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The number of wind turbines and wind farms in the Pacific Northwest has increased 

dramatically in the past six years, which represents a significant amount of electrical 

generation capacity connected to the public electric grid.  However, the variable nature 

of wind sometimes introduces excessive power, or conversely shortages, in power 

delivery from the wind farm possibly leading to grid instability in the region. Knowing 

the short-term wind profile for a wind farm would allow system operators to better 

schedule generation resources yielding better grid stability.   

This thesis presents a method for predicting the power output of a Pacific Northwest 

Wind Farm by using data collected from wind anemometers located at the wind farm 

and from off-site meteorological stations.  An auto-regressive moving average model 

(ARMA) with wind velocity inputs from off-site meteorological stations along with 

current and past wind velocities from the wind farm was used to predict wind velocity 

changes up to two hours in advance. The predicted wind velocities were then used to 

compute the future wind farm power output.  A fuzzy logic inference system (FLIS) 



was used to detect and classify wind power ramps. The FLIS provides outputs 

indicating the degree of membership of power ramps from 10 to 50% of the nameplate 

rating of the wind farm. Wind Power Ramp prediction capability will allow system 
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1 Introduction 

Wind energy in the Pacific Northwest has grown dramatically in the last six years. In 

2005 there was a little more than 250 MW of installed generation capacity in the 

Bonneville Power Administration (BPA) Balancing Authority Area and in 2011 the 

installed generation capacity has grown to 3522 MW [1].  Wind energy is providing a 

significant part of the energy needs for the Pacific Northwest, when there is wind.  

The electrical grid is a continuous balance between generation and consumption and 

when large amounts of power from the wind farms are unavailable due to 

meteorological conditions, the balance must be restored from a spinning reserve 

source such as hydro or thermal generation.  Slow changing --increasing or 

decreasing-- wind conditions can be compensated for by grid system operators by 

adjusting the base load power generation. If the wind velocity is fast changing --

increasing or decreasing-- and is of sufficient magnitude and duration the resulting 

change in power could lead to grid instabilities.  To ensure grid stability, the balancing 

authority must hold additional spinning reserves to meet a decreasing generation from 

wind farm production, or must remove power from base load generation when a wind 

farm suddenly increases in generation.  This is costly because the generation units are 

running and expending energy but not producing electricity. Also the maintenance 

interval is shortened adding to the increased cost.   
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A sudden wind velocity change --increase or decrease-- that has sufficient magnitude 

and duration is called a wind ramp. The definition of a wind ramp will be discussed in 

section 4.2.  

One solution being investigated by the Wallace Energy Systems and Renewable 

Facility (WESRF) at Oregon State University is an energy storage system (ESS)[2]. 

An ESS located on-site at a wind farm will work in conjunction with the wind farm 

power system to absorb energy during periods that there is either excessive or 

insufficient energy generated. The goal of the system is to optimize the energy 

production from the wind farm and minimize stresses placed on the spinning reserve 

generation sources.  

The ESS at WESRF uses a Zinc-Bromide flow cell battery for bulk storage in 

conjunction with super-capacitors to provide fast response to changing power 

generation conditions at a wind farm. The batteries, capacitors, and power converters 

are connected to an in-lab research grid.   A control system will manage the charge 

and discharge of the ESS based upon the state-of-charge (SoC) of the batteries,  SoC 

of the capacitors, demand on the grid, and the projected wind farm output computed 

from the predicted wind velocity.  Predicting the wind velocity, and consequently the 

wind farm output power provides information to the ESS control system regarding 

future power output of the wind farm based upon the wind velocity input. Knowing 

this future power output the control system might issue a command to charge, 

discharge, or hold the same (no action) to the battery and/or the super-capacitors.  
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1.1 Research Overview 

Managing the charge and discharge cycles of an ESS can be more effective if forward-

looking knowledge of wind farm production were available. The focus of this research 

is to provide a method to predict and provide an indication of wind power ramp events. 

The signal processing flow is shown in Figure 1.1.1. 

 

 
Figure 1.1.1:Wind Power Ramp Prediction Block Diagram 

The wind prediction stage is an autoregressive moving average (ARMA) model that 

uses wind speed data from a Pacific Northwest Wind Farm (PNWWF) along with 

wind speed data from external Bonneville Power Administration (BPA) 

meteorological stations (MS1 & MS2).  
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0° 360°
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Figure 1.2: PNWWF and MetStations Location 
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The BPA meteorological stations (MetStations) Figure 1.2 are in close proximity (35-

80km) to the wind farm and are sufficiently angularly spaced to account for a large 

percentage of wind blowing past the MetStation to the wind farm.  

 Two of the meteorological stations are aligned such that about 50% of the time the 

wind travels past both stations towards the wind farm. When the directions are 

concurrent from the meteorological stations the input data from the second MetStation, 

MS2, is used in the ARMA model.  

The wind farm generation stage converts each of the wind speed horizons to total wind 

farm power output horizons using a turbine power curve modified for aggregated 

output (discussed later) when given an averaged wind speed input. The power ramp 

detection is accomplished using a fuzzy inference system that provides an indication 

of the duration and intensity of a detected power ramp. 
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2 Modeling Overview 

Before discussing the ARMA models some background information is 

presented to give an understanding of previous work. Also discussed are the physical 

aspects of where the data came from, how the data were modified and the relationship 

between the different data sets.  

2.1 Persistence Model 

The persistence model (PM) uses the current value as the prediction for all future 

horizons.  

 
(1) 

 

It is a simple model yet performs well is the benchmark for measuring performance. 

