠).

All other z 2 O
P

(than the ones considered above) are contained, together
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with ⇠, in a common sector centered at zero with angle equal to ⇡. By Theorem

4, proj
P

restricts to such sectors to be an isometric embedding. In such a way it is

clear that all of the points of loc(0, ⇠) sit in a sector of total angle ⇡ containing ⇠

and spanning an angle of ⇡/2 on either side of ⇠. Therefore Theorem 4 applied to

proj
P

restricted to this sector tells us that loc(0, ⇠) is the isometric image under

proj�1
P

of the set of points in C equidistant to 0 and proj
P

(⇠). Since such points

constitute a line in C that is perpendicular to [0, proj
P

(⇠)] and intersects at the

midpoint of [0, proj
P

(⇠)], the result follows.

Definition 32. For P 2 ⌃ and K ✓ MP
P

(X,!), let ⇥(K) :=
T

⇠2K ⌦
0,⇠.

Remark 14. For all P 2 ⌃, D
P

= ⇥ (MP
P

(X,!)).

Lemma 4. For any P 2 ⌃ and K ✓ MP
P

(X,!), the set ⇥(K) is convex and

contains 0.

Proof. Let P 2 ⌃. The fact that 0 2 ⇥(K) for any K ✓ MP
P

(X,!) is clear.

Since the arbitrary intersection of convex sets in O
P

is convex, It su�ces to

prove the lemma in the case of K = {⇠} for arbitrary ⇠ 2 MP
P

(X,!). Let

⇠ 2 MP
P

(X,!) and z1, z2 2 ⇥({⇠}) = ⌦0,⇠ with z1 6= z2. Let h : [0, 1] ! R

be defined by h(t) := d (
z1�z2(t), ⇠) � d (

z1�z2(t), 0). Then h is continuous by

continuity of
z1�z2 and continuity of the metric, and h(t) = 0 if and only if

z1�z2(t) 2 loc(0, ⇠). Since z1, z2 2 ⇥({⇠}) = ⌦0,⇠ we have that h(0) � 0 and

h(1) � 0. If h(t⇤) < 0 for some 0 < t⇤ < 1, then by the intermediate value theorem

there would be a 0  t1 < t⇤ and t⇤ < t2  1 such that h(t1) = h(t2) = 0. Thus
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z1�z2 crosses loc(0, ⇠) at two distinct points
z1�z2(t1) and z1�z2(t2). By Theorem

2 it follows that Im(
z1�z2 |[t1,t2]) ✓ loc(0, ⇠) ✓ ⌦0,⇠ which contradicts the fact that

h(t⇤) < 0. Therefore [z1, z2] ✓ ⌦0,⇠.

Definition 33. Using compactness of t
P2⌃DP

for existence, let

⇢(X,!) := max{d(z, 0)|P 2 ⌃, z 2 D
P

}.

Theorem 12. Let ⇢ 2 R with ⇢ > ⇢(X,!). For all P 2 ⌃ we have that

D
P

= ⇥
�

MP 2⇢
P

(X,!)
�

.

Proof. We have that

D
P

= ⇥
�

MP 2⇢
P

(X,!)
�

\⇥
�

MP>2⇢
P

(X,!)
�

If z 2 B(0, ⇢) then for all ⇠ 2 MP>2⇢
P

(X,!) we have that

d(z, 0)  ⇢ < d(0, ⇠)� d(z, 0)  d(z, ⇠).

Therefore B(0, ⇢) ⇢ ⇥
�

MP>2⇢
P

(X,!)
�

. Since ⇢ > max{d(z, 0) | z 2 D
P

} we know

that D
P

✓ B(0, ⇢) with D
P

\ @B(0, ⇢) = ;. Since

@B(0, ⇢) ⇢ B(0, ⇢) ✓ ⇥
�

MP>2⇢
P

(X,!)
�

,
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if

@B(0, ⇢) \⇥
�

MP 2⇢
P

(X,!)
�

6= ;

then the fact that

D
P

= ⇥
�

MP 2⇢
P

(X,!)
�

\⇥
�

MP>2⇢
P

(X,!)
�

implies that @B(0, ⇢)\D
P

6= ; which is a contradiction. Thus since⇥
�

MP 2⇢
P

(X,!)
�

is star shaped with center 0 by Lemma 4, it follows that

⇥
�

MP 2⇢
P

(X,!)
�

✓ B(0, ⇢).

Therefore we have that

D
P

= D
P

\B(0, ⇢)

= ⇥
�

MP 2⇢
P

(X,!)
�

\
⇥

⇥
�

MP>2⇢
P

(X,!)
�

\B(0, ⇢))
⇤

= ⇥
�

MP 2⇢
P

(X,!)
�

\ B(0, ⇢)

= ⇥
�

MP 2⇢
P

(X,!)
�
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4.4 Gluing Data for Reconstructing (X,!) from
F

P2⌃DP

For each P 2 ⌃ we now show that the boundary of D
P

consists of a finite collec-

tion of geodesic one-manifold segments, and that the Z2-action on
F

k

MP
P

k

(X,!)

provides the information needed to glue along pairs of such segments (in
F

P2⌃ D
P

)

to recover the surface (X,!) up to translation equivalence.

Definition 34. If P 2 ⌃ let

⇧
P

:= {⇠ 2 MP
P

(X,!) |D
P

\ loc(0, ⇠) contains more than one point}.

Remark 15. If ⇢ 2 R with ⇢ > ⇢(X,!) and P 2 ⌃, then ⇠ 2 MP>2⇢
P

(X,!)

implies that all points z 2 loc(0, ⇠) satisfy d(z, 0) > ⇢. Thus D
P

\ loc(0, ⇠) = ;

for all ⇠ 2 MP>2⇢
P

(X,!). Therefore ⇧
P

✓ MP 2⇢
P

(X,!).

Theorem 13. Let P 2 ⌃. For each ⇠ 2 ⇧
P

, the set D
P

\ loc(0, ⇠) is a connected

geodesic one-manifold (with boundary) that does not contain the singularity

0 2 O
P

. Furthermore we have that

@D
P

= D
P

\ C
P

=
[

⇠2⇧
P

(D
P

\ loc(0, ⇠)).

Proof. Let ⇢ 2 R with ⇢ > ⇢(X,!) and let P 2 ⌃. Since C
P

is open and

is contained in the closed set D
P

, it follows that @D
P

✓ D
P

\ C
P

. However

by Theorem 12 if z 2 D
P

then z /2 C
P

if and only if z 2 loc(0, ⇠1) for some
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⇠1 2 MP 2⇢
P

(X,!). Thus by Theorem 11 we have

@D
P

✓ D
P

\ C
P

=
[

⇠2MP 2⇢
P

(X,!)

(D
P

\ loc(0, ⇠)) =
[

⇠2MP 2⇢
P

(X,!)

(D
P

\ @⌦0,⇠).

Let z 2 D
P

\ @⌦0,⇠1 for some ⇠1 2 MP 2⇢
P

(X,!). The fact that z 2 @⌦0,⇠1

implies that every open neighborhood of z contains points in O
P

\ ⌦0,⇠1 . Thus

every open neighborhood of z contains points in O
P

\D
P

. Since z 2 D
P

it follows

that z 2 @D
P

. Thus in fact @D
P

=
S

⇠2MP 2⇢
P

(X,!)(DP

\ @⌦0,⇠), so that

@D
P

= D
P

\ C
P

=
[

⇠2MP 2⇢
P

(X,!)

(D
P

\ loc(0, ⇠)).

Let ⇠1 /2 ⇧
P

and let z be the sole element in the singleton D
P

\ loc(0, ⇠1).

Suppose that z /2 loc(0, ⇠) = @⌦0,⇠ for all ⇠ 2 MP 2⇢
P

(X,!)\{⇠1}, then there is an

open neighborhood U
z

✓ O
P

containing z such that U
z

✓ \
⇠2MP 2⇢

P

(X,!)\{⇠1}⌦
0,⇠.

Since [⌦0,⇠1 \ loc(0, ⇠1)] = loc(0, ⇠1) and D
P

=
T

⇠2MP 2⇢
P

(X,!)⌦
0,⇠ it follows that

D
P

\loc(0, ⇠1) =
\

⇠2MP 2⇢
P

(X,!)

