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IMPROVING A SAMPLED-DATA CIRCUIT SIMULATOR

FOR DELTA-SIGMA MODULATOR DESIGN

INTRODUCTION

Analog-to-digital converters provide the cornerstone for a variety of

modern circuit systems: Instrumentation amplifiers, consumer audio, and

telecommunications equipment all require an ADC to provide a digital interface

to an analog signal. The art of ADC design has motivated the research

community to turn towards a more sophisticated means of obtaining higher

precision, and, whenever possible, inherent linearity. The use of Switched-

Capacitor topologies[1], and Delta-Sigma Modulators[2], open a new world of

design techniques to pursue.

Many advanced topologies used in ADCs require extensive simulation.

Many popular programs, such as SPICE[3], are available as general purpose,

circuit level, simulation tools. Unfortunately, these tools do not perform well

when using switched-circuit topologies. Performance and ease-of-use are both
quite poor.

One simulation tool, "gck," developed at University of California, Los

Angeles[4], was designed specifically to handle circuits with mixtures of analog

and digital circuitry. A clever method for representing switched-circuit

topologies was also implemented.

Improvements were made to "gck," in order to provide greater speed, ease

of use, and portability. The simulator was ported to the "C" programming

language.
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Many circuit topologies require the understanding of component

matching tolerance. A symbol manager module was added to allow the

operator to easily adjust certain components and thereby facilitate these

simulations. The concept of a "circuit compiler" greatly improves circuit setup

time for systems which require a variety of simulations to be run on an existing

topology. Finally, a flexible FFT / DFT module was added to simplify the task of

obtaining frequency-domain data from the program.

The addition of these modules allow the program to behave as a stand-

alone AX simulation engine. Using the UNIXTM operating system, the program

interfaces easily to existing signal generation and analysis tools.

In this dissertation, the general architecture of the circuit simulator is

described. The motivation behind the various improvements to the program are

revealed, along with their design strategy. A variety of examples using these

additional modules are shown.
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BACKGROUND

This chapter describes the aspects associated with AZ/SC circuit

simulations, and what makes them unique. The process which "gck" uses in

order to simulate a switched capacitor circuit is described.

Much of the research associated with AZ modulator design involves the

investigation of various integrator topologies[5]. Typical AZ circuits consist of a

variety of capacitors, switches, and an occasional OP AMP. The switches provide

a high-level model of the MOS switch, used to vary the topology of the circuit

during operation. Two or more switch phases are usually present.

C2

V in A Cl B
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/// /// ///
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time

Figure 1. Example SC Integrator Stage

Some AZ modulators utilize multiple-bit ADC and DAC modules, in order

to assist in the shaping of the quantization error[6]. It is often convenient to
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quickly model an ADC, without having to develop the circuitry which represents

it.

The circuit shown in Figure 1 above is a stray-insensitive, non inverting

integrator. It emulates an RC network by storing charge in C1 across constant

time intervals. The switches shown are closed during the respective clock cycles.

During .1, C1 is charged up to the value at Vin . During .2, this charge is

transferred to C2. The change in V out becomes

1Av.ut = ()vin.

The z-domain representation of the stage becomes

H(z) z-1

C2 1-

Before simulating the stage with analog circuitry, it may be easier to

model the above circuit with a simple flow-graph:

-1z

z

Figure 2. Direct Foin I Representation of Integrator Stage

(1)

(2)

Many circuit packages allow the operator to represent the circuit in an

analog manner, as shown in Figure 1. A number of programs are available

which can simulate circuits which consist of nothing more than scalars, delay

elements, and adders, such as that in Figure 2. However, few systems allow the
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operator to easily combine the two circuit representations within the same

circuit. Many simulation options are described below.

Coding Your Own Simulation

Many new circuit topologies under investigation are first simulated by

preparing a computer program to emulate the circuit topology. Although this

certainly can provide results, limitations arise. First, not everyone is a computer

programmer. Second, errors associated with the description of the circuit could

result in inaccurate results. Finally, cascading this simulation onto other stages

of an entire circuit could be cumbersome.

A program by Schreier[2] is currently available for investigating the

behavior of a single quantizer AE modulator with a given noise transfer function.

The program is fast, a requirement of any AE modulator simulation tool, since

many simulations involve long input streams. An input sequence of more than

100,000 data points is not unusual. Although this program is very useful in

predicting results of the circuit, it doesn't allow the user to represent the circuit's

topology or component information.

Mathematical Models for SC Simulations

SADSM[7], "Simulates and Analyzes Delta Sigma Modulators," provides

the designer with the ability to investigate properties with a variety of AE

topologies. Although this is a useful tool, new topologies require altering the

source code. This does not lend itself well to dealing with custom circuit

topologies.

Other custom AE simulation packages provide the operator with exact

behavioral models of switched-capacitors and OP AMPs, but do not allow new
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circuit topologies to be exploited[8]. Although these tools have are useful, they

do not allow for a "generic" topology to be represented.

Simulating a Generic Circuit Topology

Tools such as SPICE, SABER, SWITCAP, and GCK, allow a generic circuit

topology to be described. Each tool comes with its own limitations, however.

Most SC circuits can be simulated with SPICE. However, modeling the

generic switch requires controlling voltages to be described. Although the final

implementation of the circuit certainly requires driving circuitry for every switch,

describing this circuitry requires a great amount of digital circuitry which SPICE

would simulate with the same precision as the analog portion of the circuit.

For the example circuit shown above, the circuitry required to drive the

two switch phases easily exceeds the size of the circuit under test. SPICE works

very well when modeling circuits which rely heavily on device-level parameters.

It isn't really the correct tool for the task at hand.

SABER

Analogy, Inc., has a very powerful simulation tool which allows the

operator to describe a circuit by developing behavioral models[9].

Although the product is extremely powerful, it is expensive, and

reasonably slow. Although SABER simulations are capable of interfacing with

many existing tools, this task requires custom interfaces to be written. Even with

these "limitations," SABER is an excellent tool for final analysis prior to

fabrication of new chips.



7

SWITCAP

SWITCAP[10] was designed to provide the user the ability to simulate

multiple phase, switched-capacitor circuits. The circuit is entered in a manner

much like that used by SPICE or GCK. Unfortunately, SWITCAP's syntax

checking routines are rather poor. Certain topologies, such as three switches in

series (to form a loop), cause internal errors which cause the program to

terminate. In addition, limited digital capabilities make representing a multi-bit

ADC a cumbersome task.

From this discussion, an argument for finding a simulator that could

perform simulations which overcome these problems arise. The UCLA program

gck appears to be a very good candidate for handling custom-topology sampled-

data systems. Unfortunately, gck is not portable to other platforms due to it's

programming language (Pascal), and lacks a strong user interface.

These arguments led to the task of porting gck to the "C" programming

language. Additional enhancements performed allow it to become a generic

simulation tool for a broad base of sampled-data systems. While still providing

the operator the ability to describe the circuit topology, "gckc" fills in the gap

between SPICE-level simulations, and AX modulator simulations which ignore

circuit-level topologies completely.
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General Control Flow Within GCK

The structure of the gck circuit simulator program involves establishing

the circuit topology, setting up a solution, and performing the time-domain

simulation. Each of these stages are described below.

Begin

Parse Input File

Obtain Circuit
Solution

Prepare Circuit
for Runtime

Time-Sample
Solution

End

Repeat for Each
Clock Phase

Screen or Disk
Output

1 1

Figure 3. General Flow of GCK Program
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Establish Circuit Topology

The circuit topology is described from a standard input file, and

additional parameters described on the command line. These both must be

parsed, and placed in an appropriate data record.

Initially, memory structures are initialized. This usually involves setting

base pointers to NULL. Default control cards are established.

The filename specified when invoking the program is obtained. From

there, each line within that file forms a card. Each card describes either a portion

of a circuit topology, a simulation control function, or a model description. These

are read into individual data structures until the entire parsing routine is

complete.

A circuit card usually describes the contents of a branch. For example, the

existence of a resistor branch between two nodes is described. A branch number,

along with the connecting node numbers, are obtained and stored within a

record. This record is attached to a linked list. The linked list forms the complete

circuit topology.

If the user specifies a sub-circuit, a new base pointer is established. Circuit

cards within the sub-circuit are read and attached onto this new list. When the

complete circuit is set up, the base circuit extracts the complete sub-circuit by

simply fetching a pointer to the sub-circuit. This is repeated until the complete

circuit has been extracted into memory.

Control cards describe details associated with the simulation itself. For

example, the .STEPEP card describes the time interval between circuit simulation
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steps. Most of these cards require reading in the value and storing it for later

use.

The .SAMPLE and .CLOCK cards describe the pattern which the switches

follow during the simulation. The .SAMPLE card allows the user to describe

when the output data must be sampled. Since the number of clock phases may

be arbitrary, each clock name is stored in a separate record until the circuit

solution process is performed.

Obtain a Circuit Solution

Prior to performing the simulation, a variety of structures must be created

in order to simulate the circuit in an efficient manner. The two steps performed

are setting up structures for all nodes and branches, and then obtaining a

solution for the entire circuit.

Once the circuit file is organized by category, a setup function is

performed on non-linear circuit devices, such as the quantizer and OP AMP

elements. Generic logical elements are established, and all independent sources

are initialized.

Obtaining the circuit solution requires establishing the topology for every

clock phase, then solving for each of these separately.
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In order to accommodate the integrating devices, the capacitor and the

inductor, a state-variable matrix is defined. Every capacitor voltage and inductor

current is a continuous time function. These are expressed as time derivatives of

their respective voltages and currents:

I, = C
dVdt

and

vi=L at' .

(3)

(4)

The simulation performed within gck considers only specific instants of

time. From this, the respective derivatives above may be approximated by a

finite change over a fixed time interval:

dV,1 V,n+i - V,n

n+1 to - todt

and

(5)

c111 I iin+ Tin
(6)dt n+i tn÷i ti,

These equations are the Backward-Euler Algorithm[11], the procedure

used within gck.
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Forming a circuit solution involves representing the entire circuit by a set

of simultaneous first-order, linear differential equations:

M X(t) = NoX(t) + Boe(t), (7)

where X(t) represents the change in the system of voltages and currents

for the circuit. X(t) forms the vector of node voltages and branch currents. e(t)

represents the independent sources within the system.

