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Direct Numerical Simulation of a Flat Wing with a
Movable Front Flap at High Angles of Attack and Low
Reynolds Numbers

1) INTRODUCTION

Background

Recently, there has been increasing interesema#nodynamics of low Reynolds
number airfoils. Low Reynolds number airfoils hagplications in the development are
of micro-air vehicles (MAVs). MAVs are typically agpact and unmanned devices
designed for surveillance, military, or remote segsDepending on the application,
MAVs can be autonomous or piloted remotely. Remgvire risk to a human also makes
MAVs ideal for detecting radioactive or biologidezards.

These applications combined with advances in min|ng sensors have been a
driving force to better understand the aerodynamiesnall scale airfoils. Airfoils for
MAVs can be characterized by the Reynolds (Re) rarrbbased on the free stream
velocity (V) and the chord length (c) of the airfoil. FigureHows a possible airfoil

design at an angle of attaak (vith a front flap of a given lengthy)land flap anglefy).

Figure 1: Schematic of a possible airfoil for a MAV.



Airfoils having a Reynolds number less thari afe generally grouped as low Reynolds
number airfoils. The Reynolds number dictates #meegal behavior of an airfoil. As the
Reynolds number decreases, airfoils begin to edifferent characteristics, some of
which degrade performance.

How the boundary layer develops around an airgadine of the most important
features in determining the performance of theodirAdditionally, the boundary layer
characteristics are a strong function of the Reysmolumber. Two common features of a
boundary layer are flow separation and laminautbulent transition. Flow separation is
caused by an adverse pressure gradient that forewraulation region near the surface
of the airfoil. After flow separation, the laminow can transition to turbulent. The
increased mixing in turbulent flow can cause tloavfto reattach to the airfoil. For
Reynolds numbers between 10,000 and 70,000 Carelifljdound that once flow
separates, the turbulent transition will not odgauime to allow the flow to reattach to
the airfoil. At higher angles of attack, flow segi@gon causes a large recirculation zone
that can cover the upper surface of the airfoiisThacirculation decreases airfoil
performance and is generally called stall. In otdegenerate enough lift at low
airspeeds, MAVs need to operate at higher anglagatk which make MAVs
vulnerable to stall.

The stall angle of attack can be increased by gdcmber to the airfoil. Camber
is defined as the difference between the midlinthefairfoil and the line that connects
the leading and trailing edges. Camber can beasectthrough changing the cross-

section of the airfoil or by the addition of a flafhere are many different types of flaps.



This investigation focuses on an airfoil with adeey edge flap. The camber of this
airfoil can be increased by rotating the front fthpgvnward (see Figure 1).

At higher angles of attack, the lift and drag ¢eednts of airfoils have some time
dependency as turbulence from the leading edge sremress the upper side of the
airfoil. These fluctuations can show a dominangifrency depending on how the
turbulence occurs, specifically, how separatedic@alrstructures travel down stream.
This frequency can be characterized by its Stronbaiber based on the free-stream
velocity (v,,) and the projected height of the airfol, £ csim).

st= (1)
\/

00

The performance of a flat airfoil with a leadimdge flap was investigated in this
study. It is expected that the numerical study shibw that the addition of a front flap
will increase the lift to drag ratio of the airfoAdditionally, it is expected that by
oscillating the front flap, the lift and drag okthirfoil should become periodic by
matching the flap frequency. The computer modbksed upon an actual airfoil
produced by Kapsenberg et al. [2]. The chord lemg#0cm with the leading edge flap
making up 30% of the chord length. The airfoil Kmess is 7.6mm and the leading and
trailing edges are elliptical. Each ellipse hasragth to height ratio of five. Two
dimensional numerical results from this study akdated against two dimensional
experimental data for the overall lift of the aitfoollected by Kapsenberg [3].

This numerical study uses a direct numerical sithorh (DNS) solver for
incompressible fluids. In DNS, the Navier-Stokesapns are solved on a fine grid
resolving all length and time scales associatet thié flow. DNS uses no turbulence

model and therefore can fully resolve the turbudeamund the airfoil. While



computationally expensive, DNS offers insight ihtaw turbulence develops and its
effects on the performance of the airfoil. In tmegent DNS study, the incompressible
Navier-Stokes equations are solved using a firetame approach and a pressure
Poisson equation to appropriately correct the piresand velocity fields to satisfy
continuity. The solver is time accurate and can ehatbving rigid bodies through a
hybrid Lagrangian-Eulerian (HLE) approach. In tiradractional step method allows the
solver to resolve the dynamic aerodynamic propedfaigid bodies. These rigid bodies
are modeled as a collection of Lagrangian poirds ltlave user prescribed velocities. The
rigid body motion is imposed over a Cartesian bawmligd mesh using a fictitious
domain approach. Rigid body motion is enforceddeghe rigid body through the
addition of a force density term to the Navier-&®lkequation. The no-slip boundary

condition is applied in bands of cells surroundenggid body.

