AN ABSTRACT OF THE THESIS OF

Dale Richard ZoBell	for the degree of Master of Science
$\frac{1}{1+1} = \frac{1}{1+1} + \frac{1}$	
inAnimal Science	presented on <u>May 8, 1978</u>
Title:The Effect of Monensi	n on Efficiency and Production
of a Brood Cow Herd	
Abstract approved:Redac	Dr. H. A. Turner

Ninety-six mature pregnant Hereford cows were allotted to three replications with four treatments. Pregnancy was determined by rectal palpation prior to the initiation of the study. The cows were artificially inseminated the previous spring, beginning the end of May, over a period of 42 days to a single Angus sire. Hereford cleanup bulls followed for 21 days.

The cows were stratified by breeding date, weight, condition score and the previous year's adjusted weaning weights and randomly assigned to treatments. Replications were by calving date.

Monensin treatments consisted of 0, 50, 200 and 300 mg/hd/day and was provided in ground barley. Controls received .45 kg of barley/head/day with the monensin treatments receiving their doses in like amounts of barley.

The basic feed was native meadow hay containing 9.5% crude protein. Hay was weighed in daily and refusals out weekly. Throughout the study hay was adjusted to maintain equal weight gain or loss between treatments. Initially the control cows were fed hay free choice and consumed 13.4 kg/head/day. The initial monensin treatment levels were 95% of the control's diet for the 50 mg level and 90% each for the 200 and 300 mg groups. Hay consumption for the entire confinement period was 92, 89 and 90% of the control group's diet for the 50, 200 and 300 mg groups respectively.

Rumen samples were taken twice during the study, once prior to calving and another postpartum. An esophageal hose connected to a vacuum pump was utilized on four cows per pen for a total of 48 samples. On the morning samples were taken the cows were fed at one-half hour intervals to allow ample time for sampling. All cows were sampled three to four hours after supplemental feeding. Volatile fatty acid concentration results show rumen acetic acid production was reduced and propionic increased with the 200 and 300 mg levels.

Cow weights were obtained every 28 days prior to calving and were used to adjust hay intake. Cows and calves were also weighed 24 hours postpartum, treatment termination and weaning.

Initial cow weights for the control, 50, 200 and 300 mg treatments were 455, 447, 456 and 457 kg, respectively, with prepartum gains of .34, .38, .38 and .37 kg. Weight loss during the calving and postpartum periods were similar with the exception of the 300 mg group, which lost more weight.

At or near time of calving cows were removed from their pens and taken to a calving shed. Hay fed was adjusted accordingly so the cows remaining in the pens received the proper level. Cows that lost calves or had health problems were eliminated from subsequent data. One cow that lost a calf at birth was grafted another.

Treatments were terminated about 30 days after calving due to a lead poisoning problem brought about by the calves chewing on boards which were coated with a paint containing lead. At this time the cows were turned out on pasture.

Adjusted weaning weights for the calves were 124, 134, 129 and 133 kg respectively for the control, 50, 200 and 300 mg groups, with calves being weaned at 139 days of age. Average daily gains from calving to treatment termination and from treatment termination to weaning were similar for all treatments.

First estrus postpartum was detected by utilizing nine vasectomized bulls with chin ball markers along with visual observation. Breeding was the same as previously described. Pregnancy was determined in mid-October by rectal palpation and fetal age was estimated by breeding records and palpation results. Control cows came into estrus an average of 44 days as compared to 44, 41 and 45 days for the 50, 200 and 300 mg treatments. Conception rates were 84, 91, 100 and 86% for the control, 50, 200 and 300 mg groups respectively.

Results indicate cows can be wintered on hay with a reduction of approximately 11% hay intake, fed with 200 mg of monensin per head per day, and still maintain a productive condition. Reproductive performance was not reduced with monensin use.

The Effect of Monensin on Efficiency and Production of a Brood Cow Herd

by

Dale Richard ZoBell

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed May 8, 1978

Commencement June 1978

APPROVED:

Redacted for privacy Assistant Professor of Animal Science in charge of major

Redacted for privacy

Head of Department of Animal Science

Redacted for privacy

Dean of graguate school

Date thesis is presented May 8, 1978

Typed by Joan Coghlan for Dale Richard ZoBell

ACKNOWLEDGEMENT

The author would like to thank Dr. H. A. Turner for serving as my major professor. His help and encouragement are greatly appreciated.

Many thanks also to Dr. R. J. Raleigh and Dr. D. C. Church for serving on my committee and for their advice and counselling.

Additional thanks to the Squaw Butte technicians and staff. No thanks to the guys in Room 222 who did nothing but hold me back.

Special recognition to my wife, Susan, and my three daughters, Kerbi, Britney and Sage, who stood beside me and made this possible.

TABLE OF CONTENTS

I.	Introduction
II.	Review of Literature3Physical and Chemical Properties of Monensin3Energy-Volatile Fatty Acid Production and Function3Monensin as it Affects the Rumen6Monensin as it Affects Feedlot Cattle7Monensin as it Affects Cattle on Pasture8Monensin as it Affects Gestating Cows10Monensin as it Affects of Monensin13
III.	Materials and Methods
IV.	Results and Discussion19Cow Gain and Hay Intake19Volatile Fatty Acid Production26Cow Reproductive Performance29The Effect of Monensin on Calf Performance31Summary of Results36
۷.	Bibliography
VI.	Appendix

LIST OF TABLES

<u>[able</u>		Page
1	Cow gain and hay intake for the prepartum period (November 16 to March 1)	20
2	Cow gain data and hay intake for the calving period (March 1 to May 9)	21
3	Cow gain data and hay intake for the entire confinement period (November 16 to May 9)	23
4	Cow gain for the postpartum period (May 9 to August 29)	24
5	Cow gain data from November 16 to August 29	25
6	Volatile fatty acid data for sample one (January 12)	27
.7	Volatile fatty acid data for sample two (May 5) and standard errors	28
8	Reproductive performance	30
9	Calf weights	32
10	Calf gain data from birth to May 9 and May 9 to August 29	33
11	Cow performance index and theoretical adjustment of weaning weight	35

LIST OF APPENDIX TABLES

Table		Page
1	Cow gain from November 16 to calving	42
2	Cow gain data and hay intake from March 1 to calving	43
3	Cow gain from calving to May 9	44
4	Cow gain from calving to August 29	45
5	Hay adjustments by treatment period	46
6	Raw data - cows (lbs) - Control	47
7	Raw data – cows (1bs) – 50 mg	48
8	Raw data - cows (1bs) - 200 mg	49
9	Raw data - cows (1bs) - 300 mg	50
10	Raw data - calves (lbs) - Control	51
11	Raw data - calves (1bs) - 50 mg	52
12	Raw data - calves (lbs) - 200 mg	53
13	Raw data - calves (lbs) - 300 mg	54
14	Condition scores - weight (lbs) to hip height (inches) - Control	55
15	Condition scores - weight (lbs) to hip height (inches) - 50 mg	56
16	Condition scores - weight (lbs) to hip height (inches) - 200 mg	57
17	Condition scores - weight (lbs) to hip height (inches) - 300 mg	58
18	Condition scores - weight (lbs) to heart girth (inches) - Control	59
19	Condition scores - weight (lbs) to heart girth (inches) - 50 mg	60

Table		Page
20	Condition scores - weight (lbs) to heart girth (inches) - 200 mg	61
21	Condition scores - weight (lbs) to heart girth (inches) - 300 mg	62
22	Volatile fatty acid concentrations - Replication 1	63
23	Volatile fatty acid concentrations - Replication 2	64
24	Volatile fatty acid concentrations - Replication 3	65

THE EFFECT OF MONENSIN ON EFFICIENCY AND PRODUCTION OF A BROOD COW HERD

INTRODUCTION

Cattle producers today face an ever increasing challenge in the world of agriculture. A number of factors such as fluctuating markets and internal problems find cattlemen in a difficult situation. By attempting to keep overhead down yet produce a marketable animal in a relatively short period has resulted in a demand for increased efficiency.

In the area of ruminant nutrition much research has resulted in new products and methods to improve feed efficiency. Feed additives, growth promotants such as implants and antibiotics are readily available to the cattle producer. Many of these products require withdrawal periods prior to slaughter for protection of the consumer.

Recently a new product called monensin, trade name <u>Rumensin</u>, has been introduced by Eli Lilly and Company. It is orally administered and affects the rumen, altering microbial production of the volatile fatty acids, the principle energy source for the ruminant animal. More propionic acid is produced while acetic and butyric acids are decreased (Perry <u>et al.</u>, 1976; Dinius and Simpson, 1975). This results in increased feed efficiency as propionic acid is more efficient in its conversion to a useable energy source than acetic or butyric acids (Hungate, 1966).

Monensin was originally used as an anti-coccidial in poultry and recently its effectiveness in beef production was realized. Since it gained Food and Drug Administration (FDA) approval it has gained much recognition and use in the feedlot industry. One advantageous use for monensin might lie in the area of cow-calf production where it has been calculated that 65% of the total, including cow and calf, feed nutrients are required to get a calf to weaning age (Gregory, 1972). With savings up to 10% as a result of monensin use the potential is considerable, particularly since monensin can be used in combination with other products such as implants. With an additive effect of monensin and implants, efficiency may be increased by as much as 20% overall.

The objectives of this study were to determine optimum levels of monensin and whether the increased efficiency due to monensin would allow cows to be wintered on less hay. Cow reproduction and calf performance were also evaluated as to the effects monensin might have on them.

At the time of this writing monensin had not yet been approved for cow-calf operations by the FDA. This study hopefully will add needed data for its approval.

II. REVIEW OF LITERATURE

A. Physical and Chemical Properties of Monensin

Monensin Sodium, trade name <u>Rumensin</u>, is a feed additive produced by Eli Lilly and Company (Elanco). It is an antibiotic produced by the bacterial strain <u>Streptomyces cinnamonensis</u> (Haney and Hoehn, 1967). The empirical formula is $C_{36}H_{61}O_{11}Na$, with a molecular weight of 692.

During manufacturing monensin is exposed to sodium ions resulting in monensin sodium, the active ingredient in the <u>Rumensin</u> Premix, the marketable product. The color of monensin is blackish to light brown or speckled tan meal (Rumensin Tech Manual, 1975).

Monensin is used as an anticoccidial in poultry but during the last few years its potential as a possible feed additive for ruminants was realized.

B. Energy-Volatile Fatty Acid Production and Function

The ruminant is at a great advantage over many other animals due to its ability to utilize roughage containing plant fiber and cellulose. Millions of microbes work on the ingested feed which results in a number of products, some of which are the volatile fatty acids. These are the principle waste products of microbial action and represent about 50% of the ruminant animals energy source. The main energy source for the bacteria comes from carbohydrates which are fermented and chemically altered by the microbes. The fermentation consists of a rearrangement of the atoms of the carbohydrate molecule in which

some carbon atoms are futher oxidized and others further reduced. The nature of each microbe determines pathways and the products formed (Hungate, 1966).

