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Quantitative assessments of post-fire effects are key to improving our under-

standing of ecosystem resilience. While remote sensing technology has allowed us

to assess post-fire landscape effects, we are often limited by the lack of information

related to pre-fire forest attributes. As a result, our ability to interpret fire effects

in relation to landscape-scale canopy fuel distributions is severely inhibited. We used

discrete-return multi-temporal Light Detection and Ranging (LiDAR) to quantify pre-

fire basal area, basal area mortality, and post-fire basal area. Observed pre-fire basal

area values were reconstructed from field measurements taken 2-years after fire. We

modeled pre-fire basal area using a log-linear model, whereas, basal area mortality

was modeled with beta regression and change estimation. Model performance was

compared using bias, RMSE, RMSPE, AIC, and BIC. We also modeled basal area

mortality using a combined approach, where we included RdNBR within the selec-

tion process. Intensity values were not used in combined models. In general, LiDAR

models outperformed combined models (RMSPE of 0.1293 vs. 0.1347 with 3 and 4

variables, respectively) when quantifying basal area mortality. Intensity metrics im-

proved pre-fire basal area models (reduction in AIC/BIC values ≈ 10-20; not shown).

Lastly, we provide multiple examples of practical applications for renewed perspectives



by clearly defining fire effects, directly quantifying, and calibrating remotely sensed

LiDAR information to field observations.
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Multi-temporal LiDAR Analysis of Landscape Fire Effects in

Southwestern Oregon

1 Chapter One

1.1 General Introduction

Improving our ability to assess landscape-scale fire effects has become increas-

ingly important to land managers and research scientists for a multitude of reasons.

For example, the wildland urban interface continues to expand as human populations

grow, increasing the risk that fire will impact economic and social assets (Haas et al.,

2013; Hammer et al., 2007).. Aggressive fire suppression and historical forest manage-

ment increased fuel loading over broad landscapes and homogenized forest structures

(Duren et al., 2012; Hessburg et al., 2007; Naficy et al., 2010). In addition, global

climate projections are predicting longer fire seasons, increased drought conditions,

and more frequent extreme fire weather events (Liu et al., 2013; Westerling et al.,

2006). Many studies suggest that these conditions are not only unsustainable, but

they pose great risk to valuable ecologic, economic, and social resources (Calkin et al.,

2005; Jolly et al., 2015; Littell et al., 2009, 2010; Mallek et al., 2013; Marlon et al.,

2012).

Approximately 1-2% of fires escaping initial attack account for >95% of an-

nual area burned making remote sensing technology key to quantifying their impacts

(Short, 2014; Thompson et al., 2015). Federal land managers and researchers predomi-

nantly rely on multi-temporal Landsat TM imagery which relates the normalized burn

ratio (NBR) to field estimates of fire severity based on the composite burn index (CBI)

(Key and Benson, 1999, 2005; MTBS, 2014). The CBI is a metric which was designed

for rapid field assessment of post-fire effects, quantifies mean change across 5 strata,
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and is measured as an index between 0 (unburned) and 3 (high severity) (Morgan

et al., 2014; Wulder et al., 2009). The NBR is calculated from Landsat TM/ETM+

bands 4 and 7 which are sensitive to green vegetation and moisture content, respec-

tively (Escuin et al., 2008; Meng and Meentemeyer, 2011). Correlations between the

differenced NBR (dNBR) and CBI are then used to derive thresholds of fire severity

across broad landscapes and assess fire effects on soils, fuels, vegetation, wildlife habi-

tat, and tree mortality (Miller and Yool, 2002; Verbyla et al., 2008; Wimberly et al.,

2009). An alternative estimator called the relative differenced NBR (RdNBR) was

designed to account for variations in pre-fire forest structural conditions by weighting

the dNBR indices to pre-fire NBR values Miller and Thode (2007). In contrast to

dNBR, which is an absolute change metric, RdNBR is expressed relative to pre-fire

conditions. We use RdNBR for our comparisons throughout the remainder of our

study because evidence continues to suggest that pre-fire forest characteristics influ-

ence post-fire effects (Bolton et al., 2015; Casas et al., 2016; Kane et al., 2013; Miller

et al., 2009; Montealegre et al., 2014).

Evidence has shown that these methods have inherent limitations. For exam-

ple, changes in “greenness” and “blackness” over a given area can be influenced by

any vegetative layer, such as grasses or shrubs, complicating the relationship between

observed spectral response and ecological effects (Kane et al., 2015; Skowronski et al.,

2007; Whittier and Gray, 2016; Wulder et al., 2007). Likewise, pre-fire forested stands

with high amounts of canopy cover experiencing low severity fires will optically oc-

clude any remotely sensed spectral change from above. Additionally, forest stands

with very low canopy cover experiencing low severity burns (low tree mortality) will

be confounded by the removal of pre-fire understory vegetation visible from above.

While research suggests that RdNBR may account for some of these shortcomings by

including variations in pre-fire forest characteristics (Miller et al., 2009; Miller and

Thode, 2007), both dNBR and RdNBR are still subject to 2-dimensionality which

constrains their ability to obtain highly precise estimates of fire effects (Bolton et al.,
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2015; Wulder et al., 2009).

Light Detection and Ranging (LiDAR) offers unique benefits unobtainable by

passive remote sensing technology and improvements in the ecological assessment

of post-fire effects is highly desired (Bolton et al., 2015; Clark et al., 2010; Kane

et al., 2015, 2013; Littell et al., 2010; Montealegre et al., 2014; Seidl et al., 2014;

Skowronski et al., 2007, 2011; Wulder et al., 2007). LiDAR uses an airborne laser

scanner (ALS) to measure canopy vegetation in three dimensions using discrete-return

or full-waveform sensors (Sumnall et al., 2016). It is capable of producing high-

resolution digital elevation models and can directly measure vegetation cover, height,

and structure (Coops et al., 2007; Næsset, 2007; Persson et al., 2002). Likewise, LiDAR

can easily produce landscape-scale maps of forest composition and volume which are

used by resource managers to assess wildfire risk and fuels, develop wall-to-wall forest

inventories, evaluate wildlife habitat, and more (Bouvier et al., 2015; Bright et al.,

2014; Brosofske et al., 2014; Clark et al., 2010; Garćıa et al., 2010; Guerra-Hernández

et al., 2016; Hall et al., 2005; Means et al., 1999; Skowronski et al., 2011; Woods et al.,

2011; Wulder et al., 2012). Furthermore, the spatial distribution of forest canopy fuels

or patterns of fire severity could be related to pre-fire stand structures, such as the

movement of wildfire from one forest type into another. This would aid in identifying

high risk areas, spatially optimizing fuel treatments across stand types and ownership

boundaries, and protecting specific wildlife habitats. Additionally, research suggests

that the spatial arrangement and composition of legacy species (those surviving after

disturbance) drives ecosystem recovery (Lenihan et al., 2008; Lindenmayer et al., 2012;

Littell et al., 2010; Seidl et al., 2014). Therefore, being able to provide landscape-scale

spatial information on the distribution, location, and composition of post-fire legacy

species is highly valuable and applicable.

In the first part of our study, we examined the feasibility of using multi-temporal

LiDAR to estimate landscape-scale fire severity using change estimation. LiDAR

derived metrics have been shown to generally improve model fit and the estimation
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of forest attributes relative to historical methods, so we believe LiDAR data can be

used for change detection to estimate tree mortality. Our objective was to see if

we can improve upon existing methodologies by providing additional information in

3-dimensions.

In the second part of our study, we examined the use of multi-temporal LiDAR

as a stand-alone remote sensing platform to quantify basal area before fire, basal area

mortality, and basal area after fire. Our study was consciously targeted at improv-

ing our understanding of fire effects by providing alternative perspectives of post-fire

conditions. We address the need for clearly defined measurements of fire severity and

directly quantify fire effects using field observations.

Our study area is composed of three large fires located within the Klamath

Mountain Ecoregion in southwestern Oregon. The fires were ignited by lightning on

July 26th, 2013 and were declared 100% contained on September 3, 2013. The Douglas

Complex encompasses 20,689 ha over a mixed ownership landscape and includes the

Dad’s Creek and Rabbit Mountain fires. The Big Windy fire covers 11,464 ha of

Bureau of Land Management administered lands only. All three areas burned with

mixed-severity.

We obtained pre-fire LiDAR data between March 6th and August 16th, 2012.

Post-fire LiDAR was collected between September 26th and October 23rd, 2013. Data

was collected by Watershed Sciences, Inc. (now known as Quantum Spatial), for the

Oregon Department of Geology and Mineral Industries (DOGAMI). The intensity

values were normalized during processing by Watershed Science’s prior to delivery.
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1.2 Literature Review

1.2.1 Future Climate Projections & Concerns

Current climate projections and forestland conditions have prompted much con-

cern within scientific literature over the past decade. Many studies consistently ad-

vocate for improvements in the resolution of landscape scale post disturbance as-

sessments, such as wildfire, to develop comprehensive and informed future planning

strategies (Allen et al., 2010; Lenihan et al., 2008; Littell et al., 2010; Liu et al., 2013;

Mallek et al., 2013; Marlon et al., 2012; Westerling et al., 2011, 2006). In addition,

forested landscapes have been extensively altered by past management activities, of-

ten increasing fuel continuity over broad landscapes by homogenizing forest structures

(Hessburg et al., 2007; Naficy et al., 2010). Likewise, human populations continue to

grow and expand into the wildland urban interface, increasing the risk of loss to our

valuable social, economic, and ecological resources (Attiwill and Binkley, 2013; Calkin

et al., 2005; Dale, 2009; Duren et al., 2012; GAO, 2009; Hammer et al., 2007).

Disturbance events such as wildfires also provide many positive benefits to

ecosystems worldwide (Franklin et al., 1987, 2002). Wildfires consume dead and living

vegetation, facilitate nutrient cycling, release carbon, and create new open growing

space (Wright and Bailey, 1982). Evidence shows that fire severity and subsequent

effects, vary due to top-down climate controls and bottom up fuels and topography

controls, which alters ecosystem composition and structure at scales varying from

micro-sites to landscapes (Agee, 1991; Bowman et al., 2009; Perry et al., 2011). While

forest ecosystems are highly dynamic and many tree species have adapted to wildfire

events (Brown and Smith, 2000; Dunn and Bailey, 2016), land managers are con-

cerned with ecosystem resilience because of altered disturbance regimes and a rapidly

changing climate (Gutschick and BassiriRad, 2003; Littell et al., 2010; Liu et al., 2013;

Mallek et al., 2013; Marlon et al., 2012).
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1.2.2 Remotely Sensed Fire Effects & Limitations

Great improvements have been made when quantifying landscape fire effects.

Remote sensing technology has allowed us to quickly quantify fire effects over very

broad scales by differencing spectral information before and after fire (Key and Ben-

son, 1999, 2005). These methods have worked well in quantifying changes in green

vegetative canopies (Escuin et al., 2008; Hudak et al., 2007; Meng and Meentemeyer,

2011), however, research continues to highlight specific shortcomings. For example,

the 2-dimensionality of the data source will often be confounding due to any vegeta-

tive canopy (ground or non-ground) influencing spectral information (Bolton et al.,

2015; Whittier and Gray, 2016; Wulder et al., 2009). Research continues to bring

this forward as a primary drawback from these methodologies. An alternative was

proposed which uses a relative differenced metric which was intended to account for

variations in pre-fire conditions. However, both estimates of change are still coming

from 2-dimensional data which limits their ability to obtain the most accurate infor-

mation available (Escuin et al., 2008; Kane et al., 2015, 2013; Miller et al., 2009; Miller

and Thode, 2007; Montealegre et al., 2014; Reilly et al., view; Wimberly et al., 2009).

How we define fire severity is also another limitation which is often discussed

within the current scientific literature (Keeley, 2009). We currently assess post-fire

landscape conditions using field observations which estimate fire severity across mul-

tiple strata (Bolton et al., 2015; Key and Benson, 1999, 2005; Miller et al., 2009;

Wulder et al., 2009). These methods often make direct interpretation difficult when

scientists wish to relate fire severity estimates to specific objectives (Safford et al.,

2008). For example, fire effects are measured as a proportion which reflects the aver-

age magnitude of fire effects across multiple categories (soils, vegetation, and trees),

often lacking additional information (Morgan et al., 2014).

Quantifying fire effects using change estimation and ordinary least squares

(OLS) regression can be problematic. We often quantify fire severity as a proportion.

As such, the range of responses is bound between 0 and 1. Alternative methods for
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modeling proportions include arcsine transformation or beta regression (Cribari-Neto

and Zeileis, 2010; Ferrari and Cribari-Neto, 2004; Warton and Hui, 2011). Addition-

ally, a simple transformation can be applied to the response variable to account for

observations equal to 0 or 1 (Smithson and Verkuilen, 2006). Recent studies have

shown beta regression to be useful for estimating forest attributes, such as canopy

cover or proportion of biomass by tree component (Eskelson et al., 2011; Korhonen

et al., 2007; Poudel and Temesgen, 2016). In contrast, arcsine transformation has

been shown to be out-dated and less useful.

1.2.3 Quantifying Landscape Forest Attributes with LiDAR

LiDAR technology has been used to accurately map forest attributes for the last

10 years. It uses an airborne laser scanner (ALS) to measure canopy vegetation in three

dimensions by directly quantifying forest attributes such as basal area, tree density,

and stand height using discrete-return or full-waveform sensors (Sumnall et al., 2016).

Many modeling and prediction approaches have been used such as ordinary least

squares (OLS), artificial neural networks and machine learning technology, nearest

neighbors, random forest permutations, classification and regression trees (CART),

and multivariate adaptive regression splines (MARS) (Brosofske et al., 2014; Coops

et al., 2007; Goerndt et al., 2010; Guerra-Hernández et al., 2016; Hall et al., 2005;

Hudak et al., 2006; Næsset, 2007; Persson et al., 2002; Popescu and Wynne, 2004;

Woods et al., 2011; Wulder et al., 2012). Canopy fuels have also been quantified

across landscapes (Clark et al., 2010; Skowronski et al., 2007, 2011). While many of

these studies have relied on metrics related to forest cover and structure, others are

now showing that intensity values are also highly significant regarding upper canopy

biomass (Garćıa et al., 2010; Means et al., 1999). In contrast, multi-temporal LiDAR

data is much more rare (Kane et al., 2015). Most scientific research is forced into

relying on multi-temporal Landsat data rather than LiDAR. Studies then augment

the Landsat information with either pre-fire or post-fire LiDAR data to obtain more
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precise landscape estimates (Bright et al., 2014; Erdody and Moskal, 2010; Hudak

et al., 2002; Lefsky et al., 1999; McCombs et al., 2003; Wulder et al., 2007). While

some research has been completed and published using multi-temporal LiDAR, there

is still much more we can explore.

1.2.4 Fire Ecology & Management Implications

Our understanding of landscape-scale fire effects in relation to pre-fire canopy

fuel distributions is limited (Kane et al., 2015, 2013). Much of our current knowledge

relies on fire scars and limited information (McBride, 1983). While tree level effects,

such as variations in fire resistance or resilience by species and location have been well

documented (Agee, 1991; Franklin and DeBell, 1988; Franklin et al., 1987, 2002; Ryan

and Frandsen, 1991; Vines, 1968), we lack reliable, consistent information related to

pre-fire conditions and fire effects (Ager et al., 2007; Betts et al., 2010; Casas et al.,

2016; Clark et al., 2011; Fule et al., 2004; Graham et al., 2004; Lindenmayer et al.,

2012; Schoennagel et al., 2004; Seidl et al., 2014; Spies et al., 2010; Thompson and

Spies, 2009, 2010; Turner et al., 2003; Vogeler et al., 2014, 2016).

