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Chapter 1

Introduction

The partition function, p(n), for a positive integer n is the number of non-increasing se-
quences of positive integers which sum to n. Specifically,

p(n) =

∣∣∣∣∣
{

(a0, a1, · · · , ak)| where ai ≥ ai+1 for all 0 ≤ i ≤ k, and
k∑
i=0

ai = n

}∣∣∣∣∣ .
The study into specific properties of the partition function has been a rich topic for number
theorists for many years. Much of the current work involving the arithmetic properties of
the partition function find their seed in some keen observations of Ramanujan.

In particular he discovered what are referred to as the Ramanujan Congruences of
p(n). These are appropriately named because Ramanujan was the first to notice these
interesting properties of the partition function, [Ram00b],[Ram00d],[Ram00a],[Ram00c].
He found that for all n ∈ Z,

p(5n+ 4) ≡ 0 (mod 5) (1.1)

p(7n+ 5) ≡ 0 (mod 7) (1.2)

p(11n+ 6) ≡ 0 (mod 11). (1.3)

In addition to noticing these peculiar relations, he conjectured that (1.1), (1.2), and (1.3)
were the only congruences of this form. In particular, these Ramanujan Congruences
are the only congruences of the form

p(ln+ β) ≡ 0 (mod l)

for all n ∈ Z, l prime, and some fixed β ∈ Z.

In his own words, “It appears that there are no equally simple properties for any moduli
involving primes other than these three.” It is this question put forth by Ramanujan that
we will consider in this paper. In particular, the main topic of this paper will be the
following theorem of Ahlgren and Boylan [AB03]:
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Theorem. 1 Suppose that l is prime. If there is a Ramanujan congruence modulo l, then
the congruence must be one of (1.1), (1.2), or (1.3).

Historically around the same time as results for the non-existence of Ramanujan
congruences were being found, mathematicians were searching for non-Ramanujan
congruences that did exist. Before the work of Algren and Boylan the existence of
non-Ramanujan congruences, families of the form p(An+B) ≡ 0 (mod l), for the partition
function was shown by Ono [Ono00]. Infinitely many were found and this idea was
extended to moduli M coprime to 6 by Ahlgren [Ahl00]. Since then Boylan has continued
in this direction by proving of the existence of Ramanujan congruences in powers of the
partition generating function.

This paper will focus on providing the proof presented by Ahlgren and Boylan [AB03] for
Ramaujan’s conjecture. In Chapter 2 we will establish some of the background information
that will be necessary to understand the partition function more clearly. After which, in
Chapter 2 will we develop some essential information regarding modular forms. At first
consideration, this seems out of topic when discussing p(n), but we will see that the
partition function is closely related to modular forms and therefore we can use some
modular form theory to prove that Ramanujan was accurate in his conjecture. Once we
have established these basic concepts around both the partition function and modular
forms, in Chapter 3 we will follow a proof of Ramanujan’s conjecture presented originally
by Ahlgren and Boylan [AB03]. In Chapter 4 we will then briefly look at more recent work
regarding Ramanujan Congruences.
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Chapter 2

Preliminaries

2.1 The Partition Function

In this section we begin by presenting some interesting properties of the partition function,
p(n). The partition function, p(n), is very important in number theory. It is connected to
representation theory by enumerating the irreducible representations of the symmetric
group Sn. We also see the partition function when dealing with combinatorics and counting
arguments. In addition there are some connections to physics. p(n) arises when discussing
quantum field theory. Recall, that it is defined as the number of ways of writing n as a
non-increasing sum of positive integers. For example,

3 = 3

= 2 + 1

= 1 + 1 + 1

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

therefore p(3) = 3 and p(5) = 7.

One of the more useful tools when working with the partition function is Euler’s infinite
product form for the generating function of p(n),
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∞∑
n=0

p(n)qn =
∞∏
n=1

1

(1− qn)
. (2.1)

Equation (2.1) follows from considering the expansion of the infinite product using the
geometric series,

∞∏
n=1

1

(1− qn)
=

(
1

1− q

)
·
(

1

1− q2

)
· · · ·

= (1 + q1 + q1+1 + · · · ) · (1 + q2 + q2+2 + · · · ) · · · .