The conversion of the main VFA's, these being acetic, propionic and butyric acids, to useable energy is complex and the concentrations of each VFA is dependant on the type of feed consumed. In trials where a large amount of roughage is consumed, VFA distribution is about 70% acetic, 20% propionic and 10% butyric acids. As the concentrate level of the diet increases the proportions of propionic acid also increase while acetic and butyric acids decrease. This results in values of about 50, 40 and 10% of acetic, propionic and butyric acids, respectively.

The energy from the VFA's is brought about by a series of chemical reactions which occurs as the VFA's are absorbed through the walls of the rumen. Barcroft <u>et al.</u> (1944) indicated the fatty acids are directly absorbed from the rumen, reticulum, omasum and large intestine with the most absorption occurring in the rumen. Propionic and butyric acids are almost entirely metabolized in the rumen and liver. Acetic acid passes through the liver into the peripheral circulation with the main sites of its oxidation being adipose and muscular tissue.

Propionic acid is more efficient in its metabolic pathway in producing energy (Hungate, 1966). Acetic acid production results in a gross energy value of about 210 kcal/mole or a total of 420 kcal/ mole, for two moles of acetic acid are formed for every mole of glucose metabolized. Efficiency is estimated to be about 62% relative to glucose which has a gross energy value of 673 kcal/mole when metabolized.

Propionic acid production yields 367 kcal/mole, or a total of 734 kcal/mole useable energy; this is 109% efficient. Butyric acid has a gross energy value of 524 kcal/mole but only one mole of butyric acid is produced for each mole of glucose metabolized. This represents an efficiency value of 77.9%. Also in the production of acetic and butyr-ic acids carbon dioxide and methane are produced which are waste products and little energy can be recovered from them.

The heat increment or heat liberated when food is metabolized is a good measure of the efficiency of its utilization. The less the proportion of heat given off as compared to the energy taken up by the animal, the more efficient is the utilization of the food (Hungate, 1966). The heat increment of propionic acid is less than that for acetic acid. This is further evidence indicating the fact that propionic acid is more efficient than the other VFA's.

After the VFA's are absorbed into the bloodstream all three acids can be used to furnish energy through the carboxylic acid cycle. Acetic is changed to acetyl-Co-A which requires two molecules of adenosine tri-phosphate (ATP). Its complete oxidation to CO_2 and H_2O yields ten molecules of ATP. Propionic acid reacts with Co-A to form methylmalonyl Co-A which is changed to succinyl Co-A and this enters the carboxylic acid cycle. The net yield is 18 ATP's by going through this pathway. Propionic acid can also go through the glycogen pathway. Butyric acid can be changed to butyrl Co-A which is transformed to acetyl Co-A and this then goes the same route as acetic acid. The complete oxidation of one mole of glucose yields CO_2 , H_2O and 27 moles of ATP (Maynard and Loosli, 1969).

C. Monensin as it Affects the Rumen

It has been demonstrated that monensin alters rumen fermentation both <u>in vitro</u> and <u>in vivo</u> (Richardson <u>et al.</u>, 1974). It has also been shown that with the use of monensin molar percentages of the VFA's are altered, with less acetic and butyric acids being produced, but more propionic (Perry <u>et al.</u>, 1976; Dinius and Simpson, 1975; Thornton <u>et al.</u>, 1976). As pointed out by Hungate (1966), the metabolic pathway of propionic acid is more efficient, which then could explain the reason why monensin is effective.

Thornton <u>et al.</u> (1976) reported increased propionic production and a decrease in methane production. This could have been due to the decrease in acetic acid which when produced results in methane production. Propionic acid production liberates less hydrogen so less waste as methane.

Hungate (1966) points out that methane production is a valuable index as to the extent of rumen fermentation, for it is a direct measure of activity in the rumen. There is no evidence that methane is converted to other materials after it is formed, so the quantity liberated by the rumen is the amount produced.

Hale <u>et al.</u> (1975) and Dinius <u>et al.</u> (1976) in studies involving growing and finishing steers evaluated monensin and its effects on ruminal activity. It was clear that individual concentrations of the VFA's were altered in such a way as to increase the efficiency of the animal. In both studies the propionic acid production was increased while acetic and butyric acids decreased. This resulted in

greater overall production by the animal and more efficient energy utilization.

D. Monensin as it Affects Feedlot Cattle

Since the introduction of monensin to the beef industry there have been numerous studies to evaluate its effect on cattle. All of the early research has been in the feedlot sector of the industry or on growing and finishing cattle. The FDA has given clearance for the use of monensin in this sector after positive results were demonstrated.

Many aspects of the feedlot industry have been studied such as: carcass composition (Richardson <u>et al.</u>, 1974; Raun <u>et al.</u>, 1974; Potter <u>et al.</u>, 1976); optimum dosage levels (Linn <u>et al.</u>, 1975; Utley, 1976); use of monensin with other feeds (Harvey <u>et al.</u>, 1976; Summers <u>et al.</u>, 1976; Garrett, 1976); uses with implants (Sherrod <u>et al.</u>, 1976; Weichenthal <u>et al.</u>, 1976; Utley <u>et al.</u>, 1976) and the use of monensin under grazing conditions (Brethour, 1976; Oliver, 1975; Anthony <u>et al.</u>, 1975).

All of the above studies were intended to add knowledge and to acquaint feedlot personnel to the use of monensin. Many products, which are enabling producers to mass produce cattle and still improve efficiency have been developed. Through the use of monensin, feedlots can compete more effectively and can produce cattle using less feed, therefore less feed cost because of the increased efficiency.

Average daily gain on feedlot cattle has been shown to be similar for treated and untreated cattle using monensin. Linn et al.

(1975) concluded that average daily gain for control and monensin fed steers was not significantly different. However, monensin-fed cattle consumed significantly less ration dry matter than untreated cattle, which resulted in feed costs per 100 pounds of gain being highest for the control cattle.

Wolfe and Matsushima (1975), Lofgreen (1976) and Riley <u>et al.</u> (1976) reported less feed intake for cattle fed monensin in feedlot trials with increased feed efficiency. Riley <u>et al.</u> (1976) showed feed efficiency increased by up to 12% and rumen VFA samples indicated an increase of propionic acid production.

Wolfe and Matsushima (1975) indicated average daily gain was not significantly different between control and treated cattle. At a level of 30 grams/ton, feed efficiency was at its highest as compared to treatments of 0, 10 and 20 grams/ton.

Brown <u>et al.</u> (1974) did a very extensive study to evaluate feedlot cattle fed monensin. Facilities varied from slatted to concrete floors, and self-feeders to fence line feed bunks. Roughages varied depending on study location, with alfalfa, hay, corn silage and corn sorghum being some of the feeds used. Results indicated increased feed efficiency, no significant difference in average daily gain, decreased feed consumption and increased rumen propionic acid production. The optimum level was at 33 ppm or 30 grams/ton.

E. Monensin as it Affects Cattle on Pasture

There are a considerable number of cattle being raised on pasture utilizing forages and roughages. This often is a preferred method of growing cattle and requires less labor and capital. Considerable savings could occur if efficiency were to be increased in this area. Research was conducted to evaluate monensin under these conditions and they proved positive. The FDA may give its approval for the use of monensin on pasture for growing and finishing cattle in the near future.

A problem that soon became evident under pasture conditions was an effective means to transport the monensin or act as a carrier, which is needed to place the premix in. Grain, such as ground barley, is commonly used along with many other means of transport. DeMuth <u>et al.</u> (1976) used molasses blocks treated with monensin although this too can be a problem, for it is difficult to regulate intake.

Oliver (1975) has studied monensin as it affects cattle grazing coastal bermudagrass. Monensin was mixed with a ground corn supplement and fed to the animals at levels of 25 to 200 mg/head/day. Larger weight gains were recorded for the monensin treated animals and growth rates increased as monensin levels increased.

On high roughage diets where feed is not restricted, as in pasture conditions, average daily gain has been shown to increase for monensin-treated animals. The increased efficiency associated with the monensin results in extra weight gain as compared to untreated animals.

Potter <u>et al.</u> (1974a) conducted studies on cattle grazing mixed legume-grass pasture of orchard grass, alfalfa brome and ladino clover. The supplement containing the monensin premix was a mixture of corn, molasses, soybean and alfalfa meal. Levels of 100 and 200 mg/head/day resulted in increased gains in the cattle relative to untreated animals. Rumen samples showed propionic acid production was increased.

Anthony <u>et al.</u> (1975), in a study involving cattle grazing coastal bermuda grass, reported no significant difference in average daily gain between treated and untreated animals.

Brethour (1976) and Corah <u>et al.</u> (1977) reported increased pasture gains on monensin-treated animals over controls when grazed on native shortgrass pasture. In the trial by Corah <u>et al.</u> (1977) monensin was mixed with three different carriers: a Staley commercial block, rolled corn, and a liquid supplement.

F. Monensin as it Affects Carcass Composition

The effect monensin has on carcass composition has been well documented. An extensive study on the effect of monensin on carcass quality was conducted by Potter <u>et al.</u> (1974b). Five hundred carcasses were evaluated with all slaughtered at the same weight. Levels of monensin used were 0, 10, 20, 30 and 40 grams/ton. Fat percentages were: 32.6, 32.5, 32.1, 31.6 and 33.0; dresssing percentages: 62.2, 62.0, 61.3, 61.0 and 61.7; marbling scores: 12.1, 12.8, 12.1, 11.4 and 12.4; cutability percentages: 46.3, 46.7, 46.2, 46.7 and 46.8, respectively, for the 0, 10, 20, 30 and 40 grams/ton groups.

The observations by Potter <u>et al.</u> (1974b) and a study by Sherrod <u>et al.</u> (1975) indicate no adverse effects associated with feeding monensin on carcass characteristics. There is no withdrawal time associated with monensin prior to slaughter.

G. Monensin as it Affects Gestating Cows

The cow-calf producer is at a level in the cattle industry that involves much labor, management and skill. Most cattle in this area of production are raised and maintained on sections of land that have an abundance of comparatively low-carrying-capacity grazing land (Neumann and Snapp, 1969). For this reason efficiency is imperative in order for maximum production. The feed required for the maintenance of a cow plus rearing her calf to weaning is great. An estimated 5.18 kg of Total Digestible Nutrients (TDN) per .45 kg of calf produced is required by the cow and calf. Added to this is an additional 2.21 kg of TDN per kg of live weight required past weaning. When the production of the edible portion is figured in, it takes 8.3 kg of TDN per .45 kg of edible beef. Thus 87.5% of the total metabolizable energy (ME) of the energy fed is used to maintain a cow and her calf. Only 12.5% of the ME was recovered in the final product (Klosterman et al., 1971). Efficiency is critical when dealing with cow-calf production. O'Mary and Dyer (1972) suggest that two animals in the breeding herd is required to produce one slaughter animal. The emphasis then should be placed at the beginning of an animal's life cycle where most of the energy expenditure occurs, in the breeding herd.