   

2.2 Very Short Term Models 

Due to the dynamic nature of the wind, trying to model this ever-changing fluid is a 

tremendous challenge in the wind power industry today.  Wind velocities are 

influenced by a variety of physical processes and Numerical Weather Prediction 

(NWP) is a class of meteorological modeling that utilizes the physical processes in 

developing a forecast.  NWP has been found to be useful for developing forecasts for 

the short term and longer predictions.  

Time frame definitions do not have crisply defined edges in the literature. Short term 

forecasting is considered to be approximately two to twelve hours, where shorter than 

y(k + h) = y(k) ;h = 1,2,...n
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two hours is very short term and greater than twelve hours is deemed long 

term[3][4][5]. Soman et al. has put forth a classification table and definitions in their 

review of wind speed forecasting [6]. Classification of the time frames is of interest 

only in identifying the mathematical methods used in making a prediction because 

most methods are based on time series measurements of wind velocity and direction.   

For the purposes of this research, the smallest time period is 10 minutes dictated by 

the sampling rate of the wind anemometers. A two-hour time period for the upper limit 

of the model fits well with the energy delivery from the batteries in the ESS, and 

would also allow sufficient time for balancing authority system operators to schedule 

reserve resources. The 10 minute to 2 hour time period fits within the very short-term 

definition.   

ARMA models are well suited for processing time series data and consequently are a 

reasonable choice to model wind data. Rajagopalan and Santoso used an ARMA used 

a single series data set (wind data from a single location) to predict 30 minute to 3 

hour horizons and were able to predict a one hour horizon to within 25% error, 

approximately 45% of the time[7]. Potter and Negnevitsky used an adaptive neuro-

fuzzy inference system and demonstrated improved performance over the persistence 

model for a 2.5-minute horizon[5]. Miranda and Dunn used a Bayesian inference 

approach to model autoregression for a one-hour forecast and concluded that the 

performance was marginally better than the persistence model[8]. Torres et al. 

preprocessed wind data that was sampled at ten-minute intervals and created samples 

that were hourly averages.  The ARMA model was used on the one-hour data and was 
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able to forecast up to 10 hours in advance and performed better than the persistence 

model[9].   Other ARMA models that have been used to predict very short term wind 

velocities are detailed in [10][11][12]. 

2.3 Meteorological Stations 

Inputs into the ARMA model, Figure 1.1.1 are time series data from external 

meteorological stations and the wind farm. The spatial relationship between the 

weather stations and the wind farm is listed in Table 2.1 and the angle that is listed is 

based upon BPA’s defined direction in the time series for the meteorological data.  

Table 2.1: Distance and Angle to PNWWF 

Meteorological Station Distance (km) Angle (degrees) 
Augspurger (AG) 81 277 
Hood River (HR) 67 274 

Shaniko (SH) 71 192 
Roosevelt (RV) 35 68 

 

2.4 Time Series Data Sets 

The BPA data were date and time stamped starting from February 1, 2010 at 8:00am 

UTC.  Data were recorded at five-minute intervals and contained wind speed, 

direction, barometric pressure, relative humidity, and temperature. The PNWWF data 

contained wind speed and turbine output for each turbine in the wind farm and were 

recorded at 10-minute intervals.  The BPA and PNWWF data contained randomly 

located corrupt data values.  The corrupted data were replaced by a linear value based 

upon the last known and the next known valid data sample.  Once the BPA data were 

repaired the time series was down-sampled to a ten-minute sampling rate. 
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The directional data in the BPA time series was processed to develop a digital 

indicator signal that outputted a one when the wind was traveling in a direction 

towards the wind farm and a zero otherwise.  Table 2.1 gives the actual angle, but the 

nature of wind is not always consistent; therefore an acceptance angle of ±30° was 

added to the actual angle when determining the digital indicator.  A separate digital 

indicator was created for each of the meteorological stations in Table 2.1.   

2.5 Wind Speed Height Adjustment 

The wind speed will vary with height and any measured wind speed should be 

adjusted to account for measurement variations. Wind flowing near the earth will be 

moving slower than wind at higher elevations. Surface roughness has a significant 

affect on ground or lower elevation wind speed.  Andrews and Jelley [13] gives the 

relationship of wind velocity as a function of measurement height in (2). 

 
 

(2) 

The expression 
MS

HUB

MS

z
z

α
⎛ ⎞
⎜ ⎟
⎝ ⎠

from the above equation is a scale factor applied to the wind 

data before computing wind horizons. The wind shear coefficient!MS  is dependent 

upon the surface roughness and the measured height at the MetStation. 
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Where z0 is the surface roughness and zMS is the height of the anemometer above 

ground level. 

Values for surface roughness, z0, vary depending on the surface conditions and Table 

2.2 [13] gives ranges of z0 for different terrain.  

Table 2.2: Surface Roughness Values 

Terrain z0 (m) 
Urban areas 3 – 0.4 
Farmland 0.3 – 0.002 
Open Sea 0.000 – 0.0001 

 

The Hood River MetStation is located in a substation near the city of Hood River with 

farmland and residential housing nearby so a 0.4 is selected for this location. 

Augspurger MetStation is located on high mountain ridge, however, there is higher 

elevation land preceding the anemometer inline with the MetStation and the PNWWF. 

A surface roughness of 0.1 is given for AG. The Shaniko MetStation is on a high 

elevation plateau and a value of 0.1 is given for z0. The MetStation of Roosevelt is on 

a high ridge above the Columbia gorge and a surface roughness of 0.1 is assigned.  