Any non-linear element described within gck is computed at run-time. It

appears as an independent source during setup.

For each clock phase, every periodically operated switch either forms an

open or short circuit. For the switch with branch number 1 between nodes j and

k, two possible states are described:

= 0, if the switch is open, and (8)

v - vk = 0, if the switch is closed. (9)

The program solves the above equation for X by establishing the three

matrices, M, No, and Bo. The computer's method of establishing these matrices

does not involve any investigative network analysis techniques[121. Instead,

each matrix is filled with appropriate values which describe each component

within the circuit.

The M matrix describes the network topology. This includes branch

impedance's and node-to-branch connectivity. N0 maps the integrating

components, capacitors and inductors, and how their respective values

contribute to a node voltage or branch current. Bo contains entries for the
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independent sources. Although these matrices form a hybrid, the program never

re-orders the indices, since this step is transparent to the user.

The solution to the system is obtained by solving for N, the system of node

voltages and branch currents:

N = M-1N0 (10)

Each independent source contributes to the network by solving for B:

B = M-1B0 (11)

Performing this operation is accomplished by the Gauss-Jordan[13]

method. The two solutions are performed simultaneously as M is inverted.

After obtaining these matrices, the process is repeated for every circuit

phase described. Each solution matrix is stored in memory during run-time.

Determining the next time values involves performing a pair of matrix

multiplications on the selected topology. This method is significantly faster than

obtaining a circuit solution during every time-step. The tradeoff is significant

time required to set up the system.

Prepare Circuit for Runtime

A series of lists are created which allow the circuit simulation phase to

quickly step through the elements of the topology. After the linear elements, the

non-linear, digital, and generic logic elements' new values must be computed

separately. Prior to runtime, these are placed in individual linked lists.
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By establishing these lists prior to runtime, speed of simulation is

improved. No redundant type checking is required when computing the new

node voltages.

Time-Domain Simulation

Once the circuit topology has been determined, the time-domain

simulation involves stepping through the sequence of circuits, computing new

node voltages and branch currents for the entire circuit. The backward-Euler

process is used to determine these values. Although not as accurate as the classic

transient analysis, the approximation is significantly faster.

After determining the new node voltages and branch currents, all non-

linear elements are determined and inserted in the appropriate location. The

compromise in performing the non-linear analysis this way is that all of these

elements require a basic time step delay to be computed. The advantage is that

the time to execute each step is fixed, and reasonably short.

Finally, the desired voltages or currents are printed.

This process is repeated until the simulation is complete. The task of

switching from one circuit topology to the next is accomplished by fetching a

pointer for the particular circuit topology of the current switch phase. Slight

memory redundancies are imposed on the system in order for this process to

occur, but the tradeoff is increased execution speed.
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Additional Requirements for Simulating AZ I SC Systems

Although gck provides the operator with a strong platform for simulating

time-domain circuitry, a number of additional features come to mind which

could minimize intermediate steps for the operator. These include minimizing

setup and execution time, and allowing gck to easily converse with external tools

already available.

A number of Fourier Transform algorithms are already available.

However, having this feature embedded within the program would eliminate a

number of intermediate steps for the operator. FFT / DFT functions, along with

an array of windows, should be available.

One weak point in any batch-mode program, like gck, is poor operator

feedback. Too often, the operator may key in a circuit configuration, and

encounter an error which reveals nothing about the details of the error. Keying

in tables, such as the multi-bit quantizer, is also error-prone. In this case, this

would not be interpreted as an error to the program.

In order to make gck an easier program to use, many of these problems

have been overcome. Although many features could still be added, the new

program created for this thesis, "gckc V 2.0," has formed the ground work for a

variety of additional features which will significantly aid the AX designer in

interfacing with the program, and completing the task of thoroughly exploring a

new topology.

Details on the improvements are included in the next chapter. A variety

of examples are provided to illustrate the improvements. A User's Guide to gckc

is provided within Appendix A.
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PROGRAM DETAILS

This chapter describes the details associated with upgrading the circuit

program. The major tasks were completing the conversion from Pascal to C,

eliminating circuit size limitations, and creating a symbol manager, circuit

compiler, and integrated FFT module.

Porting the Program

Gck was developed in Pascal. Although Pascal provides a very powerful,

structured programming environment, the language standard is not very

portable. The decision to convert the program from Pascal to ANSI-C[14} was

made, in order to allow the program to operate on a variety of computers, both

immediately, and in the future.

Fortunately, converting Pascal code to C does not involve the tedious line-

by-line tasks that one might envision. A translation program was obtained to

perform the bulk of the conversion automatically.

Problems Encountered

After the automated conversion was complete, the next task involved

determining what may have been lost in the translation. Two major problems

were encountered: Memory allocation and initialization, and the handling of

character strings.

The program organizes the circuit within memory by forming a series of

linked lists. Each element in the list represents a circuit element, such as a

capacitor, a resistor, or an OP AMP. As new branches are encountered, memory

is obtained to store these elements. Pascal performs a number of steps when a
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new memory block is requested: A section of memory is set aside, initialized (all

bits within the structure are set to zero), and a pointer to the base is returned. In

C, the same steps are performed, but the task of initializing the record is not

performed. The translator program chose to use the man oc ( ) function, which

does not initialize the memory.

In order to provide compatibility with the Pascal code thought process, a

single memory allocation function, c mal 1 oc ( ), was created. This function

attempts to allocate the memory, initializes all bits to zero, and returns the

pointer. The C function cal 1 oc ( ) is used within c mal 1oc ( ) . In the event that

the allocation fails, an appropriate call to an error handling function arises, and

the program terminates gracefully.

Another difference with the C programming language involves the

method of dealing with character strings. Since the translator does not have the

ability to interpret how strings were manipulated within the program, it should

perform everything necessary to ensure that functionality is maintained after the

translation is complete. This, unfortunately, did not work.

All C strings terminate with the NULL character. This concept is not

understood by Pascal. All string routines within gckc were re-written using

NULL terminated strings. For this, heavy use of the string. h library was used,

speeding up execution, and minimizing the possibility of programming error.

ANSI-C Compliance was handled by enforcing prototypes, and making

certain that all library functions called belong to the ANSI library. The

development work was performed on the Apple Macintosh computer, using the

Symantec THINK C 5.0 compiler, which allows the operator to specify ANSI-C

compliance. This enforces the standards imposed by not allowing even a
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warning to pass before runtime. Strong function prototypes were added to the

program in order to force every aspect of the program to adhere to the structures

and styles first created by gck.

Improving the Handling of Cards

The first task of the program is to extract the circuit topology from the

input file. The syntax associated with describing the circuit card is

straightforward. However, it was noted within the original gck that certain

character strings were handled in an inappropriate or inconsistent manner. For

example, adding a comment string on the end of a logic element description card

would cause errors. Obtaining a particular element from each card involved

performing a search task every time a string was requested.

A single card parsing routine was created which extracts every element

from a single card at one time. Subsequent calls to extract an element from the

card results in a quick lookup. Word counting across each line is now

guaranteed, since the function parses the entire line in one pass.

Case Sensitivity

Although the UNIXTM operating system is case-sensitive, gckc is not. This

decision was made because case-insensitivity should lead to fewer errors for the

operator. Now, the . print, . PRINT, and . PrInT commands are all identical.

Since interfaces to the operating system require case sensitivity, gckc stores both

an exact image of each card, and a case-insensitive copy. If the decision is made

to enforce case sensitivity within the program, for items such as component and

node names, the change will be trivial.
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Reorganizing the Data Structures

One limitation of the original program involved the size of the circuits

which it could handle. A number of structures were fixed to an arbitrary size,

and any circuit that was too large for this size could not be solved. Memory

structures within the program allocated memory for this worst-case scenario, and

manipulated only the portions required.

Frequent requests from users spurred the issue of eliminating this limit. A

structure limited only by memory was developed. Two portions of the program

had to be re-designed: The network solution phase, and the naming and

indexing of nodes. Now, there are no limitations to the size of the circuit that

gckc can simulate.

Infinite-Sized Network

Two portions of the program store a series of square arrays. These involve

the storing and manipulation of the M, No, and Bo matrices. Since the actual

size of the arrays are determined before they are loaded, a pointer can replace the

arrays previously created. Prior to loading the arrays for Gaussian elimination,

memory is allocated for only the number of variables required. After the

Gaussian elimination step is complete, the data is passed to another structure (to

hold the solution), and the intermediate memory is returned to the available

pool.
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Infinite Nodes -- The Node Manager

An array must be allocated to store all of the node voltages during the

simulation. In the past, this array was directly accessed by the node number. A

limitation of no more than 100 nodes (enforced while parsing the circuit file)

guaranteed that this limitation would not be exceeded. However, this put the

burden of node management on the operator, something that should be handled

by the program instead.

Increasing this array size does not solve the entire problem. If the

operator were to reference a node as "999," then the array would have to handle

1000 nodes, even though many nodes below 999 might not be in use. Instead of

this, a node manager module was created within the program.

Every node referenced is given a name. From this, every node is assigned

a new number, starting with 1 (the reference node is 0). This allows the array

size to remain as small as possible, but still allows the operator to specify an

arbitrary number of nodes.

The side-effect of the node manager is that nodes no longer need to be

specified by numbers. Any string may represent a node name.

Since this node array needs to be filled while the circuit is being built, a

structure to handle an arbitrary size needed to be developed. One alternative

was to pass through the entire circuit structure twice. The first pass would

determine the complete size. The second pass would build the circuit topology.

Instead, an assumed size of 100 nodes is chosen as an initial guess. When the

node manager exceeds this 100 node limit, the size is increased by 100. This

process repeats until the circuit has been completely described.
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The Symbol Manager

Many Switched-Capacitor circuit configurations rely heavily on capacitor

matching. Slight mismatches between capacitor pairs in an integrator stage, for

example, can cause serious degradation in circuit performance. Extensive

simulations need to be performed in order to understand the behavior of a circuit

when subjected to practical component tolerances.

An additional data structure was created within gckc to allow the operator

to easily deal with component variability. The symbol manager holds a list of

variable names and their numerical equivalent. When specifying a component,

such as a capacitor, C1, it may be described one of two ways:

Cl 4 5 1.0P

or

Cl 4 5 Cl value

.SYMBOL Cl value 1.0P

Each of these cards describe the device as a capacitor attached between

nodes 4 and 5. However, the second method attaches the symbol C l_value to

the component. The two methods are functionally equivalent.