Now we can see that the coefficient of qn in this q-series is the number of different ways we
can group the exponents as to make their sum n. This is exactly the the number of
partitions of n, p(n).

2.1.1 Additional Combinatorial Structures

There are many functions which are defined similarly in nature to the partition function
that are of interest in combinatorics and number theory. We will define two additional
combinatorial structures that will not be used for our primary result, but is relevant to
some current work that will be introduced in the final chapter of this paper.

A generalized Frobenius parition, also called an F -partition, is a sequence in which a
number n is represented as

n = r +
r∑
i=1

ai +
r∑
i=1

bi

where {ai} and {bi} are both strictly decreasing sequences of non-negative integers. It is
common to see an F -partition represented as(

a1 a2 · · · ar
b1 b2 · · · br

)
.

An F -partition is said to be 2-colored if it is constructed from two copies of the
non-negative intergers, written j0 and j1 with j ≥ 0. We say ji < ts if j < t or both j = t
and i < s. Let cφ2(n) denote the number of 2-colored F -partitions of n. For example, the
nine two-colored Frobenius partitions of 2 are(

01 00

01 00

)
,

(
11

01

)
,

(
11

00

)
,

(
10

01

)
,

(
10

00

)
,

(
01

11

)
,

(
01

10

)
,

(
00

11

)
, and

(
00

10

)
.
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An overpartition of n is a sum of non-increasing positive integers in which the first
occurrence of an integer may be overlined. This will create more than p(n) partitions, as
there are distinctions between partitions where a specific term is overlined and where it is
not. For example, the 14 over partitions of 4 are,

4, 4̄, 3 + 1, 3̄ + 1, 3 + 1̄, 3̄ + 1̄, 2 + 2, 2̄ + 2,

2 + 1 + 1, 2̄ + 1 + 1, 2 + 1̄ + 1, 2̄ + 1̄ + 1, 1 + 1 + 1 + 1, 1̄ + 1 + 1 + 1.

We then define p̄(n) as the number of overpartitions of n.

2.2 Modular Forms for SL2(Z)
Before we begin our proof for Ramanujan’s conjecture regarding Ramanajan congruences
we will need a little bit of background information from what seems at first as a distant
mathematical topic. However, much of the machinery we will use in the proof of the
non-existence of Ramanujan congruences is focused around the study of certain modular
forms. We will therefore need to establish some of the basic definitions regarding modular
forms before we continue. In this paper our main concern is for modular forms for SL2(Z).
See [Kob93] and [DS05] for more details.

To understand these functions we consider SL2(Z), which is defined as the group of 2× 2
matrices with integer entries and determinant 1. This is clearly a subgroup of the group of
2× 2 invertible matrices with integer entries since the determinant function is
multiplicative. The group SL2(Z) is generated by two matrices

T :=

(
1 1
0 1

)
, and S :=

(
0 −1
1 0

)
.

The group SL2(Z) acts on H = {z ∈ C | Im(z) > 0} by(
a b
c d

)
· z =

az + b

cz + d
.

We say that a function f : H 7→ C is holomorphic on H if it is analytic on H.

If f is analytic at ∞ we say that f is holomorphic at ∞.

A function f : H 7→ C is said to be weakly modular of weight k for SL2(Z) if

f

(
az + b

cz + d

)
= (cz + d)kf(z) (2.2)
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for all

(
a b
c d

)
∈ SL2(Z) and z ∈ H.

A function f : H 7→ C is said to be a modular form of weight k for SL2(Z) if it is
holomorphic on H, holomorphic at ∞, and weakly modular of weight k for
SL2(Z). Being a modular form for SL2(Z) implies that f has a Fourier series expansion at
∞, of the form

f(z) =
∞∑
n=0

a(n)qn (q := e2πiz).

The set of all holomorphic modular forms of weight k forms a complex vector space. We
will denote the vector space of modular forms of weight k for SL2(Z) as Mk. We will see a
nice basis for Mk in this section.

The fact that S and T generate SL2(Z) means we can understand the symmetries of
modular forms by considering how these two generators act on points in H. In particular
the set {z ∈ C | |z| ≥ 1,−1

2
≤ Im(z) < 1

2
} is the fundamental domain for the action of

SL2(Z) on H.