Table 2.3: BPA MetStations Wind Speed Scale Factor 

 
Tower (ft) Tower (m) z0 αs Scale Factor 

AG 70 21.336 0.1 0.1711 1.254 
HR 30 9.144 0.4 0.2674 1.786 
SH 30 9.144 0.1 0.2026 1.552 
RV 70 21.336 0.1 0.1711 1.254 

 

The scale factors in Table 2.3 were applied to the wind speed time series data sets 

before being used by any of the models discussed below. 
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2.6 Wind Direction 

Once the angle and degree of acceptance for the digital direction indicators were 

established, a wind direction survey was run on the BPA data. The percentage in Table 

2.4 refers to the ratio of the number of times the correct wind direction was detected to 

the total number of samples. The results in Table 2.4 reveal some interesting 

directional behavior. Cases 5 through 10 indicate that the wind blowing toward the 

PNWWF is coming from almost opposite directions.  This is probably not felt at the 

wind farm, most of the time, as there is some meteorological mechanism at work that 

channels air in one direction.  

Table 2.4: Wind Direction Survey Results 

Case Blowing towards PNWWF Percentage 
1 AG 60 
2 HR 73 
3 SH 18 
4 RV 30 
5 AG and HR 52 
6 AG and RV 6 
7 AG and SH 6 
8 HR and RV 14 
9 RV and SH 8 
10 AG, HR, SH, and RV 1 
11 AG, HR, SH, and RV are NOT blowing towards PNWWF 2 

 

Since wind direction was not captured for the PNWWF it is not possible to resolve the 

contribution of the wind direction combinations in cases 6 – 11; therefore these cases 

will not be considered in the ARMA model. There is one exception to the previous 

statement. The proximity of Augspurger and Hood River, Table 2.4, case 5, suggest 

that it is reasonable to include that specific combination in one of the models.  
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3 Wind Speed Prediction 

Several models were developed and tested in the process of trying to find the best 

performing model. In order to simplify reference to each model they will be named in 

order of introduction.  Wind samples are designated WWF(k) for wind farm or WMS(k) 

for wind data from a BPA meteorological station.   The order of filter, p, is the number 

of samples used in the prediction calculation starting from the current sample, W(k), to 

the filters length W(k-p). Subscripts are added to distinguish wind farm samples from 

MetStation samples (e.g. pWF or pMS). The length of the horizon being estimated is NH, 

and the number of training samples is NT.  The number of training samples must 

always be larger than the combined number of filter samples used in coefficient 

training. To ensure this relationship is not violated the MATLAB code will check and 

will return an error if the length constraint is violated.  

In this research there is Model 0, which is an autoregression model. Additionally, 

there are three ARMA models, named Model 1, 2 and 3. 

In general, all of the models operated on the time series data using a sliding window 

starting at the most recent sample, W(k).  Model 2 introduces a small exception to this 

generality.  In all of the models the filter order will refer to the number of samples 

from the time series being used for prediction.  With the exception of Model 0, the 

filter order for the wind farm is equal to the filter size representing the BPA 

meteorological stations.   



12 

3.1 Model Training 

Training refers to the computation of the coefficients or weights for the system. 

Training length will be discussed in section 3.1.2.  

3.1.1  Coefficient Generation 

The general case for the prediction model is Y=XB where Y and B are column vectors 

and X is a rectangular matrix with m rows always greater than n columns. To generate 

the coefficients, the B matrix, must be solved for by the following equation (4) [14]. 

 

 

Y = XB
X !1Y = B                     ; if X is a square matrix

XT X( )!1
XTY = B         ; if X is rectangular  

 

 

(4) 

 

X is an, m x n rectangular matrix where m and n are defined by the following: 

m = training length 

n = filter order 

Since the number of training samples is always constrained to be larger than the filter 

order, the pseudo-inverse [14] in equation (4) will be used. 

3.1.2 Training Length 

The training length represents the past history of the time series and should be of 

sufficient length to capture diurnal patterns temporally localized to a particular season. 

If the training length is too short approaching the filter order or number of estimated 

horizons then the predictions become unstable (overshoot and undershoot) in ramp 
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events. To illustrate this behavior Model 0 was run with a training length of 144 

samples (one day). The red trace is the prediction that overshoots. A view of the 

complete data set is plotted in Figure 3.2 and large instabilities (red) are readily 

apparent along with negative wind velocities that are also generated.   

 

 
Figure 3.1:Model 0, Train 144 
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Figure 3.2: Model 0, Train 144, Longer Time Interval 

A very long training period is not desired as seasonal effects change the wind profile 

and thus the results would have more error.  The weights are a least mean squares fit 

[15] of the training set. As the training length grows longer the coefficients will start 

to lose distinguishing patterns such as diurnal variations and wind ramps. Figure 3.3 

through Figure 3.5 illustrate the effect of training length on the behavior of the 

predictions. All three plots used Model 0 with the same filter order and prediction 

horizon throughout each figure.  
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Figure 3.3: Model 0, Train 144 

 
Figure 3.4:Model 0 Train 1728 

 

 
Figure 3.5: Model 0 Train 5760 
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3.1.3 Filter Order 

Where the training length captures the characteristics of the wind velocity over a long 

period of time the filter order has a much shorter length (5 to 20 samples) and 

represents the present conditions in the time series. The process of determining the 

filter order will be discussed next. Revisiting Table 2.1 it is noticed that, while the 

distance from the Roosevelt MetStation to the wind farm is 35km the distance from 

the other three MetStations to the wind farm is in the 70-80 km range. Roughly there 

is a 2:1 ratio of distance between the wind farm and Augspurger, Hood River, and 

Shaniko as compared to the wind farm to Roosevelt distance. It is reasonable to expect 

the filter order of AG, HR, and SH to be twice the filter order of RV. With this 

constraint the MATLAB program computed increasing filter orders and recorded the 

mean squared error.  Table 3.1 list the filter order based upon the minimum MSE.   

