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A novel method for modeling bends in coplanar waveguides (CPWs) is de-

scribed. The CPW can be viewed as a pair of parallel coupled quasi-slot lines.

Bends in the CPW are modeled as a non-uniform coupled line system in terms of

their even- and odd- mode characteristics. This modeling approach is general and

can be applied for bends with different angles and other similar discontinuities in the

CPW. The salient feature of the model is the simplified illustration of frequency-

dependent effects in the bend. Right-angle, 45 degree, and mitered right-angle

bends in the CPW are analyzed, and models are developed for each bend structure.

The procedure for extracting the modal scattering matrix from the model is pre-

sented. To demonstrate the accuracy of the model, modal transmission coefficients

obtained from the model are compared with full-wave electromagnetic simulations.

Good agreement between the model and full-wave simulation results over a wide

frequency range is demonstrated.

The transfer of energy between even and odd modes in the bend is inves-

tigated and the effect of the physical properties of the CPW on mode conversion

is analyzed in detail. Mode conversion at discontinuities like the bend in CPWs
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cause non-ideal behavior in the two-port (even-mode) measurements of such cir-

cuits. Theoretical prediction of the measured response is discussed along with the

predicted response for transmission coefficient from model and full-wave simulations.

Comparison between the measurements of a right-angle bend and the corresponding

model results shows good agreement. Implementation of the model in SPICE is also

discussed.
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ANALYSIS AND MODELING OF
MULTI-MODE EFFECTS IN COPLANAR

WAVEGUIDE BENDS

1. INTRODUCTION

1.1. Background and Motivation

The wires or transmission lines that are used to connect individual compo-

nents in Integrated Circuits (ICs) and Printed Circuit Boards (PCBs), are commonly

referred to as interconnects. They are attracting greater attention today in the de-

sign of integrated systems as their electrical behavior has become a limiting factor

in system performance. In general, interconnects may cause signal delay, dispersion,

power losses and interference with other parts of a circuit. These effects are more

critical in high-speed, high-frequency systems with dense integration of components.

Interconnects are usually fabricated in various shapes of planar transmission

lines. The different types include microstrips, striplines, slotlines, and coplanar

waveguides (CPWs). CPW is a type of planar transmission line that has both the

signal and ground conductors on the same side of the substrate. Figure 1.1 shows

a typical CPW. It consists of a center strip of metal deposited on the surface of a

substrate with two parallel strips on either side. The two strips on each side of the

center conductor serve as ground lines and are assumed to be of infinite dimension

laterally.

CPWs have gained increasing popularity in recent years over conventional

transmission lines like the microstrip due to several advantages they offer for appli-



FIGURE 1.1. Coplanar Waveguide

cation in radio frequency (RF) and microwave circuits. Most important among them

is the ease of manufacturability, connection of shunt elements, and their suitabil-

ity for surface mount applications. There is no need to drill via holes, thus easing

the fabrication and cost of CPW-based circuits. Furthermore, the characteristic

impedance of the CPW is less sensitive to dielectric thickness compared to other

common transmission lines. Impedance can be varied by changing the width and

spacing of the conductors on one side of the substrate. This gives an additional de-

gree of flexibility in the design of uniplanar circuits for RF/microwave applications.

Other notable advantages of the CPW include low dispersion and dielectric losses

[1], [2], and easy applicability to ferrite circuits [3].

In spite of their increasing popularity, there is a lack of comprehensive soft-

ware tools for the design of CPW circuits. The reason for this is the shortage of

models for common transmission line discontinuities like bends, T-junctions, line-

transitions etc. This makes the design of CPW-based circuits difficult and time

consuming. Figure 1.2 shows some typical coplanar discontinuities. As operating

frequencies and device speeds continue to increase, it is becoming more critical to
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Width changes Open end

FIGURE 1.2. Typical Coplanar Waveguide Discontinuities

have a thorough understanding of the parasitic effects at discontinuities and to de-

velop accurate characterization techniques.

Extensive research has been undertaken in the past years to characterize a va-

riety of CPW discontinuities including transitions and discontinuities [4] [23]. Most

of the above mentioned work is based on full-wave electromagnetic (EM) analysis

of the structures. The vector wave equation is solved for the electric and magnetic

fields subject to boundary conditions. The parameters of the CPW can then be ob-

tained from the field information. Typical techniques, which have been adopted for

full-wave analysis, include Method of Moments (MoM), Finite Difference Time Do-

main Method (FDTD), Finite Element Method (FEM) etc. These methods produce

accurate frequency-dependent characteristics of structures but tend to be complex

and have long simulation times. The computation time can be reduced considerably
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if a quasi static approximation is used in the analysis. In quasistatic analysis, the

spatial distribution of electric and magnetic fields is assumed to be nearly the same

as for static fields. The calculation of line parameters is therefore reduced to a static

field problem. The commonly used quasistatic methods include Spectral Domain

Approach (SDA), Finite Difference Method (FDM) etc. SDA is one of the popular

approaches for analyzing planar transmission line structures [24]. Application of

SDA to characterize certain CPW discontinuities can be found in [25].

In general, EM simulations, whether full-wave or quasistatic, are time-

consuming and require expensive computational resources. The use of EM solutions

may be mandatory in applications that require a high degree of accuracy. But for

most practical applications, the ease and speed of analysis outweighs accuracy con-

siderations. In some cases, simple models can be derived for discontinuities using

the geometry and cross-sectional information of the discontinuity. Equivalent circuit

models, that can be used instead of EM solvers for fast analysis with sufficient degree

of accuracy, are highly preferable. Moreover, if the discontinuity can be modeled

using only ideal circuit elements, the equivalent circuit model can be implemented

directly in time domain simulators like SPICE. One of the main motivations of this

thesis is to therefore develop simple circuit models for bend discontinuities in CPWs.

There are two fundamental modes of propagation that exist in a CPW. They

are the even and odd modes, excited by symmetric and anti-symmetric excitations,

respectively. CPW-based circuits are normally operated in the even mode, but

asymmetric discontinuities including bends, excite the odd mode and couple energy

away from the even mode. This transfer of energy, referred to as mode conversion,

is undesirable as power is lost from the desired mode-of-operation and can interfere

with other parts of the circuit. Since the CPW is a two-mode structure, a four-

port model would prove useful in the analysis of discontinuities. Four-port models
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for discontinuities completely describe the system vis-a-vis the interaction between

modes and therefore mode conversion.

Mode conversion at various discontinuities has been analyzed through full-

wave simulations in [4] [16]. Circuit models for mode-conversion in asymmetric

discontinuities such as series and shunt stubs, and CPW-to-slot line transitions have

been developed in [32] [36]. A CPW right-angle bend is full-wave characterized

in [4], and the effect of mode conversion on two-port measurements is discussed.

In this thesis, a new four-port modeling approach is developed to analyze CPW

bends. The model provides a quick and convenient way to observe the frequency-

dependent effects of the bend with good accuracy. The effects of geometry of the

bend discontinuity on mode conversion are studied in detail using this modeling

approach, and the results are validated with full-wave simulations.

Mode conversion causes significant problems in the measurement of CPW-

based structures. The connectors and devices connected to the CPW support oniy

the even mode, forcing a symmetric condition at the terminations. The odd mode

therefore gets reflected back-and-forth between the discontinuity and connectors.

This can considerably complicate the calibration and measurement of such structures

[30]. The measurement accuracy of CPW-based circuits is also affected by this

excitation of the odd mode. A thorough understanding of multi-mode effects on

single-mode two-port measurements is therefore needed. Characterization of mode

conversion at the discontinuities in CPWs is a necessary requisite for predicting the

actual measured response of the structure.

1.2. Organization of the Study

The focus of this thesis is to develop a modeling methodology that accounts

for the frequency-dependent behavior of typical bends in the CPW. A novel approach
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is presented here for modeling CPW bends of various angles and mitered bends.

Models developed for bend discontinuities are based on the decomposition of the

CPW as a pair of coupled quasi-slot lines. The effect of mode conversion on the

measurement of CPW-based structures is also elucidated.

Chapter 2 presents the basic theory of CPW transmission lines. Past work

on full-wave and quasistatic methods that have been used to study CPWs are men-

tioned. The latter part of the chapter dwells on the analysis and characterization

of multi-conductor transmission lines. The study of multi-conductor transmission

lines is important in this context, as the properties of CPWs are later derived based

on multi-conductor transmission line theory. The technique adopted to find the line

parameters of CPWs from the capacitance matrix of the corresponding 3-conductor

system is given. Furthermore, typical discontinuities in CPWs are introduced along

with the general approach that is used to characterize them.

Chapter 3 starts with a brief description of coupled line theory as a prelude to

the model development for CPW bends. The similarities in transmission character-

istics of CPWs and coupled quasi-slot lines are highlighted. Bends in the coplanar

structure are then analyzed as non-uniform coupled quasi-slot lines. A generic four-

port model for CPWs is presented based the non-uniform coupled quasi-slot lines.

The procedure for extracting the modal scattering parameters from model results

is given. In the latter part of the chapter, the modal transmission coefficients de-

rived from the model are compared with those obtained from MOMENTUM [31]

for right-angle, 45 degree and mitered bends. The comparisons have been done for

different right-angle bends to study the effect of geometry and dielectric constant

on the modes of the system.

Chapter 4 deals with the measurement of CPW-based structures. The basics

of network analyzer measurements are discussed with an emphasis on the need for
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calibration and the different techniques used. Multi-mode effects associated with

right-angle CPW bend two-port measurements have been characterized. Theoretical

results for the bend transmission coefficient S12 are derived from the respective model

and MOMENTUM generated modal scattering parameters. A comparison between

the actual measured response and model results is then given to demonstrate the

validity of the model. Finally, implementation of the four-port model in SPICE [38]

is described.

Chapter 5 summarizes the study and suggests areas for further research on

the topic.



2. CPW TRANSMISSION LINES AND
DISC ONTINUITIES

2.1. Introduction

This chapter introduces the basic theory and analysis of CPW transmission

lines. Multi-conductor transmission lines are then studied and a general theory for

obtaining transmission line parameters for such structures is described. Next, an

introduction is given to discontinuities in CPWs. A discontinuity is defined as any

abrupt change in the structure that forces a change in field configuration of the prop-

agating wave. Discontinuities in a CPW can be broadly classified as symmetric and

asymmetric. Examples of symmetric discontinuities include the open stub, two-sided

shunt stub etc. The asymmetric discontinuities on the other hand include bends,

T-junctions and one-sided shunt stubs. The asymmetric discontinuities, by virtue

of their geometry, excite the parasitic odd mode that deteriorates the performance

of the system. The methodology adopted to analyze the effect of discontinuities,

particularly mode conversion at asymmetric discontinuities, are discussed later in

this chapter.