One measure of resilience in forested systems is the ability for trees to naturally

regenerate following disturbance. Research suggests that the spatial arrangement and

composition of legacy trees drives ecosystem development after disturbance (Gutschick

and BassiriRad, 2003; Turner et al., 1998). Therefore, being able to provide landscape

scale spatial information on the distribution, location, and density of post-fire legacy

species is highly valuable and applicable. Finally, as our understanding and technology

improves, estimates and interpretations will become more precise, and our ability to

improve pro-active land management could become a reality (Agee and Skinner, 2005;

Ager et al., 2010, 2013; Finney et al., 2008; Franklin et al., 2013; Franklin and Johnson,

2012; Johnson et al., 2011).
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Multi-temporal LiDAR Improves Landsacpe-scale Estimates of Fire

Severity

2 Chapter Two

2.1 Abstract

Improving our ability to assess landscape-scale fire effects has become increas-

ingly important to land managers and research scientists for a multitude of reasons.

In this study we examined the feasibility of using multi-temporal LiDAR and change

estimation to quantify landscape-scale fire severity. We examined metrics related

to changes in the x, y, and z-dimensions along with foliar reflectance, with the un-

derstanding that fire effects are highly variable and influenced by forest structural

characteristics. We also examine combining RdNBR with LiDAR derived metrics to

quantify fire severity to find the best method for capturing proportion of fire-induced

basal area mortality. We define fire severity as the proportion of fire-induced basal

area mortality and model landscape conditions using beta regression. LiDAR mod-

els performed the best with 3 covariates (RMSPE: 0.1293). Combined models also

substantially improved current estimates, but required 4 covariates related to pre-fire

forest structure and change estimation (RdNBR only - 0.20, Combined - 0.1347). Our

results confirm that the ability to detect change in 3-dimensions helps ameliorate some

of the inaccuracies associated with passive, satellite-based remote sensing platforms.

2.2 Introduction

The wildland urban interface continues to expand as human populations grow,

increasing the risk that fire will impact economic and social assets (Haas et al., 2013;
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Hammer et al., 2007). Aggressive fire suppression and historical forest management

increased fuel loading and homogenized forest structures over broad landscapes (Duren

et al., 2012; Hessburg et al., 2007; Naficy et al., 2010). In addition, global climate

projections are predicting longer fire seasons, increased drought conditions, and more

frequent extreme fire weather events (Liu et al., 2013; Westerling et al., 2006). Many

studies suggest that these conditions vastly increase the likelihood that we will ex-

perience greater loss to highly-valued ecological, economic, and social resources to

wildfires in the years to come (Calkin et al., 2005; Jolly et al., 2015; Littell et al.,

2009, 2010; Mallek et al., 2013; Marlon et al., 2012).

Approximately 1-2% of fires escaping initial attack account for >95% of an-

nual area burned making remote sensing technology key to quantifying their impacts

(Short, 2014; Thompson et al., 2015). Federal land managers and researchers predomi-

nantly rely on multi-temporal Landsat TM imagery which relates the normalized burn

ratio (NBR) to field estimates of fire severity based on the composite burn index (CBI)

(Key and Benson, 1999, 2005; MTBS, 2014). The CBI is a metric which was designed

for rapid field assessment of post-fire effects, quantifies mean change across 5 strata,

and is measured as an index between 0 (unburned) and 3 (high severity) (Morgan

et al., 2014; Wulder et al., 2009). The NBR is calculated from Landsat TM/ETM+

bands 4 and 7 which are sensitive to green vegetation and moisture content, respec-

tively (Escuin et al., 2008; Meng and Meentemeyer, 2011). Correlations between the

differenced NBR (dNBR) and CBI are then used to derive thresholds of fire severity

across broad landscapes and assess fire effects on soils, fuels, vegetation, wildlife habi-

tat, and tree mortality (Miller and Yool, 2002; Verbyla et al., 2008; Wimberly et al.,

2009). An alternative estimator was designed by Miller and Thode (2007) to account

for variations in pre-fire forest structural conditions by weighting the dNBR indices

to pre-fire NBR values. In contrast to dNBR, which is an absolute change metric, the

relative differenced normalized burn ratio (RdNBR) is expressed relative to pre-fire

conditions.
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While continuous in spatial coverage over a relatively long time period, Landsat

satellite imagery has inherent limitations for use in specific research and management

objectives (Lentile et al., 2006; Morgan et al., 2014). For example, RdNBR values are

influenced by any visible vegetative layer from above, including grasses, shrubs and

trees, complicating the relationship between observed spectral response and ecological

effects (Kane et al., 2015; Skowronski et al., 2007; Whittier and Gray, 2016; Wulder

et al., 2007). Pre-fire forested stands with high amounts of canopy cover experienc-

ing low severity fires will optically occlude any remotely sensed spectral change from

above. Additionally, forest stands with very low canopy cover experiencing low sever-

ity burns (low tree mortality) will be confounded by the removal of pre-fire understory

vegetation visible from above. While Landsat imagery has been shown to be useful

when quantifying changes in “greenness” and “blackness” over a landscape (Escuin

et al., 2008; Hudak et al., 2007; Meng and Meentemeyer, 2011), the 2-dimensional

nature of the data source constrains our ability to obtain highly precise estimates of

fire effects (Bolton et al., 2015; Lentile et al., 2006; Morgan et al., 2014; Wulder et al.,

2009).

Alternative remote sensing platforms are available that have the potential to

quantify fire effects with greater precision (Bolton et al., 2015; Clark et al., 2010;

Kane et al., 2015, 2013; Montealegre et al., 2014; Skowronski et al., 2007, 2011; Wul-

der et al., 2007). Light Detection and Ranging (LiDAR) uses an airborne laser scan-

ner (ALS) to measure canopy vegetation in three dimensions using discrete-return or

full-waveform sensors (Sumnall et al., 2016). Contrary to passive remote sensing plat-

forms, LiDAR is capable of producing high-resolution digital elevation models and can

directly measure vegetation cover, height, and structure (Coops et al., 2007; Næsset,

2007; Persson et al., 2002). Recent applications of LiDAR demonstrate its ability to

generate landscape level maps of forest attributes, such as canopy fuel weight, canopy

bulk density, upper canopy biomass, carbon stocks, and basal area (Bouvier et al.,

2015; Bright et al., 2014; Brosofske et al., 2014; Clark et al., 2010; Garćıa et al.,
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2010; Guerra-Hernández et al., 2016; Hall et al., 2005; Means et al., 1999; Skowron-

ski et al., 2011; Woods et al., 2011; Wulder et al., 2012). Additionally, research has

shown that LiDAR can improve current remotely sensed data by providing additional

information in 3-dimensions using an integrated approach (Erdody and Moskal, 2010;

Hudak et al., 2002; Lefsky et al., 1999; McCombs et al., 2003; Popescu and Wynne,

2004). Therefore, we hypothesize that multi-temporal LiDAR could offer an assess-

ment of disturbance effects through change detection based on these and other forest

attributes.

In this study we examine the feasibility of using discrete-return multi-temporal

LiDAR and change estimation to quantify fire severity. We define fire severity as

the proportion of fire-induced basal area mortality (Keeley, 2009; Lentile et al., 2006;

Morgan et al., 2014). Our objective is determine whether we can improve the precision

of current remotely sensed fire severity estimates. We examine selected models using

solely multi-temporal LiDAR. In addition, we apply a combined approach and model

basal area mortality using both, RdNBR and LiDAR metrics. Our goal is to find the

best method for quantifying proportion of fire-induced basal area mortality.

Question 1: Can multi-temporal LiDAR quantify fire severity (basal

area mortality), through change detection?

Question 2: How do fire severity estimates from multi-temporal

LiDAR compare with estimates from Landsat derived metrics?

Question 3: Can we combine remote sensing data from both (Li-

DAR and RdNBR) to improve estimates?

2.3 Methods

2.3.1 Study Area

Our study area focused on three large fires within the Klamath Mountain Ecore-

gion of southwestern Oregon (Omernik and Griffith, 2014). The fires were ignited by
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lightning on July 26th, 2013 and were declared 100% contained on September 3, 2013

(InciWeb, 2013). The Douglas Complex encompasses 20,689 ha over a mixed own-

ership landscape and includes the Dad’s Creek and Rabbit Mountain fires. The Big

Windy fire covers 11,464 ha of Bureau of Land Management administered lands only

(Figure 2.1). All three areas burned with mixed-severity, driven by the dry Mediter-

ranean climate, segmented terrain, and topographical attributes (Agee, 1991; Halofsky

et al., 2011; Skinner et al., 2006; Taylor and Skinner, 1998).

The Klamath Mountain Ecoregion has highly diverse flora due to frequent

mixed-severity fires (Agee, 1991; Halofsky et al., 2011; Perry et al., 2011; Thompson

and Spies, 2010). Forested plant communities are dominated by oak woodlands and

mixed-evergreen forests, although some mixed-conifer forests exist at higher elevations

(Franklin and DeBell, 1988). Dominant tree species include Douglas-fir (Pseudot-

suga menziesii (Mirb.) Franco), Pacific madrone (Arbutus menziesii Pursh), canyon

live oak (Quercus chrysolepis Liebm.), Oregon white oak (Quercus garryana Dou-

glas ex Hook.), California black oak (Quercus kelloggii Newberry), golden chinkapin

(Castanopsis chrysophylla), tanoak (Lithocarpus densiflourus), ponderosa pine (Pinus

ponderosa Lawson & C. Lawson), and white fir (Abies concolor (lowina). Less abun-

dant upland tree species include incense cedar (Calocedrus decurrens (Torr.)Florin),

sugar pine (Pinus lambertiana), Jeffery pine (Pinus jefferyi), big-leaf maple (Acer

macrophyllym), pacific dogwood (Cornus nuttallii), apple (Malus spp., and knobcone

pine (Pinus attenuata). Chaparral shrub species are common in the understory of

most of these vegetation zones and dominate vegetative cover on portions of the land-

scape (Duren et al., 2012).

2.3.2 LiDAR Datasets

We used multi-temporal LiDAR to quantify fire severity across the burned land-

scape. Pre-fire LiDAR data (LiDAR Consortium’s Rogue River project area ≈ 551,074

ha) was obtained between March 6th and August 16th, 2012. Post-fire LiDAR was col-
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lected between September 26th and October 23rd, 2013 (≈ 49,915 ha) and lies within

the LiDAR Consortium’s Rogue River project area. Data was collected by Watershed

Sciences, Inc. (purchased by Quantum Spatial), for the Oregon Department of Geol-

ogy and Mineral Industries (DOGAMI), at 8 pulses per square meter resolution. The

survey altitude across all flights ranged between 900 meters to 1300 meters. Over-

all, the majority of sensor specifications remained constant between flights with the

exception of pulse rate (Tables 2.1 and 2.2). The intensity values were normalized

during processing by Watershed Science’s prior to delivery.

Three categories of LiDAR variables were examined for use in change detection;

1) vertical structure - changes in the z dimension, 2) horizontal structure - changes

in x and y, and 3) foliar reflectance - changes in intensity returned (Garćıa et al.,

2010). All metrics were evaluated as absolute differences from pre-fire (2012) to post-

fire (2013) data sets and processed using FUSION (McGaughey, 2014). We assessed

alignment and quality of both LiDAR datasets by comparing stem mapped trees

obtained from field data to LiDAR derived tree locations using canopy models and

the CanopyMaxima function within FUSION. All of the above layers, including the

point cloud, were analyzed in ArcMap for each field plot. A list of metrics evaluated

in this study is provided in Table 2.3.

Stratified height bins have been shown to provide significant improvements in

LiDAR based estimates of total, live, dead, and proportion of dead basal area (Bright

et al., 2014). Therefore, we utilized height bins to examine change within the vertical

profile of forest canopies to estimate proportion of fire-induced basal area mortality.

We ultimately selected 3 height bins, 0-2 (m), 2-10 (m), above 10 meters (bins: 1, 2,

3 respectively), based on preliminary analysis of several vertical strata options. Other

bins examined include 2 m intervals and geometric breaks of 0-2, 2-5, 5-10, 10-20,

20-40 m. Two meter height breaks provided significant results, however, models con-

tained 12-20 covariates and were found to be impractical for Oregon forests. Similarly,

geometric breaks were found to be useful, but contained models with 6-12 covariates.
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We examined Canopy Reflection Sum (CRS) as a potential change metric for

quantifying differences in upper vegetative canopies from wildfire. CRS was developed

using the full-waveform SLICER system to quantify canopy closure and was shown to

be the most accurate estimator of foliar biomass in Oregon coniferous forests (Means

et al., 1999). CRS was further defined for discrete-return systems (Hall et al., 2005)

as

CRS(m−2
) =

∑
N
i=1 Ii

A
(2.1)

where N is the number of observations, A is the area being sampled, and Ii is the

intensity value of the ith observation. Studies often express this metric in relative or

proportional terms, in units of X per unit area (Garćıa et al., 2010; Hall et al., 2005).

Our variation of the above metric is defined as

CRSpi =
CRSi
CRST

(2.2)

where CRSi is the CRS for the observed height bin, CRST is the total CRS, and

CRSpi is expressed as a proportion of the total. We chose to express CRS as a pro-

portion due to our multi-temporal data set and change estimation. The proportional

nature of the estimator should provide a metric which is readily comparable across

different LiDAR sensors. This can be seen upon its derivation

CRSpi =
CRSi
CRST

=

Ni ∗ Īi

A

N ∗ Ī

A

=

Ni

N
∗

Īi
Ī
= RPi ∗

Īi
Ī

(2.3)

where CRSpi is expressed as a product of two ratios. The first is proportion of returns

within the observed height bin (CRSi). The second is proportion of intensity within

the observed height bin (CRST ). Both are unit-less quantities which account for

fluctuations in pulse density (N) and average intensity returned (Ī). Additionally, Ni
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is the number of returns, Īi is the average intensity returned, and RPi is the return

proportion within bini. This provides an estimator which is influenced by changes in

pixel density and reflectance properties. These properties are highly desirable when

the objective is to quantify post-fire effects.

2.3.3 Calibration Plots

A series of calibration plots were installed two years post-fire. Plots were al-

located using stratified random sampling based on fire severity and tree heights to

capture a wide distribution of post-fire conditions. Fire severity was estimated us-

ing RdNBR maps obtained from the Monitoring Trends in Burn Severity (MTBS)

database (MTBS, 2014). The landscape was divided into five fire severity classes

(high, moderate-high, moderate-low, low, unburned) using thresholds obtained from

previous research which modeled basal area mortality by calibrating RdNBR to 304

FIA plots (Reilly et al., in review) (Figure 2.2). The 30x30 m RdNBR raster layer was

re-sampled to a 90x90 m (3x3 pixels) layer to increase the probability that our plot

represented the target severity class. LiDAR derived pre-fire 95%’ile heights were used

to approximate mean height across the burned area and further divide forested areas

into 2 height classes (> 30 m, < 30 m). We had a combined total of 10 unique strata

representing the range of conditions on the landscape. Plots centers were located

as close to pixel (Landsat) center as possible, on federal land only, with a minimum

spacing requirement of 400 m. We recorded plot locations using a Trimble Geo 7X

hand-held GNSS receiver with a minimum of 100 recorded locations per plot. Plot

coordinates were then post-processed within Trimble Pathfinder Office�.