Literature Review

Numerical and experimental work has been dondéaoacterize the dynamic
behavior of airfoils at low Reynolds numbers. Beseand Bragg [4] studied the
oscillations in lift for thin airfoils at angles attack near stall at Re = 300,000. The
oscillations in lift increased dramatically as thdoils reached stall. Also, the Strouhal
number for the dominant oscillations was shownd@!lstrong function of angle of
attack. Broeren and Bragg reported that the maditd lift oscillations depends on the
which of three types of stall occurs, leading edggling edge, or thin airfoil stall. Some
of the largest oscillations occurred with a comboraof stall types. The stall types were

first identified by McCullough and Gault [5].



Uranga et al. [6] recently conducted Large Eddy@ations of stationary airfoils
at low Reynolds numbers using a high-order Discmatus Galerkin method on a body
fitted grid. These simulations were for three digienal airfoils at low angles of attack.
The Re = 10,000 case showed that the flow remagssentially two dimensional over
the airfoil surface. Schliter [7] has done expentakwork with asymmetric airfoils at
low Reynolds numbers. The experiments studied ffieeteof a flap mimicking how a
bird uses its feathers at high angles of attackfandd that the addition of a rear flap
increased the lift of an airfoil. The experimentark was done in a water tunnel at Re =
30,000 and 40,000.

Taira and Colonius [8] conducted numerical studieigat-plate airfoils beyond
stall at ultra-low Reynolds numbers of 300 and &00 found that the coefficient of lift
and drag could show a dominant frequency of osimhadepending on the angle of
attack. The frequencies were found to be aroupd 8t14 depending on the Reynolds
number. Morse and Liburdy [9] have done experimesmtak to evaluate how vortices
are shed from flat wings at high angles of attaxrkaf Reynolds number of 14,700. They
found that the shear region near the leading edgealdominant frequency
corresponding to a St 3.4. The Strouhal number increased with botHeaofjattack
and Reynolds number. In the recirculation regiow; frequency oscillations have the
largest amplitudes with no dominant frequency.

Visbal et al. [10] conducted extensive simulatiohairfoils at low Reynolds
numbers. These simulations used a finite differenethod and a body fitted grid with
compressible flow formulation. The study showed hbe/flow transitions from laminar

to turbulent for low angles of attack and then diepe into full flow separation around



the stall angle. These simulations were run atym&lds number of 60,000. Simulations
were also run at an angle of attack of eight degfelea variety of Reynolds numbers.
The larger Reynolds number cases transitionedrbulkent flow quickly and showed
little flow separation. The lower Reynolds numbase&s had larger flow separation.
Visbal et al. [10] also simulated an airfoil goitihgough a plunging motion. This study
showed that flow remained mostly two dimensionaladd&eynolds number of 10,000.
For low-speed flows, use of a compressible fornmaseverely limits the time-step
based on the speed of sound. An incompressibledtwer capable of handling arbitrary
shaped moving rigid bodies is advantageous.

The numerical technique used in this study wasldeee by Apte et al. [11].
This method uses a fictitious-domain approach tdehomcompressible fluids interacting
with rigid particles. The fluid and particles cam different densities. The fluid region is
constrained by the continuity equation and theigartegion is constrained to undergo
rigid body motion. Finn [12] continued to develd tfictitious domain approach into the
HLE scheme used in this investigation. While Finntsrk was directed at bubble vortex
interaction, Finn also validated the HLE methodrf@any different types of rigid bodies

including a hydrofoil at Re = 2000. This study uessame solver as Finn’s work.



2) NUMERICAL IMPLEMENTATION

Overview of Numerical Scheme

This section provides an overview of the numerscdlemes used in the solver.
For a complete and rigorous explanation see Fiderszation of the HLE technique [12]
and Apte et al. fictitious domain technique [11].

Fundamentally, the solver works by taking the cotaponal domain and
discretizing it into many control volumes (CVs).dBaCV is constrained by conservation
of momentum and mass. The fluid of interest in taise is air. For low Mach numbers (<
0.3), air can be assumed to be incompressible NEveer-Stokes equations represent

conservation of momentum for a Newtonian fluid, adiven as
ov _ _
;75?+vmw =-0P+0[{pav), (2)

wherep is the fluid densityy is the velocity vector? is the pressure, andis dynamic
viscosity. For an incompressible fluid, EquatioreBresents conservation of mass, also
referred to as the continuity equation.
Ow=0 3)

