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ABSTRACT

Observations of the velocity fields over the continental shelf and slope off Oregon and off Peru have
shown that there is a phase difference in the onshore-offshore direction, with the velocity fluctuations
nearshore leading those offshore in time. It is shown here that the effects of bottom Ekman layer friction
and cross-shelf depth variation combine to result in such a phase lag in a model for forced or free long
barotropic continental shelf waves. The model also shows that bottom friction results in a smaller phase
lag between the alongshore components of velocity and wind stress than that predicted by a frictionless
model, a feature found in the observations off Oregon.

1. Introduction

In a study of velocity measurements over the
continental shelf-slope region off Oregon, Sobey
(1977) found that, at frequencies <G.16 cpd,
fluctuations near the coast lead those farther off-
shore in time. Brink et al. (1978) have obtained a
similar result off Peru. In a study of the modal
structure of low-frequency fluctuations off Oregon,
Kundu, et al. (1975) found that the alongshore
component of velocity was more nearly in phase
with the local alongshore wind stress than could be
accounted for by a frictionless model.

We shall show that these observations can be
explained by the effects of bottom friction. Kundu
(1977) has shown that a turbulent Ekman-like
bottom boundary layer exists off Oregon; Brink
et al. (1978) have concluded the same off Peru.
Gill and Schumann (1974), in their model of long
shelf waves, included the effect of bottom friction
in a gross sense, but did not consider the problem
in detail. We shall present a more explicit model
for a barotropic fluid and demonstrate the implica-
tions of bottom friction in a continental shelf-
slope region.

2. Formulation

We consider a model where a homogeneous fluid
is situated on an f-plane which effectively rotates
with a uniform angular velocity @ = 12 fk, where
k is a constant unit vector in the z (vertical)
direction in a Cartesian coordinate system and f the
Coriolis parameter. It is assumed that there is a
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straight coast along x = 0, and that a fluid of depth
H(x) exists in x < 0. The fluid has a constant
depthforx < —L, and H(0) # 0. We make the usual
approximations for long shelf waves, i.e., 1) that
there is a rigid lid, 2) that the frequency of the
motions o is small compared to f, 3) that the
width of the shelf is small relative to typical along-
shore scales, and 4) that only the alongshore com-
ponent of wind stress is important and that it does
not vary appreciably over the scale of the shelf
width. With these assumptions, the linear depth-
integrated equations of motion are

U,+V,=0, (2.1a)
fV = Hp,, (2.1b)
Vi + fU= ~Hp, + p7'(r}, — 7§), (2.1

where (U,V) are the depth-integrated (x,y) velocity
components, respectively, p is the density of the
fluid, p the perturbation pressure divided by
density, 7%(y,t) the alongshore component of the
wind stress and 7% the alongshore component of the
bottom stress. Partial differentiation is denoted by
the subscripts (x,y,?).

The bottom stress is evaluated using Ekman-layer
dynamics with a constant vertical eddy coefficient
A,. We assume that the depth of the bottom
frictional layer is small relative to the depth H of the
fluid i.e., that

EOU2 < 1, (223)
where E, is an Ekman number defined by
E, = A, (2fHy*)™, (2.2b)
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where Hy = H(x = 0) # 0. For w < f, for V> U
[implied by approximations 2) and 3) and (2.1a)],
and with the assumption of a small bottom slope
(\HII < 1), we obtain
7 = H—‘(’—) 44NV = pfEEVH,/H(x). (2.3)

For a typical continental shelf-slope region, | H,|
is generally less than 102 so that the assumption
|H,| <1 is justified. Bottom friction is neglected
in (2.1b) by assumption (2.2a) but is retained in (2.1c)
because U <V and w < f. Note that as a con-
sequence of these assumptions, bottom friction
enters (2.1c) in the form of an H-dependent drag
coefficient multiplied by V.