We designed our field plots to be comprehensive and useful for a wide range of

studies. The total area sampled per plot was 900 m2 (large plot) to match the size of

a Landsat pixel for scaling purposes. We used nested, circular, fixed radius plots to

measure all tree and snag species, understory vegetation composition, regeneration,

coarse woody debris (1000 hr), and fine fuels (1, 10, 100 hr). Line transects were used
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for fine fuel measurements and a 2 meter radius circular plot was used for vegetation

cover, composition, and regeneration (seedlings by 10 cm height class). Azimuth and

distance measurements were taken for all trees and snags (> 10 cm dbh, snags above

2 m tall) within the large plot, along with coarse woody debris (>15cm large end, > 1

m long), trees between 2.54 - 10 cm dbh, and all living shrub species in the smaller

subplot (5.4 m radius). Azimuth and distance measurements for coarse wood were

taken at small and large ends. We identified top condition for all trees and snags

(whole, broken, forked, fallen) and recorded total tree heights for a subsample of all

trees within plots including a height measurement for any tree identified as a snag,

broken, or fallen. Canopy base height was recorded for any tree with foliage, regardless

of whether it was green or red. Additionally, we recorded measurements of percent

cover for abiotic attributes such as rock, litter, and bare ground. All plot centers were

permanently monumented for future re-measurements.

We reconstructed pre-fire basal area after collecting field data between June

15 and September 24, 2015, 2 years after fire. Pre-fire snags were separated from

fire-induced mortality using optical estimates of fire scaring, charring, scorch, and

levels of decay (by class: 1-5). All trees above 2.54 cm dbh were included within

basal area observations. Mortality rates were calculated by dividing fire-killed by

pre-fire living basal area. We provide additional information in Appendix C, which

includes a summary of topographical attributes, observed basal area, RdNBR values,

plot measurements, coordinates for plot centers, and an illustration of our plot layout.

2.3.4 Statistical Analysis

Variable selection and regression analysis were performed in R using Leaps and

Bounds, GLMulti, and GAMboosLSS packages (R Core Team, 2016). Leaps uses an

efficient branch and bound algorithm to perform an exhaustive search for the best

subsets of predictor variables using linear regression (Lumley, 2009). GLMulti finds

the best model(s) among all possible models via a ranking function using a specified
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information criterion such as AIC or BIC (Hofner et al., 2016, 2015; Mayr et al., 2012).

Models are chosen using either an exhaustive search or through a genetic algorithm.

GAMboostLSS uses a boosting technique to iterative rotate between distribution pa-

rameters while updating one using current fits as offsets (Calcagno, 2013). Pearson

correlations were used to evaluate for collinearity between predictor variables and the

relationship to basal area mortality. We limited Leaps to a maximum of 5 covariates.

GLMulti and GAMboostLSS were not restricted.

Each variable selection procedure provided its own unique benefits and draw-

backs. Leaps allowed us to quickly examine statistically significant linear combinations

across very large data sets. However, leaps is restricted to linear regression only. GL-

Multi allowed us to use selection methods which are not restricted by linear regression

and test interactions between covariates efficiently. GLMulti also provides the top 5

candidate models which often supported our results from Leaps. While this approach

provided us with an alternative perspective and significant results, we found that it

lacked the ability to incorporate beta regression. In contrast, GAMboostLSS allowed

us to use the BetaLSS() function which performs model selection with beta regression

directly. GLMulti and GAMboostLSS also required more technical expertise than

Leaps, with GAMboostLSS requiring the most.

We estimated basal area mortality using beta regression and the “logit” link

function. Relative to arcsine transformation (Warton and Hui, 2011), beta regression

provides parameters which are more easily interpreted, handles asymmetries well, and

are naturally heteroskedastic (Cribari-Neto and Zeileis, 2010; Ferrari and Cribari-

Neto, 2004). While its use has been sparse within scientific literature, evidence indi-

cates that beta regression is well suited for quantifying forest attributes such as canopy

or vegetation cover and proportion of biomass by component (Eskelson et al., 2011;

Korhonen et al., 2007; Poudel and Temesgen, 2016). We also applied the following
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transformation (Smithson and Verkuilen, 2006) to observed basal area mortality (y)

y(n − 1) + 1
2

n
,

with n being the sample size, due to observations of 0 or 1 lying outside the range of

a beta distributed variable (Cribari-Neto and Zeileis, 2010).

Evidence continues to suggest that pre-fire forest characteristics influence post-

fire effects, therefore we only use RdNBR for our comparisons throughout the remain-

der of our study (Bolton et al., 2015; Casas et al., 2016; Kane et al., 2013; Miller et al.,

2009; Montealegre et al., 2014).

We present the top models which include 1–5 parameters using LiDAR and

Combined metrics found during our analysis. Intensity values were not used during

the variable selection process for combined models under the assumption that RdNBR

provides adequate spectral information. Basal area mortality was also modeled using

only RdNBR, for comparison purposes (Reilly et al., in review). Model performance

was assessed by evaluating bias, root mean square error (RMSE), AIC, BIC, and root

mean square prediction error (RMSPE), along with Wald and Likelihood ratio tests

for nested models (Cribari-Neto and Zeileis, 2010; Zeileis and Hothorn, 2002). We also

examined the use of weighted beta regression using the same comparisons. Variance

inflation factors were used to verify that multicollinearity issues were not apparent

within any of the chosen models. Finally, we cross validated each model using leave-

one-out procedures (Kohavi et al., 1995) before mapping fire severity estimates over

the entire study area using the Raster package in R (Hijmans, 2016).

2.4 Results

We sampled a total of 2,435 trees and snags greater than 10 cm dbh, with 1,454

remaining alive two-years post-fire, 958 killed by fire, and 77 snags (dead before fire



34

and still standing), on 51 plots across the full severity gradient within our study area.

Approximately 60% (1,464) were coniferous with hardwoods representing the remain-

ing 40% (971). Douglas-fir represented 89% of the coniferous species composition,

with a mixture of ponderosa pine, sugar pine, western white pine, and Jeffery pine

representing 8%, and > 1% – white fir. In contrast, hardwood species composition was

more diverse and primarily composed of Pacific Madrone at 34%, golden chinkapin

and canyon live oak at 23%, tanoak at 15%, and the remaining observations being a

mixture of big-leaf maple, pacific dogwood, Oregon white oak, California black oak,

and 1 apple tree. Many of our observations still retained an intact crown 2-years after

fire (2,190 ≈ 90%), with the majority of remaining observations exhibiting broken tops

(218 ≈ 9%), and 27 (1%) were recorded as fallen after fire.

Over 60% of the post-processed plot locations maintained sub-meter accuracy

with roughly 25% over 1 m, and the remaining observations above 2 meters. Only

1 out of 51 plots exhibited any need for re-alignment. After further examination, it

was determined that, at minimum, 2 large trees within this plot had fallen between

LiDAR data acquisitions and our field measurements, therefore no adjustment was

made. Plots were spread evenly between the three fire areas under varying conditions

with our response variable (BA mortality) averaging 0.41, and a standard deviation

of 0.36 (Table 2.4).

Many of our multi-temporal LiDAR metrics were highly correlated requiring us

to manually reduce the number of potential predictor variables during model selection

using GLMulti and GamboostLSS (Figure 2.3). Weighted beta regressions did not

provide significant improvements to prediction bias, RMSE, or RMSPE. Therefore

they have been omitted from further results. Interactions between covariates were

not significant within our selected models. We also found that our most correlated

predictors to basal area mortality were RdNBR (0.84), dĪ2 (0.80), dCRSp1 (-0.79),

and dRP1 (-0.75).

Summary statistics for our LiDAR models can be found in Table 2.5. Our best
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model is shown below:

Y = β0 + β1 dĪ2 + β2 dCRSp3 + β3 dHTmax + εi (2.4)

Where Y is the fire-induced basal area mortality rate, dĪ2 is the change in the mean

intensity value between 2 and 10 meters, dCRSp3 is the change in the proportion of

CRS above 10 meters, and dHTmax is a change in max height. The approximate root

mean square prediction error (RMSPE) is 0.1293 (leave-one-out), with an average

bias of -0.01, and the lowest BIC value. Coefficients were found to be stable across all

models and most were significant at α = 0.001 (Table 2.6).

Our best performing combined model(s) (Table 2.7) contained 4–5 covariates

which included a combination of pre-fire structural metrics and change detection. For

example, our combined model

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

(2.5)

contained change in return proportion near ground (dRP1), pre-fire coefficient of vari-

ation within height values (HTCVT0
), and return proportion near ground before fire

(RP1T0
). We know that pre-fire return proportions near ground are negatively corre-

lated to upper canopy cover. Likewise, reductions in proportion returned near ground

is inversely related to canopy consumption or removal of cover. Whereas, pre-fire

coefficient of variation within height values provides a measure of stand variability

similar to Rumple (Kane et al., 2010). All model coefficients were found to be stable

and most were significant at α = 0.001 (Table 2.8).

Our results suggest that multi-temporal LiDAR can estimate basal area mortal-

ity with greater accuracy than satellite-based methods. We can see that young, low

basal area stands are interspersed within the data and significant improvements have

been made with regards to prediction error and bias (Figure 2.4 & 2.5). We provide

landscape maps of our best performing model by method, including RdNBR only for
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comparison in Figure 2.6. We also compared LiDAR based estimates of basal area

mortality to RdNBR based thresholds of fire severity using a confusion matrix shown

in Table 2.9. We provide a final map of multi-temporal LiDAR derived basal area

mortality (Figures 2.7).

2.5 Discussion

The development of dNBR, with subsequent improvements using RdNBR, rev-

olutionized researchers and managers capability to assess fire effects across broad

landscapes. These landscape assessments allowed researchers to quantify land sur-

face change and forest disturbance (Cohen et al., 2010; Kennedy et al., 2010), tree

defoliation and tree mortality (Bright et al., 2014; Meigs et al., 2011), active fire

characteristics and post-fire effects (Escuin et al., 2008; Key and Benson, 1999, 2005;

Lentile et al., 2006; Meng and Meentemeyer, 2011; Miller et al., 2009; Miller and Th-

ode, 2007; Turner et al., 2003; Verbyla et al., 2008; Whittier and Gray, 2016), forest

attributes and canopy fuels (Erdody and Moskal, 2010; Hudak et al., 2006, 2002; Lef-

sky et al., 1999; Miller and Yool, 2002; Skowronski et al., 2007, 2011; Thompson and

Spies, 2009, 2010; Wulder et al., 2007), and improve habitat suitability models for a

variety of rare and endangered avian species (Betts et al., 2010; Spies et al., 2010;

Vogeler et al., 2014, 2016). However, RdNBR was also significantly correlated with

basal area mortality following mixed-severity fire in southwestern Oregon, but has

limitations associated with any two-dimensional imagery.

Satellite-based estimates of fire severity have been found to be lacking (Mor-

gan et al., 2014). Our ability to interpret fire effects is limited by our understanding

of what is being measured or quantified (Lentile et al., 2006). For example, passive

satellite-based platforms lack the ability to directly measure forest attributes such as

tree heights, density, or basal area. In addition, the calibration of remotely sensed es-

timates of fire effects using the CBI greatly limits our ability to interpret proportional
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responses.

Change detection using multi-temporal LiDAR improved estimates of fire in-

duced basal area mortality because it provides spectral and 3-dimensional, structural

information. Evidence has shown that upper canopy density, cover, stand heights,

and variation within each is highly correlated to stand level basal area and volume

(Coops et al., 2007; Næsset, 2007). Most recently, metrics related to light penetration

and canopy relief ratio have been shown to be very useful in quantifying canopy com-

ponents and variation over large landscapes (Bouvier et al., 2015; Bright et al., 2014;

Guerra-Hernández et al., 2016; Montealegre et al., 2014). Our results indicate that

similar metrics are highly correlated to basal area mortality when used with change

estimation.

Discrete height bins offered a number of advantages by partitioning vegetative

layers and observing them separately. This allowed us to reduce over saturation

caused by big data, account for confounding or inverse relationships, check for evidence

of reductions in upper canopy densities (canopy consumption), and observe change

beneath occluded canopies (Bolton et al., 2015; Bright et al., 2014; Montealegre et al.,

2014). Additionally, our ability to interpret vertical movement of fire from ground

surfaces into tree canopies greatly improved by providing information related to the

consumption of sub-canopy vegetation and tree canopies.

We initially hypothesized that the change in ground returns would greatly re-

duce errors in prediction because wildfires consume vegetation exposing more ground

post-fire. Therefore, we expected to observe increased point densities near ground

with increasing fire severity. However, we did not anticipate the role LiDAR inten-

sity values would play into our predictive models. Spectral information is clearly

the strongest relationship when modeling post-fire disturbance for any remote sensing

platform, with RdNBR and absolute change in mean intensity value between 2–10 m

(Figure 2.8) being quite comparable. The addition of other metrics further improved

model accuracy, with the change in proportion of canopy reflection sum above 10 m
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(Figure 2.9) being the 2nd highest with regards to model selection frequency.

We found that our best two variable model: y = β0 + β1dĪ2 + β2dCRSp3 +

ε, was slightly under predicting high severity conditions and omitting information

near ground (no observations below 2 meters). Upon inclusion of a third covariate

(dHTmax), prediction error improved significantly, specifically within the high severity

group. We now believe that the change in max height was actually capturing high

severity conditions within the youngest stands as this is the most probable scenario

where we would observe the largest change in max height values indicating greater

severity. Other covariates were also found to be highly useful additions, such as the

difference in Rumple (dRumple) and coefficient of variation of height values (dHTcv).

Both covariates are structural metrics where a low value represents a more uniform

forest structure and high values indicate greater structural variability. Thus, large

changes within either of these would indicate a shift from homogenized to variable

forest canopy structures. We concluded that while absolute change in mean intensity

value between 2–10 m(dĪ2) was explaining the majority of variation, dCRSp3 provided

more information for stands taller than 10 m, and dHTmax captured higher severity

conditions in the youngest forests.

Combining LiDAR change detection with RdNBR also improves estimates of

basal area mortality. Similar to LiDAR models, the difference in Rumple was found

to be highly significant, however, variable and model selection methods tended to

prefer dHTcv over dRumple. Pre-fire heights were also significant (not shown in any

of these models). Change in proportion of ground returns (Figure 2.10) was the most

reliable addition with the highest selection frequency.

We were unable to significantly improve the accuracy of combined models upon

inclusion of a third variable until we considered pre-fire forest structure. This likely

suggests that knowledge of forest structural attributes before fire provides more precise

estimates of fire effects. Biologically this makes sense, as we know that certain trees

species tend to be more resistant to fire-induced mortality (Franklin et al., 1987; Ryan
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and Frandsen, 1991; Vines, 1968).

Lastly, our regression results for predicting basal area mortality from RdNBR

were similar to previous findings (Reilly et al., in review). We found that RdNBR

values below 283 represent low severity (< 25% BA mortality) and above 665, high

severity (> 75% BA mortality), when modeling basal area mortality as a function of

RdNBR. The largest difference between these two studies is the sample size; 51 vs

304. We found that severity thresholds obtained by modeling basal area mortality as

a function of RdNBR provided slightly different values of 232 and 784, respectively.

Similar results were described when testing correlations between CBI and LiDAR data

flown in Spain (Montealegre et al., 2014). Additionally, r-squared values are highly

similar between all 3 studies (0.69, 0.68, 0.68).

2.5.1 Limitations

LiDAR metrics are also subject to optical occlusion and “noise” which provide

unique challenges for estimating forest attributes (Habib et al., 2009; Yan and Shaker,

2016). Figures 2.9 and 2.10 provide examples from our own data where we see an

inverse relationship to fire severity from observations below 2 meters. This is due to

two reasons: 1) reductions in canopy cover post-fire which increases the number of

ground returns, and 2) the difference in specularity between LiDAR returns on or near

ground versus a vegetative canopy (solid vs broken surface).