A distinguishing factor among fluids solvers isahthe domain is broken up into
CVs. For flow around objects, one way is to makmdy-fitted grid where the faces of
the CVs are aligned with the surface of the obj€bts method can be efficient for static
objects. However, this study requires the solvdrd@@ble to handle moving objects. For
moving objects, body-fitted grids become more cotaonally expensive. Each time the

object moves, the grid must be regenerated anfialevariables interpolated onto the



new grid. These steps create computational costamdhtroduce error. For these
reasons, this study used a fictitious domain apgroa

In the fictitious domain method, the entire congtiainal domain is discretized
into a static background grid. The Navier-Stoked eontinuity equations are solved over
the entire domain. Parallel processing is usedvide the computation among multiple
processors. Objects are introduced into the dotmaronstraining the fluid velocity
inside the object to the rigid body velocity of thigiect through the addition of a force
density term to the Navier-Stokes equations. Theablis assumed to be a rigid body,
meaning the body’s velocity is the sum of transkadl and rotational motion. This
method requires a way to track what CVs are inefden object. The HLE method tracks
the surface of a rigid body using Lagrangian phasic

These Lagrangian particles or material pointd sttamser defined locations in the
shape of the immersed object. At each time stepntaterial points are moved to a new
location based on their velocity. As the materi@ihps move, so does the surface of the
object. The solver defines the surface of the dlijgdagging the CVs that contain
material points. These CVs create a band. The stitea creates two additional bands
consisting of the CVs adjacent to the first banduFe 2 shows a two dimensional
representation of the banded approach. By usimgethands, the solver smears the
interface between object and fluid. To accountiigs, a color function can by calculated.
Inside the object, the color function is one; adrsihe color function is zero; and inside
the banded region the color function is some fosctif one. The color function scales

whether the CV is constrained to rigid body motwwmot. The fact that this rigid body



constraint is smeared over multiple CVs requir@s the grid always be refined near the

surface of the object.

Figure 2: Banded approach for an arbitrary object.

Variable Storage and Solution Algorithm

The flow variables are stored at the center oh&2¥ in accordance with a
collocated arrangement with the exception of tleefaormal velocities which are stored
at the face centers. While this study uses stradtgrids, a collocated arrangement
makes the solver more adaptable to unstructureld.gfigure 3 shows a diagram of the
variable storage and time discretization. The Wdes are staggered in time with the CV
velocities (y), face centered velocities\y particle velocities (1), and rigid body forces
(fir) known at each time step and the pressure (plicieaposition (X), density ), and

volume fraction @) known at each half time step. This staggeringthasadvantage of
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making the time discretization symmetric which Iselipe conservative properties of the

numerical scheme.

a) time (0] i,
F KA
n+l 4w U iy f i
.
n+1/2 + X p.©,p " i
-l [ : o — ity
N 4w U S R e e
i i Ny t;/ '.I
J ¥
n-12 L x p@.p I ptiE g gt xm

Figure 3: Diagram of variable storgae: (a) Time staggering, (b) three dimensional variable storage.

The following solution sequence is a summary ohf§ description of the HLE
algorithm [12]. The solution algorithm begins witfitial conditions for all flow variables
and material point positions. First the materiahpoare explicitly advanced in time
based on the rigid body velocity. With the new matgoint positions, the color
function is calculated over the entire domain. Nieetvelocities are advanced in time
using the fractional step method. The result isedligted velocity field that may not
satisfy continuity. Velocity gradients are handiegblicitly using the Crank-Nicholson
method and spatial gradients use the centeredetisation scheme.

Next, the pressure is solved for in a Poisson ouawith the new pressure
values, the face-centered velocity field can therdrrected to satisfy the continuity
equation. Finally, the CV velocities inside theaattjare corrected to meet the rigid body
constraint. This requires the user to specify thedlational and rotational velocities of

the rigid body.
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Airfoil Model

In order to run simulations on an airfoil, firscamputational model must be
generated. This study models an existing thin &widh a front flap. The trailing and
leading edges are rounded into an elliptical sheigiea length to height ratio of five.
The chord length is 20cm, the thickness is 7.6mmd,the front flap makes up 30% of the

chord length. Figure 4 shows the actual airfoit the numerical model simulates.

Figure 4: Side view of the actual airfoil built by Kapsenberg et al [2].

