AN ABSTRACT OF THE THESIS OF

Steven G. Toske for the degree of Doctor of Philosophy in Chemistry presented on June 10, 1993.

Title: Part I: Synthesis of Azetidin-2-ones from Pyrazolidin-3-ones.
Part II: Synthesis of a Subunit of the Immunosuppressant FK-506.

Abstract approved:

Redacted for Privacy

\qquad

Part I. A new route for the preparation of azetidin-2-ones was studied using a tandem photochemical deprotection and ring contraction of pyrazolidin-3-ones as the key step. Pyrazolidin-3-ones 112-116 were first protected at the N -1 position with o-nitrobenzyl chloride yielding derivatives 117-121 which were acylated with 2-(trimethylsilyl)ethyl azidoformate to give the fully protected pyrazolidinones 125, 126, 131, 132, and 134 needed for photolysis. Irradiation of these compounds through a Pyrex filter removed the o-nitrobenzyl group, and subsequent photolysis using a Vycor filter effected ring contraction to afford N -(acylamino)azetidinones $137,138,141,142$, and 144. These were converted to N -aminoazetidinones 161-165 with tetra-n-butylammonium fluoride. Completion of a general entry to the parent β-lactams 183-188 was accomplished by a nitrosative deamination with N, N-diphenylnitrosamine.

Synthesis of the known precursor 220 to the antibiotic PS-5 (10) was achieved using this methodology in ten steps from δ-valerolactone (208) and in an overall yield of 1.3%. Treatment of α, β-unsaturated- δ-lactone 211, prepared from 208 in three steps, with hydrazine monohydrate furnished pyrazolidinone
212. Confirmation of the cis configuration was obtained by X-ray crystallographic analysis of the o-nitrobenzyl derivative 215. Photolysis of the fully protected pyrazolidinone 217 gave N -(acylamino)azetidinone 218 in good yield. Removal of both silyl protecting groups in 218, followed by nitrosative deamination of 219 , produced 220.

Part Il. Synthesis of the C20-C34 subunit 73 of the immunosuppressant drug FK-506 (1) was accomplished in fifteen steps in an overall yield of 2.8\%. $(-)$-Quinic acid (66) was used as the starting material and was first converted to the bicyclic bromoimidazolide 79. Simultaneous reduction of the alkyl bromide and imidazolide moieties in 79 with tri- n-butyltin hydride and $\alpha, \alpha^{\prime}-$ azobisisobutyronitrile gave 68 in good yield. Acid-catalyzed opening of lactone 68 with methanol, followed by formation of the methyl ether, provided ester 69 which was homologated to α, β-unsaturated aldehyde 75 in five steps. Condensation of $\mathbf{7 5}$ with the chiral enol borinate 88 afforded alcohols 89 and 90 in a 2.4:1 ratio, respectively. Conversion of the desired alcohol 89 to aldehyde 74 was accomplished by silylation and selective oxidative cleavage of the terminal olefin in 91 . Completion of the synthesis of $\mathbf{7 3}$ was achieved by stereoselective aldol condensation of the lithium enolate of ketone 100 with aldehyde 74.

Part I: Synthesis of Azetidin-2-ones from Pyrazolidin-3-ones.

Part II: Synthesis of a Subunit of the Immunosuppressant FK-506.
By
Steven G. Toske

A THESIS

submitted to Oregon State University

in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Completed June 10, 1993
Commencement June 1994

APPROVED:

Redacted for Privacy

Professodr of Chemistry in charge of major

Redacted for Privacy

Chairmăn of Department of Chemistry

Redacted for Privacy

Dean of Graduate $\$$ Chool

Date thesis is presented June 10, 1993

This work is dedicated to the memory of my mother Carole A. Toske

She gave me love and courage

Acknowledgements

I would like to thank Professor James D. White for his support, guidance and patience throughout my graduate career. I would also like to thank Dr. John C. Amedio for showing a rather inexperienced chemist how to survive in the laboratory. Members of the White group including Kraig Yager, Mark Jensen, Scott Jeffrey, Hyunik Shin, Gary Bolton, Motoji Kawasaki, Warren Porter, Neal Green, Steve Perri, and Takayuki Yakura deserve mention for their freindship and helpful suggestions.

A number of co-workers deserve special mention for their assistance:
Dr. Michael P. Dillon for editing several drafts of this thesis, Frank Stappenbeck for his X-ray crystallographic expertise, and Rodger Kohnert for his advice concerning NMR spectroscopy.

The National Science Foundation, N.L. Tartar Foundation, and the Ingram Fund are acknowledged for their financial support of this work.

My father Gerald has been a true friend through the highs and lows of my graduate career. He taught me at an early age to work hard and never quit until your goal has been achieved. In many ways, this degree is as much his as mine. Thanks goes out to Stephanie and Brenda for being great sisters and Sharon for being an admirable step mother.

Finally, I thank my wife Gabriela and daughter Suzanna for their love and support.

Table of Contents

Part I. Synthesis of Azetidin-2-ones from Pyrazolidin-3-ones.
I-A. Introduction 1
I-B. Results and Discussion 23
I-C. Experimental 48
General 48
I-D. Bibliography 70
Part II. Synthesis of a Subunit of the Immunsuppressant FK-506.
II-A. Introduction 76
II-B. Results and Discussion 94
II-C. Experimental 106
General 106
II-D. Bibliography 121

List of Figures

Figure Page
1 X-ray Crystal Structure of Pyrazolidinone 215 45
2 Transition State for the Crotylborinate Reaction 101
3 Transiton State for the Stereoselective Aldol Reaction 105

List of Tables

Table Page
1 Preparation of 1-(o-Nitrobenzyl)pyrazolidin-3-ones 25
2 Preparation of 1-(o-Nitrobenzy)-2-acylpyrazolidin-3-ones 26
3 Tandem Photochemical Conversion of Pyrazolidin-3-ones to 27 1-(Acylamino)azetidin-2-ones
4 Preparation of 1-Aminoazetidin-2-ones 31
5 Nitrosative Deamination of 1-Aminoazetidin-2-ones 37

Part I: The Synthesis of Azetidin-2-ones from Pyrazolidin-3-ones.

I-A. Introduction

Sir Alexander Fleming's discovery in 19291 that penicillin was an effective antibiotic against different bacterial cultures started the era of research into penicillin antibiotics. It was not until 1940, when Florey found that penicillin F (1) could protect mice from otherwise fatal injections of bacteria, that penicillin was thought to have medicinal value. This started an intense research effort that eventually led, through the use of Penicillium notatum, to large scale production of penicillin G (2). The latter was used as an effective antibiotic for the treatment of infections in injured World War II soldiers.

1

2

With the subsequent evolution of penicillinase-producing bacteria, in which the enzyme inhibits penicillin activity, the utility of penicillin G became limited. This unfortunate phenomenon motivated researchers to find alternative penicillin derivatives for medical use.

The structure of penicillin was studied intensively after 1943. This led to the extraordinary suggestion by Robinson that penicillin contained a β-lactam ring. ${ }^{2}$ Later, in 1945, it was confirmed by X-ray crystallographic analysis that penicillin did indeed contain the β-lactam nucleus. ${ }^{3}$

In the 1950's, two important discoveries contributed to the advancement of research on β-lactam antibiotics. The first, in 1953, was the isolation of
cephalosporin C (3) by Abraham from Cephalosporium acremonium. 4 This compound showed significant activity against Gram-positive and Gram-negative bacteria. Although 3 was hydrolyzed by the penicillinase enzyme it showed greater resistance to penicillinase-producing bacteria than penicillin G.

3
The second event, probably the most important development in this field, was the isolation of useful quantities of both 6 -aminopenicillanic acid (4) from Penicillium chrysogenium, 5 and 7 -aminocephalosporanic acid (5) by chemical removal of the side chain of $3 .{ }^{6}$

4

5

This led to the semisynthesis of large numbers of penicillins and cephalosporins which were evaluated for biological activity. Four of the most effective antibiotics synthesized commercially are illustrated below.

Methicillin

Cephalothin

Ampicillin

Cefazolin

In the 1970's, as new screening procedures were developed, several new classes of β-lactam antibiotics emerged which were found to have therapeutic value. 7 These included β-lactamase inhibitors of E. Coli and Penicillium aeruginosa found in Streptomyces microorganisms such as clavulanic acid (6) ${ }^{8}$ and the monocyclic β-lactam norcardicin $A(7)^{9}$.

During this period and subsequently into the 1980's the carbapenem family and its relatives were discovered. Nearly forty different compounds were isolated from several different Streptomyces strains. Members of this family which showed powerful biological activity include thienamycin (8) ${ }^{10}$, PS-5
$(10)^{11}$, PS-6 (11) ${ }^{12}$, olivanic acid (12) ${ }^{13}$, and carpetimycin A (13). ${ }^{14}$ Interestingly, there were several epi-thienamycin structures reported such as 915; however, epi-compounds related to PS-5 (10), PS-6 (11), olivanic acid (12), and carpetimycin $A(13)$ have yet to be isolated.

8

10, R = H
11, $R=M e$

9

12

13

Concurrent with the emergence of the carbapenems was the discovery of the monobactams. These are monocyclic β-lactams containing a sulfonic acid moiety on the ring nitrogen. Sulfazecin (14), isolated from Pseudomonas acidophila in 1981, ${ }^{16}$ is an example of a monobactam. This compound is active against strains of Gram-negative bacteria, including Pseudomonas aeruginosa and Escherica Coli. Analogues of sulfazecin such as 15 were also isolated and tested for biological activity. It was found that the monobactams with methoxy
substitution at $\mathrm{C}-3$ of the azetidinone ring, as in 14, were the most resistant to β-lactamase-producing bacteria. ${ }^{17}$

14

15

Although the synthesis of a β-lactam was accomplished by Staudinger as early as 1907,18 it was not until the late 1950's, when interest in these compounds was increasing rapidly, that the first β-lactam antibiotic was synthesized. In 1959, Sheehan published a total synthesis of optically pure penicillin $V(16) .{ }^{19}$

16
(D)-Penicillamine (17), a degradation product of the penicillins, was condensed with phthalimidomalonaldehyde 18 to afford, among other products, the thiazolidine 19. After replacement of the phthalimido group with the phenoxymethyl side chain to yield $\mathbf{2 0}$, hydrolysis of the t-butyl ester set the stage for ring closure. This was accomplished by treatment of the amino acid 21 with one equivalent of potassium hydroxide followed by dicyclohexylcarbodiimide, and provided the desired penicillin V potassium salt 22 in 10% yield (Scheme 1). The efficiency of this cyclization was later improved to 25% using diisopropylcarbodiimide. 20

18

> 1. $\mathrm{NH}_{2} \mathrm{NH}_{2} ;$ aq. $\mathrm{HCl},(82 \%)$
2. $\mathrm{PhOCH}_{2} \mathrm{COCl}$ $\mathrm{Et}_{3} \mathrm{~N},(79 \%)$

1. KOH, (1 eq.)
2. DCC, dioxane, $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaOH},(10 \%)$

22

Scheme 1

In 1966, Woodward and co-workers completed an impressive total synthesis of cephalosporin C (3). ${ }^{21}$ The starting material, (L)-cysteine (23), was converted to thiazolidine derivative $\mathbf{2 4}$ in three steps. Reaction of $\mathbf{2 4}$ with excess diethyl azodicarboxylate (DEAD) in the presence of lead tetraacetate resulted in stereospecific hydroxylation to give $\mathbf{2 5}$. The hydroxyl group of $\mathbf{2 5}$ was then converted to the amino function of $\mathbf{2 6}$ with inversion of configuration. Cyclization of $\mathbf{2 6}$ was effected with triisobutylaluminum to yield the bicyclic β lactam 27. A further eight steps were needed for completion of this route to 3. Unlike the Sheehan synthesis, ${ }^{19}$ where the β-lactam ring was closed late in the synthesis, Woodward's construction of the β-lactam unit occured relatively early
in the sequence, a strategy which enabled intermediate 27 to be used for both penicillin and cephalosphorin syntheses (Scheme 2). ${ }^{22}$

24
25

1. $\mathrm{MeSO}_{2} \mathrm{Cl} ; \mathrm{NaN}_{3}$ 2. $\mathrm{Al}(\mathrm{Hg})$

26

27

Scheme 2

There are many other syntheses of penicillins in the literature which form a body of work in the area of classical β-lactam antibiotics. ${ }^{23}$ However, with the discovery of new structural classes of β-lactam antibiotics in the 1970's the synthetic chemist was forced to develop new strategies for their synthesis.

In 1978, Wasserman reported the synthesis of (\pm)-3-aminonocardicinic acid $(28)^{24}$, an attractive intermediate previously used in the synthesis of norcardicin $A(7) .{ }^{25}$ This synthesis illustrated a novel ring expansion which led to the β-lactam nucleus. Addition of the aminomalonate 29 to cyclopropanone 30 gave alkylaminocyclopropanol 31 in quantitative yield. Compound 31 was chlorinated to form the chloramine 32 which underwent ring expansion to form 33 in 40% yield, accompanied by chloroamide 34 in 30% yield. Chloroamide 34 was cyclized to the desired β-lactam 33 in good yield. The β-lactam 33 was
advanced to the 3 -azido deriviative 35 using lithium diisopropylamide and p toluenesulfonyl azide. A further four steps were needed for the preparation of racemic 28.

35

Scheme 3

During the same period, Bentley and co-workers reported a synthesis of the oxapenem antibiotic (\pm)-clavulanic acid (6) (Scheme 4) ${ }^{26}$. Alkylation of
racemic 4-methylthioazetidin-2-one (36) ${ }^{27}$ with methyl- γ-bromoacetate (37) provided the enolized β-keto ester 38 in low yield. This substance was treated with a small excess of chlorine in carbon tetrachloride to give 39 which was taken directly to the bicyclic oxapenem 40 without purification. Azetidinone 40, which has the unnatural stereochemistry of the exocyclic double bond, was obtained as the sole stereoisomer. Isomerization of the double bond was accomplished by irradiation of 40 in benzene which gave 40 and 41 in a 3:2 ratio, respectively. Reduction of the mixture of 40 and 41 with diisobutylaluminum hydride afforded a separable mixture of racemic methyl clavulanate 42 and racemic methyl isoclavulanate 43 in low yield.

$\dagger \mathrm{Cl}_{2}, \mathrm{CCl}_{4}$

The synthesis of carbapenem-based antibiotics encompasses a large volume of work due to the many different structural variations that have been encountered. ${ }^{28}$ The strategies which have been developed generally take into account the different C-6 alkyl side chains and the C-3 cysteaminyl side chains. The majority of these syntheses have employed construction of the β-lactam nucleus before elaboration to the [3.2.0]bicylic framework. These ring construction strategies include chiral amino acid cyclizations, 29 chlorosulfonylisocyanate-alkene cycloadditions, 32,33 acid chloride-imine cycloadditions, ${ }^{34}$ and ester enolate-imine cyclizations. ${ }^{36}$

One of the most elegant approaches using a chiral amino acid cyclization for construction of the β-lactam ring is found in the synthesis of $(+)$-thienamycin (8) by Salzmann and co-workers at Merck. 29 The synthesis started from dibenzyl aspartate (44), available from (L)-aspartic acid. ${ }^{30}$ The amino ester 44 was monosilylated and cyclized to azetidinone 45 upon treatment with tertbutylmagnesium chloride. After several more steps, this route culminated in the construction of 8 via a rhodium (II) acetate catalyzed carbenoid cyclization of diazoketone 46 to give the carbapenem nucleus of $47.29,31$ The latter was then converted to 8 by straight forward means (Scheme 5). The carbenoid cyclization was a pivotal achievement and has been used in many formal syntheses of carbapenem antibiotics. $32,33,34,35$

An example of the utility of a chlorosulfonylisocyanate (CSI) cycloaddition to an alkene was published by Favara in his synthesis of 6 -epi-PS-5 (48) ${ }^{32}$ and (+)-PS-5 (10). ${ }^{33}$ A [2+2] cycloaddition using excess CSI with conjugated diene 49, followed by reductive hydrolysis, yielded a four-isomer mixture of β-lactams 50 in moderate yield (Scheme 6). ${ }^{32}$ The cis isomer 51, separated by crystallization from diisopropyl ether, was converted to the corresponding acid 52 in two steps. Completion of the synthesis of 48 was achieved using the method developed at Merck. ${ }^{29,31}$

49

50
crystallization

52

1) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$
2) $\mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$; $\mathrm{KMnO}_{4}, \mathrm{pH} 7$ buffer
\downarrow

Scheme 6

The synthesis of (+)-PS-5 was accomplished using the mixture of isomers 50 without purification (Scheme 7). ${ }^{33}$ Catalytic hydrogenation of 50 , followed by methanolysis provided alcohol 53. Simultaneous protection of the alcohol and lactam yielded acetonide 54, which was epimerized with 1 N potassium tert-amylate to afford the trans isomer 55. Removal of the protecting group gave the trans alcohol which was oxidized to the corresponding acid 56 with potassium permanganate. Optical resolution of 56 using Chirald furnished 57 which was converted to (+)-PS-5 again using the Merck methodology. ${ }^{29,31}$

2,2-dimethoxypropane

1. $10 \% \mathrm{AcOH}$
(65\% from 53)
2. $\mathrm{KMnO}_{4},(60 \%)$

Scheme 7

Shinkai and co-workers reported the use of an acyl chloride-imine cycloaddition in their synthesis of (+)-thienamycin (8). ${ }^{34}$ Acid chloride 58 was treated with diisopropylethylamine to generate ketene 59, which underwent $[2+2]$-cycloaddition with imine $\mathbf{6 0}$ to afford β-lactams $\mathbf{6 1}$ and 62 in a 7:1 ratio respectively (Scheme 8). Desilylation of 61 resulted in epimerization at C-4 forming the desired trans- β-lactam 63. Inversion of stereochemistry at the hydroxylethyl side chain utilizing the Mitsunobu protocol, 35 followed by removal
of the p-methoxyphenyl (PMP) group, provided β-lactam 64 which was converted to the known thienamycin intermediate 46 in two steps.

1. DEAD, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{HCO}_{2} \mathrm{H}$
2. CAN (67% two steps)
64

Scheme 8

Preparation of the β-lactam nucleus using the enolate-imine approach was first reported by Cainelli. ${ }^{36}$ Tert-butyl butanoate 65 was treated with lithium bis(trimethylsilyl)amide, followed by silylimine 66, yielding a $96: 4$ mixture of β lactams 67 and 68, respectively (Scheme 9). After deprotection of 67, the
resulting alcohol was oxidized with chromic acid to ketone 69 which was then converted to acetate 70 by Baeyer-Villiger oxidation. β-Lactam 70 was converted via diazoketone 71 to $10.29,31$

71

Scheme 9

The syntheses of monobactams closely parallel the synthetic routes illustrated in the construction of carbapenem antibiotics. The strategies employed include chiral amino acid cyclizations, [2+2]-cycloadditions, and enolate-imine condensations. ${ }^{37}$

Foremost among the syntheses involving a chiral amino acid cyclization are those developed by Miller. 38 Hydroxamate 72 was closed to Nbenzyloxyazetidinone 73 using two different methods (Scheme 10). Sequential reductive debenzylation and N - O bond cleavage with titanium (III) chloride gave the desired β-lactam 74.

