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Abstract: Two nonspatial approaches for modeling tree crown recession (∆HCB) were evaluated by using 5341 obser-
vations from Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). The first approach applies a static height-to-crown-base
(HCB) equation at the start and end of the growth period and uses the difference in these predictions as an estimate of
∆HCB. This allometric method can be applied to species lacking ∆HCB data from permanent plots. The incremental
method directly predicts ∆HCB from an equation developed from adequate permanent plot data. Two allometric and six
incremental equation forms were examined. Also examined were three approaches for determining the end-of-growth-period
tree and plot attributes used by the allometric method. Although the allometric method can produce unbiased estimates
of ∆HCB, the best allometric equation forms explained about one-half of the variation explained by the best incremen-
tal equation form. The two best incremental equation forms were modifications of a nonlinear logistic equation form
previously developed for Douglas-fir. The modifications included using measured stand age (BHA) or predicted tree
growth effective age (GEA) instead of measured tree age. The best equation form used BHA, which limits its applica-
tion to modeling data collected from just even-aged stands. The equation form using GEA could be applied to model-
ing data sets from both even- and uneven-aged stands.

Résumé : Deux approches non spatiales utilisées pour modéliser l’élagage du houppier (∆HBH) ont été évaluées à
l’aide de 5341 observations faites sur le douglas (Pseudotsuga menziesii (Mirb.) Franco). La première approche utilise
une équation statique de hauteur à la base du houppier (∆HBH) au début et à la fin d’une période de croissance et uti-
lise la différence entre ces prédictions comme estimation de ∆HBH. Cette méthode allométrique peut être appliquée
aux espèces pour lesquelles il n’y a pas de mesures de ∆HBH provenant de placettes permanentes. La méthode diffé-
rentielle prédit directement ∆HBH à l’aide d’une équation développée à partir de données adéquates provenant de pla-
cettes permanentes. Deux formes d’équations allométriques et six formes d’équations différentielles ont été examinées.
Trois approches ont également été étudiées pour déterminer les attributs à la fin de la période de croissance aux échel-
les de l’arbre et de la placette qui sont utilisés par la méthode allométrique. Même si la méthode allométrique fournit
des estimations non biaisées de ∆HBH, les meilleures formes d’équations allométriques expliquent à peu près la moitié
de la variation expliquée par la meilleure forme d’équation différentielle. Les deux meilleures formes d’équations diffé-
rentielles sont des variantes d’une équation logistique non linéaire développée précédemment pour le douglas. Les mo-
difications incluent la mesure de l’âge du peuplement (AHP) ou la prédiction de l’âge apparent relativement à la
croissance des arbres (AAC) au lieu de la mesure de l’âge des arbres. La meilleure forme d’équation utilise l’AHP, ce
qui restreint son application uniquement à la modélisation de données récoltées dans des peuplements équiennes. La
forme d’équation qui utilise l’AAC pourrait être utile pour modéliser des ensembles de données provenant à la fois de
peuplements équiennes et inéquiennes.

[Traduit par la Rédaction] Hann and Hanus 2003

Introduction

The dimensions of a tree crown, such as crown length
(CL) and largest crown width (LCW), are strongly correlated
with the total leaf area of a tree (Maguire and Hann 1989), a
measure of the tree’s potential for producing photosynthate.
Given that LCW can be predicted from CL, diameter at

breast height (D), and total height (H) of the tree (e.g., Hann
1997), it is unsurprising that relative CL, or crown ratio
(CR, CL/H), has been found to be useful for predicting the
height growth rate (∆H), diameter growth rate (∆D), and
change in per-unit-area expansion factor due to mortality
(∆EF) in several nonspatial tree-list models (Vanclay 1994,
1995) of stand development that are being broadly used in
making forest management decision: FVS/PROGNOSIS
(Wykoff et al. 1982), CACTOS (Wensel and Daugherty
1985), ORGANON (Hester et al. 1989; Hann 2003), MELA
(Hynynen 1995), and PROGNAUS (Monserud et al. 1997),
for example.

The inclusion of CR in these dynamic models and equa-
tions requires a way to update the attribute during simula-
tion. Given the relationship of CR to CL and H and the fact
that CL is the difference between H and height to crown
base (HCB), a change in CR (∆CR) is the net result of an
increase in CL and H due to ∆H and a decrease in CL due
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to crown recession (∆HCB). Therefore, the addition of CR
to nonspatial tree-list models requires the addition of a
fourth dynamic equation for predicting either ∆HCB or
∆CR.

Two approaches have been taken in modeling ∆HCB or
∆CR: the allometric method and the incremental method
(Liu et al. 1995). The allometric method has been the most
commonly used approach to predict ∆HCB or ∆CR. The
method applies a static HCB or CR equation at the start and
end of the growth period, and the difference in these predic-
tions provide an estimate of either ∆HCB (e.g., CACTOS
(Wensel and Daugherty 1985), ORGANON (Hester et al.
1989; Hann 2003)) or ∆CR (e.g., FVS/PROGNOSIS
(Wykoff et al. 1982), MELA (Hynynen 1995), PROGNAUS
(Monserud et al. 1997)). Therefore, the parameters in the
allometric method have been estimated to minimize the
squared residuals about HCB or CR instead of ∆HCB. The
allometric method has been appealing because of the scar-
city of data to model ∆HCB or ∆CR directly for the many
species often found in these nonspatial tree-list models of
stand development.