2.2. Analysis of Coplanar Transmission Lines

Figure 2.1 (a) shows the cross-section of a CPW. It is composed of three thin

metallic films deposited on the surface of a substrate. The center strip is usually the

signal conductor, and the other two conductors serve as the ground. CPW does not

support a Transverse Electromagnetic (TEM) mode of transmission. TEM, as the

name suggests, implies that the electric and magnetic fields are entirely transverse

to the direction of propagation. The electric field between the center conductor



(a) CPW cross-section
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FIGURE 2.1. CPW Crossection

and ground electrodes is tangential to the air-dielectric boundary. The tangential

electric field configuration forces the axial and transverse components of magnetic

field components, as discussed in [3].

Due to the growing popularity of CPWs over the past decades, considerable

work has been undertaken to study coplanar waveguides. Wen [26] studied CPWs

with the assumption that the dielectric substrate is thick enough to be considered

infinite. This assumption makes it possible to apply techniques such as conformal-

mapping to study the CPWs. Conformal transformation is a powerful analytical
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technique, which can be used to simplify the analysis of planar transmission lines.

The characteristic impedance has been calculated as a function of the ratio a/b,

where 2a is the width of the center strip and 2b is the distance between the two

ground planes. The dielectric half-plane is transformed to the interior of a rectangle

in the complex plane using conformal techniques as shown in Fig 2.1 (b). The

capacitance between the top and bottom plates of the rectangle is then given by

2a1
C = (r + 1)c0---- (2.1)

where the ratio al/bi is obtained from the transformation

where

K(k)
(2.2)

bl K'(k)

k=

Here, K(k) is the complete elliptic integral of the first kind having the following

property

where

and

K'(k) K(k')

K'(k)=4J1

= (1 -

To calculate the phase velocity, the CPW is to be treated as a transmission

line completely immersed in a homogenous dielectric [26] with effective dielectric

constant Cff
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+ 1
2

(2.3)

Since a large fraction of electric fields for a CPW is in the air region, the effective

dielectric constant for CPWs is usually lower than that for conventional transmission

lines like microstrips on the same substrate. The phase velocity and characteristic

impedance of the CPW are correspondingly given as

and

where

c 2 1/2

Vph = c( ) (2.4)
Cr+1

VphoC (2.5)

c is the velocity of light in free space and C is the capacitance per unit length

of the CPW.

An important property of the CPW is the relative insensitivity of characteris-

tic impedance to changes in substrate thickness. This property is more pronounced

for substrates with higher relative dielectric constants. For example, it has been

studied in [3] that the characteristic impedance changes by less than 10% when the

thickness is reduced from infinity to about (b a)/2 for a relatively large r This

insensitivity of the CPW characteristic impedance gives an additional flexibility in

the design of CPWs for RF circuits and integration with other components on the

circuit board. Desired values of characteristic impedance can be obtained by just

changing the a/b ratio for any substrate thickness.

The above mentioned values for phase velocity and characteristic impedance

hold good for large values of Er and thick dielectrics, but do not approximate well the

case of thin dielectrics and small Cr. An alteration of the method used by Wen can

be found in [28], where the finite thickness of the dielectric substrate has been taken
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into account. Also, some applications require accurate frequency-dependent char-

acterization of CPWs. Equations (2.1) (2.3) have been obtained from quasistatic

approximations, and hence, lack any frequency-dependent information. Extension

of the analysis of CPWs to include the frequency-varying characteristic impedance

and dispersion characteristics has been given in [27]. A hybrid-mode analysis is

employed in [27] to study the CPW and extract the line parameters. For most prac-

tical transmission line problems though, the spatial distribution of the electric and

magnetic fields are assumed constant though the actual fields may be time-varying.

The characteristics of such structures can be obtained from quasistatic parameters

derived from the solution of a static-field problem.

2.2.1. Multi-Conductor Structures

Multi-conductor structures are a common occurrence in practical field prob-

lems, and some powerful techniques have been developed to analyze and derive

the line parameters of such systems. Once the line parameters like characteristic

impedance, propagation constants, attenuation constants and the normal modes of

propagation are derived, the system is completely described. The initial assumption

for this analysis is that the transmission lines under consideration are ideal and the

modes of propagation are purely TEM.

The dominant modes of propagation on the inhomogeneous lines are inher-

ently non-TEM, but can be considered quasi-TEM at relatively low frequencies. As

explained before, this approximation greatly simplifies the problem by making the

application of static electromagnetic field analysis possible. This holds good with

an accuracy of 1%, provided the substrate thickness is no greater than about 3% of

the wavelength [29].
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FIGURE 2.2. Multi-conductor system

Figure 2.2 shows a typical multi-conductor system. The line voltages and

currents of such a system are represented as vectors, and the distributed capacitances

and inductances are written in matrix form comprising the self and mutual terms.

A detailed study of coupled transmission line systems is given in the next chapter.

The incremental equivalent circuits for single and multiple coupled lines are shown in

Figure 2.3. For a single transmission line described in Fig 2.3(a), the fundamental

differential equations for voltage and current can be derived from simple circuit

analysis as

ov 9I= L (2.6)

01
= c-- (2.7)

where L is the distributed inductance of the line per unit length, and C is the

distributed capacitance between the lines per unit length. The above equations for
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Ldz
J+Ld

tV+.--dz

vi
Cdz

I

iLlZ

Cig

(a) Single Transmission Line
'C /

/

(b) Capacitive elements of n Transmission lines

2__t1_
g

(c) Inductive elements of n Transmission lines

FIGURE 2.3. Equivalent circuit for incremental length of transmission line

a single line are easily extended to multiple lines where V and I are vectors given

by

vi

V2 '2

V

The corresponding capacitances and inductances are multi-dimensional matrices

given by
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1111 L12 . L1 C11 C12 C1

1121 L22 .. L2 C21 C22 C2
[11]

: : : :

Lnl 11n2 C1 C2 C,jn

where C21 = is the mutual capacitance between lines j and i. C2 Cig +

is the self-capacitance for the line i, and C9 is the capacitance between

line i and ground. Furthermore, L2 is the self-inductance per unit length for the th

line, and = is the mutual inductance per unit length between the th and 3th

line.

Equations(2.6) and (2.7) are extended to matrix form

OV 01
(2.8)

01 OV
(2.9)

The [L] and [C] matrices are symmetric. While the elements of the [L] matrix are

positive, [C] matrix has positive diagonal terms and negative off-diagonal terms.

Also, the sum of each row or column is non-negative.

Assuming the system to be uniform and modal wave propagation with propa-

gation constant along the z direction of propagation and harmonic time variation,

the phase change is of the form ej(t_$z). Using phasors to represent voltages and

currents, the above equations are re-written as

j,13V jw [U I (2.10)

i131 = iw [C] V (2.11)

Eliminating either I or V, the system of equations may be decoupled to give the

following relations
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32V w2 [L] [C] V (2.12)

321=w2[C][L]I (2.13)

These equations can be expressed as

and

with eigenvalue A

([L] [C AU)V = 0 (2.14)

([C] [U AU)I = 0 (2.15)

R2

w2

and where U is the identity matrix. The solution to equations (2.14) and (2.15) is

an eigenmode problem. The equations suggest that the voltage and current normal

modes and propagation constant can be obtained in terms of the [L] and [C]

matrices of the multi-conductor system.

Assuming TEM mode of propagation, Maxwell's equation for the system

relating the electric and magnetic field vectors are given by

V x E = jw1iH (2.16)

V x H = jwcE (2.17)

where E is the transverse electric field vector, H is the transverse magnetic field

vector, c is the permittivity of the medium and p is the permeability of the medium.

The subscript t corresponds to the transverse components of the vectors. Since

the fields are purely transverse, equations (2.16) and (2.17) reduce to the following

equations:
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aEa x jwuH (2.18)

a x = jwcE (2.19)

V x E 0 (2.20)

V x 0 (2.21)

Decoupling of these equations leads to

02E
+ /32E = 0 (2.22)

Oz

with propagation constant fi = A similar equation can be obtained for the

transverse magnetic field as

82H
+ /32H = 0

az2
(2.23)

The above equations show that the TEM waves propagate along the lines with a

phase velocity of which is equal to the velocity of light in that medium. It

is known from [29] that if there are N + 1 conductors, there exist N basic TEM

modes of propagation. That is, for N pure-TEM transmission lines, there are N

TEM modes, which have the same propagation constants.

The distributed inductance and capacitance matrices of a transmission line

system are related to each other for a homogenous air medium by

and

[L0] = 1i0e0[C0]' (2.24)

[C0] = t0c0[L0]' (2.25)

where the subscript o stands for air or free space. Also

L



[L0] [C0] = [C0] [L0]

for a homogenous medium. The product is also symmetric and the eigenmodes

are orthogonal [29]. This is not true for the propagation modes of multi-lines in

an inhomogeneous medium. For inhomogeneous media, [L][C] [C][L] and the

product is not symmetric. The eigenmodes are not orthogonal and the eigenvalues

may not be real. However, it has been mentioned that the voltage and current

eigenmodes have the same eigenvalues, and therefore, the same phase velocities.

The inductance matrix is independent of changes in the dielectric assuming

that the magnetic properties remain constant. The eigenvalue equations for voltage

and current are re-written in the following equations

where

[L} = 0c0[C0]1 (2.26)

[C0] = 1i0c0[L]1 (2.27)

The eigenvalue equation for V becomes

[C]V= [C0]V (2.28)

k = w2p0c0

[C0] is the capacitance matrix for a homogenous air medium and [C] is the capaci-

tance matrix for the inhomogeneous media.

This generalized eigenvalue problem for equation (2.28) can be solved alge-

braically for a small number of multiple lines. For a large number of lines, numerical

techniques are employed to obtain distinctive eigenvalues and eigenmodes. The ef-

fective dielectric constant for the modes in inhomogeneous media is defined here

as
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[C]V = Egff[Co]V (2.29)

W2/JoEefffo (2.30)

Once the effective dielectric constant is known, the phase velocity Vph of any mode

is calculated by

Co
Vh= (2.31)

where Vph is the phase velocity of a mode in the actual structure and c0 is the velocity

in air or free space. The current normal modes are related to the voltage normal

modes by

I Vph [C] V (2.32)

The characteristic line impedance for each mode can be defined as the ratio of line

voltage to the current on the same line

vz
(2.33)

where the subscript denotes the line and the superscript, the eigenmode. Here, Z

corresponds to the characteristic impedance of the th line for the th eigenmode.