 
Table 3.1: Model 1, 2, 3 Characteristics 

BPA MS Filter Order Training Length 
Augspurger (AG) 10 1728 
Hood River (HR) 10 1728 

Shaniko (SH) 10 1728 
Roosevelt (RV) 5 1728 

 

3.2 AR and ARMA Models 

In examining the performance of the models developed during this research the mean 

squared error was computed for each horizon and will be presented.  However, the 

MSE only gives a general indication of performance and does not differentiate from 
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wind ramp events, slowly changing wind speeds, or steady state wind speed. To get a 

better picture of performance plots of an extreme wind ramp event and a medium wind 

ramp event will be included to illustrate how each model performs during ramp events.  

The plot an extreme wind ramp along with the power ramp is shown in Figure 3.6, and 

a medium wind ramp and power ramp event is shown in Figure 3.7. The extreme wind 

ramp was found by searching the time series for the greatest m/s/hour change. The 

extreme ramp event is interesting because it leads to a high-speed cutout event that 

produces a large downward ramp. This event is similar to an event in the Electricity 

Reliability Council of Texas (ERCOT) system on February 24, 2007.  The power 

down ramp event was a result of wind farms in west Texas shutting down due to 

excessive wind speed that exceeded the turbines cutout speed. Unfortunately, this 

event occurred at 9:00 am when the system load was increasing exacerbating the 

imbalance. 
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Figure 3.6: Extreme Wind Ramp Event 

The extreme wind ramp event has a wind speed change of 10.5 m/s/hr in the red 

section, and a power ramp of 113 MW/hr. The extreme ramp event is followed by 

what appears to be a shut down of the turbines due to high wind speeds. The 

manufacture’s data sheet for this model turbine list the 10-minute cutout wind speed at 

20 m/s. The peak wind speed in Figure 3.6 is 18.6 m/s when the power suddenly drops. 

The wind speed in Figure 3.6 is the average wind velocity across the entire wind farm. 

Judging by the shape of the power ramp some turbines are still in operation while the 

turbines in the faster moving air have shut down.  The medium ramp event has a wind 

speed change of 6.1 m/s/hr and a power ramp of 85MW/hr. 
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The plots selected are upward ramps and shown to illustrate performance, but it should 

be noted that downward ramps exhibit the same performance. Also, the plots selected 

demonstrate good performance of the ARMA filter, but there are many wind ramps 

that didn’t show any noticeable improvement over the persistence model. 

 
Figure 3.7: Medium Wind Ramp Event 

3.3 Model 0 

Model 0 is based on an autoregressive (AR) mathematical model, and the equation for 

prediction is shown (5).  The filter size for this model represents then number of 

samples used for prediction. The estimate, WWF(k+2), relies on the previous estimate, 

WWF(k+1), being computed before computation of WWF(k+2) can proceed. The same 

restriction applies to estimates, WWF(k+3) through WWF(k+NH). 
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The coefficients for the B column vector are generated using equation (6).  

3.3.1 Model 0 Results 

To determine a reasonable filter length the training length was held constant at 1728 

samples (6 days) and the filter order was varied from 2 to 20. A filter length of 10 was 

selected for Model 0 and the mean squared error (MSE) results indicate an 

improvement over the persistence model.   
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Table 3.2: MSE Model 0 

Horizon MSE PM MSE Model 0 
1 0.0151 0.0123 
2 0.0426 0.0395 
3 0.0708 0.0680 
4 0.0981 0.0954 
5 0.1248 0.1221 
6 0.1510 0.1479 
7 0.1769 0.1733 
8 0.2024 0.1984 
9 0.2277 0.2232 
10 0.2527 0.2473 
11 0.2776 0.2715 
12 0.3029 0.2959 

 

Although the MSE indicates better performance examination of the time series plot in 

Figure 3.8 shows that in a medium type ramp event Model 0 offers a small 

improvement over the persistence model. Examination of the extreme ramp event, 

Figure 3.9, shows that Model 0 is performing marginally better than the persistence 

model.  
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Figure 3.8: Model 0, Horizon 6, Medium Ramp Event 

 
Figure 3.9: Model 0 Horizon 6 Extreme Ramp Event 
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3.4 Model 1 

Model 1 is an ARMA model that uses the BPA meteorological sites as the moving 

average portion of the model.  The X in prediction matrix, Y=XB, is made up of time 

series samples from the wind farm and the MetStations. The matrix X is a horizontal 

concatenation of XWF and XMS. In MATLAB code it would be expressed as the 

following: 

X = [XWF XMS] (7) 
 
XWF & XMS are matrices, not necessarily square, with m rows set by the number of 

horizons desired, and n columns determined by the filter order.  

The prediction computation for Model 1 is shown in (8). Remembering that NH is the 

maximum number of predictions, the computation of WWF(k+2) through WWF(k+NH) 

all rely upon the previous estimate being generated before inclusion into the current 

estimate computation.  
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Model 1 also requires use of the intermediate predicted variables, WMS(k+1) through 

WMS(k+NH-1), in the computation of WWF(k+2) through WWF(k+NH), and those 

intermediate predicted variables are generated by the equation shown in equation (9). 