A few studies have used the incremental method to
model ∆HCB directly, so that the parameters of the equa-
tions have been estimated to minimize the squared residu-
als about ∆HCB. Krumland and Wensel (1981) developed
nonspatial ∆HCB equations from 357 measurements of
coastal redwood (Sequoia sempervirens (D. Don) Endl.)
and 108 measurements of Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco) taken on permanent plots in
northern California. Maguire and Hann (1990b) constructed
and evaluated eight alternative, nonspatial ∆HCB equations
for Douglas-fir by aging the time of death of branches be-
low HCB to estimate ∆HCB (Maguire and Hann 1987,
1990a) for 357 trees located on temporary plots in south-
west Oregon. Short and Burkhart (1992) used an extensive
data set of loblolly pine (Pinus taeda L.) from 186 perma-
nent installations to develop both spatial and nonspatial
equations of ∆HCB for both unthinned and thinned stands.
Finally, Liu et al. (1995) expanded the analysis of Short
and Burkhart (1992) to improve the ∆HCB response to thin-
ning for their spatial equation.

Although Maguire and Hann (1990b) and Short and
Burkhart (1992) did evaluate several alternative, nonspatial
equation forms for the incremental method of predicting
∆HCB, we could find no study that has compared the ability
of the two methods to predict ∆HCB using nonspatial equa-
tion forms. Liu et al. (1995) did develop both a spatial incre-
mental equation and an allometric equation and then
compared their abilities to predict future values of HCB.
However, conducting an evaluation using a yield value, such
as future HCB, instead of an increment value can inflate the
resulting measures of fit used in the evaluation, which can
mask true differences between the methods. This is particu-
larly true if ∆HCB is relatively small in relation to HCB at
the initial measurement.

Evaluating the accuracy and precision of the application
of the allometric method to nonspatial equations is particu-
larly important given the sensitivity of nonspatial tree-list
models such as FVS/PROGNOSIS, CACTOS, ORGANON,
MELA, and PROGNAUS to crown size and the value of the

economic decisions being made with models such as these
(Davis et al. 2001). The recent emphasis on the collection of
crown-dimension data on permanent sample plots has now
provided an adequate database for modeling ∆CR or ∆HCB
for Douglas-fir in the Pacific Northwest (e.g., Chappell and
Osawa 1991). The objectives of the present study were to
use the data for Douglas-fir (i) to compare the predictive
ability of the allometric method to that of the nonspatial in-
cremental method; (ii) to compare the predictive ability of
the nonspatial incremental equation forms that have been de-
veloped by Krumland and Wensel (1981), Maguire and
Hann (1990b), and Short and Burkhart (1992); and (iii) to
suggest improvements in the alternative approaches if war-
ranted.

Variables are defined and their abbreviations given at first
mention in the text. For easy reference, they are also summa-
rized in Table 1, including units of measure for each vari-
able.

Alternative equation forms

Allometric method
The allometric method predicts either ∆HCB or ∆CR by

taking the difference between predicted values from a static
equation at the end and the start of the growth period:

[1] ∆HCB = PHCBE – PHCBS

[2] ∆CR = PCRE – PCRS

where PHCBE is the predicted HCB at the end of the growth
period, PHCBS is the predicted HCB at the start of the
growth period, PCRE is the predicted CR at the end of the
growth period, and PCRS is the predicted CR at the start of
the growth period.

Equation 2 can be reformulated as a predictor of ∆HCB
(see Appendix A for the derivation):

[3] ∆HCB = PHCBE – PHCBS + (∆H)(BRS – PBRS)

where BRS is the measured bole ratio at the start of the
growth period and equals HCBS/HS, HCBS is the measured
HCB at the start of the growth period, and PBRS is the predicted
BR at the start of the growth period and equals PHCBS/HS.
Therefore, the use of eq. 3 produces an estimate of ∆HCB
that is similar to that from eq. 1, but with an “adjustment”
when BRS differs from PBRS. The predicted ∆HCB
(P∆HCB) will be reduced if PBRS is greater than BRS and
increased if the opposite is true. Because (BRS – PBRS) has
a range of ±1, the largest “adjustment” possible is ±∆H.

The resulting predicted values of ∆HCB from either eq. 1 or
3 are often restricted to being nonnegative. This is done to pre-
vent “unreasonable” reductions in HCB due to factors such as
density management. Under this restriction, it is assumed that
epicormic branching is unlikely or insignificant for the species.

A static estimator of HCB for Douglas-fir was needed to
predict ∆HCB in eqs. 1 and 3. The following equation form
was selected because it has been previously used for many
of the tree species in the Pacific Northwest (Ritchie and
Hann 1987; Zumrawi and Hann 1989; Hanus et al. 2000;
Hann et al. 2003):
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where CCFL is the crown competition factor (Krajicek et al.
1961) of trees with D larger than that of the subject tree, BA is
the basal area per hectare of the plot, and ai are the parameter
estimates. The expected behavior from eq. 4 is for HCB to in-
crease with increasing values of H, CCFL, and BA and to de-
crease with increasing values of D/H (Ritchie and Hann 1987;
Zumrawi and Hann 1989; Hanus et al. 2000; Hann et al. 2003).

Incremental method
Krumland and Wensel (1981) used the following variation

of a logistic equation (Sit and Poulin-Costello 1994) to pre-
dict crown recession directly using the incremental method
(i.e., ∆HCB):
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where CCCBS is crown closure at crown base of the subject
tree at the start of the growth period, CLS is CL at the start
of the growth period, and b1,i are parameter estimates for
∆HCB in eq. 5.

