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OPTIMAL POLICIES IN CONTINUOUS
MARKOV DECISION CHAINS

INTRODUCTION AND SUMMARY

This paper is concerned with continuous time, finite state and

action, Markov decision chains.

Chapter I describes the process, reviews some of the current

literature, and presents some preliminaries. A transformation is

introduced in the final section of Chapter I and using this transforma-

tion it will be established that the terminal reward vector may be

transformed without altering optimal policies.

In Chapter II decision chains with absorbing states are first

discussed and the results obtained are applied to an environmental

control problem.

The next section deals with (-optimal policies, and under a

recurrence hypothesis, a result is given for finding the set of decision

rules that may be used as the stationary segments in initially

stationary E -optimal policies. The value of E -optimal policies is

further shown by an example in which there does not exist an initially

stationary optimal policy.

Stationary and initially stationary optimal policies are studied

in Section 4 of Chapter II. The results obtained provide necessary

and sufficient conditions for a stationary policy to give maximal
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expected rewards on various recurrent states.

Referencing of results stated in a different chapter will be done

by giving the chapter number following the designation of the result,

i.e., Lemma 2, I, indicates Lemma 2 of Chapter I. For results in

the same chapter, the chapter reference will be omitted.



I. PRELIMINARY RESULTS

0. Introduction

The system will be introduced in Section 1 while Sections 2, 3

and 4 will be devoted to giving additional structure plus some of the

known results in the literature. The formulation used here follows

the same notation as that of Lembersky [12].

The final section deals with the vector of terminal rewards.

Using a transformation, it is possible to replace the terminal reward

vector in RN with any other vector in RN and not alter the

optimal policies. This result will be of special value for converting

the terminal reward to zero.

1. The System

Consider a system that is always in one of N states, labeled

S = {1, 2, , N}. When the system is in state i, as action a is

selected from the finite set A., an A, being defined for each

i.E S. For each action a E A. there is a set of transition rates

{c1(j I i, a), j E S} and a reward rate r(i, a). The transition rates

satisfy

q(j I i, a) = 0 and q(j i, a

j=1

for j i.

3
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N
Let F = X A. and say f E F is a decision rule. Then for each

f E F, let Q(f) denote the N x N Markov infinitesimal generator

matrix whose ijth element is q(j I i, f(i)) and let r(f) be the

N x 1 column vector whose ith component is r(i, f(i)).

A policy 7: [0, 00) > F is any measurable function which

specifies for each t > 0 a decision rule in F. The policy 7

being measurable means that for every f E F, {t > 0:7(0 = is a

Lebesgue measurable subset of [0,00). Note that Tr describes the

actions to be selected for every possible combination of times and

states of the system. A policy Tr is defined on the entire interval

[0, w), but in a decision process of duration t using Tr, only the

decision rules Tr(s), 0 < s < t are used.

In the current discussion take [0,00) as the time index and

reverse time so that, for a process of duration t > 0, the process

begins at time t and the time index decreases to zero.

From Miller [14], for each policy Tr, the set {(1)(7(t)),t >

determines a continuous time Markov process, with piecewise con-

stant sample paths, and with transition function P(t, s; Tr), for all

t > s > 0. Also for each t > 0, P(t, s; u) is the unique, absolutely

continuous in s matrix function satisfying

(1)
-a

s; u) = P(t, s; u)Q(ir(s))
as
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for almost all 0 < s < t, with initial condition P(t, t; Tr) = I. The

ijth element of P(t, s; Tr) is the probability that the system is in

state j at time s (< t), given that it was in state i at time t

and that the policy TT is being used.

For P(t, 0; Tr), an abbreviated notation will be used, namely

P(t; Tr).

Let v be the N x 1 column vector of terminal rewards,

such that, if the process ends in state i then the terminal reward

is the i th component of v.

For every t > 0, let V
t(n-,

v) be the vector of total expected

rewards earned during a process of duration t, using the policy Tr

and with terminal reward v. Then,

(2) V
t(n-, v) = J P(t, s; TT)r(n-(s))ds + P(t; Tr)v for all t > 0.

0

2. Policies

oo
A policy Tr is called stationary and denoted by f if n(t) = f,

for all t > 0 and some f E F. It is said to be initially stationary

if there is a 0 <t < co

s > t.

and an f E F such that Tr(s) = f for all

The policy Tr* is called an optimal policy if

V
t(n*, v) > Vt

(Tr, v) for all policies Tr and all t > 0. An optimal
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policy maximizes total expected rewards in every component and for

all t > 0 simultaneously.

A policy Tr is E -optimal if, for E

sup I Vt(Tr*, v) -V
t

(TT, v)1 < E .00 -
t > 0

The policy Tr is said to be piecewise constant and right

continuous if the function Tr(t) is piecewise constant in t and if

Tr(t) = lim Tr(t+s) for all t > 0.
s 0+
The first theorem follows from Miller [14], and is given in

Lembersky [12].

Theorem 1 Let v E RN denote the vector of terminal

rewards.

(i) There exists a piecewise constant, right continuous optimal

policy.

If an optimal policy is restricted to be piecewise constant and

right continuous, then

(ii) a necessary and sufficient condition for the piecewise con-

stant right continuous policy, Tr, to be optimal is that

r(Tr(t)) + Q(Tr(t))Vt(Tr, v) > r(g) + Q(g)Vt(Tr, v)

for all g E F and t > 0, and further
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(iii) for any optimal policy Tr*, V
t(n-4',

v) is continuously

differentiable in t, and

dt V
t

(Tr*, v)
r(rr*(t)) + Q(Tr*(t))Vt(rr*, v) for all t > 0.

It will be useful in the duration of this paper to restrict, without

loss of generality, any optimal policy to be piecewise constant and

right continuous.

1 tTo conclude this section, let U = lim V (Tr*, v), which

is well known to exist. Note that U is the maximum possible

long-run average return rate.

3. Decision Rules

Properties of decision rules and the related stationary policies

will be discussed in this section and the results given will be used

later sometimes without reference.

For a stationary policy f
co

, the resulting process is the

continuous time parameter stationary Markov process generated by

the matrix Q(f).

From (1), P(t, s; fw) = e(t-s)Q(f)

00

for all t > s > 0, where

euQ( ) = I + Qn( )n!
n=1
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00 co
Note that P(t, s;f ) = P(t-s;f ), for all t > s > 0. Also from Doob

[4], for each f E F, there exists an N x N stochastic matrix
oo

P*(f), such that lim P(t;f ) = P*(f). Additionally,
t ~ 00

00

1)*(f) = P*(f)P*(f) = P(t; f00)P*(f) = P*(f)P(t;f ),

for all t > 0, and

QMP*M = P*MQM =

co

Next, define for each f E F, y(f) = [P(t;f°°)-P*(f)]r(f)dt.
0

From [15], y(f) exists and is the unique solution to the system

P*(f)y(f) = 0

r(f) + Q(f)y(f) = P*(f)r(f) .

For the next Lemma, parts (i) and (ii) may be found in [1 4],

while (iii) is from [12].

Lemma 1. For f E F and v E RN

00

t
(f

00

n!(i) V , v) = v + Q
n-1 (f)[r(f)+Q(f)v] for all t >0 .

n=1

(ii) Vt(fx, v) = r(f) + Q(f)Vt(fx, v) for all t > 0.

(iii) Vt(fx,v) tP*(f)r(f) > y(f) + P*(f)v as t > 00.

In view of Theorem 1 and Lemma 1 it may be useful to observe a



different representation for r(f) + Q(f)Vt(f ,v) where f E F.

From Lemma 1, (i), with v = 0,

00

tn n-1r(f) + Q(f)Vtaw, 0) = r(f) + Q(f)[-t r(f) + n (f)r(f)]
!

n=2

oo

= r(f) + Q(f)r(f)t + -t7n Qn(f)r(f)

00

= +

n=2

n! Qn(f)1r(f)

n=1
hence

(5) r(f) + Q(f)Vt (foo, 0) = P(t; fx)r(f)

For v 0, it also follows using (2) that

r(f) + Q(f)Vt(fw,v) = r(f) + Q(f)Vte, 0) + Q(f)P(t;f°°)v

Then from (5),

r(f) + Q(f)Vt(fcc,v) = P(t;fx)r(f) + Q(f)P(t;f
oo

)v ,

or

(6) r(f) + Q(f)Vt(fw,v) = P(t;f°°)[r(f)+Q(f)v]

d t 00The equation in (6) gives an alternate way of finding dt V (f , v)

oofrom P(t;f ) and is useful for later examples. Equations (5) and

(6) also provided the motivation for the transformation given later in
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Section 5 of this chapter.