For reasons explained above, the use of monensin in a cow herd can be initiated and administered effectively. Feedlot use of monensin has increased productivity and savings, but compared to its potential in cow-calf production it may be even greater. Little work has been published on monensin use in cow-calf research but studies currently underway will add to the limited data now available.

Over two winters Turner <u>et al.</u> (1977) have compiled much data as it applies to the effects of monensin on brood cows. Meadow hay fed free choice and a barley supplement were provided for 48 cows each year for 2 years with monensin treatments of 0 and 200 mg/head/ day provided in the supplement. Results showed less hay was consumed by the treated cows, however they also outgained the untreated animals. Analysis of rumen samples indicated an increase in propionic acid production and a decrease in acetic and butyric acids. Total VFA concentrations were not affected by the treatments.

Reproduction, lactation and calf performance are all factors associated with cow-calf production and must be studied as to the effects monensin has on them.

Randel and Rouquette (1976) evaluated the effect monensin has on lactation and efficiency. Treatment was initiated on day 256 of pregnancy so the effect of monensin on the fetus was not determined. Results indicated a reduction in butterfat content but an increase in total milk production. Feed intake was reduced while feed efficiency increased by 12.4%.

In a study by Turner (unpublished data) results show an increase in milk production by about 13% in monensin-treated cows but no difference in milk fat or protein for the treated or untreated cows.

Rindsig and Davis (1974) point out that the acetate to propionate ratio is directly related to milk fat percentage and milk volume produced. An increase in propionic acid decreases the butterfat content but increases milk production. With an increase in acetic acid just the opposite occurs. Cows on a high-grain, low-roughage diet will also decrease the milk fat content in much the same way as monensin action does. This is due to the propionate energy in the ration and the fact that blood acetate is responsible for about 40 percent of the milk fatty acids which originate in the rumen.

Little published data is available on reproductive performance of monensin-treated cows. In the study by Turner <u>et al.</u> (1977), they found treated cows coming back into heat an average of 30 days postpartum as compared to 42 days for the controls; conception rates were not altered.

Moseley <u>et al.</u> (1977), in a study on beef heifers, reported conception rates of monensin treated animals slightly higher than those of the controls. No calving losses were reported for the treated or untreated animals.

H. Deleterious Effects of Monensin

It has been reported by Wolfe and Matsushima (1975) that steers on a ration of 30 grams/ton showed some side effects due to the monensin treatments. Erratic feed consumption and loose feces in the early part of the study occurred. After about four weeks the animals adjusted and no ill effects persisted. Some time for adaptation has been suggested by Elanco representatives to give the rumen time to adjust to the feed additive. No other literature has been reported to suggest that monensin disrupts the physiological activity of the animal.

A consideration that must be anticipated is the effect monensin

has on monogastric animals or animals other than ruminants. Horses are quite often in close proximity to cattle, particularly in pasture conditions.

In a study on horses, Stocker (1975) found monensin was toxic at 100 ppm, with higher levels being fatal.

III. MATERIALS AND METHODS

This study was conducted over a series of three phases with phase one commencing November 16, 1976 and continuing through the winter to March 1, 1977, just prior to calving. Phase two involved calving and went through this period to mid-May. The final phase, or postpartum period, was from mid-May when monensin treatments were terminated to the end of August when weaning took place. In mid-October pregnancy and fetal age was determined by rectal palpation and the breeding records. This accounted for an entire reproductive cycle of a brood cow.

Ninety-six mature pregnant Hereford cows ranging from three to ten years of age were allotted to three replications with four treatments and eight cows per pen. Pregnancy was determined by rectal palpation prior to the initiation of the study. The cows were artificially inseminated the previous spring beginning the end of May, and continuing 42 days, to a single Angus sire. Hereford cleanup bulls followed for 21 days. The cows were randomly stratified to respective treatments by breeding date, weight, condition score and the previous year's weaning weight. Calving date was the main determinant in assigning cows to replications, with reps being early, mid and late calvers.

A barn with access to individual feeding stalls was utilized to study one replication. Outside hay bunks were provided. The other two replications were in outside lots with sheltered hay bunks and raised feed troughs. Hay was group fed in all cases with the supplement group fed in the outside lots, but individually in the barn.

Salt, a 50:50 salt-bonemeal mix and water were provided free choice. Heated automatic waterers were used.

Monensin treatments consisted of 0, 50, 200 and 300 mg/head/day and was provided in the ground barley which acted as a carrier for the monensin. Controls received .45 kg of barley/head/day with monensin treatments receiving the same, but their respective monensin doses were added to the barley.

Monensin is used as an anticoccidial in poultry so prior to the initiation of the study it was necessary to analyze fecal samples for coccidiosis. Tests were negative.

Rumen samples for VFA analysis were taken twice during the study, once prior to calving, and another postpartum. An esophageal hose connected to a vacuum pump was utilized on four cows per pen, for a total of twelve samples per treatment. On the morning samples were taken cows were fed at one-half hour intervals to allow ample time for sampling. All cows were given a minimum of three hours from time of feeding to the time samples were taken; this was to allow for adequate rumen fermentation.

The basic feed for the cows was baled meadow hay native to the area, consisting of 80% rushes and sedges with a protein content of 9.5% crude protein. Hay was weighed in daily, with each treatment receiving a predetermined amount for that particular week. Weighback was obtained weekly to determine actual intake. Initially the control cows were fed hay free choice and consumed 13.4 kg/head/day. The initial hay levels were 50 mg receiving 95% of the controls and the 200 and 300 mg groups receiving 90%. Cow weight gains were higher than desired during the first 28 days so feed levels for all treatments were adjusted downward. Throughout the remainder of the study feed was adjusted to maintain cattle in a thrifty condition and provide equal weight gain or loss between treatments. In early March feed levels were increased to insure adequate nutrition for lactation and rebreeding. After calving and treatment termination the cows were turned out on native meadow pasture and received hay or grazed as a group.

Cow weights were obtained initially and every 28 days prior to calving and were used to adjust hay intake. Cows and calves were weighed within 24 hours postpartum, May 9 (turnout) and weaning. Calf weaning weights were adjusted to correct for age and sex. At birth, bull calves were castrated and all calves individually identified by ear tags.

At or near the time of calving cows were removed from their pens and taken to the calving shed. During this time cows were fed hay free choice and cows that were on monensin, regardless of level, received 200 mg/head/day of the monensin included in the ground barley. Cows were returned to their pens as soon after calving as possible, with no cows remaining off their treatments longer than two days. Hay fed was adjusted accordingly so the cows remaining in the pens received the proper level. Cows that lost calves were eliminated from subsequent data, as were cows that became ill or had calves that were not healthy. One cow that lost her calf at birth was grafted another.

First estrus postpartum was detected by utilizing nine

vasectomized bulls with chin ball markers. Visual observations were also made at least three times daily. When the oldest calf in a pen reached seven days of age a bull was turned into that pen for two hours in the morning and evening for heat detection. Bulls were randomly assigned pens so that no bull was in the same pen for an extended number of days. Nine bulls were available and in the latter part of the study twelve pens needed to be covered. As a result an overlap occurred. Only more aggressive bulls were used to cover more than one pen and they were put in pens where the least amount of activity was expected. When the treatment phase ended and the cows were turned out to pasture, heat detection continued on a group basis. For 42 days in early June the cows were artificially inseminated to a single Angus sire and Hereford cleanup bulls followed this for 21 days. Pregnancy was determined in mid-October by rectal palpation. Fetal age was estimated by breeding records and palpation results.

Statistical analysis was determined according to Steel and Torrie (1960). A one-two factor of analysis of variance was performed using least significant difference to compare means.

IV. RESULTS AND DISCUSSION

A. Cow Gain and Hay Intake

Table 1 shows the prepartum period, November 16 to March 1, including initial and final weights and hay intake. Results indicated the monensin treatments performed equally as well or better than the control group when hay was restricted from 7 to 10% relative to the control group's diet. Feed efficiency was improved with the use of monensin during this period. This is in agreement with Turner <u>et al.</u> (1977) who reported similar findings with cows fed free choice.

Table 2 shows the calving period daily gains and hay intake. During this time cows were calving which resulted in negative daily gains. The 200 mg level received the least hay or 13% less than the control group. With this reduction in hay the 200 mg treatment still showed daily losses similar to the control group. The 300 mg level lost the most weight (P>.05) indicating this group should have received more than 89% of the control group's diet.

During the calving period a problem occurred which resulted in a number of cows being removed from the study. The cows were in a confined situation and housed in pens that were made of wooden boards coated with a paint containing lead. The pens had been painted some years before and up until this study no young or newborn calves had been housed in these pens for any length of time.

Calves, two weeks of age and older, chewed on the boards, ingesting the paint. In time, about a month, lead would reach a toxic level in the calf's body and it would become extremely sick or would

Treatment weight ^a (mg/hd/day) No. (kg) Control 24 455 50 24 447	weight ^a (kg) 490	ADG ^a (kg) .34	Per day (kg) 11.7	Percent of control
	490	. 34	11 7	100
50 24 447			11./	100
	487	.38	10.9	93
200 24 456	496	. 38	10.5	90
300 24 457	495	.37	10.7	92

TABLE 1. COW GAIN AND HAY INTAKE FOR THE PREPARTUM PERIOD (NOVEMBER 16 TO MARCH 1)

^aMeans not significantly different at the P<.05 level between

treatments.

		· · · · · · · · · · · · · · · · · · ·					
Treatment (mg/hd/day)	No, ^b	Initial weight ^a (kg)	Final weight ^a (kg)	ADG ^a (kg)	Hay Per day (kg)	intake Percent of control	
Control	21	489	437	75	12.9	100	
50	23	486	431	79	11.6	90	
200	19	496	442	78	11.2	87	
300	21	491	425	95	11.5	89	

TABLE 2. COW GAIN DATA AND HAY INTAKE FOR THE CALVING PERIOD

(MARCH 1 TO MAY 9)

^aMeans not significantly different at the P<.05 level between treatments.

^bMissing values due to nine calves dying of lead poisoning, two calves dying of other causes, and one cow getting sick and being removed from the study.

die. Symptoms were disorientation, teeth grinding and convulsions. In all, 11 calves died of lead poisoning, 2 calves died of other causes and 1 cow was removed from the study due to illness. Eightytwo cows out of the original ninety-six completed the study.

Because of the lead toxicity problems, this phase of the study was terminated two weeks earlier than planned. Uneven sample sizes were also a result of the losses but this is a common problem in studies of this nature.

Average daily gain and hay intake for the entire confinement period is summarized on table 3. Overall the 200 mg level's performance was consistently the best with less weight loss on a diet 11% less than the control group's. The 300 mg level showed the greatest weight loss which means hay was not provided in sufficient amounts. For this quality of feed 300 mg may be too high.