The numerical model of the airfoil was created Isgributing material points
along the surface of the airfoil. The airfoil sun#awas defined by breaking the airfoil up
into simple shapes. The entire airfoil is generatean angle of attack of zero with a flap
angle of zero. The material points are then rotaddte appropriate angle of attack. The
five component shapes are an ellipse for the migagidge, a line segment for the body of
the airfoil, a semicircle for the hinge joint, adisegment for the flap body, and an ellipse
for the leading edge. The origin for the airfoilagated at the trailing edge with the front
of the airfoil pointed to the left (negative x diteon). Due to the symmetry of the airfoll,
for each point placed on the top surface of thi@igianother is placed on the bottom
surface by mirroring the top point across the xaXhe airfoil is given depth by copying

the points from the first cross-section to makeitamlthl cross-sections in the z direction.
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The ellipses for the leading and trailing edgesganerated using the general
equation for an ellipse, the thickness of the diréond the ratio of length to height.
Equation 4 shows the equation that can be solvethéoy location of a point on an

ellipse centered on the x-axis,

(x-%)", ¥ _
TV +t_2 =1, (4)

=)
wherex. is thex location of the center of the ellipdes the thickness of the airfoil amd
is the ratio of length to height. Tixdocations of the material points are spaced evenly
between the tip of the ellipse and the center.yfloeation is solved for using Equation
4. Thex. for the trailing edge and leading edge at® ( 2) and ¢*r / 2 — c) respectively
where c is the chord length.

Next the flat airfoil and flap sections are addedch flat section is generated by
equally spacing material points along the flatzcef The airfoil flat surface extends
from the end of the trailing edge ellipse to trertsof the flap hinge. The flat flap surface
extends from the flap hinge to the end of the legdidge ellipse.

At this point the airfoil and flap are both honital. The next step is to rotate the
flap to the specified flap angle. The flap angldé$ined as positive counterclockwise.
Each material point in the flap is rotated aroumel fltap hinge using a matrix
transformation.

Next the hinge material points are added. Thedimigeight and width are equal
to the thickness of the airfoil. The hinge is fodviwy fitting two semi-circles into the gap
between the airfoil surface and the flap surfade $emicircles are created tangent to

both the flap and airfoil surfaces to create a simtransition. The upper and lower
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semicircles are concentric. While adding the seincieto the underside of the airfoll
does not match the shape of an actual hinge, thefibes that the front flap can be
moved smoothly without the need to add materiah{soiThe final step is to rotate all the
material points around the trailing edge by thec#pa angle of attack. Angle of attack
is defined as positive counterclockwise. Figurééves how the material points are
distributed to create a cross-section of the dirfoipractice many more material points

are used to more accurately define the interface

0.06 -
’é 0.4 09099000 00000000
g 'm...o.ooo.oo::::: ceq
= °
§ 0.02} S
°
> o
-0.02-
0.4 | | | | |
-0.2 -0.15 0.1 -0.05 (0]
XLocation (m)

Figure 5: Diagram of material point distribution.

Figure 6 shows a contour plot of the volume fratid the airfoil. The volume fraction
varies between unity inside the airfoil and zertswle. At the interface between the
airfoil and fluid, the volume fraction is smeareceothree control volumes which

accounts for the blurring of the airfoil edges igu¥e 6.



14

0.1

0.05

——

-0.05

-01

Figure 6: Plot of volume fraction contours for the airfoil model.

Figure 6 was generated on a coarse backgroundTdreblurring of the airfoil

surface can be reduced by refining the grid inrdgeon of the airfoil. The boundary of

the airfoil is defined by the surface with a volufrection of 0.5.



15

3) VALIDATION

Flow Past A Cylinder

The solver is validated by simulating flow pastyéircder at Reynolds numbers of
100 and 300 based on the cylinder diameter. Thegadids numbers provide
coefficients of drag and frequencies of vortex sliegl that can be compared to previous
simulations. The computational domain is a 256 X X53 Cartesian grid. The flow is
assumed to be two dimensional. The cylinder isetloedls wide and has periodic
boundary conditions to ensure a two dimensionaV flbhe grid is refined in the region
of the cylinder with 24 CVs across the diametethef cylinder. A cross-section of the
grid is square with sides equal to 32 cylinder ditars. The upper and lower surfaces
have slip wall boundary conditions; the left sides la velocity inlet boundary; and the
right side has an outlet boundary. See AppendirrAdfagrams of the computational
domain.

At a Reynolds number of 100, the wake of a cylimdé&nown to be two
dimensional and develop periodic vortex sheddirgudfon 5 shows the definition of a
lift or drag coefficient.

F
1AUA

(5)

F is the force to be non-dimensionalizeds the density of the fluid; U is the free stream
velocity; and A is the characteristic area or #rggth times the diameter of the cylinder.
Figure 7 shows how the lift and drag coefficiergs@op over time. Time is non-
dimensionalized by multiplying by the free streaetoecity and dividing by the diameter

of the cylinder.
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Figure 7: Time evolution of lift and drag coefficients for a 2D cylinder in cross flow, Re = 100.