Part (iii) of Lemma 1 implies that, for f E F,

lim t1 t 00(f, P*(f)r(f) .
00

Hence define the set F' = {f E F:P*(f)r(f) = Then for f E F'
oo

f maximizes the long-run average return rate over all policies n.

The set F' is not empty as is shown in [15].

Define, for f E F, C(f) to be the set of recurrent states in the
oo

Markov process generated by f , and let C = v C(f).
f E F'

For B a matrix, B 0 if the first non-zero element of

each row of B is positive, and B 0 if B 0 and B 0,

where 0 is a matrix of all zeroes. Also, if A is of the same

dimension as B, then B (H A if B A (H 0.

Define for f, g E F, the vector

qi(g, f;y(f)) = r(g) + Q(g)y(f) - P*(f)r(f),

and the matrix

g(g, f;y(f)) = (Q(g)P*(f)r(f), Og, f;y(f))

Let

G(f) = {g E f:g(g, f;y(f)) 0 }

From [15], there exist decision rules f E F for which G(f) is

empty, and whenever G(f) is empty, f E F' and (g,f;y(f)) 44 0
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for every g E F.

For f E F, let E(f) = {g E F:Pg,f;y(f)) = 01. Since f E E(f),

E(f) is not empty. It should be noted that elements of E(f) can be

determined on a component by component basis. Also from [11], if

f E F', then E(f) is a subset of F'.

For x E RN, define

D(x) = {f E F: (P*(f)r(f), y(f) + P*(f)x)

(P*(g)r(g), y(g) + P*(g)x), for all g E F}

It is known from Lanery [9] and Lembersky [11] that D(x) is not

empty. Also for f E D(x), let x* = y(f) P*(f)x. Note that

D(x) C F'.

4. Existence of E -Optimal Policies

The next two theorems are taken from [12] and will be used

frequently in the following chapters.

Theorem 2. As t > 00, V
t (Tr*, v) - tU converges to some

vector V E RN, and V = V* .

Theorem 3. There is an f E F such that for every E > 0

there is a t(E) > 0 for which the initially stationary policy TrE ,



TrE(t) =

ir*(t) for t < t(E)

for t > t(E )

12

is E -optimal.

Following [12], let F* denote the set of decision rules,

called preferred, from which the stationary parts of the policies TrE

of Theorem 3, are formed.

The last results are from [13], and the first one characterizes

the set F* in terms of V.

Theorem 4. The following are equivalent.

(i) f E F*.

(ii) f E F' and V = y(f) + P*(f)V.

(iii) f E F, Q(f)U = 0, and r(f) + Q(f)V = U.

Lemma 2. If f E F and Q(f)U = 0, then r(f) + Q(f)V < U.

Theorem 5. There exists a t* > 0 such that if Tr*(t) = f

for any t > t*, then f E F*. Further, either Tr (t) = f for all

t > t*, or there are an infinite number of distinct intervals over

which 7* is constant and equal to f.

5. Transforming the Terminal Reward Vector

In this section an apparently useful transformation will be

introduced for the rewards of a Markov decision chain. One of the
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results established will be that this transformation does not alter

optimal policies.

For iany z E RN, define for each a E A., = 1, 2, , N,

the transformation

r(i, a) = r(i, a) +

Thus for any ( ) E F,

(7)

[q(j i, a

j=1

r( ) = r( ) + Q( )z .

For any policy Tr under which rewards are given by r( ) as

in (7), let V
t

(Tr, w), denote the vector of total expected remaining

rewards in a process t time units from termination when the

terminal reward is w E RN.

Lemma 3. Let v, w E RN. Set z = v - w and let r( ) be

given by (7).

For any piecewise constant right continuous policy Tr,

V
ten, v) - Vt(Tr,w) = z for all t > 0 .

Proof: Assume
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1

f2, t < t < t
2

Tr(t) =

1,

f
k

, tk-1 < t < tk

From Lemma 1, (i) it follows that

Therefore,

V
t(fx, - V-t (f

00 , w) = z for all t > O.

V
t
(Tr, v) V

t
(Tr, w) = z for all 0 < t < tl

So by induction assume that

V
t
(Tr, v) - V

t
(Tr, w) = z for all 0 < t < tk

tk tir
Let vt = V (Tr, v) and wt = -(rr, w). By the continuity of

k k
terr,

) and -t
V (rr, ), vt - wt = z. Then from (Z),

00 oo
V

t(f
k+1

, vtk ) - V t
(f

k+1
,wtk ) = Vt(f

k+1
, 0) V

t
(fk+1, 0) + P(t;f

k+1
)z

for all t > 0. Now from Lemma 1, (i) again
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to
V

t
(f00 0)

-.\7.t(f0° , 0) - - Q (f )z
k+1 k+1 n!

n =1

Hence

= z [I +

00

n=

t
Qn(fk-1-1.)]zn!

tQ(fk+1)
= z - e

00
= z - P(t;fk+1)z for all t >

00t(f°
° , v ) V

t
(f ,w ) = z for all t >

k+1 tk k+1
wt

Therefore, V
t

(Tr, - Vt(n-, w) = z for all 0 < t < t
k+ 1

, so the

inductive argument is complete.

If the policy Tr is initially stationary, the inductive argument

above is modified accordingly.

For the remainder of this section consider the transformed

system to have a terminal reward of w E R and rewards given by

(7), with z = v - w.

Theorem 6. The piecewise constant right continuous policy IT *

satisfies V
t(Tr,':', v) > Vt

(Tr' , v) for all policies Tr' and all t > 0 if

and only if V
t
(Tr*, w) > V

t
(Tr', w) for all policies Tr' and all t > 0;

i.e. , the transformation (7) does not change optimal policies.

Proof: From Lemma 3, it follows that
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V
t (Tr*, v) - V

t
(Tr v) = Vt

(Tr*, V
t ,

, w), for all t > 0,

from which the theorem follows.

Remark 1. Of interest is the case where w = 0 and

z = v - w = v. In this instance the transformation (7) becomes

r( ) = r( ) + Q( )v for all () E F. Then Theorem 6 implies that a

Markov decision chain with a nonzero terminal reward may be trans-

formed to one having a zero terminal reward, without altering

optimal policies. Hence to prove results regarding Tr*, it may be

enough to prove these results when v = 0. For example, Miller's

result stated as Theorem 1 was originally proven for v = 0. In view

of the results in this section it follows that his result holds for any
Nv E .K

Let U, F', V, F*, y( ), D( ), and x* be the obvious

analogs in the transformed system of respectively, U, F', V, F*,

y( ), D( ) and x*. The relationship between these quantities is

given by the following corollary.

Corollary 1.

(i) U = U.

(U) =

(iii) V = V + z.

(iv) F* = F*.



(v) For any f, y(f) = Y(f) + [I-P*(f)]z.

(vi) D(v) = D(w).

(vii) v = w* + z.

Proof: Since P*( )Q( ) = 0, for all ( ) E F, it is clear

that U is unchanged by (7), hence F' is also unchanged.

From Lemma 3 and Theorem 6, for any optimal policy Tr*,

V
t v) - tU = V t

(Tr*, w) tU + z for all t > 0.

Hence as t > oc,

any f E F,

17

it follows that V = V + z which implies that for

r(f) + Q(f)V = r(f) + Q(f)[V+z]

= r(f) + Q(f) V .

Thus from Theorem 4, F* = F*.

and

From Lemma 1, (iii), for any f E F,

y(f) + P*(f)v = lim [Vt(fx , v)-tP*(f)r(f)]
t' 00

y(f) + P*(f)w= lim [Vt(f°°, w)-tP*(f)/7(f)] .

t 00

So by Lemma 3 and (7),
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y(f) + P*(f)w = lim [Vt (f w,v)-z-tP*(f)r(f)]
t co

y(f) + P*(f)v z .

Thus D(v) = D(w) and w* = v* z.

Remark 2. Consider Corollary 1, (vi) with w = 0. Then

D(v) = D(0). In view of the algorithm given by Veinott [17] for finding

a decision rule in D(0), it is clear that his algorithm may also be

used for finding a decision rule in D(v) by first applying trans-

formation (7) with z = v to the system. Hence the above results

provide an alternate to the algorithms of Lanery [9] and Teghem [16]

for finding a decision rule in D(v)



II. OPTIMAL POLICIES

0. Introduction
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Section 1 considers the problem of continuous time decision

processes with n > 1 absorbing states. It will be established that

when n >1 there need not exist a stationary optimal policy, how-

ever, the set F* will be shown to be equal to the set D(v) hence

giving the entire set F*. An application of this result to a control

problem is also included.