Table 4 shows cow gain for the postpartum period when the cows and calves were on meadow pasture. Hay or pasture intake was not measured during this period. Originally the May 9 weight was to be used to adjust hay intake to bring all treatments in line with each other relative to daily gain. The 50 or 200 mg treatments hay intake would have been further reduced at this time and the 300 mg level increased in relation to the controls.

Table 5 shows a brief summary of the study from the initial to final weights. The greatest weight loss occurred for the 300 mg level with reasons explained previously. The control group came out even with the 50 and 200 mg groups showing the greatest gain but not significantly different from the other treatments.

ADG ^a (kg)	Per day (kg)	Percent of control
12	12.2	100
05	11.2	92
10	10.8	89
17	11.0	92
	1. 1.	

TABLE 3. COW GAIN DATA AND HAY INTAKE FOR THE ENTIRE

CONFINEMENT PERIOD (NOVEMBER 16 TO MAY 9)

^aMeans not significantly different at the P<.05 level between treatments.

^bMissing values due to nine calves dying of lead poisoning, two calves dying of other causes, and one cow getting sick and being removed from the study.

Control19437456.175023428452.2120019445467.202002142644416	Treatment (mg/hd/day)	No. ^a	Initial weight (kg)	Final weight (kg)	ADG ^a (kg)	
200 19 445 467 .20	Control	19	437	456	.17	
	50	23	428	452	.21	
200 01 400 444	200	19	445	467	.20	
300 21 426 444 .16	300	21	426	444	.16	

TABLE 4. COW GAIN FOR THE POSTPARTUM PERIOD

(MAY 9 TO AUGUST 29)*

*Means not significantly different at the P<.05 level between treatments.

^aMissing values due to eleven calves dying of lead poisoning, two calves dying of other causes and one cow getting sick and being removed from the study.

Treatment		Initial weight	Final weight	Weight change
(mg/hd/day)	No. ^a	(kg)	(kg)	(kg)
Control	19	457	456	-1
50	23	440	452	+12
200	19	459	467	+8
300	21	455	444	-11

TABLE 5. COW GAIN DATA FROM NOVEMBER 16 TO AUGUST 29*

*Means not significantly different at the P<.05 level between treatments

^aMissing values due to eleven calves dying of lead poisoning, two calves dying of other causes, and one cow getting sick and being removed from the study. This study demonstrated increased efficiency with the use of monensin for brood cows being fed native meadow hay. Hay intake was reduced by as much as 12% for the 200 mg treatment, which appeared to be the most efficient level, without adverse effects on performance. With savings of this magnitude, during the course of a 180 day wintering period a cow herd of 500 animals, consuming 12 kg/head/day, would save 129.6 metric tons of hay. This is enough hay to feed an additional 60 cows during the same period. This added production could result in a more viable economic unit and in times such as cattlemen are now experiencing, particularly the cow-calf sector, this would help considerably.

B. Volatile Fatty Acid Production

Volatile fatty acid concentrations were determined to measure the effect monensin has on rumen microbial activity. Table 6, which shows samples obtained on January 12, produced results which were highly variable and believed to be due to a laboratory problem in analysis of these data. Therefore statistical analysis was not run on these data. However, results indicated an increase in propionic acid production and a decrease in acetic and butyric acids.

The samples obtained on May 5 (table 7) show a pattern with monensin treatments. An increase in propionic acid is evident at the 200 and 300 mg levels with a reduction in butyric and acetic acids. This is in agreement with Perry <u>et al.</u> (1976), Dinius and Simpson (1975) and Thornton <u>et al.</u> (1976) who reported similar findings with monensin use.

TABLE 6. VOLATILE FATTY ACID DATA FOR SAMPLE ONE

1 10	NULA	DV.	1	2	۱
(UA	INUP	RY	Т	۲)

Treatment (mg/hd/day)	No.	Acetate	Propionate	Butyrate	Total concen- tration (mM/liter)
Control	12	64.7+12.3 ^a	24.1+ 8.25	11.3+4.17	31.9+15.5
50	12	_ 55.2 <u>+</u> 19.8			29.9 <u>+</u> 18.8
200	12	52.0 <u>+</u> 18.1	36.2 <u>+</u> 14.0	11.8 <u>+</u> 14.0	29.7 <u>+</u> 11.1
300	12	61.1 <u>+</u> 16.9	29.2 <u>+</u> 13.8	9.8 <u>+</u> 3.34	32.5 <u>+</u> 21.4

^aStandard error of the mean.

TABLE 7. VOLATILE FATTY ACID DATA FOR SAMPLE TWO (MAY 5)

AND STANDARD ERRORS

	· · ·				Total
Treatment			Molar %		concen- tration
(mg/hd/day)	No.	Acetate	Propionate	Butyrate	(mM/liter)
					· · · · ·
Control	12	75.8 <u>+</u> .82 ^a	17.3 <u>+</u> .65 ^a	6.8 <u>+</u> .78 ^a	47.7 <u>+</u> 1.36 ^a
50	12	75.7 <u>+</u> .81 ^a	17.6 <u>+</u> .56 ^a	6.7 <u>+</u> .46 ^a	41.1 <u>+</u> 1.24 ^b
200	12	72.5 <u>+</u> 1.88 ^b	21.1 <u>+</u> 2.22 ^b	6.4+.81	48.7 <u>+</u> 1.35 ^C
300	12	72.3 <u>+</u> 2.45 ^b	21.9 <u>+</u> 2.59 ^b	5.8 <u>+</u> .97 ^b	36.1 <u>+</u> 13.8 ^d
· · · · · · · · · · · · · · · · · · ·					

abcdMeans with different superscripts differ at the P<.05 level
within columns.</pre>

Acetate production was reduced when comparing the control and 50 mg levels to the 200 and 300 mg groups (P<.05). The 200 and 300 mg treatments increased propionic acid production (P<.05) as compared to the 50 mg and control groups. Butyric acid production was decreased with monensin, but was only significant on the 300 mg level.

Total VFA production was significantly different between all treatments with no clear cut pattern to monensin dosage. This is not in agreement with Turner <u>et al.</u> (1977) and Richardson <u>et al.</u> (1976) who reported little change in total VFA concentrations. Church (1976) points out that great variability can result when total VFA's are reported. Complicating factors are such things as saliva contamination, ingestion of water, changes in pH and changes in rumen volume.

C. Cow Reproductive Performance

Results for the cows reproductive performance are shown in table 8. Results for first estrus postpartum show no significant difference between treatments although the 200 mg level cows came into heat a few days earlier. Turner <u>et al.</u> (1977) reported a significant difference in first estrus postpartum during the first year of a two year study on the effects of monensin on brood cows.

The number of cows bred back is also given in table 8 and again the 200 mg monensin treatment out-performed the other groups. Only 84% of the control group's cows bred back while the monensin treatments averaged 100, 91 and 86% respectively for the 200, 50 and 300 mg groups. Conception data is of limited value, due to the small numbers involved. From the reproductive performance of the cows it seems that

Treatment (mg/hd/day)	No. ^a	First estrus postpartum	Bred Back	Conception %	Projected 77/78 calf interval
****		Days <u>+</u> S.E.			Days+S.E.
Control	19 ^b	44+14.1	16	84	345 <u>+</u> 17.6 ^C
50	23	44+12.3	21	91	348+23.4
200	19	4 1 <u>+</u> 10.5	19	100	348+20.4
300	21	45 <u>+</u> 14.9	18	86	362 <u>+</u> 21.8 ^d

TABLE 8. REPRODUCTIVE PERFORMANCE

^aMissing values due to eleven calves dying of lead poisoning, two dying of other causes, and one cow getting sick and having to be removed from the study.

^bOne cow did not cycle and was not included in the first estrus cycle.

^{cd}Menas with different superscripts differ at the P<.05 level within columns.

monensin does not have a deleterious effect on performance and possibly a beneficial effect.

A projected calving interval was determined by estimating the number of days from the 1977 calving to when the cows should calf in 1978. This was determined by breeding date and rectal palpation estimations. A significant difference at the P<.05 level between the control and 300 mg treatments was found but not between the other treatments. This could be due in part to the greater weight loss experienced by this group.

D. The Effect of Monensin on Calf Performance

Table 9 shows calf weights at birth, treatment termination (May 9) and weaning (August 29). Birth weights were similar between treatments. The May 9 weight shows weights ranging from 54 kg for the control group to 61 kg for the 300 mg treatment but no difference was found at P<.05.

Average daily gain, table 10, from calving to May 9 and from May 9 to weaning was computed and adjusted for sex using adjustment factors of 6.9 and 6.3%, respectively. Heifers were adjusted upwards to put them on a steer equivalence. These figures were determined by adding up the average daily gains of the steers and heifers and finding the percent difference between the two. Daily gains for both periods were not statistically significant at the P<.05 level between treatments.

Weaning weights obtained on July 29 were adjusted for age (139 day average) and sex (adjusting heifers up 6%). No difference

	Treatment						
Date	Control	50	200	300			
Birth wt. (kg)	34	35	35	. 34			
Number ^a	24	24	24	23			
May 9 wt. (kg)	54	60	55	61			
Number	18	21	18	21			
Weaning wt. (kg) ^C	124	134	129	133			
Number ^d	19	23	19	21			

TABLE 9. CALF WEIGHTS*

*Means not significantly different at the P<.05 level between treatments.

^aMissing value due to one cow getting sick and having to be removed from the study.

^bMissing values due to four calves not being born yet, eleven calves dying of lead poisoning, two of other causes, and one cow being removed from the study due to illness.

^CWeaning weights were adjusted for age (139 days) and sex.

^dMissing values due to eleven calves dying of lead poisoning, one cow being removed due to illness and two calves dying of other causes.

TABLE 10. CALF GAIN DATA FROM BIRTH TO MAY 9

AND MAY 9 TO AUGUST 29*

	Treatment					
Period	Control	50	200	300		
Birth to May 9 (kg) ^a	.82	.90	.81	.86		
Number ^b	18	21	18	21		
May 9 to August 29 (kg	g) ^C .61	.67	.64	.66		
Number ^d	19	23	19	21		

*Means not significantly different at the P<.05 level between treatments.

^aAdjusted for sex with weighted means.

^bMissing values due to four calves not being born yet, eleven calves dying of lead poisoning, two of other causes, and one cow being removed from the study due to illness.

^CAdjusted for sex

^dMissing values due to eleven calves dying of lead poisoning, one cow being removed due to illness, and two calves dying of other causes.

was found between treatments with the lowest weaning weights coming from the control group at 124 kg, and the highest at 134 kg from the 50 mg treatment.

The largest calf losses came from the control and 200 mg treatments. Past performance of the five cows that lost calves from the control group averaged 109% while the five from the 200 mg level averaged 102%. This is on a basis of 100 for all cows on the study. Table 11 shows the performance index of the cows that remained on the study. It is evident that of the calves lost in the control and 200 mg groups, they were from the more productive cows. So a theoretical weaning weight was determined by adjusting the actual weaning weight to an index of 100. This gives an estimate of what effect the lost calves may have had on the data.