Over time the cylinder develops the characterissicillations in both lift and
drag. Since the cylinder is symmetric, the lift ffimgent is centered about zero while the
drag coefficient is centered about a positive vaifter t * U / d = 80, the oscillations
reach a steady amplitude and mean. The mean \@ltleef drag coefficient is 1.38.
Table 1 shows the drag coefficient compared to wask. The lift coefficient closely
agrees with the other work. Additionally, the Stralnumber can be calculated for the
frequency of lift oscillations using the diametéittoe cylinder and the free stream
velocity. Equation 6 shows the definition of thedthal number.

fd
St=—, 6
U (6)
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where f is the frequency; d is the characterigimgth or the cylinder diameter; and U is

the free stream velocity. The Strouhal number168. Table 1 compares this Strouhal

number to past work and shows close agreement.

Table 1: Comparison of C4 and St for a 2D cylinder in cross flow, Re = 100.

Cq St
Present Study 1.38 0.163
Mittal et al. [13] 1.35 0.166
Marella et al. [14] 1.36 -
Henderson [15] 1.35 -
Shu et al. [16] 1.3833| 0.16

For the Re = 300 case, the same grid is used.i®\Réynolds number, the wake

behind the cylinder is known to be three dimendiohlaerefore the two dimensional

assumption will introduce some error. Figure 8 shitive coefficients of lift and drag

over time. The lift and drag coefficients appeanikir to the Re = 100 case. There is

some transient behavior at the beginning beforetledficients reach steady state

oscillations. The drag coefficient has a mean valuk43. The lift oscillations come out

to a Strouhal number of 0.210. Both of these valressimilar to past numerical results

as seen in Table 2.
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Figure 8: Time evolution of lift and drag coefficients for a 2D cylinder in cross flow, Re = 300.

Table 2: Comparison of C4 and St for a 2D cylinder, Re = 300.

Cq St
Present Study 1.43 0.210
Mittal et al. [13] 1.36 0.21
Marella et al. [14] 1.28 -
Mittal and Balachandar [17]] 1.37
Henderson [15] 1.37 -
Kravchenko et al. (3D) [18] - 0.203

Figure 9 shows vorticity contours around the cydéintbr both cylinder cases.
Qualitatively, the vorticity distributions for eaclase are consistent with periodic vortex
shedding. The distance between vortices is sligittigller for the Re = 300 case

reflecting its slightly higher Strouhal number caamgd to the Re = 100 case.
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Figure 9: Vorticity contours around a 2D cylinder in cross flow, (a) Re = 100, (b) Re = 300.

Cylinder Grid Refinement Study

In order to determine an appropriate grid resotufor running airfoil cases,
cylinder cases for a Re = 100 were run at diffegeiat resolutions and compared. The
computational domain was shrunk to 12 X 13 cylindiameters to reduce computation
time. Boundary conditions were the same exceptdpend bottom walls were no-slip

walls. While no-slip walls are not good practice getting realistic drag values, this



20

study is focused on the relative behavior betweahrgsolutions. The fine grid used 400
X 400 X 4 CVs and is assumed to be near to thertuneerical solution. The cylinder is
located near the center of the domain and is &fiaed grid region. See Appendix B for
diagrams of the grid distribution. This grid redaa places 75 CVs across the diameter
of the cylinder. Two other cases were run with 1&h8 9.4 CVs across the diameter of

the cylinder. Figure 10 shows how the drag coedfitidevelops over time.

~— 75 CV Resolution
1.65}) ~ 18.8 CV Resolution |
16 L 9.4 CV Resolution |
: AV APV

Drag Coefficient

20 40 60 80 100 120
t*u/d

1.3 ‘ ‘
0

Figure 10: Drag coefficient over time for a 2D cylinder in cross flow at Re = 300 for three different grid
resolutions.

The mean coefficient of drag for the three gridnefnents are 1.53, 1.57, and
1.56 in order of decreasing resolution. While thesans agree closely, the transient
behavior differs considerably. The 75 CV and 18\8dases have one dominant
frequency, while the 9.4 CV case has two signifiéeeguency components. The 9.4 CV

case also has a smaller amplitude of oscillatitme dominant frequencies for all cases
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are similar with Strouhal numbers of 0.180, 0.188] 0.200 in order of decreasing
resolution. The effect of decreasing the grid minent has a large impact on the results.
Using a grid resolution of 9.4 produced satisfaci@lues for a mean coefficient of drag

and Strouhal number, but the transient resultsrheddistorted.
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4) RESULTS

Computational Domain for the Airfoll

The computational domain for the airfoil is setagptovide the required
resolution around the airfoil while minimizing tk&al number of CVs used. The domain
is two meters by two meters and is discretized an@artesian grid. The airfoil is
centered vertically and slightly upstream of theteein the horizontal direction. The
airfoil is in a refined region that is 0.24 m wikg 0.16 m tall. The refined region is large
enough to always contain the airfoil and to resohesimportant flow features. All CVs
in the refined region are cubic.