[⌦0,⇠] \ loc(0, ⇠1) =
\

⇠2MP 2⇢
P

(X,!)\{⇠1}
[⌦0,⇠] \ loc(0, ⇠1)

which contains U
z

\ loc(0, ⇠1). However Uz

\ loc(0, ⇠1) clearly contains more than

one point since it is the non-empty intersection of a geodesic image with an open

set. This contradicts the fact that D
P

\ loc(0, ⇠1) is a singleton. Thus in fact
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D
P

\ loc(0, ⇠1) = {z} ✓ D
P

\ loc(0, ⇠2) for some ⇠2 2 MP 2⇢
P

(X,!) \ {⇠1} and so

@D
P

=
[

⇠2MP 2⇢
P

(X,!)

(D
P

\ loc(0, ⇠)) =
[

⇠2MP 2⇢
P

(X,!)\{⇠1}
(D

P

\ loc(0, ⇠)).

Suppose that

D
P

6=
\

⇠2MP 2⇢
P

(X,!)\{⇠1}
⌦0,⇠

so that in fact
\

⇠2MP 2⇢
P

(X,!)\{⇠1}
⌦0,⇠ \D

P

is non-empty. The sets
T

⇠2MP 2⇢
P

(X,!)\{⇠1}⌦
0,⇠ and D

P

are convex by Lemma

4 and are regions (closures of non-empty open sets). This would imply that

there is an open ball in
T

⇠2MP 2⇢
P

(X,!)\{⇠1}⌦
0,⇠ \D

P

. Since 0 is contained in both
T

⇠2MP 2⇢
P

(X,!)\{⇠1}⌦
0,⇠ and D

P

, the lines segments from an infinite number of

points in this open ball to 0 would then intersect D
P

at an infinite number of

points of @⌦0,⇠1 . This would contradict the assumption that ⇠1 /2 ⇧
P

. Thus

D
P

=
\

⇠2MP 2⇢
P

(X,!)\{⇠1}
⌦0,⇠.

Inducting on the elements of MP 2⇢
P

(X,!) \ ⇧
P

we can therefore show that

@D
P

=
[

⇠2⇧
P

(D
P

\ loc(0, ⇠)).

For all ⇠ 2 ⇧
P

, loc(0, ⇠) is a geodesic, and D
P

is convex and compact. Thus
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][D
P

\ loc(0, ⇠)] > 1 implies that D
P

\ loc(0, ⇠) is a geodesic segment of O
P

. This

geodesic segment clearly avoids the singularity 0 2 O
P

. Thus D
P

\ loc(0, ⇠) is a

connected geodesic one manifold with boundary that avoids 0.

Definition 35. For each P 2 ⌃ and ⇠ 2 ⇧
P

we call s⇠
P

:= D
P

\ loc(0, ⇠) a side

of D
P

.

Let

⌘ :
G

P2⌃
D

P

�! (X,!)

be defined for x 2
F

P2⌃ D
P

by

⌘(x) := ⌘
P

(x), where P 2 ⌃ is such that x 2 D
P

.

By Theorem 10 and Remark 6,
S

P2⌃ Im(⌘
P

) =
S

P2⌃ F
P

= X and so ⌘(x) is

surjective.

Let ⇠ be the equivalence relation on
F

P2⌃ D
P

given by x ⇠ y if and only if

⌘(x) = ⌘(y). Then ⌘ induces a bijective quotient map

⌘̄ :

 

G

P2⌃
D

P

/ ⇠
!

�! (X,!)

Since ⌘̄ : [
F

P⌃ D
P

/ ⇠] �! (X,!) is a bijective continuous function from a

compact space to a Hausdor↵ space, it is in fact a homeomorphism.
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Theorem 14. Let P 2 ⌃, ⇠ 2 MP
P

(X,!), and P 0 2 ⌃ (not necessarily distinct

from P) such that ⌘
P

(⇠) = P 0. Then ⇠ 2 ⇧
P

if and only if ⇠̃ 2 ⇧
P

0.

The equivalence relation, ⇠, given above is characterized completely by the

rule that for each ⇠ 2 ⇧
P

, points in s⇠
P

are identified with points in s⇠̃
P

0 by a trans-

lation of open sets containing them. These side pairings preserve the local trans-

lation structure coming from O
P

and O
P

0, and as a result Z = (
F

P2⌃ D
P

/ ⇠)

naturally inherits a translation structure giving a translation surface (Z, ). The

map ⌘̄ : (Z, ) �! (X,!) is a translation equivalence.

Proof. Let P 2 ⌃, ⇠ 2 MP
P

(X,!), and P 0 2 ⌃ such that ⌘
P

(⇠) = P 0. Let

k1 2 {1, ..., t} be such that P = P
k1 and let Q = Q

k1 (with respect to the enumer-

ation of ⌃ fixed by the representative of the marked periods). Let k2 2 {1, ..., t}

be such that P 0 = P
k2 and let Q0 = Q

k2 .

Suppose that ⇠ 2 ⇧
P

and let S 0 = c⌘
P

Q(⇠). Let z 2 s⇠
P

= loc(0, ⇠) \ D
P

and y = c⌘
P

Q(z). Since z 2 D
P

, Lemma 2 tells us that d(y,Q)  d(y, S) for all

S 2 ⌃̃ \ {Q}. In particular this inequality holds for S = S 0 due to the fact that

c⌘
P

Q is injective so that S 0 6= Q.

Suppose that d(y,Q) < d(y, S0). By Theorem 9 we know that

d(y,Q) = d(z, 0) = d(z, ⇠).

Thus d(z, ⇠) 6= d(y, S0) = d(c⌘
P

Q(z),c⌘
P

Q(⇠)) and so by Theorem 9 it follows that

the interior of the equilateral triangle
a
0z⇠ contains a point ⇠1 2 MP

P

(X,!)\{⇠}

However
a

0z⇠ lies within B(z, d(z, 0)), touching its boundary only at 0 and ⇠.
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Therefore we have a ⇠1 2 MP
P

(X,!) \ {⇠} such that d(z, ⇠1) < d(z, 0) which

contradicts the fact that z 2 D
P

. Therefore in fact d(y,Q) = d(y, S0) and so for

all S 2 ⌃̃ \ {S 0} we have that d(y, S0) = d(y,Q)  d(y, S). If �Q

0

S

0 denotes the

element in Trans( eX, ⇡⇤!) that sends S 0 to Q0 (note that S 0 and Q0 lie in the same

fiber over ⇡), then for all S 2 ⌃̃ \ {Q0} we have that d(�Q

0

S

0 (y), Q0)  d(�Q

0

S

0 (y), S),

and in particular

d(�Q

0

S

0 (y), Q0) = d(�Q

0

S

0 (y), �
Q

0

S

0 (Q)) (2)

By Lemma 2 and Theorem 13 it follows that �Q

0

S

0 (y) 2 c⌘
P

0
Q

0
(@D

P

0).

By the definition of ⇠̃, ⌘
P

� (0�⇠) and ⌘P 0 � (0�
⇠̃

) are inverse paths in X. Since

[�Q

0

S

0 �c⌘
P

Q�(0�⇠)] is a lift of ⌘P �(0�⇠) that ends at �Q

0

S

0 (S 0) = Q0 and c⌘
P

0
Q

0 �(0�
⇠̃

) is

a lift of ⌘
P

0�(0�
⇠̃

) that starts at Q0, it follows that �Q

0

S

0 �c⌘
P

Q�(0�⇠) and c⌘P 0
Q

0�(0�
⇠̃

)

are inverse paths in X̃. Thus

�Q

0

S

0 (Q) = [�Q

0

S

0 �c⌘
P

Q � (0�⇠)](0) = [c⌘
P

0
Q

0 � (0�
⇠̃

)](1) = c⌘
P

0
Q

0
(⇠̃). (3)

Therefore by Equations 2 and 3 we have that d(�Q

0

S

0 (y), Q0) = d(�Q

0

S

0 (y), c⌘
P

0
Q

0
(⇠̃)).