Using (2.32), it can be re-written as

-3---2_1 '
V]

(2.34)j_ I; lv'n
ph L'kzr1"ik

where C is the self-capacitance and C = C for i j, is the mutual capacitance.

The characteristic admittance is correspondingly given by

r = v F=lCjkV1 (2.35)
J Vi Ph[

z j

L
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It can be summarized from these definitions, that the line parameters are

easily computable once the normal values for voltage and current are known. The

voltage and current normal modes are in turn dependent on the capacitances and

inductances of the system. The analysis of multi-conductor systems should therefore

begin with the computation of capacitances and inductances from the field problem.

For the sake of simplified illustration, the defining equations for a single line can be

derived from the above equations for

i=j=n=1

CV = effCoV (2.36)

C
Ceff = (2.37)

1
(2.38)

VphC

2.2.2. Modal Analysis of CPW transmission lines

There are two fundamental modes of propagation in coplanar transmission

lines. This is consistent with the discussions in the previous section as the CPW

is a 3-conductor transmission line. The electric field configuration for the even and

odd modes is illustrated in Fig. 2.4. The even mode, also known as the CPW

mode, has a field that is symmetric about a plane passing through the midpoint

of the cross-section, and parallel to the direction of propagation. The odd mode,

also referred to as slot-line mode has an anti-symmetric field configuration. There

may also exist other modes including surface-modes, which are essentially non-TEM.

They are excited in certain structures subject to specific boundary conditions [37],

but can be considered non-existent or negligible in most cases.
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FIGURE 2.4. Modal Field Configuration

In many practical applications, the coplanar structures may be conductor-

backed (CB-CPW), i.e. a metallization exists on the substrate backside. It is also

formed by the chuck of a wafer probe station or the bottom of package. In some

cases, it is advantageous to have a bottom metallization plane, as it aids in efficient

heat removal. This conductor-backed geometry may cause strange effects, since

an additional fundamental mode called the parallel-plate line (PPL) mode or the

microstrip (MS) mode appears. Figure 2.5 shows the electric field lines for the PPL

mode. The PPL mode is excited due to the voltage difference between the ground
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conductors on top of the substrate and backside, and has the same symmetry as the

even mode. The CB-CPW comprises four conductors and hence, three fundamental

modes of propagation exist. The analysis of the CB-CPW is not a part of this thesis

and is not considered.

FIGURE 2.5. Parallel-plate mode in a CB-CPW

The solution of the electrostatic or magnetostatic field problem for a given ge-

ometrical configuration of conductors and dielectrics characterizes multi-conductor

problems. In other words, the modal parameters for a CPW can be found from the

capacitance or inductance matrix for the system. The capacitances can easily be

extracted from capacitance solvers that use quasistatic 2D methods like quasistatic

SDA. The voltages and charges on the conductors are related by the following

[Q] = [C] [V] (2.39)

For a CPW structure, [C] is a 3 x 3 matrix, and for the sake of discussion, let

the three conductors of the CPW be labeled 1, 2 and 3, respectively, as illustrated
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in Fig. 2.6. Equation (2.39) can then be re-written for a three conductor case as

follows:

Qi C11 C12 C13 V1

Q2 = C21 C22 C23 V2 (2.40)

Q C31 C32 C33 V3

where C is the capacitance between lines i and j, and

Ci = C9 + (2.41)

is the self capacitance of line i. Setting C29_O due to the ground at infinity, and

using (2.41) in (2.40), we have

Qi C12+C13 C12 C13 V1

Q2 = C C12 + C23 C23 V2 (2.42)

Q C31 C32 C31+ C32 V3

The above equations show that for any given set of applied potentials, the

charges induced on any conductor can be determined, once the capacitance matrix

is known. Conversely, the capacitance can be determined by finding the induced

charges on any conductor for applied potentials on all the conductors. For a general

N + 1 line system, there are (N + 1)N independent capacitances because of the

symmetry of the [C] matrix. For the CPW under consideration, the capacitances

that define the system are C12, C13 and C23. The even- and odd- mode capacitances

for the CPW can then be determined by forcing the corresponding voltage configu-

rations for the conductors. With the usual assumption that one of the conductors

is ground, a reduced 2 x 2 matrix is obtained.

The reduction of the capacitance matrix to the corresponding even- and odd-

mode capacitances is illustrated in Fig. 2.6. To simplify the analysis, the center

conductor is fixed to OV potential i.e. ground. The even mode has a symmetric field

about the center conductor 2, and therefore, the voltages on conductors 1 and 3
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are equal. On the other hand, for the odd mode, which has an anti-symmetric field

configuration about the center conductor, the voltages on conductors 1 and 3 are

equal in magnitude but opposite in polarity.

(a) Even mode

(a) Odd mode

2C, 2 2C1,

I c23 =

121

FIGURE 2.6. Even and odd mode excitations and the resulting equivalent capaci-

tance networks

Assuming a symmetric cross-section, the even- and odd- mode capacitances

are as given below

Ceven = C12 + C23 (2.43)

Cd = C12 + 2C13 = C23 + 2C13 (2.44)

The procedure for finding the propagation constants and characteristic

impedance of the two modes is as follows. A capacitance solver is used twice,

once with air dielectric and then with the substrate included. The air and substrate
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capacitance matrices can then be reduced to obtain the respective even- and odd-

mode capacitances. The effective dielectric constants and characteristic impedances

are given by the following equations

Ceven(odd)
(2.45)Ceven(odd)

Caireven(Jd)

1/ 1
(2.46)Zeven(c,4d)

c Ceven(o1d)Caireven(odd)

where c is the velocity in free space equal to 3 x 108m/s. Ceve is the even mode

capacitance for the CPW with the substrate included and Caireven is the even-mode

capacitance of the structure in a homogeneous air dielectric. A similar definition is

applied to the odd mode.

2.3. Discontinuities in Coplanar Waveguide

Microwave networks often consist of transmission lines with various types of

discontinuities. In most cases discontinuities are an unavoidable result of mechanical

or electrical transitions from one medium to the other. The discontinuity is usu-

ally unwanted but may be significant enough to warrant characterization. In other

cases, the discontinuities may be deliberately introduced in the circuit to perform

a certain electrical function. Examples include directional couplers, power dividers

and filter circuits. In any event, a discontinuity in the transmission line needs to be

represented by an equivalent circuit for analysis purposes. Depending on the type of

discontinuity, the equivalent circuit may be a simple shunt or series element, or more

complex comprising many elements. The component values of an equivalent circuit

depend on the parameters of the line, discontinuity, and the frequency of operation.

In some cases, the equivalent circuit requires a shift in the phase reference planes of
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the transmission lines [39]. Discontinuities in CPW transmission lines is the subject

of discussion in this section.

Examples of common discontinuities in CPWs were shown in Fig. 1.2. As

discussed in the previous section, the CPW supports more than one fundamental

mode of transmission. The study of discontinuities is therefore a multi-modal prob-

lem, where the interaction between the modes is important. Discontinuities in a

CPW have been treated and analyzed in the past as four-port model [4], [5] - [8].

The coupling between modes is characterized by a 4x4 modal scattering matrix.

Figure 2.7 illustrates a general four-port description for a CPW discontinuity. The

subscripts e and o refer to the even- and odd- modes, respectively. It is assumed in

Fig. 2.7 that only these two fundamental modes in the CPW feed lines exist. The

model therefore consists of two ports for each of the modes, one on each side of the

discontinuity. The two even-mode ports are 1 and 2, while ports 3 and 4 correspond

to the odd mode on either side of the discontinuity.

There are other discontinuities like the CPW-to-microstrip transition or GB-

CPW discontinuities that excite the PPL mode on one side of the discontinuity. In

this case, the network in the figure has to be correspondingly modified to a 5-port

or 6-port model. It is seen that the analysis can become increasingly complex for

structures with more than two modes.

In general, the description of the discontinuity in terms of the modal matrices

is very convenient for analysis purposes. The modal description of a discontinuity

contains sufficient information to characterize it completely. Modal analysis has

been performed on several CPW discontinuities in the past. Full-wave EM tech-

niques have been applied to directly extract the modal scattering parameters at

the discontinuities [4], [5], [23]. In [4], a GPW right-angle bend is characterized

using mixed-potential integral formulation, and a four-port model for the disconti-
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FIGURE 2.7. Generalized four-port model for CPW discontinuity

nuity has been proposed. The four-port modal scattering matrix includes the effect

of coupling between the modes and mode conversion. CPW-to-slot line transitions

have been analyzed in [23]. Reference [8] performs the modal analysis of shunt stubs

in CPW using a space-domain integral equation (SDIE).

Examples of symmetric and asymmetric discontinuities are given in Fig. 2.8.

The asymmetric discontinuities, by virtue of their geometry, excite the odd mode.

This phenomenon of mode conversion is significant and requires accurate charac-

terization, as it involves loss of power from the desired mode of operation. Several



Open stub Two-sided shunt stub

(a) Symmetric discontinuities

Bend Asymmetric shunt stubs

(a) Asymmetric discontinuities

FIGURE 2.8. CPW Discontinuities

methods have been proposed to suppress the odd mode at discontinuities including

the use of air bridges [7] or top or bottom ground plane shields [11]. Physically tying

together the two outer conductors of a CPW tends to suppress the asymmetric odd

mode. Mitering has also been used to compensate the bend such that it minimizes

the mode conversion. The following chapter seeks to develop a four-port model for

the CPW bend to accurately characterize mode conversion.
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2.4. Conclusions

The solution of the electrostatic field problem for a given geometrical configu-

ration of conductors and dielectrics leads to the characterization of multi- conductor

problems. The CPW is a two-mode structure, and the modal properties can be ob-

tained from the distributed capacitances of the three-conductor system. Therefore,

discontinuities in the CPW need to be characterized by a two-mode (four-port)

network model. Asymmetric discontinuities like bends and one-sided shunt stubs

excite a parasitic odd mode through mode conversion. The next chapter deals with

developing four-port models to characterize this mode conversion in CPW bends.



3. MODELING OF COPLANAR WAVEGUIDE
BENDS

3.1. Introduction

Bends are among the most common interconnect discontinuities. They have

become an integral part in present-day ICs and PCBs due to the complex routing of

signal paths that exists. A bend in the CPW generates an unwanted odd mode by

virtue of its asymmetry. This excitation of the parasitic mode can create problems

with the normal operation of CPW circuits. A thorough and rigorous approach to

study the effects of the bend is therefore needed. Models for the bend discontinuity

that characterize it completely would greatly help in the design of CPW-based RF

circuits.

