Remote Sensing of Environment 115 (2011) 3539-3553

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Comparison and assessment of coarse resolution land cover maps for
Northern Eurasia

Dirk Pflugmacher #*, Olga N. Krankina ¢, Warren B. Cohen ®, Mark A. Fried] ¢, Damien Sulla-Menashe €,
Robert E. Kennedy °, Peder Nelson ¢, Tatiana V. Loboda 4 Tobias Kuemmerle €, Egor Dyukarev f
Vladimir Elsakov 8, Viacheslav I. Kharuk "

2 Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA

b USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, USA

¢ Department of Geography and Environment, Boston University, 675 Commonwealth Ave., 4th Floor, Boston, MA 02215, USA

4 Department of Geography, University of Maryland, 2181 LeFrak Hall, College Park, MD 20742, USA

€ Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, Telegraphenberg A62, D-14412 Potsdam, Germany
f Institute of Monitoring of Climatic and Ecological Systems, Tomsk 634021, Russia

& Institute of Biology, Komi Science Center, Russian Academy of Sciences, Kommunisticheskaja st., 28, 167610 Syktyvkar, Russia

M V.N. Sukachev Institute of Forest, Krasnoyarsk, Russia

ARTICLE INFO ABSTRACT

Article history: Information on land cover at global and continental scales is critical for addressing a range of ecological, so-
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Available online 28 September 2011 urasia comprises a particularly diverse region covering a wide range of climate zones and ecosystems: fro

arctic deserts, tundra, boreal forest, and wetlands, to semi-arid steppes and the deserts of Central Asia. In this
study, we assessed four of the most recent global land cover datasets: GLC-2000, GLOBCOVER, and the MODIS

gzjr/aws?;ds' Collection 4 and Collection 5 Land Cover Product using cross-comparison analyses and Landsat-based refer-
Land cover ence maps distributed throughout the region. A consistent comparison of these maps was challenging be-
Global cause of disparities in class definitions, thematic detail, and spatial resolution. We found that the choice of
Validation sampling unit significantly influenced accuracy estimates, which indicates that comparisons of reported glob-
GLC-2000 al map accuracies might be misleading. To minimize classification ambiguities, we devised a generalized leg-
GLOBCOVER end based on dominant life form types (LFT) (tree, shrub, and herbaceous vegetation, barren land and water).
LMC(éEIS LFT served as a necessary common denominator in the analyzed map legends, but significantly decreased the
thematic detail. We found significant differences in the spatial representation of LFT's between global maps

with high spatial agreement (above 0.8) concentrated in the forest belt of Northern Eurasia and low agree-

ment (below 0.5) concentrated in the northern taiga-tundra zone, and the southern dry lands. Total pixel-

level agreement between global maps and six test sites was moderate to fair (overall agreement:

0.67-0.74, Kappa: 0.41-0.52) and increased by 0.09-0.45 when only homogenous land cover types were an-

alyzed. Low map accuracies at our tundra test site confirmed regional disagreements and difficulties of cur-

rent global maps in accurately mapping shrub and herbaceous vegetation types at the biome borders of

Northern Eurasia. In comparison, tree dominated vegetation classes in the forest belt of the region were ac-

curately mapped, but were slightly overestimated (10%-20%), in all maps. Low agreement of global maps in

the northern and southern vegetation transition zones of Northern Eurasia is likely to have important impli-

cations for global change research, as those areas are vulnerable to both climate and socio-economic changes.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction effects of vegetation on the carbon cycle, surface energy, and water
balance, and socioeconomic causes and consequences of land-use

Information on land cover at global and continental scales is criti- and land-cover change (Bonan et al., 2002; Running et al., 2004;

cal for addressing a range of important science questions such as the Zhang et al., 2009; Foley et al., 2005). The need for accurate land-
cover information is particularly acute in Northern Eurasia, which en-

compasses high diversity of ecosystems that range from arctic deserts
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east, and milder maritime climates in the Baltic Sea region. Because of
this diversity, the area is a locus for climate change, and there is
mounting evidence of significant recent changes in vegetation distri-
bution, growing season duration, and patterns of snow cover and per-
mafrost (e.g. Bulygina et al., 2010; Chapin et al., 2005; Randerson et al.,
2006; Soja et al., 2007). The region also has unique and often poorly
characterized land cover features, including vast expanses of larch
(Larix spp.) forests, permafrost, wetlands, widespread disturbances
(fire, harvest, pollution damage, insect damage), and drastic changes
in land use following profound region-wide socioeconomic and insti-
tutional changes in the 1990s (e.g. Forbes et al., 2004; Groisman et al.,
2009; Kuemmerle et al., 2008; Kuemmerle et al., 2009).

Since the mid 1990s substantial advances have been made to-
ward the development of global vegetation and land cover datasets
from moderate resolution satellite sensors. The first satellite-based
global land cover maps were produced with data from the advanced
high-resolution radiometer (AVHRR) (DeFries & Townshend, 1994;
Hansen et al.,, 2000; Loveland et al., 2000). In 1998 and 1999,
AVHRR was followed by VEGETATION-1 onboard the fourth Satellite
Pour I'Observation de la Terre (SPOT) and the Moderate Resolution
Imaging Spectroradiometer (MODIS), which allowed the concurrent
development of two additional global land cover products: GLC-
2000 (Bartholome & Belward, 2005) and the MODIS Global Land
Cover Product (Friedl et al., 2002). More recently, two new global
land cover datasets have been released: GLOBCOVER derived from
Medium Resolution Imaging Spectrometer (MERIS) data (Arino
et al., 2008) and the MODIS C5 Land Cover Product (Friedl et al.,
2010). The most important change in the evolution of these datasets
is the increase in spatial resolution from ~1 km (MODIS Collection 4
— hereafter MODIS C4 — and GLC-2000) to ~500 m (MODIS Collec-
tion 5, hereafter MODIS C5) and ~300 m (GLOBCOVER). Because
many land cover features occur at a spatial resolution finer than
1 km (Gerlach et al., 2005; Krankina et al., 2008; Skinner & Luckman,
2004), the higher spatial resolution should improve the representa-
tion and accuracy of the GLOBCOVER and MODIS C5.

The availability of multiple, similarly structured land cover data
sets provides the user community with choices, but for most users it
is not clear which map suits their particular application best (Herold
et al.,, 2008; Jung et al., 2006). Ultimately, the selection is often based
on map legends rather than accuracy, in part because it is difficult to
ascertain which map is the most accurate. Global accuracy estimates
reported by map developers are very similar, but because of method-
ological differences used to perform the accuracy assessments, these
estimates cannot be directly compared, e.g. GLC-2000: 68.6%
(Mayaux et al., 2006), GLOBCOVER: 73.1% (Bicheron et al., 2008),
MODIS Collection 3: 71.6% (MODIS land cover team, 2003), and
MODIS Collection 5: 74.8% (Friedl et al., 2010).

While users often rely on overall measures of map accuracy to
evaluate the quality of maps, map errors are rarely equally distributed
(Strahler et al., 2006). Two maps can have the same overall accuracy,
but a different spatial distribution of error. Studies that compared
global land cover maps have found significant regional differences in
spatial agreement (Fritz & See, 2008; Giri et al., 2005; Herold et al.,
2008). Agreement tends to be lowest in regions with complex, hetero-
geneous land cover and for spectrally similar land cover classes (e.g.
mixed versus pure broadleaf and conifer forests). Thus, the choice of
map depends on how it will be used in a particular region of the
map, which also needs to be considered in interpreting results of spa-
tial modeling.