With the second system, however, multiple devices could share the same

symbol. This could prove useful when common devices must be scaled.

The utility of the symbol manager becomes apparent when the simulation

is actually invoked. These values may be re-defined on the command-line. For

example,

gckc foo Cl value=1.01P
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This would invoke the circuit file foo. All instances where the symbol

Cl value is referenced will now contain the value 1.01PF, NOT the 1.0PF

originally defined.

Performing a series of tests, when adjusting a component, could be very

tedious, and certainly time-consuming for most computer systems. However,

this system now allows the operator to specify a series of tests to be performed,

without having to create a series of input circuit files:

gckc foo > foo.datO

gckc foo Cl value=1.005P > foo.datl

gckc foo Cl value=1.010P > foo.dat2

gckc foo Cl value=1.015P > foo.dat3

Establishing a system to handle symbols involved defining the scope of

where they were to be used. Forward referencing allows the operator to

reference symbols before they are actually assigned a value. Extensive error

checking must be performed in order to guarantee each symbol has been

assigned a value prior to runtime.

There is no limit to the number of symbols which can be defined.

Sub-Circuit Overrides

Sub-Circuits allow the operator to describe a circuit topology, such as an

integrator, then use the same circuit a number of times within the overall system,

such as a multiple-stage filter. If a component within a sub-circuit has a symbol

attached to it, and the operator alters this component value, then every instance

of the symbol is altered. However, this may not prove useful, especially when

investigating the effects associated with errors in just one component. An
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additional feature to the symbol manager was created in order to accommodate

this.

Consider the sub-circuit:

.SUBCKT filter In Out

Cl In Out Cl value=1.0P

R1 Out GND 1K

.ENDSUB

And the implementation:

X1 1 2 filter

X2 2 3 filter

In this case, the symbol C1_value is referenced within the sub-circuit xi

and x2. Invoking the circuit with:

gckc foo Cl value=1.1P

would set both capacitors to 1.1PF. If the operator wanted to set only the

second stage to a new component value, the following syntax may be used:

gckc foo X1.C1 value=1.1P

This allows infinite flexibility for altering component values.

The symbol manager properly handles component adjustments for

resistors, capacitors, inductors, all numerical fields within source specifications,

and sampling intervals.

Implementing this feature involved creating a running list of which sub-

circuit was being parsed currently, such that the sub-circuitnames would be
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extracted properly. The most specific symbol definition will always override all

other definitions for a symbol.

Library

A variety of common cards are required within every circuit file. These

include the sampling rate, OP AMP or Quantizer model cards, or common sub-

circuits defined by the operator. Rather than requiring the user to paste this

information into the input circuit file, the concept of a library file was created.

In order to simplify the understanding of the library file for the common

user, the implementation was kept simple. If a common table, sub-circuit, or

A/D converter model is used within a variety of circuits, this information may be

placed in another file. This file may be referenced within the main circuit file just

by referencing its name. The simulation program reads the main circuit file, and

branches off to any library file specified.

Since it would only make sense to have libraries reference libraries, this is

allowed within the program. However, rather than allowing the redirection level

to increase forever, a limit of ten levels was imposed. This wasn't meant to be a

limitation on the operator, but a safety mechanism to prevent the operator from

creating a circular reference.

The Circuit Compiler

Another task often performed while examining a new AI modulator

topology is performing Signal-to-Noise measurements. This is usually

accomplished by subjecting the modulator to a common input signal, but varying

the amplitude of the signal across some range. This requires running rather long

simulations per amplitude point.
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With the exception of the Gaussian elimination stage within gckc, setting

up even a modest sized circuit requires very little time. However, the time

required to derive the circuit solution increases as a function of both the size of

the circuit, and the number of phases within the circuit. Using order

notation[15], f(t), the time required, is given by

f(t) = 0(pn3), (12)

where n is the size of the array (nodes + branches), and p is the number

of clock phases specified within the circuit. A circuit with 100 nodes and

branches requires at least 1 Million Floating Point operations to solve the circuit

topology per phase.

One unique aspect behind the repetitive nature of performing SNR

calculations is that the circuit topology doesn't change; only the input signal

does. In other words, once the circuit has been setup, there is no need to perform

this step repeatedly.

To eliminate this redundancy, the concept of a circuit compiler was

established. The "compiled" circuit topology is saved to disk during normal

operation. If the operator wishes to use this saved information, a simple

directive may be entered on the command line.

A date and time checking routine examines the age of the compiled circuit

file, and all files which were used to create it. If any dependent file is newer than

the compiled topology, then the circuit setup is performed again automatically.

Because re-defining a symbolic value on the command line could alter the circuit

topology, this too will cause the circuit solution to be recalculated.
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Implementing the Fourier Transform

Many AE simulations require frequency domain information in order to

interpret the system's results. Although a variety of FFT algorithms are already

available, an integrated routine minimizes the time required before graphing.

Operator error is minimized also.

An additional run-time module was created, to collect a copy of all time-

domain data required after the simulation completes. A linked list of only the

node voltages (or branch currents) required for the Fourier transform module is

created, and data is placed into a series of records.

After the time domain portion of the simulation completes, the linked list

is examined. A contiguous list of data points is formed and passed to the FF

routine. After all nodes (or branches) have completed the transform, a print

routine prints the data to the console, or to a file.

The Discrete Fourier Transform is defined[16] as:

N-1
X[k] = xfnliNI;jk , k = 0, N -1, (13)

n=0

where the twiddle factor is defined as

wNnic e-j(2x/N)kn.
(14)

Implementing the FFT involved determining the number of stages,

computing the twiddle factors, and computing the index positions properly[17].

In order to conform with ANSI C, floating point numbers, rather than complex,

had to be used. In-place computations were performed, in order to minimize

memory requirements.



27

Although the FFT is the preferred choice for its speed, a DFT is performed

whenever the length of the simulation is not a perfect power of 2. (The DFI' and

FFT create the same result; the FFT is an algorithm for the FFT).

The DFT takes significantly more time ( 0(n2)) than the FFT (0(n log2n)).

By performing either algorithm, gckc eases the burden for the operator when

setting up the simulation[18].

Since the output of in-place computations results in the data being placed

in bit-reversed order, the data is indexed at print time. This is significantly faster

than re-ordering the data.

Windowing

A variety of windowing functions were added as a convenience for the

user. The default window is rectangular (no windowing).

Immediately prior to performing the FFT, the windowing function is

called, and a pointer to the time-domain data is passed. A few common window

functions are available: Rectangular, Bartlett (Triangular), Hann, Hamming, and

Blackman[19].

Figures 4 to 8 show the magnitude of the frequency response for each of

these windows, for N =128. The rectangular window has the narrowest main

lobe, but the next side-lobe is only about 13 dB below the main peak. Further

rejection at higher frequencies is relatively poor. For the remaining windows, the

side lobes are reduced significantly. However, the main lobes are much wider.



Rectangular

11, Osn .. N,
0, otherwise

0

-20%
-40 -
-60 --
-80

-100 -
120 -

-140
160
180

0.0

(15)

0.1 0.2 0.3

Frequency, Normalized

0.4 0.5
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EXAMPLE CIRCUITS

A number of circuits were simulated in order to demonstrate the

capabilities of gckc. All simulation circuit files are included in Appendix C.

Performance measurements were obtained by running the simulations on an

Apollo 425t Workstation. The "DFT Time to Complete" performance

measurements were measured times to perform the DFT in place of the FFT.

These are for comparison purposes only.

First Order AX Modulator

The classic 1st order Low Pass Al Modulator was simulated. By attaching

the input and output to the standard UNIX I/O ports, the performance of the

simulator was compared against C++ models already present.

Note that the quantizer within gckc is not a delay free one. For this

reason, the 1-bit quantizer and delay are lumped together in the diagram below:

1

x I

Figure 9. 1st Order Low-Pass AE Modulator

A sinusoid was placed in the first bin. An 8192 point sequence was run

through the circuit. The spectral response (using a Hann window) is shown

below. The response, as expected, matches the typical spectra for a low-pass AE

modulator.
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Performance parameters are as follows:

Parameter Time to Perform

Parse and Setup < 1 Second

Obtain Circuit Solution < 1 Second

Time Domain Simulation 14 Seconds
(1.7ms/ Point)

Fourier Transform < 1 Second

Simulation Length 8192 points

Table 1. Performance Measurements for 1st Order A/ Simulation
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Figure 10. Spectral Response of 1st Order Low-Pass A Modulator
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Second Order AE Modulator

Similar results were found with the 2nd Order Low Pass A Modulator.

Performance measurements were nearly identical.

z -1

Figure 11. 2nd Order Low-Pass A Modulator

Frequency, Normalized

Figure 12. Frequency Response of 2nd Order Low-Pass A Modulator



Switched Capacitor Integrator

A differential pseudo 2-path integrator was simulated. This circuit

functions as a filter block with the response of

1
H( z) -

(1+ z-21
(20)

36

Additional cross-switches clocked by 0 and 45 modulate the input signal

by L / 4. The signal is filtered, then modulated back up to the original carrier

frequency. The result is a band-pass filter centered at fs / 4. For the application

which this circuit was intended[5], the minimum gain required is 99dB.

Two simulations were performed. The first shows the response of the

circuit due to a tone at 250 KHz. The sampling rate was 1 MHz. For the second

simulation, the network was presented a broad-band noise source at -20dB.

Parameter Time to Perform

Parse and Setup < 1 Second

Obtain Circuit Solution 16 Seconds

Time Domain Simulation 125 Seconds
(15.3ms/ Point)

Fourier Transform < 4 Seconds
(4096 Point FFT)

DF r Time to Complete 136 Seconds

Simulation Length 8192 Points

Table 2. Performance for 2-Path Integrator Simulation
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Figure 13. Modulating Integrator with Out-of-Band Noise Peaks
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Figure 15. Response of Pseudo 2-Path Integrator to Broad-Band Noise
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Three-Stage A Modulator

The three stage AI Modulator shown by Cataltepe[4] was simulated with

the new gckc. The length of the simulation changed, along with the signal

source, in order to accommodate FFT output. Time-domain results match the

original gck program's output.