This chapter starts with a review of coupled transmission line theory. The

voltage-current relationships for coupled transmission lines, which includes the con-

tributions due to the mutual capacitances and inductances, are derived. These

relationships are later applied in the analysis of CPWs. A CPW can be consid-

ered as two coupled quasi-slot transmission lines running parallel to each other. A

bend in the CPW is therefore a non-uniform coupled line system. The analysis of

coupling effects around the bend is then discussed, and a quasistatic model for the

bend section is developed. The model has four ports corresponding to the four slots

in the bend. Relations between the slot voltages and the modal voltages are then

used to obtain a four-port modal scattering matrix. The modal scattering matrix

contains information regarding the transmission coefficients between the modes and

the modal reflection coefficients.

As explained later in this chapter, this modal information proves useful in

the study of mode at discontinuities. Modal transmission coefficients derived from
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the model have been compared with the results obtained from full-wave simulations.

The comparisons are shown for structures with different dimensions to demonstrate

the applicability of the model to a wide variety of geometries. The effect of the center

conductor width, slot spacing, and dielectric permittivity on mode conversion and

resonances in the structure are also discussed in detail.

3.2. Theory of Coupled Transmission Lines

Transmission lines consist of multiple parallel conductors that are in close

proximity to each other. One of the most common examples is that of parallel-

running signal lines on PCBs. Due to the close proximity of the conductors, the time-

varying electric and magnetic fields generated by different lines interact, giving rise

to electromagnetic coupling between the transmission lines. As a result, the voltage-

current relationships for these lines include the effects of electric and magnetic field

coupling that exists between the lines. Coupling between adjacent transmission

lines is often unwanted and deteriorates the performance of the system. There is

loss of power from the signal line to the adjacent lines through coupling, which

can induce crosstalk and other compatibility problems. In other applications, the

coupling between transmission lines is used to achieve certain functionalities such

as power-division, filtering, etc. The following sections review the analysis of a pair

of coupled transmission lines.

Unlike circuit theory, transmission line theory deals with the analysis of trans-

mission lines with length comparable to the wavelength. This calls for a distributed-

parameter network, where voltages and currents can vary in magnitude and phase

over its length. Figure 3.1(a) shows a short section of a transmission line of length

dz. This incremental line section can be modeled as a lumped element circuit, as

shown in Fig. 3.1, where R, L, C, C are per-unit length quantities defined as follows
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I p.

dz

:1
i(z+dz,t)

Rdz Ldz

j....Cdz
V(z+dz, t)V(z,t) Gdz

1 p.

dz

FIGURE 3.1. Lumped-element equivalent circuit for incremental length of trans-

mission line

R series resistance per unit length, in Il/rn

L = series inductance per unit length, in H/rn

G = shunt conductance per unit length, in S/rn

C = series capacitance per unit length, in F/rn

The following equations for voltage and current can be derived

Ov(z,t) Ri(z,t) Lz,t) (3.1)
t9z 9t

Ov(z,t) = Gi(z,t) (3.2)
at

Assuming v(i, t) and i(z, t) are cosine-based phasors, the equations reduce to
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dV(z)
= (R+jwL)I(z) (3.3)

dz

dI(z)
= (G+jwC)V(z) (3.4)

dz

The above set of partial differential equations can be extended to describe

the interdependence between the line voltages and currents in a two coupled-line

system. Figure 3.2. shows the equivalent circuit for an incremental length of two-

coupled transmission lines. The distributed capacitance between line 1 and the

ground conductor labeled g is C19, and the distributed capacitance between line 2

and ground is C29. The distributed mutual capacitance between the two lines is Cm.

Similarly, L1 and L2 are the distributed inductances associated with the two lines 1

and 2 repectively, while Lm is the distributed mutual inductance between the two

transmission lines. The distributed resistances R1,2 and conductances G1,2 can be

defined accordingly.

The interdependence relations for the line voltages and currents are obtained

by considering the change in electric and magnetic flux linkage as a function of

time for an incremental section of the line. The resulting set of partial differential

equations for voltages and currents on the lines is given by
ôIi(z,t)

rc11 G121 rvi(z,t)1 rC11 c12i
ÔV1(z,t)

F 1ôz 1

I 8I(z,t) I

L C21 C22] L V2(z, t)] L C21 C22]
I
3V2(z,t) I

L J L J

where

IC11 C19 + Cm Cm
1

[C21 C22 L Cm C29 + Cm]

and

r) rR11
I a 1

I (z,t) I =
LR21L Oz i

where

R12 Ii(z,t)

R22 12(z,t) L21

r_______
"12

r 012(z,t)
"22

(3.5)

(3.6)

(3.7)
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_' -
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i2(z t)

I

; dz

i2(z +, t)
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FIGURE 3.2. Lumped-element equivalent circuit for incremental length of two

coupled transmission lines

L11 L121 L1 Lm
I 1=1 I

(3.8)
L12l L22] L11'm L2]

For lossless lines, the series resistance and the shunt conductance terms are zero.

Neglecting the resistance and conductance terms, 3.5 and 3.7 reduce to

c c OV1(z,t)

a 11 12 at
(3.9)

t912(Z,t) /1 f1 &V2(z,t)

az L'21 L'22

and

8Ii(z,t)

1

OV1(z,t)

1

[

at
(3.10)

j
ôV2(z,t) L 2221 L a12(z,t)

jaz



35

It can be inferred from the above equations that the voltages and currents

on any one line depend on the rate of change of currents and voltages on the other

line. This dependence is stronger for higher values of the mutual terms C12 and L12,

and vice versa. This mathematical description of two coupled transmission lines

can be readily extended to any N transmission lines. The corresponding current

and voltage vectors are Nxl and the distributed parameter matrices are NxN.

A general two coupled-line system can be described in terms of a four-port

network. The network parameters such as impedance or admittance matrices can

be conveniently derived from the frequency-domain even- and odd mode responses

of the system. Simple equivalent circuits can in turn be derived from the four-

port network parameters. Other network representations that describe a general

system include the ABCD matrix and scattering matrix. Knowing any one of these

parameters, the other network parameters can be derived to better suit the analysis

of a problem at hand.

3.3. CPW as coupled quasi-slot lines

The geometry of a typical slot line is shown in Fig. 3.3 (a). It consists of a

slot or gap in an infinite metallic plane on a dielectric substrate. The electric field

lines in a slot transmission line lie across the slot. This enables discrete components

to be shunt mounted on the slot lines. The characteristic impedance of the slot

line depends to a large extent on the slot width. The wider the slot is, the greater

the characteristic impedance, and vice versa. Since the mode of propagation along

the line is non-TEM, the characteristic impedance shows a strong dependence on

the frequency of operation as well. While the metallization is laterally infinite in

slot lines, a similar structure with finite metallization as shown in Fig. 3.3 (b) can

be considered as a quasi-slot line. Like the slot line, the quasi-slot line supports a



36

1
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(a) Slot line (b) Quasi-slot line

Ieric

(c) Coplanar Waveguide

FIGURE 3.3. Slotline and CPW

non-TEM mode of propagation but can be considered as quasi-TEM for analysis

purposes at low frequencies.

The CPW can be viewed as a pair of coupled parallel quasi-slot lines. For

example, consider the CPW shown in Fig 3.3 (c). The center conductor width is

w and the separation between the slots is s. This configuration is equivalent to

that of two coupled quasi-slot lines of width s separated by a distance w. The

center conductor of the CPW can be assumed to be the common ground for the slot

transmission lines. Thus, the capacitance Cm shown in the figure is nothing but the

mutual coupling capacitance of the two quasi-slot lines. As discussed in the previous

chapter, the capacitance matrix for a multi-conductor system is obtained easily using
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Porti Port2
Coupled quasi-slot lines
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Porti Port2

50 Ohm

CPW (ADS model)
I1 50 Ohm

FIGURE 3.4. Circuit Schematics: Parallel coupled quasi-slot lines vs. CPW

2D capacitance solvers. The parameters of the coupled slot lines in Fig. 3.3. are

derived from the capacitance matrix of the corresponding three-conductor system.

For sake of comparison, consider the two circuit schematics shown in Fig. 3.4.

The first one is that of a coupled quasi-slot line with the lines tied together at both

ends. This is the equivalent of a CPW with outer conductors shorted together. The

even mode of propagation in a CPW has a symmetric field configuration about the

center conductor. Thus, forcing the outer conductors to the same potential, only

the even mode exits in the structure. By simulating the shorted coupled lines and

comparing the S-parameters with that of a CPW model in the commercially available
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tool ADS [31], it can be ascertained if the coupled quasi-slot line description of a

CPW fits well. Figures 3.5. and 3.6. plot the S-parameters with 50 1 reference

port impedances. A length 1 of 20mm is chosen with the slot spacing s = 0.6mm

and the center conductor width w = 5mm.
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It is seen from the plots that the quasi-static coupled line description ap-

proximates the CPW model well at low frequencies. As the frequency of operation

increases, there is a slight mismatch in S-parameters. This may be due to finite-

width approximation for the two outer conductors in extracting the 3 x 3 capacitance
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matrix. Coupled quasi-slot lines in general can be considered a good approximation

of the CPW.

3.4. Model Development

This section gives a detailed explanation of the approach presented in [41]

for the modeling of CPW bends. A bend in the coplanar structure is inherently a

non-uniform coupled line structure with different line lengths. Figure 3.7 shows a

CPW right-angle bend with center conductor b of width w and slot-width s. The

two outer conductors are labeled a and c. This non-uniform coupled line system

has two predominant effects on signal propagation in the slots around the bend.

First of all, it introduces a phase difference between the signals in the slots due to

the different lengths around the bend. Secondly, there is tight coupling between

the slots that is not uniform along the length of the bend. The signals propagating

along the two slots have a continuously changing degree of cross-coupling around

the bend geometry. Looking at the bend in Fig. 3.7, as we move from reference

plane Ri to reference plane R2, the mutual capacitance per unit length Cac is not a

constant and varies continuously. It reduces to the lowest value around the corner

of the bend where the separation between the slots is maximum, and then increases

back to the initial value. The value of Cac at the reference planes Ri and R2 is

equal to the mutual capacitance between the quasi-slot lines feeding the bend.