 

(9) 

 

The ζ coefficients are generated using a training set from the BPA meteorological 

station time series. The training equations are shown in equation (10. Each BPA 

meteorological station has a unique set of coefficients generated from the training size 

filter order for a particular MetStation. The ζ weight generation is performed once per 

new wind farm data sample.  

 

(10) 

 

The α and β coefficients are generated by solving the equation (11) for the B column 

vector.  
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The size of the training set is constrained, in the program code, to ensure that it is 

always greater than twice the size of the filter order for the BPA MetStation being 

used in the prediction.  The training set consists of samples from the wind farm and 

meteorological station time series.  

3.4.1 Model 1 Results 

As seen in Table 2.4 there is fair percentage of time that the wind is blowing towards 

the PNWWF from multiple MetStations. The four BPA meteorological stations 

provided wind direction data, but the PNWWF data set did not have wind direction 

included. Therefore a priority had to be assigned in the case of multiple MetStations 

indicating a valid wind direction. This priority for Model 1 is Augspurger, Hood River, 

Shaniko and Roosevelt. To investigate if the wind from Hood River, Roosevelt or 

Shaniko had an influence on the performance, Model 1A, Model 1B, and Model 1C 

were created to change the priority to different MetStations. Model 1A gave priority in 

the following descending order: Hood River, Augspurger, Shaniko, and Roosevelt. 

The priority, in descending order, for Model 1B was the following: Roosevelt, 

Augspurger, Hood River, and Shaniko. The descending order priority for Model 1C 

was Shaniko, Augspurger, Hood River, and Roosevelt.  

Based on the filter order in 3.1.3 the MSE was computed for each horizon and listed 

Table 3.3.  
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Table 3.3: MSE Model 1 

Horizon PM Model 1 Model 1A Model 1B Model 1C 
1 0.0151 0.0123 0.0124 0.0124 0.0124 
2 0.0426 0.0393 0.0394 0.0394 0.0395 
3 0.0708 0.0668 0.0672 0.0672 0.0673 
4 0.0981 0.0927 0.0934 0.0934 0.0935 
5 0.1248 0.1172 0.1183 0.1184 0.1183 
6 0.1510 0.1404 0.1421 0.1421 0.1419 
7 0.1769 0.1627 0.1653 0.1649 0.1647 
8 0.2024 0.1843 0.1879 0.1870 0.1867 
9 0.2277 0.2053 0.2102 0.2086 0.2083 
10 0.2527 0.2256 0.2317 0.2296 0.2290 
11 0.2776 0.2457 0.2531 0.2506 0.2495 
12 0.3029 0.2660 0.2744 0.2717 0.2702 

  

The MSE results indicate that Model 1 is performing better than the other three 

models, but this is probably because there is a good deal of wind blowing from AG 

and HR towards the wind farm and the MetStation at AG is less obstructed than the 

HR station.   

The plot results for horizon 6, Figure 3.10, shows an improvement over the persistence 

model for the medium ramp case. Bold red dots are placed at one-hour separations. 

The predicted wind speed for Model 1 is well within the boundary set by the 

persistence model. As the ramp event starts to form, Model 1 is marginally better than 

the PM, but as the ramp progresses the prediction by Model 1 improves considerably. 

The transitional areas, local maxima or minima, appear to be a weakness in the model, 

as the prediction does not track any better than the persistence model at points of 
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inflection. With a smaller training length this weakness becomes more apparent as was 

demonstrated earlier in the discussion of training length. 

In the extreme ramp case, Model 1 starts predicting the upward ramp earlier, Figure 

3.11, than for the medium ramp and well within the boundary of the persistence model. 

The third hour prediction (red line), made at hour 2, is remarkably accurate.  

 
Figure 3.10: Model 1, Horizon 6, Medium Ramp Event 
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Figure 3.11:Model 1, Horizon 6, Extreme Ramp Event 

 

Comparing the medium ramp and the extreme ramp, it is noticed that both cases the 

model prediction accuracy improves by the second hour. The wind direction during 

the extreme ramp was coming from Augspurger and Roosevelt.  

3.5 Model 2 

All of the intermediate prediction values in Model 1, equation (12) were computed 

estimates. As in Model 1, the matrix X is a horizontal concatenation of XWF and XMS.  

If there is error in the predicted values, WMS(k+1) through WMS(k+NH), then that error 

would be incorporated into the wind farm’s X matrix. Instead of predicting the 

intermediate values for WMS(k+1) through WMS(k+NH),  the time series samples for 

these variables will be offset by the maximum estimate (e.g. WMS(k-NH)) as shown in 

the prediction equation (12). For each horizon prediction, the intermediate values 
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would be progressing toward the current sample, W(k) using real values for the 

prediction instead of computed values. 

 

(12) 

 

The training model in equation (13) has an offset of WMS(k-NH-1) for time series 

samples for the MetStations.  