There seems to be little effect on calf performance of cows treated with monensin. Calf weights were similar, which is in agreement with Randel and Rouquette (1976) who reported similar findings on birth weight. Average daily gain was not affected in this study by using monensin nor was weaning weight.

Increased milk production has been realized when monensin is added to a diet, as reported by Randel and Rouquette (1976) and Turner (unpublished data). Propionic acid production when increased tends to increase milk production but this results in decreased butterfat (Rindsig and Davis, 1974). The butterfat content is less on a percent basis but total butterfat is likely the same. No lactation analysis was performed in this study which would have added needed data, for this is limited and little literature is available on the subject.

Treatment (mg/hd/day)	Performance ^a index %	Weaning ^b weight (kg)	Theoretical ^C weaning weight (kg)	
Control	97	124	128	
50	100	134	134	
200	99	129	130	
300	100	133	133	

TABLE 11. COW PERFORMANCE INDEX AND THEORETICAL

ADJUSTMENT OF WEANING WEIGHT

^aPerformance index based on past year's weaning weights.

^bWeaning weights were adjusted for age and sex.

^CTheoretical values, adjusting all weaning weights to 100% performance index.

E. Summary of Results

Prepartum daily gain for all treatments was not significantly different at the P<.05 level, however gains for the monensin treatments were higher. This was accomplished on 7 to 10% less hay relative to the control group's diet.

During the calving period weight loss was similar for all treatments, except the 300 mg level which lost more weight. This group was fed 89% of the control group's diet which may have been too little. No significant difference at the P<.05 level between treatments was found, however. The 200 mg group continued to perform above the other treatments even though their diet was 13% below the control group.

Postpartum results were similar to the results for the calving period with all treatments performing similarly. Monensin treatments, however, with the exception of the 300 mg group, out-gained the control animals (P>.05).

Volatile fatty acid production was altered with an increase in propionic acid and a decrease in acetic and butyric acids with 200 and 300 mg levels of monensin. Total production was significantly different between treatments which is not in agreement with other studies.

Reproductive performance was not affected by the use of monensin with all treatments showing similar results. Calving interval for the 300 mg treatment, however, was longer than for the other groups. Calf performance was similar between treatments.

Overall, monensin treatments increased performance and feed

efficiency compared to the control group. The 200 mg level provided the best results and can be recommended for cows wintered on meadow hay at a savings of 12% in hay requirements. A monensin level of 300 mg/head/day may be too high on high roughage diets, particularly during early lactation.

V. BIBLIOGRAPHY

Anthony, W. B., V. L. Brown and R. R. Harris. 1975. Monensin effect on weight gain of grazed cattle. J. Anim. Sci. 40:190.

Barcroft, J., R. A. McAnally and A. T. Phillipson. 1944. Absorption of volatile acids from the alimentary tract of the sheep and other animals. J. Exptl. Biol. 20:120.

Brethour, J. R. 1976. Rumensin for steers on native short-grass pastures. Roundup-Report of Progress 266, Kansas State University, April 23.

Brown, H., L. H. Carroll, N. G. Elliston, H. P. Grueter, J. W. McAskill, R. D. Olson and R. P. Rathmacher. 1974. Field evaluation of monensin for improving feed efficiency in feedlot cattle. Proc. West. Sec. Amer. Soc. Anim. Sci. 25:300.

Church, D. C. 1976. Volume 1 - <u>Digestive Physiology and Nutrition</u> of Ruminants, Second Edition. O and B Books, Corvallis, Oregon.

Corah, L. R., E. F. Smith, J. G. Riley, F. L. Schwartz and C. L. Alexander. 1977. Feeding monensin to grazing cattle. Proc. 69th Ann. Meeting, Amer. Soc. Anim. Sci. 45:116.

DeMuth, L. J., H. W. Essig, L. J. Smithson and E. G. Morrison. 1976. Monensin in molasses blocks. J. Anim. Sci. 42:273. (Abstr.).

Dinius, D. A. and M. E. Simpson. 1975. Effects of monensin on digestibility and ruminal microbes. J. Anim. Sci. 41:398.

Dinius, D. A., M. E. Simpson and P. B. Marsh. 1976. Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers. J. Anim. Sci. 42:229.

Garrett, W. N. 1976. Influence of rumensin on energy utilization of corn and barley diets. 15th California Feeders Day Report, March 26.

Gregory, K. E. 1972. Beef cattle type for maximum efficiency "putting it all together." J. Anim. Sci. 34:881.

Hale, W. H., Brent Theurer, J. A. Marchello, Bruce Taylor and John Kuhn. 1975. The effect of monensin on growing and finishing cattle. Arizona Cattle Feeder's Day, Series P-36.

Haney, Jr., M. R. and M. Hoehn. 1967. Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrobial Agents and Chemotherapy, p. 349.

Harvey, R. W., A. C. Linnerud and D. F. Tugman. 1976. Monensin and silage rations for growing cattle. J. Anim. Sci. 42:275. (Abstr.).

Hungate, R. E. 1966. <u>The Rumen and Its Microbes</u>. Academic Press, Inc., New York.

Klosterman, E. W., C. F. Packer, R. R. Bishop and V. R. Cahill. 1971. Total feed efficiency of beef production by cattle of different sizes and breeds. Ohio Agr. Res. and Dev. Center, Res. Sum. 52:67.

Linn, J. G., J. C. Meiske and R. D. Goodrich. 1975. Influence of monensin on growing and finishing steers. Minnesota Cattle Feeder's Report B-205.

Lofgreen, G. P. 1976. A comparison of sodium bicarbonate with rumensin in a finishing ration. 15th California Feeder's Day Report, March 26.

Maynard, L. A. and J. K. Loosli. 1969. <u>Animal Nutrition</u>, Sixth Edition. McGraw-Hill Book Company, New York.

Moseley, W. M., M. M. McCarter and R. D. Randel. 1977. Effects of monensin on growth and reproductive performance of beef heifers. J. Anim. Sci. 45:961.

Neumann, A. L. and R. R. Snapp. 1969. <u>Beef Cattle</u>, Sixth Edition. John Wiley and Sons Inc., New York.

Oliver, W. M. 1975. Effect of monensin on gains of steers grazed on coastal bermudagrass. J. Anim. Sci. 41:999.

O'Mary, C. C. and I. A. Dyer. 1972. Commercial Beef Cattle Production. Lea and Febiger, Philadelphia.

Perry, T. W., W. M. Beeson and M. T. Mohler. 1976. Effect of monensin on beef cattle performance. J. Anim. Sci. 42:761.

Potter, E. L., C. O. Cooley, A. P. Raun, L. F. Richardson and R. P Rathmacher. 1974a. Effect of monensin on daily gain of cattle on pasture. Proc. West. Sec. Amer. Soc. Anim. Sci. 25:343.

Potter, E. L., C. O. Cooley, L. F. Richardson, R. P. Rathmacher and A. P. Raun. 1974b. Effect of monensin upon composition of carcass gain of cattle. J. Anim. Sci. 39:249.

Potter, E. L., A. P. Raun, C. O. Cooley, R. P. Rathmacher and L. F. Richardson. 1976. Effect of monensin on carcass characteristics, carcass composition and efficiency of converting feed to carcass. J. Anim. Sci. 43:678.

Randel, R. D. and F. M. Roquette, Jr. 1976. Effect of monensin on lactation in beef cows. J. Anim. Sci. 43:232. (Abstr.).

Raun, A. P., C. O. Cooley, R. P. Rathmacher, L. F. Richardson and E. L. Potter. 1974. Effect of different levels of monensin on feed efficiency, ruminal and carcass characteristics of cattle. Proc. West. Sec. Amer. Soc. Anim. Sci. 25:346.

Richardson, L. F., A. P. Raun, E. L. Potter, C. O. Cooley and R. P. Rathmacher. 1974. Effect of monensin on ruminal fermentation in vitro and in vivo. J. Anim. Sci. 39:250.

Riley, Jack, Keith Bolsen, Larry Corah and Galen Fink. 1976. Effect of rumensin on performance of growing heifers. Kansas State University Cattleman's Day Report, 63rd Annual.

Rindsig, R. B. and C. L. Davis. 1974. Low milk fat: causes and cures. Illinois Research, p. 12.

Rumensin Technical Manual. 1975. Eli Lilly and Company, Greenfield, Indiana.

Sherrod, L. B., R. L. Kellison and R. H. Klett. 1975. Monensin levels in growing and finishing rations. Texas Tech. Univ. Center Research Report Number 25.

Sherrod, L. B., W. C. Koers, J. C. Parrott and C. B. Summers. 1976. Monensin in combination with various implants for finishing steers. Texas Tech. Univ. Center Report, Research Report Number 26.

Steel, R. G. D. and J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., New York.

Stocker, J. W. 1975. Monensin sodium in horses. Vet. Rec. 97:137.

Summers, C. B. and L. B. Sherrod. 1976. Acceptability of feedlot rations top dressed with different supplements containing various concentrations of monensin and tylosin. Texas Tech. Univ. Center Report, Research Report Number 26.

Thornton, J. H., F. N. Owens, R. P. Lemenager and R. Totusek. 1976. Rumensin and ruminal methane production. J. Anim. Sci. 43:336.

Turner, H. A., R. J. Raleigh and D. C. Young. 1977. Effect of monensin on feed efficiency for maintaining gestating mature cows wintered on meadow hay. J. Anim. Sci. 44:338.

Utley, P. R. 1976. Use of rumensin in growing and finishing beef cattle--a review. Proc. Georgia Nutr. Conf. Feb. 17.

Utley, P. R., G. L. Newton, R. J. Ritter, III and W. C. McCormick. 1976. Effects of feeding monensin in combination with zeranol and testosterone-istadiol implants for growing and finishing heifers. J. Anim. Sci. 42:754.

Weichenthal, B. A., G. F. Cmarik and A. L. Neumann. 1976. Rumensin plus implants for feedlot cattle. University of Illinois Beef Cattle Day Report, AS672i.

Wolfe, Jr., G. D. and J. K. Matsuchima. 1975. Effectiveness of monensin in increased feed efficiency in feedlot cattle. Colorado State Beef Nutrition Research, General Series 947.

APPENDIX

(kg)	weight ^a (kg)	weight ^a (kg)	No. of days	No. ^b	Treatment mg/hd/day
04	452	458	147	24	Control
.03	455	451	145	24	50
.06	469	460	144	24	200
02	457	460	143	23	300

APPENDIX TABLE 1. COW GAIN FROM NOVEMBER 16 TO CALVING

^aMeans not significantly different at the P<.05 level between

treatments.

^bMissing value due to one cow getting sick and having to be removed from the study.

^CWeighted means.