Differences among land cover maps have important implications
for applications using these products, for example biogeochemical
(e.g. Potter et al., 2008) or habitat models (e.g. Kuemmerle et al.,
2011). A simple analysis that extrapolated results of biogeochemical
modeling for the Arctic region of Northern Eurasia (North of 60°)
showed that a very different picture of the regional carbon (C) bal-
ance emerged when different vegetation maps were used as model

inputs: The estimate of C stock in live vegetation based on the
GLC-2000 map (24 Pg C) was 40% higher than the estimate based on
the MODIS plant functional type map (17 Pg C). Although the estimates
of the total change in live vegetation C stocks were very similar for both
maps (0.2 Pg yr— ! C sink), the attribution of the projected C sink was
quite different depending on the map used: based on GLC-2000 map
most of the C accumulation occurred in tree-dominated ecosystems
while simulations using the MODIS map attributed most of the C sink
to shrub vegetation (Krankina et al., 2011). The significant role of land
cover map selection on forest biomass estimates in Russian forests
was also reported by Houghton et al. (2007).

Despite the importance of Northern Eurasia for global change re-
search, global maps have not been rigorously assessed in this region.
For GLC-2000, Bartalev et al. (2003) compared estimates of percent
forest cover with official forest cover statistics for administrative re-
gions of the Russian Federation. The authors reported an R? of 0.93,
indicating that forest cover was reliably mapped at the level of ad-
ministrative units. The size of administrative divisions in Russia, how-
ever, varies considerably, i.e. from about 8x 103 km? (Adygea) to
3% 10° km? (Yakutia). Frey and Smith (2007) compared field obser-
vations in Western Siberia with two land cover and two wetland da-
tabases. Agreement between the field data and the two analyzed land
cover data sets, the AVHRR Global Land Cover Characterization Data-
base and the MODIS C3 Land Cover Product, was 22% and 11%, respec-
tively. Other comparison studies have focused only on wetlands
(Krankina et al., 2008; Pflugmacher et al., 2007).

Cross comparisons between global land cover maps help identify
areas of potential high map uncertainty (Herold et al., 2008; See &
Fritz, 2006), but independent validation studies are needed to reveal
the sources of disagreement and provide local and regional scale esti-
mates of classification accuracy. There are several challenges associat-
ed with this task:

- The collection of reference data is costly for large areas, particularly
for remote regions such as Northern Eurasia. Consequently, it is cru-
cial to design and implement validation methods that are not tai-
lored to a single map product, i.e. a single classification system and
spatial resolution, but that can accommodate a range of current
and potentially future land cover maps (Olofsson et al., submitted
for publication).

- Reference data is often collected at high spatial resolution and

needs to be aggregated to the resolution of the coarse-scale map.

The process of aggregation, however, can introduce biases to-

wards dominant land cover types (“low resolution bias”, Boschetti

et al., 2004; Latifovic & Olthof, 2004; Moody & Woodcock, 1994).

Maps differ with respect to spatial resolution, class definitions and

thematic detail. This affects estimates of overall map accuracy

(Latifovic & Olthof, 2004), and therefore makes cross-comparison

of accuracy estimates difficult.

The objective of this study was to evaluate accuracy measures and
procedures for validating global land cover datasets for Northern Eurasia
using maps created from higher resolution satellite data (Landsat).
This study is part of a broader effort to validate and improve land
cover and land-cover change products for Northern Eurasia using a
network of local test sites distributed throughout the region
(http://www.fsl.orst.edu/nelda).

2. Methods

We compared four global land cover datasets with higher resolu-
tion (30-m) land cover maps developed from Landsat images at test
sites distributed throughout the region of Northern Eurasia. Ideally,
it is desirable to choose reference locations by random probability
sampling (Strahler et al., 2006). However, the availability of reference
data in this region represents a major constraint for validation stud-
ies. We therefore selected test sites across a range of climatic and
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geographic conditions where high quality reference data and local ex-
pertise were available. This opportunistic selection of validation sites
precludes a probability-based statistical assessment of map accuracy
for the region, but permits different measures of map accuracy to be
examined across a range of conditions within Northern Eurasia. A
similar approach was used to validate MODIS Land Cover maps for se-
lected biome types in North and South America (Cohen et al., 2003;
Cohen et al., 2006; Latifovic & Olthof, 2004). For the purpose of this
analysis we defined the region of Northern Eurasia to extend from
42°-74° N latitude (Fig. 1).

2.1. Global land cover data sources

The GLC-2000 effort was lead by the Joint Research Center of the
European Commission in partnership with more than 30 institutions
(Bartalev et al., 2003; Bartholome & Belward, 2005). The GLC-2000 map
is based on Satellite Pour 1'Observation de la Terre (SPOT) VEGETATION
data acquired daily between November 1999 and December 2000.
The map has a nominal spatial resolution of ~1 km and uses a 22-
class legend based on the UN FAOQ's hierarchical Land Cover Classifi-
cation System (LCCS, Di Gregorio, 2005). We downloaded the global
data set (v1.1) from (http://www-gvm.jrc.it/glc2000/; last accessed
20 January 2008) in geographic coordinates, and projected it to an
equal area projection (Lambert Azimuthal EA).

GLOBCOVER is the successor to GLC-2000, and as such also builds
on an international network of partners. GLOBCOVER was developed
using an annual mosaic of Envisat's Medium Resolution Imaging
Spectrometer (MERIS) data from December 2004 to June 2006. GLOB-
COVER relied in part on GLC-2000 as training data (Bicheron et al.,
2008) and therefore the two datasets are not completely indepen-
dent. With a nominal pixel size of 300 m, GLOBCOVER represents
the highest spatial resolution global land cover dataset currently
available. The map distinguishes between 22 classes that are compat-
ible with the Land Cover Classification System (LCCS). We down-
loaded GLOBCOVER v2.2 from the European Space Agency
GLOBCOVER Project (http://ionial.esrin.esa.int, last accessed 4 May
2011).

The MODIS Land Cover Product is developed by scientists from
Boston University for NASA's Earth Observing System (EOS) MODIS
land science team (Friedl et al., 2002). The MODIS Land Cover Prod-
uct is produced for each year since 2001 and provides global land
cover in five different classification systems including the International
Geosphere-Biosphere Programme (IGBP, Loveland & Belward, 1997)
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classification. The MODIS land science team periodically reprocesses
the entire MODIS land product suite, including the yearly MODIS Land
Cover Product. For this study we analyzed MODIS Land Cover Collection
4 data from 2001 and Collection 5 data from 2005 using the IGBP classi-
fication, hereafter referred to as MODIS C4 and MODIS C5, respectively.
MODIS C5 has a spatial resolution of ~500 m and supersedes MODIS C4
with a spatial resolution of ~1 km. We included MODIS C4 here to ex-
plore differences between the two collections and because the 1-km
resolution provided a suitable reference for comparisons with GLC-
2000. The 17-class IGBP classification was selected because it is the
most common and detailed land cover classification among the
MODIS Land Cover layers. We obtained the data from the NASA Ware-
house Inventory Search Tool (https://wist.echo.nasa.gov, last accessed
25 January 2010).

2.2. Differences among global land cover classifications

The global land cover classifications analyzed in this study are
generally similar, but there are differences between maps that make
a direct and uniform comparison challenging (Table 1). For example
GLC-2000 differentiates between evergreen and deciduous shrub
types, whereas MODIS IGBP does not distinguish between shrub leaf
types, but does distinguish between open and closed shrub cover.
Further, GLC-2000 and GLOBCOVER distinguish between non-vege-
tated, bare land cover and sparse vegetation with less than 10-20%
and less than 15% vegetation cover, respectively. In comparison,
MODIS IGBP combines these land cover types into a single class: bar-
ren and sparsely vegetated areas with less than 10% vegetation or
snow cover. The maps also show different thematic information with-
in tree life form classes. Generally, tree life form types are character-
ized by leaf type (needleleaf, broadleaf, and mixed) and leaf
senescence (evergreen and deciduous). However, each map contains
classes that cannot be unambiguously assigned to either of the two,
e.g. the “Burnt Tree Cover”, “Regularly Flooded Tree Cover”, and “Mo-
saic Tree Cover” classes in GLC-2000, the “Open Needleleaved Decid-
uous or Evergreen Forest” class in GLOBCOVER, and the open tree
vegetation cover classes in the IGBP layer of the MODIS land cover
product (“Woody Savannas” and “Savannas”).