Single class decision rules are utilized in Section 2 to give a

characterization of the set F* in terms of the set E(f), where

f E F has G(f) empty and each g E E(f) is single class.

In Section 3 some counterexamples are given. The motivation

for these examples comes both from possible conjectures stated by

other authors and from conjectures related to results given here.

Section 4 of this chapter gives necessary and sufficient

conditions for a stationary policy to attain maximal expected rewards

on various recurrent states. When the recurrent states include the

entire set S this results in necessary and sufficient conditions for

a stationary policy to be optimal. These results may also be extended

to give necessary and sufficient conditions for initially stationary

policies to attain maximal expected rewards on various recurrent

states when total expected rewards using Tr* are known at some
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time point t > 0. Additional implications of these results suggest a

natural refinement of the set F* when stationary optimal policies

are known to exist.

The final section of this paper discusses the question of

existence of initially stationary optimal policies and, for N = 3,

presents a possible approach to solving this problem.

1. Absorbing States

Several authors have treated the case of a single absorbing

(stopping) state, (see Veinott [18]) and have established the existence

of a stationary optimal policy. This section considers continuous

time decision processes with n > 1 absorbing states.

Consider a Markov decision chain with the following structure.

Let

S = {1,2,...,n,n +1,...,N },

where C = {1, 2, ... ,n} are absorbing states under every decision

rule, and T = {n+1, , NI are transient under every decision rule.

Thus for each i e C, A. consists of a single action at for which

q(j I i, a ) = 0 for all S. Further, for any f E F, C(f) = C.

The following notation will be used, with the obvious partitions for

recurrent and transient states. Write
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Q(f) =
0On

x n
, P*(f) =

I nxn
Q TR (f) T (f) P*TR

(f) 0

It is clear that for i E C, U. = r(i, a and, from (3), I, that

yi( ) = 0. In other words,

Y(f) =
On x 1

YT(f)
and r(f) =

r (f)

rvc
If v = LvTis the vector of terminal rewards, then by Theorem

2, I and since for all

VitV.(Tr,v) = v.
1

+ t r(i, al) for each i E C(Tr,

V

Theorem 1.

[vv VT

F* = D(v) .

Proof: From Theorem 4, I, f E F* if and only if f E F'

and V = y(f) + P*(f)V.

Hence, for any f E F*,

VT = yT(f) + (P*
R T(f) 0)V = y (f) + P*

R
(f)V

C = YT (f)(f) + P*
R

(f)v
C

.
T
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Now since V
tOr*, v) > Vt(fw,v) for all t > 0, it follows from

Theorem 2, I and Lemma 1, (iii), I, that

yT(f) + P*TR
(f)V

C
>

Thus f E D(v).

( ) + p*
TR

( )v
C

for all ( )

Further, for any other g E D(v),

VT = yT(f) + P4c,R(f)vc = yT(g) + ( )vc = YT(g) + P4,RVc

so g E F*. Hence F* = D(v).

Remarks.

1. The vector V is given by

v
V = v* = yT(f) c+P,I,R(f)vj,[ for any f E D(v).

2. The set F* and the vector V are independent of vT.

3. Theorem 1 gives the entire set F* and from Theorem 5, I,

in the case where D(v) is a singleton set, provides the

rule that must be used as the initially stationary piece of

every optimal policy. However, when n > 2 the rule (or

rules) provided need not be stationary optimal (i.e., in

general there need not exist any stationary optimal policy,

as is always the case when n = 1). This may be seen
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from the next example.

Counterexample 1. Assume there are two decision rules,

F = {f, g}, differing

state. Let

r(f) =

r(g) =

only

1

-1

2

.Malk

1

1

2.[

in their actions

Q(f) =

Q(g) =

5

and rewards

0 0 0

[0 0 0 0

0 1 -1 0

1 1
0 -1

2 2

0 0 0 0

0 0 0

0 1 -1

1
0 -1

2

in the fourth

Set v = 0. Then by Theorem 1, I there exists a t' > 0 such that

Tr*(t) = g, for

Note that

P*(f) =

0 < t < t' .

1 0 0

0 1 0

0 1 0

1 1
0

2 2

[
0

0

0

0

and P*(g) =

1

0

0

0

0

1

1

1

0

0

0

0

MIS

0

0

0



so F' = {f, O. Using (3), I , and (4), I, it follows that

while

-yT (f ) + P*
T

(f)v
c 1

= ( )
2

-2
Y (g) P*T (g)v

5
= ( )c

Hence F* = {f}. Therefore, neither fco co
nor g is optimal.
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Applications. As discussed at the beginning of this section the

case of a single absorbing state has received much attention and gives

a useful model for many problem areas. To indicate potential uses

for the structure with several absorbing states, applications to

environmental control problems will be briefly indicated.

A recent survey by Jaquette [7] provides a good summary of the

literature in the area of control problems for biological populations,

including the usage of discrete time Markov decision chains and

optimal stopping rules.

Becker [2] develops an analytical model for the control of pests

in a habitat. He assumes the growth of a pest population to be accord-

ing to a simple birth, death, and immigration process with the control

of the growth taken over a finite time interval. Becker obtains func-

tional characteristics of the optimal control functions p(t) = X(t) - 11(0

which indicates an action to be taken causing an impact on birth rate,
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death rate, or on both. Control actions using insecticides, parasites,

predators or possibly the introduction of diseased pests to spread a

virus into the population would then be considered. Becker then uses

the calculus of variations to find an a priori optimal p(t).

An alternative formulation for the control of pests as a

continuous time Markov decision chain with absorbing states is given

next and the preceding results of this section may be applied to obtain

decision rules in the set F*.

Consider a population of pests in a given habitat. When the level

of pests can become damaging to the crop or renewable resource in

the habitat, the problem of controlling the pests is of interest. It

becomes necessary to weigh the cost of controlling the pests against

the damage done by them. A possible formulation in the framework of

this paper involves identifying the appropriate states of the system,

available actions in each state, transition rates for each action, cor-

responding reward rates and the vector of terminal rewards.

Assume that measurements can be taken to determine the degree

of infestation to a crop in a given area and the residual level of the

treatment (e. g. , D. D. T. ) in the related environment. The process

is then assumed to be observed in one of two classes of states, one

class consisting of absorbing states, and the other consisting of

transient states. The various absorbing states represent both

desirable and undesirable permanent situations, while the transient
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states are such that the system is eventually absorbed into one of the

absorbing states. If no action is taken in a transient state, it is then

possible for the system to move to an undesirable absorbing state (the

crop is destroyed). If an action is taken in a transient state, it is

expected that the system will move to either a desirable absorbing

state (the crop is in good harvest condition) or an undesirable absorb-

ing state (residual level of treatment is too high) with varying rates

depending on the action taken.

Define as follows:

State 1. Less than K1 pests per unit of area.

Here K1 represents an acceptable level of pests (i.e. , K1

may be the threshold where losses are considered negligible and the

birth and death rates are such that the population is assumed to stay

less than K1).

Let Al = {NA} indicating no treatment action is to be taken,

and q(ji 1,NA) = 0 for all j E S. Also, r(1, NA) = 0, no rewards

or costs are earned until the crop is harvested at t = 0. Set

vl = M1 > 0, where M
1

is the market value of an undamaged crop

at harvest.

State 2. Residual level of treatments applied is too high and

damage is done to the environment.
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Let A2 = {NA} and q(j1 2,NA) = 0 for j E S. Set

v
2

= -M2 < -M
1

where the damage done to the environment is con-

sidered to be monetarily greater than the value of the crop. Also let

r(2, NA) = 0.

State 3. More than K2 pests per unit of area (K2 >K1).

This state indicates that the crop is destroyed.

Let A3 = {NA} and q(j 13 , NA) = 0 for all

v3 = 0 and r(3,NA) 0.

E S. Set

Let KI,K1+1, ,K2 indicate the number of pests per unit of

area and set S = {1,2,3,K1,K1+1,...,K2}. For i = K
1

let A 1.= NA, a . . , a
k

} , where a , . . . ak, are levels of treat-

ment with a. < ai+1, j = 1, ... ,k'-1, and NA indicates no

treatment.

For i E {K1+1, , K2-1}, let q(i+1 I i, NA) = Xi,

q(i-1 1 i, NA) = and q(i 1 i, NA) = -(p.i+Xi) with A. >11.. For

i = K1 , let q(Ki +1 1 K1 , NA) = X , q(1 I , NA) =
1

and

q(Ki 1 K , NA) = -OAK
l-Fp.K1).