Thus

[(c⌘
P

0
Q

0
)�1 � �Q

0

S

0 �c⌘
P

Q](z) = (c⌘
P

0
Q

0
)�1
⇣

�Q

0

S

0 (y)
⌘

2 loc(0, ⇠̃) \D
P

0 .
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We have shown that for all z 2 s⇠
P

we have that

((c⌘
P

0
Q

0
)�1 � �Q

0

S

0 �c⌘
P

Q)(z) 2 loc(0, ⇠̃) \D
P

0 .

Since this argument is true for all z 2 s⇠
P

(of which there are more than one), the

fact that (c⌘
P

0
Q

0
)�1 � �Q

0

S

0 �c⌘
P

Q is injective implies that loc(0, ⇠̃) \D
P

0 consists of

more than one point and so ⇠̃ 2 ⇧
P

0 . Furthermore

((c⌘
P

0
Q

0
)�1 � �Q

0

S

0 �c⌘
P

Q)(s⇠
P

) ✓ loc(0, ⇠̃) \D
P

0 = s⇠̃
P

0 .

Let

U
P

= [(c⌘
P

Q)�1 � (�Q

0

S

0 )�1]
⇣

(�Q

0

S

0 �c⌘
P

Q)(⇤
P

) \ c⌘
P

0
Q

0
(⇤

P

0)
⌘

,

U
P

0 = (c⌘
P

0
Q

0
)�1
⇣

(�Q

0

S

0 �c⌘
P

Q)(⇤
P

) \ c⌘
P

0
Q

0
(⇤

P

0)
⌘

, and

�⇠

P

:=
⇣

(c⌘
P

0
Q

0
)�1 � �Q

0

S

0 �c⌘
P

Q

⌘

�

�

�

�

U

P

: U
P

! U
P

0 .

Then �⇠

P

is a translation equivalence, and Figure 8 is a commutative diagram.

We have established that for all P 2 ⌃ and all ⇠ 2 ⇧
P

with P 0 2 ⌃̃ such that

P 0 = ⌘
P

(⇠) we have that ⇠̃ 2 ⇧
P

0 and that �⇠

P

(s⇠
P

) ✓ s⇠̃
P

0 .

Since P = ⌘
P

0(⇠̃), ˜̃⇠ = ⇠, and c⌘
P

0
Q

0
(⇠̃) = �Q

0

S

0 (Q), we can run the above

argument in reverse to conclude that ⇠ 2 ⇧
P

is implied by the fact that ⇠̃ 2 ⇧
P

0 .
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U
P

⌘
P

,,

�⇠

P

//

�Q

0

S

0 �c⌘
P

Q

!!

U
P

0

⌘
P

0

rr

c⌘
P

0
Q

0

}}

[�Q

0

S

0 �c⌘
P

Q](⇤
P

)
T

c⌘
P

0
Q

0
(⇤

P

0)

⇡
✏✏

(X,!)

Figure 8: Establishing a translation equivalence, �⇠

P

, that will perform gluing

along the sides s⇠
P

and s⇠̃
P

0 contained in the neighborhoods U
P

and U
P

0 respec-
tively.

We will obtain an analogous map

� ⇠̃

P

0 =



(c⌘
P

Q)�1 � (�Q

�

Q

0
S

0 (Q)
� c⌘

P

0
Q

0
)

�

�

�

�

�

U

0
P

=
h

(c⌘
P

Q)�1 � ((�Q

0

S

0 )�1 � c⌘
P

0
Q

0
)
i

�

�

�

�

U

0
P

= (�⇠

P

)�1,

and conclude that [�⇠

P

]�1(s⇠̃
P

0) ✓ s⇠
P

. Thus we have open sets U
P

containing s⇠
P

and U
P

0 containing s⇠̃
P

0 and a translation equivalence

�⇠

P

: (U
P

, (o(P ) + 1)zo(P )dz) ! (U
P

0 , (o(P 0) + 1)(z)o(P
0)dz)

such that �⇠

P

(s⇠
P

) = s⇠̃
P

0 . In particular s⇠
P

and s⇠̃
P

0 are parallel and of equal length.

Also, by commutativity of the diagram above we know that ⇠ identifies all z 2 s⇠
P
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with �⇠

P

(z) 2 s⇠̃
P

0 .

Suppose z1 2 s⇠
R1

\ bdry(s⇠
R1
) where ‘bdry(·)’ denotes manifold boundary.

With notation as above z2 := �⇠

R1
(z1) 2 s⇠̃

R

0
1
\bdry(s⇠̃

R

0
1
), and open (relative to D

R1

and D
R

0
1
) neighborhoods N1 and N2 of z1 2 D

R1 and z2 2 D
R

0
1
respectively can

be chosen to be Euclidean half-discs that are disjoint and of the same arbitrarily

small radius. Since z1 2 @D
R1 ✓ ⇤R1 \ (MP

R1(X,!) [ {0}), it follows that ⌘(z1)

is a regular point of (X,!). Note that N1 \ C
R1 and N2 \ C

R

0
1
are the original

half-discs without their diameters. Since ⌘|F
P2⌃ C

P

is a translation equivalence

(and so preserves angles and is injective), the fact that ⌘(z1) = ⌘(z2) therefore

implies that ⌘(N1) and ⌘(N2) are two Euclidean half-discs whose union is a full

Euclidean disc constituting a metric ball about ⌘(z).

Suppose w 2 @D
R2 for some R2 2 ⌃ with w /2 {z1, z2}. It cannot be the case

that w ⇠ z1 or w ⇠ z2 since otherwise points of C
R2 in proximity of w would

be forced to be identified with distinct points in either N1 \ C
R1 or N2 \ C

R

0
1

which contradicts the fact that ⌘ is injective on
F

P2⌃ C
P

. Thus in fact points

of s⇠
R

\ bdry(s⇠
R

) for any R 2 ⌃ and ⇠ 2 S
R

are identified by ⇠ with points of
F

P2⌃ @DP

if and only if they are identified by the side pairing of s⇠
R

with �⇠

R

(s⇠
R

).

Note in particular that the points of
F

P2⌃,⇠2⇧
P

bdry(s⇠
P

) are only identified by

⇠ with points within the same set.

Recall that

⌘̄ :

 

G

P2⌃
D

P

/ ⇠
!

�! (X,!)

is a homeomorphism. The local holomorphic charts from X on ⌘(N1)[⌘(N2) and
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the abelian di↵erential !|(⌘(N1) [ ⌘(N2)) can be pulled back, via ⌘̄|(N1tN2)/⇠, to

give well defined Riemann surface charts and an abelian di↵erential on

(N1 tN2/ ⇠) ⇢ (
G

P2⌃
D

P

/ ⇠).

Notice that this abelian di↵erential will agree with (⌘|F
P2⌃ C

P

)⇤(!) on N1 \ C
R1

and N2\C
R

0
1
. This process can be carried out for all points in s⇠

P

\bdry(s⇠
P

) for all

P 2 ⌃ and ⇠ 2 ⇧
P

, defining a Riemann surface structure and abelian di↵erential,

 , on (
F

P2⌃ D
P

/ ⇠) \ A where A is the discrete subset of equivalence classes

determined by the set
S

P2⌃,⇠2⇧
P

bdry(s⇠
P

) (recall that this set is not identified

by ⇠ with any points outside of itself). Let Z :=
F

P2⌃ D
P

/ ⇠ and B := ⌘̄(A).

It follows that ⌘̄ : Z \ A ! X \B is a biholomorphism of Riemann surfaces that

pulls back !|
X\B to give  |

Z\A. By the Riemann removable singularity theorem,

there is a unique Riemann surface structure on all of Z such that ⌘̄ : Z ! X is a

biholomorphism. Furthermore  continuously extends to an abelian di↵erential

on all of Z which we will also denote  , for which  = ⌘̄⇤(!). Therefore

⌘̄ : (Z, ) �! (X,!)

is a translation equivalence.

Theorem 14 allows us to now prove something stronger than the converse to

Theorem 8.
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Corollary 2. Let (Y, ) 2 H(i1, ..., is) and let ⇢ 2 R such that ⇢ > ⇢(X,!). If

[MP2⇢(X,!)] = [MP 2⇢(Y, )] then (X,!) and (Y, ) are translation equivalent.