A -20dB tone at 6835.9375 Hz was placed at Van. Using a sampling interval

of 1 AS, this places the tone in the 14th FFT bin of a 2048 point FFT. Figures (17)

and (18) show the response of the system due to the single carrier input.

Performance measurements of gckc were taken during the simulation. In

addition to the 2048 point run, another simulation with 2049 points was

performed, in order to estimate the time to complete the Fourier Transform using

the DFT instead. A significant time improvement is clearly evident by using the

FFT instead.

Parameter Time to Perform

Parse and Setup < 1 Second

Obtain Circuit Solution 55 Seconds

Time Domain Simulation 315 Seconds
(76.9ms/ Point)

Fourier Transform < 2 Seconds
(2048 Point FFT)

DFT Time to Complete 34 Seconds

Simulation Length 4096 Points

Table 3. Performance Measurements for 3 Stage AE Modulator Simulation
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CONCLUSION

Tasks Accomplished
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The task of simulating sampled-data circuits has been improved through

the work performed in this dissertation. Porting the program to C allows gckc to

be run on future computer platforms with little or no maintenance. This

portability will allow the department to share the tool with other facilities.

The additional features added to gckc provide the operator a cleaner and

faster method for interfacing with the simulation kernel. The circuit compiler

provides the ability to speed up repeated simulations. The symbolic variable

manager replaces the need for repeated adjustments to the input circuit file,

which will prove very useful when investigating component tolerance effects.

Finally, by removing the circuit size limitations, this program will allow the

operator to simulate much larger, and more sophisticated, sampled data circuit

systems.

Future Tasks to Overcome

The work performed on gckc does not solve every problem associated

with A Modulator simulations, nor does it replace simulation tools such as

SABER and SPICE. Improvements could still be made which would ease the

burden of simulating circuits within this area of research.
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Delay-Free Quantizer

A variety of topologies assume the quantizer / ADC block is delay-free.

Currently, gckc includes an implicit time step delay through every non-linear

element. This allows potential inconsistency issues to be dismissed. Altering

gckc to accommodate a delay-free quantizer involves investigating methods for

obtaining an iterative solution at each new sample. This would be a significant

compromise in performance, however.

Improving Speed Performance

A number of computation-intensive tasks within the program could be

improved if Data-Parallel techniques were implemented[15].

The Gauss-Jordan elimination step, along with the FFT, could easily be

implemented on a Data-Parallel computer. For the time-domain simulation

itself, dividing the circuit solution into one virtual processor per node could be

explored. Since little communication between nodes is required, a significant

speedup may be possible.

Since the program allows the operator to obtain any number of frequency-

domain solutions from one simulation, each single FFT performed could obtain

two solutions, by exploiting the fact that both input signals are real.

The User Interface

Any modern program requires a modern interface. Interacting with gckc

still involves building a series of circuit files which represents the circuit.

Utilizing generic schematic-capture programs would significantly ease the

burden for the designer.



44

The improvements made to this program contribute to the active research

going on in A/ modulators. With a faster, more flexible tool, the research

engineer now has the ability to explore a new circuit topology by merely

describing the circuit and invoking gckc. I hope this will open the door for new

techniques to be explored in the months and years to come.
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APPENDIX A: User's Guide to GCKC

"GCK, A circuit Simulation Program," was originally developed by Tanju

Cataltepe at University of California at Los Angeles, in 1989. It was developed to

help the simulation of A modulators.

"Why 'GCK?"'

"If you put the vowels in it becomes 'GICIK.' It was something like a
nickname given to me by some close friends because I would disagree
with them in almost all philosophical and political subjects. It may be
translated as 'disagreeable'. But as 'GCK,' it is meaningless." Tanju
Cataltepe.

The slight name change was made in order to provide the user the

understanding that this is the "new" GCK, not the old. The extra "c" in the

program name indicates the user is running the "C-developed" version of the

simulator.

Although many improvements have been made to the program, all circuit

files created to date are still compatible with this version of gckc. I hope your

experience with gckc will be both pleasant and productive.
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System Requirements

Although the program was written in ANSI C, source-code compatibility

with all computers is not guaranteed. In general, any UNIXTM system with an

ANSI C-compatible compiler will build the program without any problems.

The current release (v2.0) will execute properly on Apollo Domain

(bsd4.3) systems, and the NeXT computer (mach). All examples within this

document were run on the HP-Apollo 425t workstation.

In addition to UNIX, the program is available for the (higher-end)

Macintosh computer. Minimum system requirements on the Macintosh are:

Macintosh II series, Powerbook 170, or Quadra
5 MB RAM Minimum

Hard Disk
Floating Point Co-Processor
System 7.0.0 or greater

Although the program has been tested on all (Macintosh) systems listed

above, it is recommended that either the UNIX version be used, or the Macintosh

simulations be small. Apple's poor virtual memory implementation can cause

problems when many applications are loaded simultaneously, or if little physical

memory is available. The "-3" directive provides the operator with dialog to

show the operator what the Macintosh's memory manager is doing.

Due to size requirements, the program is not supported for DOS systems.
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Setting up the Workspace on a UNIXTM System

No special installation is required in order to run the program. The user

may wish to add a path to gckc in the . cshrc file. Add the path where the

program's executable resides.

Example,

set path= ( -/bin -dsptools /bin -bin/gck )

Remember to "source .cshrc," or login again, in order to update the

path.

To invoke the program, have a gckc source file ready. Example files are

available in Appendix C.



50

Invoking the Program

The program runs only in batch mode, i.e., it is not interactive. Although

a few options are available from the command line, the default parameters are

probably sufficient.

To start the program, type:

gckc input_filename > output_file

This will take the file input_filename, and read it's circuit

configuration. Dialog is provided to the user via the standard error output. In

the example shown above, the output stream is redirected to the file

output_file (although this is not necessary, you will probably want your data

to be accumulated in a file, rather than on the terminal screen).

The complete listing of options available are:

gckc input_file [compiler_opt] [dialog_opt] [symbols]

input_file Any input filename is allowed. Since this is a UNIXTM
call, case sensitivity is enforced.

[compiler_opt] Circuit compiler options.

-C , -c (Default) Compile the circuit and run the simulation.

-Q, -q Use the Quick-Compiler, if possible.

-z, -z Compile the circuit and halt (this causes the
simulation itself to NOT run).



[dialog_opt] Options related to level of dialog the program will
provide to the operator.

[symbols]
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- 0 Provide NO dialog at all on the standard error output.

-1 (Default) Show the GCKC program banner on the
standard error output.

- 2 Provide "highlights" of the circuit simulation,

including time-to-complete various tasks.

- 3 Provide a "painful" amount of dialog during circuit
simulation. This is used for debug purposes. For
problem circuits, it may be advantageous to invoke
this option in order to see what could be taking so
long.

gckc allows any component_value to be associated
with a symbol. If the user wishes to update one of
these values when invoking the program, he (or she)
may do so.

More than one symbol may be specified on the command line, if required.

symbol name=new value. (One word. NO spaces!)

Although the command line option ordering is ambiguous, the last

occurrence of any symbol has precedence.
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All of the following examples are valid:

gckc test Compile the circuit test and run the simulation.

gckc -3q test Run the simulation test from the previously-
compiled circuit. Provide dialog messages to stderr.

noise 8192 -10 gckc -0q cdadic_2a I fft -w > cdadic_2a.fft

Provide 8192 points of -10dB noise to the standard
output. Run the simulation cdadic 2a from the
previously-compiled circuit. Provide no message
output to stderr. The simulation output will be piped
to the program f ft (with windowing). Finally, the
result output is placed in the file cdadic_2a.f ft.

gckc -lc test circuit feedback cap=1.001p

Run the simulation testcircuit. For all

occurrences of the symbol feedback capwithin the
file, set this parameter to 1.001 picofarads.

(Note that specifying any symbol declaration from the command line

causes the program to re-compile the circuit configuration automatically. A

warning alerts the user of this).
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Case Sensitivity

Although UNIX provides a case-sensitive environment, gckc is, in general,

case-insensitive. This means that the node "node 1" is identical to "NODE 1,"

and "NoDe 1." This decision was made in order to increase the user's

productivity. My apologies if this causes any confusion.

The exception to this rule is in how gckc deals with filenames. Any

instance of a filename, whether it be the input file, library specification, or input

signal, needs to be specified in a case-sensitive manner.
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Size Limitations

In general, there are no limitations to the size of the circuit which gckc can

simulate. There are a couple of details relating to memory issues which should

be understood, however. Although any limitation described may appear to be

restrictive, these are minor exceptions, and really shouldn't be an issue for even

the most advanced user.

Nodes and Branches

Gckc specifies the "number of variables" as the number of branches, plus

the number of nodes, within the entire circuit. In the past, this value was limited

to 140. No limitation is imposed on the total number of variables with gckc.

Library File Depth

Any number of library files may be specified from within a circuit

description.

Because the operator may wish to describe common sub-circuit topologies

within a "library" file itself, library files are allowed to reference other library files

(just like the #include directive in C). However, no more than 10 levels of

indirection may be specified.

Sub-Circuit Depth

Because the operator may wish to describe a sub-circuit within another

sub-circuit, a limitation of no more than 10 levels of indirection are enforced

within the program. This limitation is enforced in order to prevent circular

referencing.
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Specifying Circuit Branches

Each element within a circuit, whether it be a resistor, capacitor, switch, or

whatever, is described by a branch description line. For example,

R1 1 2 1K

This describes a resistor "R1," connected from node "1" to node "2," with a

value of 1000Q.

Certain components, like the OP AMP, for example, have more than two

connections. The descriptions below indicate how each element's topology is

described within the circuit file.
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Specifying Nodes

Traditional circuit simulators of this sort require the user to specify every

node with a number. Instead of this, gckc interprets every node as a string.

Therefore, nodes may be numeric, or any name you choose.

The reference node, "0," may be thought of as "ground." The user may

specify the term "GND" in place of "0," in order to make the circuit description

easier to read.

Typical node names:

1

2

node _1

In general, there are no strings which cannot be used, even though many

words within the simulator are "reserved words."

Examples:

R1 1 2 1K

R2 node _2 node_4 1K

Note that "2" and node 2 are NOT the same node!
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Entering Numeric Values

Most circuit descriptions require the operator to input at least one numeric

value, such as the capacitance of the specified capacitor. Standard engineering

notation constants may be used to ease the operator in entering values.