The numerator of a logistic equation such as eq. 5 ex-
presses the maximum value for ∆HCB, and the denominator
determines how much of the maximum will be realized in
the subject tree. For eq. 5, ∆HCB is predicted to increase as
CCCBS increases.
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Abbreviation Units Definition

BA m2/ha Basal area of the plot
BHA Years Breast height age of the plot
BR Bole ratio of the subject tree (1 – CR)
CA m2 Crown area of the subject tree
CCCB % Crown closure at crown base of the subject tree
CCF % Crown competition factor of the plot
CCFL % Crown competition factor of trees with D greater than that of the subject tree
CL m Crown length of the subject tree
CR Crown ratio of the subject tree
CW m Crown width of the subject tree
D cm Diameter at breast height of the subject tree
∆CR Change in crown ratio of the subject tree
∆D cm/5 years Diameter growth rate of the subject tree
∆EF Trees·ha–1·5 years–1 Mortality rate of the subject tree
∆H m/5 years Height growth rate of the subject tree
∆HCB m/5 years Crown recession of the subject tree
EF Trees/ha Expansion factor of the subject tree
GEA Years Growth effective age of the subject tree
H m Total height of the subject tree
HCB m Height to crown base of the subject tree
LCW m Largest crown width of the subject tree
PBR Predicted bole ratio of the subject tree
PCR Predicted crown ratio of the subject tree
P∆D cm/5 years Predicted diameter growth rate of the subject tree
P∆EF Trees·ha–1·5 years–1 Predicted mortality rate of the subject tree
P∆H m/5 years Predicted height growth rate of the subject tree
P∆HCB m/5 years Predicted crown recession of the subject tree
PHCB m Predicted height to crown base of the subject tree
QMD cm Quadratic mean diameter of the plot
SI m Douglas-fir site index for the installation
SP∆D cm/5 years Scaled predicted diameter growth rate of the subject tree
SP∆H m/5 years Scaled predicted height growth rate of the subject tree

Note: A subscript of E or S on variable abbreviations in the text indicates that the variable is for the end or start of the growth period,
respectively.

Table 1. Variable abbreviations and their definitions, including units of measurement.



Short and Burkhart (1992) examined several equation forms before settling on the following combined exponential and
power function (Sit and Poulin-Costello 1994):
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where CRS is the CR at the start of the growth period, QMDS is the quadratic mean diameter at the start of the growth pe-
riod, BHAS is the breast height age of the stand at the start of the growth period, and b2,i are the parameter estimates for
∆HCB in eq. 6. The expected behavior from eq. 6 is for ∆HCB to increase with increasing values of HS, CRS, and QMDS/DS
and to decrease with an increasing value of BHAS (Short and Burkhart 1992).

The ∆HCB models of Maguire and Hann (1990b) used tree age, which was not available for all trees in this analysis. Like
Short and Burkhart (1992) did in their comparisons, we substituted BHAS for tree age in the logistic equation form found by
Maguire and Hann (1990b) to best characterize their data set. However, the use of BHAS does restrict the application of the
equation form to data sets from even-aged stands. To explore a formulation that would be applicable to data from a broader
range of stand structures, we also substituted the growth effective age of the subject tree at the start of the growth period
(GEAS) in the same equation form, where GEA is the age of a dominant tree with the same H and site index (SI) as the tree of
interest. GEA has been successfully used to model ∆H of trees growing in both even- and uneven-aged stand structures (Ek
and Monserud 1974; Krumland and Wensel 1981; Wensel et al. 1987; Hann and Ritchie 1988; Hann et al. 2003). These sub-
stitutions resulted in the following logistic equations:
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where CCFS is the crown competition factor of the stand at
the start of the growth period, b3,i are parameter estimates
for ∆HCB in eq. 7, and b4,i are parameter estimates for
∆HCB in eq. 8.

Again, the numerator of these logistic equations expresses
the maximum value for ∆HCB. For both equations, ∆HCB is
predicted to increase as CCFS increases, to decrease as either
BHAS or GEAS increases, and to first increase, peak, and
then decrease as CRS increases.

Estimation and evaluation data

This analysis utilized the data from three sources of un-
treated, permanent plots in even-aged Douglas-fir stands in
southwestern British Columbia, western Washington, and
northwestern Oregon. The first source of data consisted of
10 research installations established on one private and four
public ownerships to explore a variety of silvicultural objec-
tives. Six of the installations were in plantations and the re-
mainder in naturally regenerated stands. Plot sizes ranged
from 0.020 to 0.081 ha, with the 0.081-ha plot being most
common. BHA at establishment ranged from 6 to 18 years,
with an average of 13.3 years. The intervals between
remeasurements ranged from 1 to 19 years, with most of the
intervals in the 2- to 5-year range. The total length of
remeasurements ranged from 8 to 37 years, with an average
of 28.3 years. There were relatively few measurements of H
and HCB on these installations (approximately 6% of the
sample trees), and the measurements of HCB were concen-
trated in the later years of remeasurement. As a result, this
data source provided only 507 observations with measured
∆HCB to the modeling data set.

The other two sources were the Type I and II installations
of the Stand Management Cooperative (Chappell and Osawa
1991). The Type I installations available for the present
study were from 13 Douglas-fir plantations, with BHA at es-
tablishment ranging from 2 to 9 years. The Type II installa-
tions were from 10 Douglas-fir plantations, with BHA at
establishment ranging from 12 to 34 years. The plots were
0.202 ha, the remeasurement intervals were either 2 or
4 years, and the total length of measurements ranged from 8
to 12 years for both types of Stand Management Cooperative
installations. H and HCB were measured on more than 25%
of the sample trees from the Type I installations and more
than 31% of the sample trees from the Type II installations,
providing a total of 3208 and 1626 observations with mea-
sured ∆HCB, respectively, to the modeling data set.