If we consider (2.2) for T we see,

f

(
(1)z + (1)

(0)z + (1)

)
= ((0)z + (1))kf(z),

f (z + 1) = f(z).

In other words T tells us that modular forms on SL2(Z) are periodic via translations, that
is we can consider what they do within the strip of H, {x+ iy ∈ C | −1

2
≤ x ≤ 1

2
}, to fully

understand these functions on all of H.

If we consider (2.2) for S we see the additional transformation,

f

(
(0)z + (−1)

(1)z + (0)

)
= ((1)z + (0))kf(z),

f

(
−1

z

)
= zkf(z).

We call a modular form, f , normalized if the first non-zero coefficient of the Fourier series
expansion of f(z) is 1. The vector space structure of Mk allows us to normalize our
modular forms by dividing by the first non-zero coefficient in the Fourier series expansion,
thus assuring that this term becomes 1. Due to the vector space structure we know that
the normalized form is again a modular form. We call a modular form f of weight k with a
zero constant term in the Fourier expansion of f(z) at ∞, a cusp form of weight k.

An example of some of the more commonly seen modular forms for SL2(Z) are the
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Eisenstein Series. We can construct these modular forms [Kob93] for any even weight k ≥ 4
by defining

Ek(z) =
1

2

∑
(m,n)=1
m,n∈Z

1

(mz + n)k
.

If k = 2 we can construct an Eisenstein series in a similar fashion, but it is not weakly
modular for SL2(Z). The Fourier expansion of the Eisenstein series, Ek(z), at ∞ is given by

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where σk−1(n) :=
∑

d|n d
k−1 and the Bk are the Bernoulli numbers defined as the

coefficients of the series

∞∑
k=0

Bk ·
tk

k!
=

t

et − 1
= 1− 1

2
t+

1

12
t2 − . . . .

The first way of expressing the Eisenstein series is useful for understanding the analyticity
of Ek while the second way allows us to easily see the coefficients of the q-series expansion
of Ek. In light of this second way of looking at Ek we see that the following are the first 6
Eisentstein series,

E4(z) = 1 + 240
∞∑
n=1

σ3q
n,

E6(z) = 1− 504
∞∑
n=1

σ5q
n,

E8(z) = 1 + 480
∞∑
n=1

σ7q
n,

E10(z) = 1− 264
∞∑
n=1

σ9q
n,

E12(z) = 1 +
65520

691

∞∑
n=1

σ11q
n,

E14(z) = 1− 24
∞∑
n=1

σ13q
n.

One interesting aspect of the Eisenstein Series is that they can be used to construct a basis
for modular forms of a given weight. We will use this fact later on in Chapter 3. Koblitz
[Kob93] shows the following theorem,
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Theorem. 2 Any f ∈Mk can be written in the form

f(z) =
∑

4i+6j=k

ci,jE4(z)iE6(z)j.

Further, a basis for Mk, where k is even and k ≥ 4 is given by{
E4(z)aE6(z)b | a, b ≥ 0 and 4a+ 6b = k

}
.

In fact, for k even, dimMk =

{
b k
12
c+ 1 if k 6≡ 2 (mod 12),

b k
12
c if k ≡ 2 (mod 12).

One final example of a modular form for SL2(Z) that is quite useful for illustrating the
structure of Mk is

∆(z) := q
∞∏
n=1

(1− qn)24.

This is a cusp form of weight 12, which is the lowest possible weight a non-constant cusp
form for SL2(Z) can have. Additionally the first non-zero coefficient in its q-series
representation is 1, which implies that it is a normalized modular form.

2.3 Filtrations of Modular Forms

For this paper we will consider what happens to Fourier series expansions of modular forms
that have integer coefficients when we reduce modulo primes. Let l ≥ 5 be a prime. Let
f ∈Mk ∩ Z[[q]], that is f is a modular form of weight k for SL2(Z) with integer coefficients
in the Fourier series expansion of f at ∞. Then we can take the coefficients of f modulo l
and define

f̃ := f (mod l).

With this concept of reducing a function modulo a prime we can define

M̃k := {f̃ : f ∈Mk ∩ Z[[q]]}.

We then define the filtration of a modular form f ∈Mk ∩ Z[[q]] as

w(f) := inf{k′ : f̃ ∈ M̃k′}.