 

(13) 

 

3.5.1 Model 2 Results 

Since Model 1 investigated different priorities in wind blowing towards the wind farm 

that process will not be repeated for Model 2 or Model 3. The MSE results listed in 

Table 3.4 indicates that Model 2 does not perform as well as Model 1.  The model is 

predicting better than the PM for a medium ramp event, Figure 3.12, and looks 

somewhat similar to Model 1. 
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Table 3.4: Model 2 MSE 

Horizon MSE PM MSE Model 2 MSE Model 1 
1 0.0151 0.0124 0.0123 
2 0.0426 0.0396 0.0393 
3 0.0708 0.0677 0.0668 
4 0.0981 0.0942 0.0927 
5 0.1248 0.1196 0.1172 
6 0.1510 0.1437 0.1404 
7 0.1769 0.1670 0.1627 
8 0.2024 0.1897 0.1843 
9 0.2277 0.2118 0.2053 
10 0.2527 0.2330 0.2256 
11 0.2776 0.2536 0.2457 
12 0.3029 0.2739 0.2660 

 

 
Figure 3.12:Model 2, Horizon 6, Medium Ramp Event 
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Figure 3.13: Model 2, Horizon 6, Extreme Ramp Event  

 
In the extreme ramp shown in Figure 3.13 there is little difference in prediction 

between the PM and Model 2event that the most noticeable difference is seen.   

3.6 Model 3 

Model 3 is an extension of the Model 1 ARMA equation. Since Augspurger and Hood 

River are geographically in the same direction from the wind farm and probably 

experience the same wind conditions it was reasonable to modify Model 1 to include 

data from both MetStations when appropriate.  The overall prediction equation for the 

wind farm is given in (15). The X in prediction matrix, Y=XB, is made up of time 

series samples from the wind farm and two MetStations. The matrix X is a horizontal 

concatenation of XWF, XMS1 and XMS2. In MATLAB code it would be expressed by 

(14). 
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X = [XWF XMS1 XMS2] (14) 
 

XWF,  XMS1, and XMS2 are matrices, not necessarily square, with m rows set by the 

number of horizons desired, and n columns determined by the filter order.  

The prediction equation for Model 3 is shown in (15). The computation of WWF(k+2) 

through WWF(k+NH) all rely upon the previous estimate being generated before 

inclusion into the current estimate computation. 
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The intermediate prediction results for WMS1 and WMS2 must be computed as in the 

same manner as in Model 1. Also the coefficients for producing the intermediate 

values must be generated and kept separate from the wind farm part of the model. 

3.6.1 Model 3 Results 

The mean squared error for Model 3 gives the appearance that it is performing better 

than Model 1, but this is not the case. Plotting Model 1 and Model 3 together, there 

was little improvement --if any-- in upward or downward ramps. The smaller MSE 

number is probably due to small improvements in small sloped ramps or slowly 

changing wind as seen in Figure 3.14. 

Table 3.5: Model 3 MSE Model 3 

Horizon MSE PM MSE Model 3 MSE Model 1 
1 0.0151 0.0123 0.0123 
2 0.0426 0.0393 0.0393 
3 0.0708 0.0668 0.0668 
4 0.0981 0.0925 0.0927 
5 0.1248 0.1169 0.1172 
6 0.1510 0.1399 0.1404 
7 0.1769 0.1619 0.1627 
8 0.2025 0.1832 0.1843 
9 0.2278 0.2039 0.2053 
10 0.2527 0.2240 0.2256 
11 0.2777 0.2439 0.2457 
12 0.3029 0.2640 0.2660 
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Figure 3.14: Model 1 vs. Model 3 

Although this example illustrates Model 3 performing better than Model 1, there are 

plenty of examples of the opposite case. Manually scanning through the data, 

situations as in Figure 3.14 probably account for the difference in the MSE values 

between Model 1 and Model 3. Model 3 does outperform the PM, Figure 3.15 and 

Figure 3.16, however, it just doesn’t offer any advantage over Model 1. The 

performance of Model 3 would probably improve if wind direction were available at 

the PNWWF. 
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Figure 3.15: Model 3 Medium Ramp Event 

 
Figure 3.16: Model 3 Extreme Ramp Event 
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3.6.2 Model Conclusions 

Model 0 did not perform as well as the other models investigated. It did not have the 

extra data from the BPA MetStations to influence the computations. Model 2 using 

actual samples for the intermediate predictions from the MetStations did not perform 

as well as Model 1. Model 3 demonstrated a little improvement over Model 1, but not 

in the critical area of upward or downward ramps.  

Model 1 investigated using different priorities in the way it handled wind directions 

coming from more than one MetStation. Looking at the extreme ramp event on the 

same plot with the wind direction indicators in Figure 3.17 it is seen that AG and HR 

have wind blowing towards the wind farm during most of the ramp duration. Figure 

3.18 plots Model 1 vs. Model 1A and shows a noticeable improvement in the horizon 

6 predictions. The improvement is small but noticeable.  

For the medium ramp event, wind was blowing towards the wind farm from AG, HR, 

and SH. The plot of the ramp event, Figure 3.19, shows that the predictions for Model 

1 are better than the predictions made by Model 1C.  

For any ramp event it was not known which MetStation represented the wind blowing 

towards the wind farm.  The two above cases demonstrate the need for wind direction 

indication at the PNWWF to provide a more accurate prediction. 
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Figure 3.17: Extreme Ramp and Wind Directions 

 
Figure 3.18: Model 1 vs. Model 1A Extreme Ramp Event 

 



42 

 
Figure 3.19: Model 1 vs. Model 1C Medium Ramp Event 
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4 Wind Speed to Power Conversion 

The wind velocity time series were raw values, not scaled, and averaged across the 

entire wind farm. Once the wind velocity horizons have been generated then the wind 

farm power output was computed for each time horizon. The power available in the 

wind is proportional to the cube of the air velocity, expressed in the (17)[13]. 

 
(17) 

 
The power from the turbine will not follow the equation because wind turbines are 

non-linear. Using the Vestas power curve [16], Figure 4.1, can be used to convert 

wind speed to power for each turbine. Multiply the turbine output by the number of 

active turbines to get the wind farm power output.  