To minimize ambiguities in comparisons of accuracy statistics
among global land cover datasets, map legends need to be converted
to a common classification. For this paper, we generalized map leg-
ends to six classes on the basis of the dominant life form types
(LFT) in each map legend (Table 1). Croplands were labeled as

: A{‘{“f'czCirc/e

RUSSIA

©

MONGOLIA

Fig. 1. Locations of reference sites: 1 — Carpathians, 2 — St. Petersburg, 3 — Komi, 4 — Vasyugan, 5 — Priangarie, 6 — Chita.


http://www-gvm.jrc.it/glc2000/
http://ionia1.esrin.esa.int
https://wist.echo.nasa.gov

3542 D. Pflugmacher et al. / Remote Sensing of Environment 115 (2011) 3539-3553
Table 1
Aligning the legends of global maps: dominant life form type (LFT) and corresponding land cover classes from GLC-2000, GLOBCOVER & MODIS IGBP.
Dominant  GLC-2000 GLOBCOVER MODIS IGBP
LFT
Tree [1] Tree cover; broadleaved; evergreen [40] Broadleaved evergreen or semi-deciduous forest, closed [1] Evergreen needleleaf
to open forest
[2] Tree cover; broadleaved; deciduous; closed [50] Broadleaved deciduous forest, closed [2] Evergreen broadleaf
forest
[3] Tree cover; broadleaved; deciduous; open [60] Broadleaved deciduous forest/woodland, open [3] Deciduous needleleaf
forest
[4] Tree cover; needle-leaved; evergreen [70] Needleleaved evergreen forest, closed [4] Deciduous broadleaf
forest
[5] Tree cover; needle-leaved; deciduous [90] Needleleaved deciduous or evergreen forest, open [5] Mixed forest
[6] Tree cover; mixed leaf type [100] Mixed broadleaved & needleleaved forest, closed-open [8] Woody savannas
[7] Tree cover; regularly flooded; fresh water [160] Broadleaved forest regularly flooded, closed to open  [9] Savannas
[8] Tree cover; regularly flooded; saline water
[9] Mosaic: Tree cover; other natural vegetation
[10] Tree cover; burnt
Shrub [11] Shrub cover; closed-open; evergreen [130] Shrubland, closed to open [6] Closed shrublands
[12] Shrub cover; closed-open; deciduous [7] Open shrublands
Herbaceous [13] Herbaceous cover; closed-open [11] Post-flooding or irrigated croplands (or aquatic) [10] Grasslands
[16] Cultivated and managed areas [140] Herbaceous vegetation, closed to open [12] Croplands
[14] Rainfed croplands
Barren [14] Sparse herbaceous or sparse shrub cover vegetation cover [150] Sparse vegetation (<15%) [16] Barren or sparsely
between 1% and 10-20% vegetation cover vegetated
[22] Artificial surfaces and associated areas [190] Artificial surfaces and associated areas [13] Urban and built-up
[19] Bare areas [200] Bare areas
[21] Snow and ice [220] Permanent snow and ice [15] Snow and ice
Mosaic [15] Regularly flooded shrub and-or herbaceous cover [20] Mosaic cropland (50-70%)/vegetation [11] Permanent wetlands
(grassland/shrubland/forest) (20-50%)
[17] Mosaic: Cropland; tree cover; other natural vegetation [30] Mosaic vegetation (grassland/shrubland/forest) (50~ [14] Cropland-natural
70%)/cropland (20-50%) vegetation mosaic
[18] Mosaic: Cropland; shrub and-or herbaceous cover [110] Mosaic forest or shrubland (50-70%)/grassland (20—
50%)
[120] Mosaic grassland (50-70%)/forest or shrubland (20-
50%)
[170] Broadleaved forest or shrubland permanently flooded,
closed
[180] Grassland or woody vegetation on regularly flooded or
waterlogged soil, closed-open
Water [20] Water bodies [210] Water bodies [0] Water bodies

herbaceous vegetation and classes that include mixtures of LFT types
were labeled as “mosaic”. This level of generalization avoids most of
the ambiguities described above, albeit at the cost of thematic detail.
An alternative approach to bridging the differences among legends
relies on “fuzzy logic” (See & Fritz, 2006) in contrast to “crisp logic”
chosen for this study. We opted for crisp comparison to maintain ob-
jectivity by avoiding judging the severity of class disagreement.

2.3. Test sites

To assess the coarse resolution maps we selected six test sites that
span wide latitudinal, longitudinal, and climatic gradients in Northern

Table 2
Test site information.

Eurasia (Table 2, Fig. 1). Mean annual temperature ranges from — 5 °C
at the Komi site to 46 °C at the Carpathian site and precipitation
ranges from <400 mm per year in Chita to about 1000 mm in the Car-
pathians. While all sites have mild summers, the average winter tem-
perature declines from west to east as the climate becomes
increasingly continental. The terrain is flat at the St. Petersburg,
Komi and Vasyugan site and mountainous with significant elevation
gradients at the remaining three sites.

All sites are located within the forest belt that stretches across
Northern Eurasia and vegetation cover in all sites includes a signifi-
cant proportion of forest (tree-dominated land cover). Shrub cover
is present in all sites as well, but its role tends to be small. The sites

Site  Location Latitude, Landsat  Landsat image date Mean temperature Mean annual Elevation range
longitude  path/row (°C) precipitation (mm) (m asl)
January July Annual
CARP Carpathians (border region of Poland, Slovakia, 48.87, 186/20 6-Jun-2000 21-Aug-2000 —7 19 6 900-1200 100-2000
Ukraine) 2240 30-Sep-2000
STPB  St. Petersburg Region (Russia) 60.09, 184/18 2-Jun-2002 —10 17 4 600-800 0-250
31.27
KOMI Komi Republic (Russia) 66.94, 171/13 1-Jun-2000 19-Jul-2000 —-19 12 -5 360-500 20-240
57.10
VASY Vasyugan Basin, Tomsk Region, West Siberia 57.32, 150/20 16-Sep-1999 —18 18 0 450-550 110-130
(Russia) 82.09
PRIA  Priangarie, Krasnoyarsk Region, East Siberia 57.30, 141/20 18-Aug-2000 —22 18 3 400-450 100-600
(Russia) 95.91
CHIT Chita Region and Buriat Republic, East Siberia ~ 51.69, 129/24 11-Jun-2000 —26 15 —4 380 600-1500
(Russia) 111.64
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represent different ecoregions including temperate forest (Carpathians),
southern taiga or boreal forest (St. Petersburg and Vasyugan), northern
taiga (Komi), and montane boreal (Priangarie and Chita) (Alexeyev &
Birdsey, 1998). The sites also reflect the diversity of vegetation distur-
bance regimes in Northern Eurasia, including forest fires (Chita), insect
outbreaks (Priangarie), timber harvest (Carpathians and St. Petersburg),
and changes in agricultural land use (all sites except Komi). Wetlands oc-
cupy large areas at three test sites (St. Petersburg, Komi, and Vasyugan).
Excessive moisture at these sites leads to accumulation of peat, reduced
density of tree cover and greater shrubs and herbaceous vegetation cover.

