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Chapter 1 – Introduction

1.1 Overview of MU MIMO OFDM

Wireless communications have been one of the main topics of interest in the area

of communications. In the last decade, there has been an increasing demand for

high data rate wireless access at high quality of service (QoS) due to the wide

deployment of cellular telephony and the emergence of wireless data applications.

The development of the wireless technology is supported by the high demand for

flexible multimedia services integrating both voice and data communications. On

the other hand, the advancement in integrated circuit (IC) design technology has

enabled the implementation of sophisticated signal processors and complex systems

on chip, resulting in small, low cost and power efficient handsets. Unlike wired net-

works, the wireless link suffers from two main phenomena that can be considered

as an impairment to reliable communications. The first aspect is fading; which re-

sults in time variation of the channel strength caused by the multipath propagation

as well as the signal attenuation due to the path loss and shadowing. The second

challenge for wireless systems is the interference between receivers communicating

with a single transmitter or the interference between signals from multiple trans-

mitters to one receiver. This inter-user interference can be observed for example

in the downlink and uplink of a cellular system. Fading and inter-user interference
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are hence two main challenges for the design of wireless communication systems.

A higher link reliability and a larger network capacity are the two main design

goals of next generation communication systems. However, the trend is shifting

towards the design of spectrally efficient wireless systems. Important improvement

of the spectral efficiency can be achieved through the deployment of multiple an-

tennas at both the transmitter and receiver ends. Due to the physical separation

between the antennas, multiantenna systems offer an additional degree of freedom

- spatial domain, that is unavailable in single antenna configurations. Multiple-

input multiple-output (MIMO) systems offer a tremendous advantage, which is

the improvement of spectral efficiency and link reliability without any additional

bandwidth or power consumption.

MIMO techniques can be divided into two categories, diversity coding and spa-

tial multiplexing. Diversity coding increases the robustness and the reliability of

the communication system by transmitting redundant copies of the data stream

on different subchannels. Diversity is exploited by combining the independently

faded signals at the receiver, thus resulting in an increase in performance. In the

case of spatial multiplexing, independent data streams are transmitted on different

antenna branches simultaneously in the same frequency band. The system’s ca-

pacity is increased by using signal processing at the receiver to recover the multiple

data streams. These techniques achieve the highest spectral efficiency when the

spatial subchannels are independent, which is usually the case in rich scattering

environments.
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MIMO technology is of particular interest for next generation broadband com-

munications which aim at delivering multimedia services at high data rates. Broad-

band systems in particular are subject to frequency selective fading due to the

destructive interference of the signal with delayed copies of itself resulting from

the multipath reflections. When the relative path delays are in the order of one

symbol period or more, the signal experiences inter-symbol interference (ISI). Tra-

ditionally, channel equalization techniques are used to combat ISI. However, for

high data rates communications, with shorter symbol duration, highly complex

equalizers are required. Orthogonal frequency division multiplexing (OFDM) is a

low complexity modulation technique that deals with ISI by splitting the high rate

data stream into a number of lower rate streams. The data streams are transmitted

through different orthogonal subcarriers. OFDM is a good alternative to channel

equalization since it transforms the frequency selective channel into a set of paral-

lel narrow band flat fading subchannels. The combination of MIMO and OFDM

techniques is an efficient way for providing high data rate reliable communications.

In cellular networks and wireless local area networks (WLAN), MIMO sys-

tems are often used in configurations where a main base station communicates

with several users simultaneously. In multiuser MIMO systems, the entire sys-

tem bandwidth is used by all users all the time which is a way for achieving high

bandwidth efficiency. In such configurations, the main challenge is multiple access

interference (MAI). Users need to be able to mitigate the inter-user interference at
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minimal cost. The most effective ways to mitigate MAI are done by pre-processing

on the transmitted signal, when partial or full channel knowledge is available at

the transmitter.

1.2 Organization and contributions of the thesis

As a linear processing algorithm at the transmitter for inter-user interference can-

celation, block diagonalization offers a good tradeoff between computational com-

plexity and performance. The basic idea behind block diagonalization is to trans-

mit to each user an interference free signal given channel knowledge at the trans-

mitter. At the base station, precoding matrices are designed for each user in order

to precancel the interference of the other users’ signals. On the receiver end, sim-

ple decoding is performed to retrieve the original signal. This technique does not

require coordination between users or complex processing at the mobile receivers.

In a MU MIMO OFDM scenario, the channel is transformed into multiple parallel

MU MIMO subchannels, offering the possibility of applying the preprocessing on

a per subcarrier basis. In addition to the fact that the channel on each subcarrier

is flat fading, there is significant correlation between adjacent subcarriers. In this

thesis, we take advantage of the existing correlation by using interpolation tech-

niques together with the block diagonalization algorithm to cancel multiple access

interference in MU MIMO OFDM systems. For the direct approach, when the pre-

coding and decoding matrices need to be computed for all users on all subcarriers,

the computational load increases linearly with the number of subcarriers. This
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requires powerful processors at both ends of the link in addition to the transfer of

data between the transmitter and users through feedback. We will show that using

interpolation in the frequency dimension offers significant computational savings

with only a slight performance penalty. We compare the error performance and

throughput of two simple interpolation schemes, the piecewise constant interpo-

lation and the linear interpolation. We show that in this application, the simple

piecewise interpolation offers a good tradeoff between savings in computational

cost and performance.

This thesis is organized as follows:

Chapter 2

In this chapter an overview of multiuser MIMO OFDM systems is given.

The main techniques for interference cancelation in a multiuser scenario are

presented in Section 2.1. In Section 2.1.2, the combination of MIMO and

OFDM techniques is reviewed. In Section 2.2, the OFDM modulation is

introduced and the generation of OFDM signals is developed.

Chapter 3

In this chapter we introduce the computationally efficient block diagonal-

ization algorithm for MU MIMO OFDM systems. The system model is

presented in Section 3.1. The block diagonalization scheme for interference

pre-cancelation is extended to MIMO-OFDM systems and its complexity is

analyzed in Section 3.2. In the last section of the chapter, interpolation
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algorithms are introduced and their computational complexity is presented.

Chapter 4

In this chapter, we present simulation results of the system throughput and

error performance using the interpolation schemes introduced in Chapter 3.

The expression of the throughput is given when interpolation schemes are

used. In Section 4.2, the error performance of the interpolation schemes

is compared to that of the direct approach and the low-pass interpolation

scheme.
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Chapter 2 – Background

2.1 Multiuser MIMO OFDM Systems

2.1.1 MU MIMO

Point-to-point single user multiantenna communications have been well understood

as an effective way to provide reliable communications and to increase per-user

rates. In recent years, there has been a great interest in multiuser multiantenna

networks, particularly in broadcast and multiple access scenarios. The multiple

access channel, or the uplink, applies when multiple transmitters send signals to

a signal receiver over the same frequency band. This setting has been extensively

investigated and well understood in the literature. The broadcast channel, also

referred to as the downlink, describes the case when a single base station commu-

nicates with multiple users over the same medium (i.e., at the same time and over

the same frequency band). The interest in multiuser communications arises as the

need for high quality wireless communications to accommodate an increasing num-

ber of users has become a priority. Hence, multiuser diversity is a key technology,

for it allows for the efficient use of the available spectrum. In multiuser MIMO

systems, the advantage of spatial diversity offered by multiple antennas can be

exploited to improve the system capacity since multiple mobile stations are served

simultaneously by means of space division multiple access (SDMA). With multiple
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antenna elements, multiple access strategies require more complex processing and

design but do not require any additional bandwidth, to achieve a higher through-

put.

On the downlink of a multiuser spatial multiplexing system, a single base sta-

tion transmits to multiple mobile stations simultaneously and over the same fre-

quency band. The major impairment in this scenario is inter-user interference.

Inter-user interference arises due to the fact that the same frequency is used to

transmit data to all the users, making the signal received by the user a combina-

tion of its own signal and the signals designated for other users. Typically, mobile

stations are not able to communicate with each other making any type of coordi-

nation impossible. Therefore, in order to use low complexity receivers, inter-user

interference mitigation needs to be integrated at the transmitter end. This con-

dition makes the channel knowledge at the transmitter necessary. When channel

state information is available and the transmitter has knowledge of the interference

between users, then it can process the signals in order to overcome the inter-user

interference. In general, interference cancelation schemes are designed to suppress

inter-user interference while optimizing the system performance metrics such as

capacity and error rate.