The following three lines are all allowed as input within gckc, and are all

equivalent:

1000.0 1.0e3 1K

The following strings will be recognized by gckc and the value will be

interpreted accordingly:

Entry Abbreviation Scalar

T Tera x*1012

G Giga x*109

MEG Mega x*106

K Kilo x*103

M Milli x*10-3

U Micro x * 10-6

N Nano x*10-9

P Pico x*10-12

F Fempto x*10-15

dB Decibels 10(x/20)

Table A-1. SI Unit Conversion Table within gckc

The above terms are case-insensitive. Each term in the entry column must

be entered exactly as it is shown (you cannot use "KILO" for 103). The "dB" term

allows gains, etc., to be entered in decibel form.
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Specifying Symbols

At times, the operator may wish to adjust a term, in order to witness the

effects of component tolerances, etc. For example, a series of simulations may be

performed in order to determine the effects of an error from "matched" capacitors

mismatching between 99% and 101% of nominal. This motivated the addition of

the concept of the symbol.

Symbol Names

A symbol must be one word (no spaces). The first character of the symbol

must be a character, not a number. To avoid conflicts with sub-circuit

specifications, the ' .' character is not allowed. The '=' character is also not

allowed within a symbol name.

Defining and Forward-Referencing

A symbol may be defined one of three ways:

Attached to the component:

Obviously, a symbolic reference is useless unless it is connected to at least

one component within the circuit. However, the value associated with the

symbol need not be immediately defined.

The following three lines are all valid cards:

R1 1 2 Rlvalue

R1 1 2 Rlvalue=1K

R1 1 2 Rlvalue 1K
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By a control card:

A series of constants could be defined using the . SYMBOL card. All three

of the following lines perform exactly the same function (associating 1000.0 with

the term "Rivalue "):

.SYMBOL Rlvalue=1K

.SYMBOL Rivalue 1K

.DEFINE Rivalue 1K

Via the Command Line:

Any symbol value specified on the command line is entered last. Note

that this will over-ride any value which was specified within the circuit.

gckc testckt Rlvalue=1.001K

Invoking the circuit with the above command line would set the value of

Rivalue to 1.001K(2.

Note that when specifying symbols from the command line, the entire

symbol-specification must contain no space characters (and the symbol and value

must be separated by the '=' character).

Symbols are case-insensitive.

Global Symbols

Any symbol defined once is considered global to the entire circuit,

regardless of whether it is within a sub-circuit or not.
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Local Symbol Override Within Sub-Circuits

Symbols may be defined within sub-circuits. Sub-circuits may be used a

number of times within a complete circuit. The operator may wish to examine

the effects of altering the same value within every sub-circuit. However,

examining the effects of just one of these components being altered might need to

be investigated. In order to accommodate this, a "symbolic value override" may

occur locally within sub-circuits.

First, define the sub-circuit:

.SUBCKT RC In Out

R1 In Out Rival =1K

Cl Out GND Clval=1.0U

.ENDSUB RC

This RC stage may be cascaded to form a complete circuit:

V1 Stagel_input GND DC 10.0

X1 Stagel_input 2 RC

X2 3 4 RC

X3 4 5 RC

Now what if the value for RI needed to be adjusted for only the resistor

within the sub-circuit X2? This could be accomplished by specifying:

.SYMBOL X2.R1va1 1.001K

Or

gckc testckt X2.R1val=1.001K
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This method of adjusting component values can be very powerful in

determining tolerance effects of certain circuit topologies.

If two override symbols are defined for the same value, the value used

will always be the last value encountered. If a global override and a local symbol

declaration are both described, the local symbol always has higher precedence

than the global.

gckc testckt X2.R1val=1.001K Rlval=1.002K

The above line would result in the following:

X1.R1val 1.002K

X2.Rlval 1.001K

X3.Rlval 1.002K
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Interfacing to Existing Tools

Professor Schreier (Oregon State University, schreier@ece . or s t . edu)

has developed a series of tools which allow the designer to quickly simulate a

variety of sampled-data circuits. Gckc was designed with the intent to not only

work well as a stand-alone program, but interface easily with other tools. Here

are a few helpful hints on how to make gckc run as a stand-alone sampled-data

simulation tool.

input:

When creating a circuit file, use the "standard input" option for the signal

V1 node _1 GND STDIN

This will cause the program to read the standard input stream for its data.

Programs from the Schreier library, such as noise and constant, can be used

for input.

The output stream from gckc is specified by the . PRINT control card. The

. NPRINT card will omit the time tag for every sample output. Therefore, a single

output stream can be obtained.

The program prints a variety of dialog messages when it is running. All of

these status messages, along with all warnings, are directed to the standard error

output (stderr). This output can either be redirected to a junk file, or shut off by

invoking the -0 option.
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Putting this all together,

V1 node 1 GND STDIN

#circuit described here

.NPRINT V(Output)

Invoke the above test file with

noise 8192 -10 1 gckc -0 test I fft -w > test.fft
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Circuit Card Descriptions

This section of the document describes the syntax associated with each

type of card within a gckc circuit configuration file.

Circuit Elements

Resistor

Ryyyyy <nl> <n2> <value>

<nl>

<n2>

<value>

First Node.

Second Node.

Resistance.

Capacitor

Cyyyyy <nl> <n2> <value>

<nl> First Node.

<n2> Second Node.

<value> Capacitance.

Inductor

Lyyyyy <nl> <n2> <value>

<nl> First Node.

<n2> Second Node.

<value> Inductance.



Controlled Sources

VCVS

VCCS

Eyyyy <nl> <n2> <ncl> <nc2> <value>

<nl> Positive Output Node.

<n2> Negative Output Node.

<ncl> Positive controlling Node.

<nc2> Negative controlling Node.

<value> Gain.

Gyyyy <nl> <n2> <ncl> <nc2> <value>

<nl> Positive Output Node.

<n2> Negative Output Node.

<ncl> Positive controlling Node.

<nc2> Negative controlling Node.

<value> Gain.
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CCVS

CCCS

Switch
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Hyyyy <nl> <n2> <control branch> <value>

<nl> Positive Output Node.

<n2> Negative Output Node.

<control branch> Name of the control branch to measure
controlling current.

<value> Gain.

Fyyyy <nl> <n2> <control branch> <value>

<nl> Positive Output Node.

<n2> Negative Output Node.

<control branch> Name of the control branch to measure
controlling current.

<value> Gain.

Syyyy <nl> <n2> <clock name>

<nl> Positive Output Node.

<n2> Negative Output Node.

<clock name> Name of the controlling clock signal. During
phases where the clock holds a '1' value, the
switch is closed. A '0' value indicates the
clock is open. See the . CLOCK and . SAMPLE

cards for more details.
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Independent Sources

There is no limit to the number of independent sources within the

program. Each independent source may be generated by any one of the

following source specifications.

The source outputs are assumed sampled at the beginning of each basic

time step as specified by the .STEP card.

Voltage Source

Vyyyy <nl> <n2> <source_spec>

<ni> Positive node.

<n2> Negative node.

<source_spec> One of the source options, described below.

Current Source

Iyyyy <nl> <n2> <source_spec>

<ni> Positive node.

<n2> Negative node.

<source_spec> One of the source options, described below.

Note that positive current flows from <ni> to <n2>.
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Source Specifications

For all source specifications, symbols may be used in place of absolute

references for all numerical entries. However, these terms are global, and cannot

be adjusted with sub-circuit symbol override parameters.

DC

DC <amplitude>

<amplitude> DC constant value of source.

Sine Wave

SIN <amplitude> <frequency> [<delay>]

<amplitude> Peak-to-Peak amplitude, a, of SIN wave.

<frequency> Frequency (cycles per second) of SIN wave,

fo.

<delay> The delay (in seconds) of the SIN wave, td. If
not specified, the default is 0.

x (t) = a * sin( 23tf 0 (t td)) (21)



Comb
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COMB <amplitude> <start_freq> <delta_f> <#_of_f>

<amplitude> Peak-to-Peak amplitude, a, of SIN wave.

<start_freq> Frequency (cycles per second) of primary SIN
wave, fo.

<delta f>

<# of f>

Impulse

The amount of change in each frequency of
the comb, AL

The number of tones within the comb, N.

N-1
X(t) = a * sin (27c(f0 + n * Af)t)

n=0

IMPULSE <amplitude>

(22)

<amplitude> For t = 0, this amplitude is placed on the
source. For all other t, the amplitude is 0.



Pulse

PULSE <unpulsed amp> <pulsed_amp>

<period> <delay> <rise_time>

<duration_high> <fall time>

<unpulsed_amp> Amplitude during "off periods.

<pulsed_amp> Amplitude during "on" periods.

<period> Overall repetition rate of the PULSE.

<delay> The delay before the PULSE starts to rise.

<rise_time> The amount of time the PULSE takes to rise
from <unpulsed_amp> to <pulsed_amp>.

<duration_high> The amount of time the PULSE maintains
<puis ed_amp> before beginning its fall.

<fall time>

Random

RND <amplitude>

The amount of time the PULSE takes to fall
from <pulsed_arnp> to <unpulsed_amp>.
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<amplitude> Maximum amplitude of the random signal.
The source specification takes on the values
of [-<amplitude>,<amplitude>].
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From a File

FILE <filename>

<filename> The name of the file which contains the
source signal. This file must contain one
value per line. If the end of file is reached
before the simulation is complete, additional
values of 0.0 are appended.

From the Standard Input

STDIN The source signal is read from the standard input.
The standard input must contain one value per line.
If the end of the standard input stream (^D) is
reached before the simulation is complete, additional
values of 0.0 are appended.

Non-Linear Components

Two non-linear components are available within gckc. The generic

quantizer allows the operator to describe an A/D or D/A converter with custom

quantization levels. The OP AMP behaves similarly to the Voltage-Controlled

Voltage Source.
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Quantizer (ADC/DAC)

QYYYY <nl> <n2> <ncl> <nc2> <model name>

<nl> Positive Output Node.

<n2> Negative Output Node.

<ncl> Positive controlling Node.

<nc2> Negative controlling Node.

<model name> The name of the Quantizer Model to use.

One basic clock unit delay is present within the quantizer model.