  
Figure 4.1: Wind Turbine Power Curve 

Yen [17] determined that due to the wind velocity variations around a wind farm 

determining the output is not a straightforward as described above. He then went on to 

develop a wind farm power curve based upon a statistical analysis of the wind and 

P = 1
2
!v3
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power output. The MATLAB file from the Yen research was used to compute the 

wind farm power output horizons based upon the wind speed horizons input. 

4.1 Wind Power Ramp Profiles 

To determine when a power ramp will occur the prediction results, Figure 1.1.1, are 

used to generate wind farm power output horizons. Model 1A (HR priority over AG) 

was used to generate the wind speed horizons using a filter order of 10 for Augspurger, 

Hood River, and Shaniko and five for Roosevelt. Although Model 1 performed better 

overall, Model 1A performed better during the extreme ramp event. Training length 

was set at six-days (1728 samples) for all combinations of MetStations and wind farm. 

The computed plots of power are expressed in P.U. with a 100MW base. The 

maximum output of the PNWWF is approximately 120MW.  

The plots of horizon 6, Figure 4.2, and horizon 12, Figure 4.3, are the computed wind 

farm power output resulting from the extreme ramp event. The black trace is the actual 

output --not computed-- from the PNWWF data and is the reference for any horizon. 

The leading edge of the first ramp is changing at a rate of 1.1MW/hr. The wind 

prediction had enough accuracy for the Yen [17] power curve model to closely track 

the actual turbine cutout. The persistence model holds well in accuracy for horizon 6, 

but in the two-hour projection of horizon 12 the PM suffers performance. 

The second large upward power ramp starting at time index 6300, is probably the 

result of the high wind velocity subsiding a bit and the turbines start producing power 

again. Here again this is a combination of accurate wind velocity prediction and the 
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wind farm power curve model working together to give this accurate result. Model 1A 

out performs the PM during the downward slope starting after time index 6320. 

The mean absolute error for Model 1 and Model 1A were computed and compared 

with the persistence model shown in Table 4.1. 

Table 4.1: MAE Power Prediction 

Horizon PM Model 1 Model 1A 
6 0.0709 0.0693 0.0697 
12 0.1017 0.0974 0.0989 

 

 
Figure 4.2:Power Prediction, Horizon 6 
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Figure 4.3: Power Prediction, Horizon 12 

The MAE results indicate that Model 1 is performing better than Model 1A, which is 

largely due to wind speed prediction of Model 1 performing better than Model 1A.  

4.2 Definition: Wind Power Ramp 

Wind power ramp definitions try to characterize an increase or decrease in power from 

a wind farm due to a changing wind condition.  Defining a wind ramp seems to be a 

bit elusive as Klamath [18] points out that there really is not a universal definition. She 

presented the following definition to address a change in power over an interval. 

|MW(T +  ΔT) −MW(T)| > Tr (18) 
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A power ramp is declared if the difference in power is greater than a threshold. 

However, she goes on to point out that the definition did not address power changes in 

the interval and consequently set forth a second definition. 

max(MW[T +  ΔT]) - min(MW[T +  ΔT]) > Tr (19) 
 

The second definition from Klamath finds the maximum delta MW, but the time 

difference at the min and max must be known in order to compute the slope and to 

identify an upward or downward ramp. 

The approach by Zheng and Kusiak [19] computed the absolute slope in defining a 

power ramp rate (PRR). 

 
(20) 

 

Where Zheng and Kusiak measured the PRR over 10 minute intervals, the interval 

could be longer. 

In the analysis of ramp event detection systems, Barbour et al[20] defined a “Core 

Ramp as a 20% change in project power in a 30 minute period or less”. This definition 

was extended to include the period before and after the core ramp event if the intervals 

experienced a 10% change or greater.  

The Bonneville Power Administration has defined a persistent deviation [21] used in 

determining financial penalties for deviations from scheduled generation. Section 41 

(a) will be repeated here. 

 

 

PRR =
P(T +10)! P(T )

10
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a) “For Generation Imbalance Service only: 

Negative deviation (actual generation greater than scheduled) or positive 
deviation (generation is less than scheduled) in the same direction for four or 
more consecutive hours, if the deviation exceeds both: (i) 15% of the schedule 
for the hour, and (ii) 20 MW in each hour. All such hours will be considered a 
Persistent Deviation.” 

 

Following the BPA persistent deviation statement the ramp detection mechanism will 

indicate ramp events of 20MW or greater over a one hour time interval. Note that the 

focus of this research is not to build a BPA Persistent Deviation detector but rather a 

wind power ramp detector for an ESS. Upward ramps and downward ramps will be 

detected and indicated in the output.  

4.3 Power Ramp Rate 

For the purposes of this research the Zhang definition will be used without taking the 

absolute value of the power difference.  

 
(21) 

 

When PRR is negative a downward ramp is found and an upward ramp is a positive 

PRR. A one-hour time difference will be used and the PRR threshold will be set at 

20MW.  

PRR = P(T + !T )" P(T )
!T
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5 Fuzzy Inference System 

The detection of PRRs of 20 MW and greater is accomplished by a Fuzzy Inference 

System (FSS). A fuzzy logic system offers simplicity of design and implementation 

and allows a more intuitive approach to solving certain classes of problems than brute 

force programming.  