Discrete height bins also have limitations. While we used bins of 0-2 m, 2-10

m, and above 10 m, other forest types and geographic regions may require different

vertical slices to account for the average stand type, multi-story canopy conditions,

suppressed tree species, or ladder fuels. For example, if your forest landscape does not

contain trees above 10 m tall, then the use of a height bin above 10 m is not useful.

Timing of data acquisition and field observations must also be taken into ac-

count. While we sampled 2-years post-fire, satellite based approaches often sample

shortly after disturbance including field calibration. These methodologies will likely
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provide different results when examining fire effects because of delayed mortality. We

are confident that our field measurements of fire-induced basal area mortality are ac-

curate due to the majority of delayed mortality taking place within the first couple

years. In contrast, satellite-based approaches may lack precision due to these factors.

The most significant limitation for studies such as these is simply the availability

of information. LiDAR data acquisitions cost money, while passive remote sensors

such as Landsat, are free. However, research continues to support the use of active

remote sensing technology as the next step towards improving our ability to quantify

and interpret landscape scale disturbance, ecological effects, and spatial distributions.

We believe the benefits of obtaining LiDAR data greatly out-weigh the cost and recent

statewide studies suggest $4 in benefits for every $1 spent when acquiring LiDAR data

(Dewberry, 2016; Hallum and Parent, 2014; Young, 2014). This is largely due to a

plethora of potential applications across agency, owner, and objectives.

2.6 Conclusion

Multi-temporal LiDAR technology offers a new frontier in remotely sensed es-

timates of fire effects. Our results confirm that the ability to detect change in 3-

dimensions helps ameliorate some of the inaccuracies associated with passive remote

sensing platforms. We examined metrics related to changes in vertical and horizontal

structure along with change in foliar reflectance. We modeled basal area mortality

using beta regression. LiDAR models performed the best with 3 covariates performed

the best. Combined models also improved upon current estimates made by RdNBR

only, but required an additional variable. Therefore, we concluded that multi-temporal

LiDAR can estimate basal area mortality rate with greater accuracy than RdNBR or

a combined approach.

The benefits of acquiring LiDAR data vastly outweigh the cost (Dewberry,

2016; Hallum and Parent, 2014; Young, 2014). Our ability to understand these highly
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complex interactions is only limited by the information we use to assess the landscape.

As LiDAR data become more available, opportunities like these will be studied and

our ability quantify, assess, and understand landscape fire effects will continue to

improve. Such information will allow us to modify pro-active management practices

by helping us identify high risk areas and spatially optimize fuel treatments across

ownership boundaries (Fule et al., 2004; Graham et al., 2004; Johnson et al., 2011;

Spies et al., 2006). It is essential that we protect our valuable resources in the context

of increasing global temperatures and wildfire events (Littell et al., 2010; Marlon et al.,

2012).
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FIGURE 2.1: Study area located in southwestern Oregon, near Riddle and Glendale. Oregon and Washington shown on
the right with federal land in green and non-federal land in white. Multi-temporal LiDAR coverage boundary outlined
in orange. Shaded regions are the burn areas.
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FIGURE 2.2: Photographic illustration of plot stratification and allocation on the ground by severity class. Thresholds
used during stratification were: 0-235 (low), 235-406 (moderate-low), 406-648 (moderate-high), 648+ (high). Low,
moderate-low, moderate-high, and high represent 0-25, 25-50, 50-75, and 75+ % basal area mortality, respectively.
Photos were taken by Michael Hoe in 2015 to document each plot location (2-years after fire).
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FIGURE 2.5: Comparison of model bias by severity class. Continuous RdNBR values were reclassified using thresholds
obtained by modeling RdNBR by observed basal area mortality rate. Model predictions were then back-cast to determine
thresholds. LiDAR (left) based predictions produce the least bias for low and moderate severity conditions. High severity
conditions appear greatly biased by RdNBR predictions, however, this is largely due to a reduction in the observed
threshold for the high severity group during the back-cast, modeling process. We typically see an increase from 648 to
780 or 800’s when we model mortality rate as a function of RdNBR. This effect will substantially reduce the bias in the
high severity group (RdNBR only) seen here.
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FIGURE 2.6: Landscape classification comparison of basal area mortality estimates. Current maps of the study area were
classified using thresholds obtained by modeling RdNBR as a function of observed basal area mortality rate. Low severity
(<25%), Moderate-Low (25-50%), Moderate-High (50-75%), High (>75%). The un-burned area was removed prior to the
creation of burn severity histograms. Similar to Figure 2.5, high severity thresholds are reduced when modeling RdNBR
as a function of observed basal area mortality. The number of pixels within the high severity group for the RdNBR model
drops to approximately 55,000 when we use an upper threshold of 784.
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FIGURE 2.7: Basal area mortality map. Modeled using multi-temporal LiDAR met-
rics obtained in 2012 and 2013. Calibrated using field observations obtained in 2015
(2-years after fire).
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FIGURE 2.8: Landscape map of the absolute difference in mean intensity values be-
tween 0 - 2 meters. This change estimator performed the best out of all our examined
metrics.
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FIGURE 2.9: Landscape map of the absolute difference in the proportion of canopy
reflection sum below 2 meters. This change estimator was our second best performing
metric, and is inversely related to basal area mortality. It also highly correlated with
the change in return proportion below 2 m.
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FIGURE 2.10: Landscape map of the absolute difference in proportion of all returns
below 2 meters. This estimator was rank third among all tested metrics. It is inversely
related to basal area mortality and the reciprocal of canopy cover above 2 m. It is
also highly correlated to the absolute difference in the proportion of canopy reflection
sum below 2 m.
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TABLE 2.1: BLM Fires LiDAR Acquisition Specs (2012). Data
obtained between March 6th and August 16th, 2012 by Watershed
Sciences, Inc. (known now as Quantum Spatial).

Aircraft Partenavia P38, Cessna Caravan 208B

Sensor Leica ALS 50, Leica ALS 60

Survey Altitude (AGL) 900m / 1300m

Targeted Aircraft Speed NA

Coverage 100% Overlap with 60% Sidelap

Field of View (FOV) 30 (at 900m) / 28 (at 1300m)

Laser Pulse Rate 52.2 hz (at 900m) / 46.7 hz (at 1300m)

Targeted Pulse Density > 8 pulses per square meter

Aircraft Position Monitored twice per second (2 Hz)

Aircraft Alititude Monitored 200 times per second (200 Hz)

TABLE 2.2: BLM Fires LiDAR Acquisition Specs (2013). Data
obtained between September 26th and October 23rd, 2013 by Wa-
tershed Sciences, Inc. (known now as Quantum Spatial).

Aircraft Cessna Caravan 208B

Sensor Leica ALS 50

Survey Altitude (AGL) 900 m

Targeted Aircraft Speed 105 knots

Coverage 100% Overlap with 65% Sidelap

Field of View (FOV) 30

Laser Pulse Rate 96,000 - 105,900 Hz

Targeted Pulse Density > 8 pulses per square meter

Aircraft Position Monitored twice per second (2 Hz)

Aircraft Alititude Monitored 200 times per second (200 Hz)
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TABLE 2.3: LiDAR variables examined during analysis. Variables
listed represent raw metrics for pre- and post-fire conditions. Es-
timates of change were derived by taking the absolute difference
(example: dRP1) between pre- and post-fire conditions; similar to
RdNBR and dNBR. Three height bins were used: 1 (0-2m), 2 (2-
10m), and 3 (above 10m).

Variable Definition

HTmax Maximum height

HT Mean height

HTCV Coefficient of variation of height

HT.95 95th percentile height

HT.75 75th percentile height

HT.50 50th percentile height

HT.25 25th percentile height

Rumple Canopy surface (m2) / ground surface (m2)

TR Total Returns

TRi Total Returns per height bini

RPi Return proportion per height bini

Imax Maximum intensity value

Imaxi Maximum intensity value in height bini

Ī Mean intensity value

Īi Mean intensity per height bini

ICV Coefficient of variation of the intensity values

IiCV Coefficient of variation of the intensity values in height bini

Iσ Standard deviation of the intensity values

Iiσ Standard deviation of the intensity values in height bini

I.95 95th percentile intensity value

I.75 75th percentile intensity value

I.50 50th percentile intensity value

I.25 25th percentile intensity value

CRST Total canopy reflection sum per unit area

CRSi Canopy reflection sum per height bini

CRSpi proportion of CRS per height bini (range: 0 - 1)
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TABLE 2.4: General summary of plot allocation, stratification,
and observed mortality. Stratification, plot allocation, and general
data summary. Includes information on the number of plots by
location, severity, or height class (upper). Additional attributes
are provided in the lower table. H - high, MH - Moderate-High,
ML - Moderate-Low, L - Low, Un - Unburned, Short - < 30m, Tall
- > 30m. Elevations and aspects were derived from the delivered
digital terrain models. Height class was obtained using pre-fire
LiDAR 95%’ile heights. RdNBR and estimated thresholds from
previous studies were used for our severity estimates.

Location # Severity # Height Class #

Big Windy 17 H 13 Short 29

Dad’s Creek 12 MH 8 Tall 26

Rabbit Mountain 14 ML 11

Outside Burn Area 8 L 11

Un 8

Attribute Min Max Mean SD

Aspect (○) 0.39 357.71 167.92 96.78

Slope (○) 4.11 58.32 21.86 9.34

Elevation (m) 297.80 1303.30 758.80 268.48

Pre-fire BA (m2
/ha) 0.41 135.20 43.30 30.87

RdNBR -84.00 1062.00 405.55 330.11

Mortality (proportion killed) 0.00 1.00 0.41 0.36
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TABLE 2.5: Summary statistics for the best performing LiDAR
models chosen during regression analysis (top) including cross val-
idated results (bottom). N = 51.

LiDAR Models

Model Bias Bias(%) RMSE RMSE(%) AIC BIC

y = β0 + β1dĪ2 + ε -0.0303 -7.40 0.2085 50.94 -56.92 -51.12

y = β0 + β1dĪ2 + β2dCRSp3 + ε -0.0189 -4.62 0.1474 36.02 -83.58 -75.85

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + ε -0.0136 -3.32 0.1207 29.49 -99.71 -90.05

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + β4dHTCV + ε -0.0147 -3.59 0.1161 28.37 -100.06 -88.47

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + β4dHTCV + β5dCRS1 + ε -0.0121 -2.96 0.1136 27.76 -102.82 -89.30

Cross Validated (Leave-One-Out)

Model Bias Bias(%) RMSPE RMSPE(%)

y = β0 + β1dĪ2 + ε -0.0305 -7.45 0.2145 52.41

y = β0 + β1dĪ2 + β2dCRSp3 + ε -0.0180 -4.40 0.1548 37.82

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + ε -0.0127 -3.10 0.1293 31.59

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + β4dHTCV + ε -0.0097 -2.37 0.1312 32.06

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + β4dHTCV + β5dCRS1 + ε -0.0104 -2.54 0.1259 30.76
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TABLE 2.6: LiDAR model summaries including coefficient esti-
mates, z-values, and variance inflation factors for the best per-
forming beta regressions found during data analysis.

Variable Parameter Estimate SE t-value Pr(>∣t∣) VIF

Intercept β0 -1.1741 0.198 -5.93 3.08E-09 -

dĪ2 β1 0.0600 0.008 7.65 1.94E-14 -

Φ Φ 2.6807 0.504 5.32 1.04E-07 -

Intercept β0 -1.6157 0.178 -9.08 1.13E-19 -

dĪ2 β1 0.0706 0.007 9.70 2.95E-22 1.018

dCRSp3 β2 5.3151 0.953 5.58 2.46E-08 1.018

Φ Φ 5.4980 1.115 4.93 8.24E-07 -

Intercept β0 -1.9810 0.172 -11.54 8.49E-31 -

dĪ2 β1 0.0773 0.007 11.43 2.99E-30 1.019

dCRSp3 β2 6.6482 0.910 7.31 2.74E-13 1.083

dHTmax β3 -0.1806 0.041 -4.40 1.07E-05 1.063

Φ Φ 8.5164 1.751 4.86 1.14E-06 -

Intercept β0 -2.0351 0.173 -11.76 6.20E-32 -

dĪ2 β1 0.0753 0.007 11.00 3.93E-28 1.071

dCRSp3 β2 6.0348 1.024 5.89 3.78E-09 1.501

dHTmax β3 -0.1663 0.042 -3.98 6.96E-05 1.136

I3CV β4 -1.0340 0.705 -1.47 1.43E-01 1.498

Φ Φ 8.9281 1.836 4.86 1.15E-06 -

Intercept β0 -2.1025 0.172 -12.21 2.72E-34 -

dĪ2 β1 0.0739 0.007 11.05 2.31E-28 1.072

dCRSp3 β2 7.1620 1.104 6.49 8.58E-11 1.795

dHTmax β3 -0.1753 0.041 -4.26 2.00E-05 1.147

I3CV β4 -0.8980 0.701 -1.28 2.00E-01 1.498

CRS1 β5 0.0000 0.000 2.16 3.10E-02 1.263

Φ Φ 9.6624 1.981 4.88 1.07E-06 -
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TABLE 2.7: Summary of the best performing combined models
chosen during regression analysis (top), including cross-validated
results (bottom). Note that models with greater than 2 covariates
(not including intercept) contain metrics related to pre-fire forest
conditions (T0). N = 51.

Combined Models

Model Bias Bias(%) RMSE RMSE(%) AIC BIC

y = β0 + β1RdNBR + ε -0.0323 -7.89 0.1984 48.48 -64.55 -58.76

y = β0 + β1RdNBR + β2dRP1 + ε -0.0207 -5.06 0.1562 38.17 -79.92 -72.19

y = β0 + β1RdNBR + β2dRP1 + β3dHTCVT0
+ ε -0.0189 -4.62 0.1387 33.89 -90.18 -80.52

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

+ ε -0.0081 -1.98 0.1231 30.08 -101.25 -89.66

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

+ β5dHT.95 + ε -0.0083 -2.03 0.1149 28.07 -102.72 -89.20

Cross Validated (Leave-One-Out)

Model Bias Bias(%) RMSPE RMSPE(%)

y = β0 + β1RdNBR + ε -0.0325 -7.94 0.2044 49.94

y = β0 + β1RdNBR + β2dRP1 + ε -0.0199 -4.86 0.1675 40.93

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ ε -0.0181 -4.42 0.1511 36.92

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

+ ε -0.0092 -2.25 0.1347 32.91

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

+ β5dHT.95 + ε -0.0102 -2.49 0.1333 32.57
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TABLE 2.8: Combined model summaries including coefficient es-
timates, z-values, and variance inflation factors for the best per-
forming beta regressions found during data analysis.