A MIMO broadcast system with single antenna transmitters and single an-

tenna receivers has been well explored in the literature. The optimal strategy for

capacity maximization in this case is to transmit to the single user with the best
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channel at any time. The multiuser case with multiple antennas at both ends of

the system has been a topic of interest for the last two decades but major ad-

vances have occurred only recently . Results have revealed that dirty paper coding

(DPC) [1] is the capacity-achieving transmit strategy for MIMO broadcast chan-

nels. Optimal strategy for maximizing the capacity of the broadcast channel was

first studied in [2] for the case of single antenna users and later extended to multi-

antenna receivers using game theory [3]. The basic idea behind DPC is precoding

the data at the transmitter based on the knowledge of the channel interference.

DPC has been proven to be the optimal strategy for sum capacity, and its ca-

pacity region was shown to be that of a MIMO broadcast channel [4]. However,

even though DPC makes sense from the information theoretical point of view, it

is not considered a practical solution. Implementation of DPC requires additional

complexity at the transmitter and receiver and finding a practical realization of

dirty paper codes has been proven to be a challenge. Practical solutions have been

investigated to provide the capacity gain for multiuser MIMO systems. The key

challenge is providing high link level signal quality in addition to interference can-

celation. In general, the receiver design must be compact and consume low power

whereas the base station is able to handle more advanced processing. Precoding is

hence an attractive approach resulting in the base station performing interference

pre-cancelation and making low complexity receivers viable at the mobile stations.

Linear precoding is an alternative approach for multiuser MIMO transmission

which offers a tradeoff between reduction in precoder design complexity for sub-
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optimal performance. For single antenna receivers, one approach is the channel

inversion technique or zero forcing (ZF) beamforming precoding. In ZF schemes,

channel inversion is performed to eliminate the interference. The downside of

this approach is deterioration of the signal quality. For the multiantenna case, the

minimum mean squared error (MMSE) criterion has been used for transmit-receive

optimization under a sum power constraint [5]. Other techniques take advantage

of the uplink-downlink duality for both MSE and signal-to-interference-plus-noise

ratio (SINR) [6, 7]. Other possible techniques to improve the sum rate include

user or antenna selection using suboptimal strategies or iterative methods which

present a high computational cost.

Another family of linear precoding is block diagonalization (BD) which is based

on zero forcing [8]. Block diagonalization is a non-iterative method which trans-

forms the multiuser downlink into parallel single user MIMO systems, thus elim-

inating all interference between users without inverting the channel. The sum

capacity is maximized using a conventional waterfilling algorithm for power load-

ing.

2.1.2 MU MIMO OFDM

The combination of MIMO and OFDM is a very efficient way to increase the di-

versity gain and to enhance the system capacity in frequency-selective channels.

MIMO OFDM systems can be viewed as parallel MIMO systems at each subcar-
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rier, which facilitates the application of MIMO processing on a per subcarrier basis.

For multiuser MIMO OFDM systems, interference cancelation precoding schemes

can then easily be applied at each subcarrier independently. A large amount of

research has been done on the single user MIMO OFDM whereas the multiuser

case remains fairly unexplored. Duplicy et al. [9] have extended available algo-

rithms and studied their complexity and performance to minimize the BER. An

issue with this approach is the prohibitive computational cost. Many schemes

have been developed to reduce the system complexity. For channel estimation,

the channel can be estimated for a subset of subcarriers then use an interpolation

scheme to obtain the channel for the remaining subcarriers [10]. In the case of

single user, a scheme was proposed for feedback savings, a fraction of the precod-

ing matrices at selected subcarriers are obtained at the receiver, then sent to the

transmitter where the transmitter is able to reconstruct all the precoding matri-

ces using interpolation [11,12]. The interpolator parameters were optimized using

MSE or mutual information criterion. This method however only applies to uni-

tary matrices and has been proven ineffective in the multiuser case [13]. Karaa

et al. [13] solve the joint power allocation problem across all subcarrier using the

squared mean squared error (SMSE) minimization to find the optimal precoding

and decoding matrices. They also present methods to reduce the computational

load by exploiting the existing correlation between closely spaced subcarriers.

In this thesis, we take advantage of the correlation between adjacent subcarriers

to develop a computationally efficient block diagonalization scheme for interference
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cancelation for the downlink multiuser MIMO OFDM system.

2.2 OFDM Systems

2.2.1 Overview of OFDM

One main challenge toward the realization of robust wireless communication sys-

tems is fading caused by multipath propagation. The received signal may contain

a line-of-sight (LOS) component plus many delayed replicas of the signal. The

delayed copies are received at different times with different phase offsets due to

the reflection on the terrain features and surrounding objects. These signals inter-

fere with the direct path, which causes ISI and degrades the network performance.

Typically, to mitigate ISI, adaptive equalization is implemented at the receiver.

However, for high speed systems there are practical difficulties to perform equal-

ization with low cost, compact hardware. For high data rates, one efficient way of

dealing with the effects of multipath is using parallel transmission.

The concept of OFDM dates back to the 1960s, when Chang [14] introduced

the classic parallel transmission schemes where the frequency bandwidth is di-

vided into several nonoverlapping subcarriers. A decade later, discrete Fourier

transform was first used for OFDM modulation and demodulation processes. The

next milestone in the history of OFDM happened in the mid 1990s, when the

European Telecommunications Standard Institute (ETSI) digital audio broadcast-
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ing (DAB) [15] became the first OFDM-based wireless system. In recent years,

OFDM has become the core technology for a number of standards. For wired

environments, it is known as Digital MultiTone (DMT) transmission and is imple-

mented in many xDSL (digital subscriber lines) systems. For wireless applications,

OFDM is the core technology of a number of standards such as WLAN (wireless

local area networks) standards: IEEE 802.11a/g and IEEE 802.11n [16], which in-

corporates MIMO techniques, and WMAN (wireless metropolitan area networks)

standard such as IEEE 802.16.

2.2.2 OFDM Principle

OFDM is a special case of multicarrier transmission. In order to deal with mul-

tipath fading, traditional parallel transmission schemes divide a single high data

rate channel into several nonoverlapping lower rate subchannels. By doing so,

the frequency selective channel is transformed into flat fading at each subchannel.

At each subchannel, the symbol period is increased, thus reducing the sensitivity

to the delay spread. To eliminate inter-carrier interference and to avoid spectral

overlap, a sufficient guard space is used between adjacent subchannels. However,

this method leads to an inefficient use of the available spectrum. A more efficient

way to use the available bandwidth is to allow the subchannels’ spectra to overlap

under certain conditions.
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The basic idea behind OFDM systems on the other hand is to use orthogonal

subcarriers in the frequency domain. By doing so, OFDM is able to provide a high

spectral efficiency in addition to interference mitigation resulting from the orthog-

onality property. The advantage of the orthogonality of the subchannels resides

in the fact that all subchannels are linearly independent, therefore all interference

from adjacent subchannels is canceled. OFDM offers also the possibility of allo-

cating different power levels for different subcarriers.

In OFDM, the subcarrier pulse used for transmission is chosen to be rectan-

gular. This results in the possibility of performing pulse modulation by a simple

inverse discrete Fourier transform (IDFT). The use of IDFT/DFT results in sig-

nificant complexity reduction [17]. When the number of subcarriers is a power of

two, the IDFT/DFT can be easily and efficiently implemented using the inverse

fast Fourier transform (IFFT)/fast Fourier transform (FFT).

Another main advantage of OFDM is its ability to cope with ISI through the in-

sertion of a cyclic prefix. Channel distortion causes each OFDM symbol to spread

energy into adjacent symbols, causing ISI. A guard interval is introduced to com-

pletely eliminate ISI. The guard interval is chosen to be longer than the expected

delay such that the multipath from one symbol does not interfere with the next

symbol. The effect of the guard interval is to absorb the delayed copies of the

signal that causes interference. To prevent inter-carrier interference (ICI) and to

maintain the orthogonality of the subcarriers, the guard interval is chosen to be a
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cyclic extension of the signal itself; in this case it is referred to as a cyclic prefix.

Each symbol is composed of two parts, the first part is a copy of the tail of the

signal itself and the second part contains the active symbol as shown in Figure

2.1. The total symbol duration is Ttotal = Tg + Ts where Tg is the guard time.

The guard interval length depends on the application but since it reduces the data

throughput Tg is usually kept less than Ts/4.