74

Scheme 10

Important new methodology for constructing the monobactam nucleus by means of a transition metal-mediated cycloaddition was reported by Hegedus. ${ }^{39}$ This approach is similar to previously reported [2+2]-cycloadditions of an imine with a photogenerated ketene intermediate. β-Lactam 77 was produced cleanly and in good yield upon irradiation of the chromium carbene complex 75 in the presence of imine 76 (eq. 1).

[^0]The synthesis of N -amino- β-lactams as potential precursors of monobactam analogues was examined by Curran. 40 He found that N-Bocprotected (L)-serine $\mathbf{7 8}$ could be coupled to hydrazone $\mathbf{7 9}$ to afford hydrazide $\mathbf{8 0}$ (Scheme 11). Cyclization of 80 was accomplished using Mitsunobu conditions ${ }^{35}$ to yield β-lactam 81. Hydrogenation of 81 gave N -amino- β-lactam 82 needed for production of N -azamonobactam analogues.

Scheme 11
N-Aza- β-lactam 83 was synthesized from 82 and was found to have good biological activity against Gram-negative bacteria. ${ }^{41}$

83

Many studies of photochemical ring contractions as routes to β-lactams have been reported. 42 All except one have involved five-membered ring contractions to the β-lactam nucleus. Several of these are outlined below.

Lowe has described the synthesis of β-lactams using a photolytic Wolff rearrangement. ${ }^{43}$ He found that 3-diazo-5-methylpyrrolidine-2,4-dione (84) underwent a ring contraction which gave a 8:5 mixture of β-lactams 85 and 86 , respectively, in excellent yield (eq. 2).

84

85

86

Stork also used the Wolff rearrangement to prepare bicyclic β-lactams. ${ }^{44}$ Diazotetramic acid 87 was photolyzed in good yield and gave a 2:5 mixture of easily separated β-lactams 88 and 89 , respectively. Compound 88 was epimerized to 89 with great ease, thus leaving the ratio of initially formed products open to question (eq. 3).

87

88

89

Nagata found that 4 -pyrimidones undergo photolytic ring contraction forming β-lactam products. ${ }^{45}$ For example, pyrimidone 90 was irradiated in methanol to give the corresponding azetidinone 93 in 58% yield. It was suggested that bicyclic intermediate 91 and β-lactam 92 were involved in the formation of 93 (Scheme 12).

93

92

Scheme 12

Padwa devised a new approach to the β-lactam nucleus, in which he found that isoxazolidines, formed from nitrone cycloadditions, contract when subjected to irradiation. 46 Isoxazolidine 94 was subjected to ultraviolet irradiation and produced only the trans- β-lactam 95 (eq. 4).

Among the known photolytic ring contractions which lead to a β-lactam, one reported by Ege, ${ }^{47}$ in which the pyrazolidin-3-one 95 was shown to afford N -aminoazetidinone 96 upon irradiation, seemed especially well suited for further development (eq. 5).

95

96

This reaction was further investigated by Johnson, ${ }^{48}$ who found that the overall efficiency of the reaction was increased when an electron-withdrawing group was present at N2 of the pyrazolidinone ring (eq. 6). Pyrazolidinones 97 were photolyzed to the N -acylazetidinones 98 in a wide range of yields dependent on the R group.

97

98

In order for acylation at N2 to be accomplished, it was necessary to protect the more nucleophilic N1 nitrogen of the pyrazolidinone ring. This was carried out using an interesting rearrangement reaction (Scheme13). ${ }^{48}$ The protected pyrazolidinone 100 was prepared from 99 using 2,2,2trichloroethoxycarbonyl (TROC) chloride. Reaction of 100 with benzoyl chloride and triethylamine gave exclusively 101 which, upon treatment with zinc in acetic acid, yielded 102. The latter underwent rearrangement as shown in 103 to 104, the desired precursor for ring contraction. It was also found that pyrazolidinones such as 101 undergo thermal rearrangement to produce the desired N -acyl products like 105 in good yield (eq. 7).

104
Scheme 13

The foregoing work demonstrates that a photochemical ring contraction of pyrazolidin-3-ones offers a feasible route to N -substituted β-lactams. However, there are several limitations to this approach, including the difficulty of selective acylation at N 2 to obtain the starting materials, the low yield of the ring contraction, the necessity for removing an N -amino function from the product azetidinone, and, finally, the lack of functional group variability needed to complete a useful β-lactam synthesis.

I-B. Results and Discussion

The objectives of this work were to develop an efficient synthesis of β lactams using the photochemical ring contraction of pyrazolidin-3-ones discovered by Ege and to extend this methodology toward applications aimed at producing useful intermediates for carbapenem or monobactam antibiotics.

Attempts to improve the Ege-Johnson methodology in the hope of producing new N -substituted β-lactams was first undertaken in these laboratories by Slater. 49 He showed that the pyrazolidin-3-one starting materials could be readily prepared by condensation of hydrazine monohydrate with either an α, β-unsaturated ester or the corresponding acid. For example, ester 106 was converted to pyrazolidinone 99 using hydrazine monohydrate in refluxing ethanol in good yield (eq.8).

Unfortunately, selective acylation at N2 of these pyrazolidinones, to provide the precursor for ring contraction, necessitated a lengthy protection-acylation-deprotection sequence as outlined below (Scheme14). Protection of 99 as either the TROC derviative 107 or the carbobenzyloxy (Cbz) analogue 108 was followed by acylation to their corresponding N -tert-butoxycarbonyl (BOC) pyrazolidinones 109 and 110 which, upon deprotection, afforded 111.

An attractive alternative to this cumbersome procedure involved the use of a photolabile protecting group at N 1 which would enable the ring contraction to be carried out in tandem with deprotection. The o-nitrobenzyl protecting group ${ }^{50}$ appeared to meet the specifications of a photolabile group which would not interfere with azetidinone formation, and Perri found that N 1 -substituted derivatives 117-121 were easily prepared from their corresponding pyrazolidinone precursors 112-116 with o-nitrobenzyl chloride and dimethylformamide in the presence of sodium iodide and triethylamine (Table1). ${ }^{49}$

Starting materials	R_{1}	R_{2}	Products	yield, (\%)
112	Me	H	117	63
113	H	Me	118	56
114	Me	Me	119	71
115	H	H	120	65
116	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	121	32

Table 1. Preparation of 1-(o-Nitrobenzyl) pyrazolidin-3-ones.

Several different acyl groups were used in combination with 117-121 to effect activation at N1 (Table 2). Acetyl derivatives 122 and 128 were obtained using Johnson's procedure outlined previously. Benzyl and ethyl carbamates 124 and 127 were prepared from their corresponding chloroformate esters. The BOC derivatives 123, 129, 130 and 133 were synthesized using tertbutoxycarbonic anhydride in the presence of 4 -(dimethylamino)pyridine (DMAP). ${ }^{51}$ [2-(Trimethylsilyl)ethoxy] carbonyl (TEOC) derivatives 125, 126, 131, 132, and 134 were prepared by the method of Carpino using 2(trimethylsilyl)ethyl azidoformate. ${ }^{52}$

Starting Materials	R_{1}	R_{2}	R_{3}	Products	yield (\%)
117	Me	H	Me	122	77
117	Me	H	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	123	98
117	Me	H	$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	124	73
117	Me	H	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	125	73
118	H	Me	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	126	81
118	H	Me	OEt	127	73
118	H	Me	Me	128	82
118	H	Me	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	129	96
119	Me	Me	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	130	99
119	Me	Me	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	131	59
120	H	H	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	132	90
121	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	133	94
121	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	134	90

Table 2. Preparation of 1-(o-Nitrobenzyl)-2-acylpyrazolidin-3-ones.

Irradiation of pyrazoldinones 123-134 was carried out with a 450-W medium pressure Hanovia lamp using a Pyrex filter for 1 h and then a Vycor filter for 2 h producing azetidinones 135-144 (Table 3).

Starting Materials	R_{1}	R_{2}	R_{3}	Products	yield, (\%)
123	Me	H	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	135	84
124	Me	H	$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	136	17
125	Me	H	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	137	60
126	H	Me	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	138	44
129	H	Me	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	139	65
130	Me	Me	$\mathrm{O}_{2} t-\mathrm{C}_{4} \mathrm{H}_{9}$	140	79
131	Me	Me	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	141	55
132	H	H	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	142	34
133	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{O}-t-\mathrm{C}_{4} \mathrm{H}_{9}$	143	58
134	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$	144	41

Table 3. Tandem Photochemical Conversion of Pyrazolidin-3-ones to 1-(Acylamino)azetidin-2-ones.

The BOC derivatives $135,139,140$, and 143 were generally isolated in the best yields from ($58 \%-84 \%$), while the TEOC derivatives $137,138,141$, 142, and 144 were isolated in yields varying from 34% to 60%. The one reaction leading to a Cbz-substituted azetidinone derivative (136) gave only a 17% yield.

A mechanism which accounts for the sequence of steps that leads from (1-o-nitrobenzyl)-2-acylpyrazolidin-3-one 145 to N -(acylamino)azetidin-2-one 153 is shown in Scheme 15.

150

Scheme 15

The initial excitation of $\mathbf{1 4 5}$ with a Pyrex filter occurs at wavelengths > $300 \mathrm{~nm}^{50}$ causing the o-nitrobenzyl substituent to undergo a Norrish type II rearrangement to 146. A facile electrocyclic cyclization of $\mathbf{1 4 6}$ generates 147 which fragments to give the N1-unsubstituted pyrazolidinone 148 and 0 nitrosobenzaldehyde 149.53 Irradiation of pyrazolidinone 148 at a wavelength > 210 nm through a Vycor filter results in formation of a radical anion-radical cation species 150 via an intramolecular electron transfer from the excited state of $\mathbf{1 4 8}$. Bond closure of $\mathbf{1 5 0}$ leads to the bicyclic intermediate 151^{48} which then undergoes bond reorganization to 152. The latter yields 153 following proton transfer from 152.

The possibility of an alternative mechanism for the ring contraction was proposed and examined by Ege ${ }^{54}$ and Johnson. 48 A Norrish type I ring opening of pyrazolidinone 154 to intermediate 155 was considered. This would be followed by intramolecular hydrogen atom abstraction to give ketene 156 which would then cyclize to azetidin-2-one 157 (Scheme 16).

Johnson ruled out this mechanism by performing the photolysis of $\mathbf{1 0 5}$ in deuteriated methanol. 48 If the ketene mechanism was operative, then 158 should show incorporation of a deuterium atom at the 3-position of the β-lactam ring (eq. 9). Mass spectral analysis of the product revealed no incorporation of deuterium in the product from 105.

Ege also showed that the ring contraction cannot be occurring through a ketene intermediate in the photolysis of $\mathbf{1 5 9}$ to give $\mathbf{1 6 0}$ (eq. 10). X-ray crystal structures of both the starting material and product proved that the reaction proceeded with complete retention of configuration, a result which would not have been expected if a ketene were involved. 54

A practical route to N -aminoazetidinones was found through cleavage of the TEOC derivatives. ${ }^{49}$ Azetidinones 137, 138, 141, 142, and 144 , when treated with tetra- n-butylammonium fluoride in acetonitrile, afforded the desired N -aminoazetidinones 161-165 in good yield (Table 4).

Compound	R_{1}	R_{2}	Products	Yield, (\%)
137	Me	H	161	73
138	H	Me	162	58
141	Me	Me	163	73
142	H	H	164	88
144	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	165	33

Table 4. Preparation of 1-Aminoazetidin-2-ones.

The BOC derivatives 139, 140, and 143 were eliminated as N aminoazetidinone precursors when attempts to remove the BOC group with trifluoroacetic acid resulted in clean rearrangement of the azetidinone to the pyrazolidinone nucleus. ${ }^{49,55}$ The Cbz derivative 136 was hydrogenated to afford N -aminoazetidinone 161 in good yield (eq. 11); however, the use of Cbz derivatives was made impractical by their low isolated yield in the photolysis step.

This tandem photochemical ring contraction was extended to include a β lactam bearing the hydroxyethyl side chain characteristic of thienamycin. Treatment of hydroxy ester 166^{56} with hydrazine monohydrate gave the known pyrazolidinones 167 and 16857 as a 1:1 mixture of diastereomers which were readily separated by silica gel column chromatography (Scheme 17). Stereochemical assignments were made on the basis of the $\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}$ coupling constants. The more polar isomer $167\left(J_{\mathrm{ab}}=2.5 \mathrm{~Hz}\right)$ was assigned the thienamycin relative stereochemistry based on the empirical rule that $J_{a b}$ (erythro) < $J_{a b}\left(\right.$ threo). ${ }^{58}$ The $\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}$ proton pair of diastereoisomer 168 exhibited a larger coupling constant ($\mathrm{Jab}_{\mathrm{ab}}=8.9 \mathrm{~Hz}$) and was therefore assigned the threo configuration. Treatment of 167 with o-nitrobenzyl chloride afforded the expected N 1 -alkylated pyrazolidinone which, without purification, was converted directly to its tert-butyldimethylsilyl ether 169. Acylation at N 2 was accomplished using 2-(trimethylsilyl)ethyl azidoformate and yielded pyrazolidinone 170. Photolysis of 170 through Pyrex and then through Vycor produced azetidinone $\mathbf{1 7 1}$ in good yield. Selective deprotection of $\mathbf{1 7 1}$ by brief contact with one equivalent of tetra-n-butylammonium fluoride afforded 172 in 60% yield. Further deprotection of 172 with one equivalent of tetra-nbutylammonium fluoride provided the desired N -amino alcohol 173 in 34% yield.

Cleavage of the $\mathrm{N}-\mathrm{N}$ bond in N -(acylamino)azetidinones is a necessary transformation for a general entry into the N -unsubstituted β-lactam system. This transformation was initially investigated by Perri who showed that N acetylamino derivatives such as 174 were inert to hydrogenolysis with Raney nickel. He also found that they underwent decomposition with electron transfer reducing agents such as samarium diiodide. 59 Perri demonstrated that nitrosation of $\mathbf{1 7 4}$ proceeded in good yield to give nitrosohydrazide $\mathbf{1 7 5}$ which was converted to the N -acyloxyazetidinone 177 together with 174 in basic refluxing chloroform (Scheme 18). The formation of 177 can be explained by an intramolecular $\mathrm{N}-\mathrm{O}$ acyl rearrangement followed by extrusion of nitrogen from diazo ester 176, a documented deamination process. 60

Scheme 18

Perri further examined this deamination protocol using $\mathrm{N}-\mathrm{BOC}$ derivatives. He showed that urethane 178 could be nitrosated with either sodium nitrite and acetic acid or with dinitrogen tetroxide gas to give 179 (Scheme 19). Unfortunately, 179 failed to undergo acyl transfer to 180 in analogy to 175. The principal outcome was denitrosation to 178.

178

179

180

Scheme 19

The difficulty of removing the nitrogen substituent from the N acylazetidinones prompted the search for an alternative approach. Although it appeared attractive at first glance, adaption of Miller's conditions for reductive cleavage of N -hydroxy β-lactams, ${ }^{38}$ using an acidic solution of titanium (III) chloride, had to be ruled out since N -aminoazetidinones undergo ring expansion to pyrazolidinones under acidic conditions.

Ganem showed that simple trifluoroacetamides undergo smooth nitrosation and rearrangement to deaminated products, ${ }^{61}$ and an extension of this procedure to our more complex β-lactam system was next investigated. Treatment of N -aminoazetidinone 172 with trifluoroacetic anhydride (TFAA)
produced the N -trifluoroacetylaminoazetidinone 181 in good yield. However, nitrosation of 181 under Ganem's conditions failed to produce the desired rearrangement product 182 and resulted only in decomposition (Scheme 20). Attempts to nitrosate 181 with nitrogen tetroxide were also unsuccessful.

172

181

TBDMSO

182

Scheme 20

A solution to the problem of removing the N -amino substituent from the azetidinones was finally found in a report by Rees and Storr. 62 They showed that deamination of a 1 -aminotriazine could be accomplished with diphenylnitrosamine. 63 When N -aminoazetidinones 161-165 were exposed to this reagent, β-lactams 183-188 were obtained in good yield (Table 5). ${ }^{59}$ The azetidinone 188 has been used as an intermediate in the synthesis of several carbapenem antibiotics, including PS-5, PS-6, and thienamycin. 64

Compound	R_{1}	R_{2}	Product	Yield (\%)
161	Me	H	183	55
162	H	Me	184	51
163^{a}	Me	Me	185,186	67
164	H	H	187	61
165	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	188	65

a cis: trans mixture (3.5:1) of 185 and 186 was obtained and separated by chromatography.

Table 5. Nitrosative Deamination of 1-Aminoazetidin-2-ones.

The aminoazetidinone 172 was deaminated to give 189 in good yield. The latter was deprotected with hydrofluoric acid in acetonitrile to afford 190, a β-lactam possessing the thienamycin side-chain configurations (Scheme 21).

A probable mechanism for this deamination involves transnitrosation of 191 to yield 192 and diphenylamine. The diazotate tautomer 193 would undergo elimination of $\mathrm{N}_{2} \mathrm{O}$ to give the parent β-lactam 194 (Scheme 22).

Scheme 22

With a complete route to N -unsubstituted β-lactams completed, our interest next turned to extending this methodology to the synthesis of more complex carbapenem antibiotics. Our target was the known intermediate 195^{29} which could be accessed via azetidinones 196 and 197. Construction of the bicyclic pyrazolidinone precursor 198 was envisioned by stereoselective conjugate addition of hydrazine-monohydrate to α, β-unsaturated δ-lactone 199 followed by cyclization. Lactone 199 would be available from ethyl (3R)hydroxybutyrate 200. (Scheme 23).

Scheme 23

The dianion of ethyl (3R)-hydroxybutyrate 200 was alkylated with allyl bromide producing 20165 which was protected as its silyl ether 202 using standard conditions. 66 Hydroboration-oxidation 67 of 202 with disiamylborane proceeded smoothly to alcohol 203 (Scheme 24).