Proof. Let (Y, ) 2 H(i1, ..., is) have singular set ⌃
Y

and let ⇢ 2 R such that

⇢ > ⇢(X,!).

Suppose that [MP2⇢(X,!)] = [MP 2⇢(Y, )]. Then an enumeration R1, ..., Rs

of ⌃
Y

exists so that for all k 2 {1, ..., s} the order of the singularity of P
k

is the

same as for R
k

, the surface O
R

k

can be identified with O
P

k

, and the identification

◆
Y

can be taken as the identification ◆ used for (X,!). In this way we can take a

radius 2⇢ bounded representative of (X,!) given by

MP2⇢(X,!) = ◆(
G

P2⌃
MP 2⇢

P

(X,!))

as a radius 2⇢ bounded representative of (Y, ) as well.

Thus for all k 2 {1, ..., s}, by Remark 14

D
R

k

✓ ⇥(MP2⇢
R

k

(Y, )) = ⇥(MP2⇢
P

k

(X,!)) = D
P

K

.

This implies that ⇢(Y, )  ⇢(X,!) so that ⇢ > ⇢(Y, ). Therefore by Theorem

12 if k 2 {1, ..., s} then

D
R

k

= ⇥(MP2⇢
R

k

(Y, )) = ⇥(MP2⇢
P

k

(X,!)) = D
P

K

.
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Finally the results of Theorem 14 imply that

(X,!) ⇠=
 

G

P2⌃
D

P

/ ⇠
!

=

 

G

R2⌃
Y

D
R

/ ⇠
!

⇠= (Y, ).
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5 The Veech Group from the Marked Periods

5.1 The Action of SL(2,R) on the Set Containing the Marked
Periods

In this subsection we define an action of SL(2,R) on ⌅ (see Definition 28).

Recall for a translation surface (Y, ) that der : A↵+(Y, ) ! GL+(2,R) is a

homeomorphism given by der(F ) = dF where dF is the matrix associated with

the constant Jacobian of F .

Lemma 5. We have that SL(2,R) ⇢ der(A↵+(O)).

Proof. Recall from Subsection 3.3 that

O =
G

c1 copies

O1 t
G

c2 copies

O2 t ... t
G

cs copies

Os.

where for each k 2 {1, ..., s}, O
k

= (C, (q
k

+ 1)zqkdz).

LetM 2 SL(2,R). From Section 2 we have that the map IdO
k

: O
k

! (M ·O
k

)

is an a�ne homeomorphism with der(IdO
k

) = M . Furthermore the proof of

Theorem 5 carries through if we replace X̃ with M ·O
k

and use Q = 0, providing

a lift ddev
Q

: (M · O
k

) ! O
k

, of the developing map dev
Q

on M · O
k

based at
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Q = 0 (see Figure 9). Note that STAR
Q

= M · O
k

and that ddev
Q

is a translation

equivalence since TIPS
Q

= ; in this case.

O
k

proj
k

✏✏

M · O
k

dev
Q

||

ddev
Q

oo O
k

proj
k

✏✏

F k

M

�� IdO
k

oo

I

C C
T
M

oo

Figure 9: Establishing an a�ne homeomorphism on an individual component O
k

by composing IdO
k

(which has Jacobian M) with a lift of the developing map on
M · O

k

(which has Jacobian IdSL(2,R)).

Thus F k

M

:= ddev
Q

� IdO
k

: O
k

! O
k

is an a�ne homeomorphism with

der(F k

M

) = M . For each k 2 {1, ..., s} we can apply F k

M

as a self map of each

individual copy of O
k

in O.

Define the function F
M

: O ! O by the rule that for k 2 {1, ..., s} if A is

a copy of O
k

in O then F
M

|
A

= F k

M

on that copy. Then F
M

is an a�ne self

homeomorphism on each connected component of O with derivative equal to M

on that component. Hence F
M

2 A↵+(O) and der(F
M

) = M .

Definition 36. If M 2 SL(2,R) and [A] 2 ⌅ let M · [A] := [F
M

(A)] where

F
M

2 A↵+(O) with der(F
M

) = M and F
M

(A) has the Z2-action induced from A

through the bijection F
M

.
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Theorem 15. Definition 36 provides a well defined action of SL(2,R) on ⌅.

Proof. By Lemma 5 if M 2 SL(2,R) there existence an F
M

2 A↵+(O) with

der(F
M

) = M . If F
M

, G
M

2 A↵+(O) with der(F
M

) = der(G
M

) = M , then

G
M

� F�1
M

: F
M

(A) ! G
M

(A) is a Z2-equivariant bijection. Since

der(G
M

� F�1
M

) = IdSL(2,R)

it follows that G
M

� F�1
M

2 Trans(O) and thus F
M

(A) ⇠ G
M

(A). Therefore we

have a well defined function from SL(2,R) to the set of functions from ⌅ to itself.

Note that any choice for F
IdSL(2,R)

lies in Trans(O) so that IdSL(2,R) · [A] = [A]

for all [A] 2 ⌅. Since der is a homomorphism, if M1,M2 2 SL(2,R) with corre-

sponding F
M1 , FM2 2 A↵+(O) we have that F

M1M2 := F
M1 �FM2 2 A↵+(O) with

der(F
M1M2) = M1M2. Thus for all [A] 2 ⌅,

M1 · (M2 · [A]) = [F
M1 � FM2(A)] = [F

M1M2(A)] = (M1M2) · [A].

5.2 The Veech Group as the Stabilizer of the Marked Pe-
riods

Let (X,!) 2 H(i1, ..., is). Recall from Remark 4 that SL(2,R) acts on
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H(i1, ..., is) and that �(X,!) = StabSL(2,R)(X,!). In this subsection we show

that

�(X,!) = StabSL(2,R) ([MP(X,!)]) .

Theorem 16. If (X,!) is a translation surface in H(i1, ..., is) and M 2 SL(2,R)

then

[MP (M · (X,!))] = M · [MP(X,!)].

Proof. Let (X,!) 2 H(i1, ..., is) have singular set ⌃, and choose a representative

MP(X,!) = ◆(
F

P2⌃ MP
P

(X,!)) of the marked periods of (X,!).

Let M 2 SL(2,R). By Section 2 the map Id
X̃

: (M · (X̃, ⇡⇤!)) ! (X̃, ⇡⇤!) is

an a�ne homeomorphism with der(Id
X̃

) = M�1.

Let k 2 {1, ..., s}, P = P
k

, and Q = Q
k

(with respect to the enumeration of

P and Q that come with the choice of a representative of marked periods). Let

Mdev
Q

be the developing map from the simply connected M · (X̃, ⇡⇤!) based

at Q 2 X̃. Recall that this developing map is the unique map that restricts to

coordinate neighborhoods ofM ·(X̃, ⇡⇤!) to be a translation equivalence and that

sends Q to zero. However if T
M

: C ! C is the R-linear map on C determined

by the matrix M , then T
M

� dev
Q

� Id
X̃

is another map satisfying all of those

conditions (see Figure 10).