Figure 2.1: Guard interval insertion.

As mentioned above, the inherent structure of OFDM presents many advan-

tages for communication systems but also has some drawbacks. Below is a sum-

mary of the main advantages and disadvantages of OFDM systems.

Advantages:
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• Robustness against fading and interference: OFDM deals with the effects of

multipath fading by using a cyclic prefix to absorb the ISI.

• Low complexity implementation: OFDM modulation can be easily imple-

mented using FFT and IFFT blocks. These blocks have low complexity and

power consumption.

• High spectral efficiency: Efficient use of the available spectrum by OFDM.

Drawbacks:

• Sensitivity to frequency offset and phase noise: Small errors in carrier fre-

quency estimation might corrupt the orthogonality property of the subcarri-

ers, thus causing ICI. Moreover, ICI can also be caused by phase noise and

time varying channels.

• High average power to peak average: The OFDM signal can be viewed as a

superposition of sinusoidal signal, as a result, its peak power is much larger

than its mean power.

2.2.3 System Configuration

The structure of the transmitter consists of a serial-to-parallel converter that di-

vides the data stream into parallel substreams each transmitted through a different

subchannel. Each substream is first modulated, using quadrature amplitude mod-

ulation (QAM), then the time domain signal is obtained by applying the IDFT.
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This is done by feeding each substream to an IFFT circuit. The next step is the

insertion of the cyclic prefix. On the receiver side, the cyclic prefix is removed then

the signal is fed to a FFT block to convert it back to the frequency domain. A

parallel-to-serial converter is employed to obtain the original transmitted sequence.

A more detailed analysis of the OFDM transmitter and receiver is presented in Sec-

tion 2.2.4.

In OFDM systems, some subcarriers are used as pilot symbols. Also, for re-

liable detection and in order to get channel knowledge at the both ends of the

communication system, training sequences are occasionally sent by the transmit-

ter. A preamble containing the training sequence is added to the data packet. As

most real life systems, the system performance is improved using channel coding,

interleaving and transmit/receive filtering. Also, RF modulation/demodulation

and RF amplifiers are applied to the baseband signal in order to convert it to the

appropriate frequency band. Figure 2.2 shows the block diagram of an OFDM

transceiver. In this thesis, the OFDM signals are processed at the baseband level.

RF modulation/ demodulation and RF amplification are beyond the scope of this

work.

2.2.4 OFDM Signal Generation

This section introduces the OFDM signal generation. In Section 2.2.4.1, a simple

SISO OFDM system is considered. The time and frequency domain representations



18

of the OFDM signals are presented. The OFDM modulated signals are represented

in matrix form. The OFDM demodulation process is also introduced. In Section

2.2.4.2, the OFDM modulation/demodulation principles are applied in the more

general case of a MIMO system.

2.2.4.1 SISO OFDM

This section introduces the OFDM modulation and demodulation for a single an-

tenna transmitter and single antenna receiver. Let’s consider a SISO system with

Nc subcarriers and suppose that Nc is a power of two. We make this assump-

tion in order to simplify the application of the Fourier transform to the subcarrier

symbols. Let Sn be a sequence of discrete time QAM-modulated data symbols.

The data symbols are divided into blocks of length Nc; each block represents one

OFDM symbol. The OFDM signal in the time domain is expressed as

s′(t) =
+∞∑
b=−∞

Nc−1∑
n=0

Sne
j2πfn(t−bTs)u(t− bTs) (2.1)

where the function u(t) is the pulse waveform for each symbol

u(t) =


1 0 ≤ t ≤ Ts

0 otherwise

(2.2)

Ts is the OFDM symbol duration and fn = fc + n
Ts

for n = 0, . . . , Nc− 1. fc is the

carrier frequency and fn denotes the frequency of the nth subcarrier. The spacing



19

between two subcarriers is ∆f = 1
NcT0

= f0
Nc

, with T0 being the sampling time and

f0 = 1
T0

the sampling rate.

For each block b, the Nc symbols are distributed over the Nc subcarriers. For a

single OFDM symbol, the baseband equivalent signal is expressed as

s(t) =
Nc−1∑
n=0

Sne
j2π n

Ts
t. (2.3)

The complex baseband OFDM signal is in fact the IDFT of the Nc symbols. By

sampling the continuous time signal s(t) given by (2.3) at a rate f0 = Nc
Ts

, the

discrete time equivalent of the signal is expressed for each time sample m as

s(m) =
Nc−1∑
n=0

Sne
j2πnm
Nc , 0 ≤ m ≤ Nc − 1. (2.4)

OFDM modulation offers the possibility of representing the OFDM signals in ma-

trix form; they can thus be manipulated using matrix algebra. OFDM matrix

representation is introduced and will be used throughout this thesis.

At the transmitter, the first step for OFDM modulation is feeding the data

symbols to an IDFT circuit. This operation is equivalent to multiplying the data

vector by a Fourier matrix. Let S(b) = [S0(b), . . . , SNc−1(b)]T be the input data

vector for one OFDM symbol. The time domain representation of the bth OFDM

symbol vector s is written as

s(b) = FHS(b) (2.5)
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where F is the Nc × Nc Fourier matrix. The matrix FH represents the inverse

Fourier transform and is expressed as

FH =



1 1 1 . . . 1

1 W 1 W 2 . . . W (Nc−1)

1 W 2 W 4 . . . W 2(Nc−1)

...
...

...
. . .

...

1 W (Nc−1) W 2(Nc−1) . . . W (Nc−1)2


(2.6)

where W = ej
2π
Nc .

The next step in the OFDM signal generation is the insertion of the cyclic prefix.

For a cyclic prefix of duration Tg, let Ng = Tgf0 be the number of samples within

the time interval Tg. The insertion of the cyclic prefix is performed by appending

the last Ng symbols of s to the beginning of the signal. This is equivalent to

multiplying the vector s by the cyclic prefix insertion matrix Θ

Θ =
[[

0Ng×(Nc−Ng) INg
]T

INc

]T
(2.7)

s̄(b) = Θ · s(b) (2.8)

where 0 is an Ng×(Nc−Ng) all zero matrix. The OFDM symbol with cyclic prefix
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s̄ is an (Ng +Nc)× 1 vector and can be expressed as

s̄(b) =


s̄0(b)

...

s̄Nc+Ng−1(b)

 =



sNc−Ng(b)

...

sNc−1(b)

s0(b)

...

sNc−1(b)


. (2.9)

The OFDM modulated symbol vector s̄ is transmitted through a frequency selective

channel that is considered to be constant during one OFDM symbol. The bth

received signal at the receiver is an (Nc + Ng) × 1 vector that can be written as

the product of the channel matrix and the symbol vector whose elements depend

on the bth OFDM block as well as the preceding bloc b− 1

r̄(b) =


r̄0(b)

...

r̄Nc+Ng−1(b)



=



hL−1 . . . h0 0

0
. . . . . . . . .

. . . . . . . . . 0

0 hL−1 . . . h0





s̄Nc+Ng−L+1(b− 1)

...

s̄Nc+Ng−1(b− 1)

s̄0(b)

...

s̄Nc+Ng−1(b)


+ n̄.

(2.10)
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Suppose that the guard interval is chosen to be greater than the excess delay of

the channel, so that all interference caused by preceding subcarriers is eliminated.

Since the goal of the guard interval is to absorb the interference from preceding

symbols, then the first Ng samples of the received signal are contaminated. There-

fore, the first step of the OFDM demodulation at the receiver is eliminating the

guard interval, i.e., discarding the first Ng samples of each received symbol vector.

This operation is equivalent to multiplying the received signal by the matrix Γ

Γ =
[
0Ng×(Nc−Ng) INc

]
. (2.11)

The received signal after guard interval elimination can be expressed as the product

of the channel matrix and the data symbol vector as shown below

r(b) =


r0(b)

...

rNc−1(b)



=



hL−1 . . . h0 0

0
. . . . . . . . .

. . . . . . . . . 0

0 hL−1 . . . h0




s̄Ng−L+1(b)

...

s̄Nc+Ng−1(b)

+ n.

(2.12)
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Due to the cyclic structure of s̄, the signal r(b) can be written as

r(b) =



h0 0 . . . 0 hL−1 . . . h1

h1
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . hL−1

hL−1
. . . h1 h0 0 0

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 . . . 0 hL−1 . . . h1 h0





s0(b)

...