APPENDIX TABLE 2. COW GAIN DATA AND HAY INTAKE FROM

		н 1			:	Hay	intake
Treatment	No. ^b	No. of	Initial weight ^a	Final weight ^a	ac	Per day	Percent of
mg/hd/day	NO .	days	(kg)	(kg)	ADG ^{ac}	(kg)	contro]
Control	24	42	488	452	85	12.9	100
50	24	40	487	455	80	11.6	90
200	24	39	501	469	82	11.2	87
300	23	38	498	457	-1.07	11.6	90

MARCH 1 TO CALVING

^aMeans not significantly different at the P<.05 level between

treatments.

^bMissing value due to one cow getting sick and having to be removed from the study.

^CWeighted means.

Treatment mg/hd/day	No. ^a	No. of days	Initial weight (kg)	Final weight (kg)	ADG ^b (kg)
	· · · · · · · · · · · · · · · · · · ·				,
Control	21	26	457	437	77
50	23	28	453	431	80
200	19	24	469	442	-1.12
300	21	32	452	425	83

APPENDIX TABLE 3. COW GAIN FROM CALVING TO MAY 9*

*Means not significantly different at the P<.05 level between treatments.

^aMissing values due to nine calves dying of lead poisoning, two calves dying of other causes and one cow getting sick and having to be removed from the study.

^bWeighted means.

Treatment mg/hd/day	No. ^a	No. of days	Initial weight (kg)	Final weight (kg)	ADG ^b (kg)
					· · · · · · · · · · · · · · · · · · ·
Control	19	137	456	456	0
50	23	140	452	452	0
200	19	136	471	467	03
300	21	144	451	444	05

APPENDIX TABLE 4. COW GAIN FROM CALVING TO AUGUST 29*

*Means not significantly different at the P<.05 level between treatments.

^aMissing values due to eleven calves dying of lead poisoning, two dying of other causes and one cow getting sick and having to be removed from the study.

^bWeighted means.

	Treatment (mg/hd/day)							
	Cont	trol	5()	20)0	3(00
	Per	day	Per	day	Per	day	Per	day
		% of		% of		% of		% of
Week of	kg	С*	kg	C	kg	C	kg	С
· ·								
11/16	13.0	100	12.4	95	11.7	90	11.7	90
12/06	13.6	100	12.9	95	12.2	90	12.2	90
12/20	11.8	100	10.7	91	10.4	88	10.4	88
02/07	10.9	100	10.3	95	9.9	91	10.3	95
03/07	12.5	100	11.1	89	10.8	86	11.1	89
03/14	12.9	100	11.5	89	11.1	86	11.5	89
03/28	13.2	100	11.7	89	11.4	86	11.7	89
04/18	13.4	100	11.9	89	11.5	86	11.9	89
05/09				Treatmer	nt Termin	ation		

APPENDIX TABLE 5. HAY ADJUSTMENTS BY TREATMENT PERIOD

*Control.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cow No.	11/16 wt.	3/1 C wt.	alving wt.	Calving date	5/9 wt.	8/29 wt.	Days to first estrus	Preg. test	Calving interval
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Replicati	on 1					•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1							44	X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1096	37	Х	· .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						994	1084	32	X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						940	854		Х	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						CD	CD	37		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1064	1074	17	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					4/24	880	922	51		
27 1082 1166 1096 4/06 1040 CD 52 X 54 1112 1228 1066 4/03 1048 1090 47 X 58 1034 1078 950 5/04 994 1040 30 X 96 876 920 890 4/27 830 822 42 X 123 846 892 826 4/25 792 886 43 X 145 892 956 922 3/28 784 CD 51 X 159 1050 1152 918 3/30 CD CD 57 X 303 980 1082 1022 3/31 954 952 61 0 Replication 3 30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 <td>295</td> <td>1050</td> <td>1128</td> <td>1028</td> <td>4/29</td> <td>990</td> <td>986</td> <td></td> <td></td> <td></td>	295	1050	1128	1028	4/29	990	986			
27 1082 1166 1096 4/06 1040 CD 52 X 54 1112 1228 1066 4/03 1048 1090 47 X 58 1034 1078 950 5/04 994 1040 30 X 96 876 920 890 4/27 830 822 42 X 123 846 892 826 4/25 792 886 43 X 145 892 956 922 3/28 784 CD 51 X 159 1050 1152 918 3/30 CD CD 57 X 303 980 1082 1022 3/31 954 952 61 0 Replication 3 30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 <td>Replicatio</td> <td>on 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Replicatio	on 2								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1166	1096	4/06	1040	CD	52	Х	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	1112	1228	1066		1048				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	1034	1078	950	5/04					
123 846 892 826 4/25 792 886 43 X 145 892 956 922 3/28 784 CD 51 X 159 1050 1152 918 3/30 CD CD 57 X 303 980 1082 1022 3/31 954 952 61 0 Replication 3 30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 3/05 1092 1168 39 X 105 840 876 798 3/31 718 816 59 X 134 1134 1216 1140 4/19 1110 1190 33 X 200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150	96	876	920	890						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	123	846	892	826						
159 1050 1152 918 3/30 CD CD 57 X 303 980 1082 1022 3/31 954 952 61 0 Replication 3 30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 3/05 1092 1168 39 X 105 840 876 798 3/31 718 816 59 X 134 1134 1216 1140 4/19 1110 1190 33 X 200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150 5/01 1070 1140 41 X	145	.892	956		3/28					
303 980 1082 1022 3/31 954 952 61 0 Replication 3 30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 3/05 1092 1168 39 X 105 840 876 798 3/31 718 816 59 X 134 1134 1216 1140 4/19 1110 1190 33 X 200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150 5/01 1070 1140 41 X	159	1050	1152							
30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 3/05 1092 1168 39 X 105 840 876 798 3/31 718 816 59 X 134 1134 1216 1140 4/19 1110 1190 33 X 200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150 5/01 1070 1140 41 X	303	980	1082							
30 1072 1102 972 3/17 878 1012 67 X 91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 3/05 1092 1168 39 X 105 840 876 798 3/31 718 816 59 X 134 1134 1216 1140 4/19 1110 1190 33 X 200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150 5/01 1070 1140 41 X	Replicatio	on 3	1							
91 926 1020 894 3/19 812 866 75 0 95 1160 1240 1120 3/05 1092 1168 39 X 105 840 876 798 3/31 718 816 59 X 134 1134 1216 1140 4/19 1110 1190 33 X 200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150 5/01 1070 1140 41 X			1102	972	3/17	878	1012	67	X	
951160124011203/051092116839X1058408767983/3171881659X1341134121611404/191110119033X200104010869883/08CDCD56X2721140120411505/011070114041X	91	926								
1058408767983/3171881659X1341134121611404/191110119033X200104010869883/08CDCD56X2721140120411505/011070114041X	95	1160	1240	1120						
1341134121611404/191110119033X200104010869883/08CDCD56X2721140120411505/011070114041X	105									
200 1040 1086 988 3/08 CD CD 56 X 272 1140 1204 1150 5/01 1070 1140 41 X										
272 1140 1204 1150 5/01 1070 1140 41 X										
3+1 1210 1314 1100 3/31 1100 1232 40 X	341	1210	1314	1186	3/31	1160	1232	40	X	

APPENDIX TABLE 6. RAW DATA - COWS (LBS) CONTROL

		50 MG								
Cow No.	11/16 wt.	3/1 wt.	Calving wt.	Calving date	5/9 wt.	8/29 wt.	Days to first estrus	Preg. test	Calving interval	
<u>Replicati</u>										
6	1006	1086	1008	4/23	962	1040	40	0		
64	892	1002	976	4/23	920	924	34	X X		
84	1062	1202	1112	4/08	1054	1048	45	0		
98	848	886	840	4/11	764	832	52	X		
139	1140	1278	1230	5/09	1230	1272	32	X		
143	850	912	808	4/17	796	882	44	X		
144	1010	1136	1080	4/25	1026	1054	30	X		
148	924	1018	930	3/30	874	940	43	X		
Replicati	ion 2									
23	1108	1218	1210	4/02	1040	1122	48	X		
65	994	1114	1010	4/25	1020	1024	28	X		
. 93	920	976	924	4/04	832	946	59	X X		
109	934	1002	932	4/25	926	954	37	X		
127	876	938	900	5/09	900	894	31	X	1 A. A.	
183	1036	1158	1036	4/03	944	1038	49	X		
186	984	1084	1040	4/20	942	982	47	X		
306	914	960	878	4/01	830	910	63	X		
Replicati	on 3								n in state and stat	
55	880	932	840	3/20	810	894	53	X		
61	1056	1134	1032	3/11	CD	CD	84	X		
114	966	1030	990	4/25	940	1012	35	X		
124	1052	1156	1004	3/08	982	1050	40	X		
155	1100	1078	1002	3/13	876	976	78	0		
315	990	1106	1006	3/28	914	996	49	X N	est in a	
319	1026	1128	1130	5/03	1058	1068	26	X X		
327	1086	1216	1148	3/26	1028	1070	45	X		
$\overline{CD} = Calf$	died.	X = Pre	egnant.	0 = Open.						

APPENDIX TABLE 7. RAW DATA - COWS (LBS) 50 MG

<u> </u>									
Cow No.	11/16 wt.	3/1 wt.	Calving wt.	Calving date	5/9 wt.	8/29 wt.	Days to first estrus	Preg. test	Calving interval
Replicati	on 1				-				
9	938	982	880	4/29	920	940	34	Х	
21	990	1106	1052	4/21	1052	986	43	X	
39	964	1014	970	5/06	918	988	31	X	
75	890	984	972	5/01	932	910	37	X	
79	888	942	918	4/23	846	888	38	X	
80	1090	1252	1276	5/04	1196	1152	49	X	
110	1036		1090	5/10	1090	1122	32	X	
125	900	926	818	4/09	806	850	45	X	
Replicati	on 2								
20	1060	1174	1092	4/19	1042	1112	35	X	
29	1126	1260	1188	5/05	1100	1170	36	X	
81	1182	1194	1070	3/07	994	1082	53	X	
117	950	1024	1096	3/29	850	942	48	X	
173	1110	1206	1082	3/22	978	1080	59	X	
188	1116	1184	1092	3/20	984	1136	55	X	
199	924	1016	918	4/10	900	990	42	X	
279	1048	1220	1098	4/23	1004	1042	21	X	
Replicati	on 3					•			
111	1024	1120	1076	3/18	CD	CD	39	0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
116	1006	1124	1016	3/08	CD	CD	89	X	
128	856	900	816	4/04	CD	CD	48	x	
146	992	1066	1006	4/27	996	1058	32	X ·	
169	1018	1100	1004	3/11	946	1008	60	X	
171	964	990	852	3/05	CD	CD	78	X	
251	1030	1182	1096	3/11	CD	CD	84	X	
330	1020	1064	1058	4/19	980	1046	36	X	
CD= Calf	died	X = Preg	mant	0 = Open.					
ul ul ul		A HUG	munt.	o open.					