Detailed land cover maps for each test site were developed based on
Landsat imagery combined with local expert knowledge and ground
data. Results of several completed and ongoing projects that mapped
land cover and examined various types of land-cover, land-use change,
and vegetation disturbance were also used (e.g., Heikkinen et al., 2004;
Kharuk et al., 2003; Kharuk et al., 2004; Krankina et al., 2004a; Kran-
kina et al., 2004b; Kuemmerle et al., 2007; Kuemmerle et al., 2008).
The Landsat classification approaches varied by site and included super-
vised (e.g. decision trees) and unsupervised classifications. All site leg-
ends followed the Land Cover Classification System (LCCS, Di Gregorio,
2005) and included between 11 and 17 classes. These were recoded to
match the LFT legend (Table 3). The LCCS classification defines tree-dom-
inated cover as land with greater than 15% tree cover, where trees are any
woody vegetation taller than 5 m or trees taller than 3 m. Similarly, shrub
and herbaceous dominated vegetation types have a minimum of 15%
plant cover, respectively. The dominant life form is defined hierarchically
by the height of the canopy layer, which ranges from trees to shrubs to
herbaceous plants. Lands with less than 15% vegetation cover are labeled
as bare land and sparse vegetation.

Table 3
Error matrix of dominant life form types for Landsat-based reference maps at test sites.

3543

Map accuracy at test sites was assessed using forest inventory data
and ground observations from research projects. Where ground obser-
vations proved insufficient, additional reference data were collected
through manual interpretation of aerial photos and high-resolution im-
agery in Google Earth. The overall accuracy of Landsat-derived maps
for the LFT classification exceeded 92% for Carpathians, St. Petersburg,
Vasyugan, and Priangarie sites; while it was somewhat lower for
Chita and Komi sites (87% and 80%, respectively) (Table 3) (Krankina
et al, 2011; Kuemmerle et al.,, 2006). For the purpose of this study
the Landsat-based classifications are considered “ground truth”.

2.4. Comparison and assessment of global maps

We used multiple approaches to assess four global land cover
datasets at the regional and local scale. First, we performed a cross
comparison of global maps for the region of Northern Eurasia. Then,
we compared land cover class frequencies and spatial agreement be-
tween global maps and reference data at local test sites. Spatial agree-
ment was computed for all global map pixels, homogenous pixels,
and for pixel blocks.

2.4.1. Cross comparison

Cross comparisons provide a means to reveal areas of uncertainty in
global maps where reference data are sparse or not available (Herold
etal,, 2008). In this study, we first calculated spatial agreement between
each map combination using the generalized LFT legend and then com-
puted an overall agreement score as the average of the (six) pairwise
agreement values. To bridge differences in spatial resolution and mini-
mize misregistration errors we calculated fractional agreement for

Mapped Reference class
Class Site Tree Shrub Herb Barren Water
Tree STPB 2176 18
CARP 466 7 7 4
KOMI 289 22 1
PRIA 851 7 7
CHIT 210 3 3 2
VASY 179 3 2
Shrub STPB 44 6 1
CARP 2 59 19 2 2
KOMI 8 39 8 1
PRIA 2 25 13 1
CHIT 18 26 1
VASY 7 45 3
Herbaceous STPB 6 5 58 1
CARP 1 26 346 1
KOMI 12 1 14 15 3
PRIA 8 1 658
CHIT 2 7 37 8
VASY 1 10 52 1
Barren STPB 1 5 380
CARP 3 3 29 1
KOMI 15 41 1
PRIA 7 13 199
CHIT 3 22
VASY 32
Water STPB 116
CARP 22
KOMI 2 34
PRIA 274
CHIT 32 Overall accuracy
VASY 24
Percent correct STPB 1.00 0.88 0.67 0.99 1.00 0.98
CARP 0.99 0.62 0.92 0.91 0.76 0.92
KOMI 0.93 0.63 0.38 0.72 0.87 0.8
PRIA 0.99 0.63 0.95 1.00 1.00 0.97
CHIT 091 0.72 0.84 0.73 0.94 0.87
VASY 0.96 0.78 0.91 0.97 1.00 0.92
All Sites 0.98 0.70 0.90 0.96 0.97 0.91
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Fig. 2. Examples of constructing fractional error matrices for sampling units equal to a) the global map resolution and b) blocks of 2 x 2 coarse resolution pixels. For pixel blocks, row

and column totals must be computed from the map statistics.

pixel-blocks of 3 x 3 km instead of pixel-by-pixel agreement as reported
in previous global comparison studies (Giri et al., 2005; Herold et al.,
2008). We computed overall fractional agreement from the relative fre-
quency distributions of land cover within pixel-blocks as follows:

u 1
Overall fractional agreement = % > Y min(X;,, Yiy) (1)

u=1i=1

where X;., and Y;., is the area fraction of pixel-block u occupied by
class i in map X and Y, respectively.

2.4.2. Spatial agreement with Landsat-based maps

We calculated spatial agreement of global maps with Landsat-
based maps at test sites using a fractional error method introduced
by Latifovic and Olthof (2004). The method does not require spatial
aggregation of the fine resolution reference maps to the coarse reso-
lution of the global maps, and therefore takes full advantage of the

I tree [ Shrub [_] Herbaceous Barren [_] Mosaic
100

80_ .
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Fig. 3. Relative regional frequency of dominant life form types across Northern Eurasia
based on global land cover maps.

observed land cover distribution within global map pixels. We popu-
lated fractional error matrices by counting the number of (fine reso-
lution) reference pixels within global map pixels (Fig. 2a). Thus,
instead of labeling a coarse resolution pixel either 100% correct or
100% incorrect, the “correctness” of that pixel was rated on a contin-
uous scale based on the pixel fraction occupied by the “correct” refer-
ence class. We further computed standard accuracy measures such as
the error of omission (exclusion) and commission (inclusion), and
overall agreement and chance corrected agreement (kappa, Cohen,
1960) from these fractional error matrices. Omission error (OE) is
the fraction of reference pixels that occupy coarse resolution pixels
of other classes. Similarly, commission error (CE) is the total sub-
pixel fraction of coarse resolution pixels occupied by reference pixels
of other classes. Overall agreement and kappa range from 0 to 1, but
the interpretation of kappa is less transparent. In general, kappa esti-
mates between 0.6 and 0.8 are interpreted as good to very good, and
between 0.4 and 0.6 as fair to moderate (Czaplewski, 1994). Because
coarse resolution pixels usually contain a mixture of cover classes,
total agreement scores obtained by this approach are generally less
than 1 even if the classification were perfect.

2.4.3. Spatial agreement for homogenous land cover

Studies have shown an inverse relationship between map agree-
ment and land cover heterogeneity in global maps (Herold et al.,
2008). In heterogeneous landscapes, the proportion of a coarse reso-
lution pixel occupied by a single, dominant land cover class can be
significantly lower than in uniform landscapes. To measure map accu-
racy independent of this “coarse resolution bias” and landscape het-
erogeneity, we calculated accuracy statistics for “pure” pixels. We
defined pure pixels as pixels that contained at least 95% of a single
LFT class in the reference data.

2.4.4. Spatial agreement of pixel blocks
To explore how sampling affects estimates of map accuracy, we
successively increased the size of sampling units from individual
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Fig. 4. Distribution of dominant life form types for Northern Eurasia based on GLC-2000, GLOBCOVER, MODIS C4 and MODIS C5.

pixels to blocks of multiple coarse resolution pixels (e.g. 2x2,
3x 3 pixels, and so forth). First, we evaluated relative changes in
agreement for each map as the size of analysis unit was increased.
Then, we compared map accuracies among datasets using sampling
units of equal area up to pixel blocks of ~5x5 km. The fractional
error method has previously only been used with sampling units of in-
dividual pixels (Latifovic & Olthof, 2004); however, the method can
also be applied to pixel blocks. To apply the method it was convenient
to resample the coarse map to the spatial resolution of the reference
data and compute the fractional confusion matrix in units of reference
map pixels (Fig. 2b). The fractional confusion matrix was then popu-
lated by counting the minimum number of pixel units between map
X and X’ occupied by class i for each (pixel-block) sample u:

u /
M = 3 min (X, X 1) )
u=1

where i denotes the row and column (diagonal) of error matrix M,
and X;,, and X’;,, denote the number of fine resolution pixels in
pixel-block u occupied by class i in map X and X/, respectively. Note
that because the sampling unit can be greater than the map unit,
non-diagonal elements do not have a unique solution. The calculation
of agreement, omission and commission for pixel blocks is similar to
that of individual global map pixels.