All of the incremental equation forms evaluated in the
present study were developed for fixed-length growth peri-
ods. We chose to use a 5-year growth period, because (i) it is
used in the CACTOS, ORGANON, and PROGNAUS stand-
development models and (ii) the use of growth periods
5 years or longer minimizes the effect of possible serial cor-
relation (Gertner 1985). The interpolation and extrapolation
procedures described by Hann et al. (2003) were used on the
data from those installations not having remeasurements at
exact 5-year intervals. In the application of these procedures,
the resulting 5-year growth values always started with an ac-
tual measurement.

The allometric method is usually applied only when single
measurements of HCB on each sample tree are available. We
chose to use measurements of both HCBS and HCB at the
end of the growth period (HCBE) to fit eq. 4, to expand the
data set to a broader range of tree and stand conditions. In-
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cluding both HCBS and HCBE in the modeling data set
could improve the performance of the allometric method
over what might occur in usual applications.

CCFS and CCFLS were calculated by using the maximum-
crown-width equations of Paine and Hann (1982). CCCBS
was determined by (i) computing the crown width (CW) of
each sample tree at the height of the subject tree’s crown
base using the LCW equations of Hann (1997) and the crown-
profile equations of Hann (1999) and Hann and Hanus (2001),
(ii) converting CW to crown area (CA) by assuming the
crowns are circular at a given height, (iii) multiplying each
sample tree’s CA by the tree’s expansion factor (EF) and
summing across all sample trees, and (iv) expressing the
sum as a percentage of the plot’s area.

The calculation of CCCBS requires values of HS and
HCBS for all trees on each plot. Therefore, HS and HCBS
had to be estimated for those trees with missing values.
While these trees were used to calculate CCCBS, they were
otherwise excluded from the ∆HCB tree data set used in con-
ducting this analysis.

Missing values of HS were estimated using the height–
diameter equations of Hanus et al. (1999a) for Douglas-fir
and the equations of Wang and Hann (1988) and Hanus et al.
(1999a, 1999b) for minor species. Missing values of HCBS
were estimated using eq. 4 for Douglas-fir or the equations
of Zumrawi and Hann (1989) and Hanus et al. (2000) for
minor species. Both the HS and HCBS equations were scaled

to the actual measurements of HS and HCBS, respectively,
for each plot and growth period combination by application
of weighted, simple linear regression through the origin. A
weight of D–1 (Hanus et al. 1999a, 1999b; Wang and Hann
1988) was used for the HS equations and a weight of H–2

(Ritchie and Hann 1987; Zumrawi and Hann 1989; Hanus et
al. 2000; Hann et al. 2003) was used for the HCBS equa-
tions. Hanus et al. (1999b, 2000) found that scaling reduced
variation caused by between-plot or between-growth-period
differences not explained by the “regional” equations.

GEA was determined by solving an existing dominant
height growth equation to express GEA as a function of H
and SI. The Douglas-fir dominant height growth equation of
Bruce (1981), which incorporates King’s (1966) SI for
Douglas-fir, was used to calculate GEA in the present study.

The tree, plot, and installation-wide explanatory variables,
along with their units of measure, are summarized in Ta-
ble 2.

Parameter estimation and fit analysis

Allometric method
Weighted, nonlinear regression was used to estimate the

parameters and their approximate standard errors for eq. 4.
A weight of H–2 was required to homogenize the variance of
the residuals (Ritchie and Hann 1987; Zumrawi and Hann
1989; Hanus et al. 2000; Hann et al. 2003). A t test was em-
ployed to test whether the parameters were significantly dif-
ferent from zero (p = 0.05).

Equation 4 was then used to determine PHCBS and PHCBE
in eqs. 1 and 3. It was assumed that the user would know the
attributes used in eqs. 3 and 4 for the start of the growth pe-
riod (i.e., HS, CCFLS, BAS, DS, BRS, and PBRS). We exam-
ined three methods for determining the attributes at the end
of the growth period (i.e., HE, CCFLE, BAE, DE, and ∆H) in
eqs. 3 and 4: (i) using the measured attributes, (ii) predicting
the attributes from previously developed ∆D, ∆H, and ∆EF
equations for the species, and (iii) predicting the attributes
from the previously developed ∆D, ∆H, and ∆EF equations
that have been scaled to the data sets used in the present
study. The first method defines the maximum predictive
ability possible from eqs. 1 and 3, given the equation form
selected to predict HCB. The second method should be a
more realistic estimate of the predictive ability of eqs. 1 and
3 as they will be applied. Because the existing ∆D, ∆H, and
∆EF equations were developed from different data sets than
were used in the present study, the third method should pro-
vide an approximation of the predictive ability of the indi-
rect approaches if all of the static and dynamic equations for
a nonspatial tree-list model of stand development were de-
veloped from a common data set. This approximation will
probably be less accurate and (or) precise than developing
all equations with a common data set and more accurate and
(or) precise than using equations developed from an inde-
pendent data set.