...

...

...

...

sNc−1(b)



+



n0

...

...

...

...

...

nNc−1



. (2.13)

The channel matrix is circulant, thus diagonal in the Fourier domain. Eq. (2.13)

can be written in compact matrix form as

r(b) = Hs(b) + n(b) (2.14)

where n = [n0, . . . , nNc−1]T is the additive white Gaussian noise vector and H the

channel matrix.

The second part of the demodulation process is the calculation of the Fourier

transform of the received signal, which is equivalent to applying the Fourier matrix
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F to the received signal vector r

R(b) = F · r(b)

= F ·H · FH · S(b) + F · n

=



H0 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 HNc−1


· S(b) + N

(2.15)

with Hn being the coefficient of the channel’s frequency response at the nth sub-

carrier expressed as

Hn =
L−1∑
l=0

hl · exp

(
−j2πln
Nc

)
. (2.16)

OFDM modulation assumes the channel as flat fading on each subcarrier, even

though the channel is frequency selective. This property simplifies the equalization

of the signal at the receiver after the OFDM demodulation. The received signal

at the nth subcarrier is then

Rn = HnSn +Nn (2.17)

where Nn represents the noise after application of the DFT on the nth subcarrier.

We can see from Eq. (2.17) that the demodulated received signal on each subcarrier

is not affected by ISI or ICI.
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2.2.4.2 MIMO OFDM

For a MIMO OFDM system, OFDM modulation is applied at each spatial sub-

channel. The NR×NT MIMO channel is equivalent to NR×NT uncorrelated SISO

subchannels. We suppose that the equivalent SISO subchannels have a length less

or equal to L and are constant during one OFDM symbol duration. Let hpql be the

lth coefficient of the impulse response of the channel between transmit antenna p

and receive antenna q. Let Spn be the data symbol at the nth subcarrier transmit-

ted from the pth antenna and nq the noise at the input of the OFDM demodulator

at the qth receive antenna. The symbol obtained after OFDM demodulation on

the nth subcarrier for receive antenna q is denoted by Rq
n. If the guard interval is

not less than the length of the channel L, the received OFDM symbol at the qth

antenna after guard interval removal is

rq(b) =

NT∑
p=1

HqpFHSp(b) + nq(b) (2.18)
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where

Hqp =



hqp0 0 . . . 0 hqpL−1 . . . h1

hqp1
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . hqpL−1

hqpL−1 . . . hqp1 hqp0 0 . . . 0

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 . . . 0 hqpL−1 . . . hqp1 hqp0


= FHdiag{Hqp

0 , . . . , H
qp
Nc−1}F

(2.19)

rq(b) = [rq0(b), . . . , rqNc−1(b)]T (2.20)

Sq(b) = [Sq0(b), . . . , SqNc−1(b)]T (2.21)

nq(b) = [nq0(b), . . . , nqNc−1(b)]T . (2.22)

The channel matrix at each subcarrier is a circulant matrix, and is thus diagonal in

the Fourier domain. The signal received at antenna q is expressed in the frequency

domain as:

Rq(b) =

NT∑
p=1

diag{Hqp
1 , . . . , H

qp
Nc−1}S

p(b) + Nq(b) (2.23)
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where Rq and Nq are the OFDM symbol and noise vectors at the output of the

qth receive antenna, respectively. Hqp
n is the nth sample of the frequency response

of the subchannel between antennas p and q, given by

Hqp
n =

L−1∑
l=0

hqpl · exp

(
−j2πln
Nc

)
. (2.24)

In the remainder of this thesis, for simplicity of notation especially for multiuser

MIMO systems, we will primarily present the system equations in the frequency

domain unless otherwise stated. Therefore a MIMO OFDM system with Nc sub-

carriers can be treated as a set of Nc parallel MIMO systems. For each subcarrier

n, we have a simple NT ×NR MIMO system.
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Figure 2.2: OFDM transceiver.
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Chapter 3 – Computationally Efficient Block Diagonalization for

Interference Cancelation

3.1 System Model

Consider a multiuser MIMO OFDM system, as illustrated in Figure 3.1, with NT

transmit antennas and K mobile users with a total of NR receive antennas . The

kth user is equipped with NRk antennas such that
∑K

k=1 NRk = NR. The channel

is modeled as a time-invariant, L-tap frequency-selective Rayleigh fading channel

further distorted by additive white Gaussian noise (AWGN). OFDM modulation

with Nc subcarriers is used at both the base station and the mobile users to coun-

teract the frequency selectiveness of the channel and transform the channel into Nc

parallel independent multiuser MIMO subchannels. In the frequency domain, the

channel can be represented by a NT×NR×Nc composite channel matrix H contain-

ing all channel coefficients for all users on all subcarriers. The entries of H on each

subcarrier are independent and identically distributed zero-mean complex Gaus-

sian variables with unit variance. Let Hk(n) be an NT ×NRk matrix, representing

the channel for user k on subcarrier n. We assume that the channels {Hk(n)}Kk=1

are independent. Therefore, the matrix H(n) = [HT
1 (n),HT

2 (n), · · · ,HT
K(n)]T ,

which characterizes the channel for subcarrier n, has full rank.
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Figure 3.1: Multiuser MIMO OFDM system.

The base station broadcasts to all K users simultaneously over all OFDM sub-

carriers. Each user k receives from the base station mk data streams on every

subcarrier with mk ≤ NRk, resulting in a total of Ncmk data streams per user.

Hence, we have a transmitter equipped with NT transmit antennas transmitting

a total of Ncm = Nc

∑K
k=1 mk data streams on all Nc parallel subcarriers, to K

mobile users equipped with a total of NR receive antennas.

The data vector on subcarrier n, xk(n), is an mk×1 vector containing the data

symbols for user k; the overall data vector for all users is x(n) = [xT1 (n),xT2 (n), . . . ,xTK(n)]T .

At the transmitter, each user’s data stream is processed by the NT ×mk precod-
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ing matrix Mk(n), where the overall precoding matrix on subcarrier n is denoted

by M(n) = [M1(n),M2(n), · · · ,MK(n)]. The output of the transmit filter M(n)

on subcarrier n corresponds to the input to the corresponding transmit antennas.

However, these Nc symbols are OFDM modulated before transmission. At the

receiver end, for each user, OFDM demodulation is applied before the signal is fed

to a decoding receive filter. The output is then Nc decoded vectors x̂k(n), each of

length mk.

Since the focus is on precoding design, no error correction coding is used and

symbol timing errors and frequency offsets are neglected. Also, it is assumed that

the transmitter has perfect knowledge of the instantaneous channel state informa-

tion (CSI), that is, the channel matrices {Hk(n)}Kk=1 for all users are obtained at

the base station through a zero-delay error-free feedback channel. The output of

the OFDM demodulator for the kth mobile user on subcarrier n is the superpo-

sition of the K branches’ signals distorted by channel fading plus additive white

Gaussian noise, and is expressed as

rk(n) =
K∑
i=1

Hk(n)Mi(n)xi(n) + nk(n)

= Hk(n)Mk(n)xk(n) +
K∑

i=1,i 6=k

Hk(n)Mi(n)xi(n) + nk(n)

= Hk(n)Mk(n)xk(n) + ck(n) + nk(n).

(3.1)

The term ck(n) corresponds to the inter-user interference of user k. The NRk × 1
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vector nk(n) denotes the AWGN at the kth user’s antenna array, which follows

an i.i.d zero mean complex Gaussian distribution with variance N0. With CSI

feedback from all K users, the transmitter assigns resources and designs optimal

transmit vectors. As discussed in Section 2.1, the major impairment to system

performance is the presence of multiple access interference. The availability of

channel knowledge at both ends of the link allows the transmitter to design the

precoding matrices to precancel the interference before transmission. Block diag-

onalization is a precoding technique based on the orthogonalization of the signals

to cancel the interference followed by waterfilling to maximize the capacity. The

block diagonalization algorithm is described in the next section.