Therefore Mdev
Q

= T
M

�dev
Q

�Id
X̃

. Let k 2 {1, ..., s} be such that O
P

= O
k

(and so proj
P

= proj
k

). Let F
M

2 A↵+(O) with der(F
M

) = M shown to exist in

the proof of Lemma 5. Note in Figure 9 that the block labeled I indeed commutes

since otherwise the developing map proj
P

and T
M

�proj
P

� (◆�1 � F
M

� ◆)�1 would
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O
P

proj
P

✏✏

O
P

proj
P

✏✏

◆�1 � F
M

� ◆
oo (X̃, ⇡⇤!)

ddev
Q

oo

dev
Q

||

M · (X̃, ⇡⇤!)
Id

X̃

oo

\Mdev
Q

xx

Mdev
Q

jj

I II

C C
T
M

oo

Figure 10: The embeddings fromM ·(X̃, ⇡⇤!) needed to define the marked periods
for M · (X,!) can be built from the corresponding maps dev

Q

on (X̃, ⇡⇤!) along
with the map Id

X̃

(having Jacobian M�1) and the lift of the R-linear action of
M on C (having Jacobian M).

be two distinct maps that restrict to coordinate neighborhoods to give translation

equivalencies and that take 0 2 O
P

to 0 2 C. The block in Figure 10 labeled II is

also commutative by Theorem 5, and therefore \Mdev
Q

:= ◆�1�F
M

�◆�ddev
Q

�Id
X̃

is

a lift of the developing mapMdev
Q

. Since TIPS
Q

is the same subset of X̃ whether

constructed within the translation surface M · (X̃, ⇡⇤!) or the translation surface

(X̃, ⇡⇤!), it follows that a representative at P of the marked periods of M ·(X,!)

is given by

MP
P

(M · (X,!)) = \Mdev
Q

(TIPS
Q

)

= ◆�1 � F
M

� ◆ �ddev
Q

� Id
X̃

(TIPS
Q

)

= (◆�1 � F
M

� ◆)(MP
P

(X,!)).
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Furthermore the path in X corresponding to an element ⇠ 2 MP
P

(X,!) is the

same as the path in X corresponding to the element

(◆�1 � F
M

� ◆)(⇠) 2 MP
P

(M · (X,!)) .

Therefore we have that ⇠̃1 = ⇠2 for ⇠1, ⇠2 2 MP
P

(X,!) if and only if

^(◆�1 � F
M

� ◆)(⇠1) = (◆�1 � F
M

� ◆)(⇠2).

We therefore find that a representative of the marked periods of M · (X,!) is

given by

MP(M · (X,!)) = ◆

 

G

P2⌃
MP

P

(M · (X,!))

!

= F
M

 

◆(
G

P2⌃
MP

P

(X,!))

!

= F
M

(MP(X,!)) .

By Definition 36 we have that

[MP (M · (X,!))] = M · [MP(X,!)].
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Theorem 17. If (X,!) 2 H(i1, ..., is) then �(X,!) = StabSL(2,R) ([MP(X,!)]).

Proof. Suppose that (X,!) 2 H(i1, ..., is) and M 2 SL(2,R). Then

M 2 �(X,!)

() (Lemma 1)

(X,!) and M · (X,!) are translation equivalent

() (Corollary 2, Theorem 8)

[MP(X,!)] = [MP (M · (X,!))]

() (Theorem 16)

[MP(X,!)] = M · [MP(X,!)]

()

M 2 StabSL(2,R) ([MP(X,!)])

5.3 Veech Group Elements from a Finite Subset of the
Marked Periods

Given an (X,!) 2 H(i1, ..., is) and M 2 SL(2,R) we know from the previous

subsection that M 2 � if and only if M · [MP(X,!)] = [MP(X,!)]. For cal-

culations we will work with a particular representative MP(X,!) of the marked
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periods, and replace the action of M by a map F
M

2 A↵+(O).

In this subsection we show that in fact it is enough to consider only a finite

subset of a representative of marked periods, the size of the required subset being

dependent on the Frobenius norm of M . In the next section we will see that for

a lattice Veech group we can determine when our search for a finite generating

set is complete by considering only finite subsets of the group consisting of all

elements whose norm is bounded above by some given value.

Definition 37. Let the radius of a point z 2 O be the distance from z to the

singularity of the connected component of O containing z.

The fact that the Z2-action on a representative of the marked periods is radius

preserving allows for a well defined Z2-action on subsets of a representative defined

by restricting values of the radii.

Definition 38. Suppose r > 0 and suppose A 2 ⌥ has a radius preserving Z2-

action. Then the action on A restricts to a well defined Z2-action on the set

S = {z 2 A| the radius of z is less than or equal to r}.

Let Ar denote the element of ⌥ given by the set S with this restricted Z2-action.

Note that if A 2 ⌥ possesses a radius preserving Z2-action and F 2 A↵+(O),

then F (A) 2 ⌥ also possesses a radius preserving Z2-action.

Lemma 6. Let A 2 ⌥ possess a radius preserving Z2-action. If M 2 SL(2,R)

has minimum singular value ⌫, then for all r > 0 and all F
M

2 A↵+(O) with
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der(F
M

) = M ,
⇣

F
M

(A
r

⌫ )
⌘

r

= (F
M

(A))r .

Proof. Let A 2 ⌥ possess a radius preserving Z2-action. Let M 2 SL(2,R) have

minimum singular value ⌫ and let r > 0. For all z 2 O we have that

radius(F
M

(z)) � ⌫ · radius(z).

Thus for all z 2 O

radius(F
M

(z))  r ) radius(z)  ⌫�1radius(F
M

(z))  r

⌫

,

which implies that

(F
M

(A))r ✓
⇣

F
M

(A
r

⌫ )
⌘

r

.

Since A ◆ A
r

⌫ , we also have that (F
M

(A))r ◆
⇣

F
M

(A
r

⌫ )
⌘

r

.

Definition 39. For M 2 SL(2,R) with

M =

0

B

@

a b

c d

1

C

A

we denote the Frobenius norm of M by

||M || :=
p

tr(MM t) =
p
a2 + b2 + c2 + d2.

Remark 16. It is easily shown using the definition of ||M || that right and/or
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left multiplication by elements in SO(2,R) leave this norm unchanged. Therefore

if ⌫ is the minimum singular value of M we have that ||M || =
p
⌫2 + ⌫�2. Given

||M ||, we can solve for the minimum singular value to obtain:

⌫ =

r

1
2

⇣

||M ||2 �
p

||M ||4 � 4
⌘

.

Definition 40. Let �1 : [
p
2,1) ! (0, 1] be given by

�1(t) :=

r

1
2

⇣

t2 �
p
t4 � 4

⌘

.

Note that �1 is a monotonically decreasing function. Furthermore by Remark 16

if M 2 SL(2,R) then �1(||M ||) is the minimum singular value of M .

We are now ready to prove that a finite subset of a representative of the

marked periods is su�cient to test Veech group membership for all matrices in

SL(2,R) up to a given Frobenius norm.

Theorem 18. Let (X,!) 2 H(i1, ..., is), ⇢ > ⇢(X,!), and b �
p
2. Let R = 2⇢

�1(b)

and let MPR(X,!) be a radius R bounded representative of the marked periods of

(X,!). Then for all M 2 SL(2,R) with ||M ||  b we have that

M 2 �(X,!)

i↵

(F
M

�

MPR(X,!)
�

)2⇢ =
�

MPR(X,!)
�2⇢

for some F
M

2 A↵+(O) with der(F
M

) = M.
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Proof. Let (X,!) 2 H(i1, ..., is), ⇢ > ⇢(X,!), b �
p
2, and R = 2⇢

�1(b)
. Let

MPR(X,!) be a radius R bounded representative of the marked periods of (X,!),

and let M 2 SL(2,R) with ||M ||  b . Since �1(b)  1 it follows that R � 2⇢ so

that

MP2⇢(X,!) :=
�

MPR(X,!)
�2⇢

(4)

is a radius 2⇢ bounded representative of marked periods of (X,!).

If M 2 �(X,!) then M · (X,!) is translation equivalent to (X,!) by Lemma

1. Therefore as a consequence of Theorem 8, MP2⇢ (M · (X,!)) = MP2⇢(X,!)

for some bounded representative MP2⇢ (M · (X,!)). Let F
M

2 A↵+(O) be such

that der(F
M

) = M and MP2⇢ (M · (X,!)) = (F
M

(MP(X,!)))2⇢ provided for by

Theorem 16. Then

(F
M

(MP(X,!)))2⇢ = MP2⇢(X,!). (5)

Since �1 is monotonically decreasing it follows that the minimum singular

value, ⌫, of M satisfies ⌫ = �1(||M ||) � �1(b). Thus R = 2⇢
�1(b)

� 2⇢
⌫

and so as a

consequence to Lemma 6 we obtain

�

F
M

(MPR(X,!))
�2⇢

= (F
M

(MP
2⇢
⌫ (X,!)))2⇢ = (F

M

(MP(X,!)))2⇢ . (6)
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Combining equations 4, 5, and 6 gives us

�

F
M

(MPR(X,!))
�2⇢

= (F
M

(MP(X,!)))2⇢ = MP2⇢(X,!) =
�

MPR(X,!)
�2⇢

.