The ∆D, ∆H, and ∆EF equations of Hann et al. (2003)
were used for Douglas-fir, and the equations of Hann and
Ritchie (1988), Ritchie and Hann (1990), Hann and Wang
(1990), Hann and Larsen (1991), Zumrawi and Hann (1993),
and Hann et al. (2003) were used for minor species on the
plots. These equations were developed for different variants
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Variable Units Mean (SD) Range

Individual tree (n = 5341)
DS cm 20.5 (7.5015) 4.1–59.9
DE cm 25.0 (7.7807) 4.6–64.8
HS m 15.59 (6.2903) 4.30–42.37
HE m 19.68 (6.0509) 4.97–45.96
∆H m 4.09 (1.2780) 0.00–8.29
HCBS m 5.14 (5.1784) 0.09–29.02
HCBE m 8.12 (5.7014) 0.09–31.15
∆HCB m 2.98 (1.9988) 0.00–9.69
GEAS Years 17.4 (7.2969) 4.1–58.8
CCFLS % 85.4 (72.3260) 0.0–464.9
CCFLE % 110.3 (83.2848) 0.0–452.1
CCCBS % 131.3 (50.3552) 24.0–332.0
CLS m 10.45 (2.7264) 1.52–22.49
CRS 0.72 (0.1828) 0.12–0.99
CRE 0.62 (0.1923) 0.05–0.99

Individual plot (n = 174)
BAS m2/ha 29.60 (19.6133) 3.00–76.00
BAE m2/ha 36.90 (17.4835) 5.70–81.40
CCFS % 221.80 (129.6386) 26.50–523.10
QMDS cm 19.70 (5.5178) 9.20–35.30
BHAS Years 20.80 (10.3863) 10.00–49.80

Installation-wide (n = 32)
SI m 36.53 (6.8545) 23.65–49.41

Note: The means were computed from the number of observa-
tions reported for each variable.

Table 2. The mean, standard deviation (SD), and range of
the variables in the ∆HCB data set for Douglas-fir trees.



of ORGANON, and they are all for a 5-year growth period.
For each of the three sources of data, predicted ∆D (P∆D)
and predicted ∆H (P∆H) from the equations were scaled
(producing SP∆D and SP∆H) to the measured ∆D and ∆H
values by applying weighted simple linear regressions
through the origin. The weights used by Ritchie and Hann
(1990), Hann and Larsen (1991), Zumrawi and Hann (1993),
and Hann et al. (2003) in the development of their ∆D and
∆H equations were also used in this scaling process. Because
the size of the mortality data was judged to be inadequate,
we did not attempt to calibrate the predicted ∆EF (P∆EF)
equations, which could lower the accuracy and (or) precision
of the scaling approach for estimating attributes at the end of
the growth period.

For those observations with direct measurements of
∆HCB, residuals of predicted ∆HCB (P∆HCB) minus ∆HCB
were determined and used to calculate a mean residual (a
measure of bias) and the sum of squared residuals for eqs. 1
and 3 and each of the three methods for determining end-of-
growth-period values. A mean square error for the residuals
(MSE) was formed by dividing the sum of squared residuals
by the difference between the number of observations and
the number of parameters estimated for eq. 4.

Incremental method
Equations 5, 7, and 8 include the dynamic attribute of ∆H.

As with the allometric method, we examined three approaches

for determining ∆H: (i) using the measured values of ∆H,
(ii) using P∆H, and (iii) using SP∆H. For each of these three
approaches, the parameter estimates, their standard errors,
and the MSE for eqs. 5 through 8 were estimated by apply-
ing nonlinear regression to the Douglas-fir data with direct
measurements of ∆HCB. Following Short and Burkhart
(1992) and Liu et al. (1995), we chose to ignore any possible
effects that might arise due to lack of independence between
observations caused by the cross-sectional and longitudinal
nature of our data set, because (i) the data set has a large
number of observations that are dominated by cross-sectional
measurements and (ii) the use of a 5-year growth period
should minimize any possible effect of serial correlation in
the longitudinal data (Gertner 1985).

A t test was used to test whether the parameters were sig-
nificantly different from zero (p = 0.05). The variance of the
residuals was examined for homogeneity using both residual
plots and the Levene’s test using medians on approximate re-
peats (as suggested by Draper and Smith (1998), pp. 54–59).
The normality of the residuals was examined through the ap-
plication of the Bowman and Shenton (1975) bivariate test
for large samples (as suggested by Kmenta (1997), p. 267)
to our sample estimators of the skewness and kurtosis statis-
tics (i.e., β1 and β2, respectively). Finally, a mean residual
(P∆HCB – ∆HCB) was calculated for each equation.

Evaluation of alternative methods
The mean residual, the MSE, and an index of fit were

used to compare the two allometric equation forms, the four
incremental equation forms, and the three methods of deter-
mining the ending values for each of the allometric equation
forms and ∆H for each of the incremental equation forms.
The index of fit represents the proportion of variation in the
dependent variable explained by the equation (Short and
Burkhart 1992). It was calculated by dividing the MSE for
each equation by the variance of ∆HCB and subtracting the
result from one. Therefore, the index of fit used in the pres-
ent study is analogous to the adjusted coefficient of determi-
nation used for linear equations. By employing data reported
in Krumland and Wensel (1981), Maguire and Hann
(1990b), and Short and Burkhart (1992), we were also able
to determine the index of fit for each of their incremental
equation forms chosen for evaluation in this analysis.

Results and reanalysis

The parameter estimates and their standard errors for the
fit of eq. 4 to the Douglas-fir HCB data are found in Table 3.
The signs and magnitudes of the parameters are in agree-
ment with the previous work of Ritchie and Hann (1987),
Zumrawi and Hann (1989), Hanus et al. (2000), and Hann et
al. (2003). This fit yielded a weighted MSE of 0.00772 and
a weighted index of fit of 0.7265.