To analyze the non-uniform coupling that takes place in the bend more

closely, consider the two structures shown in Fig. 3.8. Figure 3.8 (a) shows a right-

angle CPW bend without the feed lines and Fig. 3.8 (b) is a hypothetical structure

obtained by straightening of the bend. The structure in Fig. 3.8 (b) serves as a good

starting point in the analysis of non-uniform coupling in the bend.
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It is known that the charge density is higher at the edges of conductors

in the bend. The charges in one of the outer conductors of the CPW bend are

illustrated in Fig. 3.8. By a first order approximation, the net charge in the two

outer conductors of the CPW is assumed to be concentrated at the edges, as line

charges. The mutual capacitance per unit length (p.u.l) between two incremental

charge elements on these two line charges is equal to Cm. Thus, the capacitance

between the elements A and B shown in Figure 3.8 (a) and (b) is Cm.
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FIGURE 3.8. Illustration of coupled line geometries

The capacitance between any two charge elements is inversely proportional

to the separation between the elements. The capacitance between the elements A

and B' can therefore be approximately expressed interms of Cm as

ABCmCmXj (3.11)

where

AB'= AB
(3.12)

cos(9)

Using (3.12) in (3.11) gives



Cm X cos(6)
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(3.13)

It is seen from equation (3.11) that the mutual capacitance Cm between

incremental line charges, which is also interpreted as the p.u.l. capacitance between

the two coupled quasi-slot lines, is not constant around the bend. For example

in Fig. 3.8 (a), for the signals traveling from one side to the other, the coupling

capacitance is the strongest at the begining of the bend equal to Cm. It reduces to

a lowest value at the corner of the bend to Cm/V and then increases back to the

initial value of Cm at D. The coupling between the lines in the straightened bend

structure in Fig. 3.8 (b) shows a similar behavior.

Considering the straightened bend structure in Fig. 3.8 (b), the total mutual

coupling between the incremental element A and the incremental elements on the

other conductor is obtained by integrating equation (3.13) over a length 2 * (w + s).

where

PW+S

Ctotai I Cmcos(e)dr (3.14)
J (w+s)

dr = (w + 2 * s) sec()2d9 (3.15)

is obtained by differentiating

Using (3.15) in (3.14)

r= (w--2*s)cos(9) (3.16)

Ctotai = 2 x Cm(W + 2 * s)d
(3.17)

Jo cos(0)

The integration gives a total coupling capacitance equal to

Ctotai = 2 X O.3827(w + 2 * S)Cm = O.765(w + 2 * S)Cm (3.18)
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This value of total capacitance is approximately equal to the net mutual capacitance

between two uniform coupled quasi-slot lines with a p.u.l. capacitance Cm, over a

length 0.765*(w + 2 * s). Thus, uniform coupled-lines with an equivalent length of

leq = 0.765 * (w + 2 * s) (3.19)

and p.u.l. mutual capacitance Cm can be used to model the non-uniform coupled-

line system in Fig. 3.8 (b).

Figure 3.9 illustrates the general methodology for modeling a non-uniform

coupled line system. The model consists of a uniform coupled-line section of length

given by equation (3.19) cascaded with uncoupled transmission line sections. The

coupled line section is of length given by equation (3.19), and supplies the required

mutual capacitance. The uncoupled transmission line sections introduce the neces-

sary phase-difference between the two slots in the bend. The phase shift introduced

by the coupled line section can be cancelled out by adjusting the feed length of

feed lines connected to the bend, or approximately by adjusting the lengths of the

uncoupled transmission line sections as illustrated in Fig. 3.10.

The parameters for each of the blocks in Fig. 3.10 are obtained using qua-

sistatic 2D methods. 2D solvers use the cross-sectional information to solve for the

3x3 capacitance matrix for the system. The capacitance matrix can then be reduced

to get the coupled line parameters, even- and odd mode impedances (Zoe, Zo0) and

propagation constants (i3, The corresponding set of equations that relate the

modal impedance and propagation constants to the capacitances of the system were

given in Chapter 2.

The right-angle bend in Fig. 3.8 (a), being a non-uniform coupled structure,

is modeled using the same approach given above for Fig. 3.8 (b). However, there is

one salient point that should be addressed when developing a model for the right-

angle bend. The bend couples the two slot lines more tightly compared to a straight
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section. This is because of the closer proximity of the ports at the far-end compared

to a straight coupled line. This feature of the bend discontinuity therefore warrants

some modifications in the coupled line parameters of the model. It has been found

that a factor k can account for the stronger coupling if the even- and odd mode

impedances of the coupled-lines are modified as

where

Zo0

ZOec = ZOe * ke, Zo = (3.20)
k0

k = ke = k0 = 1.6

The four-port model for a right-angle CPW bend in shown in Fig. 3.10. It consists

of a uniform coupled-line section cascaded with uncoupled transmission line sections.

P1 P4 are the four ports of the model, which correspond to slot excitations. The
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parameters of the coupled line include the effect of stronger coupling in the bend,

and the transmission line lengths are adjusted to include the de-embedding effect.

The lengths 131 and 1s2 in the model are the physical lengths of the two slot lines in

the bend.

131 = W+ l.5*s,132 = (3.21)

The four-port modeling methodology can be easily extended to bends with

different angles. In all cases, the model parameters are obtained using the same
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approach described above. The model parameters for a 45 degree bend shown in

Fig. 3.11. are derived as

R2

Ri

Port3 Port4

Porti Port2

FIGURE 3.11. 45 degree CPW bend

Coupled-line length: I, = 0.35 * (w + 2 * s) (3.22)

Zo0

Coupled-line impedances: ZOec ZOe * ke, Zo0 (3.23)

Transmission line lengths: l = 0.414 * (w + 1.5 * s), = 0.207 * s (3.24)

where ke and k0 are the even- and odd mode coupling factors. The coupling between

the slots is weaker in the 45 degree bend compared to the right-angle case due to the



spreading of fields in the bend region. Unlike the right-angle bends, the coupling

factors ke and k0 are also found to be different for the 45 degree bends. Bends with

different dimensions of w and s were studied to estimate the value of these coupling

coefficients. A good fit between the model and full-wave simulation results is found

for the following values

ke = 1.35, k0= 1.15 (3.25)

It is also seen from equation (3.24) that the path-length difference between the slots

is less compared to a right-angled bend. This is obvious by looking at Fig. 3.11.

In summary, the development of a four-port model for the CPW bend was

discussed. The model is based on the decomposition of the coplanar waveguide into

two coupled quasi-slot lines. The four ports of the model therefore correspond to

the four slot excitations, two on each side of the bend. For an arbitrary excitation

of the structure, the electric field in each slot is a superposition of the even- and

odd mode fields.

3.5. Modal Scattering Matrix

The slot-voltage scattering matrix for the model, which relates the incoming

and outgoing waves, is given by

v1+i Is11 Si2 813 S141 IVi1
v2+ S21 S22 S23 824 V

(3.26)
v3+ J S31 S32 S33 S34

I
v3-

v4 j L S4 S42 S43 s44] L V4 i

where subscripts 1.. .4 correspond to the four ports of the model. The + superscript

refers to the incoming waves at the slots and the - superscript denotes the reflected

waves. For a general excitation of the structure, the even- and odd mode voltages
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FIGURE 3.12. Slot exciations and modal voltages

can be expressed as a linear combination of the corresponding slot voltages. With

reference to Fig. 3.12, the relationship between the modal voltages and slot voltages

is given as

v'-v2
vo1

v3+v4
Ve2

2

v3-v4
v02-

v1+v2
Ve1

(3.27)

where subscripts ci and ol corresponds to the even- and odd modes on one side of

the discontinuity, and e2 and o2 on the other side.

The above set of relations, when used in (3.26) gives a system of equations

that relate the incoming and outgoing modal voltages at the four ports of the model.
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= Veil
(S + 512 S21 + 522)

+ Veil

(S13 + Si4 + S23 + S24)
(3.28)

2

(S11 S12 + S21 S22)
+

(Sf3 Si4 + 523 S24)

2 2

= + S12 S21 522) + V+(S13+ Si4 S23 S24)
(3.29)

2

(S S12 821 + S22)
+

(S13 S14 S23 + S24)

2 2

Identical equations can be derived for the outgoing modal voltages Ve and V on

the other side of the discontinuity. The first term in equation (3.28) is the reflection

coefficient for the even mode. That is, for

we have

R (Sii + S12 + S21 + S22)
(3.30)

2ei

Applying similar definitions, equation (3.28) is re-written as

Ve Vet Ree + V + VetReo + Vet Teo (3.31)e2 L ee

Here, Tee is the even-mode transmission coefficient, and Reo and Teo are the even-

mode reflection and transmission coefficients, respectively, due to an incident odd

mode.

The modal transmission and reflection coefficients describe the bend corn-

pletely and are very useful in the analysis of the discontinuity. For example, the

mode conversion in the bend can be directly observed by plotting the transmis-

sion coefficients Teo and Tee over the frequency range of interest. A high value of

T implies that more of the even-mode power is converted to the odd mode. The
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magnitude of Tee would understandably dip in a frequency band where Toe peaks.

Similarly, the odd-to-even mode conversion can be analyzed.

A general scattering matrix Sm, which relates the incoming and outgoing

modal voltages at the discontinuity, is given by

Ree T Reo Teo 14j

Tee Ree Teo Reo Vj
= (3.32)

T3 R00 T V

Toe Roe T00 V0j

This modal scattering matrix representation uses one port for each mode excited on

either side of the discontinuity. The slot excitations are with reference to the port

impedances Z8. The modal scattering matrix is normalized to even- and odd mode

impedances as given by the following set of equations [39].

Z = /(i - 5)_1(1 + S)/i

S, = Z_Zn)(Z+Zn)1/

where

Zs 0 0 0

o z8 0 0
Zt::=

o o 2; 0

o o 0 2;
and

(3.33)

(3.34)

ZOe 0 0 0

o ZOe 0 0
Zn=

o o Zo0 0

0 0 0 Zo0

It should be noted here that equations (3.33) and (3.34) are valid only if 2; and

Zn are diagonal matrices. In the above equations, Y is given by the inverse of Z,-,
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S is the scattering matrix with reference port impedances 2'5 and S is the modal

scattering matrix renormalized to the even- and odd mode impedances.

3.6. Simulations and Results

A general technique to develop models for CPW bends was described in the

earlier section. Specifically, model parameters were derived for right-angle and 45

degree bends. In this section, the models for these bends are compared with full-wave

simulations. Right-angle bends with different s/w ratios have been considered here

to provide a good variation in geometry. The dependence of the modal transmission

coefficients on slot width s, center conductor width w, s/w ratio and the dielectric

constant r of the substrate is discussed.

3.6.1. Results for right-angled bends

To proceed with the analysis, a CPW right-angle bend with w 5mm and

the s = 0.6mm is considered. The dielectric substrate is assumed to be RT/Duroid

[42] (r = 2.33) of thickness 62mil (1.58mm). The loss factor of the dielectric and

the conductor thickness are assumed to be negligible. The bend was simulated with

slot ports in the commercially available software tool MOMENTUM [31] to obtain a

slot-voltage S-matrix. The slot-voltage S-matrix was then transformed to the modal

S-matrix based on equations given in the previous section. An identical approach is

adopted to extract the modal S-matrix from the bend model.