Three different grid resolution are used, a coasantermediate, and a fine grid.
The three grids are 480 X 320, 720 X 480, and 84®Xin order of increasing
refinement. All of the grids are three CVs widehe spanwise direction which assumes
that the flow is two dimensional. The left sidaigelocity inlet boundary condition, the
right side is an outlet, the top and bottom aresiipwalls, and in the spanwise direction,
the boundary conditions are periodic. The coargermnediate, and fine grids have 7.6,
11.4, and 13.3 CVs across the thickness of theikiBee Appendix C for diagrams of
the grids. While the coarse grid has insufficiexgalution to obtain precise results, it can
be used to get qualitative results. Even with palrplocessing, the more refined grids
are significantly more computationally expensiveun. In order to obtain satisfactory
spectral resolution, cases needed to be simulatdanger time periods. These larger
times add computational cost requiring the usaupescomputing facilities. In the

present work, coarse grids were used for paramsudies. Even on a coarse grid, one
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case takes approximately 1500 CPU hours to complletde 3 summarizes the results of

the seven different cases.

Table 3: Summary of the lift and drag results for all seven airfoil cases.

Flapping | Mean | Mean
Case Re o 0 Frequency | C_ Cp

1 70,000| 10° -10° - 0.85 0.06
2 70,000| 14° -10° - 1.16 0.19
3 14,700 20 0° - 1.38 0.56
4 14,700 20 -20° - 1.38 0.24
5 14,700 20 -20° 1 Hz 1.47 0.31
6 14,700 20 -20° 3 Hz 1.39 0.26
7 14,700 20° -20° 5Hz 1.46 0.24

Fixed Flap Angle Cases

The first two cases are of the airfoil with a camstflap angle and a Reynolds

number of approximately 70,000. These two casefaiip some preliminary

experimental results collected by Kapsenberg [3hefoverall lift of the actual airfoil.

The two cases have angles of attack of 10 and dreds. Both cases use a flap angle of

-10 degrees and the coarse grid. The experimeatalisl time averaged and eliminates

tip effects by placing splitter plates flush wittetsides of the airfoil. Figure 11 shows the

transient numerical results for the coefficientittf Table 3 compares the experimental

and numerical averaged lift coefficients. For theam lift coefficient, the numerical

results are time averaged starting after the Iritzansient. For both cases the numerical

results are slightly higher than the experimergautts. Since the experimental results are

still preliminary, there is no reported uncertaimriythe lift values. Therefore it is difficult

to make a definite conclusion about the accuragh®humerical results.
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Figure 11: Transient Lift Coefficient for the airfoil at two angles of attack on the coarse grid, Re = 70,000.

Table 4: Comparison of coefficient of lift for experimental and numerical studies of the airfoil for two
angles of attack, 6 = -10°, Re = 70,000.

Angle of C. Experimental C.L Numerical
Attack Results [3] Results
10° 0.79 0.85
14° 1.06 1.16
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Two additional cases were run for the airfoil dtigher angle of attack to test the
effect of the front flap. Both cases use an anfjkttack of 20 degrees, but the flap is
changed between -20 and 0 degrees. Both casesuwmeat a Reynolds number of

14,700. The zero degree flap angle case was riineocoarse, intermediate, and fine

grids.
2.5¢ 1
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(a) Coarse grid, 8 sec simulation
52 E
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% 1 2 % 1 2
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(b) Intermediate grid, 2 sec simulation (c) Fine grid, 2 sec simulation

Figure 12: Coefficient of lift for the airfoil, a = 20°, 8 = 0°, Re = 14,700.
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On all three grids, the lift coefficients begindscillate after an initial transient.
The coefficient of lift varies significantly oveime with extreme values of 2.26 and 0.36
on the coarse grid. Qualitatively, the lift coeiicts for the three grids appear to be
similar. However, the average lift values vary adasbly from 1.38, 1.52, and 1.24
from the coarse to fine grid. When taking an aveyalge first second of results is
discarded as the initial transient. Since this ésaanly a second of data for the
intermediate and fine grids, these averages mighteailect the true average over a long
period of time. Generally, the coefficient of dregscillations are in phase with the
coefficient of lift. For plots of drag data, seepgmdix D. Figure 13 shows pressure
contours around the airfoil. Vortices are generatetie shear regions above the leading
edge and trailing edge. As these vortices inteaadttravel over the upper surface of the

airfoil, the pressure differences change the ol/gfiadnd drag forces.