5.1 Overview 

The primary components for the FIS are shown in Figure 5.1, which was adapted from 

Passino and Yurkovich’s book on Fuzzy Control [22]. The fuzzification block is a 

process that converts the input from crisp values (numeric values) into fuzzy sets 

through the use of membership functions. The inference mechanism works in 

association with the rule-base to determine the extent of relevance each rule has to the 

current input. Passino calls this process “matching”. [22] Additionally, the inference 

mechanism “draws conclusions using the current inputs and the information in the rule 

base.” [22]  
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Figure 5.1: Fuzzy Inference Architecture 

The defuzzification process converts the output from the inference mechanism to crisp 

outputs.  There are a number of methods that can be used to arrive at a crisp output 

and are discussed in length in Passino’s book [22].    

MATLAB uses a Mamdani’s fuzzy inference method for its fuzzy toolbox and 

operates much like the above description with the exception on how it handles the 

output section [23]. This will be discussed in the section below.  

5.2 The Power Ramp Detector 

The FIS system for this research is a single input single output implementation.  The 

input is the PRR from section 4.3 and it represents the change in power --in P.U.-- 

with respect to time, dP/dt. The name given to the input is fuzzyDelta. The base for the 

P.U. is 100MW and the wind farm can generate up to ~120MW.  The delta time will 

be one hour, so if the power changes from 0 to full scale in one hour or less, the PRR 

will range from 0 to ~1.2 P.U.. The input membership function in Figure 5.2 ranges 

from -2 to 2. The upper and lower boundaries could have been made tighter, however, 

there is no harm in a broader boundary. The noRamp section was set to give a dead 

zone or a zero output when the dP/dt is below the 20MW/hr level. 
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Figure 5.2: Input Membership Functions 

The output is named rampDetect and its membership function is rather straightforward 

as seen in Figure 5.3. The inference system using the rule set generates a fuzzy set that 

is used to determine the degree of membership according the output membership 

function.  The rampDetect signal has a range from -1 to 1 representing a 20MW/hr or 

greater downward ramp or a 20MW/hr or greater upward ramp respectively.  

 
Figure 5.3: Output Membership Function 
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The rule set guides the inference system in determining how to handle the input, which 

rules apply, and creates the fuzzy set for the output membership function. The rule set 

is usually expressed in “modus ponens” or If-Then statements [22] and the rules for 

the ramp detector are stated below:  

1. If (fuzzyDelta is posRamp) then (rampDetect is posRamp) 

2. If (fuzzyDelta is noRamp) then (rampDetect is noRamp) 

3. If (fuzzyDelta is negRamp) then (rampDetect is negRamp) 

5.3 Fuzzy Detector Results 

The fuzzy detector was run on the output of Model 1A for the 6th horizon (one-hour) 

Figure 5.4 and the two-hour ahead 12th horizon Figure 5.5.  Bold red highlights were 

outlined for the one-hour case and the two-hour case to indicate where the prediction 

was made.  The fuzzy detector gives a sharp well-defined indication of the downward 

ramp in both the one-hour and two-hour cases.  Predicting the leading edge of the 

extreme ramp event was not done, but the model did predict the ramp after the wind 

speed subsided to the turbines operational speed Figure 5.6.  
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Figure 5.4: Power Ramp Detection, Horizon 6 

 
Figure 5.5: Power Ramp Detection, Horizon 12, Extreme Ramp Event 
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Figure 5.6: Extreme Ramp Recovery Detection, Horizon 6 

 

 
Figure 5.7: Ramp Detection, Horizon 6, Medium Ramp Event 
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Looking at the medium ramp event Figure 5.7 the ramp detector did not predict the 

first hour of the ramp. By 30 minutes into the ramp event at time index 36204 the 

ramp detector was predicting a 20MW or greater ramp to occur at time index 36210. 

The 12th horizon plot did not add any extra information in the prediction for this ramp 

event.  

The ramp detector could easily be refined to include different degrees of ramp rate as 

separate outputs.  
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6 Conclusion 

Large scale wind energy integration into the Pacific Northwest is a relatively new 

asset for the area. An energy storage system with a sophisticated control algorithm 

along with wind power prediction will help manage the production from this 

renewable resource. This research has investigated several autoregressive moving 

average models for predicting wind speeds. The predicted results for several horizons 

and wind ramp events were compared against the persistence model and against other 

models. Model 1 and Model 3 gave the best predictions and performance would 

probably increase with the inclusion of wind direction data at the wind farm.  

Model 1 was selected to provide wind speed horizons to the wind farm power 

generation algorithm, which were then processed by a fuzzy logic ramp detector to 

identify power ramp events.  

The detection system worked well for medium and extreme ramp events, but early 

detection, within the first hour, was not achieved. A measurement method for 

quantifying the performance of the ramp detector was not developed during this 

research. Performance was checked by manually selecting ramp events and comparing 

plots.  

6.1 Next steps 

The investigation of Model 1 and the spinoff models that changed the selection 

priority of MetStations, with competing favorable wind directions, demonstrated the 

need for wind direction data at the wind farm. If this data are not directly available 
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from the wind farm owner, then perhaps it could be mined from existing data by 

looking at the differences in wind velocities from each turbine. 

Barometric pressure is another indicator of meteorological events and the information 

is available in the MetStations data set but not at the wind farm. Perhaps there may be 

sufficient information in the surrounding MetStations to provide another useful 

indicator. 

Using the mean squared error to measure overall performance gives little information 

about the performance during ramp events. The fuzzy logic detector could be modified 

to identify ramp events for wind speed.  Once ramp events are identified compute the 

MSE for only valid ramp events. 

The development of metrics to measure the performance of the power ramp detector is 

needed to provide further insight for design improvements.  
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