As emphasized earlier, a bend has two predominant effects on signal propa-

gation in the CPW. First of all, it introduces a phase-shift between the signals in the

two slots. This is the most significant factor in inducing mode conversion. Energy

is transferred between the slots to offset the imbalance of power in the bend region.
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Secondly, the coupling between the quasi-slot lines causes the even- and odd mode

resonant frequencies to differ.

To analyze this behavior more thoroughly, let us consider the model for

the CPW bend without the coupled-line section (a hypothetical structure). It

4..

'S

/

_____J' Neglecting the
coupling between

linesUncoupled transmission Uncoupled transmission
line sections line sections

FIGURE 3.13. Modified Model

would just comprise the transmission line sections that account for the path-length

difference between the slots in the bend. An illustration of this modified model

is shown in Fig. 3.13. The port definitions here are assumed to be the same as

that for the original model. The modal response of such a system would be as

shown in Fig. 3.14 by the dashed lines. The even- and odd mode transmission

coefficients (Tee, T) overlap and dip at 11GHz. In other words, the even-mode

resonant frequency coincides with that of the odd mode. It is easy to see that there

is no signal transmission between the diagonal ports (1, 4) and between (2, 3). The

equations that were derived for transmission coefficients in the earlier section are

accordingly modified to give
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S13 + S24
'ee = T = (3.35)

2

As seen in the above equation, the transmission coefficients for the even- and odd

mode are equal. This explains the overlap in the two transmission coefficients at

resonance. Now, if the coupled-line section is included, the transmission coefficients

Tee and T, show different resonant frequencies. This is in fact what occurs in

the bend due to the coupling between the quasi-slot lines. There is a finite energy

exchange between adjacent quasi-slot lines by means of coupling to give 514 = 841 =

823 = S32 0.

Now the right-angle CPW bend is considered in more detail. As discussed

previously, the bend couples the slots more tightly than a straight coupled-line
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section, and this effect is included in the model through the factor k. Figure 3.14

shows the variation of the even- and odd mode resonant frequencies with factor k.

The higher the value of k, the greater the coupling and therefore, the larger the

separation between the Tee and T 'dip' frequencies. The model was simulated in

ADS [31] for varying values of k, and the response was compared with that obtained

from MOMENTUM. It has been found that a value of k = 1.6 best models the actual

coupling in the CPW bend. Figure 3.15. shows a plot of error in frequency-split

(between the Tee and T, resonant frequencies) versus the factor k. It is seen that

the error is mimimum for a value of k -'1.55 to 1.6. Right-angIe bends of different

dimensions were studied, and it was ascertained that a value of 1.6 for k minimizes

the error for most of the cases.

0

1.4 1.45 15 155 1.6 1.65 1.7 1.75 1J

k -..

FIGURE 3.15. Variation of k

Figure 3.16 compares the modal transmission coefficients obtained from the

model and MOMENTUM for a CPW right-angle bend with w=5mm, s0.3mm.
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FIGURE 3.16. Modal transmission coefficients for a right-angle CPW bend

(w=Smm, s=O.3mm, Cr=2.33)

The results from reference [4] have also been included in the plot for comparison.

There is a good match between the transmission coefficients obtained from the model

and the other two sources. It is seen that the resonant frequencies for the even- and

the odd modes occur at about 12GHz and 10.2GHz, respectively. The magnitude
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of the even mode transmission coefficient Tee dips to its lowest value at 12GHz,

signifying that most of the even-mode energy is converted to the odd mode at this

frequency. As a result, the magnitude of Toe, which represents the mode conversion



from even-to-odd mode, peaks in this frequency range. A similar argument explains

the frequency behavior of T and Teo.

The modal transmission coefficients for another bend with dimensions w =

3mm, s = 0.5mm and on the same substrate are shown in Fig. 3.17. The even- and

odd mode resonant frequencies are at 19GHz and 150Hz, respectively, for this bend.

The modal behavior is consistent with the theory that has been described. Once

again, the model matches well with full-wave simulations, thus proving its validity.

3.6.2. Effect of geometry on mode conversion

The center conductor width w, and the slot width s, play an important

role in determining the even- and odd mode resonant frequencies. The transfer of

energy from one mode to the other takes place because of the path-length difference

between the two quasi-slot lines. This comes directly from the relations between

the slot voltages and the respective modal voltages. Complete mode conversion

occurs, when the path-length difference between the two quasi-slot lines equals half

a wavelength (180 deg). This is easy to see as, in this case the odd mode is anti-

symmetric with respect to the even mode. Thus, the effect of changing w and

s, correspondingly modifies the path-length difference shifting the even- and odd

resonant frequencies shifts up or down the frequency spectrum. Shifting of even- and

odd mode resonances to lower frequencies is usually undesirable, as most applications

require a 'clean' transmission. The difference in the length of the two quasi-slot lines

in the bend, is directly related to the center conductor width w and to a smaller

extent on slot width s. Thus, it is better to have a wider bend or a CPW with

smaller w when sharp bends are a necessity. The undesirable effects associated with

mode conversion are then reduced or avoided in the frequency range of interest.
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The difference in the even- and odd mode resonant frequencies is due to

the coupling between the quasi-slot lines. Considering the relations for the modal

transmission coefficients given in equations (3.28) and (3.29), it is seen that the

transmission coefficients between diagonal ports, S14 and S23, cause the split in the

modal 'dip' frequencies. The closer the slots are, the stronger the coupling and,

therefore the greater separation in the resonant frequencies.

From the above discussions, it becomes clear that the modal response of a

right-angle bend in the CPW depends mainly on w. The slot width s does not

have much of an effect on the frequency behavior of the transmission coefficients.

However, it can contribute, albeit slightly, to the path-length difference in the bend.

3.6.3. Effect of dielectric substrate

The modal parameters of the coupled-line section such as the impedances and

propagation constants depend on the properties of the substrate. The wavelength

of the propagating modes in a dielectric has an inverse square relationship to the

dielectric constant r of the substrate. The electrical path-length difference between

the two slots in the bend, is greater in terms of wavelength for a substrate with higher

c. The even- and odd mode resonances would then occur at lower frequencies, as

the path-length difference corresponds to a 180 degree phase difference at lower

frequencies. The converse hold true for bends with lower substrate c.

The split in the even- and odd mode resonant frequencies is observed to be

less for substrates with higher dielectric constant. The effects of the dielectric on the

modal resonant frequencies is illustrated in Fig. 3.18. A right-angled bend in a CPW

(w = 5mm, s = 0.3mm) has been considered here. The modal transmission coeffi-

cients for the bend were shown earlier for an RT/Duroid (Er = 2.33) substrate. The

resonant frequencies for T00 and Tee were found to be around 10.5GHz and 12GHz,
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respectively, for RT/Duroid substrate. If the dielectric is changed to Alumina (r

= 9.6), the same bend would have the T00 and T dipping at 6.5GHz and 6.8GHz,

respectively. The resonances now occur at lower frequencies when compared with a

Duroid substrate. The coupling between the two quasi-slot lines is also weaker and,

as a result, there is not much frequency difference in the modal 'dips'. The results

obtained from the model were cross-checked with MOMENTUM, and an identical

behavior was observed between the two.

3.6.4. Results for 45 degree bends

The modal transmission coefficients for a 45 degree bend are given in

Fig. 3.19. The plots show the magnitude and phase comparisons of transmission

coefficients obtained from the model and with MOMENTUM. Looking at the be-

havior of the even- and odd mode transmission coefficients, it is evident that the
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FIGURE 3.19. Modal Transmission Coefficients for a 45 degree CPW

bend(w=6mm, s=lmm, Cr=2.33)

coupling between the two slots is weaker than in a right-angle case. This is because,

the electric fields begin to spread out when the angle of the bend starts decreasing

from 90 degree. As a result, there is less overlap of fields in the bend region and

therefore less coupling. The path-length difference between the slots is also lesser



in comparison to a right-angle case, thereby causing the modal resonances to occur

at higher frequencies. Good agreement between model and MOMENTUM results

proves the validity of the model.

3.7. Mitered Bends

Bends in transmission lines and waveguides are sometimes mitered, to

smoothen sharp edges in the bends. This helps in minimizing reflections that deteri-

orate the energy handling capacity of the transmission line or waveguide. There are

two popular techniques in mitering bends mitering only the outer edge, or mitering

both the outer and inner edges. The effects of mitering in microstrip bends have

been studied extensively. Electromagnetic analysis has been performed to evaluate

the characteristics of mitered microstrip bends in [43], [44]. Effects of mitering on

CPW right-angle bends has been analyzed in [19]. However, simple models that

can accurately predict the behavior of such bends are not available. This section

deals with the modeling of mitered CPW right-angle bends - both single-sided and

double-sided miters.

3.7.1. Modeling approach

3.7.1.1. Single-sided miter

Figure 3.20 shows a right-angle CPW bend with a 45 degree miter on the

outer side. This structure can be modeled using the same procedure developed for

non-mitered bends. With reference to earlier discussions, the model for the mitered

bend consists of a coupled-line section that accounts for the coupling in the bend,

and transmission line sections that introduce the path-length difference between the
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slots. The length of the coupled-line section can be calculated by solving for the

total mutual coupling between the quasi-slot lines. It turns out that the length is

about a factor of less than that for a non-mitered right-angle bend. However the

value of coupling factor k that defines the modal impedances of the coupled-lines

remains the same k = 1.6. The lengths of the transmission-line sections can be

calculated from the geometry. The model parameters for the single-sided mitered

bend are summarized below

0.765Coupled line length: l * (w + 2 * s) (3.36)

Coupling factor: k = k = = 1.6 (3.37)
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w+1.297*sTransmission line lengths: lj , l = 0.5 * S (3.38)

3. '7.1i. Double-sided miter

A right-angle CPW bend, which has a 45 degree miter on both the outer and

inner slots, is shown in Fig. 3.21. This structure can be viewed as two continuous

45 degree bends, interposed by a uniform coupled-line section. The model for such

a bend is also shown in the figure. The model parameters of the coupled lines that

are sandwiched between two 45 degree bend sections can be assumed to be the same

as that for the CPW lines feeding the bend. The parameters of the 45 degree bend

model were given in equations (3.22) - (3.24). The lengths of the transmission line

sections shown in Fig. 3.21 include contributions from both 45 degree bends. Hence,

181 = 2 * 181(45), 182 2 * 1s2(45) (3.39)

where 181(45) and 182(45) are transmission-line lengths corresponding to each of the 45

degree bends.