0.15

0.1

50.05 |-
-0.05 |

Lo oo g ¢ v e v e g Jog g g gy o5 ] 5 4
0.5 0.55 06 0.65 0.7 0.75
X

Figure 13: Pressure (Pa) contours around the airfoil, o = 20°, 6 = 0°, Re = 14,700.
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Similar cases were run for the airfoil at an arajlattack of 20 degrees with a
flap angle of -20 degrees. Lowering the flap makesflap parallel to the oncoming air
and increases the camber of the airfoil. FigureHaws how the lift coefficient develops

over time on the coarse grid. Pressure contoursnadrthe wing are plotted in Figure 15.

Lift Coefficient

057 .

DD 2 4 6 8

Time (sec)

Figure 14: Coefficient of lift for the airfoil, a = 20°, 6 =-20°, Re = 14,700.

The lift coefficient also oscillates as vorticalgttures pass over the airfoil. The
average coefficient of lift is 1.38 and varies bedén extremes of 1.92 and 0.83. While
the average coefficient of lift is identical betwetbed = 0° and th® = -20° cases, the
= -20° case oscillates over a smaller range. Tindnrcompare the two cases, a spectral
analysis was run on the two coefficient of liftrsads. The amplitude of oscillation is

plotted versus the Strouhal number in Figure 16.



Figure 15: Pressure (Pa) contours around the airfoil, o = 20°, 6 = -20°, Re = 14,700.
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Figure 16: Spectral analysis of coefficient of lift for two flap angles, a = 20°, Re = 14,700.

The spectral analysis shows that the coefficieriftas predominantly made up
of low frequency oscillations. The= 0° case has much larger oscillations with a peak
Strouhal number of 0.062 corresponding to a frequei 1Hz. Thed = -20° case had a
much smaller oscillations with a dominant Stroutnainber of 0.17 or a frequency of

2.71 Hz.

Flapping Cases
Three additional cases were run with a moving #8agifferent frequencies, 1, 3,
and 5 Hz. In each case, the flap angle oscillatessidally with an amplitude of ten

degrees and an average angle of -20 degrees.réd tases use the coarse grid. Figure
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17 shows how the coefficients of lift vary over @nPlots of the drag coefficients are in

Appendix E,
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Figure 17: Coefficients of lift for the airfoil with oscillating front flap angle at three different flapping
frequencies, Re = 14,700. Flap oscillation has a 10° amplitude centered at 6 =-20.

For all three frequencies, the lift coefficientiigtions are in phase with the flap
motion. The average lift coefficients for the 1B#z, and 5Hz cases are 1.47, 1.39, and
1.46 respectively. The average drag coefficientsedese with increasing flapping
frequency and yield lift to drag ratios of 4.703%,. and 6.16. Figure 18 shows the
frequency content of the lift coefficient signatdl three signals have dominant
frequencies equal to the flapping frequency. The &ébke also has oscillations of
significant amplitude around a Strouhal number.@B®r 3.67 Hz. As the frequency
increases, the lift coefficients become more sirdadavith the 5Hz case having a large

dominant frequency of 5Hz.
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Figure 18: Spectral analysis of the lift coefficient of the airfoil at three different flapping frequencies, Re
= 14,700. Flap oscillation has a 10° amplitude centered at 6 = -20.
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5) CONCLUSIONS

While the DNS simulations of the wing provided hitd drag coefficients that are
close to the preliminary experimental results, meoek needs to be done before the
numerical methods can be conclusively verified. lender grid refinement study
demonstrated that coarse grids can provide rethatsare somewhat accurate, but more
refined grids are needed to completely and quaividst capture both the dynamic and
the time averaged behavior of the rigid body. Rdinders, the appropriate level of grid
refinement can be determined. However, it is gtiltlear what grid refinement is
appropriate for the shape of a thin airfoil. Expental results would be invaluable in
determining the appropriate level of grid refinernkm the airfoil shape. The present
work assumes the flow over the airfoil is two dirsemal. Three dimensional
simulations or experimental results are needecttidywthis assumption.

The results from the cases examining the effett@front flap came out as
expected. Lowering the front flap, provided sigrafit increase in performance at a high
angle of attack. While the coefficient of lift remad unchanged, the addition of camber
by the flap decreased the coefficient of drag f@s6 to 0.24. Additionally, the lift and
drag oscillations were significantly reduced by &ing the flap. Reducing the
oscillations in the airfoil, especially the loweedluencies, makes the airfoil more stable.
With the addition of the flap, the largest oscibats shifted from a Strouahl number of
0.062 to 0.17. This data shows that lowering tap fily 20 degrees improved the
performance of the airfoil. However, more simulashould be run to get a full
understanding of the flap’s effect. Cases of thp ft a larger variety of angles would

show whether the improvements are smooth transasotie flap is lowered or if there is
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a critical flap angle. There also should be an emdiere lowering the flap further would
degrade performance. Further studies are requirdddcribe this angle. Simulations of
greater length would also improve the resolutiothefspectral analysis. Twenty seconds
of data would better describe the dominant freqgigsna lift and drag data.