3.2 Block Diagonalization for Interference Cancelation

3.2.1 Algorithm Description

The objective of the BD approach is to find the precoding matrices {Mk(n)}Kk=1

for each user on all subcarriers such that

Hk(n)Mj(n) = 0, ∀n,∀j 6= k. (3.2)

The inter-user interference term ck(n) can be expressed as ck(n) = Hk(n)M̃k(n)x̃k(n),

where M̃k(n) and x̃k(n) are defined respectively as the modulation matrix and the
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transmit vector for all users other than user k

M̃k(n) = [M1(n) · · · Mk−1(n) Mk+1(n) · · · MK(n)] (3.3)

x̃k(n) = [x1(n) · · · xk−1(n) xk+1(n) · · · xK(n)]. (3.4)

On each subcarrier n, the channel and modulation matrices HS(n) and MS(n) are

defined as

HS(n) = [HT
1 (n) HT

2 (n) · · · HT
K(n)]T (3.5)

MS(n) = [M1(n) M2(n) · · · MK(n)]. (3.6)

User k is free of inter-user interference if Hk(n)Mj(n) = 0 for j 6= k, which makes

the product HS(n)MS(n) block diagonal. This also translates into Mk(n) lying

within the null space of the matrix H̃k defined as

H̃k(n) = [HT
1 (n) · · · HT

k−1(n) HT
k+1(n) · · · HT

K(n)]T . (3.7)

The zero-interference constraint is re-expressed as

H̃k(n)Mk(n) = 0, ∀k = 1, · · · , K. (3.8)

This constraint imposes a dimension condition necessary to accommodate all users.

The condition guarantees that data is transmitted to each user k, which means

that the dimension of the null space of H̃k(n) is non-zero, i.e., rank(H̃k(n)) < NT .

The dimension condition for all users applies to the rank of H̃k(n) and can be
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expressed as max{rank(H̃1(n)), · · · , rank(H̃K(n))} < NT . When the dimension

condition is satisfied, the algorithm starts by finding a basis of the null space of

H̃k(n) through the computation of its singular value decomposition (SVD), for

each user k:

H̃k(n) = Ũk(n)Σ̃k(n)[Ṽ
(1)
k (n) Ṽ

(0)
k (n)]H . (3.9)

Let L̃k(n) = rank(H̃k(n)) ≤ NR − NRk. The matrixṼ
(1)
k (n) contains the first

L̃k(n) right singular vectors and Ṽ
(0)
k (n) holds the last NT − L̃k(n) right singular

vectors and constitutes an orthonormal basis for the null space of H̃k(n), i.e.,

Hk(n)Ṽ
(0)
j (n) = 0 for j 6= k. The modulation matrix can be written as a a linear

combination of the vectors of Ṽ
(0)
k (n).

M̃k(n) = Ṽ
(0)
k (n)Ak(n) (3.10)

where Ak(n) is the L̃k(n)×mk transmit beamformer for the equivalent single-user

MIMO system. To maximize the sum capacity, Ak(n) can be found through the

SVD of the projection of the channel of the kth user on the null space of H̃k(n),

resulting in the product Hk(n)Ṽ
(0)
k (n). The SVD of the product is expressed as

Hk(n)Ṽ
(0)
k (n) = Uk(n)

Σk(n) 0

0 0

 [V
(1)
k (n) V

(0)
k (n)]H (3.11)

where Σk(n) is an L̄k(n)× L̄k(n) matrix of singular values of Hk(n)Ṽ
(0)
k (n), with

L̄k(n) = rank{Hk(n)Ṽ
(0)
k (n)}. V

(1)
k (n) is then the matrix that holds the first
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L̄k(n) right singular vectors of Hk(n)Ṽ
(0)
k (n). The product Ṽ

(0)
k (n)V

(1)
k (n) builds

an orthonormal basis of dimension L̄k(n) and represents the transmission vectors

that maximize the rate for user k on subcarrier n. The precoding matrix Ak(n)

can hence be written as

Ak(n) = V
(1)
k (n)Λ1/2(n) (3.12)

where Λ1/2(n) is the power loading matrix on subcarrier n given by the waterfilling

algorithm applied to the diagonal elements of the matrix Σ(n), which can be

expressed as

Σ(n) =


Σ1(n)

. . .

ΣK(n)

 . (3.13)

Waterfilling algorithm is explained in Appendix A.

For each user k, the precoding matrix is then Mk(n) = Ṽ
(0)
k (n)V

(1)
k (n)Λ1/2(n).

The modulation matrix on each subcarrier becomes

MS(n) =
[
Ṽ

(0)
1 (n)V

(1)
1 (n) Ṽ

(0)
2 (n)V

(1)
2 (n) · · · Ṽ

(0)
K (n)V

(1)
K (n)

]
Λ1/2(n)

(3.14)

On each subcarrier n, the waterfilling algorithm is applied to the diagonal elements

of Σ(n), the matrix of singular values of Hk(n)Ṽ
(0)
k (n) for all users. Waterfilling

is used for capacity maximization under a total power constraint P .

At the receiver, post-processing is performed by applying a decoding matrix
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D(n) to the received signal. The output at each subcarrier is an mk ×NR vector

of estimated data symbols

x̂(n) = D(n)(HS(n)MS(n)x(n) + n(n)). (3.15)

The overall decoding matrix on subcarrier n, D(n), is block diagonal and can be

written as

D(n) =


D1(n)

. . .

DK(n)

 . (3.16)

The decoding matrix for user k on subcarrier n, Dk(n), is

Dk(n) = UH
k (n). (3.17)

To implement the block diagonalization algorithm for sum capacity maximiza-

tion through waterfilling, the knowledge of UH
k (n) is required at each receiver. For

each user k, the decoding matrix UH
k (n) depends not only on the user’s channel

matrix Hk,(n) but also on the nulling matrix Ṽ
(0)
k (n). The calculation of the nulling

matrix requires knowledge of all users’ CSI. Since we assume that no coordination

is possible between users, the decoding matrices cannot be calculated directly. One

way is for each receiver to calculate the decoding matrices from an estimate of its
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effective channel [18]. The effective channel for user k on subcarrier n is

Heff,k(n) = Hk(n)Ṽ
(0)
k (n) (3.18)

which is the equivalent single user MIMO channel for user k on the nth OFDM

subcarrier and the equivalent transmit preprocessing matrix is Ak(n). Another

technique to solve this problem is by using coordination information from the

transmitter. The base station has more computational resources, so the receiver

postprocessing matrices are calculated at the transmitter and the quantized beam-

forming information is sent to the receivers, through limited feedforward [19].

The total achievable capacity of the system resulting from the block diagonal-

ization on each subcarrier is expressed as

CBD(n) = max
MS(n),Hk(n)Mj(n)=0,j 6=k

log2

∣∣∣∣I +
1

N0

HS(n)MS(n)MH
S (n)HH

S (n)

∣∣∣∣
= max

Hk(n)Mj(n)=0,j 6=k

K∑
k=1

log2

∣∣∣∣I +
1

N0

Hk(n)Mk(n)MH
k (n)HH

k (n)

∣∣∣∣ . (3.19)

The waterfilling algorithm maximizes the system’s overall capacity. With MS(n)

chosen as in Eq. (3.14), the capacity of the BD method becomes

CBD(n) = max
Λ(n)

log2

∣∣∣∣I +
Σ2(n)Λ(n)

N0

∣∣∣∣ . (3.20)

The capacity is given under total power constraint P , such that P =
∑Nc−1

n=0 Pn,
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where Pn is the power allocated to subcarrier n. For uniform power loading on

all subcarriers for n = 0, · · · , Nc − 1, the allocated power is Pn = P
Nc

. In [13] it

was shown that optimal power allocation across subcarriers provides only slight

performance gain. Since the main focus of our work is complexity reduction, we

consider an equal power allocation across all subcarriers.

The block diagonalization algorithm applied is summarized in Table 3.1.

1: For n = 0, . . . , Nc − 1, for k = 1, . . . , K. Compute SVD of H̃k

H̃k(n) = Ũk(n)Σ̃k(n)[Ṽ
(1)
k (n) Ṽ

(0)
k (n)]H

2: Compute the SVD of the projection of Hk(n) on the right null space of H̃k(n)

Hk(n)Ṽ
(0)
k (n) = Uk(n)

[
Σk(n) 0

0 0

]
[V

(1)
k (n) V

(0)
k (n)]H

3: Use waterfilling on the diagonal elements of Σ(n) = diag(Σ1(n), . . . ,ΣK(n))
to find the optimal power loading matrix Λ(n).