In other words, if we consider all the modular forms which might be congruent to f modulo
l regardless of weight, w(f) is then defined to be the infimum of the weights of these forms.
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Therefore in order to determine the filtration of a form f , we consider the question of when
f is congruent modulo l to a modular form of lesser weight.

Now we consider f ∈Mk ∩ Z[[q]] and g ∈Mk′ ∩ Z[[q]], with f̃ ≡ g̃ 6≡ 0 (mod l). Then
k ≡ k′ (mod l − 1). (See further [KO92] page 352)

It follows that if f̃ 6≡ 0 (mod l) then w(f) ≡ k (mod l − 1). Furthermore, we see then that
w(f) = −∞ if and only if f̃ ≡ 0 (mod l).

Now that we have some preliminary results and a comfortable feel for filtrations we will
discuss a few lemmas and past results that will be useful for the proof of the main
theorems. We start by defining the theta operator.

Definition. 3 The theta operator is defined on a formal power series by,

Θ

(
∞∑
n=0

a(n)qn

)
:=

∞∑
n=0

na(n)qn.

Throughout the paper we will use the following result of Swinnerton-Dyer [SD73], about
the theta operator,

Lemma. 4 The operator Θ maps M̃k to M̃k+l+1. Moreover, if f ∈Mk ∩ Z[[q]] for some k,
and f̃ 6≡ 0 (mod l), then w(Θf) ≤ w(f) + l + 1 with equality if and only if w(f) 6≡ 0
(mod l).

We must now define an additional operator called the Ul operator. This operator is again
defined on the formal power series.

Definition. 5 The Ul operator is defined on a formal power series by,(
∞∑
n=0

a(n)qn

)
|Ul :=

∞∑
n=0

a(ln)qn.

Example:

(1 + 2q + 3q2 + 4q3 + 5q4 + 6q5 + 7q6 + . . . )|U3 =

(1 + 4q + 7q2 + 10q3 + 13q4 + 16q5 + 19q6 + . . .

Now we must define one last operator for each prime l.

Definition. 6 The Hecke operator is defined on a formal power series by,

f |Tl =
∞∑
n=0

(
a(ln) + lk−1a

(n
l

))
qn.
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In addition, Tl : Mk 7→Mk, or in other words Tl maps modular forms of weight k to
modular forms of weight k. Considering the definition of the Hecke operator, we can
conclude that both the Tl and the Ul operator both yield the same q-series modulo l. In
other words, the images of a modular form when applied to these two operators are
congruent modulo l. Hence Ul : M̃k 7→ M̃k. Moreover, we get the following correspondence,

(f |U)l ≡ f −Θl−1f (mod l). (2.3)

Lastly we sill need the following result from Serre [Ser73].

Theorem. 7 If f ∈ M̃k ∩ Z[[q]], then for all i ∈ N we have

w(f i) = iw(f). (2.4)
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Chapter 3

Proof of Ramanujan’s Conjecture

3.1 The Proof Begins

With the essential background information discussed we will now present a proof for
Ramanujan’s conjecture. For the sake of convenience we will restate the conjecture,

Theorem. 8 Suppose that l is prime. If there is a Ramanujan congruence modulo l, then
the congruence must be one of (1.1), (1.2), or (1.3).

Recall, that (1.1), (1.2), and (1.3) are the following congruences,

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 4) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

First we will show there are no Ramanujan congruences modulo 2 or 3.

Let l = 2. Then for any β there exists an n ∈ Z such that 2n− β = 0 or 1. But in this case
p(0) = 1 and p(1) = 1. Therefore the Ramanujan congruence would not hold for the n
which we have found.

Let l = 3. Then for any β there exists an n ∈ Z such that 3n− β = 0, 1, or 2. But in this
case p(0) = 1, p(1) = 1, and p(2) = 2. Therefore the Ramanujan congruence would not hold
for the n which we have found.

Now we will fix a prime l, with l ≥ 5 . It has been shown by Kiming and Olsson [KO92]
that if there exists a β ∈ Z for which there is the congruence

p(ln+ β) ≡ 0 (mod l) for all n,

then 24β ≡ 1 (mod l). We define δl by
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δl :=
l2 − 1

24
. (3.1)

We know δl is a positive integer since l2 − 1 ≡ 0 (mod 24). To show this we consider the
following,

l2 − 1 = (l + 1)(l − 1).