Conversely suppose that (F
M

�

MPR(X,!)
�

)2⇢ =
�

MPR(X,!)
�2⇢

for some

F
M

2 A↵+(O) with der(F
M

) = M . By Theorem 16 we then have that

MP2⇢ (M · (X,!)) := (F
M

(MP(X,!)))2⇢

is a bounded representative of M · (X,!). Equation 6 still holds in this case,

and again MP2⇢(X,!) :=
�

MPR(X,!)
�2⇢

is a radius 2⇢ bounded representative

of marked periods of (X,!). Thus

MP2⇢ (M · (X,!)) =
�

F
M

(MPR(X,!))
�2⇢

=
�

MPR(X,!)
�2⇢

= MP2⇢(X,!).

By Corollary 2 it follows that M · (X,!) and (X,!) are translation equivalent.

It follows byLemma 1 that M 2 �(X,!).

In the setting of Theorem 18 let P 2 ⌃ and fix two points of the set underly-

ing MP2⇢
P

(X,!) that project via proj
P

to R-linearly independent elements of C.

The number of Jacobians of elements F
M

2 A↵+(O) that satisfy the conditions

of Theorem 18 is bounded above by the number of matrices in SL(2,R) whose

inverses take these projections to one of the finite pairs of projections of elements

in MPR(X,!). Since there are a finite number (namely #[Trans(O)]) of elements

in A↵+(O) having any given Jacobian, we obtain a finite list of transformations
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F
M

that could possibly satisfy the right hand condition at the bottom of Theorem

18. As a result, Theorem 18 gives us a finite time algorithm for determining all

elements of the Veech group whose Frobenius norm is bounded above by a given

value. In the next section we present an extended algorithm that for a lattice

Veech group determines a finite generating set in finite time.
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6 More Background: The Geometry of Fuch-
sian Groups

In Section 2 we define Veech groups as subgroups of SL(2,R). In this sec-

tion we draw upon a wealth of knowledge regarding the investigation of discrete

subgroups of SL(2,R)/{±Id} through their isometric action on the hyperbolic

plane. We will use the tools from this section, combined with Theorem 18, to

produce an algorithm to compute the Veech group of a translation surface. For

more details regarding the material in this section see [Kat] or [Bea].

6.1 Fuchsian Groups and Dirichlet Polygons

We provide some basic definitions.

Definition 41. We use the standard notation PSL(2,R) := SL(2,R)/{±Id}.

The group PSL(2,R) is a topological group with quotient topology induced

from the natural topology of SL(2,R). The topological group SL(2,R) admits

a unique (up to scaling) left invariant measure, called Haar measure, that also

passes through the quotient to give such a measure on PSL(2,R). The Frobenius

norm on SL(2,R) (see Definition 39) also passes to PSL(2,R) as it depends only

on the squares of the matrix entries. This is the norm we will use for PSL(2,R).

Definition 42. A Fuchsian group is a discrete subgroup of PSL(2,R).
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Definition 43. For any subset A ✓ SL(2,R) we denote the image under projec-

tion of this set to PSL(2,R) by Ā.

Note that the group PSL(2,R) is obtained by taking the topological group

SL(2,R) and performing the quotient with respect to a finite subgroup. Therefore

it easily follows from the fact that �(X,!) is a discrete subgroup of SL(2,R) that

�(X,!)  PSL(2,R) is a Fuchsian group.

Let H denote the upper half-plane model of the hyperbolic plane. The group

PSL(2,R) acts isometrically on H through fractional linear transformations de-

fined for g = ±

2

6

4

a b

c d

3

7

5

by g · z := az+b

cz+d

.

Definition 44. A closed region (i.e. the closure of a non-empty open set) is

defined to be a fundamental region for the action of a Fuchsian group G 

PSL(2,R) on H if every point in H is in the orbit of at least one point in the

region, and no two distinct points of the interior of the region lie in the same

orbit.

Given a Fuchsian group G  PSL(2,R) and a point in H with trivial sta-

bilizer in G, we can use the orbit of this point to construct a convex polygonal

fundamental region in H. We will see that this fundamental polygon can be used

to obtain generators for the group. In the sequel we will assume that i 2 H has

trivial stabilizer in the group. In practice we will perturb the group in order to

establish this as fact.

We next establish notation for the hyperbolic half-plane in H given as all the
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points closer to i 2 H than to a chosen point in H \ {i}. A collection of these

half-planes will intersect to form our fundamental polygon.

Definition 45. For z 2 H \ {i} we let

H
i

(z) := {w 2 H | d(w, i)  d(w, z)}.

We now can construct a fundamental polygon for a Fuchsian group. For more

details see Chapter 3 of [Kat].

Definition 46. If i has trivial stabilizer in a Fuchsian group G the Dirichlet

polygon of G centered at i is given by

Dir(G) :=
\

g2G
H

i

(g · i).

The set Dir(G) is a convex hyperbolic polygon that may in general contain

‘free’ sides (contained within the line at infinity). The polygon Dir(G) is a fun-

damental region for the action of G on H.

Given a Fuchsian group G in which i has a trivial stabilizer, we will refer to

the Dirichlet polygon centered at i as the Dirichlet polygon for G regardless of

the fact that other choices could be made for the center.

6.2 Side Pairings of the Dirichlet Polygon

For this subsection we let G  PSL(2,R) be a Fuchsian group in which i has a
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trivial stabilizer.

It is clear from the definition of the Dirichlet polygon of G that its sides are

pieces of the boundaries of H
i

(g · i) for various g 2 G. We now explore more

about what these sides can tell us about the group G.

Definition 47. The sides of Dir(G) are exactly the sets @H
i

(g · i)\Dir(G) which

contain more than one point. We say that a side s = @H
i

(g · i) \ Dir(G) is

determined by the element g.

The next result tells us that if G has finite co-volume, (i.e. the induce Haar

measure of the quotient PSL(2,R)/G is finite), then Dir(G) has a finite number of

sides. Again the pass from SL(2,R) to PSL(2,R) is achieved by taking the quo-

tient of a finite subgroup. Therefore it is clear that �(X,!) is a lattice (has finite

co-volume) if and only if �(X,!) has finite co-volume. The following theorem

and proof can be found in Chapter 1 Section 5C of [Le1].

Theorem 19. (see Chapter 1 Section 5C of [Le1]) If G has finite co-volume, then

Dir(G) has a finite number of sides and no free sides.

The set of non-vertex points within a given side of Dir(G) is the set of all

points that are equidistant to i and exactly one other point in the orbit of i. This

is the key observation that allows one to prove the following facts (see Chapter 1

Section 4F of [Le1] for more details).

Theorem 20. The sides of Dir(G) are paired by elements of G called ‘side pairing

transformations’. A side pairing transformation and its inverse are the same two
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elements that determine (recall Definition 47) the sides being paired. In addition,

every side pairing transformation preserves point-wise distance to i.

Proof. As is seen in Section 4F of [Le1], the sides of Dir(G) are indeed paired, with

a side s = @H
i

(g · i)\Dir(G) being paired with the side s0 = @H
i

(g�1 · i)\Dir(G).

Furthermore the element g�1 is the side pairing transformation that takes s to

s0. If z 2 s then it is equidistant to i and g · i. Since g�1 is an isometry it follows

that d(g�1(z), i) = d(z, g(i)) = d(z, i). Therefore the side pairing does in fact

preserve point-wise distance to i.

Suppose P is a hyperbolic polygon with a finite number of sides, none of

which are free sides, that are paired by transformations in PSL(2,R). Any given

vertex of P can be carried by the side pairing transformations from each adjacent

side to other vertices of P . This process partitions the set of vertices into sets

called cycles. The side pairing transformations used to form a given cycle are

called the cycle transformations for that cycle. A generalization of a theorem

due to Poincaré provides conditions for the cycles and cycle transformations that

ensure P is a fundamental region for the group generated by the side pairings.

This theorem, (see Theorem 21) is the key to the finite run time of our algorithm

in the lattice case.