4: Set

MS(n) = [Ṽ
(0)
1 (n)V

(1)
1 (n) Ṽ

(0)
2 (n)V

(1)
2 (n) · · · Ṽ

(0)
K (n)V

(1)
K (n)]Λ1/2(n)

Table 3.1: Block diagonalization algorithm.

3.2.2 Complexity Analysis

The primary focus of this work is to reduce the computational load of the block

diagonalization algorithm in OFDM systems. In this section, we quantify the

complexity of the algorithm in terms of floating-point operations (flop). A flop
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is defined as one addition, substraction, multiplication or division of two real

floating-point numbers. One real addition or multiplication counts as one flop.

A complex addition and multiplication have two and six flops, respectively [20].

The complexity of the algorithm can be estimated as a polynomial of the problem

dimension. Although flop counting does not provide an accurate prediction of the

computational complexity of the algorithm, it is a useful measure to capture the

computational load. An approximation of the order of number of flop counts of

the SVD algorithm for a complex valued p× q matrix with p ≥ q is shown in Table

3.2

Required Flop count
Σ 24pq2 − 8q3

Σ, V 24pq2 + 48q3

Σ, U, V 24p2q + 48pq2 + 54q3

Table 3.2: Complexity of complex valued SVD.

The number of flop counts for each step of the algorithm computed for each of

the following operations:

1. SVD of the (NR −NRk)×NT matrix H̃k

2. Product Hk(n)Ṽ
(0)
k (n) and SVD of Hk(n)Ṽ

(0)
k (n)

3. Waterfilling for (
∑

k L̄k(n)) real eigenmodes
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4. Product of Ṽ
(0)
k (n)V

(1)
k (n) and product by power loading matrix

The table below shows an order of the number of flop counts for every step of

Algorithm 3.1 for a single subcarrier for user k. For block diagonalization to com-

Step Flop counts

1 24N2
T (NR −NRk) + 48NT (NR −NRk)

2 + 54(NR −NRk)
3

2 6NTNRk(NT − L̃k(n)) + 24(NT − L̃k(n))N2
Rk + 48N3

Rk

3 2(
∑

k L̄k(n))2 + 6(
∑

k L̄k(n))

4 12NT L̄k(n)(NT − L̃k(n)) + 12NT (
∑

k L̄k(n))2

Table 3.3: BD algorithm complexity

pletely cancel the interference, the system must satisfy the dimension condition,

NT > rank(H̃k(n)). To get an idea of the maximum flop counts needed for the block

diagonalization algorithm, we assume that all channel matrices {Hk(n)}Kk=1 are in-

dependent, and for each user the matrix H̃k(n) is full rank, i.e., L̃k(n) = NR−NRk.

The product matrix Hk(n)Ṽ
(0)
k (n) is of also full rank, L̄k(n) = NRk. The number
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of flop counts in this case is an order of

c = 24N2
T (NR −NRk) + 6NTNRk(NT − L̃k(n)) + 12NT L̄k(n)(NT − L̃k(n))

+ 48NT (NR −NRk)
2 + 24(NT − L̃k(n))N2

Rk + 12NT

(∑
k

L̄k(n)

)2

+ 54(NR −NRk)
3

+ 48N3
Rk + 2

(∑
k

L̄k(n)

)2

+ 6

(∑
k

L̄k(n)

)
= 24N2

T (NR −NRk) + 6NTNRk(NT −NR +NRk) + 12NT L̄k(n)(NT −NR +NRk)

+ 48NT (NR −NRk)
2 + 24(NT −NR +NRk)N

2
Rk + 12NTN

2
R + 54(NR −NRk)

3

+ 48N3
Rk + 2N2

R + 6NR. (3.21)

The complexity of the block diagonalization algorithm is thenO(N2
T (NR−NRk))

on each subcarrier. The overall complexity when block diagonalization is applied

to the OFDM system is O(NcN
2
T (NR −NRk)).

3.3 Interpolation for Complexity Reduction

In order to reduce the computational load of the interference pre-cancelation at

the transmitter, we user the block diagonalization algorithm combined with inter-

polation of the processing matrices. Various interpolation methods have been used

for OFDM systems particularly for channel estimation purposes. Colieri et al. [10]

have used interpolation for pilot based channel estimation. The performance of lin-

ear, second-order, low-pass, spline and time-domain interpolation algorithms was

compared for comb-type based channel estimation. Interpolation was also used
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for complexity reduction for the design of linear precoding matrix based on SMSE

minimization using uplink-downlink duality [13]. The authors in [11] and [12] pro-

pose a scheme to limit feedback requirements for a MIMO OFDM system using

interpolation. A fraction of the precoding matrices for chosen subcarriers are ob-

tained at the receiver, quantized and fed back to the transmitter. The complete

set of matrices is then recovered using interpolation while assuming the precod-

ing matrices are unitary. The interpolator parameters are optimized using MSE

or mutual information criterion. However, the proposed method only applies to

unitary matrices.

In this work, block diagonalization algorithm is applied for all users on a per-

subcarrier basis for precancelation of the inter-user interference. As discussed in

Section 3.2.2, the complexity of the algorithm for each user is O(NcN
2
T (NR−NRk)),

which grows linearly with the number of OFDM subcarriers Nc. With a fixed

number of users and antenna dimension, the computational load can be efficiently

reduced without changing the number of subcarriers by taking advantage of the cor-

relation between subcarriers and applying interpolation. The computational load

and feedback requirements can be reduced by adopting interpolation techniques

along the frequency dimension. Instead of computing the precoding matrices at

all subcarriers, the matrices MS(n) are calculated for a subset of Np subcarriers.

Matrices for the subcarriers not in the subset are calculated by interpolating the

precoding matrices corresponding to the adjacent subcarriers in the subset. For

n = 0 : Li : Nc − 1, where Li = Nc
Np

is the interpolation factor, the matrices
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are obtained by performing the direct calculation of the BD matrices as shown in

the algorithm in Table 3.1. Each element of all directly calculated matrices are

interpolated along the frequency dimension for all subcarriers, as summarized in

Table 3.4. It is important to have an interpolation algorithm that provides a good

tradeoff between simplicity of implementation and estimation errors. In this work,

1: For user k, for n = 0 : Li : Nc − 1
Compute precoding matrix Mk(n) and decoding matrix Dk(n)

2: For all entries of Mk(n), Dk(n)
Interpolate the samples obtained in step 1 along the frequency domain.

Table 3.4: Interpolation for block diagonalization

we focus on the two simplest interpolation algorithms, the piecewise constant in-

terpolation and the linear interpolation. These two simple techniques were chosen

among the many mathematical interpolation algorithms for their simplicity and

low complexity implementation. The interpolation algorithms are described below.

3.3.1 Piecewise Constant Interpolation

This is the simplest of the interpolation methods available. It attributes to each

intermediate point the value of the nearest point in the direct calculation subset.

In other words, the interpolated precoding matrix MS(n) and decoding matrix

D(n) for subcarrier n, are equal to MS(mLi) and D(mLi), where m = 0 : Np − 1

and mLi is the nearest subcarrier in the direct calculation subset.

Piecewise constant interpolation is therefore very simple to implement and for each
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subcarrier, only the values of the nearest neighbor subcarrier is required and does

not take into account any other points. This method does not require any addi-

tional computations as it assigns previously calculated matrices to intermediate

subcarriers.

3.3.2 Linear Interpolation

Linear interpolation is a simple interpolation algorithm that uses first degree poly-

nomials to approximate the intermediate points. Let MS be the precoding matrix

to be interpolated and m = 0 : Np−1. For subcarrier n, with mLi < n < (m+1)Li,

using linear interpolation MS(n) is given by

MS(n) = MS(mLi + l) 0 ≤ l ≤ Li

=
1

Li
(MS(m+ 1)−MS(m)) + MS(m).