For i = K2, let q(3 1 K2 , NA) = X
K2

q(K2-1 I K2, NA) =
K

and q(K2 I K2, NA) = -(XKp. K+).
2 2 2

For a., j =-- 1,,k', let q(11i,a.) = L.. , q(21i,a.) = L..23 3 131 3 13

and q(21 La.) = -(L..ii +L..-L ) for i = K1, , K2, where L,.1
3 ii 13 13

increases as a function of j for each i and L.. increases as a
132

function of j for each i.
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Set v.
1

= M
1

- di, i = K1, .. , K2, where d > 0 and di

represents the dollar loss of crop at harvest due to the level of pests.

Al <let r(i,a.) 0 and strictly decreasing in j, with -r(i, a.)

representing the cost of the treatment.

Hence the process described has C = {1,2,3} and

T = {Kr K1 +1, ,K2} Theorem 1 may then be used to find an

f E F*.

The number of computations in finding such an f E F* can be

quite large for any problem involving several transient states. A

considerably simplified, but illustrative variation of this form is

given next having only one transient state, with several actions avail-

able in this transient state.

Consider states 1 and 2 to be as given before. Let state 3

denote K1 or more pests per unit of area and S = {l, 2,3 }. In

state 3 a treatment will necessarily be taken, the optimal level of

treatment to be applied as a function of time is to be determined.

Thus assume that A3 = {a, 2a, 3a, ... ,ka.), where a, , ka are

levels of treatment with ja < (j +l)a, j = 1, , k-1. Further,

assume that

q(113,ja)=K+ aj

q(213,ja) = e3 ,
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i.e. , the transition rate to state 1 increases linearly as a function of

j while the transition rate to state 2 increases exponentially in j.

Further assume that K > 0, a > 0 and that K+a > e. Set v
3

= 0

and let r(3 , ja) = -C - f3j, C > 0, p > 0, so that the costs increase

as a linear function of

Hence

i
Now for each ( ) E F with action

0

Q(.) = 0

K+aj

P*( ) =

1

in state 3, 1 < j < k,

0

OM,

0

0 r( ) = 0

e3 K-aj-ej -C -13j

0

K+aj

K+aj+ei

1

0

0

0

y( ) =

0

0

c+pj

K +aj +e3 K+aj+ei

or..

y( ) + P*( )v =

M1
-M2

-(C+P.i) +
M (K+aj) M2e

K+aj+ej K+aj+e3 K+aj+ej

Select j* E {1, k} such that

-C-13j*+M1(K+aj*) -M2e3* -c-pj+Mi(K+aj) -M2e3

K-F4j+eiK+aj*+ej*
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for all j = 1 , 2, ,k and choose f E F with f(3) = j*a. By

Theorem 1, f E F*. In other words, a preferred rule may be easily

computed.

By using the fact that Theorem 1 implies V = v*, under a
00

condition on the problem constants, it will be established that f

is, in fact, an optimal policy. To see this, first note that for g E F

with g(3) = ja, 1 < j < k, it follows by induction that for all n > 1,

Qn(g) = [-(1c+aj+ei)]n-1Q(g).

Therefore, by Lemma 1, (i), I, for all t > 0,

V 3(g
00 ,v) = t(-C-Pj+(K+aj)M1 -Fe3(-M2))

00

-t-- ((K+aj)(-K-aj-ei)n-Zej(-K-aj-ei)n-2(-K-aj-ei)n-1)n!
n=2

x

0

0

-C -(3j+(K+aj)M1 -Fej(-M2)_

00

= 11-1-[-c-pj+m 1(K+aj)-M j](-K-aj-ej)n-1
n.!

n=1



Hence

31

c+pi-M1(K+aj)+M

K +aj +e3

00

n=1

-t(K+aj+eir
n!

c+pi-m 1(K+aj)+M 2 ei -t(K+aj+ei)

K +aj +e3

Vt (g
00,v

M1

-M2

Vt
3

(goo , v)

for all t >

Note that P*( )r( ) = 0 for all ( ) E F so that F = F'

and U = 0.

For all ( ) E F and all t > 0, let

.0t(f, ;v) = r(f) + Q(f)Vt(fc°,v) r( ) Q( )Vt(foo, v) .

By Lemma 1, (iii), I, as t > 00 , cpt(f, ;x) > -r( ) Q( )[y(f)+P*(f)v].

Now since V = v* and f E D(v), y(f) + P*(f)v = V. Hence, by

Lemma 2, I, 41t(f, ;x) > -r( .) Q( )V as t > 00, and

-r( ) - Q( )V > 0 for all ( ) E F. Further, for all g E F such

that g(3) = ja,
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1)3(f, g;x) = P(j-j*) aMi(j-j*) + M2(e -e

c+pi*-m
1
(K+aj*)+M

[a(j-j*)+eJ-e3 ] [

-t(K+aj*+eji )

Therefore, 4) (f, g; x) is of the form

t
(f, g; x) =

/ aft,

0

0

a+b[e- \ft-1]
%OW

K+ aj*+ej*

where a and b depend on g(3), but not t.

Lemma 1. If r(f) + Q(f)v > r( ) + Q( )v for all ( ) E F,

co
then f is an optimal policy.

Proof: Since for any g E F, r(f) + Q(f)v > r(g) + Q(g)v and

.4)3(f, g;v) = a + b[ it follows that a > 0. Since

lim 4 t(f, g;v) > 0 and since .)t4.) (f, g;v) is monotone for all t > 0,
t 00

co
4,t(f, g;v) > 0 for all t > 0. From Theorem 1, I, f is an optimal

policy.

Theorem 2. If
C+P+M

2
e-M 1K

p+M
2

e(e -1)
< a <

M1 M1

j* = 1 and the policy f°° is optimal, where f(3) = j*.

, then



p+M2e(e-1)
Proof: For a < it follows that for all j > 2,

M
1

aM1(j-1) < P(j -l) + M2(j-1)(e2-e), and, by induction on

(j-1)(e2-e) < ei - e,

it follows that

for j >2.

>2,

so aM1(j-1) < P(j-1) + M2(e3 -e) From this

-C p + M1(K +a) - M2e > - pi + M1(K +aj) ,

Since a >
C-1-13+M2e-M K

M1

-C - p + M1(K +a) M2e > 0. Hence for all

it follow that

> 2,

-C -P+M
1

(K+a)-M
2

e -C-Pj+M
1
(K+aj)-M ej

K+a+e

so j* = 1. Also, for j > 2

-C p + M1(K +a) -M2e > -C Pj + M1(K +aj) - M

implies that r(f) + Q(f)v > r( ) + Q( )v for all ( ) E F. Hence

cofrom Lemma 1, f is optimal.

2. Single Class Decision Rules and the Set F*

For f E F, write

rR(f)
r(f)

r
T

(f)
and y(f) = R(f)

yT(f)

33
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the partition indicating the recurrent and transient states for the

Markov chain determined by f. The next Lemma will be needed for

the main result of this section.

Lemma 2. Let h, g E F' and assume h(i) = g(i) for all

E C. Then yR(h) = yR(g)

Proof: It is clear that h and g have the same recurrent

classes, rR(h) rR(g) rR' and upon partitioning Q(h) and

Q(g) corresponding to the recurrent states, C(h) = C(g), and the

transient states so that

Q(h) =

TRQ (h) Q ( QTR.) QT(g)

QR
Q(g)

QR 0

(g) =

it follows from standard Ma.rkov chain theory that

P*(h) =
PR 0

and P*(g) =
1:)!L'

(h) 0 P* (g) 0

Then from (3), I and (4), I,

to the same set of equations.

y (h) and (g) are unique solutions

P*y = 0
R

rR + QRyR = PArR ,
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hence YR(h) = yR(g)

The next Lemma is from Lembersky [13].

Lemma 3. If f E F and G(f) is empty, then there is a

g E F* ;

(i) such that g(i) = f(i) for all i E C(f), and

(ii) there is an h E E(f) such that h(i) = g(i) for all i E C.

The following result strengthenes an earlier theorem by

Lembersky in [11] with the hypothesis that each g E F' be single

class. A decision rule g is single class when the resulting Markov

chain has a single recurrent class (and possibly some transient

states).

Theorem 3. If f E F with G(f) empty and each g E E(f)

is single class, then E(f) = F*.

Proof: Let g E F*, h E E(f) such that

h(i) =
g(i), i E C

Such a choice is possible from Lemma 3, (ii). Then since E(f) C F'

and by Theorem 4, I, both h and g are in F'. Therefore,

C(g) = C(h). Clearly h is single class, hence g is single class.