Definition 48. Suppose P is a hyperbolic polygon with a finite number of sides,

none of which are free sides, that are paired by transformations in PSL(2,R).

A cycle of finite vertices (i.e. not on the line at infinity) containing l vertices

satisfies the elliptic cycle condition if the sum of the internal angles of P at
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the vertices in the cycle is 2⇡
l

.

A cycle of vertices at infinity satisfies the parabolic cycle condition if ev-

ery cycle transformation that fixes any given vertex within the cycle is a parabolic

transformation (i.e. has a trace-squared value of 4).

Theorem 21 (Poincaré). Let P be a hyperbolic polygon with a finite number

of sides, none of which are free sides, that are paired by transformations in

PSL(2,R). If all of the cycles of vertices within H satisfy the elliptic cycle con-

dition, and all cycles of vertices at infinity satisfy the parabolic cycle condition,

then the side pairings of P generate a Fuchsian group, and P is a fundamental

region for this group.

Proof. See p. 227 of [Le2].
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7 Calculating the Veech Group

7.1 The Algorithm

We now use Theorem 18 along with the tools from Section 6 in order to present

an algorithm for computing Veech groups.

We start by defining the set of all elements in �(X,!) that can be determined

using Theorem 18 with a radius r bounded instance of the marked periods of

(X,!) for some r 2 R.

Definition 49. Recall Definitions 33 and 40 of ⇢ and �1 respectively. For r 2 R

with r � 2⇢ we define:

A
r

:= {M 2 �(X,!)| ||M ||  b} where b = ��1
1 (2⇢

r

).

We will need a function that takes the Frobenius norm of a matrix M as

input, and produces 1
2
d(i, M̄ · i) as output, representing the minimal distance

from i to the boundary of H
i

(M̄ · i). We need this information, as we increase a

subset Ā ✓ PSL(2,R), in order to track how close to i we can possibly observe a

change in ⌦(Ā).
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Definition 50. Let �2 : [
p
2,1) ! [0,1) be defined for t 2 [

p
2,1) by

�2(t) := �ln(�1(t)).

Theorem 22. If M 2 SL(2,R), then the shortest distance in H from i to

@H
i

(M̄ · i) is given by �2(||M ||). Therefore B(i,�2(||M ||)) ⇢ H
i

(M̄ · i).

Proof. Let M 2 SL(2,R) have singular value decomposition given by

M = O1 ·D ·O2 where D =

2

6

4

⌫ 0

0 ⌫

3

7

5

, O1, O2 2 SO(2,R),

and where we can assume without loss of generality that ⌫ is the minimum

singular value of M given be ⌫ = �1(||M ||) (see Definition 40). Note that the

shortest distance from i to @H
i

(M̄ · i) is equal to 1
2
d(i, M̄ · i). Since M̄ acts by

isometry on H, and elements of SO(2,R)/{±Id} fix i, it follows that

1
2
d(i, M̄ · i) = 1

2
d(i, D̄ · i) = 1

2
d(i, ⌫2i).

We use the hyperbolic line element ds2 = dx

2+dy

2

y

2 to calculate the shortest distance
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from i to @H
i

(M̄ · i) as

1
2
d(i, ⌫2i) = 1

2

Z

i

⌫

2
i

ds

= 1
2

Z 1

⌫

2

dy

y

= �ln(⌫)

= �ln(�1(||M ||))

= �2(||M ||).

Note that �2 is a monotonically increasing function. Therefore we obtain the

following corollary.

Corollary 3. If A ✓ SL(2,R), b �
p
2, and M 2 SL(2,R) with ||M || > b, then

⌦(Ā) \ B(i,�2(b)) = ⌦(Ā [ {M̄}) \ B(i,�2(b)).

As we obtain increasing subsets A
r

✓ �(X,!) consisting of all elements of

�(X,!) whose norms are bounded by b = ��1
1 (2⇢

r

), the sets ⌦(Ā
r

) nest down with

a limit of ⌦(�(X,!)). During this process Corollary 3 provides us with a way to

track increasing metric balls centered at i 2 H within which the sets ⌦(Ā
r

) and

⌦(�(X,!)) agree exactly.
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Lemma 7. If r 2 R with r � 2⇢ and b = ��1
1 (2⇢

r

), then

⌦(Ā
r

) \ B(i,�2(b)) = ⌦(�(X,!)) \B(i,�2(b))

Algorithm 7.1. Calculating the Veech Group of a Translation Surface (Re-

stricted Case).

Input: The Voronoi decomposition of a translation surface (X,!) 2 H(i1, ...is) for

which �(X,!) \ SO(2,R) ✓ {±Id}.

Output:

- (lattice) A finite generating set for �(X,!).

- (non-lattice)The algorithm will not terminate, but will continue to enu-

merate the elements in the Veech group in order of increasing norm.

A stopping condition based on norm or time could be utilized for this

case.

1. Calculate ⇢ = ⇢(X,!) using the Voronoi 2-cells

(see Definition 33).

2. Let r = 2⇢ and let b = ��1
1 (2⇢

r

) =
p
2.

3. Calculate MPr

P

(X,!) for all P 2 ⌃.

4. Calculate A
r

= {M 2 �(X,!)| ||M ||  b} = SO(2,R) \ �(X,!) using

Theorem 18.



102

5. If �Id 2 A
r

, then let ContainsMinusIdentity = TRUE.

6. else let ContainsMinusIdentity = FALSE.

7. Let ContainmentV olume := 1.

8. Do While ContainmentV olume = 1:

(a) Double the value of r and let b = ��1
1 (2⇢

r

).

(b) Calculate MPr

P

(X,!) for all P 2 ⌃.

(c) Use Theorem 18 to complete the set A r

2
to

A
r

= {M 2 �(X,!)| ||M ||  b} .

(d) Construct ⌦(Ā
r

).

(e) Let ContainmentV olume = ⌫H(⌦(Ār

)).

9. Let BoundingRadius = �2(b).

10. Let BoundedP iece = ⌦(Ā
r

) \ B(i, BoundingRadius).

11. Let AllSidesRepresented = FALSE.

12. Let ParabolicCycles = FALSE.

13. Do While AllSidesRepresented = FALSE or

ParabolicCycles = FALSE or

⌫H(BoundedP iece)  1
2
⌫H(⌦(Ār

)):

(a) Double the value of r.
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(b) Recalculate MPr

P

(X,!) for each P 2 ⌃, compute A
r

and

⌦(Ā
r

).

(c) Calculate BoundingRadius = �2(b).

(d) Let BoundedP iece = ⌦(Ā
r

) \ B(i, BoundingRadius).

(e) If the only sides of ⌦(Ā
r

) not contained in BoundedP iece

have one endpoint on the line at infinity and the other

an interior point of B(i, BoundingRadius),

then let AllSidesRepresented = TRUE.

i. Calculate the ideal vertex cycles associated to the

side pairing transformations on the sides containing

an ideal vertex endpoint.

ii. If all ideal vertex cycles are parabolic,

then let ParabolicCycles = TRUE.

iii. else let ParabolicCycles = FALSE.

(f) else let AllSidesRepresented = FALSE and

let ParabolicCycles = FALSE.

14. Let SidePairingRepresentatives be the set of elements in A
r

associated to the side pairing transformations of ⌦(Ā
r

).

15. If ContainsMinusIdentity = TRUE,

then let Generators = SidePairingRepresentatives [ {�Id}.

else let Generators = SidePairingRepresentatives.
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16. Output Generators.

Proof of Validity If �(X,!) is not a lattice then the loop at Step 8 will never

terminate since it will always be the case that

ContainmentV olume � ⌫H(⌦(�(X,!))) = 1.

In this case the iterations of the loop at Step 8 establish increasing sets of elements

in �(X,!) where each set is an exhaustive list of all elements whose norms are

bounded above by some value.

Suppose �(X,!) is a lattice. By Theorem 19 it follows that ⌦(�(X,!)) is a

hyperbolic polygon with a finite number of sides, none of which are free sides.

However each (non-free) side of ⌦(�(X,!)) is determined by the boundary of a

half-space H
i

(M · i) for some M 2 �(X,!). In particular there is a finite set of

elements A ✓ �(X,!) such that ⌦(�(X,!)) = ⌦(A).