The .MODEL card for the Quantizer is of the form:

.MODEL 2 bit

0.50 0.50

0.00 0.00

-0.50 -0.50

-999e99 -1.0

.END

This example shows a 2-bit A/D converter. Any input greater than 0.5

receives a quantized 0.5 output. Any signal lower than -0.5 Volts receives the

low output of -1.0 volts.
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In general, the table is of the form:

.MODEL

<th[n]> <out[n]>

a

<th[1]> <out[1]>

.END

The values <th[ i ] > are the threshold voltages. Note that

<th[i]> > <th[i-l] >fOr all i >1.

If the input value is greater than <th [1] > but less than or equal to

<th [ i+1] >, then the output is <out [ i ] >.

This table may be generated automatically by using the program gcl.

Operating the program is described in Appendix B.



OP AMP

Oyyyy <nl> <n2> <ncl> <nc2> <model_name>

<nl> Positive Output Node.

<n2> Negative Output Node.

<nc 1> Positive controlling Node.

<nc2> Negative controlling Node.

<model name> The name of the Op Amp Model to use.

The .MODEL for the Op Amp is of the form:

.MODEL <model name>

<gain> [<slew_rate>]

.END

<gain>

<slew rate>

Gain of Amplifier (VCVS gain).

Maximum Voltage Rate-of-change per unit
second.
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If the <slew rate> is not listed, the amplifier behaves just like the VCVS.



75

Digital Components

Delay

Adder

All digital components begin with the '@' symbol.

@Dyyyy <n out> <n in> <delay>

<n out> Output Node.

<n in> Input Node.

<delay> Number of clock ticks to delay. Note that this
delay must be greater than or equal to 1.

@Ayyyy <n_out> <n in 1> <n in 2> <gain 1> <gain_2>_ _ _ _ _
< n_out> Output Node.

<n in 1> Input Node 1.

<n in 2> Input Node 2.

<gain_l> Gain for Node 1.

<gain_2> Gain for Node 2.

The output value is evaluated as:

<n out> = <gain 1> * <n in 1> + <gain 2> * <n in 2>_ _ _ _

Although this is not a true digital adder, it helps to build simple signal

flow graphs of digital filters when used with the delay element.
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Logic Elements

The logic element allows an arbitrary number of nodes to create an

arbitrary logic output. This might be useful when simulating control circuitry

within an adaptive A/ modulator.

Any logic element created has one basic time step delay. Only one output

is available per logic element.

Logic Element

$yyyyy <n_out> <nO> <nN> <Table> <0

<v th> <v lo> <v hi>

<n out> Output Node.

<nO> Input Node 1.

<nM> Input Node M.

<Table> Logic Table Name.

<0 I 1> Inversion Bit.

<v_th> Threshold Voltage.

<v_lo> Logic '0' Output Voltage.

<v_hi> Logic '1' Output Voltage.

1>

The order and number of input nodes must match the table exactly. If '1'

('0') is specified after the table name then the output voltage will be <v_hi>

(<v_lo>) when the input matches an entry of the table. Otherwise it will be

<v_lo> ( <v_hi >).
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The values <v th>, <v lo>, and <v hi> may be specified with

symbols.

cards:

As an example, a CMOS OR and NOR Gate would use the following

$0R1 or_gate_out in_1 in_2 OR_GATE 1 2.5 0.0 5.0

$NOR1 nor_gate_out in _l in_2 OR_GATE 0 2.5 0.0 5.0

Logic Truth Table

The logic table is of the form:

.TABLE OR GATE

01

10

11

.END

This is a partial truth table. It should only list the values which will cause

an output of <v hi> (<v lo>).
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Sub-Circuits

Sub-circuits can have any type of components. Other sub-circuits may be

specified within sub-circuits. However, all clock signals must be global to the

entire circuit. With the exception of the reference node, you cannot access any

branch that is outside the sub-circuit. To minimize memory usage, node voltages

and branch currents within any sub-circuit cannot be monitored during the

simulation.

The sub-circuits are referenced by the following card:

Xyyyy <nl> <nM> <subckt_name>

<ni> Attachment from higher level circuit to sub-
circuit's first external node.

<nM> Attachment from higher level circuit to sub-
circuit's Mth external node.

<subckt name> The name of the sub-circuit, as listed in the
. SUBCKT description (below).

The definition of a sub-circuit is of the form:

.SUBCKT <subckt name> <nl> <nM>

.00

.ENDSUB <subckt name>

Between these control cards, components, sources, controlled sources, etc.,

may be specified. Local nodes may be created, but they will not be accessible

outside of the sub-circuit. The number of nodes (M) listed on the . SUBCKT card

must exactly match the number listed within the Xyyyy card above.
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Control Cards

A variety of control cards are available within gckc. These provide the

program with vital information related to the simulation, the results requested,

clock phases, etc.

Library Card

or

.LIB*RARY <library_name>

.INC*LUDE <library_name>

<library_name> The filename which gckc should read before
continuing.

The *' indicates subsequent characters are
optional.

It might be convenient to develop a library of tables for future reference.

Instead of having to include everything in one file, these "libraries" can be

referenced by their filename. Common circuit topologies, A/D tables, etc., are

likely candidates for a library file.

There is nothing unique about a library file. It is of exactly the same form

as the main gckc file, and no additional "compilation" is required before using the

library file(s). Note also that the gckc "quick compiler" will sense when any

library file has been updated (it's time stamp is newer than a compiled circuit

file's time stamp). If a file has been updated, gckc will re-compile the circuit.
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Note that the four lines below all perform exactly the same operation:

.LIB my_library_file

.LIBRARY my_library_file

.INC my_library_file

.INCLUDE my_library_file

Symbol Declarations

Symbols may be defined with the value they represent. They may also be

defined on the command line when invoking the program. In addition to these,

symbol may be defined by the . SYMBOL control card:

.SYM*BOL <symbol_name> [=] <value>

or

.DEF*INE <symbol name> [=] <value>

<symbol_name> The variable name used to represent a
component's value.

[ =] The 'equals' character, optional on this
control card.

<value> The numerical value which <symbol name>
inherits.

The '*' indicates subsequent characters are
optional.

Note that the following cards all perform exactly the same function:

.SYM Rival 1K

.SYMBOL Rlval=1000.0

.DEF Rival= 1000.0

.DEFINE rival = le-3MEG
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Time Step

The "basic time step" used in the simulation is defined one of two ways.

The . STEP card defines the basic time step exactly. If the . PERIOD card is used

instead, the value specified by <period_value> is divided by

<clock_phases> to determine the basic time step.

.STEP <step_value>

Or

.PERIOD <period_value>

<step_value> The time period defining a basic time step.
This value may be specified by a symbol.

<period_value> The basic time step is the <period_value>

divided by <clock_phases >. This value
may be specified by a symbol.

One of these cards MUST be defined within the circuit.

Total Simulation Time

The total simulation time must be defined. The simulation will run until

the total time has been exceeded.

.TIME <value>

<value> Total simulation time. This value may be
specified by a symbol.



Output Sampling Instants

The output value(s) requested by the .PRINT and .NPRINT cards will

occur only at phases where a sample was requested.

.SAMPLE <10001000....>

<1 I 0> A 'Vindicates that the output should be
sampled during this clock phase. A '0'
indicates it should not.
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The total number of <clock_phases> (the number of l's or 'O's in the

list) is limited to 30. The number of <clock_phases> specified in the . SAMPLE

card must match the number of phases specified in the . CLOCK cards.

Clock Signals

The .CLOCK cards are used to control the switches throughout the

simulation. A '1' indicates that all switches using this clock definition card will

be closed during these phases. A '0' indicates the switch is open during these

phases.

.CLOCK <clock name> <10001000....>

<clock name>

<1 0>

The name associated with this clocking
scheme. This should match the
<clock_name> entry within every associated
switch.

A '1' indicates that the output should be
sampled during this clock phase. A '0'
indicates it should not.
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The total number of <clock_phases> (the number of l's or 'O's in the

list) is limited to 30. The number of <c lock_phases> specified by all .CLOCK

cards should match one another. This should also match the number of phases

specified in the . SAMPLE card.

Node Specifications

The operator may specify saturation limits on any node within the system.

.NODE <node name> LOW = <lower sat>

HIGH = <upper_sat> [SR = <slew_rate>]

<node name> The Node which this card specifies.

<lowers at> The lowest value the node may achieve.

<upper_sat> The highest value the node may achieve.

[ <slew rate> ] The slew rate for this node, Volts / Second.

Symbols are not supported within any parameters on the . NODE card.

Model Specification

Currently, two types of MODELs are included within gckc. These are the

Op AMP and Quantizer model descriptions. For more details on either one of

these, please refer to the respective section above.



84

Printing

Four types of . PRINT cards are available. The number of nodes which the

user may print is unlimited.

.PRINT [V(<nl>[,<n2>])] 1 [I(<branch_name>)] 1

[> <filename>]

V The voltage between two nodes.

<nl> Positive Output Node.

<n2> Negative Output Node. If the second node is
the reference node, it need not be specified.

I The current flowing in a branch.

<branch name> Name of the branch to measure current.

<filename> The name of the file to redirect the time-
domain output.

The order (voltage and current) is arbitrary.

The two PRINT card options are as follows:

PRINT Print the nodes specified. The first column of
each line will show the time duration passed.

.NPRINT Print the nodes specified only.
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Requesting FFTIDFT Output

The F I card within gck invokes either the FFT or DFT. The number of

nodes which the user may print is unlimited.

.FFT [WINDOW <window name >] 1 [V(<nl>[,<n2>])] 1

[I(<branch name>)] 1 [> <filename>]

<window name> The name of the window to use when
computing the FFT or DFT. (See below).

The voltage between two nodes.

<n1> Positive Output Node.

<n2> Negative Output Node. If the second node is
the reference node, it need not be specified.

I The current flowing in a branch.

<branch name> Name of the branch to measure current.

<filename> The name of the file to redirect the time-
domain output.

The order of these items is arbitrary.
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The window types are as follows:

RECTANGULAR Perform no windowing. This is the default.

0 n N,
w[n] = (23)otherwise

BART *LE TT Perform Bartlett (Triangular) Windowing.

12n/N, OsnsN/ 2,
w[n]= 12 -2n /N, N/ 2<risN,

otherwise
(24)

TR IA* NGULAR Perform Triangular Windowing (Shown
above).