Of the two allometric equation forms examined, eq. 1
provided higher index of fit values but about the same
mean residual (i.e., bias) as eq. 3 (Table 4). The predictive
ability of both allometric equation forms improved as the
estimators of ∆D, ∆H, and ∆EF improved (Table 4). For ex-
ample, eq. 1 explained 26% of the variation in ∆HCB with
scaled predictions of ∆D, ∆H, and ∆EF and nearly 35% with
measured values.
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Parameter Estimate (SE)

a0 4.42332 (0.05810)

a1 –0.01078 (0.00113)
a2 –0.00137 (0.00009)
a3 –1.19702 (0.01600)
a4 0.38043 (0.02590)

Table 3. Parameter estimates and stan-
dard errors (SE) for eq. 4 fit to com-
bined starting and ending HCB values
for Douglas-fir.

Equation
P∆H, P∆D,
and P∆EF

SP∆H, SP∆D,
and P∆EF

∆H, ∆D,
and ∆EF

Index of fit
1 0.2402 0.2600 0.3465
3 0.1951 0.2139 0.3090

Mean residual (m)
1 0.2514 0.1153 –0.0536
3 0.2471 0.1110 –0.0579

MSE (m2)
1 3.0356 2.9564 2.6109
3 3.2157 3.1406 2.7607

Table 4. Index of fit, the mean residual (predicted – actual),
and the mean square error (MSE) from the application of
the allometric method using predicted ending values from
P∆H, P∆D, and P∆EF; predicted ending values from
SP∆H, SP∆D, and P∆EF; and actual measured ending val-
ues from ∆H, ∆D, and ∆EF to Douglas-fir ∆HCB data.



Both allometric equation forms underpredicted ∆HCB when
actual measurements of ∆D, ∆H, and ∆EF were used and
overpredicted ∆HCB when estimators of ∆D, ∆H, and ∆EF
were used (Table 4). The scaled estimators provided a smaller
overprediction bias than did the unscaled estimators. When
compared with an average ∆HCB of 2.98 m (Table 2), the
overprediction bias ranged from 8% for eq. 1 with unscaled
estimators of ∆D, ∆H, and ∆EF to less than 4% for eq. 3

with scaled estimators. The underprediction bias was ap-
proximately 2% for both equations when using actual mea-
surements of ∆D, H, and ∆EF.

The parameters of direct eqs. 5, 7, and 8 were all signifi-
cantly different from zero (p = 0.05), and they were of the
same sign as reported by Krumland and Wensel (1981) and
Maguire and Hann (1990b). For eq. 6, the b2,3 parameter on
CR1/2 was not significantly different from zero, and it was of
the opposite sign from that reported in Short and Burkhart
(1992).

In general, the incremental method provided better estimates
of ∆HCB (Table 5) than the allometric method (Table 4), and
the mean residuals in Table 5 indicate that the incremental
method produced estimators that are, for all practical pur-
poses, unbiased. In the equations employing scaled estimators,
for example, the incremental method produced indices of fit
ranging from 0.2543 for eq. 6 to 0.4937 for eq. 7, whereas
the indices of fit ranged from 0.2139 to 0.2600 with the
allometric method. The index of fit values for the four incre-
mental equation forms (Table 5) show that eq. 7 provided
the best fit to the ∆HCB data, followed by eq. 8, eq. 5, and
finally eq. 6. However, the poor predictive performance of
eq. 5 may have been negatively affected by an unknown
amount, because of the need to predict H and HCB for a
number of sample trees on each plot. Finally, these results
also show that the substitution of BHAS in the Maguire and
Hann (1990b) equation (i.e., eq. 7) proved to be more effec-
tive at predicting ∆HCB than did the substitution of GEAS
(i.e., eq. 8).

Equations 7 and 8 predict a peak in ∆HCB at a CR of ap-
proximately 0.64 for eq. 7 and approximately 0.62 for eq. 8,
and then a decline in ∆HCB as CR increases to 1.0. How-
ever, graphs of P∆HCB from these equations indicated that,
for long-crowned, young trees on plots with low density
(i.e., trees with CR = 1.0, a small GEA, on plots with small
values of CCF), P∆HCB was larger than that observed in the
data. After examining several modifications to eqs. 7 and 8,
the following formulations were found to produce more rea-
sonable predictions at the extremes of CR and to explain
slightly more variation (Table 5):

[9] ∆
∆

HCB
CL

ln(CR ) CR BHA

S

S S

=
+

+ + + +

H

b b b b10 5 0 5 1 5 2 5 3. exp , , , , S S
S

S
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CCF
+ +




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

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b b6 4 6 5, ,

where b5,i are parameter estimates for ∆HCB in eq. 9 and b6,i
are parameter estimates for ∆HCB in eq. 10.