201
TBDMSCI, DMF, Imid.,
r.t., $16 \mathrm{~h},(90 \%)$

Scheme 24

Hydroxy ester 203 was oxidized to the corresponding carboxylic acid 204 with pyridinium dichromate. 68 Deprotection of 204 with hydrofluoric acid resulted in an approximately $1: 1$ mixture of lactone 205 and the corresponding acyclic hydroxy acid. The crude mixture was converted entirely to 205 using Mukaiyama's lactonization conditions. 69 The enolate of lactone 205 was treated with diphenyldisulfide to give the α-sulfenyl lactone 206 which, on oxidation with meta-chloroperbenzoic acid, produced an intermediate sulfoxide. 70 Without purification, the sulfoxide was exposed to refluxing toluene causing elimination and isomerization of the resultant olefin to lactone 199. Several attempts to form the desired bicyclic pyrazolidinone 198 from 199 were unsuccessful, the addition of hydrazine-monohydrate to $\mathbf{1 9 9}$ generally giving rise to polymeric products (Scheme 25).

1) $\mathrm{HF}, \mathrm{MeCN}$, r.t., 1.5 h

Scheme 25

A rationale for the failure to form 199 was apparent by comparison to the results of Saito and co-workers. ${ }^{71}$ They found that treatment of lactone 199 with phenylhydrazine produced pyrazolidinone 206 in $\mathbf{6 5 \%}$ yield (Scheme 26). This shows that the terminal nitrogen of phenylhydrazine reacts selectively at
the lactone carbonyl and is followed by cyclization. Pyrazolidinone 206 was converted to lactone 207, a known intermediate in route to thienamycin. ${ }^{72}$

207

Scheme 26

Attempts to reduce the lactone carbonyl of 199 with diisobutylaluminum hydride in toluene at $-70^{\circ} \mathrm{C}$ produced the corresponding lactol in a disappointing 25% yield. Alternatively, acidic or basic hydrolysis of 199 in an attempt to obtain the α, β-unsaturated carboxylic acid resulted in elimination to diene products.

The unfavorable reactivity of lactone 199 led to a reevaluation of our strategy as an approach to β-lactam antibiotics. An alternative plan was developed which led eventually to the formal synthesis of PS-5 (10). ${ }^{73}$ This strategy was based on the earlier observation that α, β-unsaturated δ-lactones undergo hydrazinolysis to form pyrazolidinones via intramolecular cyclization at the lactone carbonyl.

This approach to the required α, β-unsaturated δ-lactone 211 with the ethyl side-chain necessary for constructing PS-5 utilized δ-valerolactone (208) as a starting material. The lithium anion of 208 was akylated with ethyl iodide to afford $209 .{ }^{74}$ Selenation ${ }^{75}$ gave 210 which upon oxidation followed by elimination provided exclusively the endocyclic α, β-unsaturated lactone 211. Treatment of 211 with hydrazine monohydrate in refluxing ethanol gave the desired cis-3,4-dialkylpyrazolidinone 212, accompanied by saturated hydrazide 213 and unsaturated hydrazide 214 in a 5:3:1 ratio, respectively (Scheme 27).

$30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$,
$0^{\circ} \mathrm{C}$ to r.t., 20 min.,
(91%)

Scheme 27

To rationalize this result, it was proposed that the reaction of 211 with hydrazine leads initially to cis and trans addition products $\mathbf{2 1 5}$ and $\mathbf{2 1 6}$ (Scheme 28). Only 216 is capable of undergoing transformation to the bicyclic intermediate 217 leading to pyrazolidinone $\mathbf{2 1 2}$ which, as a result, possesses cis configuration.

213

Scheme 28

Apparently, 214 does not undergo cyclization using these reaction conditions since its exposure to refluxing ethanol for 24 hours failed to produce
any cis or trans pyrazolidinone. Instead 214 is reduced in low yield with hydrazine to the saturated hydrazide 213.

The structure of 212 was determined by o-nitrobenzylation which provided the monobenzylated pyrazolidinone 215 in modest yield (eq. 12). Confirmation of cis stereochemistry of this substance was obtained by X-ray crystallographic analysis (Figure 1). 76

Figure 1. X-ray Crystal Structure of Pyrazolidinone 215.

Continuation of the route from 215 required protection of the primary alcohol, and this was effected with tert-butyldimethylsilyl trifluoromethanesulfonate to give 216 . N2-Acylation of 216 with 2(trimethylsilyl)ethyl azidoformate produced the fully activated pyrazolidinone 217 needed for photolysis. Irradiation of 217 in ethanol, first through Pyrex and then through a Vycor filter, resulted in smooth conversion to cis azetidinone 218 (Scheme 29).

$\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h},(95 \%)$

Scheme 29

Treatment of $\mathbf{2 1 8}$ with two equivalents of tetra- n-butylammonium fluoride resulted in removal of both silyl protecting groups to give 219 in good yield
(Scheme 30). Nitrosative deamination of $\mathbf{2 1 9}$ finally gave the desired β-lactam 220, a known intermediate in the synthesis of (+)-PS-5.33 The $\mathrm{Ha}-\mathrm{Hb}$ coupling constant in $220(\mathrm{Jab}=5.4 \mathrm{~Hz})$ compared well with that of cis-substituted β lactams reported by Miller. 77

Scheme 30

It is evident from these results that this ring contraction methodology can provide entry to useful carbapenem intermediates. The opportunity to create hybrid structures, such as β-lactam 190, or analogues, such as $\mathbf{2 2 0}$ containing the unnatural cis stereochemistry, is a particularly valuable asset of this chemistry.

I-C. Experimental

General

Starting materials and reagents purchased from commercial suppliers were generally used without further purification. Solvents were dried by distillation from the appropriate drying agent immediately prior to use. Toluene, tetrahydrofuran, and ether were distilled from potassium and benzophenone under an argon atmosphere. Diisopropylamine, triethylamine, diisopropylethylamine, dimethylformamide, acetonitrile, pyridine and dichloromethane were distilled from calcium hydride under argon. All solvents used for routine isolation of products and chromatography were reagent grade and glass distilled. Moisture and air sensitive reactions were carried out under an atmosphere of argon.

Concentration in vacuo refers to the use of a rotary evaporator at water aspirator pressures. Residual solvent was removed by vacuum pump at pressures less than 2 torr. Reaction flasks were flame dried under a stream of argon. Syringes were oven dried at $200^{\circ} \mathrm{C}$ and cooled to room temperature in a desiccator over anhydrous calcium sulfate.

Analytical thin layer chromatography (TLC) was conducted using 1.5 x 5.0 cm precoated aluminum E. Merck TLC plates (0.2 mm layer thickness of silica gel $60 \mathrm{~F}-254$). Spots were visualized by ultraviolet light, or by heating the plate after dipping in a $3-5 \%$ solution of phosphomolybdic acid in ethanol, 10% ammonium molybdate, or a 1% solution of vanillin in $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ in methanol. Flash chromatography was carried out using E. Merck silica gel 60 (230-400 mesh ASTM).

Melting points were measured using a Büchi melting point apparatus. Optical rotations were measured on a Perkin-Elmer 243 polarimeter at ambient temperature using a 1 decimeter cell of 1 mL capacity. Infared (IR) spectra were recorded with a Nicolet 5DXB FT-IR spectrometer. Proton and carbon nuclear magnetic resonance (NMR) spectra were obtained using either a Bruker AC-300, or Bruker AM-400 spectrometer. All chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane using the δ scale. ${ }^{1} \mathrm{H}$ NMR spectral data are reported in the order of: chemical shift, multiplicity, $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and b $=$ broad), coupling constant (J) in Hertz, and number of protons. Mass spectra MS(CI) were obtained using the Finnigan 4023 quadrapole GC-MS spectrometer with a 4500 source at $140^{\circ} \mathrm{C}$ and a vacuum of 0.7 torr. Mass spectra MS(EI) were obtained using the varian MAT311 with an ionization potential of 70 eV . High resolution mass spectra were obtained using the Kratos MS-50 RF spectrometer. X-ray crystallographic data was collected using the Rigaku AFC6R instrument. Elemental analyses were performed by Desert Analytics, Tucson, Arizona.

4-[(1'-Hydroxy)ethyl]pyrazolidin-3-one (167). To a solution of 16656 ($825 \mathrm{mg}, 6.42 \mathrm{mmol}$) in 15 mL of absolute methanol was added hydrazine hydrate ($0.34 \mathrm{~mL}, 1.06 \mathrm{mmol}$) using a syringe. The resulting solution was heated at reflux for 4 h then concentrated in vacuo to a viscous oil. Purification by column chromatography on silica gel with 15% methanolchloroform as the elutant provided ($634 \mathrm{mg}, 76 \%$) of a $1: 1$ mixture of diastereomeric pyrazolidin-3-ones. Compound 167 eluted from the column after its stereoisomer: IR (neat) 3500-3000 (br), $1681 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.65(\mathrm{bs}, 2 \mathrm{H}), 4.30(\mathrm{dq}, J=6.5,2.5,1 \mathrm{H}), 3.7-3.4(\mathrm{~m}, 2 \mathrm{H}), 3.48$
(s, 1 H), $2.58-2.50(\mathrm{~m}, 1 \mathrm{H}) 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 177.3, 64.9, 49.6, 45.9, 21.3; MS (EI) m / z (rel. intensity) 130 $\left(\mathrm{M}^{+}, 20\right), 112(29), 85(100), 69(50)$; HRMS, m / z calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 130.0742. Found: 130.0741.

4-[(1'-(Tert-Butyldimethylsilyloxy)ethyl]-1-(0-

 nitrobenzyl)pyrazolidin-3-one (169). To a solution of 167 ($1.57 \mathrm{~g}, 12.1$ mmol) in dimethylformamide (30 mL) was added o-nitrobenzyl chloride ($2.07 \mathrm{~g}, 12.1 \mathrm{mmol}$), triethylamine ($1.68 \mathrm{~mL}, 12.1 \mathrm{mmol}$), and sodium iodide ($903 \mathrm{mg}, 6.05 \mathrm{mmol}$). The reaction mixture was stirred under argon for 36 h at room temperature, and the dimethylformamide was removed in vacuo. The crude material was taken up in methylene chloride (20 mL) and washed with water ($2 \times 20 \mathrm{~mL}$), saturated sodium chloride ($2 \times 20 \mathrm{~mL}$), dried over anhydrous magnesium sulfate, and concentrated in vacuo.The crude product (3.50 g) was diluted with dimethylformamide $(75 \mathrm{~mL})$ and tert-butyldimethylsilyl chloride ($2.00 \mathrm{~g}, 13.3 \mathrm{mmol}$) was added along with imidazole ($1.36 \mathrm{~g}, 19.9 \mathrm{mmol}$). The mixture was stirred under argon at room temperature for 24 h and then partitioned between water (30 mL) and ether $(30 \mathrm{~mL})$. The aqueous layer was washed with ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined, dried over anhydrous magnesium sulfate, and concentrated in vacuo. Purification by column chromatography on silica gel with 1:1 ethyl acetate-hexane as elutant afforded $169(2.59 \mathrm{~g}, 56 \%$ based on 167) as a yellow solid: mp $138-141^{\circ} \mathrm{C}$; IR (thin film) $2955,2929,1696,1528$, $836,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.45 (m, 1H), 6.67 (s, 1H), 4.35-4.31 (m, 1H), $4.21(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.52(\mathrm{~m}$, 1 H), 3.39-3.33 (m, 1H), 2.77-2.70 (m, 1H), 1.17 (d, J=6.3 Hz, 3H), 0.87 (s, $\left.9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}\right) \delta 174.1,149.3,133.2,131,5$,
130.9, 128.9, 125.0, 66.4, 61.1, 53.4, 47.6, 25.7 (x3), 18.9, 17.9, -4.6, -4.9; MS (CI) m / z (rel. intensity) $380(M+1,100), 364$ (26), 322 (39), 248 (15), 159 (18), 120 (19), 75 (14); HRMS, m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}(M+1)$: 380.2006. Found: 380.2006. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 56.96, \mathrm{H}, 7.71, \mathrm{~N}$, 11.08. Found: C, 57.20, H, 7.80, N, 11.13 .

2-[(2-(Trimethylsilyl)ethoxycarbonyl]-1-(o-nitrobenzyl)-4-[(1'-

 (tert-butyldimethysilyloxy)ethyl]pyrazolidin-3-one (170). To a solution of $169(2.59 \mathrm{~g}, 6.82 \mathrm{mmol})$ and (trimethylsilyl)ethyl azidoformate ($0.40 \mathrm{~g}, 7.51 \mathrm{mmol}$) in dry tetrahydofuran (100 mL).was added slowly sodium hydride $\left(0.33 \mathrm{~g}, 8.18 \mathrm{mmol}, 60 \%\right.$ in mineral oil) at $0^{\circ} \mathrm{C}$. After all the sodium hydride was added, the reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 2 h at room temperature. The reaction mixture was partitioned between water (30 mL) and ether (30 mL), and the aqueous layer was separated and washed with ether ($2 \times 30 \mathrm{~mL}$). The combined ether layers were dried over anhydrous magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 30% ethyl acetate-hexane as elutant provided 170 ($2.28 \mathrm{~g}, 64 \%$) as a colorless solid: mp 85-88 ${ }^{\circ} \mathrm{C}$ (ether-hexane); IR (neat) 2955, 1788, 1734, 1528, 1347, 1288, 1252, 859, 838, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}$, $1 \mathrm{H})$, 4.44-4.24 (m, 5H), 3.14 (dd, $J=11.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H})$, 1.13 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, 9 H), $0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,149.9$. 149.1, 133.3, $131.9,131.4,128.6,124.5,65.7,65.6,56.9,48.0(x 2), 25.7(x 3), 22.3,17.8$, 17.6, -1.6 (x3), -4.5, 5.2; MS (CI) m / z (rel. intensity) $524(M+1,13), 496(100)$, 480 (57), 452 (56), 73 (38), 41 (49); HRMS, m / z calcd. for $\mathrm{C}_{2} 4 \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Sin}_{2}$ (M +1): 524.2612. Found: 524.26123-[(1'-Tert-Butyldimethylsilyloxy)ethyl]-1-[(2-(trimethylsilyl)ethoxycarbonyl)amino]azetidin-2-one (171). A sample of 170 ($1.10 \mathrm{~g}, 2.09 \mathrm{mmol}$) in absolute ethanol (100 mL) was degassed for 1 hr in a quartz photochemical immersion well. The solution was irradiated through a pyrex filler with a 450-Watt Hanovia lamp for 2 h at $0^{\circ} \mathrm{C}$. The filter was changed to Vycor, and the solution was irradiated for another 5.5 h at $0^{\circ} \mathrm{C}$. The resulting solution was concentrated in vacuo to provide a dark brown oil. Purification by column chromatography on silica gel using 30% ethyl acetate-hexane as elutant afforded 171 ($0.49 \mathrm{~g}, 60 \%$) as a colorless oil: IR (neat) 3275, 2955, 2930, 1786, 1781, 1733, 1515, 1472, 1179, 1062, 1046, $836 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.66(\mathrm{bs}, 1 \mathrm{H}$), 4.26.-4.17 ($\mathrm{m}, 3 \mathrm{H}$), 3.63-3.61 (m, 1H), 3.53-3.51 (m, 1H), 3.11-3.08 (m, 1H), $1.23(\mathrm{~d}, \mathrm{~J}=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,154.9,65.7,64.9,55.3,47.3,25.6$ (x3), 22.8, 17.9, 17.7, -1.2 (x3), -4.3, -5.0; MS (CI) m/z (rel. intensity) 389 (M + 1,17), 361 (78), 345 (100), 331 (22), 317 (69), 185 (26), 73 (66); HRMS, m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si} 2(\mathrm{M}+1)$: 389.2292. Found: 389.2292.

1-Amino-3-[(1'-tert-butyldimethylsilyloxy)ethyl]azetidin-2-

one (172). To a solution of 171 ($160 \mathrm{mg}, 0.41 \mathrm{mmol}$) in acetonitrile (5 mL) was added 1.0 M tetra-n-butylammonium fluoride solution ($0.41 \mathrm{~mL}, 0.41$ mmol) in tetrahydrofuran. The mixture was heated at $45^{\circ} \mathrm{C}$ for 4.5 h and concentrated in vacuo to provide an oil. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 172 ($63.0 \mathrm{mg}, 60 \%$) as a clear oil: IR (neat) 3332 (br), 2959, 2932, 2858, 1760, 1468, 1369, 1137, 1106, 1078, 1018, 985, 838, $778 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 4.19-4.13 (m, 1H), $3.96(\mathrm{~s}, 2 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 1 \mathrm{H})$,
3.40-3.37 (m, 1H), 2.99-2.95 (m, 1H), $1.18(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, 0.06 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,65.0,54.6,47.3,25.7,22.8$, 17.9,-4.24, -5.05; MS (CI) m/z (rel. intensity) 245 ($\mathrm{M}+1,51$), 229 (69), 187 (85), 83 (30), 49 (40); HRMS, m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1): 245.1685$. Found: 245.1685. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$: C, 54.06, H, 9.91, N, 11.47. Found: C, $53.89, \mathrm{H}, 10.02, \mathrm{~N}, 11.26$.

1-Amino-3-[(1'-hydroxy)ethyl]azetidin-2-one (173). To a solution of 172 ($33.7 \mathrm{mg}, 0.14 \mathrm{mmol}$) in acetonitrile (5 mL), was added 1.0 M tetra-n-butylammonium fluoride solution ($0.15 \mathrm{~mL}, 0.15 \mathrm{mmol}$) in tetrahydrofuran. The mixture was stirred under argon atmosphere for 24 h at room temperature and concentrated in vacuo to provide an oil. Purification by column chromatography on silica gel provided 173 ($6.0 \mathrm{mg}, 34 \%$). The purification of this compound was not trivial. Four silica columns were performed using 10% methanol-methylene chloride twice, followed by 5% methanol-methylene chloride the remaining times. The tri-n-butylamine byproduct appears to elute at the same rate ($\mathrm{R}_{\mathrm{f}}=.15,10 \%$ methanol-methylene chloride) as the desired compound: IR (neat) 3329-3205 (br), 2969, 1744, 1138, 1091, 1011, $795 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.23-4.14(\mathrm{~m}, 1 \mathrm{H})$, 4.07 (bs, 2H), 3.46-3.45 (m, 2H), 3.07-3.03 (m, 1H), 2.22 (bs, 1H), $1.27(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,64.8,54.0,47.7,21.7$; MS (EI) m / z (rel. intensity) $130\left(\mathrm{M}^{+}, 5\right), 112(25), 85(36), 69(98), 55(100), 45(79)$; HRMS, m / z calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 130.0742 . Found: 130.0741 .