HANN Perform Windowing using Harm's method.

- 0.5cos(27m/ N), OsnsN,
w[n] = (25)

0, otherwise

HAMM* ING Perform Windowing using the Hamming
method.

w[n] =
- 0.46cos(2.7m / N), 0 s n s N,

(26)
0, otherwise

BLAC *MAN Perform Windowing using the Blackman
method.

0.42 0.5 cos(2an / N) + 0.08 cos(4 rcn / N), Osns N,
w[n] =

0, otherwise

(27)

Note that the FFT is perfoimed when the number of samples is a perfect

power of two. Otherwise, the DFT is performed. Windowing is unaffected by

this, however.
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Comment Cards

Comments may be placed arbitrarily throughout gckc. To include a

comment, place the '#' or '*' characters at the beginning of a comment line.

Comments may be included to the right of any line also.

All of the following examples are valid uses of comments:

.SAMPLE 1101 ; I hope this works

*I'm hoping this simulation will lead to a patent!

R1 Albany Corvallis Willamette *Yes, that's valid.
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Error Conditions

Certain conditions may cause the program gckc to terminate prematurely.

Usually, termination results in a message which gives the operator an indication

of why the error occurred.

Errors are categorized by the condition which cause the termination. The

categories include errors encountered in parsing either the command line or the

circuit file, memory errors, or operating system errors.

Each error condition is described below.
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Command Line Parsing

Command Line requires at least one parameter passed.

Without at least a filename, invoking the
program is useless. Refer to the section
"Invoking the Program" for further details.

A Symbol on the Command Line (symbol name) is not of the

correct form.

When specifying a symbol on the command
line, it must match the following form:
symbol name=symbol value. No spaces
are allowed within the entire string.

The Command Line found more than one input file.

Only one circuit file may be run each time
gckc is invoked.

Symbols cannot be specified on the command line with the -Z

option. Circuit compilation not performed.

When using the -z option, you are telling the
program to read the previously-compiled
circuit from disk. Most symbol specifications
alter the configuration of this file. Therefore,
it would be redundant to specify the -z
option, AND specify new symbol values at
the same time. Compile the circuit with the
-C option instead.
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Confusing Card Specifications

Print Card Specification is confusing. Print variables are

"v" or "i."

Prototype:

.PRINT V(1,2) V(Output) I(R1).

Your Card:

(your card printed).

Something within the .PRINT card confused
the parsing routine. Most likely, one of the
parameters did not begin with the V, I, or >
character.

FFT Card Specification is confusing. FFT variables are "v"

or "i."

Prototype:

.FFT V(1,2) V(Output) I(R1).

Your Card:

(your card printed).

Something within the .FFT card confused the
parsing routine. Most likely, one of the
parameters did not begin with the V, I, or >

character. If windowing is requested, the
window name must be specified immediately
after the WINDOW keyword.
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Card parser unable to resolve card. Source specification for

SIN card is confusing.

Prototype:

Vyyyy <node_1> <node_2> SIN <amplitude> <frequency>

[<delay>].

Your Card:

(your card printed).

The SIN card source specification was
recognized, but the number of parameters
read was incorrect, or of the wrong form.

Card parser unable to resolve card. Source specification for

COMB card is confusing.

Prototype:

Vyyyy <node_1> <node_2> COMB <amplitude> <start_f>

<delta f> <# of_freq>._

Your Card:

(your card printed).

The COMB card source specification was
recognized, but the number of parameters
read was incorrect, or of the wrong form.
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Card parser unable to resolve card. Source specification for

PULSE card is confusing.

Prototype:

Vyyyy <node_1> <node_2> PULSE <unpulsed_value>

<pulsed value> <period> <delay> <rise_time>

<duration high> <fall time>.

Your Card:

(your card printed).

The PULSE card source specification was

recognized, but the number of parameters
read was incorrect, or of the wrong form.

Card parser unable to resolve card. Digital ADDER card is

confusing--check syntax please.

Prototype:

@AYYYY <n_output> <n_inputl> <n_input2>

<value1> <value2>.

Your Card:

(your card printed).

The @A card was recognized, but the number
of parameters read was incorrect, or of the
wrong form.



Card parser unable to resolve card. Digital LOGIC card is

confusing--check syntax please.

Prototype:

$YYYY <n output> <n input> <node 0> ... <node M>_ _ _

<Table> <011> <v th> <v lo> <v hi>._ _ _

Your Card:

(your card printed).
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The number of nodes is arbitrary, but must
match the number within the logic . TABLE.

The parsing routine works its way backwards
from the end until it finds the 0 or 1 card.
From there, the correct number of nodes may
be determined.
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Unknown / Incorrect References

The BRANCH (branch reference) is unknown.

This could happen within either a . PRINT or
. FFT card. Please see that all
I branch reference) items match
branches previously defined.

The MODEL (model_name) was not found.

An OP AMP (0) or QUANTIZER (Q) was

referenced, yet the model was never found.

The CLOCK signal (clock name) was not found.

A Clock signal, on a Switch card (S), was
reference, but the clock specification was
never found ( . CLOCK).

The SUBCKT (subckt_name) is not defined.

The Sub-Circuit was referenced somewhere
within the circuit description. However, the
circuit name, subckt_name, was never
found.

The MODEL (model name) has already been defined.

Models may only be defined once within a
gckc simulation. The model may have been
defined in a library file that was included in
the circuit file.
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The MODEL (model name) is defined within itself. Recursive

sub-circuits, obviously, are not allowed.

Sub-circuits may be defined within sub-
circuits. Unfortunately, the model
model name referenced itself.

Unknown source specification.

The valid source specifications are DC, SIN,

COMB, PULSE, IMPULSE, FILE and STDIN.

The quantizer model (model_name) is not of the correct form.

Each line within the quantizer specification
must contain two numbers. No symbols are
allowed.

The Delay of (delay_element_name) must be greater than 0.

Unknown digital component.

The delay card's delay specified was either
less than 1, or not found.

A card parsed found a digital component (the
'@' symbol was found), but the type is
unknown.

The TABLE (table_name) has already been defined.

Logic tables may only be defined once within
a gckc simulation. The table may have been
defined in a library file that was included in
the circuit file.
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The TABLE (table name) was not defined.

A Logic card ($y) could not find the table it
referenced. The table does not have to be
specified before the logic card, just
somewhere within the circuit file (or an
included library file).

The Window Type (type_specified) is not available.

The current window types available are
Rectangular, Triangular, Bartlett (triangular),
Hann, Hamming, and Blackman. If no
window is specified, the default, Rectangular,
is used.

You have specified too many levels of LIBRARY indirection.

(Libraries can reference libraries, but not past 10 levels).

Check to see that a circular reference does not
exist.

An inconsistency in the number of clock phases has been

found. Make certain all .CLOCK and .SAMPLE cards all have

the same number of phases.

There is no requirement which card comes
first, . CLOCK cards, or the . SAMPLE card. All
of these cards, however, must specify exactly
the same number of phases.
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The NODE (node name) referenced does not exist.

The only place a node may be referenced in
this manner would be within the .PRINT or
.FFT cards. Please see that all
V ( node_reference) items match nodes
previously defined.

The Maximum Sub-Circuit Depth has been exceeded.

Since it is highly unlikely that more than a
few levels of hierarchy may exist, the
program has set an arbitrary limit of 10 levels
deep. If this error is encountered, it may be
due to a circular reference.

The reference SYMBOL (symbol name) was never assigned a

global value. If you are referencing this SYMBOL locally,

assign a dummy value to the symbol at least once.

Self-Explanatory. If you cannot find the
symbol, check all library files within the
circuit specification.
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File Related Errors

A Source Input FILE was not found.

(Filename sourcefile name).

The filename specified on an independent
source card was not found.

The Main Input FILE was not found.

(Filename inputfile_name).

The filename specified when invoking the
program was not found.

The Library Input FILE was not found.

(Filename libraryfile_name).

Self-Explanatory.

The Circuit Compiler was unable to open the output file

(file name).

The Operating System was unable to assign a
pointer to the compiled circuit output file.
This should never happen.

The FFT Print Routine was unable to open the output file

(file name).

The Operating System was unable to assign a
pointer to the . FFT output file specified.
This should never happen.



The Print Routine was unable to open the output file

(file name).
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The Operating System was unable to assign a
pointer to the . PRINT output file specified.
This should never happen.

The Quick Compiler couldn't find the compiled circuit file

(file_name).

Although it appears to the simulator that the
circuit files are up to date, it was unable to
open the compiled circuit file. Try running
"touch" on the main circuit file, then re-run
the simulator with the -C option.
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Circuit Compilation

Gaussian Elimination reveals a Singular system.

Node: node name.

All nodes must have at least one branch
attachment during every clock phase. If this
error occurs, it most likely means that a node
appears to be "floating" during at least one
clock cycle. The easiest thing to do is place a
capacitor directly to ground at that node.
Choose a value that is at least two orders of
magnitude smaller than the capacitors
surrounding it. This will provide a
(mathematical) solution, and will have
essentially no contributing effect to your
overall circuit.

Gaussian Elimination reveals a Singular system. Unable to

determine node location. The trouble Node may be within a

Sub-circuit.

See the previous error. If this problem
persists, take the circuit configuration within
the sub-circuit, and place it in the main
portion of a circuit file. Resolve all floating
nodes, then place in a sub-circuit.



The Quick Compiler found an inconsistent number of clock

phases.
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When reading the previously configured file,
the number of clock phases stored within the
file does not match the number within the
source file. Try running "touch" on the main
circuit file, then re-run the simulator with the
-C option.

The Quick Compiler found an inconsistent number of Variables.

When reading the previously configured file,
the number of variables stored within the file
does not match the number within the source
file. Try running "touch" on the main circuit
file, then re-run the simulator with the -C

option.
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Out of Memory

All memory errors share a common problem: The operating system failed

to find enough memory to simulate the circuit. Consult your system

administrator for assistance.

Out of Memory! A Memory request when parsing a MODEL failed.

The MODEL for either an OP AMP or
QUANTIZER could not obtain sufficient
memory.

Out of Memory! A Memory request when creating a DELAY

element failed.

Each delay element requires memory be
allocated to store the values propagating
through it. This routine was unable to obtain
sufficient memory.