APPENDIX TABLE 8. RAW DATA - COWS (LBS) 200 MG

			· · · · ·		300	J MG				
	Cow No.	11/16 wt.	3/1 wt.	Calving wt.	Calving date	5/9 wt.	8/29 wt.	Days to first estrus	Preg. test	Calving interval
Rep	licat									
	19	958	1014	932	4/06	850	902	57	0	
	57	838	912	AB	AB	AB	AB	AB	0	
	73	766	810	744	4/13	718	738	58	X	
	85	1222	1306	1164	4/29	1086	1178	7	0	
	87	. 890	956	912	4/29	904	932	36	X	
	92	904	1012	956	4/11	938	912	54	X	
	160	902	964	932	5/05	884	898	46	X	
	323	1006	1106	1088	4/28	BC	BC	47	X	
Rep	licati	ion 2				• •				
	12	918	990	944	3/27	890	922	48	X	1. 1. S.
	48	1056	1152	1032	4/21	976	1006	48	X	
	66	994	1088	992	4/10	950	966	48	X	
	89	1116	1254	1172	4/14	1124	1150	14	X	• •
	129	1044	1088	1014	3/28	934	992	59	X	
	147	1180	1294	1184	3/31	CD	CD	63	X	
1. 19 p. 1	196	1042	1094	970	3/23	930	1010	51	X	
	300	1052	1154	1046	4/06	1014	982	35	Ô	
Rep	licati	ion 3								
	13	994	1112	1010	4/17	952	1046	43	X	
	16	1190	1286	1184	3/10	1054	1024	74	X	
	24	984	1048	950	3/26	866	966	39	X	
	88	1054	1146	1058	4/05	984	992	42	X	
	150	796	862	722	4/22	724	774	45	X	
	305	932	1010	906	3/17	824	872	61	X	
	339	1058	1160	1072	3/18	972	1094	36	X	
	352	1262	1378	1250	3/28	1152	1252	44	X	
AB	= Abor	ted.	BC = Bli	nd calf.	CD = Calf	died.	0 = 0			+
							ų v		riegnun	U •

APPENDIX TABLE 9. RAW DATA - COWS (LBS) 300 MG

·				CONTR				
Cow No.	Calf No.	Sex	Breed	Birth wt.	5/9 wt.	8/29 wt.	Adjusted 8/29 wt.	Weaning age
Replicat	tion 1					· · · ·	······································	_
1 14 25 37 69 103 151	503 534 529 548 533 501 518	H S H S S H	H H H H B H	73 77 72 76 69 66 64	122 90 92 76 CD 112 92	296 264 236 172 CD 316 232	319 292 272 210 CD 320 263	136 121 123 109 CD 137 127
295 Replicat	531	H	Н	82	100	208	240	122
27 54 58 96 123 145 159 303	488 481 541 526 519 462 NK 476	S S S S H H S	B H H B B B B	81 54 93 68 77 76 71 70	CD 126 102 86 84 CD CD 148	CD 182 238 234 196 CD CD 286	CD 174 265 254 208 CD CD 269	CD 148 117 124 126 CD CD 151
Replicat 30 91 95 105 134 200 272 341	zion 3 436 440 415 474 508 NK 536 473	H S S H S H S H	B B B H B H B	75 74 80 80 84 74 92 81	184 158 198 136 106 CD 102 156	378 316 376 296 242 CD 252 332	350 280 312 279 265 CD 277 331	165 163 177 151 132 CD 120 151

APPENDIX TABLE 10. RAW DATA - CALVES (LBS) CONTROL

NK = Not known. H = Heifer or Hereford.

S = Steer.

B = Black. CD = Calf died.

APPENDIX TABLE 11. RAW DATA - CALVES (LBS) 50 MG

Cow No.	Calf No.	Sex	Breed	Birth wt.	5/9 wt.	8/29 wt.	Adjusted 8/29 wt.	Weaning age
Replicati	on 1						<u> </u>	· · · · · · · · · · · · · · · · · · ·
6	513	Н	H	86	118	280	315	128
64	515	S	, H	80	116	300	319	. 128
84	491	H	В	78	156	328	340	143
98	497	S	В	71	128	302	300	140
139	545	S	H	81	81	208	239	112
143	504	S	B	82	112	264	271	134
144	520	Н	° j H, s	86	110	244	276	126
148	470	S	В	78	158	328	307	152
Replicatio	on 2							•
23	478	S	В	80	162	326	309	149
65	522	S	H I	73	96	234	251	126
93	482	Н	В	64	122	266	270	147
109	523	Н	H	64	84	226	258	126
127	546	S	H	73	73	244	285	112
183	479	S	В	90	174	366	349	148
186	509	S	H ·	83	122	310	324	131
306	477	S	В	76	134	272	258	150
Replicatio	on 3							
55	442	H	В	71	144	286	270	162
61	NK	S	B	81	CD	CD	CD	126
114	521	Š	Ĥ	75	92	212	226	174
124	419	Ĥ	В	68	184	342	304	169
155	430	Ś	B	90	200	360	312	154
315	461	S	B	78	176	364	336	118
319	538	Ŝ	Ĥ	72	82	280	317	156
327	455	Š	B	81	186	382	349	151

- CD = Calf died.

NK = Not known. H = Heifer or Hereford. S = Steer. B = Black.

APPENDIX	12.	RAW	DATA	-	CALVES	(LBS)	
		200 M					

Cow No.	Calf No.	Sex	Breed	Birth wt.	5/9 wt.	8/29 wt.	Adjusted 8/29 wt.	Weaning age
Replicat	ion 1			· · · · · · · · · · · · · · · · · · ·				<u> </u>
9	532	H	Η	77	88	232	269	122
21	511	Ή	H	77	108	238	264	, 130
39	544	S	Ή	79	82	210	237	115
75	535	S	Н	82	100	282	314	120
79	514	S .	H	82	100	236	249	128
80	540	· H'	H	71	82	200	237	117
110	547	Н	H	95	95	258	317	111
125	493	Н	B	75	132	304	317	142
Replicati	ion 2							
20	507	Н	В	86	136	316	348	132
29	543	Н	Н	93	100	254	303	116
81	416	S	В	78	182	354	297	175
117	467	S	В	75	146	328	305	153
173	447	S	В	92	178	370	333	160
188	443	H	B	80	160	324	306	162
199	496	H	В	62	94	214	225	141
279	516	H	Н	78	118	266	299	128
Replicati	ion 3							
111	NK	S	В	66	CD	CD	CD	CD
116	NK	S S	В	72	CD	CD	CD	CD
128	NK	Н	В	76	ĊD	ĊD	CD	CD
146	525	S	H	75	92	220	238	124
169	424	H	В	74	182	344	311	171
171	NK	H	В	72	CD	CD	CD	CD
251	NK	Η	В	48	CD	CD	CD	CD ·
330	506	Н	H	68	96	220	242	132

NK = Not known. H = Heifer or Hereford. S = Steer. B = Black. CD = Calf died.

APPENDIX	TABLE	13.	RAW DATA	 CALVES	(LBS)
			300 MG		

							•	
Cow No.	Calf No.	Sex	Breed	Birth wt.	5/9 wt.	8/29 wt.	Adjusted 8/29 wt.	Weaning age
Replicat	tion 1					_ _	***	
19	490	S	В	78	160	352	341	145
57	AB	AB	AB	AB	AB	AB	AB	AB
73	500	H a th	В	73	116	270	287	138
85	528	S	ь Н	s 80 .	104	232	253	122
87	530	S	H ·	67	84	232	255	122
92	498	H	В	59	110	232	245	140
160	542	H ···	Н	76	84	230	277	116
323	527	H	H _a and	59	BC	BC	BC	BC
Replicat	ion 2			• .				
12	460	S	В	65	148	304	279	155
48	510	Н	Н	96	128	310	345	130
66	494	S	Н	82	142	320	317	141
89	502	Η	В	69	114	292	313	137
129	464	, H	В	70	136	276	271	154
147	NK	S	В	59	CD	CD	CD	CD
196	449	H .	B	72	144	314	301	159
300	489	S	В	77	142	282	274	145
Replicat	ion 3							
13	505	Н	Н	85	130	280	304	134
16	421	S	В	94	222	414	353	172
24	456	H	B	72	150	310	301	156
. 88	485	S	B	83	152	322	310	146
150	512	Н	Н	75	96	200	220	129
305	437	S.	B	75	162	322	283	165
339	439	Н	B	71	148	308	288	164
352	463	S	В	96	178	364	338	154
352	463	S	В	96	178	364	338	154

- NK = Not known. H = Heifer or Hereford. S = Steer.
- B = Black.

- CD = Calf died. AB = Aborted. BC = Blind calf.

Cow No.	Ht. Hips	11/16 Cond. Score	3/1 Cond. Score	Calving Cond. Score	5/9 Cond. Score	8/29 Cond. Score
Replicati	on 1					
1 13 25 37 69 103 151 295	48 50 51 47 48 50 48 49	20 22 20 18 17 20 18 21	22 24 21 20 19 22 20 23	19 23 20 20 18 21 20 21	19 23 19 20 CD 21 18 20	20 22 21 18 CD 21 19 20
Replicati 27 54 58 96 123 145 159 303	on 2 50 48 49 48 47 49 50 48	22 23 21 18 18 18 18 21 20	23 26 22 19 19 20 23 23 23	22 22 19 19 18 19 18 21	21 22 20 17 17 16 CD 20	CD 23 21 17 19 CD CD 20
Replicati 30 91 95 105 134 200 272 341	on 3 48 48 49 47 51 50 51 50 51 50	22 19 24 18 22 21 22 24	23 21 25 19 24 22 24 26	20 19 23 17 22 20 23 24	18 17 22 15 22 CD 21 23	21 18 24 17 23 CD 22 25

APPENDIX TABLE 14. CONDITION SCORES - WEIGHT (LBS) TO HIP HEIGHT (INCHES) - CONTROL

Cow No.	Ht. Hips	11/16 Cond. Score	3/1 Cond. Score	Calving Cond. Score	5/9 Cond. Score	8/29 Cond. Score
Replicati	ion 1			••	· · · · · · · · · · · · · · · · · · ·	
6 64 84 98 139 143 144 148	48 49 51 48 49 47 49 48	21 18 21 18 23 18 21 19	23 20 24 18 26 19 23 21	21 20 22 18 25 17 22 19	20 19 21 16 25 17 21 18	22 19 21 17 26 19 22 20
Replicati 23 65	<u>on 2</u> 49 49	23 20	25 23	25 21	21 21	23 21
93 109 127 183 186 306	48 48 49 48 49 48	19 19 18 21 21 19	20 21 20 24 23 20	19 19 19 21 22 18	17 19 19 19 20 17	20 20 19 21 20 19
Replicati	on 3	15		10	17	. 15
55 61 114 124 155 314 319 327	48 49 48 48 48 48 48 48 50	18 22 20 22 23 21 21 22	19 23 21 24 22 23 24 24 24	18 21 21 21 21 21 21 24 23	17 CD 20 20 18 19 22 21	19 CD 21 22 20 21 22 21 22 21