1-Trifluoroacetamido-3-[(1'-tert-butyldimethylsilyloxy)-

 ethyl]azetidin-2-one (181). To a solution of 172 ($31 \mathrm{mg}, 0.13 \mathrm{mmol}$) in dry pyridine (1 mL) containing N, N-(dimethylamino)pyridine (2 mg) wasadded trifluoroacetic anhydride ($61.6 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 6 h . The pyridine was removed in vacuo. The residue was dissolved in water (5 mL), extracted with chloroform ($3 \times 5 \mathrm{~mL}$), and the combined organic dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel using 30% ethyl acetate-hexane as elutant provided 181 ($23.8 \mathrm{mg}, 55 \%$) as a yellow oil: IR (neat) 3210, 2958, 2859, 1783, 1742, 1209, $1164 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.22$ (quint., $J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ (s, 9H), $0.08(\mathrm{~s}, 3 \mathrm{H}) ; 0.06(\mathrm{~s}, 3 \mathrm{H})$.

3-Methyl-azetidin-2-one (183). To a solution of $161^{49}(33.7 \mathrm{mg}$, 0.33 mmol) in benzene (2 mL) was added N, N-diphenylnitrosamine ${ }^{63}$ (72.6 $\mathrm{mg}, 0.37 \mathrm{mmol})$. The mixture was heated at reflux for 3 h and concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant gave 183 (15.7 mg, 55\%) as a clear oil: IR (neat) 3259 (br), 2971, 2902, 1739, $1195 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.90(\mathrm{bs}, 1 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=5.3,1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ 172.5, 46.2, 43.4, 13.6; MS (CI) m/z (rel. intensity) $86(M+1,99)$; HRMS, m / z calcd. for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}(M+1)$: 86.0606. Found 86.0606.

4-Methyl-azetidin-2-one (184). To a solution of 162^{49} (70.0 mg , 0.692 mmol) in benzene (5 mL) was added N, N-diphenylnitrosamine (151 mg , 0.76 mmol). The mixture was heated at reflux for 2 h and concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant gave $184(30.0 \mathrm{mg}, 51 \%)$ as a
clear oil: IR (neat) 3266 (br), 2968, 2931, 1737, 1416, 1378, $1194 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.30(\mathrm{bs}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H})$, 2.50 (dd, $J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.32 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) δ 168.1, 44.9, 43.8, 21.2; MS (CI) m / z (rel. intensity) 86 ($\mathrm{M}+1,95$); HRMS, m / z Calcd. for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}(\mathrm{M}+1): 86.0607$. Found 86.0601.

cis-3,4-Dimethylazetidin-2-one (185) and trans-3,4-

 Dimethylazetidin-2-one (186). To a solution of 163^{49} ($59.7 \mathrm{mg}, 0.52$ mmol) in benzene (5 mL) was added N , N -diphenylnitrosamine ($114 \mathrm{mg}, 0.56$ $\mathrm{mmol})$. The mixture was heated at reflux for 3 h and concentrated in vacuo to a dark brown oil. Separation of the two diastereomers by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 185 ($27.0 \mathrm{mg}, 52 \%$) and 186 ($8.0 \mathrm{mg}, 15 \%$) for a total yield of (67%) both as clear oils: (185): $\mathrm{R}_{\mathrm{f}} 0.10$ (1:1 ethyl acetate-hexane), IR (neat) 3258 (br), 2975, 2936, 1743, 1382, 1356, $1203 \mathrm{~cm}^{-1 ;} ; \mathrm{H}$ NMR: ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.25 (bs, 1H), 3.80 (quint, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25-3.20 (m, 1H), 1.19 (d, $J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,47.6$, 47.4, 15.9, 8.7; MS (CI) m / z (rel. intensity) $100(M+1,100)$; HRMS, m / z Calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}(\mathrm{M}+1): 100.0762$. Found: 100.0763. (186): $\mathrm{R}_{\mathrm{f}} 0.15$ (1:1 ethyl acetate-hexane) IR (neat) 3256 (br), 2968, 2931, 1745, 1381, 1354, 1192, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.00$ (bs, 1 H), 3.36 (dq, $J=6.1 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (dq, $J=5.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.27 (d , $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,52.8,52.5,20.3,12.7$; MS (CI) m / z (rel. intensity) $100(M+1,39), 59$ (100); HRMS, m / z calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}(\mathrm{M}+1): 100.0762$. Found: 100.0763.Azetidin-2-one (187). To a solution of 164^{49} (15.1 mg .0 .18 mmol) in benzene (2 mL) was added N, N-diphenylnitrosamine ($38.2 \mathrm{mg}, 0.19 \mathrm{mmol}$). The mixture was heated at reflux for 2 h and concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel using 5\% methanol-chloroform as elutant gave $187(7.5 \mathrm{mg}, 61 \%)$ as a clear solid; mp $74^{\circ} \mathrm{C}$; IR (neat) 3294 (br), 2984, 2917, 1717, 1382, 1281, $1197 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73(\mathrm{bs}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.02-3.00 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,38.3,35.1$; MS (Cl) m / z (rel. intensity) 72 $(M+1,100)$; HRMS, m / z calcd. for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}(\mathrm{M}+1)$: 72.0449. Found: 72.0449 .

4-[(Ethoxycarbonyl)methyl]azetidin-2-one (188). To a solution of $165^{49}(7.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ in benzene (1 mL) was added N, N diphenylnitrosamine ($9.3 \mathrm{mg}, 0.05 \mathrm{mmol}$). The mixture was heated at reflux for 2.5 h and concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant gave 4.5 mg of product. A second column on silica gel to remove minor impurities using 1:1 ethyl acetate-hexane produced 188 ($4.2 \mathrm{mg}, 65 \%$) as a clear oil: IR (neat) 3274 (br), 2983, 1761, 1733, 1380, $1189 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.09(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.10$ ($\mathrm{m}, 1 \mathrm{H}$), 2.74-2.50 (m, 3H), $1.25(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.0, 166.9, 60.9, 43.8, 43.4, 39.9, 14.2; MS (CI) m / z (rel. intensity) 158 ($M+$ 1, 25), (116, 100); HRMS m/z calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3}(M+1)$: 158.0817. Found: 158.0817. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 53.49, \mathrm{H}, 7.05, \mathrm{~N}, 8.91$. Found: C , 53.38, H, 6.94, N, 8.96.

3-[1'-[(Tert-butyldimethylsilyloxy)ethyl]azetidin-2-one (189).

 To a solution of $172(20.7 \mathrm{mg}, 0.09 \mathrm{mmol})$ in benzene (3 mL) was added N, N diphenylnitrosamine ($19.0 \mathrm{mg}, 0.09 \mathrm{mmol}$). The mixture was heated at reflux for 2 h and concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant gave 189 ($13.3 \mathrm{mg}, 68 \%$) as a white solid: $\mathrm{mp} 55-58^{\circ} \mathrm{C}$; IR (neat) 3190 (br), 2955, 2932, 1747, 1467, 1252, 1196, 1144, 1078, 1031, $839 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.77(\mathrm{bs}, 1 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-$ 3.31 ($\mathrm{m}, 1 \mathrm{H}$) 3.22-3.17 (m, 1H), 1.16 (d, J=6.1 Hz, 3H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,65.2,59.3,37.6,25.7$ (x 3), 22.5, 27.9, $-4.3,-5.0 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $230(\mathrm{M}+1,60), 214(50), 172(60), 133$ (40), 115 (20), 98 (20), 55 (100); HRMS, m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+1)$: 230.1576. Found 230.1577.3-[(1'-Hydroxy)ethyl]azetidin-2-one (190). To a solution of 189 ($11.0 \mathrm{mg}, 0.048 \mathrm{mmol}$) in acetonitrite (1 mL) was added an excess amount of 5% hydrofluoric acid in acetonitrile. The mixture was stirred at room temperature for 3 h and concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant gave 190 ($3.50 \mathrm{mg}, 64 \%$) as a clear oil: IR (neat) 3346 (br), 2964, 1731, 1378, $1203,1093,898 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87$ (bs, 1H), 4.25-4.15 ($\mathrm{m}, 1 \mathrm{H}$), 3.37-3.31 (m, 2H), 3.30-3.26(m, 1H), 2.17 (bs, 1H), 1.27 (d, $J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,64.9,58.7,38.0,21.3$; MS (CI) m / z (rel. intensity) 116 ($M+1,43$), 59 (100); HRMS, m / z calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}$ $(M+1): 116.0713$. Found: 116.0711.
(2R,3R)-Ethyl-2-allyl-3-hydroxybutyrate (201). To a solution of diisopropylamine ($6.37 \mathrm{~mL}, 45.3 \mathrm{mmol}$) in dry tetrahydrofuran (50 mL) was added n-butyllithium ($28.3 \mathrm{~mL}, 45.3 \mathrm{mmol}, 1.60 \mathrm{M}$ in hexanes) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ for 30 min and recooled to $-78^{\circ} \mathrm{C}$ for a further 30 min. (3R)-Hydroxybutyrate $200(2.85 \mathrm{~g}, 21.6 \mathrm{mmol})$ was added dropwise using a syringe. The mixture turned yellow and was stirred for 45 min at $-70^{\circ} \mathrm{C}$ before neat allyl bromide ($4.66 \mathrm{~mL}, 53.9 \mathrm{mmol}$) was added via syringe. The reaction was sealed under argon atmosphere and stirred for 16 h at $5^{\circ} \mathrm{C}$ then recooled to $-50^{\circ} \mathrm{C}$ and quenched with acetic acid (2 mL) and ether (5 mL). The reaction mixture was transfered to a separatory funnel filled with water (20 mL) and ether (25 mL) where the layers separated. The ether layer was washed with saturated sodium bicarbonate (6 mL), saturated sodium chloride (6 mL), and the aqueous layer washed with ether ($2 \times 20 \mathrm{~mL}$). The combined ether layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel using 1:3.5 ethyl acetate-hexane as elutant gave 201 ($2.16 \mathrm{~g}, 58 \%$) as a light yellow oil: [$\alpha]_{D}$ -9.50° (c = 1.50, CHCl_{3}); IR (neat) $3675,2973,1733,1610,1181 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=15.7 \mathrm{~Hz}, 1.3 \mathrm{~Hz}$, 1 H), 5.04 (dd, $J=10.2 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (q, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 3.93 (quint., J $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H), $1.23(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6,134.8$, 117.1, 67.8, 60.6, 52.1, 33.6, 21.4, 14.3; MS (CI) m / z (rel. intensity) 173 ($\mathrm{M}+1$, 100); HRMS, m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+1)$: 173.1178. Found: 173.1177.

(2R,3R)-Ethyl-2-allyl-3-tert-butyldimethylsilyloxybutyrate

(202). To a solution of 201 ($2.16 \mathrm{~g}, 12.6 \mathrm{mmol}$) in dry dimethylformamide was added tert-butyldimethylsilyl chloride ($2.65 \mathrm{~g}, 17.6 \mathrm{mmol}$) and imidazole
($1.70 \mathrm{~g}, 25.2 \mathrm{mmol}$). The mixture was stirred at room temperature for 16 h under argon atmosphere and quenched with water (10 mL) and ether (20 mL). The aqueous layer was washed with ether ($3 \times 30 \mathrm{~mL}$), and the combined organic layers were dried over anhydrous magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 30% ethyl acetate-hexane as elutant gave $180(3.50 \mathrm{~g}, 97 \%)$ as a clear oil: $[\alpha]_{D}-24.3^{\circ}\left(c=1.63, \mathrm{CHCl}_{3}\right.$); IR (neat) 3083, 2933, 1738, 1643, 1467, 1254, 1182, $1095 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73-5.67(\mathrm{~m}, 1 \mathrm{H}$), 5.02 (dd, $J=16.9 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (dd, $J=10.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dq, $J=$ $7.5 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (quint., $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47-2.41 (m, 1H), 2.36-2.19 (m, 2H), 1.22 (t, J=7.1 Hz, 3H), $1.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}$, 3 H), 0.00 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,135.7,116.4,69.4$, $60.1,54.2,32.4,25.7$ (x3), 21.2, 17.9, 14.3, -4.3, -5.1; MS (CI) m / z (rel. intensity) $287(M+1,100)$; HRMS, m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}(M+1)$: 287.2042. Found: 287.2041.

(2R,3R)-Ethyl-2-[3'-(hydroxy)propyl]-3-(tert-

butyldimethylsilyloxy)butyrate (203). To a solution of 1.0 M boranetetrahydrofuran complex ($12.5 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was added 2-methyl-2-butene ($2.73 \mathrm{~mL}, 25.75 \mathrm{mmol}$) and the reaction stirred for 1.5 h at $-10^{\circ} \mathrm{C}$ (methanol-ice bath). Alkene 202 ($2.38 \mathrm{~g}, 8.31 \mathrm{mmol}$) was added dropwise in tetrahydrofuran (5 mL). The reaction was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. A mixture of 30% hydrogen peroxide (5 mL), 1 M sodium hydroxide (5 mL), and water (2 mL) was added slowly at $0^{\circ} \mathrm{C}$. The mixture turned white and was allowed to stir for an addiltional 1.5 h at $0^{\circ} \mathrm{C}$ before extracting with ether $(3 \times 30 \mathrm{~mL})$. The combined ether layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel
using 30% ethyl acetate-hexane as elutant gave 181 ($1.82 \mathrm{~g}, 72 \%$) as a clear oil: [α]D IR (neat) 3436 (br), 2931, 1735, 1450, 1254, 1190, 1109, 1060, 834 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11$ (dq, $J=7.3 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (quint., $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62-3.59 ($\mathrm{m}, 2 \mathrm{H}$), 2.40-2.34 (m, 1 H), 1.62-1.45 (m , $4 \mathrm{H}), 1.37(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $\left.0.83(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6$, 69.8, 62.5, 60.2, 54.3, 30.7, 25.7 (x3), 24.1, 21.2, 17.9, 14.2, -4.3, -5.2; MS (CI) m / z (rel. intensity) 305 ($\mathrm{M}+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1)$: 305.2148. Found: 305.2148.

(4R,5R)-4-Ethoxycarbonyl-5-(tert-butyldimethylsilyloxy)

hexanoic acid (204). To a solution of 203 ($1.82 \mathrm{~g}, 5.98 \mathrm{mmol}$) in dry dimethylformamide (50 mL) was added pyridinium dichromate. The reaction was stirred for 48 h at room temperature then poured into water (50 mL). The phases were separated and the aqueous layer was extracted with ether (4 x 50 mL). The combined ether extracts were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided $204(1.25 \mathrm{~g}$, 66%) as a light yellow oil: $[\alpha] \mathrm{D}-5.3^{\circ}$ ($\mathrm{c}=1.81, \mathrm{CHCl}_{3}$); IR (neat) 3400-2900 (br), 2956, 2934, 1734, 1714, 1254, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{dq}, ~ J$ $=7.3 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.03 (quint., $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47-2.27 (m,3H), 1.86 (q, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0,04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9,173.7,69.5$, $60.4,53.3,31.9,25.7$ ($x 3$), 22.6, 20.9, 17.9, 14.2, -4.4, -5.2; MS (CI) m/z (rel. intensity) 319 ($\mathrm{M}+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1)$: 319.1941. Found: 319.1940. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 56.57, \mathrm{H}, 9.49$, Si, 8.82. Found: C, 56.73, H, 9.45.
(6R,5R)-5-Ethoxycarbonyl-6-methyl-pyran-2-one (205). To a solution of $204(1.25 \mathrm{~g}, 3.92 \mathrm{mmol})$ in acetonitrile (5 mL) was added excess 5% hydrofluoric acid in acetonitrile and the reaction stirred for 1.5 h at room temperature. Saturated ammonium chloride (5 mL) was added and a white precipitate appeared as the phases separated. The aqueous layer was extracted with ether ($2 \times 5 \mathrm{~mL}$). The combined organic layers were washed with saturated sodium bicarbonate ($2 \times 5 \mathrm{~mL}$), dried over anhydrous magnesium sulfate, and concentrated in vacuo. The crude material was used directly for the next reaction.

Mukaiyama's salt ${ }^{69}$ ($1.00 \mathrm{~g}, 3.92 \mathrm{mmol}$), and triethylamine (1.64 mL , 11.7 mmol) were stirred under argon atmosphere in acetonitrile (20 mL). The crude material was added by syringe as a solution in acetonitrile (5 mL). The reaction was stirred for 1.5 h at room temperature and the acetonitrile concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 205 ($545 \mathrm{mg}, 75 \%$) as a clear oil: $[\alpha]_{D}+73.4^{\circ}\left(\mathrm{c}=1.26, \mathrm{CHCl}_{3}\right.$); IR (neat) 2984, 1731, 1245, 1217, 1181, 1104, 1050, $1028 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.73-4.67(\mathrm{~m}, 1 \mathrm{H})$, 4.17 (dq, $J=6.7 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89-2.85 (m, 1H), 2.77-2.69 (m, 1H), 2.56$2.48(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.5,75.4,61.2,42.2,27.2,19.9$, 18.1, 14.1; MS (CI) m / z (rel. intensity) 187 ($M+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}(\mathrm{M}+1)$: 187.0970 . Found: 187.0970 .

(6R)-5-Ethoxycarbonyl-6-methyl-3-thiophenyl-pyran-2-one

(206). To a solution of 205 ($530 \mathrm{mg}, 2.85 \mathrm{mmol}$) in dry tetrahydrofuran (100 mL) was added lithium bis(trimethylsilyl) amide ($4.26 \mathrm{~mL}, 4.26 \mathrm{mmol}, 1 \mathrm{M}$ solution in tetrahydrofuran) dropwise by syringe at $-70^{\circ} \mathrm{C}$. The mixture was
stirred for 45 min at $-70^{\circ} \mathrm{C}$. The reaction was quenched with saturated ammonium chloride (20 mL), extracted with ether ($3 \times 5 \mathrm{~mL}$), the combined organic layers dried over anhydrous magnesium sulfate, and concentrated in vacuo. Purification by column chromatography on silica gel using 30% ethyl acetate-hexane as elutant provided 206 ($606 \mathrm{mg}, 72 \%$) as a $1: 1$ mixture of diastereomers: IR (neat) 2985, 1729, 1448, 1387, 1248, 1191, 747, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.50(\mathrm{~m}, 4 \mathrm{H}), ~ 7.36-7.28(\mathrm{~m}, 6 \mathrm{H}), ~ 4.77-4.70$ ($\mathrm{m}, 2 \mathrm{H}$), 4.17 ($\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), 4.13-4.03 (m, 1H), 3.88 (dd, $J=8.3 \mathrm{~Hz}, 8.2$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.01-2.92 (m, 2H), 2.65-2.56 (m, 1H), 2.48-2.41 (m, 1H), 2.28-2.10 (m, $2 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.8, 170.3, 169.4, 168.6, 134.0 (x2), 133.6 (x2), 132.1, 129.2 (x2), 129.1 (x 2), 128.7 (x 2), 128.5, 75.0, 74.6, 61.4 (x 2), 46.0, 43.8, 43.3, 41.7, 28.5, 27.4, 18.5, 17.4, 14.1 (x2); MS (CI) m / z (rel. intensity) 295 ($M+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+1)$: 295.1004 . Found: 295.1003. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 61.20, \mathrm{H}, 6.16, \mathrm{~S}, 10.89$. Found: C, $61.02, \mathrm{H}, 5.98 \mathrm{~S}, 10.80$.
(6R)-5-Ethoxycarbonyl-6-methyl-4,5-dihydro-2H-pyran-2-one (199). To a solution of 206 ($597 \mathrm{mg}, 2.03 \mathrm{mmol}$) in methylene chloride was added $73 \% \mathrm{~m}$-chloroperbenzoic acid at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 30 \min at $-78^{\circ} \mathrm{C}$, then the methylene chloride was removed in vacuo. The residue was taken up in ether (10 mL), washed with saturated sodium bicarbonate (2 x 5 mL), sodium sulfite ($1 \times 5 \mathrm{~mL}$), and saturated sodium chloride ($1 \times 5 \mathrm{~mL}$). The ether layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The sulfoxide product was taken on to the next reaction without purification.