Let b be the maximum norm of all elements in A, and let R = 2⇢
�1(b)

. Then

A ✓ A
r

for all r � R. Thus ⌦(Ā
r

) = ⌦(Ā) = ⌦(�(X,!)) for all r � R. Since the

sets ⌦(Ā
r

) decrease as r increases, there is an r1  R for which ⌫H(⌦(Ār

)) < 1

for all r > r1. Since r increases without bound as a function of the number of

iterations in the loop at Step 8, it follows that this loop will terminate at some

finite number of iterations.

Suppose that the loop at Step 13 is exited, so that

AllSidesRepresented = TRUE
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and

ParabolicCycles = TRUE

and

⌫H(BoundedP iece) >
1

2
⌫H(⌦(Ār

))

at the end of the loop with a given value of r = r⇤. The finite volume

of ⌦(Ā
r

⇤) ensures by Theorem 19 that ⌦(Ā
r

⇤) is a hyperbolic polygon with no

free sides. Since Theorem 20 ensures that the side pairing transformations of

⌦(�(X,!)) preserve point-wise distance to i, we know that the side-pieces within

⌦(Ā
r

⇤) \B(i, BoundingRadius) = ⌦(�(X,!)) \B(i, BoundingRadius)

possess a complete set of pairing transformations. Theorem 20 also ensures that

these side pairing transformations are contained in A
r

⇤ since they coincide with

the elements that determined the sides. The fact that

AllSidesRepresented = TRUE

tells us that all sides of ⌦(Ā
r

⇤) which have portions outside of

B(i, BoundingRadius) also have non-zero length portions inside the same ball.

Therefore the side-piece pairings of ⌦(Ā
r

⇤) \ B(i, BoundingRadius) induce a

complete set of side pairings for ⌦(Ā
r

⇤).

These side pairings induce cycle transformations on the finite vertices that

satisfy the elliptic cycle condition since these vertices lie within
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B(i, BoundingRadius) and this is true for ⌦(�(X,!)) by Theorem 3.5.3 of [Kat].

The cycle transformations on the vertices at infinity satisfy the parabolic cycle

condition since ParabolicCycles = TRUE. Thus by Theorem 21 it follows that

⌦(Ā
r

⇤) is a fundamental polygon for the group generated by its side pairings.

These side pairings are all elements of Ā
r

⇤ ✓ �(X,!). Let H̄  �(X,!) be the

subgroup generated by these side pairings. It follows that

[�(X,!) : H̄] =
⌫H(⌦(Ār

⇤))

⌫H(⌦(�(X,!)))
.

Since the last condition gives us that

⌫H(⌦(�(X,!))) � ⌫H(BoundedP iece) >
1

2
⌫H(⌦(Ār

))

it follows that

[�(X,!) : H̄] =
⌫H(⌦(Ār

⇤))

⌫H(⌦(�(X,!)))
< 2.

Thus in fact �(X,!) = H̄ and so the side pairings for ⌦(Ā
r

⇤) generate �(X,!).

We now prove that the loop at Step 13 will be exited in a finite number of

iterations. It is clear that r increases without bound as a function of the number

of iterations of the loop at Step 13. Since �2(�
�1
1 (2⇢

r

)) increases without bound

as a function of r, it follows that BoundingRadius increases without bound as

a function of the number of iterations within this loop. For all iterations beyond

the finite number of iterations that are required to achieve r > R, it follows

that ⌦(Ā
r

) = ⌦(�(X,!)) and BoundingRadius continues to increase without
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bound. Therefore only a finite number of further iterations are required in order

for the value of BoundingRadius to be large enough to ensure that the only

sides of ⌦(Ā
r

) = ⌦(�(X,!)) that are not contained in B(i, BoundingRadius)

will have one endpoint on the line at infinity and the other an interior point of

B(i, BoundingRadius). This will continue to be true for all subsequent iterations

and so the value of AllSidesRepresented will continue to be TRUE. The ‘induced’

side pairings on ⌦(Ā
r

) = ⌦(�(X,!)) are clearly the side pairings of ⌦(�(X,!)),

which by Theorem 9.3.8 of [Bea] induces ideal vertex cycle transformations that

are parabolic. This will also remain true for all subsequent iterations so that the

value of ParabolicCycles will continue to be TRUE. It is also clear that only a

finite number of further iterations are required for the inequality

⌫H(⌦(�(X,!)) \B(i, BoundingRadius)) >
1

2
⌫H(⌦(�(X,!)))

to be valid. It then follows that

⌫H(BoundedP iece) = ⌫H(⌦(�(X,!)) \B(i, BoundingRadius)) >
1

2
⌫H(⌦(Ār

)).

Hence the loop at Step 13 will indeed terminate in a finite number of iterations

at which point the side pairings of ⌦(Ā
r

) generate �(X,!).

Let M1, ...,Ml

2 A
r

✓ �(X,!) ✓ SL(2,R) be the elements that were collected

within the loop at Step 13 that represent the side pairing elements M̄1, ..., M̄l

of
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⌦(Ā
r

). The fact that {M̄1, ..., M̄l

} generates �(X,!) implies:

Given M 2 �(X,!), a word w in {M1, ...,Ml

} satisfies w = ±M.

If �Id 2 �(X,!) it follows that a word in {M1, ...,Ml

,�Id} can be found that

equals any element in �(X,!). If �Id /2 �(X,!) then w = �M can never hold

in the statement above, since both w and M are in �(X,!). In this case it is

clear that {M1, ...,Ml

} generates �(X,!). Therefore Step 15 correctly constructs

a generating set for �(X,!).

When the predicate condition for the previous algorithm is not met, one

finds a new translation surface that meets the condition by acting with an el-

ement M0 2 SL(2,R) close to Id. Once the Veech group of the new surface is

computed, the generators of the Veech group of the original surface are obtained

by conjugating the generators of the new surface by M�1
0 .

Algorithm 7.2. Calculating the Veech Group of a Translation Surface.

Input: The Voronoi decomposition of a translation surface (X,!) 2 H(i1, ...is).

Output:

- (lattice) A finite generating set for �(X,!).

- (non-lattice) The algorithm will not terminate, but will continue to

enumerate the elements in the Veech group in order of increasing norm.

A stopping condition based on norm or time could be utilized for this

case.
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1. Calculate ⇢ = ⇢(X,!) using the Voronoi 2-cells.

(see Definition 33).

2. Let r = 2⇢ and let b = ��1
1 (2⇢

r

) =
p
2.

3. Calculate MPr

P

(X,!) for all P 2 ⌃.

4. Calculate A
r

= {M 2 �(X,!)| ||M ||  b} = SO(2,R) \ �(X,!)

using Theorem 18.

5. If M 2 A
r

with M /2 {±IdSO(2,R)},

then find an M0 2 SL(2,R) such that

�(M0 · (X,!)) \ SO(2,R) ✓ {±IdSO(2,R)}.

6. Let (X0,!0) = M0 · (X,!).

7. Execute Algorithm 7.1 with input: (X0,!0)

and rename the output: AssociatedGenerators.

8. Let Generators = M�1
0 · AssociatedGenerators ·M0.

9. Output Generators.
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8 Conclusion

We have established a new computational framework and an algorithm for

computing elements of the Veech group of translation surfaces defined by polygons

with side identifications where the polygonal side lengths lie in a number field

so that exact arithmetic can be performed. The algorithm computes subsets of

the Veech group defined by elements whose Frobenius norms are bounded above

by progressively higher values. The algorithm detects when the Veech group is a

lattice, and in this case determines a finite generating set for the group.

A partial implementation of this algorithm has been written using the Sage

programming language. Future work could complete this partial implementation

in order to make it an available tool to the mathematics community. The charac-

terization of Veech group elements used in our algorithm identifies the elements

as stabilizers of the marked periods of the translation surface. This new charac-

terization may be used in future investigations of known Veech groups through

the study of their marked periods. In addition, the creation of exotic marked

periods objects could be used to define translation surfaces whose Veech groups

have not yet been known to exist.
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