Variable Parameter Estimate SE Z-value Pr(>∣z∣) VIF

Intercept β0 -1.9063 0.257 -7.41 1.31E-13 -

RdNBR β1 0.0040 0.001 7.91 2.50E-15 -

Φ Φ 3.1368 0.608 5.16 2.45E-07 -

Intercept β0 -2.1619 0.239 -9.05 1.44E-19 -

RdNBR β1 0.0034 0.001 6.46 1.05E-10 1.566

dRP1 β2 -5.1593 1.285 -4.02 5.93E-05 1.566

Φ Φ 4.8414 0.975 4.96 6.91E-07 -

Intercept β0 -1.5126 0.333 -4.54 5.71E-06 -

RdNBR β1 0.0042 0.001 7.96 1.74E-15 1.7

dRP1 β2 -4.2369 1.243 -3.41 6.55E-04 1.697

HTCVT0
β3 -1.1478 0.381 -3.01 2.62E-03 1.106

Φ Φ 6.5252 1.332 4.90 9.70E-07 -

Intercept β0 -1.3243 0.325 -4.07 4.62E-05 -

RdNBR β1 0.0035 0.001 6.69 2.27E-11 1.981

dRP1 β2 -5.4713 1.222 -4.48 7.59E-06 1.717

HTCVT0
β3 -2.2568 0.500 -4.52 6.26E-06 1.996

RP1T0
β4 2.7760 0.812 3.42 6.31E-04 2.278

Φ Φ 8.6229 1.762 4.89 9.90E-07 -

Intercept β0 -1.4618 0.328 -4.46 8.38E-06 -

RdNBR β1 0.0036 0.001 7.02 2.29E-12 1.986

dRP1 β2 -5.0131 1.216 -4.12 3.73E-05 1.777

HTCVT0
β3 -2.2113 0.494 -4.48 7.53E-06 2.016

RP1T0
β4 2.9304 0.799 3.67 2.43E-04 2.3

dHT.95 β5 0.0497 0.025 1.97 4.85E-02 1.132

Φ Φ 9.3256 1.908 4.89 1.01E-06 -
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TABLE 2.9: Confusion matrix of RdNBR derived fire severity esti-
mates versus LiDAR over all 3 fire areas. RdNBR values were clas-
sified using thresholds derived from modeling RdNBR as a function
of basal area mortality rate. Thresholds used during severity clas-
sification were further validated via comparison to observed results
from 304 FIA plots.

LiDAR

Low Moderate-Low Moderate-High High Total

RdNBR

Low 122,834 39,054 7,901 1,621 171,410

Moderate-Low 29,649 18,870 7,222 2,507 58,248

Moderate-High 15,870 13,148 7,673 4,797 41,488

High 14,235 16,109 16,965 35,904 83,213

Total 182,588 87,181 39,761 44,829 354,359
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Multi-temporal LiDAR Provides New Perspectives of Fire Effects

and Post-fire Landscapes

3 Chapter 3

3.1 Abstract

Quantitative assessments of fire effects are key to improving our understanding

of ecosystem resilience. While remote sensing technology has allowed us to assess fire

landscape effects, we are often limited by the lack of information related to pre-fire

forest attributes. As a result, our ability to improve pro-active management practices

to protect our forested landscapes is severely inhibited. Furthermore, with longer fire

seasons and extended drought conditions, our ability to make a significant difference

through pro-active management is dwindling. We used multi-temporal Light Detec-

tion and Ranging (LiDAR) as a stand-alone remote sensing platform to 1) model

pre-fire basal area using log-linear regression, 2) estimate fire effects using change

estimation, and 3) map living post-fire basal area by combining 1) and 2). Our re-

search is consciously targeted at improving our understanding of post-fire ecological

effects by providing a well defined landscape assessment of pre- and post-fire condi-

tions. Our results illustrate that multi-temporal LiDAR can be used as a standalone

platform to provide more precise and interpretable estimations of fire effects across

broad landscapes.

3.2 Introduction

Disturbance events such as wildfires provide many positive benefits to ecosys-

tems worldwide (Franklin et al., 1987, 2002). Wildfires consume dead and living
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vegetation, facilitate nutrient cycling, release carbon, and create new open growing

space (Wright and Bailey, 1982). Evidence shows that fire severity and subsequent

effects, vary due to top-down climate controls and bottom up fuels and topography

controls, which alters ecosystem composition and structure at scales varying from

micro-sites to landscapes (Agee, 1991; Bowman et al., 2009; Perry et al., 2011). While

forest ecosystems are highly dynamic and many tree species have adapted to wildfire

events (Brown and Smith, 2000; Dunn and Bailey, 2016), land managers are con-

cerned with ecosystem resilience because of altered disturbance regimes and a rapidly

changing climate (Gutschick and BassiriRad, 2003; Littell et al., 2010; Liu et al., 2013;

Mallek et al., 2013; Marlon et al., 2012). For example, aggressive fire suppression and

past management activities increased fuel continuity and homogenized forest structure

across broad landscapes (Hessburg et al., 2007; Naficy et al., 2010). At the same time,

global climate projections are suggesting more frequent wildfire events due to longer

fire seasons and elevated drought conditions (Liu et al., 2013; Stephens et al., 2014;

Westerling et al., 2006). Evidence suggests these factors have already contributed

to increased fire severity relative to historical conditions, potentially impacting the

resilience of tree species across dry forests of the western U.S. (Mallek et al., 2013;

Miller and Safford, 2012).

One measure of resilience in forested systems is the ability for trees to naturally

regenerate following disturbance. Research suggests that the spatial arrangement

and composition of legacy species drives ecosystem development after disturbance

(Gutschick and BassiriRad, 2003; Turner et al., 1998). In the context of this study,

legacy species refer to trees surviving after fire. Therefore, being able to provide

landscape scale spatial information on the distribution, location, and composition of

post-fire legacy species is highly valuable and applicable. This information would

help identify high risk areas, spatially optimize fuel treatments across stand types and

ownership boundaries, and protect specific wildlife habitats.

Quantitative assessments of fire effects are key to improving our understanding
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of ecosystem resilience (Seidl et al., 2014). Landsat data is commonly used by scientists

and managers to quantify fire effects at landscape scales (Bolton et al., 2015; Kennedy

et al., 2010; Key and Benson, 1999, 2005; Lentile et al., 2006; Miller et al., 2009). These

methods have been shown to be useful when detecting and describing fire severity,

however, they have inherent limitations: 1) Landsat imagery is 2-dimensional and

lacks information related to vertical forest structure (Morgan et al., 2014; Safford

et al., 2008; Wulder et al., 2009); and 2) the interpretation of ecological effects due to

severity estimates can be challenging (Keeley, 2009). For example, Landsat imagery

is influenced by any visible vegetative layer from above, including grasses, shrubs and

trees, complicating the relationship between observed spectral response and ecological

effects (Kane et al., 2015; Skowronski et al., 2007; Whittier and Gray, 2016; Wulder

et al., 2007). Furthermore, fire severity is recorded as a proportion and includes no

additional information related to the abundance or type of remaining resources which

influences fire effects across broad landscapes (Bolton et al., 2015; Lentile et al., 2006;

Morgan et al., 2014; Wulder et al., 2009).

Multi-temporal Light Detection and Ranging (LiDAR) can be used to quantify

map pre-fire forest attributes, estimate fire effects, and map post-fire legacy distri-

butions, as a stand-alone analysis. Light Detection and Ranging (LiDAR) uses an

airborne laser scanner (ALS) to measure canopy vegetation in three dimensions using

discrete-return or full-waveform sensors (Sumnall et al., 2016). Contrary to passive

remote sensing technologies, LiDAR is capable of producing high-resolution digital

elevation models and can directly measure vegetation cover, height, structure, and

basal area (Bright et al., 2014; Coops et al., 2007; Næsset, 2007; Persson et al., 2002).

Recent applications of LiDAR demonstrate its ability to generate landscape level maps

of other forest attributes, such as canopy fuel weight (CFW) and canopy bulk den-

sity (CBD) (Skowronski et al., 2011), and estimate upper canopy biomass and carbon

stocks (Garćıa et al., 2010; Hall et al., 2005; Means et al., 1999).

LiDAR offers unique benefits unobtainable by passive remote sensing technol-
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ogy. The ability to quantify and map pre-fire forest attributes in relation to fire

effects provides new perspectives on post-fire conditions. For example, the spatial

distribution or fire patterns could be related to stand structures pre-fire, such as the

movement of wildfire from one forest type into another. Additionally, our ability to

quantify and define fire effects should greatly improve. Research has shown that Li-

DAR based estimations of fire-induced basal area mortality are more accurate than

satellite-based methods. Therefore, in this study, we use a single remote sensing tech-

nology (discrete-return multi-temporal LiDAR) to quantify pre-fire basal area, basal

area mortality, and post-fire basal area. Our objective is to provide a well defined

landscape assessment of fire effects. Lastly, we provide an example of severity esti-

mates by ownership and pre-fire basal area class. Our research is consciously targeted

at improving our understanding of the ecological effects of contemporary wildfires

(Keeley, 2009; Morgan et al., 2014).

3.3 Methods

3.3.1 Study Area

Three large wildfires were ignited by lightning on July 26th, 2013 within the

Klamath Mountain Ecoregion in southwestern Oregon (InciWeb, 2013; Omernik and

Griffith, 2014). All three areas burned with mixed-severity, driven by the dry Mediter-

ranean climate, segmented terrain, and topographical attributes (Agee, 1991; Halofsky

et al., 2011; Skinner et al., 2006; Taylor and Skinner, 1998). The Douglas Complex en-

compasses 20,689 ha over a mixed ownership landscape and includes the Dad’s Creek

and Rabbit Mountain fires. The Big Windy fire covers 11,464 ha of federal land only

(Figure 3.1).

The Klamath Mountain Ecoregion is characterized by highly diverse flora and

is often described as having a mixed-severity fire regime (Agee, 1991; Halofsky et al.,

2011; Taylor and Skinner, 1998). The dry Mediterranean climate, segmented terrain,
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and topographical attributes greatly influenced fire frequency and severity over time

(Skinner et al., 2006). Frequent disturbances and repeated exposure create highly

diverse patches of legacy species which influence stand succession and wildlife habitat

suitability over long time scales (Agee, 1991; Halofsky et al., 2011; Seidl et al., 2014).

Dominant tree species include Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco),

Pacific madrone (Arbutus menziesii Pursh), canyon live oak (Quercus chrysolepis

Liebm.), Oregon white oak (Quercus garryana Douglas ex Hook.), California black oak

(Quercus kelloggii Newberry), golden chinkapin (Castanopsis chrysophylla), tanoak

(Lithocarpus densiflourus), ponderosa pine (Pinus ponderosa Lawson & C. Lawson),

and white fir (Abies concolor (lowina). Less abundant upland tree species include

incense cedar (Calocedrus decurrens (Torr.)Florin), sugar pine (Pinus lambertiana),

Jeffery pine (Pinus jefferyi), big-leaf maple (Acer macrophyllym), pacific dogwood

(Cornus nuttallii), apple (Malus spp., and knobcone pine (Pinus attenuata). Cha-

parral shrub species are common in the understory of most of these vegetation zones

and dominate vegetative cover on portions of the landscape (Duren et al., 2012).

3.3.2 Calibration Plots

Field data was collected between June 15 and September 24, 2015 (2 years

after fire) to create a series of calibration plots. We used stratified random sampling

based on fire severity and tree heights (Figure 3.2). In total, we had 10 unique strata

representing the range of conditions across the landscape. Fire severity groups were

classified using thresholds obtained by modeling basal area mortality using RdNBR

and 304 Forest Inventory and Analysis plots (FIA) (Reilly et al., in review). LiDAR

derived pre-fire 95%’ile heights were used to approximate the average stand height

across all 3 fires and partition forested areas into 2 height classes (tall/short). The

raw RdNBR raster layer (30x30 m pixels) was re-sampled to a 90x90 m layer to

increase the probability that our plot represented the targeted severity class. Plot

centers were permanently monumented for future re-measurements and were located
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as close to pixel (Landsat) center as possible. We further constrained plot locations

by requiring plot centers to be a minimum of 400 m apart. Over 100 GPS points were

recorded per plot using a Trimble Geo 7X hand-held GNSS receiver and post-processed

in Pathfinder Office�.

Our field plots were designed to be comprehensive and useful for a wide range

of research objectives. We used nested, circular, fixed radius plots to measure all

tree and snag species, understory vegetation composition, regeneration, coarse woody

debris (1000 hr), and fine fuels (1, 10, 100 hr). Line transects were used for fine

fuel measurements and a 2 meter radius circular plot was used for vegetation cover,

composition, and regeneration (seedlings by 10 cm height class). Azimuth and distance

measurements were taken for all trees and snags (> 10 cm dbh, snags above 2 m tall)

within the large plot, along with coarse woody debris (>15cm large end, > 1 m long),

trees between 2.54 - 10 cm dbh, and all living shrub species in the smaller subplot (5.4

m radius). Azimuth and distance measurements for coarse wood were taken at small

and large ends. We identified top condition for all trees and snags (whole, broken,

forked, fallen) and recorded total tree heights for a subsample of all trees within plots

including a height measurement for any tree identified as a snag, broken, or fallen.

Canopy base height was recorded for any tree with foliage, regardless of whether it

was green or red. Additionally, we recorded measurements of percent cover for abiotic

attributes such as rock, litter, and bare ground. The total area sampled per plot was

900 m2 (large plot) to match the size of a Landsat pixel for scaling purposes.

Pre-fire basal area was reconstructed by identifying and removing pre-fire snags

prior to calculating plot level estimates of basal area per hectare. Snags were identified

using optical estimates of fire scaring, charring, scorch, and levels of decay (by class:

1-5). All trees above 2.54 cm dbh were included in plot level basal area calculations.

Mortality rates were calculated by dividing fire-induced basal area mortality by pre-

fire living basal area. Additional information is provided in Appendix C, including

a summary of topographical attributes, observed basal area, RdNBR values, plot
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measurements, coordinates for plot centers, and an illustration of our plot layout.

3.3.3 LiDAR Datasets

We used multi-temporal LiDAR to quantify pre-fire basal area, basal area mor-

tality, and surviving basal area (legacy). Pre-fire LiDAR data (LiDAR Consortium’s

Rogue River project area ≈ 551,074 ha) was obtained between March 6th and August

16th, 2012 (Table 3.1). Post-fire LiDAR was collected between September 26th and

October 23rd, 2013 (≈ 49,915 ha) and lies within the Rogue River LiDAR dataset.

Data was collected by Watershed Sciences, Inc (Table 3.2). (purchased by Quantum

Spatial), for the Oregon Department of Geology and Mineral Industries (DOGAMI).

Intensity values were normalized during processing prior to delivery.

We examined multi-temporal LiDAR metrics related to, structure (z dimen-

sion), cover (x and y dimensions), and foliar reflectance (intensity returned) (Table

3.3) (Garćıa et al., 2010). Pre-fire basal area was modeled using data from 2012 and

calibration plots measured in 2015. Basal area mortality was quantified using data

from 2012, 2013, and change estimation. Legacy basal area was directly quantified

using field data obtained in 2015. We processed both datasets using FUSION (Mc-

Gaughey, 2014). Alignment and quality between pre- and post-fire LiDAR data was

assessed by comparing stem maps derived from field observations to those derived by

LiDAR. We also used plot level canopy models and the LiDAR point cloud to optically

assess potential misalignment concerns.

We used stratified height bins to vertically partition vegetative canopies within

forest profiles (Bright et al., 2014). We ultimately selected 3 height bins, 0-2 (m),

2-10 (m), above 10 meters (bins: 1, 2, 3 respectively), after examining several options.

Other bins examined include 2 m intervals and geometric breaks of 0-2, 2-5, 5-10,

10-20, 20-40 m. Both alternatives were removed from further analysis due to model

selection procedures choosing over 12 covariates and our ability to practically apply

such methods under realistic scenarios.
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3.3.4 Statistical Analysis

Variable selection and regression analysis for our pre-fire basal area models was

performed R (R Core Team, 2016). The Leaps package was used to perform an

exhaustive search for the best subsets of predictor variables using linear regression

and an efficient branch and bound algorithm (Lumley, 2009). We also performed

a box-cox transformation using the MASS package due to heteroskedasticity which

suggested the use of the natural logarithm transformation (Osborne, 2010). Therefore,

we applied a natural logarithm transformation to observed pre-fire basal area (m2

ha−1) (Hudak et al., 2006; Næsset, 2007; Woods et al., 2011). LiDAR covariates were

not transformed and we applied a bias correction factor prior to back-transforming

our response (Sprugel, 1983).