From Markov chain theory, when a decision rule is single class, each
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row of P*( ) is the same. Hence there exists a scalar u, such

that U = u 1, where u 1 denotes the N x 1 column vector

each of whose components is equal to u. Further, there exists a

scalar k such that P*(g)V = k ° 1. By Theorem 4, I, this implies

V = y(g) + k 1, and thus for any ( ) F, Q( )V = Q( )y(g) nd

Q( )U = 0, so from Lemma 2, I, G(g) = (1)

Since h E E(f), by (4), I, Q(h)y(f) = Q(h)y(h), or

Q(h)[y(h)-y(f)] = 0. Also, by (3), I, P*(h)[y(h)-y(f)] = P*(h)[-y(f)]

So from Miller [15, p. 567], y(h) y(f) = P*(h)[-y(f)], and since

h is single class, there is a scalar I such that

(1) y(h) y(f) = 1.

It follows that G(h) is empty.

From Lemma 2, yR(h) = yR(g). Also, G(g) empty and

Q(h)U = 0 implies

r(h) + Q(h)y(g) U < 0 ,

and since

r(h) + Q(h)y(h) - U = 0 ,

(2) Q(h){y(g)-Y(h)] < 0 .

Now using the notation from the proof of Lemma 2, (2) gives

Q
TR

(h)ly
R

(g)-y
R

(h)] + Q (h)[y (g)-y
T <(h)] 0 ,



or

QT(h)LYT(g)-y
T

(h)] < 0 .

Now since QT(h) has an inverse with all nonpositive elements, it

follows that y(g) > y
T

(h).

Similarly, G(h) empty gives y,r(g) so

From (1), then

(3) Y(f) = y(g) 1

y(g) = y(h)
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Let h' E E(f). From (1) and (3), r(h') + Q(h')y(g) - U = 0, and

since V = y(g) + k ° 1, it follows that r(h') + Q(h')V - U = 0 and

Q(h')U = 0. So from Theorem 4, I, h' E F*, and E(f) C F*.

Let h' E F*. Then Q(h')U = 0, and r(h') + Q(h')V U =

From (3) and V = y(g) + k ° 1, h' E E(f), so F* C E(f) and the

proof is complete.

The first corollary follows immediately from the argument that

G(g) is empty that is given in the proof of the preceding Theorem.

Corollary 1. If f E F* and f is single class, then G(f)

is empty.

The next corollary offers an alternative hypothesis under which

E(f) = F* for an f in F such that G(f) is empty.
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Corollary 2. If f E F with G(f) empty, f is single class,

and C(f) = C, then E(f) = F*.

Proof: From Lemma 3, (i), there exists a g E F* such that

f(i) = g(i) for all i E C. The result then follows using the argu-

ments of the proof of Theorem 3.

3. Counterexamples

In this section several examples are given. Motivated by

Theorem 3, a possible assertion might be that for some f in F

with G(f) empty, E(f) F* is always non-empty. The first

example of this section will show that this need not be true. (It is

also apparent from Theorem 1 that in general the set F* is not

independent of the terminal reward v, as it is under the hypothesis

of Theorem 3 or Corollary 2. ).

Counterexample 2. There are two decision rules, F = {f,

differing only in the third state. Let

0 0 0 1 0 0 0

Q(f) = 0 0 0 , r(f) = 1 ; Q(g) = 0 0 0 , r(g) =

1/4 -1 3 1 -1X3/4
ow, ,

Then
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P*(g) =

P*(f) =

1 0

0 1

0 1

1

0

3[
am,

0

0

0

0 0
1 0

/4 1 /4 0

y(g) =

110 ..wo.

0

0

1

y(f) =

and

0

0

2

U

,

1

1

1

Note that

r(g) + Q(g)y(f) - U =

hence G(f) is empty. Set

V

0

2

0

0

Then from Theorem 1, it follows that F* = {g}. Now G(f) is

empty, g E(f), so E(f) (Th is empty. Further, since

r(f) + Q(f)y(g) - U =

NW.

0

0

1

is the only decision rule with G( .) empty.



40

Several interesting conclusions regarding the set F* will be

drawn from the next example.

Counterexample 3. Again there are two decision rules,

F = {f, g}, differing in the second state. Let

-1 1 0 0

Q(f) =
1

[

-1 0 0

r(f) =
0 1 -1 0

0 1 0 -1

,
-1 1 0 0

Q(g) =
0 -1 1 0

r(g) =
0 1 -1 0

0 1 0 -1

Then

0

2

1

1

1 /2 1 /2 0 0 0 1/2 1/2 0 1

1 /2 1 /2 0 0 0 1 /2 1 /2 0 1

P*(f) P *(g) U
1/2 1/2 0 0 0 1/2 1/2 0 1

1 /2 1 /2 0 0
moablO

0 1/2 1/2 0 1

1
Set v = 0. Then by Theorem 1, I, Tr*(t) = f on 0 < t < t , for

some t
1

> 0. To see if t 1 may be arbitrarily large, compute

Vt(f°°) E Vt cc(f , 0) By induction,
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Qn(f) = (-1)n

so by Lemma 1, (i), I,

Then

Vt (f
00) = t

0

2

1

1

Co

tn
n!

2n-1 -2n-1

2n-1

2n -1 -2n-1

2n-1-1 -2n-1

2n- 1

1 1 -2t
2

-2e -2t1 + t
2

(-1)n
-1

2+
1

+ t+
2

e
-2t e-t

21 1 -2t -t+ t + 2 e - e

0 0

0 0

1 0

0 1

for all t > 0 .

r(f) + Q(f)Vt(fx) r(g) Q(g)Vt(fx) =

for all t > 0 .

0

1

0

0

0

0

Therefore, since e-t > 0 for all t > 0, it follows from



ooTheorem 1, I, that Tr=y (t) = f for all t > 0, and that f is the

unique optimal policy. Also

Him [Vt(fx)-tU] =
t ~ 00

= V.
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So, r(g) + Q(g)V - U = 0, and thus by Theorem 4, I F* = {f,

The following observations may be made from this example:

1. The unique optimal policy is stationary, yet the set F* has

two elements. Note that g E F*, but Tr*(t) I g for any

t > 0. Hence the converse of the first part of Theorem 5, I,

need not be true.

2. The hypotheses in Corollary 2 imply the existence of an

f E F* such that C(f) = C. Note that in this example such a

decision rule does not exist.

3. By Corollary 1, the set G(g) is empty. Also,

y(g) =

-1

0

0

so E(g) = {f, g}
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Thus, if the algorithm given by Lembersky in [13] for

computing a decision rule h as in Lemma 3, (ii), starts

with g, while giving a rule in F*, it fails to give the

decision rule f that in fact forms the stationary optimal

policy.

From Theorem 3, I, for every E > 0 there exists an initially

stationary E -optimal policy. The obvious question then, is whether

there always exists an initially stationary optimal policy. For N = 2,

an affirmative answer may be given from Miller [14, Section 6],

when there is at least one ergodic decision rule f. The assumption

of an ergodic decision rule is unnecessary, as is shown in Lembersky

[11, Section 4. 7]. In this section a five state example is given which

shows that there need not always exist an initially stationary optimal

policy.

A brief statement of the idea behind the example is given now.

In state five, there are two actions available, the choice of which

allows the system to move to one of two disjoint classes of states.

For one of these classes, total rewards earned increase at a constant

rate, while in the other, the derivative of the total rewards earned

over time oscillates above and below this constant rate. It is then

reasonable to expect the optimal policy to also oscillate in its choice

of action for state five.
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Counterexample 4. There are two decision rules, F = {f,

which differ only in the fifth state. Let

-1 1 0 0 0 6

0 -1 1 0 0 3

Q(f) = 1 0 -1 0 0 r(f) = 3

0 0 0 0 0

0. 0 0 1 -1 4

-1 1 0 0 0 6

0 -1 1 0 0 3

Q(g) = 1 0 -1 0 0 r(g) = 3

0 0 0 0 0 4

1 0 0 0 -1 3

Set v = 0, Vt(Tr) = V
t
(rr, 0), and note that for any policy Tr

r(f) + Q(f)Vt(rr) [r(g)+Q(g)Vt(Tr)]

0

0

0

0

1+V 4 (Tr)-V (Tr)
1

t t 00 t 00
Trforall t > 0. Then for any Tr and all i 5, V.( Tr) = V.(f, ) = V. (g ).