Parameter estimates and their standard errors for eqs. 9
and 10 were estimated by nonlinear regression (Table 6).
The variance for the residuals of these final two equations
was found to be homogeneous across P∆HCB, but the resid-

uals were not normally distributed (p < 0.0001) (Table 7).
For normally distributed residuals, the expected value of the
skewness statistic, β1, is 0, and the expected value of the
kurtosis statistic, β2, is 3.0. Therefore, our residuals were
slightly skewed and leptokurtic in comparison to the normal
distribution (Table 7).
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Equation P∆H SP∆H ∆H

Index of fit
5 0.3765 0.3985 0.3954
6* 0.2543 0.2543 0.2543
7 0.4920 0.4937 0.4986
8 0.4376 0.4449 0.4557
9 0.5087 0.5096 0.5137
10 0.4554 0.4618 0.4740

Mean residual (m)
5 0.0026 –0.0072 0.0036
6* –0.0166 –0.0166 –0.0166
7 –0.0182 –0.0203 –0.0215
8 –0.0202 –0.0244 –0.0329
9 0.0047 0.0023 0.0015
10 0.0034 –0.0009 –0.0085

MSE (m2)
5 2.4910 2.4031 2.4155
6* 2.9792 2.9792 2.9792
7 2.0296 2.0228 2.0032
8 2.2469 2.2177 2.1746
9 1.9628 1.9592 1.9429
10 2.1758 2.1502 2.1015

*Equation 6 does not include ∆H and therefore is invari-
ant across its three measures.

Table 5. Index of fit, the mean residual (predicted –
actual), and the mean square error (MSE) for the in-
cremental equation forms fit to the Douglas-fir
∆HCB data using P∆H, SP∆H, or ∆H.



Discussion

The allometric method in nonspatial tree-list models of
stand development can provide unbiased estimates of ∆HCB.
Liu et al. (1995) reported a similar result from their analysis
using a spatial incremental equation. This finding is fortu-
nate because of the difficulty in obtaining adequate data to
model ∆HCB directly for the large number of species in
some of these models. Unlike Liu et al. (1995), the results of
the present study make it clear that the allometric method
explains substantially less of the variation in ∆HCB than can
the incremental method. Of the two allometric equation forms
examined, eq. 1 was superior to eq. 3.

Scaling the P∆D and P∆H equations improved both the
accuracy and the precision of the allometric method (Ta-
ble 4), and we suspect that scaling ∆EF would have further
improved the outcome. These results indicate to us that the
accuracy and precision of the allometric method are optimal
when all equations are developed from a common data set
that has been collected from the population of interest.

Incremental eqs. 9 and 10 fit the ∆HCB better than the
other four incremental equations tested (Table 5). The use of
BHAS in eq. 9 provided a better fit to the data than the use
of GEAS in eq. 10. GEA, however, can be applied to trees
from both even- and uneven-aged stands (e.g., Hann and
Ritchie 1988). Thus, all six of the incremental equation forms
examined can be applied to data collected from even-aged
stands, but only the forms of eqs. 5 (which does not include
an age), 8, and 10 can be applied to modeling data collected
in uneven-aged stands. However, it would be an extrapola-
tion to apply eq. 10 and the parameters from Table 6 to an
uneven-aged stand, because all of the modeling data in the
present study were collected in even-aged stands.

Krumland and Wensel’s (1981) application of eq. 5 to
their data sets resulted in the largest indices of fit found in
the literature: 0.30 for redwood and 0.50 for Douglas-fir.
Our application of eq. 5 resulted in indices of fit that are
better than that of redwood but worse than that of Douglas-
fir. The appeal of eq. 5 is its simplicity (i.e., the amount of
∆HCB is related to just the amount of crowding at the base
of the crown) and its applicability to trees from both even-
and uneven-aged stands. It is possible that eq. 5 would have
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Variable p Skewness Kurtosis

Eq. 9
∆H 0.5837 0.0943 3.6356
P∆H 0.3834 0.1058 3.6753
SP∆H 0.5350 0.1136 3.6551

Eq. 10
∆H 0.3481 –0.0666 3.4434
P∆H 0.7459 –0.0598 3.3972
SP∆H 0.9014 –0.0448 3.3861

Table 7. The p value from a Levene’s test for
homogeneity of variance and the skewness
and kurtosis statistics for the residuals from
fits of direct eqs. 9 and 10 to the Douglas-fir
∆HCB data using ∆H, P∆H, or SP∆H.
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performed better in this evaluation if H and HCB had been
measured on all of the sample trees in our modeling data sets.

Incremental eq. 6 (Short and Burkhart 1992) provided the
worst fit to the data. The index of fit for eq. 6 was larger
than the value of 0.16 reported by Short and Burkhart (1992)
for their unthinned and thinned loblolly pine data. Unlike
Maguire and Hann (1990b) and the present study, Short and
Burkhart (1992) found no peak in ∆HCB over CR when they
developed eq. 6. The different behavior in ∆HCB over CR is
further reinforced by our discovery that the parameter estimate
on the CR term in eq. 6 was not significantly different from
zero (p = 0.05). This variation in findings may be due to dif-
ferences in how the two species respond to their environ-
ment or to differences in the modeling data. Unfortunately,
Short and Burkhart (1992) did not provide a detailed de-
scription of their data, but our data do exhibit larger aver-
ages, with more variation for CR, D, H, and ∆HCB than
reported by Liu et al. (1995) for untreated trees from the
same plots used by Short and Burkhart (1992). The data
used by Liu et al. (1995) did include data from another
remeasurement of the plots.

The equation forms and parameter estimates for the statis-
tically best performing equations (i.e., eqs. 7, 8, 9, and 10)
predict a crown-recession behavior that is consistent with
our general knowledge of the process. Crown recession oc-
curs when branches at the base of the crown die as a result
of prolonged side shading (Oliver and Larson 1996). Equa-
tions 7, 8, 9, and 10 use the density variable CCFS as an in-
dicator of the level of side shading at the base of the crown.
This density effect is reduced as stand age (either BHAS or
GEAS) increases, because a fixed level of density corre-
sponds to a decreasing level of side shading as a stand ma-
tures (e.g., a BA of 10 m2 represents a higher level of
competition in a very young stand than it would in a very
old stand).