Out of Memory! A Memory request when creating additional

space for NODES failed.

An array is created just prior to runtime, such
that the voltage at every node may be
preserved. The memory routine was unable
to allocate this list.
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Out of Memory! A Memory request when creating additional

space for the NODE MANAGER failed.

The node manager initially creates room for
100 nodes. When this is exceeded, it creates
room for 100 more nodes. This process is
repeated until the circuit has been completely
parsed. The memory must be in a contiguous
block. Therefore, the error may be due to an
operating system limitation which restricts
the size of a single block of memory.

Out of Memory! A Memory request when allocating space for a

SYMBOL failed.

The symbol manager was unable to obtain
sufficient memory.

Out of Memory! A Generic Memory allocation call failed.

An attempt to allocate memory for a branch,
source specification, etc., circuit solution
array, etc., failed. This is the most common
memory error. Simply put, there is not
enough memory on the system to handle the
circuit specified.
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Internal Errors

These errors should never happen. A series of traps have been added to

the program such that errors found will terminate the program, rather than

continuing the simulation in error. If any of these errors occur, send email to

haywardr@ece .orst.edu. Send the complete circuit file, all library files, input

files, etc., and specify the type of computer the program was run on.

Internal Circuit Compiler Error! Gaussian Elimination

Routine is unable to resolve the BRANCH (branch_name).

The branch name specified could not be
resolved. In other words, the name the
program gave a branch was later not
understood by the program.

Internal Circuit Compiler Error! A request to allocate

memory of size ZERO occurred.

A Memory allocation routine tried to allocate
memory of size zero. No calls to the memory
allocation routine should perform this.

Internal Circuit Compiler Error! Contact your program

support representative for assistance. Error Code 114.

Send email to your support representative for
gckc.



Internal Circuit Compiler Error! The SYMBOL name requested

was blank.
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The symbol manager was handed a blank
name. This shouldn't happen, because the
card parsing routines cannot extract a "blank"
field.

Internal Circuit Compiler Error! An internal attempt to find

a SYMBOL failed.

The symbol manager could not resolve a
symbol name.

Internal Circuit Compiler Error! The routine which creates a

SYMBOL was handed a blank name.

The symbol manager was told to create a
symbol record, but the name was blank.

Internal Circuit Compiler Error! Contact your program

support representative for assistance. Error Code "DEFAULT"

Send email to your support representative for
gckc.
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APPENDIX B: GCL, Generic A/D Converter Table Generator

In order to minimize error when using a generic quantizer model, a utility

program was written. This program automatically generates standard ADC

tables in the form which gck expects.

The program is called gcl, which stands for generic conversion library

generator. Six parameters are passed to the program:

gcl <model_name> <bits> <xmin> <xmax> <ymin> <ymax>

> <filename>

<model_name> The name you wish to use as a model name
for the quantizer within gck.

<bits> The number of bits to use in the quantizer.

<xmin> The minimum expected input signal value.

<xmax> The maximum expected output signal value.

<ymin> The minimum value represented by the
quantizer.

<ymax> The maximum value represented by the
quantizer.

<filename> The name of the library file which will
contain this table.

The program divides both the x and y ranges into 2n elements:

Ax x
max

x
bits min

2

A, y max ymin
bits2

(28)

(29)



107

The program sweeps from (xmax Ax) down to xmin, in steps of Ax and Ay,

respectively. This forms the .MODEL table for the quantizer within gckc.

Although problems associated with monotonicity and companding ADC tables

cannot be modeled with this program, it does give the operator the ability to

quickly generate a multi-bit table.

The extreme values are defined as:

Ay
1Y X Z Xmaxmax 2

y_ Ay (30)
ly min + 2

X 5_ X rt

A Variety of ADC tables were generated. These allow for an input range

from -1.0 to 1.0 Volts, with an identical output range. These examples are usually

centered about 0 Volts.

The following command creates a one-bit quantizer model, the

cornerstone of A/ Modulators:

gcl lbitq 1 -1.0 1.0 -2.0 2.0 >quantizer.lib

ADC Tables are created by

gcl nbit n -1.0 1.0 -1.0 1.0 >nbit.lib ,

where n is the number of bits to represent. Offset and gain errors may be

represented by altering the domain and/ or range appropriately.
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APPENDIX C: Listing of Circuit Files

This appendix contains a variety of circuit files used within the text. All

simulations were run on the HP/Apollo 425t computers at Oregon State

University.

1st Order Low Pass Delta Sigma Modulator

V1 u 0 STDIN

@al v u y 1.0 -1.0

@a2 x v x2 1.0 1.0

@d2 x2 x 1

ql y 0 x 0 lb

.step 1.0

.nprint v(y)

.fft window hann vdb(y) >lst.fft

.lib lb.lib
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2nd Order Low Pass Delta Sigma Modulator

V1 u 0 -20dB 976.5625u

@al u2 u y 1.0 -1.0

@a2 v u2 v2 1.0 1.0

@dl v2 v 1

@a3 v3 v y 1.0 -1.0

@a4 x v3 x2 1.0 1.0

@d2 x2 x 1

ql y 0 x 0 lb

.step 1.0

.time 1024.0

.nprint v(y)

.fft window hann vdb(y) >2nd.fft

.lib lb.lib

One Bit A Quantizer Model

* Generated by GCL Version 2.0.Beta.2, (UNIX) March 31, 1992

* Number of Bits : 1

Input, Low

Input, High

Output, Low

Output, High

.MODEL lb

0.0 1.0

-9.9e+99 -1.0

.END

-1.000000

1.000000

-2.000000

2.000000
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Differential Pseudo 2-Path Integrator

# 2 Path Integrator Example Circuit

vin In 0 SIN -20dB 1250.0

#vin In 0 STDIN

el 1 0 In 0 0.5

e2 2 0 In 0 -0.5

#input loop top

s0103 1 3

s0300 3 0

c0305 3 5

s0500 5 0

s0507 5 7

s0104 1 4

phi3

phi2

1.0

phi2

phil

phi5

#input loop bottom

s0204 2 4

s0400 4 0

c0406 4 6

s0600 6 0

s0608 6 8

s0203 2 3

phi3

phi2

1.0

phi2

phil

phi5

#feedback top

c0709 7 9

c0711 7 11

c0713 7 13

s0915 9 15

s0900 9 0

s1115 11 15

s1100 11 0

s1315 13 15

s1300 13 0

1.0

1.0

1.0

phic

phib

phib

phia

phia

phic
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#feedback bottom

c0810 8 10 1.0

c0812 8 12 1.0

c0814 8 14 1.0

s1016 10 16 phic

s1000 10 0 phib

s1216 12 16 phib

s1200 12 0 phia

s1416 14 16 phia

s1400 14 0 phic

#output configuration

s1517 15 17 phi3

s1618 16 18 phi3

s1518 15 18 phi5

s1617 16 17 phi5

#and the amplifier

e3 15 16 8 7 Ampgain=99dB

# eliminates singluar system errors...

c1700 17 0 0.00001

c1800 18 0 0.00001

###

.step 0.5u

.time 4096.0u

.sample 101010101010101010101010

###

.clock phil 101010101010101010101010

.clock phi2 010101010101010101010101

.clock phi3 101000001010000010100000

.clock phi5 000010100000101000001010

.clock phia 110000110000110000110000

.clock phib 001100001100001100001100

.clock phic 000011000011000011000011

###

.print v(In) v(17,18) >2path_integrator.prn

.fft window black vdb(17,18) >2path_integrator.fft

###
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Three Stage Modulator

; Three Stage Modulator from Cataltepe

Vin 1 0 sin 0.1 6835.9375

****

xhl 1 11 72 2 tms2

el 2 0 0 72 le2

xql 2 11 dlydq

* * * *

@al 22 1 2 8.0 8.0

* * * *

xh2 22 12 73 3 tms2

e3 3 0 0 73 2e2

xq2 3 12 dlydq

* * * *

@a2 23 22 3 8.0 8.0

* * * *

xh3 23 13 74 4 tms2

e3 4 0 0 74 1e20

xq3 4 13 dlydq

* * * *

xhA 11 31 hA

xhB 12 32 hB

xhC 13 33 hC

@aAC 51 31 33 1 0.015625

@aFIN 52 51 32 1 0.125

.nprint v(52,0) >3_stage_mod.prn

.fft window hann vdb(52,0) >3_stage_mod.fft
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.sample

.clock phil

.clock phi2

01

10

01

.period period=lu

.time time=2048u

****

.subckt hA 1 2

xin 1 10 sh2

@dl 2 10 4

.endsub hA

.subckt hB 1 5

xin 1 10 sh2

@dl 2 10 2

@al 3 2 10 1 -1

* * * *

@d2 4 3 2

@a2 5 3 4 0.0 1.0

.endsub hB

.subckt hC 1 5

xin 1 10 sh2

@dl 2 10 2

@d2 3 2 2

@al 4 10 2 1 -2

@a2 5 3 4 1 1

.endsub hC
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.subckt tms2

s12 1 2

s20 2 0

cal 2 4

s13 1 3

s34 3 4

cat 3 5

1 9 4 5

phi2

phil

1.0

phi2

phil

1.0

* * * *

s56 5 6

c2 4 6

phi2

1.0

* * * *

s98 9 8

s80 8 0

s97 9 7

s74 7 4

cbl 8 4

cb2 7 5

phi2

phil

phi2

phil

1.0

1.0

.endsub tms2

.subckt dlydq

xsh 1 4

1 3

sh2

qint 2 0 4 0 4b

@dint 3 2 1

.endsub dlydq

.subckt sh2

s12 1 2

chold 2 0

1 3

phi2

1.0

ehold 3 0 2 0 1.0

.endsub sh2

.library four_bit_adc_table
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4-Bit ADC Table

; This table from Cataltepe, used in 3_stage_modulator

.model 4b

0.9375 0.9375

0.8125 0.8125

0.6875 0.6875

0.5625 0.5625

0.4375 0.4375

0.3125 0.3125

0.1875 0.1875

0.0625 0.0625

-0.0625 -0.0625

-0.1875 -0.1875

-0.3125 -0.3125

-0.4375 -0.4375

-0.5625 -0.5625

-0.6875 -0.6875

-0.8125 -0.8125

-999e99 -0.9375

.end