2.4.5. Treatment of mosaic classes

Mosaic classes of global land cover classifications contain mixtures
of vegetation types, e.g. croplands, forests, shrub land, and grasslands

Table 4

that only occur at the coarse resolution scale (Table 1). This is prob-
lematic in accuracy assessment, because it is not clear when a pixel
should be labeled as mosaic and when it should be labeled according
to the dominant vegetation type. For example, an area with 30% tree
cover could be classified either as mosaic or forest. To account for this
ambiguity we assumed that mosaic pixels could contain any combi-
nation of tree, shrub and herbaceous vegetation types. Thus, we com-
puted total agreement for mosaic pixels from the combined area of
tree, shrub and herbaceous reference pixels. Similarly, when we cal-
culated omission errors for these three classes, the area mapped as
mosaic was added to tree, shrub, and herbaceous LFT, respectively, ef-
fectively decreasing the omission error. This approach reduced the
uncertainty resulting from mosaics, but it potentially inflated the
map accuracy measures in proportion to the area classified by global
maps as mosaic or mixed vegetation.

3. Results
3.1. Comparison of global land cover for Northern Eurasia

There were significant differences among global maps with re-
spect to the spatial distribution and relative frequency of vegetation
types in Northern Eurasia (Fig. 3). Estimates of total tree dominated
land area were relatively similar for the entire region, ranging from
35% (MODIS C4) to 42% (GLC-2000). However, differences in tree
cover were not equally distributed but concentrated mainly in north-
ern Siberia and the Far East (Fig. 4). For example, tree cover in
GLC-2000 and GLOBCOVER was significantly higher in the transition

Spatial agreement results from cross comparisons of global land cover maps for the region of Northern Eurasia (NE) and six validation sites.

Spatial agreement for test sites and Northern Eurasia (NE)

Maps compared STPB CARP CHIT KOMI PRIA VASY NE

GLC2000-GLOBCOVER 0.75 0.62 0.76 0.38 0.77 0.80 0.65
GLC2000-MODIS C4 0.80 0.82 0.77 0.46 0.86 0.85 0.57
GLC2000-MODIS C5 0.86 0.65 0.69 0.66 0.91 0.86 0.60
GLOBCOVER-MODIS C4 0.71 0.67 0.67 0.16 0.71 0.76 0.42
GLOBCOVER-MODIS C5 0.77 0.74 0.57 0.37 0.76 0.84 0.48
MODIS C5-MODIS c4 0.82 0.71 0.75 0.69 0.88 0.81 0.79
Mean agreement 0.78 0.70 0.70 0.45 0.82 0.82 0.59
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Mean Agreement

Fig. 5. Mean agreement of four land cover products (GLC-2000, GLOBCOVER, MODIS C4
and MODIS C5) after thematic aggregation to LFT legend (Table 1). Mean agreement is
the average pairwise agreement between global maps and calculated as fractional
agreement of land cover proportions within 3 x 3 km blocks, e.g. a value of 0.8 means
that on average 80% of the land cover in a pixel block is in agreement.

zone between boreal forest and shrub tundra compared to MODIS C4
and MODIS C5.

Cross comparison of global land cover for Northern Eurasia
revealed an average agreement in LFT classes of 0.59 (Table 4). Spatial

Landsat

agreement was highest between the related products MODIS C4 and
C5 (0.79), and GLC-2000 and GLOBCOVER (0.65), but GLC-2000 and
MODIS C5 also showed moderate agreement (0.6). Spatial agreement
among all four maps (Fig. 5) was generally above 0.8 in the forest belt
of Northern Eurasia and below 0.5 in the northern taiga-tundra zone
and in the dry zones of the South. The European part of the region
also showed fair (0.51-0.65) and moderate (0.66-0.8) agreement, in
part because of the thematic ambiguity between the herbaceous
and mosaic class in the LFT legend.

MODIS mapped a significant proportion of the northern taiga and
the tundra as shrub dominated vegetation. According to MODIS C4
and C5, shrub land cover types make up about one quarter of the en-
tire Northern Eurasia region (27% and 21%, respectively). This is about
three times the total shrub dominated land area mapped by GLC-2000
(7%). Interestingly, GLOBCOVER classified less than 0.1% of Northern
Eurasia as shrub lands, but mapped a significantly greater proportion
of the region as sparse vegetation and barren land (31%) when com-
pared to GLC-2000 (23%), and MODIS C4 (6%) and C5 (4%). The differ-
ence is most pronounced in the taiga-tundra ecotone and in the
transition from steppe/grasslands to non-vegetated areas in the
south, where MODIS mapped significantly more herbaceous vegeta-
tion than other maps. However, GLOBCOCVER classified 22% of the re-
gion as vegetation mosaics, which partly explains the low proportion
of herbaceous and shrub dominated vegetation classes in this map.

M Trees [[Shrubs [JHerbaceous MBarren [IMosaic IllWater

Fig. 6. Distribution of dominant life form types at reference sites.
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Fig. 7. Predicted (global map) versus reference land cover area, calculated from (a) all pixels and (b) pure pixels, in percent of total test site area for GLC-2000, GLOBCOVER, MODIS
C4, and MODIS C5. Symbol shapes represent individual test sites. Symbol fill patterns and shades of gray represent individual LFT classes (tree: open light gray, shrub: filled light

gray, herbaceous: open dark gray, barren: filled dark gray).

The proportion of mosaic pixels was significantly lower in GLC-2000
(9%), MODIS C4 (1%), and MODIS C5 (6%).

3.2. Comparison of global land cover at test sites

3.2.1. Distribution of global land cover at test sites

Comparisons of the four global land cover datasets with the
Landsat-based reference maps (Fig. 6) revealed general patterns of
agreement and disagreement at the test site. To quantify the repre-
sentation of global land cover at this scale, we compared the relative
proportions of LFT classes at each site without regard for their within-
site spatial distribution (Fig. 7a). We found the percentage of coarse
resolution pixels in the tree class matched most closely the percent-
age of reference pixels across all global maps. GLOBCOVER showed
the highest overall agreement in this class (88%), followed by
GLC-2000 (82%), MODIS C5 (80%), and MODIS C4 (78%). There was
a general tendency in all four coarse resolution maps to overestimate
the tree class by an average of 10-20% (Fig. 7a). Surprisingly, the pat-
tern of under-reporting smaller classes did not improve on maps with
finer resolution (GLOBCOVER and MODIS C5). The same analysis

Table 5

Overall agreement and chance corrected agreement (Kappa) between reference maps and

types at test sites.

performed on coarse resolution pure pixels with uniform land cover
(Fig. 7b) showed much higher agreement in total tree dominated
area and other LFT classes for all global maps, although the improve-
ment for non-tree classes was notably smaller for GLOBCOVER.

Differences in LFT class proportions between global maps and refer-
ence data were largest in areas with sparse tree cover. At Komi, GLC-
2000 and GLOBCOVER overestimated tree cover by 30% and 26%, re-
spectively, whereas MODIS C4 under-represented this class by 40%.
The low percentage of tree cover in C4 was accompanied by a signifi-
cantly higher proportion of shrub cover; 2.6 times higher than the ref-
erence data. In MODIS C5, classification of tree vegetation significantly
improved and was more consistent with the reference data. Conversely,
GLOBCOVER significantly overestimated barren/sparse vegetation at all
test sites, but showed the best agreement for inland water bodies.