A solution of the sulfoxide ($630 \mathrm{mg}, 2.03 \mathrm{mmol}$) in dry toluene $(50 \mathrm{~mL})$ and methylene chloride (3 mL) was heated for 15 h at $70^{\circ} \mathrm{C}$. The reaction was
concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane provided 199 ($319 \mathrm{mg}, 85 \%$) as a light yellow oil: $[\alpha]_{D}-35.5^{\circ}\left(c=2.02, \mathrm{CHCl}_{3}\right)$; IR (neat) 2983, 2938, 1744, 1714, 1672, 1260, 1094, 1050, 1030, 801, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95-$ 6.93 ($\mathrm{m}, 1 \mathrm{H}$), $5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dq}, J=7.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.20$ ($\mathrm{m}, 2 \mathrm{H}$), $1.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) δ 167.6, 163.2, 132.0, 131.9, 75.7, 61.2, 30.0, 21.7, 14.0; MS (CI) m/z (rel. intensity) $185(\mathrm{M}+1,100)$; HRMS, m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{9}(\mathrm{M}+1)$: 185.0814. Found: 185.0813.

3-Ethyl-3-phenylselenyl-pyran-2-one (210). To a solution of $20974(298 \mathrm{mg}, 2.33 \mathrm{mmol})$ in dry tetrahydrofuran $(8 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ was added lithium bis(trimethylsilyl)amide ($2.56 \mathrm{~mL}, 2.56 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in tetrahydrofuran). The mixture was stirred for 20 min at $-70^{\circ} \mathrm{C}$ when phenylselenyl chloride ($490 \mathrm{mg}, 2.56 \mathrm{mmol}$) in dry tetrahydrofuran (2 mL) was added via canula. The reaction was stirred for 1 h at $-70^{\circ} \mathrm{C}$ then quenched with saturated ammonium chloride (5 mL) and extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel using 1:3 ethyl acetate-hexane as elutant provided 210 ($477 \mathrm{mg}, \mathbf{7 2 \%}$) as a clear oil: IR (neat) 2970, 2938, 1719, 1253, 1158, 1123, $744 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}$), 7.45-7.36 ($\mathrm{m}, 1 \mathrm{H}$), 7.34-7.27 (m, 2H), 4.58-4.50 (m, 1H), 4.32-4.25 (m, 1H), 2.24-1.65 (m, 6H), $0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,138.1$ (x2), 129.7, 128.9 (x 2), 126.9, 69.2, 50.7, 31.4, 30.4, 21.6, 9.4; MS (CI) m/z (rel. intensity) $285(\mathrm{M}+1,64$), 255 (40), 99 (100); HRMS, m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}(M+1)$: 285.0393. Found: 285.0394.

3-Ethyl-3,4-dihydro-2H-pyran-2-one (211). To a solution of 210 $(470 \mathrm{mg}, 1.66 \mathrm{mmol})$ in methylene chloride $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 30% hydrogen peroxide ($0.30 \mathrm{~mL}, 2.49 \mathrm{mmol}$) and water (1 mL). The mixture was warmed to room temperature for 20 min then extracted with methylene chloride ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel using 1:3 ethyl acetate-hexane as elutant provided 211 ($190 \mathrm{mg}, 91 \%$) as a clear oil: IR (neat) 2970, 2939, $1725,1468,1131,1125,980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.55$ (dd, $J=$ $5.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.31(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.24(\mathrm{~m}$, $2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,137.7,134.3$, 66.3, 24.2, 23.8, 12.4; MS (Cl) m/z (rel. intensity) 127 ($M+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}(\mathrm{M}+1)$: 127.0759. Found: 127.0759.
cis-4-Ethyl-5-[2'-(hydroxy)ethyl]pyrazolidin-3-one (212). To a solution of 211 ($1.01 \mathrm{~g}, 8.01 \mathrm{mmol}$) in 100% ethanol (75 mL) was added neat hydrazine-monohydrate ($1.17 \mathrm{~mL}, 24.0 \mathrm{mmol}$). The mixture was refluxed for 62 h and the ethanol was removed in vacuo. Purification by column chromatography on silica gel using 5% methanol-chloroform, then 15% methanol-chloroform produced 212 ($621 \mathrm{mg}, 49 \%$) as a white solid, 213 ($380 \mathrm{mg}, 30 \%$), and 214 ($98.0 \mathrm{mg}, 8 \%$) as clear oils. (212): $\mathrm{R}_{\mathrm{f}} 0.15$ (15% methanol-chloroform); mp $101-106^{\circ} \mathrm{C}$; IR (neat) 3229 (br), 2963, 2938, 2878, $1679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.5$ $(\mathrm{s}, 1 \mathrm{H}), 2.55(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 1 \mathrm{H})$, 1.41$1.31(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9,61.6$, 61.5, 47.7, 28.4, 17.5, 12.3; MS (CI) m / z (rel. intensity) 159 ($\mathrm{M}+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1$): 159.1133. Found: 159.1133. Anal.

Calcd. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 53.15, \mathrm{H}, 8.92, \mathrm{~N}, 17.71$. Found: $\mathrm{C}, 53.16, \mathrm{H}, 9.09$, $\mathrm{N}, 17.44$. (213): Rf 0.12 (15% methanol-chloroform); IR (neat) 3282 (br), 2926, 2871, 1650, 1530, 1457, 1383, $1057 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.15 (s, 1H), 3.75-3.51 (m, 2H), 2.08-1.95 (m, 1H), 1.79-1.42 (m, 6H), $0.85(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.6,62.6,47.1,30.3,28.9,25.9$, 12.0. (214): $\mathrm{Rf}_{\mathrm{f}} 0.20$ (15% methanol-chloroform); IR (neat) 3286 (br), 2982, 2923, 1865, 1617, 1532, 1459, $1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.56$ ($\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{bs}, 2 \mathrm{H})$, $1.02(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
cis-4-Ethyl-5-[2'-(hydroxy)ethyl]-(o-nitrobenzyl)pyrazolidin-3-one (215). To a solution of 212 ($125 \mathrm{mg}, 0.791 \mathrm{mmol}$) in dry dimethylformamide (10 mL) was added o-nitrobenzyl bromide and triethylamine ($0.132 \mathrm{~mL}, 0.949 \mathrm{mmol}$). The reaction was stirred for 96 h at room temperature in the dark before removing the dimethylformamide in vacuo. Purification by column chromatography on silica gel using 5% methanol-chloroform as elutant provided 215 ($91.4 \mathrm{mg}, 40 \%$) as a clear colorless glass: IR (neat) 3341 (br), 3109, 3076, 2965, 2939, 2878, 1692, $1528 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ ($\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{bs}, 1 \mathrm{H}), 1.85-1.74$ ($\mathrm{m}, 1 \mathrm{H}$), 1.56-1.53 (m, 2H), 1.35-1.23 (m, 1 H), $1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,149.6,133.1,132.1,131.3,129.1,125.0,65.2$, 60.1, 59.4, 42.6, 29.6, 17.3, 12.3; MS (CI) m/z (rel. intensity) 294 ($\mathrm{M}+1,11$), 60 (100); HRMS, m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+1)$: 294.1454. Found: 294.1454. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: $\mathrm{C}, 57.33, \mathrm{H}, 6.53, \mathrm{~N}, 14.33$. Found: C, 57.20, H, 6.52, N, 14.36.
cis-4-Ethyl-5-[2'-tert-Butyldimethylsilyloxy)ethyl]-(o-nitrobenzyl)pyrazolidin-3-one (216). To a solution of 215 (77.0 mg , 0.263 mmol) in dry methylene chloride (5 mL) was added N, N diisopropylethylamine ($91.0 \mu \mathrm{~L}, 0.525 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethanesulfonate. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ then quenched with water (1 mL) and extracted with methylene chloride ($3 \times 5 \mathrm{~mL}$). The combined methylene chloride layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography using 1:1 ethyl acetate-hexane as elutant provided 216 ($61.0 \mathrm{mg}, 57 \%$) as a white solid: $\mathrm{mp} 119-124^{\circ} \mathrm{C}$; IR (KBr) $3159,3067,2957$, 2930, 2857, 1697, $1528 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ ($\mathrm{dd}, J=7.9$ $\mathrm{Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.41 (m, 3H), 6.6 (s, 1H), 4.37 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65-3.50 (m, 3H), 2.99-2.91 (m, 1H), 1.82-1.75 (m, 1H), $1.57-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,149.8,132.8,131.8,131.5,128.9$, 124.9, 63.6, 59.6, 59.5, 42.5, 30.9, 25.9 (x3), 18.2, 17.7, 12.2, -5.4 (x2); MS (CI) m / z (rel. intensity) $408(\mathrm{M}+1,100)$; HRMS, m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}$ $(M+1): 408.2319$. Found: 408.2316. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}$, 58.94, H, 8.16, N, 10.31. Found: C, 58.02, H, 7.95, N, 10.38 (The total transferable sample was only 0.39 mg . Carbon accuracy at this quantity is \pm $0.6-0.8 \%$).
cis-4-Ethyl-5-[(2'-tert-butyldimethylsilyloxy)ethyl]-2-[2'-tert-butyldimethylsilyl)ethoxycarbonyl]-1-(o-nitrobenzyl)pyrazolidin-3one (217). To a solution of 216 ($110 \mathrm{mg}, 0.270 \mathrm{mmol}$) in dry tetrahydrofuran (10 mL) was added 2 -(trimethylsilyl)-ethyl azidoformate and cooled to $0^{\circ} \mathrm{C}$. Sodium hydride ($13 \mathrm{mg}, 0.324 \mathrm{mmol}, 60 \%$ in mineral oil) was
added slowly, then the reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$ which turned dark orange in color. The reaction was quenched with water (5 mL) and extracted with ether ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography using 15% ethyl acetate-hexane as elutant provided 217 (142 mg, 95\%) as a clear glass: IR (neat) 2956, 2889, 2863, 1786, 1737, 1531, 1260, 1094, $843 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (dt, $J=7.7 \mathrm{~Hz}$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (dt, $J=8.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (dt, $J=7.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.56 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-$ $3.55(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,150.6,149.9,133.0,132.7,131.1,129.8,124.2$, $65.5,59.6,59.1,55.4,44.8,30.8,25.8$ (x3), 18.1 (x2), 17.5, 11.7, -1.6 (x3), -5.5 (x2); MS (CI) m / z (rel. intensity) $552(M+1,19), 524$ (100), 508 (63), 480 (42), 466 (28); HRMS, m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}(\mathrm{M}+1)$: 552.2925. Found: 552.2925.

cis-3-Ethyl-4-[(2'-tert-butyldimethylsiloxy)ethyl]-1-[2'-

 (trimethylsilyl)ethoxycarbonyl)amino]azetidin-2-one (218). A solution of 217 ($160 \mathrm{mg}, 0.290 \mathrm{mmol}$) in abslolute ethanol (100 mL) was degassed with argon for 2 h in a photochemical immersion well. The solution was irradiated for 1.5 h at $0^{\circ} \mathrm{C}$ through a pyrex filter with a $450-\mathrm{W}$ Hanovia medium-pressure photochemical lamp. The pyrex filter was then replaced by a vycor filter and the solution irradiated for a further 1.5 h at $0^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel produced 218 ($62.2 \mathrm{mg}, 52 \%$) as a pale yellowoil: IR (neat) 3264, 2954, 2894, 2863, 1777, 1732, 1249, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.5$ (s, 1H), 4.22 (dt, $J=7.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (q, $J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.08$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.01 (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 0.90 ($\mathrm{s}, 9 \mathrm{H}$), 0.06 (s, 6H), 0.04 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,155.2,64.8,60.7,58.4,51.5,32.2$, 25.9 (x3), 18.5, 18.3, 17.7, 12.5, -1.6 (x3), -5.4 (x2); MS (CI) m / z (rel. intensity) 417 ($M+1,23$), 389 (50), 133 (43), 51 (100); HRMS, m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}(\mathrm{M}+1): 417.2605$. Found: 417.2606.
cis-1-Amino-3-ethyl-4-[2'-(hydroxy)ethyl]azetidin-2-one
(219). To a solution of $218(52.0 \mathrm{mg}, 0.13 \mathrm{mmol})$ in acetonitrile (2 mL) was added tetra- n-butylammonium fluoride $(0.13 \mathrm{~mL}, 0.13 \mathrm{mmol}, 1.0 \mathrm{M}$ in tetrahydrofuran). The mixture was stirred at room temperature for 4 h ; however, from thin layer chromatographic analysis, it was apparent that cleavage of both silyl groups was occurring. A further equivalent of tetra- n butylammonium fluoride ($0.13 \mathrm{~mL}, 0.13 \mathrm{mmol}, 1.0 \mathrm{M}$ in tetrahydrofuran) was added and the reaction stirred for an additional 2 h at room temperature before being concentrated in vacuo. Purification by column chromatography using 5\% methanol-chloroform provided 219 ($19.8 \mathrm{mg}, 51 \%$) as a clear oil: IR (neat) 3326 (br), 2961, 2928, 2880, 1740, $1048 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 4.20(\mathrm{bs}, 2 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H})$, 2.98-2.91 (m, $1 \mathrm{H})$, 1.95-1.85 ($\mathrm{m}, 1 \mathrm{H}$), 1.84-1.49 ($\mathrm{m}, 3 \mathrm{H}$), $1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 170.9,60.9,60.8,51.4,32.8,18.5,12.6$.
cis-3-Ethyl-4-[2'-(hydroxy)ethyl]azetidin-2-one (220). To a solution of $219(6.0 \mathrm{mg}, 0.038 \mathrm{mmol})$ in benzene (2 mL) was added N, N diphenyinitrosamine ${ }^{63}$ ($11.3 \mathrm{mg}, 0.057 \mathrm{mmol}$). The mixture was heated at
reflux for 3 h and concentrated in vacuo to a dark brown oil. Purification by column chromatography on silica gel twice using 5% methanol-chlorofom as elutant provided 220 ($4.1 \mathrm{mg}, 76 \%$) as a clear oil: IR (neat) 3288 (br), 2960, 2931, 2880, 1734, 1384, $1058 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.2(\mathrm{~s}, 1 \mathrm{H}$), 3.86-3.70 (m, 3H), 3.10 ($\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85-1.64 (m, 3H), 1.62-1.50 (m, $1 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,61.2,54.9$, 50.4, 33.0, 18.2, 12.6; MS (CI) m/z (rel. intensity) 144 ($\mathrm{M}+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}(M+1)$: 144.1025. Found: 144.1025.