Since l is an odd prime, either l ≡ 1 (mod 4) or l ≡ 3 (mod 4).

If l ≡ 1 (mod 4) then l − 1 ≡ 0 (mod 4) and l + 1 ≡ 2 (mod 4).
Hence 8|l2 − 1 = (l + 1)(l − 1).

If l ≡ 3 (mod 4) then l − 1 ≡ 2 (mod 4) and l + 1 ≡ 0 (mod 4).
Hence 8|l2 − 1 = (l + 1)(l − 1).

In either case 8|l2 − 1.

Additionally 3 divides one of l − 1, l, or l + 1. But since l ≥ 5 is prime we know that 3
divides l − 1 or l + 1. Since gcd(3,8)=1 we know that 3 · 8 = 24|(l − 1)(l + 1) = l2 − 1.
Hence δl is in fact an integer.

For example if l = 5, 7, or 11,

δ5 =
52 − 1

24
=

25− 1

24
= 1,

δ7 =
72 − 1

24
=

49− 1

24
= 2,

δ11 =
112 − 1

24
=

121− 1

24
= 5.

If we consider the two following sets {ln+ β|n ∈ N} and {ln− δl|n ∈ N}, we can see that
they are in fact equal if β ≡ −δl (mod l). We can see by the way δl has been defined
together with the [KO92] result that

24δl = l2 − 1 ≡ −1 (mod l) ≡ −24β (mod l).

Hence δl ≡ −β (mod l) and {ln+ β | ∀n ∈ N} = {ln− δl | ∀n ∈ N}.

Thus in lieu of proving Theorem 8, it suffices to prove the following theorem instead.

Theorem. 9 If l ≥ 13 is prime, then

∞∑
n=0

p(ln− δl)qn 6≡ 0 (mod l).
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Recall from chapter 2 that

∆(z) := q
∞∏
n=1

(1− qn)24

is a cusp form of weight 12 for SL2(Z); recall that this means that the constant term of the
Fourier series expansion at ∞ is 0. Additionally, for the rest of this paper we can consider
our prime l, as l ≥ 13.

We now define
fl(z) := ∆δl(z).

So by considering equation (3.1), we have

fl(z) = qδl
∞∏
n=1

(1− qn)24δl = qδl
∞∏
n=1

(1− qn)l
2

(1− qn)
.

Now we consider that by the binomial theorem, (a+ b)l =
∑l

n=0

(
l
n

)
albl−n for all integers a

and b. When taken modulo l all of the coefficients of this sum are 0 with the exception of
n = 0 and n = l. Hence

(a+ b)l ≡ al + bl (mod l).

Using this we can see that,

qδl
∞∏
n=1

(1− qn)l
2

(1− qn)
≡ qδl

∞∏
n=1

(1− qln)l
∞∏
n=1

1

(1− qn)
(mod l).

Now using (2.1) as a substitution we see that in fact,

fl(z) ≡ qδl
∞∏
n=1

(1− qln)l
∞∑
n=0

p(n)qn (mod l).

Then using the qδl to perform a change of index in our summation we see that in fact,

fl(z) ≡
∞∏
n=1

(1− qln)l
∞∑
n=0

p(n− δl)qn (mod l).

The Ul operator takes every lth coefficient of the summation and then rescales the powers
of q appropriately. Therefore by applying the Ul operator to fl(z) we are only looking at
the coefficients of the summation p(ln− δl), which yields the useful equivalence,

fl|Ul ≡
∞∏
n=1

(1− qn)l
∞∑
n=0

p(ln− δl)qn (mod l).

From this we see that if there existed a Ramanujan congruence modulo l, then we
additionally have that fl|Ul ≡ 0 (mod l). Another way of saying this is that

w(fl|Ul) = −∞.
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3.2 Lemmas Regarding Filtrations

We must now consider the filtrations of the forms Θfl,Θ
2fl, . . . . Recall the relation

between the Ul operator and the Θ operator modulo l, (2.3). We will use the following two
lemmas involving filtrations,

Lemma. 10 ([KO92]). If m ∈ N, and l ≥ 5 is prime, then

w(Θmfl) ≥ w(fl) =
l2 − 1

2
.