CRS in eqs. 7, 8, 9, and 10 both characterizes the tree’s
crown position within the stand and acts as a surrogate for
the degree of heterogeneity in local stand density (Maguire
and Hann 1990b). In uniformly spaced plantations, average
CR decreases as density increases and, as the plantation ma-
tures and the trees begin to differentiate themselves, the CR
of individuals within the stand is largest for dominant trees
and becomes progressively smaller as crown position is lost
(e.g., Curtis and Reukema 1970). Curtis and Reukema (1970)
also found that HCB at a given stand age was greatest for
dominant trees and declined with loss of crown position, in-
dicating that ∆HCB is higher in dominant trees with larger
CR than that in trees in lower crown positions with smaller
CR. Finally, trees growing in a more open portion of an ir-
regularly spaced stand would have a larger CR and a smaller
∆HCB than would be expected for the dominant trees in a
uniformly spaced stand with the same density and stand age.

The modification to eqs. 7 and 8 that produced eqs. 9 and
10 causes the location of the peak in ∆HCB over CR to shift
from a CR value of approximately 0.6 to a value near 1 as
CCF decreases towards 0. We believe that the modification
developed in the present study indicates that heterogeneity in
local density becomes less influential on ∆HCB in stands with
low density that, as a result, contain more long-crowned trees.

Equation 5 uses CCCBS as its indicator of the amount of
side shading at the base of the crown. CCCBS integrates

both overall plot density and the vertical position of each
tree’s crown base within the plot. Equation 5, however, does
not include a variable to characterize the degree of heteroge-
neity in local stand density.

The poorest performing equation (i.e., eq. 6) uses both
CRS and QMDS/DS to quantify tree position within the plot.
As noted earlier, CRS (which was not significantly different
from zero in this study) can also indicate irregularity in tree
spacing within the plot. Equation 6 does not include a direct
measure of density for indexing the amount of shading at the
base of the crown. However, eq. 6 does contain BHAS,
which could be providing an indirect measure of the level of
competition in the stand (e.g., Mäkinen 1999). Finally, the
inclusion of both HS and BHAS in eq. 6 could provide an in-
direct measure of site quality (Maguire and Hann 1990), and
site quality has been found to be significant in some of the
allometric equations used to predict HCB (e.g., Ritchie and
Hann 1987; Hanus et al. 2000; Hann et al. 2003).

The use of P∆H or SP∆H in place of ∆H in the incremen-
tal method reduced the fit of the equations to the data (Ta-
ble 5). Despite this reduction in equation fit, it is more
realistic to expect their use in practical applications of the
∆HCB equations. The fits with SP∆H probably best mimic
the usual situation where all dynamic equations are esti-
mated from a common data set.

Both the Maguire and Hann (1990b) study and the present
study analyzed very similar equation forms using 5-year ∆HCB
data from the same species and region. The ranges in the
size of the tree and stand attributes were also similar be-
tween the two studies. Despite these similarities, our find-
ings differ from those of Maguire and Hann (1990b) in four
ways. Our indices of fit are larger than the value of 0.284
from their study. Our equations peaked at a larger CR than the
value of 0.38 that they reported. The skewness and kurtosis
statistics in the present study (Table 7) are much closer to
the values expected under normality than the values of 1.73
for skewness and 8.29 for kurtosis reported by Maguire and
Hann (1990b). Our finding that the residuals exhibited ho-
mogeneous variance agrees with the results from Short and
Burkhart (1992) but differs from those of Maguire and Hann
(1990b).

We can identify three differences between the studies that
might be related to these disparities:

(i) Instead of the 0.020- to 0.202-ha research plots used in
the present study, the Maguire and Hann (1990b) data were
collected from operational stands using a grid of sampling
points spread over a minimum of 1.2 ha.

(ii) The Maguire and Hann (1990b) data set included trees
from uneven-aged stands.

(iii) The ∆HCB data used by Maguire and Hann (1990b)
came from the techniques developed by Maguire and Hann
(1987, 1990a) to determine ∆HCB through the post dating of
branch mortality on trees from temporary plots.

We have found that both operational stands and uneven-
aged stands exhibit a greater amount of within-stand variation
in density than do carefully selected research installations or
even-aged stands. This could explain the smaller index of fit
and the shift of the peak of ∆HCB to smaller values of CR
reported by Maguire and Hann (1990b). Finally, we suspect
the third difference may be related to the dissimilar error
structures found in the two studies.
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Appendix A

Change in CR can be expressed as

[A1] ∆
∆ ∆

∆
CR

CL HCB CLS

S

S

S

=
+ −

+
−

H

H H H

Equation A1 can be solved algebraically for ∆HCB:

[A1] ∆HCB = ∆H (BRS) – ∆CR (HS) – (∆H)(∆CR)

Because BR is defined as 1 – CR, eq. 2 can be reexpressed
as:

[A2] ∆CR = PBRS – PBRE

where PBRE is the predicted BR at the end of the growth pe-
riod.

Substituting eq. A2 for ∆CR in eq. A1 and collecting
terms provides

[A3] ∆ ∆HCB = ( PBR PBRS E S SH H+ − +H)( ) ( )( )

(∆H)( )BR PBRS S−

Finally, recognizing that (HS + ∆H)(PBRE) and (HS)(PBRS)
are ways of calculating a value for PHCBE and PHCBS re-
spectively, eq. A3 can be reexpressed as

[3] ∆HCB = PHCBE – PHCBS + (∆H)(BRS – PBRS)
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