(3.22)

The procedure above is applied to all intermediate subcarriers for all values

of the precoding matrix MS and decoding matrix D. For Nc total subcarriers,

if Np are calculated using the direct method, interpolation is applied Nc − Np

times. Let M × N be the dimension of the matrix to be interpolated, the total

complexity of the linear interpolation is then O (2(Nc +Np)MN). The complexity

of the interpolation of the NT × m precoding matrix MS for all subcarriers is

O(2(Nc+Np)NTm). For the decoding matrix D, which is block diagonal as shown

in Eq. (3.16), the interpolation is applied to the mk ×NRk decoding matrices for

each user k. The off-diagonal zero matrices do not need to be interpolated, making
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the number of required operations even lower.
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Chapter 4 – Simulation Results

4.1 Data Throughput

In the block diagonalization process with waterfilling for power allocation, the pre-

coding matrices are designed for capacity maximization. On each subcarrier, the

achievable throughput is maximized as shown in Eq. (3.19). In general, for mul-

tiuser systems with K mobile users, the throughput on subcarrier n is expressed as

CBD(n) = max
Mk(n)

log2

∣∣∣∣∣I +
Hk(n)Mk(n)MH

k (n)HH
k (n)

N0I +
∑K

j=1,j 6=k Hk(n)Mj(n)MH
j (n)HH

k (n)

∣∣∣∣∣ . (4.1)

The term
∑K

j=1,j 6=k Hk(n)Mj(n)MH
j (n)HH

k (n) represents the covariance of the ef-

fective noise (i.e., noise plus interference) at receiver k. The precoding matrices

Mk(n) are computed by the block diagonalization algorithm for throughput max-

imization such that the interference term is null. In the study of the system

throughput, we make the following assumptions: (1) each channel use corresponds

to at least one OFDM symbol, (2) the channel stays constant during each channel

use, and (3) uniform power loading is applied across all subcarriers. For an OFDM

system with block diagonalization, the overall achievable throughput is the sum of

the rates on all subcarriers [21].
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CBD = max
Mk(n)

Nc−1∑
n=0

K∑
k=1

log2

∣∣∣∣∣I +
Hk(n)Mk(n)MH

k (n)HH
k (n)

N0I +
∑K

j=1,j 6=k Hk(n)Mj(n)MH
j (n)HH

k (n)

∣∣∣∣∣ (4.2)

We propose the use of interpolation techniques to estimate the precoding matrices

on a subset of the OFDM subcarriers. For the subset of subcarriers where interpo-

lation is performed, the precoding and power loading matrices are not optimal due

to the interpolation errors. This results in a decrease of the system’s total through-

put that can be attributed to the effect of the interference from other users. With

that in mind, we can write the average throughput per subcarrier as

ĈBD =
1

Nc

Nc−1∑
n=0

K∑
k=1

log2

∣∣∣∣∣I +
Hk(n)Mk(n)MH

k (n)HH
k (n)

N0I +
∑K

j=1,j 6=k Hk(n)Mj(n)MH
j (n)HH

k (n)

∣∣∣∣∣ (4.3)

Eq. (4.3) represents the average throughput per subcarrier in bits/s/Hz for one

channel realization. In our simulations, the throughput in Eq. (4.3) is averaged

over R channel realizations. To get the overall data throughput in bits/s, the

average throughput is scaled by the system’s bandwidth. We ignore the system

losses due to the the introduction of the cyclic prefix as well as the pilot symbols

for channel estimation and synchronization.

For the subcarriers for which the precoding and decoding matrices are calcu-

lated using direct calculation, the interference term is equal to zero. For the sub-

set of interpolated subcarriers, the inter-user interference is non negligible and is

caused by the interpolation errors. When using interpolation, we expect a decrease

of the system’s total throughput as well as the average throughput per subcarrier.
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As mentioned earlier, a substantial reduction in complexity is expected, but that

comes at the expense of lower performance. In this section, we will investigate the

throughput penalty due to the use of interpolation. We will simulate the system’s

throughput for different interpolation factors and compare the throughput of our

algorithm and the direct calculation.

In the simulations, we consider a downlink multiuser MIMO OFDM system

with NT = 4 transmit antennas and K = 2 users, each is equipped with NRk =

2 receive antennas. The configuration considered is for OFDM systems with a

transmission bandwidth of 1.25 MHz and Nc = 128 OFDM subcarriers unless

mentioned otherwise. The symbol time is T = 66.67µs and the subcarrier spacing

is

∆f =
1.25× 106

128
= 15 kHz (4.4)

The system parameters are summarized in Table 4.1

Bandwidth 1.25 MHz

FFT size 128

Symbol duration 66.7µs

Subcarrier spacing 15 kHz

Cyclic prefix 1/4

Modulation 16QAM

Table 4.1: Frequency selective channel parameters

The multipath fading channel is modeled by an Lt-tap impulse response, with
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an exponential power delay profile and a root mean square (rms) delay spread τrms.

Specifically, we only consider the paths with a maximum delay of 5τ/T [22]. The

coherence bandwidth of the system is defined by the rms delay spread. The coher-

ence bandwidth for a frequency correlation greater than 0.9 can be approximated

by [23]

Bc ≈
1

50τrms

. (4.5)

The number of correlated subcarriers with a correlation factor greater than 0.9 is

defined as

NL =
Bc

∆f
. (4.6)

We have then NL adjacent subcarriers that fade coherently. For a typical value

of rms delay spread τrms = 100ns, the number of highly correlated subcarriers is

approximately NL = 13. The value of NL helps determine the range of appropriate

interpolation factors that would minimize the throughput loss. Theoretically, for

the above parameters, we can use an interpolation factor up to 13 and only observe

a slight reduction in system throughput.

As mentioned above, there are NL = 13 subcarriers with a correlation coef-

ficient of at least 0.9. To take full advantage of the correlation, we choose an

interpolation interval size smaller than 13, such as Li = 2, 4, 8. By allowing fewer

correlated subcarriers to be interpolated and choosing an interpolation factor larger

than NL, Li = 16 for example, we can allow more performance degradation and

further reduce the complexity.
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To demonstrate the tradeoff between the complexity reduction and performance

of our proposed algorithm, Figure 4.1 shows the data throughput of the system

for the piecewise interpolation and linear interpolation algorithms for interpolation

factors Li = 4, 8, 16.

Figure 4.1: Data throughput of the direct approach, piecewise and linear interpo-
lation versus SNR.

The simulation results show that at low to moderate SNR, the throughput gap

between the direct calculation and piecewise interpolation is less than 0.5 dB. For

very low SNR, the throughput for the piecewise interpolation is equal to the direct

approach independent of the interpolation interval length. In the high SNR region,

the throughput loss is more significant and is dependent on the interpolation fac-

tor. The higher the interpolation factor, the higher the throughput penalty. From
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Figure 4.1, we can see that the piecewise constant interpolation leads to a better

performance than the linear interpolation, with a throughput gain of up to 2 dB

for high SNR.

Using either interpolation algorithm results in substantial computational load

reduction as shown in Table 4.2.

Figure 4.2 and Figure 4.3 show the data throughput versus the number of opera-

tions for the direct calculation, piecewise and linear interpolation for interpolation

factors Li = 2, 4, 8, 16 for SNR=10 dB and SNR=20 dB, respectively. We can see

that piecewise interpolation has a low throughput penalty with high complexity

reduction, as it does not require any additional operations.

Li Piecewise Linear

2 50% 48%

4 75% 72%

8 87.5% 84%

16 93.7% 90%

Table 4.2: Complexity savings as a percentage of the direct calculation approach
for interpolation factors Li = 2, 4, 8, 16.

The piecewise constant interpolation induces less throughput reduction for

higher complexity savings than linear interpolation. We can see from Table 4.3, the

throughput penalty is approximately 0.5% for SNR=10 dB and 5% when SNR=20

dB for interpolation factor of 4 with a complexity reduction of 75%.
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Figure 4.2: Data throughput of the direct approach, piecewise and linear interpo-
lation for SNR=10 dB.

(a) Capacity penalty for
SNR=10dB

Li Piecewise Linear

2 0.15% 3.62%

4 0.48% 6.32%

8 1.66% 9.98%

16 5.79% 15.04%

(b) Capacity penalty for
SNR=20dB

Li Piecewise Linear

2 2.03% 3.42%

4 5.03% 5.61%

8 12.02% 12.19%

16 24.29% 25.92%

Table 4.3: Capacity penalty of the piecewise and linear interpolation for interpo-
lation factors Li = 2, 4, 8, 16

The above simulations are obtained by averaging the data throughput of the

system over 1000 channel realizations. The results presented are useful in predict-
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Figure 4.3: Data throughput of the direct approach, piecewise and linear interpo-
lation for SNR=20 dB.

ing the performance of the the piecewise constant and linear interpolation schemes.