Variable selection and subsequent analysis for basal area mortality was also

performed in R using Leaps, GLMulti, and GAMboostLSS packages (Hoe et al., See

Chapter 2, in preparation). All metrics were evaluated as differences from pre-fire

(2012) to post-fire (2013) data sets. Beta regression was used to model basal area

mortality and a landscape map was created using the Raster package in R (Cribari-

Neto and Zeileis, 2010; Ferrari and Cribari-Neto, 2004; Hijmans, 2016; R Core Team,

2016; Smithson and Verkuilen, 2006). Models were derived using LiDAR metrics

only and a combined approach using RdNBR and LiDAR together. LiDAR intensity

values were not used within the combined models under the assumption that RdNBR

provides adequate spectral information.

We evaluated model performance using identical criterion when quantifying pre-

fire basal area or basal area mortality (Hoe et al., See Chapter 2, in preparation). Like-

wise, we examined multi-collinearity within both using Pearson correlations. Variance

inflation factors were also examined to verify that multi-collinearity was not present

within our final models. Bias, root mean square error (RMSE), AIC, BIC, and root

mean square prediction error (RMSPE) were used to compare model performance.

RMSPE was calculated for all model(s) using leave-one-out cross validation (Kohavi
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et al., 1995).

Post-fire basal area was quantified by combining landscape-scale estimates of

pre-fire basal area and basal area mortality. This allowed us to create a series of

landscape maps related to basal area before fire, basal area mortality, and basal area

after fire. We also delineate pre- and post-fire living basal area by ownership and basal

area class. We isolate Big Windy prior to this comparison due to lower fire severities

being attributed to localized weather conditions, inversions, and shading from smoke

(Ruediger, 2014).

3.4 Results

Over 60% of the post-processed plot locations maintained sub-meter accuracy

with roughly 25% over 1(m) accuracy and the remaining observations above 2 meters.

We sampled a total of 2,435 trees (≥ 10cm dbh) with 1,454 remaining alive after fire,

958 killed by fire, and 77 snags (dead before fire), on 51 plots across the full severity

gradient within our study area. Approximately 60% (1,464 trees) were coniferous with

hardwoods representing the remaining 40% (971 trees). 1,302 of our observations were

Douglas-fir, which comprise 89% of the coniferous species composition, with a mixture

of ponderosa pine, sugar pine, western white pine , and Jeffery pine representing 8%,

and 3 observations of white fir. In contrast, hardwood species composition was more

diverse and primarily composed of Pacific Madrone at 34%, golden chinkapin and

canyon live oak at 23%, tanoak at 15%, and the remaining observations being a

mixture of big-leaf maple, pacific dogwood, Oregon white oak, and California black

oak.

Our results suggest that intensity values are very useful when quantifying basal

area using LiDAR metrics over highly variable landscapes (Table 3.4). While struc-

tural covariates were significant, the inclusion of intensity metrics improved model

performance consistently (reduction in AIC/BIC ≈ 20-40, not shown). We also found
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that models with fewer covariates tended to truncate the range of fitted values (max

value < 80), creating a disparate relationship between the range of our observations and

model estimates. We therefore selected a model which contains 4 covariates (HTcv,

HT25, Istdv, I95), has the lowest bias , and fit the range of our observations the best

(observed values: 0.4 - 135 m2/ha, fitted: 0.06 - 120 m2/ha). We provide additional

information in Table 3.5 which includes parameter estimates, standard errors, and

variance inflation factors for models shown.

We found that multi-temporal LiDAR can quantify basal area mortality over

variable landscapes using change estimation (Table 3.6) (Hoe et al., in preparation).

The most correlated predictors to basal area mortality were RdNBR (0.84), dĪ2 (0.80),

dCRSp1 (-0.79), and dRP1 (-0.75). Results indicate a reduction in bias across all

severity classes and a decrease in RMSPE. Each variable selection procedure provided

its own benefits and ultimately they all selected the same model.

Y = β0 + β1 dĪ2 + β2 dCRSp3 + β3 dHTmax + εi (3.1)

Where Y is the fire-induced basal area mortality rate, dĪ2 is the change in the mean

intensity value between 2 and 10 meters, dCRSp3 is the change in the proportion of

CRS above 10 meters, and dHTmax is a change in max height. We concluded that

while absolute change in mean intensity value between 2–10 m(dĪ2) is explaining the

majority of variation, dCRSp3 provides more information for the older stands, and

dHTmax captures stand replacement conditions in the youngest forests (Hoe et al., in

preparation).

3.5 Discussion

Active remote sensing technologies such as LiDAR have become increasingly

useful in quantifying forest attributes for a wide range of management objectives. For

example, landscape scale maps of forest composition and volume are used by resource
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managers to assess wildfire risk and fuels (Bright et al., 2014; Clark et al., 2010;

Erdody and Moskal, 2010; Skowronski et al., 2007, 2011), develop wall-to-wall forest

inventories (Bolton et al., 2015; Bouvier et al., 2015; Brosofske et al., 2014; Coops

et al., 2007; Goerndt et al., 2010; Guerra-Hernández et al., 2016; Hall et al., 2005;

Hudak et al., 2006, 2002; Næsset, 2007; Woods et al., 2011; Wulder et al., 2012), and

evaluate wildlife habitat (Betts et al., 2010; Casas et al., 2016; Vogeler et al., 2014,

2016). We quantified pre-fire basal area, basal area mortality, and post-fire basal area

using a single remote sensing technology. These methods can improve upon existing

data and information by: 1) quantifying pre-fire and post-fire forest conditions under

consistent measures; and 2) clearly defining the forest attribute of interest (Bolton

et al., 2015; Keeley, 2009; Morgan et al., 2014).

Pre-fire basal area maps provide an improved perspective for managers and re-

search scientists (Figure 3.5). We know that fire severity is driven by topography,

weather, and fuels (Agee, 1991; Bowman et al., 2009; Perry et al., 2011). However,

we often lack information related to pre-fire forest conditions making it difficult to

ascertain relationships between landscape-scale canopy fuel distributions and fire ef-

fects. By modeling and mapping pre-fire conditions, we provide necessary information

for improving our ability to manage dynamic landscapes and promote more resilient

ecosystems.

Multi-temporal LiDAR data has the capability to improve our understanding

of how pre-fire forest structures influence fire effects (Figure 3.6) (Hoe et al., in prepa-

ration). Our results confirm that the ability to detect change in 3-dimensions helps

ameliorate some of the inaccuracies associated with passive remote sensing of fire ef-

fects. For example, we focus explicitly on fire effects to trees with the understanding

that forest trajectories and recovery rates are driven by these dominant biological

legacies (Franklin et al., 2002; Lindenmayer et al., 2012; Turner et al., 1998). We

isolated LiDAR returns near ground and observed change in upper and sub-canopy

components, separately. These advantages allow us to reduce over saturation caused
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by big data, account for confounding or inverse relationships, check for evidence of

reductions in upper canopy densities (canopy consumption), and observe change be-

neath occluded canopies (Bolton et al., 2015; Bright et al., 2014; Montealegre et al.,

2014).

We provide mangers and research scientists with a new perspective of post-fire

landscapes by combining pre-fire basal area estimates with basal area mortality using

only multi-temporal LiDAR. By directly quantifying basal area before fire we can

apply estimates of basal area mortality to obtain landscape-scale maps of post-fire

living and dead basal area. We provide 3 examples of how these maps can be utilized

to improve our understanding of fire effects across highly variable landscapes.

3.5.1 Application of Legacy Maps

Post-fire landscape maps of living basal area provide scientists and managers

with well defined, easily interpreted, and operationally useful information (Figure

3.7). Legacy tree density, distance to seed source, and tree species resilience influence

forest recovery, habitat suitability, and re-burn severity conditions (Ager et al., 2007;

Halofsky et al., 2011; Seidl et al., 2014; Spies et al., 2010). Early seral sites and high

density patches of large legacy trees can be identified (lowest and highest basal area,

respectively). Additionally, post-fire habitat continuity could be examined. All of

these potential applications improve our ability to manage dynamic forest landscapes

on varying temporal scales.

Legacy basal area maps also provide estimates of remaining forest inventory.

We can estimate the value and volume of remaining timber resources across the land-

scape. We can provide managers with highly useful information for rehabilitation, soil

stabilization, and forest recovery measures. Ultimately, we can identify spatial and

structural relationships which reduce risk of catastrophic loss to our highly-valued

natural resources during wildfire events.

Post-fire maps of fire-killed basal area improve our ability to assess ecological
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impacts from fire across heterogeneous landscapes (Figure 3.8). Dead biological lega-

cies are important for wildlife habitat, carbon and nutrient cycling, and protection

from predation (Franklin et al., 1987; Harmon et al., 1986). For example, many rare,

specialized avian species benefit from increases in habitat abundance and food avail-

ability due to the creation of new snags and patches of early seral conditions (Betts

et al., 2010; Casas et al., 2016; Vogeler et al., 2014, 2016). Keystone species, such as

the pileated woodpecker (Dryocopus pileatus), often feed on insects within the bark

fire-killed trees creating cavities which are colonized and re-colonized by subsequent,

specialized avian species (Aubry and Raley, 2002). Therefore, information on the

abundance, spatial, and temporal continuity of these resources is essential for many

wildlife managers.

Similar to post-fire living basal area distributions, dead basal area provides in-

formation which could be used to inform rehabilitation efforts. By identifying areas

with the greatest abundance of dead basal area, we can optimize treatment strategies

to reduce risk, hazard, and/or loss. For example, salvage operations could target areas

with the greatest abundance of dead basal area and remove merchantable timber prod-

ucts while reducing the likelihood of bark beetle outbreaks. Likewise, soil stabilization

and other rehabilitation efforts could be spatial optimized across the landscape.

The Douglas Complex is unique in that it burned through a checkerboard land-

scape of mutually exclusive management regimes (O&C lands). Due to the checker-

board landscape, we can assume weather and topography to be constant across own-

ership. In contrast, the Big Windy fire experienced much lower fire severity due to

localized weather conditions such as inversions, higher relative humidity, and shad-

ing from smoke (Ruediger, 2014). The spatial orientation of land owners across this

landscape provides a great opportunity to examine how land management practices

influence fire effects.

LiDAR offers us the opportunity to begin quantifying fire severity across own-

ership, management regime, and pre-fire forest conditions. For example, in Figure
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3.9 we can clearly see that Big Windy experienced less basal area mortality than the

Douglas Complex. We can also see that young stands within the Douglas Complex

experienced the highest mortality, regardless of owner. This makes sense biologically

because young trees with thin bark and low crowns have a low probability of sur-

vival. In contrast, trees with thick bark, deep roots, and high crown base heights

have a higher probability for survival (Franklin et al., 1987; Ryan and Frandsen, 1991;

Vines, 1968). Furthermore, it appears that private land is experiencing greater mor-

tality than federal regardless of basal area group. We believe that this is due to

fuel continuity and relative stand density varying by owner. No formal tests were

performed, however, this illustrates the capabilities of landscape level multi-temporal

LiDAR analyses. We provide additional information in Tables 3.7 & 3.8.

3.5.2 Future opportunities & Limitations

As our LIDAR technology improves, estimates and ecological interpretations of

fire effects will become more precise, and our ability to improve pro-active land man-

agement practices could become a reality. Research such as this will be invaluable as

we begin prepare for a future with longer wildfire seasons, increased drought condi-

tions, and expanding populations Hammer et al. (2007); Liu et al. (2013); Stephens

et al. (2014); Westerling et al. (2006). Furthermore, our ability to sustain spatial

and temporal habitat continuity while promoting more resilient ecosystems will vastly

improve.

One of the major limitations with studies such as these is simply the availability

of information. LiDAR data acquisitions cost money, while passive remote sensors such

as Landsat, are free. However, research continues to support the use of active remote

sensing technology as the next step towards improving our ability to quantify and

interpret landscape scale disturbance, ecological effects, and spatial distributions. We

believe the benefits of obtaining LiDAR data greatly out-weigh the cost and recent

statewide studies suggest $4 in benefits for every $1 spent when acquiring LiDAR
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data (Dewberry, 2016; Hallum and Parent, 2014; Young, 2014). This is largely due to

a wide breadth of potential applications across agency, ownership, and management

objectives.

3.6 Conclusion

Remote sensing technologies allow us to rapidly assess fire effects over large

landscapes, however, their inherent limitations constrain our ability to obtain the

most accurate information available. We used multi-temporal LiDAR as a stand-alone

analysis of fire effects over a mixed-ownership landscape in southwestern Oregon. We

provide highly interpretable assessments of fire effects by defining fire severity as basal

area mortality. We model and map pre-fire basal area to provide information related

to fuels distributions before fire. We use change estimation between 2 separate LiDAR

flights to quantify basal area mortality. Post-fire legacy basal area was obtained by

combining estimates of pre-fire basal area and basal area mortality. Finally, we provide

multiple examples of how this information can be used in practical terms. While our

results illustrate how we can improve landscape assessments using LiDAR as a stand-

alone remote sensing technology, many future opportunities remain to be explored. As

LiDAR data become more available, opportunities like these will be studied and our

ability quantify, assess, and understand landscape fire effects will continue to improve.
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Casas, Á., M. Garćıa, R. B. Siegel, A. Koltunov, C. Ramı́rez, and S. Ustin (2016).

Burned forest characterization at single-tree level with airborne laser scanning for

assessing wildlife habitat. Remote Sensing of Environment 175, 231–241.

Clark, K. L., N. Skowronski, M. Gallagher, N. Carlo, M. Farrell, and M. R. Maghi-

rang (2010). Assessment of canopy fuel loading across a heterogeneous landscape

using lidar. Joint Fire Sciences Program, Project 10-1-02-14, Final Report, U.S.

Department of Agriculture, Forest Service, New Lisbon, NJ & Morgantown, WV,

2010.

Coops, N. C., T. Hilker, M. A. Wulder, B. St-Onge, G. Newnham, A. Siggins, and

J. T. Trofymow (2007). Estimating canopy structure of douglas-fir forest stands

from discrete-return lidar. Trees 21 (3), 295–310.

Cribari-Neto, F. and A. Zeileis (2010). Beta regression in R. Journal of Statistical

Software 34 (2), 1–24. http://www.jstatsoft.org/v34/i02/.

Dewberry (2016). National enhanced elevation assessment final report - appendix

F: Benefit cost analysis process. Dewberry , 671–686. Accessed: March 15th,

http://www.jstatsoft.org/v34/i02/


91

2016. Available at: http://www.dewberry.com/docs/default-source/documents/

neea final-report revised-3-29-12.pdf?sfvrsn=0.

Dunn, C. J. and J. D. Bailey (2016). Tree mortality and structural change following

mixed-severity fire in Pseudotsuga forests of Oregons western cascades, USA. Forest

Ecology and Management 365, 107–118.

Duren, O. C., P. S. Muir, and P. E. Hosten (2012). Vegetation change from the Euro-

American settlement era to the present in relation to environment and disturbance

in southwest Oregon. Northwest Science 86 (4), 310–328.

Erdody, T. L. and L. M. Moskal (2010). Fusion of lidar and imagery for estimating

forest canopy fuels. Remote Sensing of Environment 114 (4), 725–737.

Ferrari, S. and F. Cribari-Neto (2004). Beta regression for modelling rates and pro-

portions. Journal of Applied Statistics 31 (7), 799–815.

Franklin, J. F., H. Shugart, and M. E. Harmon (1987). Tree death as an ecological

process. BioScience 37 (8), 550–556.

Franklin, J. F., T. A. Spies, R. Van Pelt, A. B. Carey, D. A. Thornburgh, D. R.

Berg, D. B. Lindenmayer, M. E. Harmon, W. S. Keeton, D. C. Shaw, et al. (2002).