3.2.2. Spatial agreement at test sites

Spatial agreement scores derived from cross comparisons of global
maps were generally above 0.7 at the test sites, and thus above the
region-wide agreement of 0.59, except at Komi (0.45) (Table 4).
However, agreement at Komi was moderate between MODIS C5 and

coarse resolution land cover products for per-pixel comparisons of dominant life form

GLC2000 GLOBCOVER MODIS C4 MODIS C5
Site Agreement Kappa Agreement Kappa Agreement Kappa Agreement Kappa
All pixels
Carpathians 0.69 0.45 0.73 0.57 0.75 0.56 0.87 0.79
Chita 0.76 0.40 0.83 0.51 0.72 0.37 0.67 0.35
Komi 0.58 0.41 0.34 0.22 0.42 0.16 0.49 0.28
Priangarie 0.84 0.39 0.85 0.49 0.80 0.35 0.86 0.51
St. Petersburg 0.74 0.51 0.69 048 0.67 0.36 0.75 0.54
Vasyugan 0.74 0.34 0.72 0.39 0.68 0.17 0.77 0.45
Total across sites 0.73 0.47 0.70 0.46 0.67 0.41 0.74 0.52
Pure pixels only
Carpathians 0.95 0.87 0.89 0.78 0.98 0.94 0.99 0.97
Chita 0.94 0.69 0.94 0.71 0.92 0.65 0.85 0.52
Komi 0.91 0.77 0.66 0.48 0.86 0.70 0.84 0.68
Priangarie 0.98 0.68 0.94 0.62 0.97 0.54 0.98 0.82
St. Petersburg 0.97 0.91 0.91 0.78 0.96 0.88 0.96 0.89
Vasyugan 0.98 0.49 0.94 0.54 0.97 0.27 0.97 0.62
Total across sites 0.96 0.80 0.91 0.72 0.96 0.78 0.94 0.79
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MODIS €4 (0.69) and between MODIS C5 and GLC-2000 (0.66). High
global map agreement was observed at Priangare (0.82) and at
Vasyugan (0.82).

Pixel-level agreement with Landsat-based references maps ranged
from 0.34 at the Komi site with GLOBCOVER to 0.87 at the Carpathian
site with MODIS C5 (Table 5). Mean agreement across global maps
ranged from 0.46 + 0.09 at Komi to 0.84 4 0.02 at Priangarie. For all
sites combined, total agreement for MODIS C4 and C5 was 0.67 and
0.74, respectively; and for GLOBCOVER and GLC-2000 total agree-
ment was 0.70 and 0.73, respectively. MODIS C5 performed better
than MODIS C4 on all test sites with the exception of Chita. The
lower agreement at Chita may be attributable to widespread forest
fires that burned about 17% of the total site area in 2002-2003,
most of it tree-dominated. These disturbances occurred between the
Landsat and MODIS C5 data acquisitions in 2000 and 2005, respec-
tively. The time difference to the reference maps is similar to that
for GLOBCOVER, but larger compared to GLC-2000 and MODIS C4.
However, on average the disturbance rates did not exceed 0.1-0.2%
per year over large areas. Thus, we expect the effect of differences
in the data acquisition dates to be small on all sites with the exception
of Chita. Chance corrected agreement at the pixel scale was fair to
moderate for all maps (Kappa=0.41-0.52).

The fractional error matrices for LFT classes reveal more detailed pat-
terns of class confusions across test sites (Table 6). Map errors were low
for tree vegetation with omission errors between 0.05 (GLC-2000 and
GLOBCOVER), 0.08 (MODIS C5) and 0.13 (MODIS C4), and commission
errors between 0.2 (GLOBCOVER and MODIS C5) and 0.24 (GLC-2000).
Because fractional error estimates represent sub-pixel proportions of
land cover, omission and commission errors correspond to the approxi-
mate boundaries of the mapped classes. For example, a 0.05 omission

Table 6

error indicates an average tree cover in non-tree pixels of 5%. Likewise,
a commission error of 0.2 represents the mean fraction of non-tree
cover included in coarse resolution tree pixels. Because global maps typ-
ically define a minimum tree cover threshold for tree dominated classes
between 10 and 20%, it is reasonable to expect an average omission
error between 0.1 and 0.2, depending on class definition.

Shrub and herbaceous classes were significantly underestimated
by all global maps (OE>0.48, Table 6). Omission of shrub vegetation
was greatest in GLOBCOVER (OE =0.82), and omission of herbaceous
vegetation was greatest in MODIS C4 (OE=0.61) and GLOBCOVER
(OE=0.60). A large proportion of the shrub and herbaceous vegeta-
tion in the reference maps was labeled as tree-dominated pixels in
global maps (40-52% and 28-41%, respectively). The proportion was
roughly 10% greater in GLC-2000 than in other maps. However, the
confusion among shrub, herbaceous and barren classes was also con-
siderable. About 35% and 30% of the shrub and herbaceous vegetation,
respectively, was mapped as barren lands in GLOBCOVER; a signifi-
cantly higher proportion than in the other maps where only 1-2% of
shrub and herbaceous cover occurred in barren pixels. Conversely,
MODIS C4 (27%) and MODIS C5 (19%) mapped a greater proportion
of herbaceous vegetation as shrub land compared to GLC-2000 (9%)
and GLOBCOVER (0%). Patterns of commission and omission varied
among test sites (Fig. 8). For example, omission of herbaceous vegeta-
tion was relatively low at the Carpathian site and high at Komi.
GLC-2000 estimated shrubs accurately at Komi, but missed shrub
lands entirely at the Carpathian site.

3.2.3. Global map agreement for homogenous land cover
To quantify the effect of landscape homogeneity on map accuracy
we performed a separate accuracy assessment for pure pixels. The

Fractional error matrices based on dominant life form types of GLC-2000, GLOBCOVER, MODIS C4 and MODIS C5 (aggregated results with reference data from all test sites. Bold

values represent class agreement.).

Landsat land cover (km?)

Trees Shrubs Herbaceous Barren Mosaics Water Commission
GLC-2000
Trees 88,307 11,900 16,103 844 0 987 0.24
Shrubs 851 4,180 3,618 200 0 445 0.40
Herbaceous 3,570 3,277 12,131 1,054 0 223 0.30
Barren 160 162 867 378 0 60 0.77
Mosaic 4,867 3,507 6,589 389 0 468 -
Water 313 64 132 89 0 1,226 0.33
Omission 0.05 0.67 0.53 0.87 0.00 0.64
GLOBCOVER
Trees 83,479 10,010 11,752 589 0 796 0.20
Shrubs 1 0 6 0 0 0 0.00
Herbaceous 608 832 4,831 447 0 17 0.11
Barren 3,817 8,236 11,999 1,198 0 754 0.95
Mosaic 11,311 4,230 11,248 690 0 164 -
Water 125 46 94 72 0 1,895 0.15
Omission 0.05 0.82 0.60 0.60 0.00 0.48
MODIS ¢4
Trees 83,933 9,524 12,947 827 0 710 0.22
Shrubs 7,859 9275 10,657 564 0 1,210 0.67
Herbaceous 4,044 3,409 13,733 1,038 0 180 0.36
Barren 133 152 254 340 0 54 0.64
Mosaic 1,411 550 1,557 74 0 51 -
Water 280 115 194 105 0 1,182 0.37
Omission 0.13 0.57 0.61 0.88 0.00 0.65
MODIS C5
Trees 84,465 9,207 11,100 775 0 1,209 0.20
Shrubs 2,943 6,737 7,354 428 0 747 0.52
Herbaceous 4,654 2,963 12,020 744 0 119 0.29
Barren 154 295 537 592 0 38 0.63
Mosaic 6,553 4,043 8,737 418 0 304 -
Water 20 8 14 26 0 1,145 0.06
Omission 0.08 0.54 0.48 0.80 0.00 0.68
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Fig. 8. Agreement, commission error, and omission error for LFT classes (tree: green, shrub: orange, herbaceous: magenta, barren: gray, water: blue) at six test sites (CARP, CHIT,
KOMI, PRIA, STPB, and VASY) using 3 x 3 km pixel blocks as sampling units. For illustration, omission error is represented by negative values, whereas agreement and commission
error are represented by positive values.

agreement of global maps was nearly perfect if only pure pixels were pure pixels. Compared with results from all pixels total agreement in-
considered (Table 5). Except at Komi site, total agreement for LFT's creased between 0.09 and 0.45, with a higher increase at sites with
exceeded 0.9. Kappa also indicated good and perfect agreement for heterogeneous land cover (e.g. 0.31-0.45 increase at Komi) and
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Fig. 9. Total agreement versus number of pure coarse resolution pixels at each site.
Pure coarse pixels are defined to contain at least 95% of a single land cover class in
the reference data. Symbol shapes represent individual test sites. Symbol fill patterns
and shades of gray represent different global maps (GLC-2000: open light gray, GLOB-
COVER: filled light gray, MODIS C4: open dark gray, MODIS C5: filled dark gray).

lower increase at more homogeneous sites (e.g. 0.09-0.17 at Prian-
garie). Further, the effect was greater for the 1-km resolution maps
GLC-2000 (mean=0.23 +standard deviation=0.06) and MODIS
C4 (0.2740.10) than for GLOBCOVER (0.184+0.08) and MODIS C5
(0.194£0.08).