I-D. Bibliography

1. Fleming, A. Br. J. Exp. Pathol. 1929, 10, 226.
2. Abraham, E.P.; Baker, W.; Robinson, R. Pen Report 1943, No. 103.
3. Crowfoot, D.; Bun, C.W.; Rogers-Low, B.W.; Turners-Jones, A. In The Chemistry of Penicillin, Clarke, H.T.; Johnson, J.R.; Robinson, R.; Eds.; Princeton University Press: Princeton, New jersey, 1949, p 310.
4. Newton, G.G.F.; Abraham, E.P.; Biochem. J. 1956,62, 651.
5. Abraham, E.P., In Antibiotics Containing the Beta-Lactam Structure l; Demain, A. I., Solomon, N.A. Eds.; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1983, p 6.
6. Morin, R.B.; Jackson, B.G.; Mueller, R.A.; Lavagnino, E.R.; Scanlon, W.B.; Andrews, S.L. J. Am. Chem. Soc. 1963, 85, 1896.
7. Cooper, R.D.G. In Topics in Antibiotic Chemistry, Sammes, P.G., Ed.; Ellis Horwood: Chichester, 1979, Vol. 3, p 39.
8. Howarth, T.T.; Brown, A.G. J. Chem. Soc., Chem. Commun. 1976, 266.
9. Hashimoto, M.; Komori, T.; Kamiya, T. J. Am. Chem. Soc. 1976, 98, 3023.
10. Kahan, J.S.; Kahan, F.M.; Goegelman, R.; Currie, S.A.; Jackson, M.; Stapley, E.O.; Miller, T.W.; Miller, A.K.; D. Hendlin, D.; Mochales, S.; Hernandez, S.; Woodruff, H.B.; Birnbaum, J. J. Antibiot. 1979, 32, 1.
11. (a) Okamura, K.; Hirata, S.; Koki, A.; Hori, K.; Shibamoto, N.; Okumura, Y.; Okabe, M.; Okamoto, R.; Kouno, K.; Fukagawa, Y.; Shimauchi, Y.; Ishikura, T. J. Antibiot. 1979, 32, 262. (b) Sakamoto, M.; Iguchi, H.; Okamura, K.; Hori, S.; Fukagawa, Y.; Ishikura, T. J. Antibiot. 1979, 32, 272.
12. Shibamoto, N.; Koki, A.; Nishino, M; Nakamura, K.; Kiyoshima, K.; Okamura, K.; Okabe, M.; Okamoto, R.; Fukagawa, Y.; Shimauchi, Y.; Ishikura. T. J. Antibiot. 1980, 33, 1128.
13. Brown, A.G.; Corbett, D.F.; Eglington, A.J.; Howarth, T.T. J. Chem. Soc., Chem. Commun. 1977, 523.
14. Nakayama, N.; Iwasaki, A.; Kimura, S.; Mizoguchi, T.; Tanabe S.; Murakami, A.; Watanabe, I.; Okuchi, M.; Itoh, H.; Saino, Y.; Kobayashi, F.; Mori, T. J. Antibiot. 1980, 33, 1388.
15. Stapley, E.O.; Cassidy, P.J.; Currie, S.A.; Tunac, J.B.; Monaghan, R.L.; Jackson, M.; Hernandez, S.; Mata, J.M.; Daoust, D.; Hendlin, D. J. Antibiot. 1981, 34, 628.
16. Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M.; Asai, M. Nature, 1981, 289, 590.
17. Sykes, R.B.; Cimarusti, C.M.; Bonner, D.P.; Bush, K.; Floyd, D.M.; Georgopapadakou, N.H.; Koster, W.H.; Lin, W.C.; Parker, W.L.; Principe, P.A.; Rathnum, M.L.; Slusarchyk, W.A.; Trejo, W.H.; Wells, J.S. Nature 1981, 291, 489.
18. Staudinger, H. Justus Liebigs Ann. Chem. 1907, 356, 51.
19. Sheehan, J.C.; Henery-Logan, K.R. J. Am. Chem. Soc. 1959, 81, 3089.
20. Sheehan, J.C.; Henery-Logan, K.R. J. Am. Chem. Soc. 1962, 84, 2983.
21. Woodward, R.B.; Hensler, K.; Gostelli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbruggen, H. J. Am. Chem. Soc. 1966, 88, 852.
22. Woodward, R.B. Science, 1966, 153, 487.
23. (a) Morin, C.; Labia, R. J. Antibiot. 1984, 37, 1103. (b) Mukerjee, A.K.; Singh, A.K. Tetrahedron 1977, 34, 1731.
24. (a) Koppel, G.A.; McShane, L.; Jose, F.; Cooper, R.D.G. J. Am. Chem. Soc. 1978, 100, 3933. (b) Cooper, R.D.G.; Jose, F.; McShane, L.; Koppel, G.A. Tetrahedron Lett. 1978, 2243.
25. Wasserman, H.H.; Hlasta, D.J. J. Am. Chem. Soc. 1978, 100, 6780.
26. Bentley, P.H.; Berry, P.D.; Brooks, G.; Gilpin, M.L.; Hunt, E.; Zomaya, I.I. J. Chem. Soc., Chem. Comm. 1977, 748.
27. Clauss, K.; Grimm, D.; Prossel, G. Annalen 1974, 539.
28. (a) Palomo, C. In Recent Progress in the Chemical Synthesis of Antibiotics; Lukacs, G., Ohno, M.; Eds.; Springer-Verlag: Berlin, Germany, 1990, pp 568-573. (b) Nagahara, T.; Kametani, T. Heterocycles 1987, 25, 729.
29. Salzmann, T.N.; Ratcliffe, R.W.; Christensen, B.G.; Bonffard, F.A. J. Am. Chem. Soc. 1980, 102, 6163.
30. Zervas, L.; Winitz, M.; Greentein, J.P. J. Org. Chem. 1957, 22, 1515.
31. Melillo, D.G.; Shinkai, I.; Liu, T.; Ryan, K.; Sletzinger, M. Tetrahedron Lett. 1980, 21, 2783.
32. Cecchi, R.; Favara, D.; Omodei-Sale, A.; Depaoli, A.; Consonni, P. Gazz. Chim. It. 1984, 114, 225.
33. Favara, D.; Omodei-Sale, A.; Consonni, P.; Depaoli, A. Tetrahedron Lett. 1982, 23, 3105.
34. Tschaen, D.M.; Fuentes, L.M.; Lynch, J.E.; Laswell, W.L.; Volente, R.P.; Shinkai, I. Tetrahedron Lett. 1988, 29, 2779.
35. Hughes, D.L. Org. React. 1992, 42, 335.
36. Cainelli, G.; Panunzio, M. J. Am. Chem. Soc. 1988, 110, 6879.
37. Thomas, R.C. In Recent Progress in the Chemical Synthesis of Antibiotics, Luckacs, G., Ohno, M., Ed.; Springer-Verlag: Berlin, Heidelberg, 1990, pp 533-564.
38. Miller, M.J. Acc. Chem. Res. 1986, 19, 49.
39. Hegedus, L.S.; D'Andrea, S. J. Org. Chem. 1988, 53, 3113.
40. Curran, W.V.; Ross, A.A.; Lee, V.J. J. Antibiot. 1988, 41, 1418.
41. Curran, W.V.; Lenhard, R.H. J. Med. Chem. 1989, 32, 1749.
42. (a) Johnson, M.R.; Fazio, D.L.; Ward, D.L.; Sousa, L.R. J. Org. Chem. 1983, 48, 494. (b) St. Clair Black, D.; Boscacci, A.B. J. Chem. Soc., Chem. Commun. 1974, 129. (c) Moore, H.W.; Hernandez, Jr., L.; Kunert, D.M.; Mercer, F.; Sing, A. J. Am. Chem. Soc. 1981, 103, 1769.
43. Lowe, G.; Ridley, D.L.; J. Chem. Soc., Perkin Trans. / 1973, 2024.
44. Stork, G.; Szajewski, R.P. J. Am. Chem. Soc. 1974, 96, 5787.
45. Hirokami, S.; Hirai, Y.; Nagata, M.; Yamazaki, T.; Date, T. J. Org. Chem. 1979, 44, 2083.
46. Padwa, A.; Koehler, K.F.; Rodriguez, A. J. Am. Chem. Soc. 1981, 103, 4794.
47. (a) Ege, S.N. J. Chem. Soc., Chem. Commun. 1968, 759. (b) Ege, S.N. J. Chem. Soc. C 1969, 2624.
48. (a) Johnson, P.Y.; Hatch, C.E. III, J. Org. Chem. 1975, 40, 909. (b) Johnson, P.Y.; Hatch, C.E. III J. Org. Chem. 1975, 40, 3502.
49. Perri, S.T.; Slater, S.C.; Toske, S.G.; White, J.D. J. Org. Chem. 1990, 55, 6037.
50. Amit, B.; Zehavi, U.; Patchornik, A. J. Org. Chem. 1974, 39, 192.
51. Carpino, L.A. Acc. Chem. Res. 1973, 6, 91.
52. Carpino, L.A.; Tsao, J.-H.; Ringsdorf, H.; Fell, E.; Hettrich, G. J. Chem. Soc., Chem. Commun. 1978, 358.
53. Kalbag, S.M.; Roeske, R.W. J. Am. Chem. Soc. 1975, 97, 440.
54. Ege, S.N.; Butler, W.M.; Bergers, A.; Biesman, B.S.; Boerma, J.E.; Corondan, V.I.; Locke, K.D.; Meshinchi, S.; Ponas, S.H.; Spitzer, T.D. J. Chem. Soc., Perkin Trans. I, 1983, 1111.
55. Pifferi, G.; Consonni, P.; Testa, E. Gazz. Chim. Ital. 1967, 97, 1719.
56. Hoffman, H.M.R.; Rabe, J. J. Org. Chem. 1985, 50, 3849.
57. Jungheim, L.N. Tetrahedron Lett. 1989, 30, 1889.
58. Evans, D.A.; Nelson, J.V.; Vogel, E.; Taber, T.R. J. Am. Chem. Soc. 1981, 103, 3099.
59. White, J.D.; Perri, S.T.; Toske, S.G. Tetrahedron Lett. 1992, 33, 433.
60. (a) White, E.M. J. Am. Chem. Soc. 1955, 77, 6011. (b) White, E.M. J. Am. Chem. Soc. 1955, 77, 6014.
61. Nikolaides, N.; Ganem, B. J. Org. Chem. 1989, 54, 5996.
62. Rees, C.; Storr, R.C. J. Chem. Soc. (C) 1969, 756.
63. Vogel, A.I. In Practical Organic Chemistry 3rd Ed.; Longmans, Green and Co.: London, 1956, p 572.
64. Okano, K.; Izawa, T.; Ohno, M. Tetrahedron Lett. 1983, 24, 217.
65. Frater, G. Helv. Chim. Acta. 1979, 62, 2825.
66. Greene, T.W.; Wuts, P.G.M. In Protective Groups in Organic Synthesis 2nd Ed.; John Wiley \& Sons, Inc.: New York, Chichester, Brisbane, Toronto, Singapore, 1991, p 77.
67. Brown, H.C.; Keblys, K.A. J. Am. Chem. Soc., 1964, 86, 1795.
68. Corey, E.J.; Schmidt, Tetrahedron Lett. 1979, 399.
69. Mukaiyama, T.; Usui, M.; Shimada, E.; Saigo, K. Chem. Lett. 1975, 1045.
70. Saito, T.; Kumamoto, H.; Takemasa, T.; Sayo, N.; Takezawa, T.; Kumobayashi, H. Jpn. Kokai Tokkyo Koho. 1990, 439.
71. Saito, T.; Kumamoto, H.; Takemasa, T.; Sayo, N.; Takezawa, T.; Kumobayashi, H. Jpn. Kokai Tokkyo Koho. 1990, 417.
72. (a) Melillo, D.G.; Liu, T.; Ryan, K.; Sletzinger, M.; Shinkai, I. Tetrahedron Lett. 1981, 22, 913. (b) Hatanaka, M. Tetrahedron Lett. 1987, 28, 83. (c) Udodong, U.E.; Fraser-Reid, B.J. J. Org. Chem. 1988, 53, 2132.
73. White, J.D.; Toske, S.G. Tetrahedron Lett. 1993, 34, 207.
74. Herrmann, J.L.; Schlessinger, R.H. J. Chem. Soc., Chem. Commun. 1973, 711.
75. Reich, H.J.; Reich, I.L.; Renga, J.M.; J. Am. Chem. Soc. 1973, 95, 5813.
76. Crystals of 197 were triclinic and crystallized in space group P 1 with $z=$ 2 and lattice parameters: $a=10.944 \AA, b=10.203 \AA, c=8.039 \AA, V=$ $757.64 \AA^{3}$. The number of reflections considered was 1302. The structure was solved by direct methods and anisotropic refinement fullmatrix least-squares at all non-hydrogen atoms converged at $R=0.060$, $R_{w}=0.074$.
77. Mattingley, P.G.; Miller, M.J. J. Org. Chem. 1983, 48, 3556.

Part II: Synthesis of a Subunit of the Immunosuppressant FK-506.

II-A. Introduction

The search for new metabolites from microorganisms for therapeutic purposes continues to be a major theme of natural products research. FK-506 (1), a 23 -membered macrolide, was isolated in 1987 from the soil fungus Streptomyces tsukubaenis, and its structure was elucidated by chemical degradation and X-ray crystallographic analysis. 1 FK-506 and the related substance rapamycin (2), isolated in 1975 from Streptomyces hygroscopicus, ${ }^{2}$ share many structural features and have been found to possess powerful immunosuppressant activity. Suppresion of the immune system to avoid rejection is a valuable adjunct to surgery in organ transplant operations. FK506 has been used successfully in liver, kidney, and pancreas transplants with no serious side effects ${ }^{3}$ and appears likely to replace cyclosporin A^{4} as the drug of choice for this purpose.

1

2

The mode of action of FK-506 involves inhibition of the adaptive immune system. 5 Specifically, it forms a complex with the FK-506 binding protein ${ }^{6}$ which, through an undetermined mechanism, ${ }^{7}$ causes deactivation of T cells ${ }^{8}$
necessary for regulating antibodies and other white blood cells used by the host to combat foreign antigens. Suppression of this immune mechanism is necessary for reducing the rejection of tissue obtained from the transplant.

The exceptional biological activity of FK-506 has resulted in extensive work directed toward the synthesis of this material. ${ }^{9}$ Two total syntheses ${ }^{10,11}$ have been reported along with two formal syntheses. ${ }^{12,13}$

The C20-C34 fragment 3 of FK-506 represents a critically important portion of the molecule for which C 20 is a logical synthetic disconnection point. This fragment has been constructed using several different strategies as outlined below.

3
Jones and co-workers at Merck applied Evans' aldol technology utilizing a series of chiral condensations to build the desired fragment. ${ }^{10}$ Hydroxy lactone 6, available in two steps from (\pm)-3-cyclohexenecarboxylic acid 5 , was converted to aldehyde 7 in four steps (Scheme 1). Condensation of 6 with 2 -lithio-2-triethylsilyl propanal t-butylimine ${ }^{14}$ gave aldehyde 8, the substrate for the first aldol condensation. Treatment of 8 with the enol borinate of oxazolidinone 915 afforded, after transamination and silylation, a $1: 1$ mixture of diastereomers 10 and 11 ,which were readily separated.

$(\pm)-5$

(30\% two steps)

$(\pm)-6$

1.

2. MeNHOMe
3. TESOTf, (41% two steps)

Scheme 1

Optically active amide 10 was reduced to aldehyde 12 which underwent aldol condensation with the enol borinate of 13^{15} to give 14 in excellent yield
(Scheme 2). Reductive dehalogenation followed by transamination, silylation, and reduction provided aldehyde 15. A further condensation using oxazolidine $16{ }^{15}$ gave the aldol product 17. Five additional steps were needed to construct the desired aldehyde 18 used in the first total synthesis of FK-506. 10

12

1. $\mathrm{Zn}, \mathrm{AcOH},(84 \%)$
2. $\mathrm{MeNHOMe}, \mathrm{Me}_{3} \mathrm{Al}$ (94\%)
3. TIPSOTf, (99\%)
4. DIBAL-H, (97\%)

14

15

16
15
$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{n}-\mathrm{Bu}_{2} \mathrm{BOTf}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-70^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$, (95\%)

1. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF
2. Carbonyl diimidazole; $\mathrm{MeNHOMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
3. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}$, (92% three steps)
4. TBDMSOTf, (98\%)
5. DIBAL-H, (96\%)

17

18
Scheme 2

The original plan devised by the Merck group involved an asymmetric synthesis of hydroxy lactone 6^{16} from bicyclic lactone 19 , readily available from (-)-quinic acid. 17 Lactone 19 was converted to bis-thiocarbonyl lactone 20 which, on reduction with two equivalents of n-tributyltin hydride in the presence of α, α^{\prime}-azoisobutyronitrile (AIBN) gave 6 in moderate yield (Scheme 3). This
strategy was later abandoned in favor of the scheme previously outlined due to problems which arose with large scale synthesis of 6.

19

$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \Delta,(74 \%)$

20
$n-\mathrm{Bu}_{3} \mathrm{SnH}$ (2 eq.), AIBN, xylene, $140^{\circ} \mathrm{C}$, 1h, (40\%)

6

Scheme 3

In a different approach, Schreiber and co-workers synthesized the C20C34 fragment utilizing a convergent strategy which entailed coupling at C26C27. ${ }^{11}$ This assembly was accomplished using optically active intermediates 21 and 22. The construction of 21 was completed utilizing lactone 24 (Scheme 4), available in six steps from the divinyl carbinol 23. Claisen rearrangement of the silyl enol ether of 24 , followed by transesterification, provided ester 25. Regio- and stereoselective hydroboration followed by silylation afforded
cyclohexane 26 which was homologated to alkyne 27 in four steps. Hydrozirconation and bromination of 27 furnished the desired vinyl bromide 21.

The synthesis of aldehyde 22 started with the conversion of β-keto ester 28 into acetal 29 in four steps using an asymmetric reduction and a
stereoselective alkylation (Scheme 5). The allyl group was cleverly protected as a cyclic iodoether, and the p-methoxybenzylidene acetal was smoothly converted to aldehyde 30. Chelation-controlled crotylation of $\mathbf{3 0}$ afforded homoallylic alcohol 31 which was converted to 22 in two steps.

The coupling of $\mathbf{2 1}$ with $\mathbf{2 2}$ proceeded via halogen metal exchange of $\mathbf{2 1}$ with t-butyl lithium, followed by subsequent addition to 22 , to give predominantly the desired adduct 32. A further three steps were needed to secure the C20C34 fragment 33 used in the total synthesis of FK-50610 (Scheme 6).

1.

DCC, DMAP, $-15^{\circ} \mathrm{C},(81 \%)$
2. $\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}$, (99\%)
3. Swern, (96\%)

33

Scheme 6

Several research groups have used optically active 3cyclohexenecarboxylic acid 5 as the starting material for a route to FK-
506.12,18,19 Asymmetric Diels-Alder methodology was used to gain access to the cyclohexene moiety.

Smith and co-workers showed that the chiral sultam 3420 and butadiene underwent a Lewis acid-catalyzed Diels-Alder reaction which, after hydrolysis of the chiral auxilliary, provided 5 in good yield with 93% enantiomeric excess (Scheme 7). ${ }^{18}$ lodolactonization followed by elimination gave bicyclic lactone 35 which was converted to sulfone $\mathbf{3 6}$ in four steps. Regio- and stereoselective hydroboration with subsequent silylation afforded 37 . This was coupled with aldehyde 38, available in six steps from crotyl alcohol, to give adduct 39. A further four steps were needed for completion of the C24-C34 fragment 40.

1. $\mathrm{I}_{2}, \mathrm{KI}, \mathrm{NaHCO}_{3}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{\circ} \mathrm{C}$, (93\%)
2. DBU, THF, Δ, (96\%)

36
36

1. $\mathrm{LiAlH}_{4},(93 \%)$
2. $\mathrm{Bu}_{3} \mathrm{P},(\mathrm{PhS})_{2},(70 \%)$
3. $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$, (94\%) 4. Oxone, $\mathrm{MeOH}, 0^{\circ} \mathrm{C},(87 \%)$

35

1. $\mathrm{BH}_{3}-\mathrm{THF} ; \mathrm{NaOH}, t-\mathrm{BuO}_{2} \mathrm{H},(71 \%)$
2. TBDPSCI, Imidazole, DMF, (70\%)

38

1. $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{DMSO}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$, (84\%)
2. $\mathrm{Al}(\mathrm{Hg})$, aq. THF, Δ, (90%)
3. LDA, $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{5}$, DME, $-78^{\circ} \mathrm{C}$, (70%)
4. $\mathrm{Me}_{2} \mathrm{CuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C},(73 \%)$

Scheme 7

Danishefsky and co-workers synthesized 3-cyclohexenecarboxylic acid 5 by the same procedure as Smith's ${ }^{18}$ and converted it to sulfone 41 using again a strategy similar to that of the Smith route. This intermediate was used in the construction of fragment 42 to complete a formal synthesis of FK-506 (Scheme 8)..12 Thus, sulfone 41 was coupled to aldehyde 43, and the resulting alcohol 44 was converted to ketone 45 in two steps. Treatment of 45 with
methylmagnesium bromide provided an intermediate carbinol which was dehydrated with Burgess' reagent to an inseparable ($6: 1.5: 1$) mixture of the three possible olefin isomers, the major product being the desired in-chain E isomer 46. The isomer mixture, after exchanging the silyl protecting group, was converted by hydroboration-oxidation to their corresponding alcohols which were separated to yield 47 as the major product. Oxidation of 47 to its aldehyde and condensation with oxazolidinone 48 gave 42 after silylation and removal of the chiral auxilliary.