Disturbances and structural development of natural forest ecosystems with silvi-

cultural implications, using douglas-fir forests as an example. Forest Ecology and

Management 155 (1), 399–423.
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FIGURE 3.1: Study area located in southwestern Oregon, near Riddle and Glendale. Oregon and Washington shown on
the right with federal land in green and non-federal land in white. Multi-temporal LiDAR coverage boundary outlined
in orange. Shaded regions are the burn areas.
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FIGURE 3.2: Photographic illustration of plot stratification and allocation on the ground by severity class. Thresholds
used during stratification were: 0-235 (low), 235-406 (moderate-low), 406-648 (moderate-high), 648+ (high). Low,
moderate-low, moderate-high, and high represent 0-25, 25-50, 50-75, and 75+ % basal area mortality, respectively.
Photos were taken by Michael Hoe in 2015 to document each plot location (2-years after fire).
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FIGURE 3.3: Pearson correlations across our examined LiDAR metrics including our
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triangle) have been removed for clearer illustration. ln(BA) can be seen on the y-axis
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ln(BA) = β0 + β1HTCV + β2HT25 + β3Istdv + β4I95 + ε
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FIGURE 3.4: Observed versus predicted values shown on log scale (top) and back-
transformed (bottom). Our response variable is basal area in square meters per
hectare. Bias and RMSE are provided in Table 3.4.
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FIGURE 3.5: Landscape map of living basal area (m2 ha−1) before fire. Modeled us-
ing LiDAR metrics obtained in 2012 and calibrated using field observations obtained
in 2015 (2-years after fire). Snags (dead before fire) were removed prior to model-
ing. Note that O&C lands within Rabbit Mountain are clearly visable and certain
topographical conditions appear to have higher basal area (moisture availability).
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FIGURE 3.6: Landscape map of basal area mortality. Modeled using multi-temporal
LiDAR metrics obtained in 2012 and calibrated using field observations obtained in
2015 (2-years after fire).
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FIGURE 3.7: Landscape map of living basal area (m2 ha−1) after fire. Calculated
by multiplying our living basal area map (2012) by 1 minus basal area mortality rate
obtained from multi-temporal LiDAR. Beta regression was used to model mortality
rates (30x30 m pixels) across our entire study area.
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FIGURE 3.8: Landscape map of dead basal area (m2 ha−1) after fire. Created by
combining living basal area map (2012) with basal area mortality estimates obtained
from multi-temporal LiDAR and change estimation. Beta regression was used to
model mortality rates (30x30 m pixels) across our entire study area.
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FIGURE 3.9: Comparison of mortality by landowner and basal area class (top) and the proportion of landscape held
within each by owner (bottom). Basal area (m2 ha−1) is broken into discrete groups (0-30, 30-60, 60-90, 90+). Mortality
rate was quantified using multi-temporal LiDAR. Pre-fire basal area was modeled using LiDAR data obtained in 2012
and field measurements taken in 2015. Trees experiencing fire-induced mortality were assumed alive in 2012 and included
in observed basal area measurents. Trees exhibiting excessive decay were assumed dead before fire (snags), and removed
from basal area observations prior to modeling.
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TABLE 3.1: BLM Fires LiDAR Acquisition Specs (2012). Data
obtained between March 6th and August 16th, 2012 by Watershed
Sciences, Inc. (known now as Quantum Spatial).

Aircraft Partenavia P38, Cessna Caravan 208B

Sensor Leica ALS 50, Leica ALS 60

Survey Altitude (AGL) 900m / 1300m

Targeted Aircraft Speed NA

Coverage 100% Overlap with 60% Sidelap

Field of View (FOV) 30 (at 900m) / 28 (at 1300m)

Laser Pulse Rate 52.2 hz (at 900m) / 46.7 hz (at 1300m)

Targeted Pulse Density > 8 pulses per square meter

Aircraft Position Monitored twice per second (2 Hz)

Aircraft Alititude Monitored 200 times per second (200 Hz)

TABLE 3.2: BLM Fires LiDAR Acquisition Specs (2013). Data
obtained between September 26th and October 23rd, 2013 by Wa-
tershed Sciences, Inc. (known now as Quantum Spatial).

Aircraft Cessna Caravan 208B

Sensor Leica ALS 50

Survey Altitude (AGL) 900 m

Targeted Aircraft Speed 105 knots

Coverage 100% Overlap with 65% Sidelap

Field of View (FOV) 30

Laser Pulse Rate 96,000 - 105,900 Hz

Targeted Pulse Density > 8 pulses per square meter

Aircraft Position Monitored twice per second (2 Hz)

Aircraft Alititude Monitored 200 times per second (200 Hz)
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TABLE 3.3: LiDAR variables examined during analysis. Variables
listed represent raw metrics for pre- and post-fire conditions. Es-
timates of change were derived by taking the absolute difference
(example: dRP1) between pre- and post-fire conditions; similar to
RdNBR and dNBR. Three height bins were used: 1 (0-2m), 2 (2-
10m), and 3 (above 10m).

Variable Definition

HTmax Maximum height

HT Mean height

HTCV Coefficient of variation of height

HT.99 99th percentile height

HT.95 95th percentile height

HT.80 80th percentile height

HT.25 25th percentile height

HT.01 1st percentile height

Rumple Canopy surface (m2) / ground surface (m2)

RPi Return proportion per height bini

Cover2 (Total # of returns above 2 meters / Total # of first returns)*100

CRR Canopy Relief Ratio ((mean - min)/(max - min))

Coverm Percentage of first returns above mean

CT Canopy Transparency ((Total # returns above 10 m)/(Total # returns above 2 m))

Ī Mean intensity value

Īi Mean intensity per height bini

Iσ Standard deviation of intensity values

Iiσ Standard deviation of intensity per height bini

ICV Coefficient of variation of the intensity values

IiCV Coefficient of variation of intensity per height bini

I.99 99th percentile intensity value

I.80 80th percentile intensity value

I.25 25th percentile intensity value

I.05 5th percentile intensity value

I.01 1st percentile intensity value
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TABLE 3.4: Summary statistics for top models predicting pre-fire
basal area. N = 51.

Summary Statistics

Model Bias Bias(%) RMSE RMSE(%) AIC BIC

ln(BA) = β0 + β1I25 + ε 4.30 10.06 22.04 51.59 -53.72 -49.86

ln(BA) = β0 + β1I05 + β2CT + ε 2.93 6.87 18.85 44.12 -92.54 -86.75

ln(BA) = β0 + β1I05 + β2CT + β3Ī2 + ε 2.93 6.85 18.25 42.71 -94.16 -86.43

ln(BA) = β0 + β1HTCV + β2HT25 + β3Iσ + β4I95 + ε 2.03 4.74 16.87 39.48 -92.43 -82.77

ln(BA) = β0 + β1HTCV + β2HT25 + β3Iσ + β4I95 + β5CRS1 + ε 2.14 5.00 16.13 37.76 -96.42 -84.83

Cross Validated (Leave-One-Out)

Model Bias Bias(%) RMSPE RMSPE(%)

ln(BA) = β0 + β1I25 + ε 4.28 10.01 22.61 52.92

ln(BA) = β0 + β1I05 + β2CT + ε 2.90 6.79 19.50 45.65

ln(BA) = β0 + β1I05 + β2CT + β3Ī2 + ε 3.08 7.20 19.51 45.67

ln(BA) = β0 + β1HTCV + β2HT25 + β3Iσ + β4I95 + ε 1.63 3.82 18.89 44.21

ln(BA) = β0 + β1HTCV + β2HT25 + β3Iσ + β4I95 + β5CRS1 + ε 1.99 4.67 17.76 41.58
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TABLE 3.5: Model summaries including coefficient estimates, t-
values, p-values, and variance inflation factors for the best per-
forming regressions found during regression analysis.

Variable β Estimate SE t-value Pr(>∣t∣) VIF

Intercept β0 4.59E+00 1.33E-01 34.56 4.55E-36 -

IP25 β1 -3.28E-02 2.79E-03 -11.74 7.53E-16 -

Intercept β0 2.71E+00 1.44E-01 18.85 8.02E-24 -

IP05 β1 -3.81E-02 4.36E-03 -8.73 1.79E-11 1.535

CT β2 1.62E-02 1.92E-03 8.44 4.88E-11 1.535

Intercept β0 2.05E+00 3.82E-01 5.35 2.53E-06 -

IP05 β1 -4.10E-02 4.54E-03 -9.04 7.60E-12 1.746

CT β2 1.96E-02 2.62E-03 7.49 1.48E-09 2.992

Ī2 β3 7.77E-03 4.18E-03 1.86 6.94E-02 3.325

Intercept β0 1.53E+00 7.81E-01 1.96 5.64E-02 -

HTCV β1 6.10E-01 1.96E-01 3.12 3.15E-03 1.563

HT25 β2 1.57E-02 2.97E-03 5.29 3.28E-06 1.68

Iσ β3 1.38E-01 9.39E-03 14.68 5.61E-19 1.436

I95 β4 -3.67E-02 5.13E-03 -7.16 5.31E-09 1.376

Intercept β0 1.29E+00 7.52E-01 1.71 9.40E-02 -

HTCV β1 8.16E-01 2.06E-01 3.96 2.60E-04 1.903

HT25 β2 1.40E-02 2.92E-03 4.78 1.92E-05 1.792

Iσ β3 1.24E-01 1.07E-02 11.60 4.10E-15 2.048

I95 β4 -3.04E-02 5.59E-03 -5.43 2.15E-06 1.793

CRS1 β5 -6.24E-07 2.63E-07 -2.37 2.22E-02 3.142
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TABLE 3.6: Cross validated summary statistics for models chosen
during regression analysis when modeling basal area morality using
beta regression and change detection. N = 51.

LiDAR Metrics Only

Model Bias Bias(%) RMSPE RMSPE(%)

y = β0 + β1dĪ2 + ε -0.0305 -7.45 0.2145 52.41

y = β0 + β1dĪ2 + β2dCRSp3 + ε -0.0180 -4.40 0.1548 37.82

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + ε -0.0127 -3.10 0.1293 31.59

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + β4dHTCV + ε -0.0097 -2.37 0.1312 32.06

y = β0 + β1dĪ2 + β2dCRSp3 + β3dHTmax + β4dHTCV + β5dCRS1 + ε -0.0104 -2.54 0.1259 30.76

Combined Metrics

Model Bias Bias(%) RMSPE RMSPE(%)

y = β0 + β1RdNBR + ε -0.0325 -7.94 0.2044 49.94

y = β0 + β1RdNBR + β2dRP1 + ε -0.0199 -4.86 0.1675 40.93

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ ε -0.0181 -4.42 0.1511 36.92

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

+ ε -0.0092 -2.25 0.1347 32.91

y = β0 + β1RdNBR + β2dRP1 + β3HTCVT0
+ β4RP1T0

+ β5dHT.95 + ε -0.0102 -2.49 0.1333 32.57
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TABLE 3.7: Summary data for the number of hectares by owner,
area, and basal area class (m2 ha−1). We provide pre-fire live, post-
fire live, and post-fire dead basal area estimates. Only includes data
within burn boundary.

Big Windy - Federal Land Only

Basal Area Pre-fire Post-fire Post-fire

Class Living BA Living BA Dead BA

0-30 576.09 1808.91 9112.86

30-60 4245.03 5830.11 1472.04

60-90 3714.66 1924.02 397.08

90+ 3118.5 2091.24 672.3

Total Hectares: 11654.28

Douglas Complex - Federal

Basal Area Pre-fire Post-fire Post-fire

Class Living BA Living BA Dead BA

0-30 339.12 2370.15 6991.47

30-60 3640.32 4975.56 1935.9

60-90 3732.48 1513.8 577.71

90+ 2522.43 1374.84 729.27

Total Hectares: 10234.35

Douglas Complex - Non-Federal

Basal Area Pre-fire Post-fire Post-fire

Class Living BA Living BA Dead BA

0-30 1159.02 4176.54 5890.95

30-60 3795.48 3144.6 1978.56

60-90 2053.26 838.44 640.71

90+ 2569.23 1417.41 1066.77

Total Hectares: 9576.99
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TABLE 3.8: Summary data for estimated basal area mortality
across ownership and fire area. Only includes data within burn
boundary.

Big Windy - Federal Land Only

Basal Area Basal Area Mortality

Class Min Mean Max SD

0-30 0.00 0.3082 1.00 0.2817

30-60 0.00 0.2440 1.00 0.1870

60-90 0.00 0.2627 1.00 0.1959

90+ 0.00 0.2531 1.00 0.2211

Douglas Complex - Federal

Basal Area Basal Area Mortality

Class Min Mean Max SD

0-30 0.00 0.5100 1.00 0.3528

30-60 0.00 0.3267 1.00 0.2602

60-90 0.00 0.3420 1.00 0.2565

90+ 0.00 0.3614 1.00 0.2892

Douglas Complex - Non-Federal

Basal Area Basal Area Mortality

Class Min Mean Max SD

0-30 0.00 0.5419 1.00 0.3735

30-60 0.00 0.4290 1.00 0.2969

60-90 0.00 0.4308 1.00 0.3056

90+ 0.00 0.4271 1.00 0.3310
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Multi-temporal LiDAR Analysis of Landscape-scale Fire Effects in

Southwestern Oregon

4 Chapter 4

4.1 General Conclusion

Wildfires are natural and effect ecosystems worldwide. While extreme weather

events typically drive severity conditions, we know that certain tree species and bio-

physical structures tend to be more resistant to fire-induced mortality. Young trees

with thin bark and low crowns have a low probability of survival. In contrast, trees

with thick bark, deep roots, and high crown base heights have a higher probabil-

ity for survival. While remote sensing technology has allowed us to assess post-fire

landscape effects, we are often limited by the lack of information related to pre-fire

forest attributes. This severely inhibits our ability to understand how pre-fire forest

conditions contribute to post-fire effects. We require this information if we intend to

improve pro-active management practices to reduce risk and loss. Furthermore, with

longer fire seasons and extended drought conditions, our ability to make a significant

difference is dwindling.

The Douglas Complex and Big Windy fires offer us a unique opportunity to

study fire effects across heterogeneous landscapes and disparate management regimes.

The checkerboard landscape provides a perfect layout for us to observe the effect of pre-

fire forest structures on post-fire basal area mortality. Wildfires within this region are

typically driven by weather, topography, and fuels with complex interactions between

each resulting in patches of burned, re-burned, and unburned conditions. Due to the

checkerboard landscape, we can assume weather and topography to be constant across

ownership.
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The first part of our study was to test whether multi-temporal LiDAR data

could be used to quantify fire effects using change estimation. We defined fire severity

as basal area mortality. Estimates of pre-fire forest conditions were reconstructed by

omitting snags (dead before fire) from plot level basal area per hectare calculations.

Optical estimates of excessive fire scaring, charring, scorch, and levels of decay (by

class: 1-5) were used to determine if a tree was killed by fire or dead before fire. Basal

area mortality was derived by dividing observed dead basal area by reconstructed

pre-fire conditions.

Stratified height bins were used to examine change within the vertical profile

of forest canopies. We ultimately selected 3 height bins, 0-2 (m), 2-10 (m), above

10 meters (bins: 1, 2, 3 respectively), after examining several options. Other bins

examined include 2 m intervals and geometric breaks of 0-2, 2-5, 5-10, 10-20, 20-40 m.

Two meter height breaks were found to be impractical for Oregon forests and were

quickly omitted from further analysis. Geometrics breaks were found to be useful,

however, it too was removed due to simplicity and applicability when compared to

our chosen method.