So, by letting 6(t) = 1 + v4(e°) -vi(r), it follows from Theorem 1, I,

that for every optimal policy Tr*,



ir*(t) = f, when 6(t) > 0

= g, when 6(t) < 0 .
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To show that there is no initially stationary optimal policy, it

will suffice to show that 6(t) continually oscillates above and below

zero as a function of t. To accomplish this it will be necessary to

find Vt(f°°) E V
t(

f , 0) for all t > 0. The first step in calculating
00

iV
t

(f ) is to find P(t;fx). The procedure used is essentially that

of Karlin [8, p. 208].

First determine the eigenvalues Xi, of Q(f) and a

complete system of associated right eigenvectors (1) (N)

Then P(t;fco
) = WA(t)W , where W is the matrix whose column

vectors are, respectively w(1)
° ° W

(N) and
X1 t XNt

A(t) = diag(e , ., e )
The eigenvalues for Q(f) are

Let

-3 - NI-3-i -3 + N73 i 0,

0

1

-1

0

-1
A =

2

-1

0

1

1

-1

0

0

1

-1_

, o,
2

B

Then

0

Q(f) =
0 B
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so that if x is an eigenvector for A then (x0 ) is an
0eigenvector for Q(f). Also y an eigenvector for B implies ( )

is an eigenvector for Q(f). The eigenvalues for A are distinct

and those for B are also distinct, hence A and B are neces-

sarily diagonalizable and Q(f) must then be diagonalizable.

It is easy to see that matrices of right eigenvectors for A and

B are, respectively,

W
A

1 - NTT i -1 + Nrr i
2 2

1 + Nr"ri -1 - NI"3 i
2 2

1

1

1

1 1

B

1 0

The determinant of both WA and WB is nonzero, hence the

vectors are necessarily independent. So set

WA 0

W

W

The reader may verify that

B

w- =

-1 + NTT i -1 - Nr3- i
1 /3

1/3

1/3

0

0

0

0

0

1

-1

0

0

0

0

1

-1

6

- Nrri
6

-1 + \Fri
6

1 /3

0

6

1 /3

0

0



Letting

it follows that

P (t; f00) =

-3 Ti -3 + N,73- i t ,X = e t , Y e
2 2

1 1 1 1
+

1 +Nr3-i
X +

_ 1 -NfTi
Y

1
+

- 1 -Nn-i
+

1 1-,\TTi-1-3X-FTY
3 6 6 3 6 6

Y 0 0

1
+

1 -N/Ti
X +

-1+Nrri
Y

1
+ X + Y

1 1 1
+

- 1+NfTi
X +

-1 -NITi
3

Y 0 0
33 6 6 3 3 6 6

1 - 1 +NTri - 1 N I 3 1 1 -1 -NiTi 1 d-N13 i 1 1 1

3 6
+ + Y

6 3
+

6
X +

6
Y 7 +3 x + -3 Y 0 0
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and that

Now,

Hence,

P(t;foo
)r(f) =

4 + X + Y

4 + -1 - N
X +

r3-i -1 +
2

4 + -1 +
X +

Nrri -1
2 2

oo
P

1
(t.f )r(f) = 4 + X + Y

00
V
too
1

4

4

= 4 + e -3 /2t
[e

-N1-37 2 it+ eq-372 it]

= 4 + 2e -3 /2t Nrrcos t .
2

= .c [4 + 2e -3 /2s cos s ]ds
0

and integrating by parts (twice), gives

_atv
1

t
(f

oo ) = 4t + e
v7

sin
-3 /2t 4-7- e cos t + 1 .

2

Similarly for the remaining components, it follows that
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4 Nr373

4 ,17/3

V
t(fx) = t 4 + e

-3 /2t \FTsin t
2

- 2Nr3-73

4 0

4 0

-1 1

1

-3 /2.t
0 0

.3"-t+ e cos
2

0 0

0 0

for all t > O.

It then follows that

Nrr6(t) = e -3 /2t [cos --t - sin
2 3

which changes sign at the set of times

ft > 0: t = Zir 1T/9 + n(2Tr Nr373), n = 0, I, 2, ...} ,

and is non-zero for all other times t > 0. So 6(t) has the

oscillation property referred to above and the example is complete.
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4. Existence of Stationary Optimal Policies

The existence of stationary optimal policies on recurrent states

will be characterized in terms of the vector V. For discrete time

processes Lanery [10] has studied optimal policies in relation to the

terminal reward vector v.

For x, z E RN and M a subset of {1, 2, ... ,N}, say

x = z (x < z) on M if x. = z.
1

(x.
1

< for all i E M. Also
1.

x < z on .M . if x < z on M and x. < z. for at least one
1 1

i E M. A decision rule f equals a decision rule g on the set M

if f(i) = g(i) for all i E M.

Theorem 4. If V = v*, then for any f E D(v),

tx, v) = VV (f (Tr*, v) on C(f) for all t > 0.

Proof: Let f E D(v) and let Tr* be any optimal policy.

Define

Assume

if Vt(foo, v) = Vt (Tr*, v) on C(f) for all t > 0

inf t > 0: Vt
(Tr*, v) > V t(fx

, v) on CM}, otherwise

t
1

< 00 . It will be established that this gives a contradiction

hence implying that

Let

= CO



(4)
00

x
1

tl tl
= V (Tr*, v) > V (f , v) = x1 on C(f).

Since f c F', from Lemma 1, (iii),

Vt(fx, x2) - tU > y(f) + P*(f)x
2

as t > 00,

and

Vt(fx,v) - tU > y(f) + P*(f)v as t > 00.

Now
t+t

1Vt(fx, x2) = V (f , v) for all t > 0,

so

y(f) + P*(f)v = y(f) + P*(f)x2 tit/

Also since

f E D(v) and v*= V, y(f) + P*(f)v = V,

so

(5) V = y(f) + P",((f)x2 - t1

From (4) and the structure of P*( ) it follows that

P*(f)xi > P*(f)x2, so that (5) implies

(6)

Let

y(f) + P*(f)x, tit). > V

Tr*, 0 < t < t
1

f, t
1

< t
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Then Vt (Tr*, v) - Vt (Tr', v) > V - (y(f)+P*(f)xi -t 1U) as t > 00.

Since V
t(rr*,v)

> V
t(m',

v) for all t > 0, it follows that

V - (y(f)+P*(f)xi-tiU) > 0, which contradicts (6). Conclude that

t
1

= 00, and the theorem follows.

The next result may be viewed as the "necessary condition"

counterpart of Theorem 4.

Theorem 5. If for some f E F, Vt (f , v) = Vt (Tr*, v) on

C(f) for all t > 0, then V = v* on C(f).

Proof: Since

and

lim 1 Vt(f00, v) = P*(f)r(f)
t--*- 00

lim V
t
(Tr*, v) = U ,

00
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it follows that P*(f)r(f) = U on C(f). Hence by Theorem 2, I, and

Lemma 1, (iii), I,

V 7= y(f) + P*(f)v on C(f).

The structure of Q(f) on C(f) together with (4), I implies that

r(f) + Q(f)V = U on C(f) and Q(f)U = 0 on C(f). Now let

h' E F* and define



h(i) =
f(i), e C(f)

hi(i), otherwise
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Then h E F* and consequently h E F'. Now from (3), I, and (4), I,

and the structure of P*( ) on C(f) it follows that y(f) = y(h) on

C(f) and P*(h)v = P*(f)v on C(f). Hence

(7) V = y(f) + P*(f)v = y(h) + P*(h)v on C(f).

Now from Lemma 1, (iii), I,

(8) Vt(hx,v) - tU > y(h) + P*(h)v as t > CO.

Hence from (7) and (8), and since h e F'

V > sup (y( )+P*( )v) = v* > y(h) + P*(h)v
( )F'

So by (7), V = v* on C(f).

A decision rule f is said to be recurrent if C(f) 7- S, i. e.

co
if the Markov process associated with the policy f has no

transient states. In general a recurrent decision rule may have

several communicating classes. Recurrent processes are assumed

by many authors in elementary textbooks on standard Markov chain

theory and represent a large class of problems.

With the assumption of no transient states more powerful



54

results are usually obtained. In some cases one need only assume

that certain sets of decision rules are recurrent. For the two pre-

ceding theorems, an assumption of this nature yields the result stated

next.

Theorem 6. Assume f is recurrent for all f in D(v).

Then the following are equivalent.

(i) There exists a stationary optimal policy.
co

(ii) For any f E D(v), f is optimal.

Proof: By Theorem 4, condition (iii) implies (ii). Also, (ii)

certainly implies (i).
co

Let g be a stationary optimal policy. Then

Vt (goo, v) tU > y(g) P*(g)v = V as t > 00.

It follows that V = v* and (i) implies (iii).