Proof. First we must consider the filtration of ∆(z). Since ∆(z) is a cusp form the constant
term is zero, any modular form which ∆(z) was congruent to modulo l would also have to
have a zero constant term modulo l making it a cusp form of a lower weight. But
dim(M12) = 2 and dim(Mk) = 1 for all k = 4, 6, 8, or 10. Thus for each of these k, Mk is
spanned by Ek which does not have a constant term congruent to 0 modulo l. Additionally
if k = 2, k is odd, or k < 0 then the dimension is zero, and if k = 0 then M0 is spanned by
1. Hence there is no non-constant modular form congruent to ∆(z) modulo l that has a
lesser weight, so w(∆) = 12, which is the weight of ∆(z).

From this, if we consider (2.4) then we see w(fl) = δlw(∆) = δl · (12) = l2−1
2
. Observe that

by expanding out ∆δl we see that fl = qδl + · · · , hence

Θmfl = δml q
δl + · · · 6≡ 0 (mod l). (3.2)

Now can now assume that w(Θmfl) = k and define d := dimMk > 0. A basis for Mk can be
constructed of the form {g0, . . . , gd−1}, where the gi are modular forms that have integral
coefficients and are of the following form,

g0 = 1 + · · · ,
g1 = q + · · · ,
g2 = q2 + · · · ,

...

gd−1 = qd−1 + · · · .

This basis is constructed from ∆(z) and the Eisenstein series of weights 4 and 6 on SL2(Z).
Considering the number of elements in the basis, we can see from (3.2) that in fact
d ≥ l2−1

24
+ 1. With that in mind, we can also conclude by Theorem 2 that d ≤ k

12
+ 1.

Hence l2−1
24

+ 1 ≤ k
12

+ 1, and so by solving for k we see that k ≥ l2−1
2

.

�
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Lemma. 11 Suppose that l ≥ 5 is prime and let fl = ∆δl. Then either

(1) w(Θl−1fl) ≡ 0 (mod l), or

(2) w(Θl−1fl) = w(fl) =
l2 − 1

2
.

Moreover, in the first case we have w(fl|Ul) > 0.

Proof. By applying Fermat’s little theorem we can see that Θlf ≡ Θf (mod l) for all
f ∈ Z[[q]]. From the Lemma preceeding this one we know that w(fl) 6≡ 0 (mod l) and
hence we can use Lemma 4 to see that

w(Θlfl) = w(Θfl) = w(fl) + l + 1 =
l2 − 1

2
+ l + 1.

If in fact w(Θl−1fl) 6≡ 0 (mod l), then we can apply Lemma 4 as follows,

w(Θlfl) = w(ΘΘl−1fl) = w(Θl−1fl) + l + 1.

By combining this and the previous result and solving for w(Θl−1fl), we see that when
w(Θl−1fl) 6≡ 0 (mod l),

w(Θl−1fl) =
l2 − 1

2
= w(fl).

We will now draw our attention to the second claim that occurs in Lemma 11, that in case
(1) we have w(fl|Ul) > 0. Combining (2.3) and (2.4), we see that

l · w(fl|Ul) = w((fl|Ul)l) = w(fl −Θl−1fl).

Hence,

w(fl|Ul) =
1

l
w(fl −Θl−1fl). (3.3)

Now consider that we are in case (1) of of Lemma 11, i.e. w(Θl−1fl) ≡ 0 (mod l). Then we
will complete the proof by way of contradiction, hence assume that w(fl|Ul) ≤ 0. Therefore
using (3.3) we can observe that fl −Θl−1fl is in fact constant modulo l. We conclude that
this constant must be zero since there is a factor of 1

l
in (3.3). Therefore we arrive at the

conclusion that
fl ≡ Θl−1fl (mod l),

which cannot occur because w(fl) = l2−1
2
6≡ 0 (mod l) and we have assumed that

w(Θl−1fl) ≡ 0 (mod l). So in fact we can see that our second assertion in Lemma 11 is
true, namely w(fl|U) > 0.

�
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3.3 Ramanujan’s Conjecture

With our two lemmas established we can now return our focus to the proof of Theorem 9.
Let l ≥ 13 be a prime for which

∞∑
n=0

p(ln− δl)qn ≡ 0 (mod l).