The continuity equation (2.1a) allows the defini-
tion of a stream-function Y(x,y,t) such that

U=y, V=—y,. (2.4a,b)

A mass transport vorticity equation for § may be
obtained from (2.1b) and (2.1¢), i.e.,

H H,
dj.z‘.z't _—I—;;‘pﬂ +f"F d’y

H

H, H *
= S B 275 0 ) + L 29

The boundary .conditions for (2.5) (Gill and Schu-
mann, 1974) are
g, =0 at x =0, (2.6a)
Ye=0 at x= —L. (2.6b)

Note that the effect of friction enters (2.5) propor-
tional to the square root of the local Ekman number

= (Ho/H)*E,, 2.7)

which decreases as H increases.
The problem will be solved by perturbation
methods for the limit

E,"2 — 0. (2.8)

The solution may be written as (Gill and Schumann,
1974)

Wryd) = 3 honkx, @9
where
Ya(0ot) = You0) + B ¥a(y,t) + ., (2.10)

and ¢,(x) is the solution of the eigenvalue problem

JHey  fHe
bnzz T bnz He. 0, (2.11a)
dn(0) = 0, ¢n(—L) =0, (2.11b,c)

where ¢, is the phase speed associated with the
nth mode. The modes are orthogonal and normalized
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such that
J e ) bu)x = 8. 2.12)
0
Substituting (2.9) into (2.5) yields
(l/cn) YOn, + Y(m,, + E01/2a7m Yon = Fn(YvI)a (2133)
(1/cn) Yin, ¥ Yin, + Eo"*aun Y1n
== E Amn Yom,» (2.13b)
s
where
Fu(y,t) = bati(y,1)/(pf), (2.13c)
= 3 bubal). (2.13d)
n=1 .

The remainder of the right-hand side of (2.5) is repre-
sented by

H, JH,
- ¢n.r
H Hc,
since ¢, satisfies (2.11a). The coefficients aum
are expressed simply by using (2.11a,b,c) and (2.12)
and by integration by parts:

©
= 2 anm¢m’

m=1

(2.13¢)

0
m = HOJ H 2 bn dx. (2.13f)
-L

The onshore-offshore variation in the importance of
friction (2.7) results in the scattering of wave energy
among modes, as shown by the right-hand side
of (2.13b).

3. An example

Consider an impulsively applied forcing de-
scribed by

p~iri(y,t) = BoH(t) explil(ct — y)],

where H(t) is the Heaviside unit function.
The solution, correct to O(E,'?), is

¥(x,y,1)
= H(D) 3 Agulxexplillct - )]

CnlunEoV2t ]} + IE, 12

3.1

- exp[il(c,lt - y) -
X i Aumbm(X )Nl ™
m=1

m#*n

e = cm)t explil(ct — y)]

- le_l(cn - Cm)_1 eXP[il(Cnt - J’) - CnannEOUZt]

— aymexplil(cnt —y) - cmammEouzt]}>9 (3-2a)
where

An = —ibuBo[(cca™ — 1) — iamEs?]™, (3.2b)

Ay = (Cp — C)epl™

X [elc, — cm) + Cmlem — c)]™2. (B.2¢)
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This may be rewritten as

P(x,y.1)
= H() éﬁl AL | ba(x)| {explilclt — by + 8p(x))]
— expli(c,lt — ly + 0pu(x)) — Ca@unEot]}

+ iEO”2 E (bm(x)anm
m=1

m#n

x explillcwt = ¥) = cmammBo'?t]], (3.32)

where the x-dependent phase lags are defined by

o
obn = tan_l{Eollz 2 ApmCm
m=1

m¥n
X [le = ca)] ' dm(x)/Pu(x)}, (3.3b)
0p, = tan~YE 12 i ApmCm
m=1
m¥*n
X [l(cn - Cm)]_l(bm(-x)/d)n(x)}- (33C)

The response (3.2) consists of five components for
each mode number n. The first order solution Yy,
consists of a forced wave and a time-decaying free
wave with phase velocities ¢ and c,, respectively.
The effect of bottom friction on the first-order
response is to damp the free waves through the
term c,a,.Eq'? in the exponential, and to bring the
forced response more nearly into phase with the
driving as can be seen from the term iq,,E,"* in
the denominator of A, [Eq. (3.2b)]. The second
order solution Y,, represents scattered waves in
modes m # n. These consist of two components
driven respectively by the first-order forced and free
modes, and are summed in (3.3b,c) to yield the
x-dependent phase lags #5,{(x) and 6z,(x). The fifth
component represents time-decaying second-order
(Y,,) free waves generated in response to the im-
pulsively started second-order response.