3.7.2. Simulation and Results

Single- and double sided mitered bends were simulated in MOMENTUM

and the modal transmission coefficients obtained were compared with those obtained

from the respective models. A CPW bend that was considered earlier with w=5mm,

s=0.3mm, and Cr=2.33 has been modified here to include the mitering. Figure 3.22

shows the comparison between the model and MOMENTUM results for a single-

sided mitered bend. The modal transmission coefficients for a double-sided mitered

bend for the same w and s, and with 1=2.5mm are shown in Fig. 3.23. There is
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a good match between full-wave simulations and the models over a wide frequency

range, thereby proving the validity of the modeling approach.
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3.7.3. Discussions

Mitering is a convenient technique to compensate bends in transmission lines

by smoothing sharp edges to reduce reflections. The modeling methodologies for
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both these types of mitered bends were described in the previous section. While the

model for the single-sided mitered bend uses the general theory that was developed

in section 3.4, double-sided mitered bends are modeled as a cascade of two bend

sections with coupled lines sandwiched between them.



Right-angle CPW bends with 45 degree single-sided and double-sided miters

were modeled and the frequency response compared with full-wave simulations. It

is obvious, that mitering of the right-angled bends pushes the even- and odd mode

resonances up in the frequency spectrum. This is illustrated in Fig. 3.24. The shift

in resonances to higher frequencies is because of the reduction in phase difference

between the two slots due to mitering. This is desirable in many applications, in par-

ticular, in light of steadily increasing operating frequencies and signal bandwidths.
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FIGURE 3.24. Effect of mitering on mode conversion: Modal transmission coeffi-

cients for a CPW right-angled bend (w=5mm, s=O.3mm, r=2.33)

The modal 'dip' frequencies for a single-sided mitered bend, are higher than

those for a double-sided miter. Furthermore, stronger coupling is observed between

the slots in the single-sided mitered bend than in a double-mitered bend. This can

be attributed to the sharper inner corner and closer proximity of the slots. As a



result, the even- and odd mode resonances are more widely spaced for a bend with

single-sided miter.

Mode conversion in the double-sided mitered bend depends on the length l

of coupled lines between the two bend sections. It is found that as l increases, the

mode conversion becomes more subdued as shown in Fig 3.25. The 'dips' in even-

and odd mode transmission coefficients (Te, T00) smoothen out and move up on

the magnitude scale. This indicates a smaller percentage of energy in one mode is

converted to the other around the resonance. Thus, a double-sided mitered bend

with a higher l would be preferable, but at the cost of consuming greater board

area.
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FIGURE 3.25. Effect of increasing l, on mode conversion: Modal transmission

coefficients for a CPW right-angled bend (w=Smm, s=0.3mm, r=2.33)
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3.8. Conclusion

Bends in the CPW have been analyzed as coupled quasi-slot lines, and a

general modeling approach has been outlined for bends with varying angles and ge-

ometries. In particular, right-angle and 45 degree bends were studied and equivalent

four-port models were developed for these bends. The results for modal transmis-

sion coefficients predicted by the models, match well with full-wave simulations for

bends, with different w and s. It should be noted here that the model is based

on the assumption that the CPW can be considered as a pair of coupled quasi-slot

lines. This assumption, does not hold accurate for CPWs with relatively large s/w

ratios. The error in the modal resonant frequencies between MOMENTUM and

model increases with the s/w ratio. However, it has been found that for CPWs

with s/w less than 0.25, the error is under 2% for right-angle bends.

Right-angle bends with 45 degree mitering at the outer edge, and bends with

mitering at both outer and inner corners have also been modeled. Simulations have

been done to study the behavior of mitered bends, vis--vis mode conversion. The

mitered bends have been found to have a better performance compared to non-

mitered bends. Mode conversion occurs at higher frequencies in mitered bends,

which is desirable in RF/microwave and high-speed digital circuits.
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4. CPW MEASUREMENTS

4.1. Network Analyzer Calibration

Microwave measurements were performed using a network analyzer. Net-

work analyzers calculate S-parameters for the device under test (DUT) as ratios of

complex voltage amplitudes. The general block diagram for the network analyzer

measurement of a two-port device is shown in Fig. 4.1. The reference planes for

such measurements is at some point within the analyzer. As a result, the measure-

ment will include losses and phase delays caused by the effect of connectors, cables

and transitions that must be used to connect the device under test (DUT) to the

analyzer. In Fig. 4.1, these effects are lumped together, into two error boxes El

and E2. They are placed between the reference planes of the DUT and the network

analyzer ports.

The network parameters of the set-up includes the contributions from each

of the blocks. The ABCD parameters of the system bounded by the reference planes

of ports 1 and 2 is therefore a product of the ABCD parameters of individual blocks.

rA, B1 A1 B11 IA B1 IA2 Be21

L c Dt] Lei Deij [ Dj L2 De2]
(4.1)

It is seen that the ABCD parameters offer a convenient way to compute

the combined network parameters of multiple cascaded networks/components. The

S-parameters of the cascaded systems, can then be easily obtained from ABCD

parameters, knowing the reference port impedances.

In order to get the exact measurements for the DUT, the network parameters

of the two error boxes El and E2 have to be calculated prior to measurements. The

measurement results then need to be corrected to give the S-parameters of the

DUT. In other words, the network analyzer should be calibrated prior to taking
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A1 B1
4Net response

Error Box El Error Box E2

IAei Bet] IA B 1 1e2 Be2]

LCe1 D1j Lc' D] V'2 D2J

Reference plane Reference plane 1 Reference plane 2 Reference plane
for port 1 for DUT for DUT for port 2

FIGURE 4.1. Block diagram for a two-port measurement setup

measurements. The general methodology for calibrating a network analyzer is to

measure the response with known set of loads/standards, and to extract the error

box coefficients from the measured response.

There are several calibration algorithms including Thru-Reflect-Line (TRL),

Short-Open-load-Thru (SOLT), Line-Reflect-Reflect-Match (LRRM) and Short-

Open-Load-Reciprocal (SOLR) etc. available for network analyzer measurements.

Of the above mentioned, TRL and SOLT are perhaps among the most popular ap-

proaches. SOLT uses a set of standards provided by the manufacturer of network

analyzers. TRL calibration requires a set of calibration standards to be fabricated

by the user, and is most typically used when one wishes to remove artifacts from the

measurement such as connector and probe discontinuities. Each of these methods

have their advantages as discussed below.
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The popularity of the SOLT calibration is due to the availability of calibration

standards provided by the manufacturer of the network analyzer. This results in

fabrication of fewer components and faster measurements. However, the zero phase

(reference) point of the measurement is placed at the end of the connectors where

the calibration was performed. Therefore, discontinuities, which occur after this

reference point, can produce unwanted measurement artifacts.

Measurement artifacts introduced by connector and probe discontinuities can

be negated by using the TRL calibration method. This requires the fabrication of

calibration standards in the same configuration as the device that is to be tested.

The standards used in the calibration are composed of a thru transmission line, a

short or open and one or more delay lines. The thru transmission line is chosen to

have the same impedance as that of the feed lines. The length of the line has to

be adjusted such that it corresponds to the reference plane for the DUT. Therefore,

the length should be chosen such that half the length of the thru line is shorter than

the feeding line of the device under test.

The primary difference between the SOLT and TRL calibrations lies in where

the reference planes are placed during measurement. A simple SOLT calibration,

places the reference plane at the ends of the connectors attached to the network

analyzer. This is undesirable, as the connectors to substrate discontinuities affect

the measurement. But TRL calibrations, require the user to provide their own set

of calibration standards. This technique places the reference plane into the DUT

and calibrates out the connector or probe discontinuities.

While the measurement of straight DUTs can be performed in a straight-

forward manner, the measurement of orthogonal DUTs poses some calibration dif-

ficulties. This is mainly due to the fact that the orthogonal DUTs such as CPW

bends are multi-moded in nature. There are undesired modes like the odd mode
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that propagate in the device apart from the fundamental mode, for which the device

is operated. These modes are not accounted for by the TRL and SOLT calibration

methods. One approach to orthogonal measurements is to perform a straight cali-

bration and carefully re-orient the probes prior to measurement. This step has to be

performed very carefully using phase-stable cables to avoid measurement inaccura-

cies. An alternate measurement technique includes the use of SOLR calibration as

explained in [30]. This type of calibration works around the requirement ofa through

standard, thus providing superior measurements for orthogonal DUTs compared to

conventional techniques.

4.2. Theoretical Prediction of Measurement Response

The two-port S-parameter measurement response for the CPW bend can be

predicted, knowing the 4x4 S-matrix for the bend. The modal S-matrix can in

turn be derived from the slot-voltage S-matrix based on equations given in Chapter

3. The modal transmission and reflection coefficients that characterize the bend

completely are then used to predict the measured response.

CPW measurements on printed-circuit boards (PCBs) are usually done using

SMA connectors. The connectors short both ground conductors of the coplanar

structure as illustrated in Fig. 4.2. This makes the connector almost a short for the

odd mode, while it passes the even mode. The odd mode is thus reflected back-

and-forth between the discontinuity and the connectors, forming a resonator-like

structure. Figure 4.2 illustrates the effect of connectors on CPW measurements.

The connectors are assumed to be placed at a distance 1 from the discontinuity.