There was a clear relationship between map agreement and num-
ber of pure pixels at test sites (Fig. 9). The Priangarie site with the
highest overall agreement also had the highest percentage of pure
pixels ranging from 52% for 1-km pixels (GLC-2000 and MODIS C4)
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Fig. 10. Effect of increasing the size of the analysis unit on overall agreement across test
sites: a) relative improvement in agreement associated with blocks in units of pixels,
and b) increase in mean overall agreement associated with blocks sizes in units of area.

to 67% for 300-m pixels (GLOBCOVER). Conversely, the Komi site
had the lowest map agreement and the lowest percentage of pure
pixels (3%-13% for 1-km to 300-m pixels). Without Komi the rela-
tionship was linear with a more conservative slope estimate of
0.0026 (40.0017, 95% Confidence Interval (CI)) and an intercept of
0.659 (£0.069 95% CI) (r=0.6, p-value =0.005). Thus, for a percent-
age of pure pixels greater than 15%, a 10% increase in numbers of pure
pixels was associated with an increase in agreement of approximately
0.03 (£0.02 95% CI). However, we did not find a clear relationship
between number of pure pixels and total agreement within test
sites and between maps indicating that factors other than spatial res-
olution affected map accuracy.

3.2.4. Relationship between map agreement and size of sampling units

Map accuracy increased significantly with the size of sampling
units, but the effect decreased exponentially between 2x2 and
10x 10 pixel blocks (Fig. 10a). The initial increase of overall accuracy
scores at the lower range of block sizes was highest for the 1-km
maps GLC-2000 and MODIS C4. Compared to pixel-scale results,
blocks of 2 by 2 pixels increased the overall agreement by 0.062 +
0.037 for GLC-2000, 0.056 4 0.013 for MODIS C4, 0.040 4 0.015 for
GLOBCOVER and 0.03740.011 for MODIS C5. When a block size of
5x 5 pixels was reached the subsequent improvement in agreement
with increasing block size eventually dropped below a value of 0.01
(similar for all global datasets).

Comparison of overall agreement for sampling blocks of equal area
revealed that the finer resolution datasets GLOBCOVER and MODIS C5
performed generally better than GLC-2000 for analysis units of
~1 km, but the advantage diminished for block sizes between 2 and
3 km, and even slightly decreased for larger blocks (Fig. 10b).
MODIS C4 showed the lowest overall agreement across test sites
and analysis units. At individual test sites, overall agreement general-
ly differed among datasets across the observed range of block sizes
such that agreement lines rarely crossed (Fig. 11).

4. Discussion

We presented an approach to assess recent global land cover maps
consistently for the region of Northern Eurasia, and explored the ef-
fect of sampling unit, reference class assignment and landscape charac-
teristics on accuracy statistics. The results showed that methodology
and choice of sampling unit significantly influence accuracy estimates,
which indicates that direct comparison of reported global map statistics
may be misleading.

Results from this study revealed important similarities and differ-
ences among global land cover maps for Northern Eurasia. Disagree-
ment among global maps was high in the taiga-tundra ecotone and
in the southern dry zones of the region. At the test sites, all maps
showed similar overall per-pixel agreement with Landsat-based ref-
erence data (0.67-0.74), although MODIS C5 and GLC-2000 produced
slightly better results than MODIS C4 and GLOBCOVER. Map accuracy
increased by 7% from MODIS C4 to MODIS C5, and decreased by 3%
between GLC-2000 and GLOBCOVER. However, when sampling units
of equal area were used, e.g. 3 x 3 km, then total agreement of GLOB-
COVER (0.80), GLC-2000 (0.81), and MODIS C5 (0.81) was similar,
and higher than MODIS C4 (0.75). Despite the comparable overall
agreement scores, similarities at the test sites were mostly due to
similar representations of tree dominated land cover. Though slightly
overestimated, tree-dominated vegetation was the most accurate
land cover class in all maps, whereas there were significant differ-
ences in the representation of non-tree land cover classes. Given
that our test sites were predominantly located in the forest belt of
the region and that the diversity of land cover types in Northern Eur-
asia is far greater than a classification of basic life form types, our as-
sessment is probably a rather optimistic scenario and not representative
for the entire region or full map legends.
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Fig. 11. Overall agreement for each test site associated with sequentially increasing the analysis unit from individual coarse resolution pixels to pixel blocks of ~6 km. The x-axis

shows block size in units of km.

Subdominant and rare classes that exist largely at the sub-pixel scale
were difficult to resolve with thematic coarse resolution maps. Despite
their spectrally distinct signature, inland water bodies showed omission
errors between 50 and 70%. Representation of subdominant and rare
classes improved for pure pixels compared to all pixels (Fig. 7a,b), al-
though the improvement was less significant for GLOBCOVER than for
other maps. While the finer resolution of GLOBCOVER could be
expected to improve the accuracy of small classes, water was the only
small class more accurately mapped by GLOBCOVER at our test sites. It
appears with finer resolution other sources of error including pixel reg-
istration, became more significant. In this context, it is important to note
that GLC-2000 and GLOBCOVER were only available in a geographic co-
ordinate system and had to be reprojected to an equal area projection
prior to analysis. Thus, resampling and registration errors may have
been more significant for these two maps. Further, GLC-2000 was in-
cluded in the training database for GLOBCOVER and thus the two
maps are inherently linked.

Our analysis of how the sampling unit affects accuracy suggests that
blocks of 5x 5 pixels are a good compromise between increased overall
agreement and decreased spatial detail (Fig. 9a). Overall agreement in-
creased between 0.07 and 0.11 for blocks of 5x5 pixels compared to
per-pixel comparisons, but larger block sizes did not improve accuracies
significantly. While map accuracies are usually reported for a single spa-
tial unit, maps are often used at different spatial scales (e.g. pixels, poly-
gons, and pixel blocks). More importantly, there is no standard
sampling unit for global accuracy assessment. Reported statistics for
global maps are often obtained from sampling units larger than the spa-
tial resolution of the map, and samples are often selected to represent
homogeneous or dominant land cover types (Bicheron et al., 2008;
Friedl et al., 2002; Friedl et al., 2010; Mayaux et al., 2006). Because
pixels are the basic mapping units of most global land cover data,
users may not always be aware of the larger uncertainties associated
with using these maps at the pixel scale. Map errors unrelated to the
classification process such as spatial misregistration and convolution
of the sensor signal with neighboring pixels can significantly influence
the underlying remote sensing data (Townshend et al., 2000). This sug-
gests that measurements of land cover properties are more robust at
spatial resolutions coarser than the individual pixel.