43

1. Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, pyridine
2. Lithium naphthalenide,

THF, $-78^{\circ} \mathrm{C}$
(60% from 41)

1. $\mathrm{MeMgBr}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$

45

46
(6:1.5: 1 , mixture of three olefin isomers)

47

1. Dess-Martin periodinane, (86%)
2.

$n-\mathrm{Bu}_{2} \mathrm{BOTf},-\mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3. TBDMSOTf, (90% two steps)
4. LiOBn, THF, $0^{\circ} \mathrm{C},(87 \%)$

Scheme 8

Corey and Huang also used an asymmetric Diels-Alder strategy for entry into the C24-C35 fragment 49.19 A titanium-catalyzed Diels-Alder addition of butadiene to chiral acrylate 50, followed by hydrolysis, gave 5 which was converted to aldehyde 51 using a method analogous to that of Jones ${ }^{8}$ (Scheme 9). Diastereoselective aldol condensation of $\mathbf{5 1}$ with $\mathbf{5 2}$ afforded thioester 53 in excellent yield. Protection of the resulting alcohol, followed by reduction, gave aldehyde 49. The latter is a variant of the intermediate prepared by Jones. ${ }^{10}$
1.

1.

5
50

$\mathrm{CH}_{2} \mathrm{Cl}_{2},-45^{\circ} \mathrm{C}(85 \%, 92 \% \mathrm{de})$

OHC
51

53

49

Scheme 9

Sih and Gu reported a formal synthesis of FK-506 which entailed construction of the C20-C34 segment 55 via a coupling reaction of aldehyde $\mathbf{6 2}$ and ketone 63^{13} (Scheme 10). Enantioselective lipase hydrolysis of racemic 57 provided optically active 58, which was converted in several steps to a mixture of diastereomers 59. Diastereoselective lipase hydrolysis of the cyclohexyl
acetate of $\mathbf{5 9}$ gave $\mathbf{6 0}$ and the alcohol 61. Ester $\mathbf{6 0}$ was converted to the desired aldehyde 62 via a five-step reaction sequence. Coupling of aldehyde 62 with 63, available in six steps from ethyl(3S)-hydroxybutyrate, afforded 64 and 65 in a ratio of $4: 6$, respectively. The desired isomer 64 was converted to 54 using a four-step procedure.

64: $R_{1}=O H, R_{2}=H$
65: $R_{1}=H, R_{2}=O H$

Scheme 10

A recent report by Rama Rao and co-workers showed that (-)-quinic acid (66) could be used as a practical starting material for the C20-C34 segment of FK-506.21 Treatment of 66 with benzaldehyde led to the formation of tricyclic lactone 67 in good yield. ${ }^{22}$ Deoxygenation of the tertiary alcohol via the xanthate, followed by regioselective ring opening of the benzylidene acetal ${ }^{23}$ and a second reduction with n-tributyltin hydride, provided bicyclic lactone 68.

Functional group manipulation led to ester 69 and then to the primary bromide 70 in a total of six steps (Scheme 11). The Grignard reagent derived from 70 was coupled to ketone 71 which was made using Evans' aldol methodology. 15 This sequence afforded 72 after dehydration (Scheme 12).

> 1. $\mathrm{KH}, \mathrm{CS}_{2}, \mathrm{Mel}, \mathrm{THF},(85 \%)$
> 2. n-Bu $\mathrm{SH}_{3} \mathrm{~S} H$, toluene, AIBN, (75%)
> 3. NBS, benzene, AIBN, $\Delta,(85 \%)$
> 4. $n-\mathrm{Bu}_{3} \mathrm{SnH}$, toluene, AIBN, ($\left.80 \%\right)$

69

68

1. LAH, (84\%)
2. TsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75\%)
3. TIPSOTf, (95\%)
4. $\mathrm{LiBr}, \mathrm{NaHCO}_{3}$, (95\%)

70

1. $\mathrm{Mg}, \mathrm{Et}_{2} \mathrm{O},(65 \%)$

Scheme 12

The foregoing studies clearly indicate that the C20-C34 segment of FK506 is a logical subunit to target for synthesis in the global plan. Access to this fragment using the trisubstituted olefin at C27-C28 to link the smaller segments has been a popular strategy. This has led to the use of 3 cyclohexenecarboxylic acid 5 as a frequent starting material. $10,12,18,19$ Although the several routes to this portion of FK-506 share many features in common, each synthetic pathway has shown innovative use of contemporary methodology in the course of assembling this subunit.

II-B. Results and Discussion

The goal of this work was to develop an efficient entry to the total synthesis of the immunosuppressant FK-506 (1). This was envisioned by subdividing the macrolide into fragments which could later be assembled in a stepwise fashion. When planning the synthetic strategy, it was decided that the disconnection at C19-C20 and at C1 of the lactone moiety were the logical retrosynthetic choices. This resulted in the C20-C34 subunit being the initial target of interest.

1

The synthetic plan was based on the use of a suitably functionalized cyclohexane intermediate which would allow for systematic assembly of the required side chain (Scheme 13). It was envisioned that construction of the target molecule 73 would take place via a stereoselective aldol condensation of the protected aldehyde 74. This aldehyde would be available from homologation of aldehyde $\mathbf{7 5}$ which, in turn, could be synthesized from ester $\mathbf{7 6}$. An appropriate starting material for the synthesis of 76 would be (-)-quinic acid (66).

73
74

Scheme 13

The decision to use (-)-quinic acid (66) as the point of departure stems from the fact that it contains the required absolute stereochemistry and functionality needed for accessing the cyclohexane moiety of FK-506. (-)Quinic acid is a relatively inexpensive starting material, and even though two unwanted hydroxyl groups must be removed, its use as a starting material is economically attractive.
$(-)$-Quinic acid (66) underwent acid-catalyzed acetalization with benzaldehyde and subsequent γ-lactonization to afford tricyclic lactone 67 as a 1:1 mixture of diastereomers in excellent yield21, 22, 24 (Scheme 14). Although this initial step parallels that of Rama Rao, ${ }^{21}$ our route immediately diverges after this reaction. Instead of deoxygenation at this point, regioselective ring opening of 67 with N -bromosuccinimide was used to provide bicyclic bromo benzoate $\mathbf{7 8 .}{ }^{23,24}$ This was converted smoothly to imidazolide 79 with thiocarbonyl diimidazole. 25

An important transformation at this stage was the simultaneous reduction of both the alkyl bromide and imidazolide moieties thereby improving the twostep methodology employed by Rama Rao. ${ }^{21}$ Treatment of 79 with excess n tributyltin hydride and α, α^{\prime}-azobisisobutyronitrile in refluxing toluene afforded bicyclic lactone 68 in good yield. 25

$n-\mathrm{Bu}_{3} \mathrm{SnH}$ (2.5 eq.),
AIBN, toluene,
Δ, 3h, (56\%)

68

Initial attempts to selectively cleave the lactone moiety in 68 were unrewarding. Treatment of 68 with one equivalent of diisobutylaluminum hydride in toluene at $-78^{\circ} \mathrm{C}$ gave aldehyde 80 in a disappointing 12% yield which could not be improved in spite of many attempts at optimization (Scheme 14).

A selective base-catalyzed transesterification was also attempted using 1% sodium hydroxide or potassium carbonate in methanol. In each case, no selectivity was observed, diol 81 being isolated as the major product. This diol could be relactonized in poor yield to hydroxylactone 6, a previous intermediate in FK-506 synthesis ${ }^{10,19}$ (Scheme 15).

$1 \% \mathrm{NaOH}, \mathrm{MeOH}$, r.t.,
$1 \mathrm{~h},(80 \%)$
or
$\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{eq}), \mathrm{MeOH}, THF,$.
r.t., $1 \mathrm{~h},(70 \%)$

81
6
Scheme 15

A straightforward solution to this problem proved to be a quantitative acid-catalyzed lactone opening of $\mathbf{6 8}$ which provided alcohol 82. Treatment of 82 with diazomethane in the presence of a catalytic amount of boron trifluoride etherate afforded methyl ether $\mathbf{6 9}{ }^{26}$ (Scheme16). An attempt to simultaneously cleave the benzoyl group and reduce the ester group of 69 with two or three equivalents of diisobutylaluminum hydride (DIBAL-H) gave the desired aldehyde 83 in only $\mathbf{2 6 \%}$ yield.

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}, \\
& 0^{\circ} \mathrm{C}, 15 \mathrm{~min},(87 \%)
\end{aligned}
$$

83
69
Scheme 16

At this point, it was found advantageous to replace the benzoyl group with a protecting group which could be used for the duration of the synthesis. Treatment of 69 with sodium methoxide yielded alcohol 84 which, upon protection with trimethylsilylethoxymethoxy (SEM) chloride, ${ }^{27}$ afforded silyl
ether 76 (Scheme 17). Reduction of 76 with one equivalent of diisobutylaluminum hydride afforded the corresponding aldehyde, which, without purification, was converted exclusively to (E)- α, β-unsaturated ester 85 via Wittig olefination ${ }^{28}$ using (carboethoxyethylidene)triphenylphosphorane. Evidence to support the (E)-olefin geometry came from analysis of the ${ }^{13} \mathrm{C}$ NMR spectrum of 85 . The C27 methyl signal is strongly shielded by the ciscyclohexyl moiety and appears at 12.5 ppm . This observation correlates with a report by Smith, in which it is stated that the C27 methyl group resonates at 11.0 ppm for a related compound. This methyl group appears at 13.7 ppm in FK-506. ${ }^{18}$

69
84
SEMCI, $i \mathrm{Pr}_{2} \mathrm{EtN}$, $\mathrm{CHCl}_{3}, \Delta$, (83\%)

85

76

Scheme 17

Straightforward reduction of 85 afforded allylic alcohol 86, which upon treatment with Dess-Martin periodinane 87,29 gave α, β-unsaturated aldehyde 75 (Scheme 18). Treatment of enal 75 with the (Z)-crotylboronate 88, ${ }^{30}$ derived from its corresponding diethanolamine complex and (R, R)-diisopropyl tartrate, 31 gave a 2.4 : 1 mixture of homoallylic alcohols 89 and 90 .

85

86

88
toluene, $-78^{\circ} \mathrm{C}, 4 \AA$ sieves, 84h, (85\%)

75

89

90

Scheme 18

The major product 89 was assigned the configuration shown based on the accepted transition state for this reaction (Figure 2). ${ }^{32}$ The first step in the proposed mechanism is complexation of the aldehyde with the boronate to form a tetrahedral boron species. The chirality of this chelate is determined by the anti relationship between the aldehyde oxygen and the proximal carboisopropoxy moiety. This results in si-face addition by the crotyl group in a chair-like transition state with the R group of the aldehyde in a pseudoequatorial position.

Figure 2. Transition State for the Crotylborinate Reaction.

The alcohol 89 was protected using t-butyldimethylsilyl trifluoromethanesulfonate ${ }^{33}$ to afford silyl ether 91 in excellent yield (Scheme 19). Selective oxidative cleavage ${ }^{34}$ of the terminal olefin of 91 was accomplished using catalytic osmium tetroxide in the presence of sodium metaperiodate which gave the desired aldehyde 74.

The alcohol 89 was also converted to ester 92 using (S)-pipecolinic acid protected as its t-butoxycarbonyl derivative 93^{35} in the presence of dicyclohexylcarbodiimide. The protected amino acid 93 was synthesized from commercially available (S)-pipecolinic acid 94 using 2-tert-butyloxycarbonyloxyimino-2-phenylacetonitrile 95^{36} (eq. 1). Attempts to
oxidatively cleave 92 under the same conditions as used for 91 resulted in decomposition of starting material with no evidence of product formation.

89

91

92

Scheme 19

94

1:1 acetone $-\mathrm{H}_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{~N}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$, (64\%)

93

With the key aldehyde 74 in hand, attention now focused on the synthesis of the ketone 100 needed for the aldol reaction to give 73. The ketone was synthesized in four steps from ethyl (R)-3-hydroxybutyrate (96) by the route shown in Scheme 20. The dianion of 96 was alkylated with allyl
bromide which provided ester 97.37 Reduction of 97 using lithium aluminum hydride resulted in diol 98. Selective protection of the primary alcohol afforded trityl ether 9938 which, upon treatment with Dess-Martin periodinane, ${ }^{29}$ gave ketone 100 in excellent yield.

$\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}$ to r.t., 2h, (68\%)

99
98

100
Scheme 20

Synthesis of the C20-C34 segment 73 of FK-506 was completed by aldol condensation of ketone $\mathbf{1 0 0}$ with aldehyde $\mathbf{7 4}$ using kinetically controlled conditions ${ }^{39}$ (Scheme 21). Treatment of the lithium enolate of 100, prepared with lithium bis(trimethylsilyl)amide, with $\mathbf{7 4}$ at $-78^{\circ} \mathrm{C}$ for three minutes gave aldol adducts 73 and 101 in a 9:1 ratio as determined by ${ }^{1} \mathrm{H}$ NMR analysis. The selectivity observed in this condensation is a significant improvement on the 4:6 ratio of products reported for a similar aldol coupling by Sih. ${ }^{13}$

Scheme 21

The major product 73 is assigned $24(S)$ configuration based on a transition state analysis of the coupling. Aldol reactions normally proceed through a lithium-chelated, six-centered Zimmerman-Traxier transition state in which the hydrogen atom of the aldehyde occupies a pseudoaxial position. 40 The diastereofacial selectivity of attack at the aldehyde carbonyl can be rationalized in this transition state using the Felkin-Anh principle, ${ }^{41}$ which predicts for the case at hand that the incoming enolate approaches the si face
of the aldehyde (Figure 3). This mode of attack would lead to (S) configuration at the new stereogenic center produced in the aldol condensation.

Figure 3. Transition State for the Stereoselective Aldol Reaction.

In conclusion, the synthesis of the C20-C34 subunit 73 of FK-506 (1) was accomplished in fifteen steps in an overall yield of 2.8%. Quinic acid (66) as starting material allowed for quick access to the key intermediate aldehydes 74 and $\mathbf{7 5}$, and aldol condensation of 74 with the lithium enolate of 100 proved to be a remarkably stereoselective and efficient method for elaborating the desired fragment. The FK-506 segment 73 represents a strategic intermediate that will allow for future studies directed at the construction of the entire molecule.