Remark 1. If the rewards earned using n-* up to some time

point t are known, say x-t = Vi
(Tr*, v), then by setting v = xt-

the preceding theorems provide necessary and sufficient conditions

for achieving maximal expected rewards on various recurrent states

by using initially stationary policies.



55

Corollary 3. If f j F* n D(v), then fx is not an optimal

policy.

00
Proof: Assume f is optimal. Then since f E F',

y(f) + P*(f)v = V > v* > y(f) + P*(f)v, which implies f E D(v).

Further, it is clear that f E F*. Hence f E F* n D(v), a contra-

diction.

Remark 2. In view of the preceding corollary, it follows that if

n D(v) = cl) then there is no stationary optimal policy. For an

example where F* n D(v) cl), the reader may see the three state

example of Lembersky in [13]. A further implication of this corollary

is that if F* n D(Vt
(Tr*, v)) = El) for all t > 0, then there does not

exist an initially stationary optimal policy.

As noted in Example 3, F* = {f, g} while 7*(0 = f for all

t > 0. Also, consideration of y(f) and y(g) reveals that

D(v) = D(0) = {f}. Thus F* (Th D(v) = {f}. Also recall in observation

3, following Example 3, that if the algorithm for computing a decision

rule h as in Lemma 3, (ii), starts with g, it gives g E F* and

fails to give f. In light of Corollary 3, it would appear that when

there exists a stationary optimal policy, the set F* n D(v) repre-

sents a desirable refinement of the set F*.

The next corollary follows immediately from Corollary 3 and

Theorem 4 and relates to statements of the preceding paragraph.



Corollary 4. Assume F* rTh D(v) = {f} and V = v*. Then

Vt (f cc), v) = Vt (Tr*, v) on C(f) for all t > 0. Further, if f is

00recurrent, then f is the unique stationary optimal policy.

Recall that in Counterexample 4, Tr (t) was constant

(stationary) on C but continued to switch off of C. Using

Corollary 5 it is possible in such situations to obtain a decision rule

that is in F*.

Corollary 5. Assume for some g E F that

V
t(g , v) = Vxt(m*, v) on C for all t > 0 and that C(g)C C. If

f E D(y(g)+P*(g)v), then f E F*.

Proof: From Theorem 5, V = v ''.4 on C(g). Let

f E D(y(g)+P*(g)v). From Theorem 2, I, V = v*, hence it follows
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that V = sup (y( :)+P*( )V). Since P*(g)r(g) = U on C, from
)F1

Lemma 1, (iii), I, y(g) + P*(g)v = V on C. Also for each ( ) E F',

C( ) C C, so it follows that

V = sup (y( )+P*( )(Y(g)+P):<(g)v))
( ) EF'

= y(f) + p*(f)(y(o+p*(g)

Since f E F', C(f) C C, hence

Y(f) P*(f)(Y(g)+P*(g)v) = y(f) + P*(f)V .

Then from Theorem 4, I, f E F*.
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5. The N = 3 Case

As previously noted in Section 3, when N = 2, there exists an

initially stationary optimal policy. Observe that when N = 2, since

zero is necessarily an eigenvalue for Q( ) and since complex

eigenvalues occur in conjugate pairs it follows that for each f E F,

Q(f) has real eigenvalues. Also, in Example 4, some of the eigen-

values for the matrices Q(f) and Q(g) were complex. The effect

of these complex eigenvalues was that 6(t), t > 0 was a function

involving sines and cosines and continued to oscillate above and below

zero as a function of t and hence there was no initially stationary

optimal policy. Thus it would appear that to guarantee the existence

of an initially stationary optimal policy, one must rule out the pos-

sibility of complex eigenvalues for the matrices Q( )

Several assumptions can be made in order to have only real

eigenvalues. From Theorem 5, I a possible assumption is that for all

decision rules used beyond t* in some IT*, the corresponding

Q( ) matrices have real eigenvalues. Other sets of decision rules

could also be assumed to have Q( ) matrices of real eigenvalues,

namely F, {f E F:Q(f)U = 0 }, F', or F*. Using the assumption

that for f E F* the eigenvalues for Q(f) are real appears to have

potential value as part of the suitable hypothesis that will guarantee

the existence of an initially stationary optimal policy. While unable
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to develop a definitive answer, the remainder of this section

illustrates a potential approach for solving this problem. Specifically,

to indicate the type of arguments involved, it will be established for

N = 3 that if Q(f) has real eigenvalues for all f E F*, then the

optimal policy may not oscillate between two decision rules as a

function of time

Remark 3. For N = 3, assume for f E F* that Q(f) has

real eigenvalues. Assert for the optimal policy Tr* and any

to > t* (where t*

Tr*(t)

is

=

selected as in Theorem 5, I), if

f t
0

< t < t
1

< 00

g t
1

< t < t
2

< 00

h t
2

<t <t3 <00

then f h. In other words, beyond t* an optimal policy cannot

oscillate between two decision rules (as happened in Example 4).

This fact does not rule out the possibility that Tr:4(t) may equal f

on some interval beyond t3, hence it does not guarantee an

initially stationary optimal policy exists.

To establish Remark 3 the notation below and the lemmas which

follow (and are true for any N) will be useful.

For f, g E F and x e RN, let
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(9) .)t(g,f;x) = r(g) + Q(g)V t (g00, x) r(f) - Q(f)Vt(g00
, x)

for all t > 0.

Lemma 4. Assume f, g E F*. If g is single class, then for

any x E RN,

t(g, f; x) > 0 as t > 00.

Proof: Since Q(g)P*(g) = 0 and g is single class, it fol-

lows from Lemma 1, (iii), I, as t > 00, that

cOt(g,f;x) > r(g) + Q(g)[y(g)+P*(g)x] - r(f)

Q(f)[y(g)+P*(g)x] = U r(f) Q(f)y(g)

From Theorem 4, I, V = y(g) + k 01 for some scalar k. Hence

U - r(f) Q(f)y(g) = U r(f) Q(f)V

and since f E F *, from Theorem 4, I, U r(f) Q(f)y(g) = 0.

Hence cOt (g f; x) > 0 as t > .

The next lemma is stated for stationary policies. A more

general version for any measurable policies is given by Miller [14] in

his proof of Theorem 1, I for the opposite time orientation and with

x = 0. The argument below is essentially the same as Miller's, only

now x is allowed to be nonzero.

Lemma 5. Let f and g E F and x E RN . Then for any

t > 0,
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Vt(gx, x ) - Vt (fw, x) =

Proof: Fix t >0 and define

P(s;fx)cit-s(g, f;x)ds .

A(s) [P(s;gx)-P(s;fcc)]Vt-s(gw,x) for all 0 < s < t.

Since P(0; ) = I and V
o

( ,x) = x, A(0) = 0 and

A(t) = [P(tg
co )-P(t;fco )]x. Now P(s; ) and V

t-s( -;x) are

absolutely continuous in s (see [14]), so A(s) is absolutely con-

tinuous in s and must then equal the integral of its derivative. So

0 = ds A(s)ds - A(t)
0

From (1), I, dsP(s; ) = P(s; )Q( ) and from Lemma 1, (ii), I,

So

(10) 0 =

From (2), I,

Pt

0

ds
Irt-s

(goo, x) = -[r(g)+Q(g)Vt-s(goo,x)]

([P(s; f00) -P(s; gx)]r(g) + P(s; fx)[Q(g)-Q(f)]

X Vt-s(gx,x) ds - A(t).

00
V

t
(g ,x) Vt (fw,x) =

t
[P(s; g

oo
)r(g) P(s,fco

)r(f)]ds

+ [P (t; g am ) P(t; f
co

) _ix



Using (10) to substitute for
o

ooP(s; g )r(g)ds, the lemma follows.
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Proof of Remark 3: Let Tr* be any optimal policy and let

f, g, h and t0, t1, t2 be as in the remark. Then by Theorem 5, I,

f, g,h E F*. By standard results in matrix theory, zero is an eigen-

value for Q(g) and the remaining eigenvalues are less than or

equal to zero. Also, the number of non-zero eigenvalues must be less

than or equal to two. Let -Xi < -X2 < 0 denote the possibly non-

zero eigenvalues for Q(g).

Let x = V 1(Tr*, v) Assert that (I)
t(g, f;x) > 0 for all t > 0.

Note that if f(i) = g(i), then clyg,f;x) = 0 for all t > 0.