Statistical analyses were then performed in R using a variety of methods. All

metrics were evaluated as differences from pre-fire (2012) to post-fire (2013) data sets

and processed in FUSION. In general, models which used only multi-temporal LiDAR

metrics outperformed all others. Combined models performed well, but at the cost

of an additional variable. Additionally, combined models required metrics related to

change pre-fire conditions. The most correlated predictors to basal area mortality

were RdNBR (0.84), dĪ2 (0.80), dCRSp1 (-0.79), and dRP1 (-0.75).

The second part of our study was consciously targeted at improving our under-

standing of ecological effects of wildfires. We modeled and mapped pre-fire basal area

across the burned landscape. We combined pre-fire basal estimates with basal area

mortality obtained from our previous study. This allowed us to illustrate several ex-

amples which provide a new perspective of post-fire landscapes. Additionally, several
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of our methods were used consistently between both studies. For example, height bins,

re-constructed pre-fire basal area, and model performance assessments were identical

between both studies. Whereas, we only use Leaps and Bounds for variable selection

processes when modeling pre-fire basal area, as in this study.

Our results suggest that intensity values are very useful when quantifying basal

area using LiDAR metrics over highly variable landscapes. While structural covari-

ates were significant, the inclusion of intensity metrics improved model performance

consistently. We also found that models with fewer covariates tended to truncate

the range of fitted values, creating a disparate relationship between the range of our

observations and model estimates. We therefore selected a model which contains 4

covariates (HTcv, HT25, Istdv, I95), has the lowest bias , and fit the range of our

observations the best (observed values: 0.4 - 135 m2/ha, fitted: 0.06 - 120 m2/ha).

Our ability to understand these highly complex interactions is only limited by

the information we use to assess the landscape. As LiDAR data become more avail-

able, opportunities like these will be studied and our ability to quantify, assess, and

understand landscape fire effects will continue to improve. While we focus on LiDAR

technology, many other sources of remotely sensed information have proven valuable

in improving our current knowledge. Likewise, we chose to use simple regression

techniques to model and predict mortality rates and basal area due to efficiency and

personal ability. There are many other forms of modeling and prediction used for land-

scape analyses that would prove highly valuable, given this data set. For example,

studies are using artificial neural networks and machine learning technology, nearest

neighbors, random forest permutations, classification and regression trees (CART),

and multivariate adaptive regression splines (MARS) to examine large LiDAR data

sets. We are certain that more knowledge will be gained given time and abundant

data.

Our research provides several key advancements in our ability to analyze post-

fire effects by: 1) providing a well defined measurement of fire severity (basal area
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mortality) and directly measuring it in the field; 2) quantifying pre-fire forest con-

ditions; 3) modeling proportional response using beta regression; and 4) mapping

post-fire, live and dead basal area. Our methods address several key shortcomings

such as: 1) ecological interpretation of post-fire effects; 2) ability to capture pre-fire

forest conditions; 3) model assumptions and extrapolation when using ordinary least

squares for a proportional response; and 4) our ability to manage post-fire forested

landscapes, assess risk, and prioritize rehabilitation efforts. As our understanding and

technology improves, estimates and interpretations will become more precise, and im-

provements to pro-active land management will become a reality. Research such as

this will be invaluable as we begin to prepare for a future with longer wildfire seasons,

increased drought conditions, and expanding populations.
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A Acronyms

AIC: Akaike information criterion

ALS: airborne laser scanning device or system

ArcMap: GIS software

BIC: Bayesian information criterion

BLM: Bureau of Land Management

CBD: canopy bulk density (kg/m)

CFW: canopy fuel weight (kg)

CRS: canopy reflection sum

CRSp: proportion of CRS

DEM: digital elevation model

dNBR: difference in NBR

HS: high severity

LiDAR: light detection and ranging

LS: low severity

MS: moderate severity

MTBS: Monitoring Trends in Burn Severity

NBR: normalized burn ratio

RdNBR: relative difference in NBR

RMSE: root mean square error

RMSPE: root mean square prediction error.

VIF: variance inflation factor
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B Definitions

basal area the average amount of area occupied by tree stems per hectare.

burn severity the proportion of fire-induced basal area mortality.

canopy bulk density The mass of foliage, branches, and twigs above ground per unit

volume.

canopy fuel weight The total mass of above ground foliage.

canopy reflection sum As defined by Means et. al. (1999).

∑
N
i=1 Ii
A

(4.1)

Where N is the number of observations, A is the area being sampled, and Ii is the

intensity value of the ith observation.

canopy reflection sum(%)

CRSpi =
CRSi
CRST

=

Ni ∗ Īi

A

N ∗ Ī

A

=

Ni

N
∗

Īi
Ī

(4.2)

Where CRSi is the CRS for the observed height bin, CRST is the total CRS, and

CRSi(%) is the ratio of the two. CRSi(%) is now expressed as a product of two ra-

tios. The first is the proportion of returns within the observed height bin. The second

is the proportion of intensity within the observed height bin.

FUSION LiDAR processing software developed by the USDA Forest Service.

mortality death.
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C Additional Plot Information

FIGURE C.1: Illustration of calibration plots installed 2-years post-fire. All trees
above 10cm were mapped and measured within the large plot. Trees between 2.54 -
10 cm were mapped and measured in the small plot. Additional measurements were
taken for fuels, understory vegetation composition, and vegetation cover.
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TABLE C.1: Definitions for Table C.2 which summarizes the
specific topographical attributes, observed basal area, and
RdNBR values. Nested fixed radius plots were used to mea-
sure trees (>10 cm - full plot, 2.54-10 cm subplot), snags,
shrubs, coarse woody debris (1000 hr), and fine fuels (1, 10,
100 hr). The total area sampled (full plot) is 900m2; the size
of a LandSAT pixel. UT-20 and UT-27 are low severity and
within the burn boundary

Variable Definition

Plot (prefix) Severity: High(H), Mod-High(MH), Mod-Low(ML), Low(L), Unburned(U)*

Plot (suffix) Height Class: > 30m (T), < 30m (S)

Area Big Windy (BW), Dad’s Creek (DC), Rabbit Mountain (RM), Outside (OUT)

D(m) Distance from plot to pixel center derived from MTBS data in meters

Asp Aspect (○)

Slp Slope (○)

Elev Elevation (m)

RdNBR Relative difference in normalized burn ratio (obtained from MTBS data)

BAT Total basal area observed on the plot including live and dead (m2/ha)

BAL Basal area of surviving trees (m2/ha)

BAD Basal area of fire-killed trees (m2/ha)

M Proportion of basal area mortality (range: 0-1)
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TABLE C.2: Summary of field data taken during the Summer of
2015. Definitions for each attribute are provided in Table C.1.
∗UT-20 and UT-27 are low severity and inside the burn boundary.
Basal area in square meters per hectare.

Plot Area D(m) Asp○ Slp○ Elev(m) RdNBR BAT BAL BAD M

HS-10 RM 0.36 139.84 22.64 542.50 919 3.88 0.00 3.88 1.00

HS-22 DC 1.20 271.62 19.77 991.50 813 7.61 1.34 6.27 0.82

HS-23 BW 2.01 137.08 26.21 658.40 734 14.56 4.39 10.16 0.70

HS-24 BW 2.02 335.63 32.19 1074.10 850 0.41 0.00 0.41 1.00

HS-25 DC 1.75 244.90 24.43 358.40 942 9.75 2.66 7.09 0.73

HS-26 DC 3.04 4.71 30.31 486.80 900 2.45 0.00 2.45 1.00

HS-27 DC 1.08 322.73 20.56 684.00 729 14.79 0.00 14.79 1.00

HT-12 RM 1.44 130.40 18.35 495.60 812 13.95 3.27 10.68 0.77

HT-14 RM 9.09 132.47 15.93 423.70 704 33.79 12.44 21.34 0.63

HT-143 BW 11.86 126.30 30.25 1054.30 1018 58.64 0.00 58.64 1.00

HT-182 BW 4.43 82.90 16.36 1097.30 1062 77.91 0.00 77.91 1.00

HT-190 BW 8.64 176.94 27.43 1223.20 846 135.20 0.00 135.20 1.00

HT-204 BW 3.54 95.18 19.23 1072.00 919 7.58 0.00 7.58 1.00

LS-12 DC 6.08 235.63 28.10 539.80 346 42.77 39.33 3.44 0.08

LS-28 DC 2.76 192.54 24.87 604.70 188 51.26 47.03 4.24 0.08

LS-29 DC 3.22 223.12 14.96 1044.90 181 74.52 28.16 46.35 0.62

LS-30 DC 2.84 46.73 15.77 486.20 132 46.08 44.62 1.45 0.03

LT-10 RM 7.56 275.89 24.36 557.20 94 79.03 75.64 3.39 0.04

LT-14 RM 2.88 163.90 34.86 784.60 176 52.12 45.89 6.23 0.12

LT-21 RM 0.45 205.72 4.75 522.40 104 57.77 52.86 4.91 0.08

LT-26 DC 0.80 24.81 19.20 633.10 150 61.03 38.60 22.43 0.37

LT-29 DC 7.04 319.49 33.46 1069.80 62 57.18 50.39 6.80 0.12

MHS-17 RM 3.98 142.71 25.16 386.20 519 10.82 0.00 10.82 1.00

MHS-20 RM 1.83 160.77 20.13 605.60 499 14.15 14.15 0.00 0.00

MHS-581 BW 6.37 61.75 6.22 1178.40 508 93.80 15.89 77.91 0.83

MHS-587 BW 5.55 321.39 18.12 1178.10 515 2.89 2.27 0.63 0.22

MHT-17 BW 1.36 258.94 12.61 1034.20 413 34.73 16.62 18.11 0.52

MHT-22 RM 1.98 164.80 22.12 660.80 615 85.87 65.24 20.63 0.24

MHT-28 DC 13.24 293.51 19.90 673.60 614 24.75 21.77 2.98 0.12

MHT-7 BW 2.40 99.26 17.88 632.50 512 21.66 13.35 8.31 0.38

Continued on next page
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TABLE C.2 – continued from previous page

Plot Area D(m) Asp○ Slp○ Elev(m) RdNBR BAT BAL BAD M

MLS-14 BW 3.04 0.39 18.07 882.40 291 20.10 14.77 5.33 0.27

MLS-3 RM 1.42 176.19 20.59 819.90 246 78.24 35.03 43.21 0.55

MLS-6 RM 2.82 174.71 29.20 649.80 302 53.89 28.74 25.15 0.47

MLS-767 BW 7.26 121.48 10.13 1047.30 466 45.41 23.99 21.42 0.47

MLS-795 BW 4.93 146.83 14.58 1168.30 340 45.09 27.85 17.24 0.38

MLS-819 BW 6.11 345.35 15.36 1057.70 534 21.89 16.97 4.91 0.22

MLS-951 BW 5.30 325.04 32.89 1122.60 382 44.84 28.82 16.02 0.36

MLT-10 DC 1.42 87.90 22.38 778.20 360 37.12 25.42 11.70 0.32

MLT-4 RM 1.55 199.26 29.55 598.90 363 52.83 43.63 9.20 0.17

MLT-7 RM 4.34 0.72 58.32 716.60 399 57.01 30.81 26.21 0.46

MLT-9 RM 15.82 151.70 20.36 667.80 124 28.02 26.53 1.49 0.05

US-107 OUT 1.90 166.02 21.31 576.40 -3 62.59 62.59 1.63 0.03

US-112 OUT 2.85 175.14 31.33 640.40 16 9.86 9.65 0.46 0.05

US-158 OUT 0.90 131.57 23.72 297.80 -84 20.24 20.24 2.43 0.12

UT-128 OUT 2.07 149.49 28.20 747.70 -5 10.61 10.61 0.00 0.00

UT-145 OUT 2.55 170.31 23.24 475.50 -4 41.99 41.99 0.36 0.01

UT-148 OUT 6.21 170.07 9.57 527.60 -30 90.78 90.08 14.05 0.15

UT-151 OUT 10.49 11.00 4.11 460.90 5 53.40 53.40 0.18 0.00

UT-153 OUT 1.13 43.47 15.80 513.90 3 30.64 30.64 0.27 0.01

UT-20 BW 10.90 357.71 6.13 892.10 59 68.89 64.86 4.03 0.06

UT-27 BW 5.24 67.92 33.75 1303.30 43 114.57 99.41 15.15 0.13
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TABLE C.3: Additional information for plot measurements taken.
1 Small and large end for coarse wood larger than 15cm. 2 Trees
Only. 3 Shrubs only. 4 Includes vegetation, litter, bare soil, rock,
and coarse wood.

Variable Full Plot Subplot Regen Transect

Plot radius or Transect length (m) 16.9 5.6 2 15

Species * * * *

Diameter1 (cm) * * *

Height (m) * *

Distance (m) * *

Azimuth (○) * *

Slope (○) *

Height to live crown2 (m) * *

Crown width3 (m) *

Cover estimates4 (%) *

Scorch Length (m) * *

Log length (m, 1000hr) * * *

Tree Condition (Live or Dead) * *

Decay class (1-5) * * *

Top Condition (Broken, Fork, Fallen) * *

Fire-killed (Y/N) * *

Foliage present (Y/N) * *

Fuels transect (1hr, 10hr, 100hr) *

Regeneration (10cm height classes) *

Duff & Litter depth5 (cm) *
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TABLE C.4: List of plot center coordinates for calibration
plots installed during the Summer of 2015. Projection: Oregon
Statewide Lambert Conformal Conic. Horizontal and Vertical da-
tum: NAD83 (2011), NAVD88 (Geoid 12A).

Plot Area X Y Plot Area X Y

HS-10 RM 482006.45 406644.69 MHS-587 BW 431828.61 329576.85

HS-22 DC 488505.91 357034.58 MHT-17 BW 450120.37 313333.35

HS-23 BW 433588.54 354971.83 MHT-22 RM 475517.20 388629.50

HS-24 BW 425910.55 353490.74 MHT-28 DC 511789.05 359976.09

HS-25 DC 504153.05 353488.51 MHT-7 BW 433585.84 354077.90

HS-26 DC 512725.79 351130.63 MLS-14 BW 420894.06 352317.74

HS-27 DC 509760.95 349948.17 MLS-3 RM 494702.51 403981.99

HT-12 RM 478466.39 401628.20 MLS-6 RM 481707.09 384506.01

HT-14 RM 483751.78 393639.33 MLS-767 BW 459880.22 324837.64

HT-143 BW 425352.98 349650.90 MLS-795 BW 462534.91 323969.94

HT-182 BW 429461.61 345516.21 MLS-819 BW 456632.92 323075.67

HT-190 BW 423275.66 344633.66 MLS-951 BW 445702.57 311850.36

HT-204 BW 422667.76 341974.44 MLT-10 DC 511531.16 381247.26

LS-12 DC 502073.38 349966.36 MLT-4 RM 493815.12 406049.31

LS-28 DC 513017.10 384505.07 MLT-7 RM 493517.32 393048.11

LS-29 DC 483787.78 370319.23 MLT-9 RM 471052.27 383950.11

LS-30 DC 509462.87 366773.80 US-107 OUT 502670.47 392764.58

LT-10 RM 491156.21 406619.48 US-112 OUT 468726.49 378599.27

LT-14 RM 492628.56 403399.71 US-158 OUT 510356.41 342865.51

LT-21 RM 489092.90 391585.91 UT-128 OUT 501785.09 404573.10

LT-26 DC 512718.10 383315.63 UT-145 OUT 492632.35 390692.13

LT-29 DC 496188.81 368531.77 UT-148 OUT 496750.91 389514.80

MHS-17 RM 482020.12 404869.95 UT-151 OUT 491748.18 386894.66

MHS-20 RM 492340.79 391885.97 UT-153 OUT 492935.53 383905.55

MHS-581 BW 429172.97 329866.31 UT-20 BW 428841.84 358545.98

UT-27 BW 421491.81 247287.42
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