The simple piecewise interpolation provides an advantage over the linear algorithm

in terms of throughput, that is more significant at low to moderate SNR regime,

which is a reasonable operating region for wideband communications systems when

channel coding is applied. The piecewise method also requires less computational

complexity and hence it provides a good tradeoff between throughput maximiza-

tion and complexity reduction.
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4.2 Error Performance

In this section, the error performance of the interpolation schemes is investigated.

The same system configuration as in Section 4.1 is used here. The average BER

performance illustrates the results of Monte Carlo simulations of 2000 QAM sym-

bols per user per subcarrier per channel realization over 1000 realizations. A

uniform power allocation is applied across the subcarriers. The error performance

of the interpolation schemes for different interpolation factors is compared to that

of the direct calculation method. In Section 4.1 it has been observed that the

simple piecewise interpolation outperforms the linear interpolation in terms of sys-

tem data throughput. Since the piecewise method also offers lower complexity, it

will be considered as a method of choice for throughput maximization. Figure 4.4

shows the average BER of the direct calculation approach and the piecewise con-

stant interpolation for interpolation factors Li = 2, 4, 8, 16.

For an interpolation factor of 2, the piecewise interpolation results in a penalty

of less than 0.5 dB at a BER of 10−3. At the same BER, the power loss of Li = 4

is approximately 1.8 dB. For interpolation factor 8 and 16, the BER penalty is 4

dB and 7 dB, respectively. Interpolation factors of 2 and 4 result in reasonable

BER penalty for complexity reduction of 50% and 75%, respectively. Linear inter-

polation performance is compared to piecewise interpolation in Figure 4.5.

The linear interpolation scheme has a penalty loss of approximately 6 dB for
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Figure 4.4: Comparison of BER performance of direct approach and piecewise
interpolation for Li = 2, 4, 8, 16.

interpolation factor 2. This is about 12 times higher than the piecewise constant

interpolation performance penalty. As much as it offers a reasonable tradeoff be-

tween throughput loss and complexity savings, the linear interpolation results in

poorer error performance.

The performance of the piecewise interpolation is compared to the low-pass in-

terpolation scheme used in [13] and [10]. Low-pass interpolation is performed by

applying a 2LiL+ 1 length FIR filter after inserting zeros in the original sequence.

The filter allows the original data to be unchanged and interpolates between the

original values such as the mean-squared error of the interpolated points and the

ideal values is minimized. Figure 4.6 shows the performance of the low-pass in-
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Figure 4.5: Comparison of BER performance of direct approach, piecewise and
linear interpolation schemes for Li = 2, 4.

terpolation scheme compared with the direct approach. For a BER of 10−3, the

performance penalty for the low pass-interpolation is approximately 8 dB indepen-

dently of the interpolation factor. Even though it results in poor error performance,

the advantage of the low-pass interpolation is its robustness to the interpolation

interval length. Figure 4.7 shows the error performance of the direct calculation,

the piecewise, linear and low-pass interpolation for interpolation factors Li = 4, 8.

From Figure 4.7, the piecewise constant interpolation outperforms other inter-

polation schemes and results in lower performance penalty for Li ≤ NL.

Among the interpolation schemes investigated, the simple piecewise constant
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Figure 4.6: Comparison of BER performance of direct approach and low-pass
interpolation for Li = 2, 4, 8.

interpolation provides the best throughput and error performance. Since piecewise

interpolation does not require any additional complexity and it has less than 0.5

dB performance loss, it provides a good tradeoff between complexity reduction and

error performance.
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Figure 4.7: Comparison of BER performance of direct approach, piecewise, linear
and low-pass interpolation for Li = 4, 8.
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Chapter 5 – Conclusion

One of the main challenges for the multiuser MIMO downlink is the inter-user

interference mitigation. The block diagonalization scheme is a linear precoding

algorithm for interference cancelation at the transmitter. With channel knowl-

edge at the base station, precoding is applied to the transmitted signal so that

each user receives an interference-free signal. The waterfilling algorithm is used for

power allocation optimization across the MIMO subchannels. For downlink MU

MIMO-OFDM systems, the block diagonalization can be extended to the parallel

OFDM subcarriers. Practical MIMO-OFDM systems usually have a large number

of OFDM subcarriers, which makes the computation of the block diagonalization

precoding and decoding matrices computationally prohibitive. By exploiting the

inherent frequency correlation between adjacent subcarriers, interpolation of the

pre/decoding matrices and power allocation can applied without much loss in per-

formance. By using low complexity algorithm, important power savings can be

achieved at both the base station and the mobile users in addition to the reduc-

tion of the amount of information exchanged through feedback.

In this thesis, the computational complexity of the block diagonalization algo-

rithm is computed and interpolation schemes are investigated. The throughput

loss and error performance of the interpolation algorithms are compared to that of
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the direct approach. Since the focus is on the computationally efficient solutions

for block diagonalization, two simple interpolation schemes are investigated: the

piecewise constant interpolation and the linear interpolation. Simulations show

that the piecewise constant interpolation outperforms the linear interpolation in

terms of throughput and error performance. For a 50% complexity saving, the

piecewise interpolation throughput loss is 5% at high SNR and the error perfor-

mance penalty is 0.5 dB at a BER of 10−3. The simple piecewise interpolation

appears to provide a favorable tradeoff between computational load reduction and

performance. This tradeoff can be further improved by using an optimal interpo-

lation scheme.
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Appendix A – Waterfilling Algorithm

Waterfilling is an iterative procedure for power allocation. It is considered an op-

timal strategy for transmit power adaptation when channel state information is

available at the transmitter. When the channel can be transformed into parallel

independent subchannels, the principle of waterfilling is to allocate more power to

better subchannels, with a high signal-to-noise ratio, in order to maximize the sum

rate of all subchannels. The weaker subchannels are assigned lower power or no

power at all. The inputs of the waterfilling algorithm are the channel eigenvalues

and the total power. Subchannels with higher eigenvalues are allocated a high

corresponding power, subject to the sum of the power at all subchannels is less

than or equal to the total power.

We apply the waterfilling to Σ(n) shown in Eq. (3.13) on all subcarriers n =

0, . . . , Nc−1, under a total power constraint P . The waterfilling procedure outputs

a diagonal matrix whose elements scale the power transmitted into each vector of

the modulation matrix that maximizes the throughput CBD(n) on each subcarrier

with

CBD(n) = max
Λ(n)

log2

∣∣∣∣I +
Σ2(n)Λ(n)

N0

∣∣∣∣ . (A.1)



66

The matrix of singular values Σ(n) on subcarrier n can be written as

Σ(n) =


Σ1(n)

. . .

ΣK(n)



=


σ1(n)

. . .

σLn(n)



=



σ1,1(n)

σ1,2(n)

. . .

σ1,L̄1
(n)

. . .

σK,1(n)

. . .

σK,L̄K (n)



(A.2)

where σk,i(n) denotes the ith singular value of the kth user on the nth subcarrier

and L(n) =
∑K

k=1 L̄k(n). σk,i(n) represents the channel gains of the kth user’s ith

eigenmode on subcarrier n.



67

For subcarrier n, let

Λ(n) =


λ1(n)

. . .

λL(n)

 (A.3)

where the λl(n)’s are the power loading coefficients subject to:

L∑
l=1

λl(n) = Pn, λl(n) > 0, l = 1 , · · · , L (A.4)

where Pn is the power allocated to the nth subcarrier.

The BD capacity at each subcarrier can then be written as

CBD(n) = max
λ1(n)...λL(n)

L∑
l=1

log2

(
1 +

λl(n)σ2
l (n)

N0

)
. (A.5)

To find the optimal power loading matrix, the Lagrangian method is used

L(u, λ1(n), . . . , λL(n)) =
L∑
l=1

log2

(
1 +

λl(n)σ2
l (n)

N0

)
− u

L∑
l=1

λl(n) (A.6)

where u is the Lagrange multiplier. We then apply the Kuhn-Tucker condition to

optimize power allocation

∂L
∂λl(n)


= 0 if λl(n) > 0

≤ 0 if λl(n) = 0

(A.7)
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Define x+ := max(x, 0). The optimal power allocation is then

λl(n) =
(1

u
− N0

σ2
l (n)

)+

(A.8)

with the Lagrange multiplier u chosen to be such that the power constraint is met

L∑
l=1

(1

u
− N0

σ2
l (n)

)+

= Pn. (A.9)
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