At the discontinuity, the modal amplitudes for the incident and reflected

waves for the odd mode will satisfy
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(4.2)

Here, 1 is the length of the CPW feed lines, is the extension length of the con-

nector for the odd mode, and is the propagation constant for the odd mode that

is obtained using quasistatic 2D methods. The extension length of the connectors,

has been attributed to two factors - a quarter of the circumference of the connec-

tor's outer conductor and the equivalent length corresponding to the inductance of

short-end discontinuity [4].
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By using the above equation for the odd-mode reflection, the incident odd

modes can be related to the incident even modes by

v e2°j + R00
-1

Roe Toe V
(4.3)

V R00 e2°'+R00 R,e Toe V

Eliminating the V1 and V terms in the set of equations, the two-port measured

response is therefore given by

512 Ree Tee e2°1 + R00 R00
1

Toe
= (4.4)

S21 822 Ree Tee R00 e2°1 + R00 Roe Toe

This gives

811 = 522 = Ree ReoA TeoB (4.5)

where

812 S = Ree ReoA TeoB (4.6)

A=R1oo)ToeToo B_l+Roo)RoeToo
1-'-R 2T2 '

(1_i_P 2T2001 00 -I-- 001 00

The two-port even-mode measurement response depends not only on the

even-mode behavior, but also on the odd-mode characteristics and the distance of

the connectors from the discontinuity. Due to reflections of the odd mode between

the connectors and discontinuity, there is a resonator-like behavior for the odd mode

that shows up in the measurement response. This distance 1 between the connectors

and the bend, which also serves as the resonator length, plays an important role in

determining the measured response. In the above derivation, the bend was assumed

to be symmetric and the connectors to be soldered symmetrically on both sides of

the discontinuity. Otherwise, the coupling between the even and odd modes at the

connectors would also have to be considered in deriving the measured response.
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4.3. Results

A CPW right -angled bend with w=3mm and s=0.5mm on RT/Duroid (Cr

2.33) substrate is considered. If the connectors are placed at a distance 1=50mm

from the discontinuity, the measured results at reference planes Ri and R2 can be

predicted using equation (4.4). The magnitude and phase of S12 calculated from

the model and MOMENTUM results are shown in Fig. 4.3. The ripples in the

response, show the strong interaction that exists between the even and odd modes.
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FIGURE 4.3. Predicted response (S12) at reference planes Ri and R2



It is obvious that mode-conversion significantly affects the frequency response of the

bend.
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4.3.1. Experiments

A CPW right-angle bend with w=5mm, s=O.6mm and l=50mm was fabri-

cated on RT/Duroid substrate for S-parameter measurements. The test fixture was

terminated with SMA connectors and connected to an HP 8722C Network Ana-

lyzer. SOLT calibration was performed on the network analyzer before taking the

S-parameter measurements. The measured response for S12 is shown in Fig. 4.4

along with the results from the model. It should be noted here that the reference

planes for the ports are at the connectors. The connectors are of some finite length,

which adds some extra phase to the measurement results. The extra phase addition

is accounted for in the model by an extension length l=O.5mm used to adjust the

length of the feed lines.

The agreement between the measured response and the model is good over

most of the frequency range, as seen in Fig. 4.4. The deviation at certain frequencies

can be attributed to the behavior of the connectors and soldering. The effects that

connectors and soldering have on measurements are, however, not well understood.

It is known, however, that they may affect the even and odd modes differently.

Moreover, the substrate has some finite loss and is dispersive, whereas the model

assumes an ideal lossless substrate.

4.3.2. Implementation in SPICE

The general model that has been developed for CPW bends consists only

of transmission lines and ideal coupled line sections. The model can therefore be

implemented in time-domain circuit simulators like SPICE. The four-port network

model is modified to a two-port network for SPICE implementation. The quasi-

slot lines are shorted at the ends, forcing an even-mode-only propagation. The



FIGURE 4.5. Implementation of the model in SPICE

0
S

C
DI
S

rrn
i:

u
II U

II U

II

-25 IIII

iiII

II ii

-30 II

U
.

U I

U I

-35 U I

-40 ADS response

-- SPICE response

-4C
2 3 4 5 6 7 8 9 1C

Frequency (GHz)

FIGURE 4.6. AC response in SPICE

response of this model comprises the modal interactions that take place at the bend

discontinuity, while preserving two-port characteristics. Figure 4.5 shows a SPICE-

implementable model for the test structure given in Fig. 4.2. The coupled lines in

the model are modeled using the eigenmode description given in [45]. The netlist,

given in Table A-i in the appendix, was simulated in HSPICE [38]. Assuming an

AC excitation of iV and source impedance of 50 1, the frequency response at the
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far end with 50 1 terminations is shown in Fig 4.6. The response compares well

with that obtained using ADS simulation, thereby proving the validity of the SPICE

model.

4.4. Conclusions

An introduction to the basics of microwave measurements using network

analyzers was given along with the calibration techniques that are most commonly

used. The measured response of the bend discontinuity can be predicted, once the

4x4 modal S-matrix for the discontinuity is known. While the connectors are a

thru for the even mode, they short the odd mode reflecting it back towards the

discontinuity. The resultant measured response for the even mode has a strong

contribution from the odd-mode standing-wave pattern that exists in the feed lines.

The transmission response S12 of the bend is predicted using the modal S-matrices

extracted from the model and MOMENTUM simulations. Comparisons are also

shown between actual measured results for S12 and the model results for reference

planes at connectors. Last, an implementation of the four-port model in SPICE has

been presented along with the output AC response.
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5. CONCLUSION AND FURTHER RESEARCH

5.1. Conclusion

A new approach has been presented in this thesis for modeling of bends in

CPWs. The most attractive feature of this approach is its simplicity and the ease

of obtaining model parameters. The frequency-dependent effects of the bend are

illustrated clearly using coupled quasi-slot lines and single transmission lines in the

model.

To start with, a brief introduction was given on CPWs, and the need for

deriving simple models that characterize discontinuities was emphasized. The theory

of multi-conductor transmission lines was discussed, followed by the procedure for

extraction of transmission line parameters. The modal parameters of the CPW

were then derived based on the application of multi-conductor theory to CPWs.

Examples of common discontinuities were mentioned, along with the efforts and

techniques adopted to study them in the past. Chapter 3 discussed the coupled

transmission-line theory in brevity, leading to the analysis of CPWs as coupled

quasi-slot lines. This discussion is important, as bends in CPWs are later modeled

as a non-uniform coupled-line system.

Models were developed for right-angle bends, 45 degree bends, and mitered

right-angle bends. The procedure for extracting the modal scattering matrix from

general four-port slot excitations of the system was described. The results for modal

transmission coefficients obtained from the model and full-wave simulations were

then compared. Good agreement between the two results over a broad frequency

range demonstrated the model's validity and accuracy. Effects of the bend geom-

etry and substrate on mode conversion in the bend were then analyzed in detail.

Chapter 4 discussed the basics of microwave measurements including calibration



techniques. The ill-effects of odd-mode excitation and mode conversion in the bend

on measurements were highlighted. A comparison was shown between the actual

measured response and model results. The thesis concluded with an insight on the

implementation of the four-port model as a two-port system in SPICE.

5.2. Further Research

Suggestions for further research on the topic of this thesis are as follows.

The models developed can be modified to include conductor and substrate loss

effects, and certain frequency-dependent effects that may be significant at higher

frequencies. This requires the modification of model parameters and the inclusion

of lumped elements in the model. Besides, the extension of this modeling technique

to coupled microstrips is a possibility, though lateral distributed effects have to be

addressed here. There is also scope for the model to encompass conductor backed

CPW (CB-CPW) discontinuities. Description of CB-CPW discontinuities, however,

would require a more complicated six-port (three-mode) analysis of the system.
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APPENDIX



SPICE Netlist for the model

The model for the CPW bend with a finite length of feedlines was given in Fig. 4.5.

The netlist for the model is given below in TABLE A-i. There are three coupled

line sections in the model one for the bend section at the center, and the other two

to represent the CPW feedlines leading to the bend. The SPICE model for coupled

lines given in [45] has been used here. This is preferred over the U-model in SPICE,

because the latter may produce artifacts like ringing in the analysis of coupled trans-

mission lines. The parameters of the individual coupled lines and transmission lines

are obtained based on discussions in Chapter 3. The following netlist corresponds to

a right-angle bend in the CPW with w=5mm, s=0.6mm and fr=2.33. The feedlines

connected the bend are assumed to be identical on both sides and are of length

1=50mm.

TABLE A-i

Parameter definitions:

param mii=-0.7071 m12=0.7071 m21=0.7071 m22=0.707l

Input voltage source with source resistance:

Vin sour 0 ac=iv

FUn ipn sour 50

Termination on the other side:

Rout opn 0 50

CPW feedlines modeled as coupled-slotlines:

Vi 1 5 Ov

V2 2 7 Ov

V3 3 11 Ov

V4 4 9 Ov



Voltage controlled voltage sources

El 5 0 poly(2) al 0 a2 0 mu m12

E2 7 0 poly(2) al 0 a2 0 m21 m22

E3 11 0 poly(2) a4 0 a3 0 m21 m22

E4 9 0 poly(2) a4 0 a3 0 mil m12

Current controlled voltage sources

Fl 0 al poly(2) vi v2 mu m21

F2 0 a2 poly(2) vi v2 m12 m22

F3 0 a3 poly(2) v3 v4 m22 m12

F4 0 a4 poly(2) v4 v3 mll m21

Uncoupled lines

Ti al 0 a4 0 ZO=41.96 TD=2i7.56ps

T2 a2 0 a3 0 ZO=60.96 TD=231.5Ops

Transmission lines accounting for the phase difference between the slots:

T3 4 0 pl 0 ZO=60.96 TD=44.i8ps

T33 3 0 p11 0 ZO=r60.96 TD=5.l8ps

Coupled-lines for the bend:

Vii p1 51 Ov

V21 p11 71 Ov

V31 p22 111 Ov

V41 p2 91 Ov

Voltage controlled voltage sources

E12 51 0 poly(2) all 0 a21 0 mu m12

E21 71 0 poly(2) all 0 a21 0 m21 m22

E31 111 0 poly(2) a41 0 a31 0 m21 m22

E41 91 0 poly(2) a41 0 a31 0 mu inl2
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Current controlled voltage sources

F12 0 all poly(2) vii v21 mu m21

F21 0 a21 poly(2) vii v21 m12 m22

F31 0 a31 poly(2) v31 v41 m22 m12

F41 0 a41 poly(2) v41 v31 mu m21

Uncoupled lines

Til all 0 a41 0 ZO=27.98 TD=19.l6ps

T21 a21 0 a31 0 ZO=90.294 TD=20.2Ops

Transmission lines accounting for phase difference between the slots:

T4 p2 0 p3 0 ZO=60.96 TD=44.l8ps

T44 p22 0 p33 0 ZO=60.96 TD=5.i8ps

CPW feedlines modeled as coupled-slotlines:

Vill p3 511 Ov

V211 p33 711 Ov

V311 p44 1111 Ov

V411 p4 911 Ov

Voltage controlled voltage sources

E112 511 0 poly(2) aili 0 a211 0 mu m12

E211 711 0 poly(2) alil 0 a211 0 m2i m22

E311 1111 0 poly(2) a411 0 a3il 0 m21 m22

E411 911 0 poly(2) a411 0 a3il 0 mit m12

Current controlled voltage sources

F112 0 aill poly(2) viii v211 mu m21

F2i1 0 a211 poly(2) viii v2li mi2 m22

F311 0 a311 ploy(2) v311 v411 m22 m12

F411 0 a4il poly(2) v411 v3li mu m21
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Urcoupled lines

Till alli 0 a411 0 ZOz=41.96 TD=217.56ps

T211 a211 0 a311 0 ZO=60.96 TD=23l.60ps

Output statements:

.ac un 100 50m lOg

.plot ac vdb(opn) vp(opn)

.options post

.end