Then w(fl|U) = −∞, and therefore by Lemma 11, we know that we are in the second case
of Lemma 11, or

w(Θl−1fl) = w(fl) =
l2 − 1

2
. (3.4)

If it were true that w(Θl−2fl) 6≡ 0 (mod l), then we can utilize Lemma 4 to obtain that

= w(Θl−1fl) = w(Θl−2fl) + l + 1.

Applying (3.4) would then tell us that,

w(Θl−2fl) = w(fl)− l − 1 < w(fl).

The above result contradicts Lemma 10. To avoid this contradiction then it must be the
case that,

w(Θl−2fl) ≡ 0 (mod l). (3.5)

Considering now that w(fl) = l2−1
2

, we can continually use Lemma 4 to conclude that

w(Θ
l+1
2 fl) ≡ 0 (mod l). Now using Lemma 4 once more, we see that we can find an α ≥ 1

such that the following holds,

w(Θ
l+3
2 fl) =

l2 − 1

2
+
l + 3

2
· (l + 1)− α(l − 1). (3.6)

Lemma 10 shows us that w(Θ
l+3
2 fl) ≥ l2−1

2
. Therefore

l2 − 1

2
≤ w(Θ

l+3
2 fl) =

l2 − 1

2
+
l + 3

2
· (l + 1)− α(l − 1).

Then by rearranging the inequality and subtracting l2−1
2

from both sides we obtain,

α(l − 1) ≤ l + 3

2
· (l + 1).

Now dividing through by (l − 1) we see that

α ≤ l + 3

2(l − 1)
· (l + 1) =

l + 5

2
+

4

l − 1
. (3.7)
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Therefore, since l > 5, we can see that the second term in (3.7) is less than one. Hence we
can conclude that 1 ≤ α ≤ l+5

2
.

We will now let j be the least integer such that 1 ≤ j ≤ l−5
2

and w(Θ
l+1
2

+jfl) ≡ 0 (mod l).

Notice that such a j must exist since l+1
2

+ l−5
2

= 2(l−2)
2

= l − 2 and by (3.5). Then we can
conclude from Lemma 4 and (3.6) that

w(Θ
l+1
2

+jfl) =
l2 − 1

2
+

(
l + 1

2
+ j

)
(l + 1)− α(l − 1)

=
(l + 1)(l − 1)

2
+

(l + 1)(l + 1)

2
+ j(l + 1)− α(l − 1)

= l2 + l + lj − αl + j + α

≡ j + α (mod l)

≡ 0 (mod l).

By how α and j are bounded we see that j + α = l, not simply a multiple of l.
Then because 1 ≤ j ≤ l−5

2
, we can see that α ≥ l+5

2
. This with combined with the fact that

1 ≤ α ≤ l+5
2

tells us that α = l+5
2
. Therefore (3.6) can be specified more, now that we know

α:

w(Θ
l+3
2 fl) =

l2 − 1

2
+
l + 3

2
· (l + 1)− l + 5

2
· (l − 1) =

l2 − 1

2
+ 4. (3.8)

To complete the proof of Ramanujan’s conjecture, recall how the Θ operator is defined.
This definition tells us that the q-expansion of Θ

l+3
2 fl starts off with the following terms,

Θ
l+3
2 fl = δ

l+3
2

l qδl + · · · = δ
l+3
2

l q
l2−1
24 + · · · . (3.9)

Now we recall that

E4(z) := 1 + 240
∞∑
n=1

∑
d|n

d3qn = 1 + 240q + · · ·

is the Eisenstein series of weight 4 on SL2(Z) defined in chapter 2. A basis for M l2−1
2

+4
in

terms of E4 and ∆(z) can be constructed because l2−1
2
≡ 0 (mod 12),. This is done by

adjusting the basis constructed from E4 and E6. The basis looks as follows,

{E4 · E
l2−1

8
4 , E4 ·∆ · E

l2−1
8
−3

4 , · · · , E4 ·∆
l2−1
24 }. (3.10)

Considering (3.8), (3.9), and (3.10) we see (note that the “last” element in our basis set is
in fact E4 · fl),

Θ
l+3
2 fl ≡ δ

l+3
2

l E4 · fl (mod l). (3.11)
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Hence by expanding (3.11) it follows that,

δ
l+3
2

l E4 · fl ≡ δ
l+3
2

l (1 + 240q + · · · )(qδl + qδl+1 + · · · ) ≡ δ
l+3
2

l qδl + 241 · δ
l+3
2

l qδl+1 · · · (mod l).