Fig. 1 shows the frictionally induced phase
shifts 6,,(x) and 6p,(x) for an example with
exponential bottom topography, i.e.,

H(x) = Hje =, (3.4)

The values of the parameters are listed in the
figure caption. Both 60p,(x) and 0y,(x) shift rapidly
from near 0° to near 180° at the point where
¢.(x) changes sign. The main result is that the
phase shifts decrease offshore, so that the motions
near the coast lead those farther offshore in time.

4. Discussion

The presence of bottom friction over a continental
shelf-slope region affects barotropic motion in
three ways:

1) It damps free waves with a time scale Tp
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FiG. 1. Values of the functions 0,,(x) and 8r,(x) for the first
two modes (n =1, 2) in the case of exponential bottom
topography. Parameters used are f= 1.03 x 10~* s™! (latitude
45°N), I=2x 10 cm™, A =3 x 107 cm™, L = 10 cm, H,
= 10* cm, ¢ = 278 cm s, E¢'2 = 0.12, ¢; = 443 c¢cm s™! and
¢, = 113 cm s (cl = 5.56 x 107% s~' = 0.076 cpd). (a) First
mode phase values; (b) second mode phase values.

= (CpannE¢'?) 1. For example, with exponential bot-
tom topography and with the parameter values in the
caption of Fig. 1, we obtain (for the free, first,
n= 1mode)a,;; =4.7 x 107"cm™and T = 4.6 days.

2) It brings the directly forced component of the
alongshore flow more nearly into phase with the
local driving; i.e., with no friction, Y, is #/2 out of
phase with F,(y,t), while in the presence of dis-
sipation, they are more nearly in phase. In (2.13a),
the relative importance of friction depends on the
ratios T-T ! and Ty{(c,l), where T is the period of
the forcing. In the limit of large dissipation (i.e.,
Ty <€ 1 and clTp < 1), the balance in (2.13a) is
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only between local forcing and bottom friction, so
that Y,, is in phase with F,(y,?).

3) It sets up cross-shelf phase lags such that flow
nearshore leads that offshore in time. The greater
frictional effect in shallow water (appearing as a
larger local Ekman number) retards the flow prefer-
entially near the coast. This causes a perturbation
relative vorticity growth (V,,) proportional to minus
V. The vorticity generating mechanism for inviscid
shelf waves is vortex stretching, where vorticity
is developed proportional to —U in the Northern
Hemisphere, and where U leads V for free shelf
waves. With bottom friction, there is perturbation
vorticity development near the coast proportional to
—V which leads that caused by U. Thus, vorticity
development in shallow water leads that in deeper
water where friction plays less of a role.

It is now possible to compare our results with
the observations of Sobey (1977). His data consist of
current meter records from January through April
1975 (about three months of data) over the shelf off
Oregon near 45°N. The moorings were arranged in a
line perpendicular to the coast. He computed co-
herence and phase between several pairs of along-
shore velocity records at 50 m depth, but the
most relevant pairing is that between Pikake (on
the 60 m isobath) and Wisteria (on the 225 m iso-
bath), which are separated by 23 km. For the fre-
quency band centered at 0.06 cpd, he obtained a
phase difference between the two of 35° + 23°
which is equivalent to an observed 8'(x) = (1.5 = 1)
deg km™! at the intermediate 140 m isobath. For the
data representing the summer of 1973 at a nearby
location, Kundu (1977) estimated the depth of the
bottom Ekman layer to be 12 m in water 100 m
deep. We use this value, along with the parameters
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listed in the caption for Fig. 1 (chosen to be
representative of the region) to obtain E,'2 = 0.12
and 6'(x) = 0.7 deg km™* for a frequency near 0.06
cpd. Although the parameters chosen push the
theory to the limit of its validity [from (2.5),
SFE"*(cl)™! must be small], our calculated value
agrees within error of observation, which is en-
couraging. The agreement, however, depends on the
choice of parameters E,'2, [ and ¢, which are dif-

ficult to estimate accurately.
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