APPENDIX TABLE 15. CONDITION SCORES - WEIGHT (LBS) TO HIP HEIGHT (INCHES) - 50 MG

Cow No.	Ht. Hips	11/16 Cond. Score	3/1 Cond. Score	Calving Cond. Score	5/9 Cond. Score	8/29 Cond. Score
Replicatio	on 1		· · · ·		· · · · · · · · · · · · · · · · · · ·	
9	48	20	20	18	19	· 20
21	47	21	24	22	22	21
39	48	20	21	20	19	21
75	50	18	20	19	19	18
79	48	19	20	19	18	19
80	50	22	25	26	24	23
110	49	21	24	22	22	23
125	47	19	20	17	17	18
<u>Replication</u>	on 2					
20	49	22	24	22	21	23
29	49	23	26	24	22	24
81	51	23	23	21	19	21
117	49	19	21	22	17	19
173	50	22	24	22	20	22
188	49	23	24	22	20	23
199	48	19	21	19	19	21
279	49	21	25	22	20	21
Replicatio	on 3			*.		
111	49	21	23	22	CD	CD
116	48	21	23	21	CD	CD
128	48	18	19	17	CD	CD
146	48	21	22	21	21	22
169	49	21	22	20	19	21
171	47	21	21	18	CD	CD
251	48	21	25	23	CD `	CD
330	51	20	21	21	19	21
		· · · · · · · · · · · · · · · · · · ·	÷-			

APPENDIX TABLE 16. CONDITION SCORES - WEIGHT (LBS) TO HIP HEIGHT (INCHES) - 200 MG

<u> </u>				y = 300 hu		
Cow No.	Ht. Hips	11/16 Cond. Score	3/1 Cond. Score	Calving Cond. Score	5/9 Cond. Score	8/29 Cond. Score
Replicati	ion 1			······································	· .	
19 57 73 85 87 92 160 323	48 46 50 48 48 50 48	20 18 17 24 19 19 18 21	21 20 18 26 20 21 19 23	19 AB 16 23 19 20 19 23	18 AB 16 22 19 20 18 BC	19 AB 16 24 19 19 18 BC
Replicati 12 48 66 89 129 147 196 300	on 2 48 49 48 49 48 49 48 49 46 49	19 22 21 23 22 24 23 21	21 24 23 26 23 26 24 24 24	20 21 21 24 21 24 21 21 21	19 20 23 19 CD 20 21	19 21 20 23 21 CD 22 20
Replicati 13 16 24 88 150 305 339 352	on 3 50 49 50 48 46 46 46 48 50	20 24 20 22 17 20 22 25	22 26 21 24 19 22 24 28	20 24 19 22 16 20 22 25	19 22 17 21 16 18 20 23	21 21 19 21 17 19 23 25

APPENDIX TABLE 17. CONDITION SCORES - WEIGHT (LBS) TO HIP HEIGHT (INCHES) - 300 MG

BC = Blind calf. AB = Aborted. CD = Calf died.

Cow No.	11/16 Ht. girth	11/16 Cond. Score	Calving Ht. girth	Calving Cond. Score	8/29 Ht. girth	8/29 Cond. Score
Replicati	on 1					
1 14 25 37 69 103 151 295	72 73 73 67 68 71 71 75	13 15 14 12 12 14 12 14 12 14	68 71 71 68 66 70 68 71	14 16 15 14 13 15 14 14	69 71 73 65 CD 71 68 69	14 15 15 13 CD 15 14 14
Replicati 27 54 58 96 123 145 159 303	73 74 74 71 71 69 73 71	15 15 14 12 12 13 14 14	76 73 67 69 70 69 69 70	14 15 14 13 12 13 13 15	CD 72 68 65 69 CD CD 65	CD 15 15 13 13 CD CD 15
Replicati 30 91 95 105 134 200 272 341	on 3 73 71 77 69 74 71 72 73	15 13 15 12 15 15 15 16 17	70 68 75 68 73 70 72 75	14 13 15 12 16 14 16 16	68 66 73 65 73 CD 71 73	15 13 16 13 16 CD 16 17

APPENDIX TABLE 18. CONDITION SCORES - WEIGHT (LBS) TO HEART GIRTH (INCHES) - CONTROL

	<u> </u>					
Cow No.	11/16 Ht. Girth	11/16 Cond. Score	Calving Ht. Girth	Calving Cond. Score	8/29 Ht. Girth	8/29 Cond. Score
Replicatio	on 1					
6	72	14	69	15	71	15
64	69	13	68	14	66	14
84	73	15	74	15	72	15
98	70	12	68	12	68	12
139	74	15	76	16	75	17
143	67	13	65	12	65	14
144	72	14	72	15	71	15
148	72	13	69	13	67	14
<u>Replication</u>				•		
23	73	15	73	17	71	16
65	72	14	70	14	71	14
93	74	12	70	13	69	14
109	69 70	14	66	14	66	14
127 183	70	13	71	13	67	13
185	72 72	14	71	15	69	15
306	67	14 14	69 67	15 13	68 65	14 14
		14	07	15	05	14
Replicatio						
55	71	12	66	13	66	14
61 114	72	15	70	15	CD	CD
124	68 75	14 14	69 71	14	69	15
155	75	14 15	71 70	14 14	71 70	15 14
315	72	15	70	14	70 70	14 14
319	73	14	70	14	70	14
327	74	15	73	16	71	15

APPENDIX TABLE 19. CONDITION SCORES - WEIGHT (LBS) TO HEART GIRTH (INCHES) - 50 MG

Cow No.	11/16 Ht. Girth	11/16 Cond. Score	Calving Ht. Girth	Calving Cond. Score	8/29 Ht. Girth	8/29 Cond. Score
Replicati	on 1		• • • •			
9 21 39 75 79 80 110 125	71 72 75 69 68 74 72 69	13 14 13 13 13 15 14 13	67 72 71 69 67 74 73 66	13 15 14 14 14 17 15 12	66 69 71 67 65 73 71 65	14 14 14 14 14 16 16 13
Replicati 20 29 81 117 173 188 199 279	<u>on 2</u> 74 73 74 72 75 73 69 75	14 15 16 13 15 15 13 14	72 72 73 72 72 71 67 74	15 17 15 15 15 15 15 14 15	71 72 72 67 70 70 69 71	16 15 14 15 16 14 15
Replicati 111 116 128 146 169 171 251 330	on 3 72 70 72 71 72 68 72 71	14 14 12 14 14 14 14 14	70 70 65 73 71 67 74 71	15 15 13 14 14 13 15 15	CD CD 71 69 CD CD 69	CD CD 15 15 CD CD 15

APPENDIX TABLE 20. CONDITION SCORES - WEIGHT (LBS) TO HEART GIRTH (INCHES) - 200 MG

			•	•		
Cow No.	11/16 Ht. Girth	11/16 Cond. Score	Calving Ht. Girth	Calving Cond. Score	8/29 Ht. Girth	8/29 Cond. Score
Replicati	on 1					
19 57 73 85 87 92 160 323	72 68 64 75 70 69 71 73	13 12 12 16 13 13 13 13 14	72 AB 62 72 67 70 65 73	13 AB 12 16 14 14 14 14 15	68 CD 62 71 67 65 66 CD	13 CD 12 17 14 14 14 CD
Replicati 12 48 66 89 129 147 196 300	72 72 72 77 72 75 73 72	13 15 14 14 15 16 14 15	76 73 67 69 70 69 69 70	12 14 15 17 14 17 14 15	68 68 73 68 CD 69 71	14 15 14 16 15 CD 15 14
Replicati 13 16 24 88 150 305 339 352	<u>on 3</u> 71 75 72 71 70 68 71 79	14 16 14 15 11 14 15 16	68 73 69 69 65 69 71 76	15 16 14 15 11 13 15 16	69 72 68 66 66 65 NA 74	15 14 14 15 12 13 NA 17

APPENDIX TABLE 21. CONDITION SCORES - WEIGHT (LBS) TO HEART GIRTH (INCHES) - 300 MG

CD = Calf died. AB = Aborted.

NA = Not available.

		Molar %		Tota]
Treatment	Acetate	Propionate	Butyrate	MM/1
Contro1	74.8	18.2	7.0	57.7
	76.7	16.7	6.6	18.4
	75.8	17.3	6.9	35.2
	75.8	17.6	6.6	54.9
50	75.4	18.2	6.4	45.0
	76.2	17.6	6.2	55.5
	75.9	17.1	7.0	32.2
	74.9	18.4	6.7	44.9
200	73.9	19.8	6.3	45.5
	68.9	26.5	4.6	36.8
	74.8	19.3	6.0	40.5
	76.1	17.6	6.4	51.8
300	76.5	16.5	7.0	44.1
	70.1	24.6	5.3	41.3
	66.4	27.3	6.3	51.5
	74.0	20.2	5.8	36.1

APPENDIX TABLE 22. VOLATILE FATTY ACID CONCENTRATIONS - RELICATION 1

		Molar %					
Treatment	Acetate	Propionate	Butyrate	Total MM/1			
Control	74.8	17.5	7.7	57.8			
	75.0	17.3	7.7	54.4			
	75.6	16.5	7.8	26.8			
	75.6	16.6	7.8	59.7			
50	76.5	17.5	6.0	25.3			
	76.5	17.4	6.1	19.0			
	75.8	17.4	6.8	41.0			
	75.3	17.7	7.1	48.4			
200	73.0	21.3	5.7	71.3			
	72.8	21.0	6.2	57.2			
	72.4	20.8	6.8	56.6			
	71.0	23.2	5.8	62.9			
300	73.1	21.8	5.0	36.5			
	71.9	23.1	5.0	21.1			
	74.4	22.0	3.7	7.2			
	71.8	22.7	5.5	23.8			

APPENDIX TABLE 23. VOLATILE FATTY ACID CONCENTRATIONS - REPLICATION 2

		Molar %				
Treatment	Acetate	Propionate	Butyrate	Total MM/1		
Control	76.8	17.3	5.9	53.0		
	77.3	16.6	6.1	44.7		
	75.8	18.6	5.9	54.1		
	76.4	17.6	6.1	55.6		
50	74.8	17.8	7.5	54.1		
	76.8	16.7	6.6	39.3		
	75.3	17.4	7.3	57.9		
	74.7	18.7	6.5	30.2		
200	72.4	20.6	7.1	20.8		
	71.0	22.1	6.9	56.8		
	72.7	19.9	7.3	42.2		
	71.3	21.3	7.4	41.7		
300	72.9	21.2	5.9	28.4		
	72.6	20.9	6.5	42.8		
	71.8	21.7	6.5	55.5		
	72.5	20.6	7.0	44.6		

APPENDIX TABLE 24. VOLATILE FATTY ACID CONCENTRATIONS - REPLICATE 3