As expected, the flapping cases showed that tiemmof the flap significantly
affected the nature of the lift coefficient. Fortaree flapping cases, the dominant
frequency content in the lift and drag coefficieotsresponded to the flapping frequency.
The lift coefficient plots show that the lift wasmerally in phase with the flap motion.
When the flap is up, the lift is higher and vicesae However, the 1Hz case has some
higher frequency content. Figure 19 shows pressaméours of the 1Hz case when the
flap is near the top and bottom of its cycle. Téw pressure spots are vortices being shed
from the leading edge. Near the top of a cyclemgfrvortices are shed from the leading
edge and cause fluctuations in the lift coefficiasthey pass over the airfoil. When the
flap is down, fewer and weaker vortices are shenhfthe leading edge.

The case with a static flap angle of zero degrhewed that there were
significant lift fluctuations as high as 3Hz. Aflapping frequency of 1Hz, these lift
fluctuations have time to develop as the flap estatp. The 5Hz case appears almost
sinusoidal. One explanation is that the higher ftaguency does not allow time for the
lower frequency lift fluctuations to form. Whilegurenting these lower frequency
fluctuations from forming improves airfoil stabyjjitthe 5Hz flapping motion makes large
5Hz lift fluctuations. A more practical consideratiis that powerful actuators would be
required to move the flap at this frequency. Theeadweight of actuators would degrade

the overall aircraft performance.
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Figure 19: Flapping airfoil at 1Hz at two different flap angles, a = 20°, Re = 14,700. Flap oscillation has a

10° amplitude centered at 0 = -20.
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While this study has shown that a fictitious domapproach has promise to
accurately predict the lift and drag propertiesdhiin airfoil, there is still a significant
amount of numerical and experimental work that sdede done before the numerical
methods can be verified. However, the results @auded to guide further research. The
addition of a front flap to a thin airfoil has thetential to greatly increase the
performance of the airfoil. Additionally, movingetiront flap has a large impact of the
lift and drag of the airfoil. This effect depends many factors including the frequency

that vortices are shed from the leading edge.
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Appendix A — Grid for Flow Over A Cylinder

Figure Al: Grid for flow over a cylinder.

1.5

Figure A2: Cylinder cross-section and grid for flow over a cylinder.
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Appendix B - Cylinder Grid Refinement Study Grid

Figure B1: Fine grid for flow over a cylinder grid refinement study.

X

Figure B2: Cylinder cross-section using the fine grid for the flow over a cylinder grid refinement study.



Appendix C - Airfoil Grids
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Figure C1: Coarse airfoil grid.
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Figure C2: Airfoil cross-section on the coarse grid.
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Figure C3: Intermediate airfoil grid.
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Figure C5: Fine airfoil grid.
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Figure C6: Airfoil cross-section on the fine grid.
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Appendix D - Fixed Flap Angle Cases Drag Data
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Figure D1: Coefficient of drag for the airfoil, a = 20°, 8 = 0°, Re = 14,700. Average value = 0.56, varies
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Figure D2: Coefficient of drag for the airfoil, a = 20°, 8 = -20°, Re = 14,700. Average value = 0.24, varies

between 0.37 and 0.13.
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Figure D3: Spectral analysis of the coefficient of drag for the airfoil, a = 20°, 8 = 0°, Re = 14,700. Peak
Strouhal number = 0.062 with an amplitude of 0.046.
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Figure D4: Spectral analysis of the coefficient of drag for the airfoil, a = 20°, 8 = -20°, Re = 14,700. Peak
Strouhal number of 0.17 with an amplitude of 0.020.



Appendix E - Flapping Cases Drag Data
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Figure E1: Coefficient of drag for the airfoil flapping at 1Hz, Re = 14,700. Average = 0.31, varies between

0.52 and 0.12.
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Figure E2: Coefficient of drag for the airfoil flapping at 3Hz, Re = 14,700. Average = 0.26, varies between

0.41 and 0.03.
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Figure E3: Coefficient of drag for the airfoil flapping at 5Hz, Re = 14,700. Average = 0.24, varies between
0.48 and 0.00.
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Figure E4: Spectral analysis of the coefficient of drag for the airfoil flapping at 1Hz, Re = 14,700. Peak
Strouhal number = 0.062 with an amplitude of 0.12.
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Figure E5: Spectral analysis of the coefficient of drag for the airfoil flapping at 3Hz, Re = 14,700. Peak
Strouhal number = 0.19 with an amplitude of 0.09.
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Figure E6: Spectral analysis of the coefficient of drag for the airfoil flapping at 5Hz, Re = 14,700. Peak
Strouhal number = 0.31 with an amplitude of 0.20.