Now we will consider an alternative way of constructing the polynomial Θ
l2+3

2 fl, consider
that

fl = qδl(1− q)l2−1 · · · ≡ qδl + qδl+1 + · · · (mod l),

therefore

Θ
l+3
2 fl ≡ δ

l+3
2

l qδl + (δl + 1)
l+3
2 qδl+1 + · · · (mod l). (3.12)

Considering the two polynomials constructed in (3.11) and (3.12), we know they must be
congruence. By considering the coefficient on the qδl+1 term we see that,

(δl + 1)
l+3
2 ≡ 241 · δ

l+3
2

l (mod l). (3.13)

Because 1
δl
≡ −24 (mod l), when dividing by δ

l+3
2

l equation (3.13) gives us

(δl + 1)
l+3
2

δ
l+3
2

l

=

(
δl + 1

δl

) l+3
2

≡ (1 + (−24))
l+3
2

≡ 241 (mod l).

Hence we can conclude that,

(−23)2 · (−23)
l−1
2 ≡ 241 (mod l).

Now we can utilize Fermat’s Little Theorem, to see that

((−23)
l−1
2 )2 ≡ 1 (mod l).

This implies that (−23)
l−1
2 ≡ −1, 1 (mod l), which implies that

±529 ≡ 241 (mod l).

Ramanujan’s Conjecture follows since

529 + 241 = 770 = 2 · 5 · 7 · 11,

and
529− 241 = 288 = 25 · 32.

Notice that in neither the −241 case or the +241 case the result is congruent to 0 modulo
any prime l other than when l = 2, 3, 5, 7, 11. Hence this Ramanjan congruence can only
occur if in fact l = 2, 3, 5, 7, 11. This concludes the proof of the non-existence of
Ramanujan congruences other then (1.1), (1.2), and (1.3).

�
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Chapter 4

An Overview of Other Work On
Partitions and Modular Forms

The results presented in this paper were first published by Ahlgren and Boylan [AB03] in
2003. In this paper they also presented a related result. Consider the following conjecture
originally put forth by Newman [New60],

Conjecture. 1 If M is a positive integer then for every integer 0 ≤ r < M there are
infinitely many non-negative integers n such that p(n) ≡ r (mod M).

If M itself is prime the conditions to verify the conjecture can be simplified thanks to work
of Brunier and Ono [BO04]. Their result has lead to the verification of the conjecture for
all primes M < 2× 105. By using a result of [BO04] together with Theorem 1 Ahlgren and
Boylan obtain the following theorem.

Theorem. 12 Newman’s Conjecture is true for every prime modulus M with the possible
exception of M = 3. Moreover, if l ≥ 5 is prime, then we have

#{0 ≤ n ≤ X : p(n) ≡ r (mod l)} �r,l

{ √
X

logX
if 1 ≤ r < l,

X if r = 0.

In addition to Ahlgren and Boylan’s results, there has been recent work generalizing the
results about the non-existence of Ramanujan congruences to other types of partitions.

In particular, Dewar [Dew] proved the non-existence of Ramanujan congruences in modular
forms of level four. Also, Dewar provides “a general method for investigating sequences
related to modular forms and prove the non-existence of Ramanujan congruences for large
primes l” for a number of specific combinatorial objects. More specifically, he shows the
following two results.
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Theorem. 13 The only Ramanujan congruences cφ2(ln+ a) ≡ (mod l) are

cφ2(2n+ 1) ≡ 0 (mod 2),

cφ2(5n+ 3) ≡ 0 (mod 5).

Theorem. 14 There are no Ramanujan congruences p̄(ln+ a) ≡ 0 (mod l) when l ≥ 3.

Dewar, a student of Ahlgren, works at applying the study of modular forms to additional
combinatorial structures to show the absence of Ramanujan congruences in these
structures, much like Ahlgren and Boylan did with the partition function. The
non-existence of Ramanujan Congruences is an intriguing in both number theory and
combinatorics.
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