To compare accuracy measures among maps, we generalized land
cover classifications and re-labeled each pixel with its dominant LFT.
Although other generalizations are possible, the LFT represents the
most general and unambiguous common denominator of current

global maps. However, the loss of thematic detail required to recon-
cile legend differences precludes evaluation of many environmentally
important features of land cover such as the proportion of deciduous
and evergreen tree species. As classifications of land cover products
are more closely aligned with a common land cover language (LCCS,
Di Gregorio, 2005) this type of analysis will become more feasible.
For example, the MODIS Land Cover Product for Collection 6 plans
to use an LCCS-based classification (Friedl et al.,, 2010), and there
have been growing international efforts to promote LCCS and to pro-
vide translations between existing legends (Herold et al., 2006, 2008;
Thomlinson et al., 1999).

In addition to differences in classification systems used in current
land cover maps, several additional challenges present difficulties to
assessing and comparing land cover maps at moderate spatial resolu-
tion. Mosaic classes representing mixtures of different land cover
classes present substantial difficulties because they tend to be spec-
trally similar to multiple sub-pixel cover types. At the same time, be-
cause mosaic classes tend to be used as “catch-all” classes, they can
artificially inflate estimates of map accuracy but not address underly-
ing thematic uncertainties. As a result, hierarchical classification
schemes such as the FAO LCCS system need to be designed to account
for challenges associated with characterizing land cover in heteroge-
neous areas and ecotones. In this context, approaches that directly es-
timate sub-pixel proportions of land cover types provide a useful
strategy (Hansen et al., 2002; Hansen et al., 2005).

Our approach was built on earlier global map validation efforts that
relied on Landsat-based maps as reference data (Cohen et al., 2003;
Cohen et al,, 2006). The combination of higher resolution reference
maps and a standardized LCCS-based classification provides a flexible
validation framework for assessing coarse resolution maps of different
spatial resolutions and thematic detail. A disadvantage is that our ap-
proach relies on limited number of test sites, which precludes compre-
hensive assessment of coarse resolution maps for the entire Northern
Eurasian region. At the same time, our results provide useful informa-
tion related to the differences, strengths and weaknesses of each map
at specific locations, as well as the relative magnitude of different
types of errors likely to be found in each map. Furthermore, comparison
of different accuracy metrics at selected locations provides insights re-
lated to interpretation of commonly reported global map accuracies.

The fractional error approach provided a method to compare glob-
al maps of different spatial resolutions without sacrificing the fine
spatial detail of the Landsat maps. Reference data for validating global
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map products are often acquired at higher spatial resolution, but con-
ventional error matrices (Foody, 2002) require the reference data to
match the spatial resolution of the map being validated. As a conse-
quence, when maps with differing spatial resolutions are compared,
the map with the higher spatial resolution is often aggregated to
the coarser resolution by assigning the dominant class to the aggre-
gated pixel (Stehman & Czaplewski, 1998; Turner et al., 2000). The
disadvantage of this approach is that it assumes a level of homogene-
ity in the landscape, which is rarely present, and as a result, sub-
dominant and rare classes are often under-represented. The extent
of this low-resolution bias depends on the patchiness of land cover.
For example, in a study that assessed the representation of wetlands
in global and continental land cover maps in the St. Petersburg region,
we found that 50% of the wetland area was omitted when 30 m refer-
ence pixels were aggregated to 1-km pixels using the dominant class
rule (Krankina et al., 2008).

The correlation between pure pixels and overall agreement dem-
onstrated that landscape heterogeneity played a significant role in
explaining differences in map accuracy among test sites. Because
numbers of pure pixels are also a function of pixel resolution, this re-
lationship could help explain the link between pixel size and classifi-
cation accuracy. For example, GLOBCOVER (300 m) and MODIS C5
(500 m) have a higher spatial resolution than GLC-2000 (1 km) and
MODIS C4 (1 km). Using the test site data we calculated that an in-
crease in spatial resolution from 1 km to 300 m was associated with
a 16% (10-20%) increase in number of pure pixels. In comparison,
an increase in spatial resolution from 1 km to 500 m was associated
with an increase of only 9% pure pixels (4-14%). According to the pre-
viously derived relationship this increase in the prevalence of pure
pixels should yield a 0.04 and 0.02 improvement in overall agreement
for the 300-m GLOBCOVER and 500-m MODIS C4 map, respectively,
relative to the 1-km GLC-2000 and MODIS C4 land cover. While it is
clearly an over-simplification, this result provides an approximate es-
timate of the order of magnitude of the effect.

5. Conclusions

Globally consistent vegetation maps with known accuracy are a
fundamental requirement for global change research and sound poli-
cies to address global change. Growing recognition of the role of ter-
restrial ecosystems and land use in the global carbon cycle (IPCC
2007) places new demands on the accuracy of products derived
from satellite observations. Methods for independent map validation
have been actively studied in recent years but many issues remain
unresolved, including design of map legends that lend themselves
to uniform aggregation (i.e., LCCS), consensus on metrics of agreement
between fine-resolution reference data and coarser global maps, and
support for a globally distributed set of test sites against which all
maps can be compared (Justice et al., 2000).

Global land cover maps differ significantly in their representation
of Northern Eurasia. Improved understanding of global land cover
map quality requires new approaches for accuracy assessment be-
cause accuracy statistics reported by global map developers are not
directly comparable. Consistent comparisons of global maps are com-
plicated by disparities in class definitions, thematic detail, and spatial
resolution. We used LFT classes as a general and robust common de-
nominator of current global maps but the loss of thematic detail pre-
cluded evaluation of map performance based on the thematic
resolution required by many users.

Our analysis showed that agreement among the maps is highest in
the forest belt (>0.8) and that disagreement among the maps is con-
centrated in transitions zones. Specifically, the maps provide very dif-
ferent representation of land cover in the northern transition zone
between boreal forest and tundra and in the southern transition zone
between forest and semi-arid grasslands, agriculture, and steppe. High
uncertainty at biome borders and in areas of human activity is a major

concern, because these zones are most vulnerable to climate and socio-
economic changes.

A comparison of each global map with reference data from six test
sites showed the effect of sampling unit area on accuracy estimates.
Map agreement increased significantly from the scale of single coarse
map pixels to block sizes of 5 x 5 pixels; for larger blocks, the improve-
ment in agreement was marginal. Therefore, when the finer resolution
datasets GLOBCOVER and MODIS C5 were scaled to the same unit area
as GLC-2000 and MODIS C4 (~1 km pixel size) then GLOBCOVER and
MODIS C5 performed better in terms of overall accuracy. For block
sizes larger than 2 km overall accuracy of GLC-2000, GLOBCOVER
and MODIS C5 was similar and better than MODIS C4. Global map er-
rors were also positively associated with landscape heterogeneity: we
found that the agreement was 0.09-0.45 higher when only homoge-
nous pixels were considered, suggesting that global map accuracies
based on samples located in homogenous areas may be too optimistic.

Tree dominated classes were the most accurately mapped land
cover classes at all of the test sites, although all maps showed a ten-
dency to overestimate tree dominated area by 10-20% as a result of
the coarse spatial resolution bias. Conversely, lower map agreement
with reference data was generally associated with shrub and herba-
ceous vegetation, and sparse tree cover. GLOBCOVER significantly
underestimated shrub and herbaceous cover and overestimated bar-
ren and sparse vegetation. MODIS (4, and to a lesser degree MODIS
C5, showed a tendency to map herbaceous tundra as open shrub
land; and GLC-2000 mapped a greater proportion of shrub and herba-
ceous vegetation as tree vegetation compared to the other maps.

There are significant regional differences in the accuracy of global
maps: no single map performed best across all test sites and land
cover classes. Thus, the ‘best’ choice of map for Northern Eurasia like-
ly depends on the geographic region and the land cover classes of in-
terest. For example, the choice may be different if estimates of tree-
dominated area are desired versus an accurate representation of
shrub and/or herbaceous vegetation. More robust evaluation of map
performance in different parts of Northern Eurasia and at finer the-
matic resolution requires further analysis and additional test sites.
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