Also, there exists an i* such that f(i*) g(i*) and such that

(0i*(g,f;x) > 0 for all t > 0 sufficiently small. This follows since

the definition of x and Theorem 1, (ii), I imply 1t(g,f;x) > 0 for

all 0 <t<t
2

t1, since -;x) is continuous in t, and

since Lemma 5 implies that if (1:1t(g,f;x) = 0 for all t > 0 suffi-

ciently small, then V
t

(g °°,x) = Vt (f (4), x) for all t > 0 sufficiently

small, which would contradict the need to switch from f to g at

t 1 For simplicity of exposition in establishing the assertion,

assume without loss of generality that i* = 1. To establish the

assertion the following cases involving

sidered.

and X.2 will be con-



Case 1. Assume X
z

= 0.
It

From the Appendix, (3) is follows that (1)1(g, f; x) = k + ale
1

for all t > 0.

From the definition of 0
1

and Theorem 1, I, (1)1(g, f; x) = 0,
-Alt

which implies that a
1

= -k. Hence (11)t (g, f; x) = k - ke for

all t > 0. Therefore either

If, (g, f; x)
1

(> 0 for all t > 0

=0 for all t > 0

< 0 for all t >0
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But since .4)1(g, f; x) > 0 for all t > 0 sufficiently small, it follows

that
1

cl)t (g,fx) > 0 for all t > 0.

Case 2. Assume -X1 -X2 < 0.
-X t -Alt

From the Appendix, (4), (pi (g, f; x) = k + alte + a2e

Since -X2 < 0 and since zero is an eigenvalue for each recurrent

class, g must then be single class. Hence from Lemma 4,

gl-L;x1 u as t > oo

which implies that k = 0. Also since

-Xlt
401(g, f; x) = 0, a

2
= 0, so (1)ti(g, x) = a e

Again either
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ch(g,f;x)

>0 for all t >0

=0 for all t > 0

<0 for all t > 0

and arguing as above, it follows that

(1)1(g, f; x) > 0 for all t > 0.

Case 3. Assume -X1 < X2 < 0.

The nonzero eigenvalues for Q(g) distinct imply g is

single class and from Appendix, (2),

-X
2
t-X

1
t

(I)
t
1
(g, f; x) = k + a

1
e + a2e

From Lemma 4, 41) (g, f; x) > 0 as t > cc, so k = 0. Also,
1

(I) (g, f; x) = 0 for t = 0 so a2 = -al. Hence
1

41(g'f'x) ale ale
-X

2
t

-X it -X2 t
Since e e < 0 for all t > 0, again either

>0 for all t > 0

(1)1(g' f; x) for all t > 0

< 0 for all t > 0
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and so ()ti(g, f; x) > 0 for all t > 0.

Thus cpt
1

(g, f; > 0 for all t > 0 establishing the assertion

that

cbt (g, f; x) > 0 for all t > 0.

From Theorem 1, I, it follows that since Tr * next switches
t2 -t

from g to h, (1) (g, h; x) = 0. Therefore f h, completing

the proof of Remark 3.
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APPENDIX

To describe the form of (1)t (g,f;x) needed in Section 5, II,

when Q(g) is assumed to have real eigenvalues, it is convenient to
oo

find P(t:g ) first.

Chiang [3] assumes no absorbing states and that the eigenvalues

for Q(g) are real and distinct. Under these assumptions he gives
00an explicit solution for P(g ). Assume Po = 0, Pz, < 0

and distinct. Define for k = 0, 1, , N-1

Pk-q11 -q21 -qNI

Al(k) = -q12 Pk-q22 -qN2

-q1N -q2N - Pk NN

where q.. = Q..(g). Then

N-1 pkt
AL(k)e

00 11P..(t;g ) =
N-1

k=0 II (pk-pm)
m=0
mYk

j= 1, , N.

Also by letting A..(/) be the cofactor of the matrix

A(I) = [p/I-Q(g)] and

Akl(/)
W (k) =



by an eigenvector of Q(g) for p = if

68

W(k) = (W
1
(k), . . . , W

N
(k)), then P(t; g

CO

) = W(k)A(t)W
-1

(k) , where

A(t) is a diagonal matrix with entries 1, epzt
pN-1 t

, ...,e Chiang

then gives

(1) P..(t;gx) =
1.3

N-1 W (k) pot
Aki ) =1,,,N.

I W(k)
1=0

To simplify notation, write W(k) = W, then the form
oo

P(t;g ) = WA(t)W may always be used when Q(g) has distinct

eigenvalues [5]. If zero is a multiple eigenvalue and the remaining

nonzero eigenvalues are distinct, by rearranging the rows of Q(g)

and partitioning according to the recurrent classes and transient

states, i.e.,

then

Q(g) =

P(t;g
oo

) =

0

P
1

(t)

0

0

QTR QT

0

P
2

(t)

0 Pk(t)

0

PTR (t) P (t)
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and the form P(t;goo
) = WA(t)W

-1 may still be used. Note that this

procedure was used in Counterexample 4, II.

If the nonzero eigenvalues are not distinct it is still possible to
00

find P(t;g ) by using Jordan's Theorem stated next. This state-

ment of Jordan's Theorem is taken from Franklin [5].

Jordan's Theorem. Let Q(g) be N x N with eigenvalues

Xi, . . . , Xs with multiplicities ml, , ms,

s m,
det(XI-Q(g)) = II (A -X.) 3 .

j=1

Then Q(g) is similar to a matrix of the form

A
1

J = I A2 0

0 A
s

where A. is m. x m. and is of the form

Ai =

0

and each * equals zero or one.

0

X.
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00
Franklin then gives that P..(t;f ) is of the form

13

m
k

-1

Q

X
k

t

k=1 f =0

for some scalars
13k/

Assume now that for N = 3, Q(g) has the distinct real eigen-
00 -1values, 0, -k

1
< -k

2
< 0. Using the form P(t;g ) = WA(t)W

from (1)

P(t:f
oo

) =

2 2
-X.t -X.t -X.t

i. 1 1

k11 aile k12 a.
12

e k
1

a.
1.3

e

i=1 i=1 i =1

k
21

+

i=1

2

-)..t
b. e

11
k2

-X.t
1

k31 c.
1
e

1
k

3

1=1

2

1=1

2

i=1

-X.t
2

-X.t
bi2e k23 bi3e

i=1

-X.t
2

-X.t
1 1

c).. e k33
c. e

2 13

i=1

with the obvious designations for k.., a.., b.., c.., i -7 1,2,
13 13 13 13

j = 1,2,3 . Then
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3

x.
J 1J

j=1

3

P(t;g )x =
J
.[k

J= 1

3

x. [k
LLB J
j=1

2

i=1

2

a..e
lJ

-X,t
b..e

i=1

2

c..e
iJ

i=1

Assume that f(1) g(1) and that {Q(g)- Q(f)]1 = (q1 q2 q3) . Then

ti(g,f;x) rl(g) - r
1

(f) + (q
1

q
2

q
3

) [s P(s;gw)r(g)ds + P(t;g00

0

By multiplying and collecting terms it follows that (13.ti(g,f;x) may

1be written in the form, for some k, al' and a
2 E

(2)
-Alt -X2 tt

1
(g, f; x) = k + ale + a e for all t > 0

where -Al < X z < 0 are the distinct nonzero real eigenvalues of

Q(g).

Assume next that for N = 3, Q(g) has zero as a multiple

eigenvalue, i.e., -Al < -X
2

= 0. The preceding argument for (2)

may be used with X2 = 0

k and al in R1

to give
q' (g, f; x)
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in the form, for some



(3)
-X t

(1)1(g, f;x) = k + ale 1 for all t > 0
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where -Al < -X
2

= 0 and -X
1

0, 0 are the real eigenvalues for"
Q(g)

Finally for N = 3 assume that Q(g) has -A1 = -x2 < 0

ooas real nonzero eigenvalues. From Jordan's Theorem P(t; g )

now of the form

is

-Alt -X1 t -X1 t -X
1.
t

k
-Alt -Alt

k i+a te +a 21e k
12

+a te +a22e
12 13 1

te +a
23

e

1
-At -X t -X

1 1 lt -X
k +b te +b

1
t lt

k
21

+bll te +b21 e k 22+b12 te +b 22e 23 13 23

-X
1
t -X

1
t -X

1
t -X

1
t -X

1
t -Alt

k31+c
11

te +c 21e 2+c 12
te +.c22e

k33+ci3te +

-At

c33e

with new designations for k.., a.., b.. and c... Following the same
13 13 13 cij

procedures used when -X1 < -Xz < 0 it follows that 4)
ti(g, f; x)

may be written as

(4)
-X

1
t -X t

1
(1)1(g, f; x) = k + alte + a2e for all t > 0

where -X1 = -X2 < 0 are the real nonzero eigenvalues for Q(g)

and k, al and a2 are in R 1.