II-C. Experimental

General

General experimental techniques and instrumentation used in this work are outlined in section IC.
(1R,3S,4S,5R)-4-Benzoyloxy-3-bromo-1-o-imidazothiocarbonyl-6-oxabicyclo[3.2.1]octan-7-one (79). To a solution of 7823,24 (7.06 g, 20.7 mmol) in benzene (300 mL) was added 1,1'-thiocarbonyldiimidazole (4.05 g , 22.8 mmol). The mixture was heated at reflux for 44 h then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided $79(5.92 \mathrm{~g}, 63 \%)$ as a white solid: mp 147$148.5^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}+68.0^{\circ}\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)$; IR (thin film) $1806,1724,1267,1233$, $1097,1027,714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27$ (s, 1H), 7.96 (dd, $J=$ $7.2 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.59(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.47 (dd, $J=14.9 \mathrm{~Hz}, 11.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.07 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (d, $J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.0,169.4,164.2,136.7,134.0,131.1$, 129.7 (x2), 128.6 (x2), 128.1, 117.8, 81.8, 74.8, 71.3, 39.4, 37.9, 33.4; MS (CI) m / z (rel. intensity) $453(M+1,29), 451(M+1,32), 69(100)$; HRMS, m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+1)$: 450.9963. Found: 450.9963. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 47.91, \mathrm{H}, 3.35, \mathrm{~N}, 6.21, \mathrm{~S}, 7.10$. Found: C, 47.86, H , 3.22, N, 6.04, S, 7.11.
(1R,4R,5R)-4-Benzoyloxy-6-oxabicyclo[3.2.1]octan-7-one (68). To a solution of tributyltin hydride ($8.83 \mathrm{~mL}, 32.8 \mathrm{mmol}$) in refluxing toluene (200 mL) was added dropwise a mixture of 79 ($5.92 \mathrm{~g}, 13.2 \mathrm{mmol}$) and $\alpha, \alpha-$ azobisisobutyronitrile ($108 \mathrm{mg}, 0.66 \mathrm{mmol}$) in toluene (100 mL) over a 10 min period. The resulting mixture was stirred at reflux for 3 h , allowed to cool to room temperature, and the toluene removed in vacuo. Ether (300 mL) was added to the residue and washed with 2 M potassium fluoride ($4 \times 25 \mathrm{~mL}$) and the phases separated. The combined organic layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. Purification by column chromatography on silica gel using 1:3 ethyl acetate-hexane as elutant provided $68\left(1.80 \mathrm{~g}, 56 \%\right.$) as a white solid: $\mathrm{mp} 135-139^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}-10.7^{\circ}$ ($\mathrm{c}=1.20$, CHCl_{3}); IR (thin film) 3063, 3029, 2954, 1784, 1724, 1595, 1273, 1157, 1101, $757,709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (dd, $J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61-7.56$ (m, 1H), 7.45 (dt, $J=7.8 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.35-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.91-$ 4.88 (m, 1H), 2.70-2.68 (m, 1H), 2.33 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13-2.05 (m, 2H), 1.93-1.87 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,165.3,133.4,129.6$ (x3), 128.5 (x2), $76.2,67.6,37.9,32.1,24.3,23.0$; MS (CI) m / z (rel. intensity) 247 ($M+1,38$), 59 (100); HRMS, m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{4}(M+1)$: 247.0970 . Found: 247.0970. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}$: $\mathrm{C}, 68.28, \mathrm{H}, 5.73$. Found: C, $68.28, \mathrm{H}, 5.54$.
(1R,3R,4R)-4-Benzoyloxy-3-hydroxy-cyclohexanal (80). To a solution of 68 ($26.0 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry toluene (2 mL) was added diisobutylaluminum hydride ($0.07 \mathrm{~mL}, 0.11 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$ then quenched with saturated ammonium chloride (1 mL) and warmed to room temperature. The two phases were partitioned and the aqueous layer was extracted with ethyl acetate (3×3
mL). The combined organic extracts were dried over magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided $80(3.00 \mathrm{mg}, 12 \%)$ as a clear oil: IR (neat) 3474 (br), 2935, 1717, 1116, $713 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.05-8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.40(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.89-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.44-$ $2.22(m, 3 H), 2.08-1.98(m, 1 H), 1.66-1.51(m, 3 H)$.
(1R,3R,4R)-1-Methoxycarbonylcyciohexan-3,4-diol (81). A solution of 68 ($107 \mathrm{mg}, 0.44 \mathrm{mmol}$) in 1% methanolic sodium hydroxide (5 mL) was stirred for 1 h at room temperature. The pH was adjusted by the addition of 10 drops of 1.5 M hydrochloric acid and the mixture extracted with ethyl acetate (5×20 mL). The combined organic extracts were dried over anhydrous magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 81 ($60.2 \mathrm{mg}, 80 \%$) as a white solid: $\mathrm{mp} 93-96^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}-12.2^{\circ}\left(\mathrm{c}=1.20, \mathrm{CHCl}_{3}\right.$); IR (thin film) 3385 , 2946, 2870, 1729, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.45-$ $3.35(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 3 \mathrm{H})$, 2.10-1.94 (m, 2H), 1.681.25 ($\mathrm{m}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,74.9,74.5,51.8,41.4,34.9$, 31.3, 26.9; MS (CI) m/z (rel. intensity) 175 ($\mathrm{M}+1,48$), 157 (68), 125 (66), 59 (100); HRMS, m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4}(\mathrm{M}+1)$: 175.0970. Found: 175.0971 .
(1R,4R,5R)-4-Hydroxy-6-oxabicyclo[3.2.1]octan-7-one (6). To a solution of 81 (50.0 mg .0 .29 mmol) in benzene (1 mL) was added p toluenesulfonic acid monohydrate ($27.4 \mathrm{mg}, 0.14 \mathrm{mmol}$). The mixture was refluxed for 8 h , allowed to cool, and the benzene was removed in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-
hexane as elutant provided $6\left(9.0 \mathrm{mg}, 22 \%\right.$) as a clear glass: $\mathrm{mp} 159-162^{\circ} \mathrm{C}$, [Lit. $\left..^{19} \mathrm{~m} . \mathrm{p}=163.5-165^{\circ} \mathrm{C}\right] ;[\alpha] \mathrm{D}-18.8^{\circ}\left(\mathrm{c}=1.69, \mathrm{CHCl}_{3}\right)$, $\left[\mathrm{Lit}{ }^{19}[\alpha]_{\mathrm{D}}-21.5^{\circ}(\mathrm{c}=\right.$ 2.00, CHCl_{3})]; IR (thin film) 3421, 2961, 2903, 1751,1157, $971,913 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{mHz}, \mathrm{CDCl}_{3}$) $\delta 4.70-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.70(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right) \delta 178.5$, 78.9, 65.2, 38.4, 31.1, 27.3, 22.7; MS (CI) m/z (rel. intensity) 143 ($\mathrm{M}+1,100$), 125 (72), 97 (28); HRMS, m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}(\mathrm{M}+1)$: 143.0708. Found: 143.0707.
(1R,3R,4R)-4-Benzoyloxy-1-methoxycarbonylcyclohexan-3-ol (82). To a solution of $68(15.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in methanol (1 mL) was added concentrated sulfuric acid $(0.10 \mathrm{~mL})$. The mixture was stirred at room temperature for 15 min then quenched with saturated sodium bicarbonate (2 mL) and extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate then concentrated in vacuo to obtain 82 ($16.9 \mathrm{mg}, 100 \%$) as a white solid: $\mathrm{mp} 101-102^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}-35.8^{\circ}$ ($\mathrm{c}=$ $1.30, \mathrm{CHCl}_{3}$); IR (thin film) 3489, 3066, 2950, 2872, 1782, $1721 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.91-4.83 (m, 1H), 3.83-3.75 (m, 1H), 3.70(s, 3H), 2.53-2.19 (m, $4 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.45(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6$, 166.7, 133.2, 130.0, 129.7 (x2), 128.4 (x2), 77.7, 71.8, 51.9, 40.9, 35.0, 28.5, 26.5; MS (CI) m/z (rel. intensity) 279 ($M+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5}(\mathrm{M}+1)$: 279.1233 . Found: 279.1230.

(1R,3R,4R)-4-Benzoyloxy-3-methoxy-1-methoxycarbonyl-

cyclohexane (69). To compound $82(15.7 \mathrm{mg}, 0.06 \mathrm{mmol})$ in a solution of diazomethane in ether (1 mL) was added boron trifluoride etherate $(0.10 \mathrm{~mL})$ at
$0^{\circ} \mathrm{C}$. While stirring for 15 min at $0^{\circ} \mathrm{C}$, the reaction decolorized yielding a white precipitate and evolved nitrogen gas. The mixture was filtered to remove the white solid, and the ether was removed in vacuo. Purification by column chromatography on silica gel using 1:3 ethyl acetate-hexane as elutant provided 69 ($14.1 \mathrm{mg}, 87 \%$) as a clear oil: $[\alpha]_{D}-52.3^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right)$; IR (neat) 3065, 2948, 2874, 1786, $1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (dd, $J=7.1 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58-7.52$ (m, 1H), 7.43 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.034.95 (m, 1H), 3.70 (s, 3H), 3.62-3.33 (m, 1H), 3.40 (s, 3H), 2.47-2.37 (m, 2H), 2.26-2.21 (m, 1H), 2.04-1.98 (m, 1H), 1.69-1.45 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 174.5,165.9,132.8,130.5,129.6$ (x2), 128.3 (x2), 80.2, 75.4, 57.6, 51.8, 40.8, 32.0, 28.8, 26.1; MS (CI) m / z (rel. intensity) 293 ($\mathrm{M}+1,100$); HRMS, m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{5}(\mathrm{M}+1)$: 293.1389. Found: 239.1389. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$: $\mathrm{C}, 65.74, \mathrm{H}, 6.90$. Found: $\mathrm{C}, 65.88, \mathrm{H}, 6.84$.
(1R,3R,4R)-3-Methoxy-4-hydroxycyclohexanal (83). To a solution of $69(33.3 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dry toluene (2 mL) was added diisobutylaluminum hydride ($0.23 \mathrm{~mL}, 0.34 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ then quenched with saturated ammonium chloride (1 mL) and warmed to room temperature. The two phases were partitioned, and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined extracts were dried over magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetatehexane as elutant provided 83 ($4.7 \mathrm{mg}, 26 \%$) as a clear oil: IR (neat) 3424 (br), 2936, 2869, 2830, 1721, 1094.cm¹; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H})$, 3.46-3.40 ($\mathrm{m}, 1 \mathrm{H}$), $3.43(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}$, $1 H), 2.35-2.29(m, 1 H), 2.17-2.10(m, 1 H), 2.06-2.00(m, 1 H), 1.57-1.11(m$, $3 H)$.
(1R,3R,4R)-3-Methoxy-1-methoxycarbonylcyclohexan-4-ol (84). To a solution of $69(323 \mathrm{mg}, 1.11 \mathrm{mmol})$ in methanol (3 mL) was added sodium methoxide ($1.32 \mathrm{~mL}, 1.32 \mathrm{mmol}, 1 \mathrm{M}$ in methanol). The mixture was stirred at room temperature for 1.5 h , and the methanol was removed in vacuo. The residue was taken up in ether (10 mL) and acidified to $\mathrm{pH}=3$ with 1.5 M hydrochloric acid (1.5 mL). The aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), and the combined organic extracts were dried over magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 84 ($172 \mathrm{mg}, 82 \%$) as a clear oil: $[\alpha]_{D}-81.5^{\circ}$ ($\mathrm{c}=1.14, \mathrm{CHCl}_{3}$); IR (neat) 3445 (br), 2946, 2873, 2833, $1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66(\mathrm{~s}, 3 \mathrm{H})$, 3.45-3.39 (m, 1H), $3.39(\mathrm{~s}, 3 \mathrm{H})$, 2.99-2.94 (m, 1H), 2.37-2.29 (m, 2H), 2.06-1.93 (m, 2H), 1.48$1.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,83.8,73.0,56.6,51.7,41.3$, 30.8, 30.7, 26.6; MS (CI) m/z (rel. intensity) 189 ($M+1,100$), 157 (80), 139 (30); HRMS, m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+1)$: 189.1127. Found: 189.1127. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}$: $\mathrm{C}, 57.43, \mathrm{H}, 8.57$. Found: $\mathrm{C}, 57.44, \mathrm{H}, 8.72$.

(1R,3R,4R)-3-Methoxy-1-methoxycarbonyl-4-

(trimethylsilylethoxy)methoxycyclohexane (76). To a solution of 84 (127 $\mathrm{mg}, 0.68 \mathrm{mmol}$) in chloroform (5 mL) was added diisopropylethylamine (0.50 $\mathrm{mL}, 2.70 \mathrm{mmol}$) along with trimethylsilylethoxymethoxy chloride $(0.358 \mathrm{~mL}, 2.03$ mmol). The mixture was refluxed 3 h , turning a dark orange color, allowed to cool, and the chloroform removed in vacuo. Purification by silica gel column chromatography using 1:3 ethyl acetate-hexane provided 76 ($178 \mathrm{mg}, 83 \%$) as a clear oil: $[\alpha]_{D}-12.3^{\circ}\left(c=1.41, \mathrm{CHCl}_{3}\right.$); IR (neat) $2950,2891,1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 3.43-
$3.40(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 2 \mathrm{H})$, 2.15-2.07(m, 1H), 1.99-1.91 (m, 1H), 1.64-1.57 (m, 1H), 1.45-1.34 (m, 3H), 0.93 (dt, J = 9.6 $\mathrm{Hz}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,94.4,82.1,78.4,64.9$, $57.2,51.7,40.9,32.0,30.0,26.5,18.0,-1.5$ (x3); MS (CI) m / z (rel. intensity) 319 ($\mathrm{M}+1,64$), 261 (100), 171 (99); HRMS, m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+$ 1): 319.1941 . Found: 319.1939 . Anal. Caicd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 56.57, \mathrm{H}$, $9.49, \mathrm{Si}, 8.82$. Found: C, $56.72, \mathrm{H}, 9.60, \mathrm{Si}, 8.36$.

Ester 85. To a solution of 76 ($94.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry toluene (3 mL) was added diisobutylaluminum hydride ($0.22 \mathrm{~mL}, 0.33 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene). The mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$, quenched with saturated ammonium chloride (1 mL), and extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate then concentrated in vacuo.

A solution of the crude product from above and (carboethoxyethylidene)triphenylphosphorane ($161 \mathrm{mg}, 0.446 \mathrm{mmol}$) in dry benzene (5 mL) was refluxed for 17 h . The benzene was removed in vacuo, and the residue purified by column chromatography on silica gel, using 15% ethyl acetate-hexane as elutant, to yield 85 ($83.6 \mathrm{mg}, 76 \%$) as a clear oil: [α]D -1.5° ($\mathrm{c}=1.47, \mathrm{CHCl}_{3}$); IR (neat) 2936, 2893, 2828, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.52(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H})$, 3.73-3.61 (m, 2H), 3.48-3.41 (m, 1H), 3.41 (s, 3H), 3.17-3.09 (m, 1H), 2.43-2.30 (m, 1H), 2.24-2.02 (m, 2H), $1.85(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.68-1.60 (m, $1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.852$ ($\mathrm{m}, 3 \mathrm{H}$), 0.02 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,144.7,127.1,94.4$, 82.5, 78.9, 64.9, 60.6, 57.3, 35.7, 30.6, 29.8, 18.0, 14.3, 12.5, -1.4 (x3); MS (CI) m / z (rel. intensity) 373 ($M+1,27$), 345 (53), 299 (73), 235 (100); HRMS, m / z
calcd. for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1)$: 373.2410 . Found: 373.2412. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 61.25, \mathrm{H}, 9.74$. Found: $\mathrm{C}, 61.46, \mathrm{H}, 9.74$.

Allylic alcohol 86. To a solution of $\mathbf{8 5}(\mathbf{7 5 . 6} \mathbf{~ m g}, 0.20 \mathrm{mmol})$ in dry ether $(4 \mathrm{~mL})$ was added lithium aluminum hydride ($23.1 \mathrm{mg}, 0.61 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature over 1 h , recooled to $0^{\circ} \mathrm{C}$, then quenched with water (1 mL) and 1.5 M hydrochloric acid (1 mL). The two phases were partitioned, and the aqueous layer was extracted with ether (3×5 mL). The combined ether extracts were dried over anhydrous magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 86 ($65.7 \mathrm{mg}, 98 \%$) as a clear oil: $[\alpha]_{D}+5.0^{\circ}\left(c=1.43, \mathrm{CHCl}_{3}\right.$); IR (neat) 3457 (br), 2933, 2893, $1052,1030,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.21$ (dd, $J=7.9 \mathrm{~Hz}, 1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.70-3.60 (m, 2H), 3.43-3.37 (m, 1H), 3.40 (s, 3H), 3.15-3.07 (m, 1H), 2.75-2.25 (m, 1H), 2.10-2.00 (m, 2H), 1.68 ($\mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.63-1.59 (m, 1H), 1.37-1.30 (m, 3H), 1.20-0.88 (m, 3H), 0.02 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.0,129.9,94.4,82.8,79.2,68.6$, $64.8,57.2,36.4,34.7,30.9,30.8,18.0,13.8,-1.5$ (x3); MS (CI) m/z (rel. intensity) 331 ($M+1,49$), 213 (42), 117 (100); HRMS, m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1): 331.2305$. Found: 331.2305. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 61.77, \mathrm{H}, 10.37$. Found: $\mathrm{C}, 61.70, \mathrm{H}, 10.25$.

Aldehyde 75. To a soluton of $86(270 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry methylene chloride was added the Dess-Martin periodinane 87^{29} ($27.2 \mathrm{mg}, 0.11 \mathrm{mmol}$) and pyridine ($13 \mu, 0.16 \mathrm{mmol}$) at room temperature. After 2 h , thin layer chromatography indicated the presence of starting material, so a further equivalent of $\mathbf{8 7}$ was added, and the mixture was stirred for an additional hour.

The reaction was quenched by the addition of ether (3 mL) and 1 M sodium hydroxide (1 mL). The two phases were partitioned, and the organic layer was washed with water (2 mL), dried over anhydrous magnesium sulfate, and concentrated in vacuo. Purification by column chromatography on silica gel using 1:3 ethyl acetate-hexane provided $75(22.1 \mathrm{mg}, 83 \%)$ as a clear oil: $[\alpha]_{D}$ $+3.6^{\circ}$ ($\mathrm{c}=1.17, \mathrm{CHCl}_{3}$); IR (neat) 2934, 2894, 1690, 1643, 1054, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=9.4 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80$ (s, 2H), 3.71-3.61 (m, 2H), 3.50-3.42 (m, 1H), 3.41 (s, 3H), 3.20-3.13 (m, 1H), 2.63-2.52 ($\mathrm{m}, 1 \mathrm{H}$), 2.15-2.05 ($\mathrm{m}, 2 \mathrm{H}$), $1.75(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}$, 1 H), 1.48-1.11 (m, 3H), 1.00-0.89 (m, 2H), $0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.3,156.7,138.1,94.4,82.2,78.7,64.9,57.5,35.9,35.0,30.5$, 29.5, 18.0, 9.3, -1.5 (x3); MS (Cl) m/z (rel. intensity) 329 ($\mathrm{M}+1,20$), 117 (100); HRMS, m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1)$: 329.2148. Found: 329.2148. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 62.15, \mathrm{H}, 9.82, \mathrm{Si}, 8.55$. Found: $\mathrm{C}, 62.07, \mathrm{H}, 9.91$, Si, 8.17.

Homoallylic alcohol 89. To a solution of 88 ($122 \mathrm{mg}, 0.41 \mathrm{mmol}$), dervived from the (z)-crotylboronate diethanolamine complex and $L-(R, R)$ diisopropyltartrate, ${ }^{31}$ in dry toluene (1.5 mL) was added powdered $4 \AA$ molecular sieves (150 mg) under argon atmosphere. The mixture was cooled to $-78^{\circ} \mathrm{C}$ and $75(53.8 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dry toluene (1.5 mL) was added dropwise over a 15 min period using a syringe pump. The reaction mixture was stirred for 84 h at $-78^{\circ} \mathrm{C}$, then warmed to $0^{\circ} \mathrm{C}, 1 \mathrm{M}$ sodium hydroxide (1 mL) was added, and the mixture stirred for 20 min . The reaction was extracted with ether ($3 \times 15 \mathrm{~mL}$), and the combined ether extracts dried over anhydrous magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 15% ethyl acetate-hexane as elutant
provided 89 ($37.6 \mathrm{mg}, 60 \%$) and $\mathbf{9 0}$ ($16.3 \mathrm{mg}, \mathbf{2 5 \%}$) both as clear oils: 89: Rf 0.08 (15% ethyl acetate-hexane), [α]D -3.3° ($c=3.60, \mathrm{CHCl}_{3}$); IR (neat) 3462 (br), 2934, 2891, 1107, 1049, 1031, 854, $840 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.77-5.61 (m, 1H), $5.17(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H})$, 3.76 (d, J=7.4 Hz, 1H), 3.69-3.58 (m, 2H), 3.44-3.35 (m, 1H), 3.39 (s, 3H), 3.14-3.04 (m, 1H), 2.35 (q, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28-2.19 (m, 1H), 2.09-1.98 (m, 2 H), 1.59 ($\mathrm{d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.40-1.22 (m, 1H), 1.15-0.86 (m, 5H), 0.99 (d, $J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.00(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,134.9,131.1$, 114.3, 94.4, 82.8, 80.5, 79.3, 64.8, 57.3, 41.1, 36.4, 34.7, 30.9, 30.7, 18.0, 14.7, 12.4, -1.4 (x3); MS (Cl) m/z (rel. intensity) 385 ($M+1,2.4$), 205 (100). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 65.58, \mathrm{H}, 10.48$. Found: $\mathrm{C}, 65.80, \mathrm{H}, 10.23$. 90: Rf 0.10 (15% ethyl acetate-hexane) $[\alpha] \mathrm{D}+5.6^{\circ}$ ($\mathrm{c}=1.40, \mathrm{CHCl}_{3}$); 90 has identical spectra [IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR] to that of compound 89.
tert-Butyldimethylsilyl ether 91. To a solution of $89(35.0 \mathrm{mg}, 0.09$ mmol) in methylene chloride (3 mL) was added tert-butyldimethylsilyl trifluoromethanesulfonate ($52.0 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) and diisopropylethylamine (48.0 $\mu \mathrm{L}, 0.27 \mathrm{mmol}$) under argon atmosphere. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and the methylene chloride was removed in vacuo. Purification by column chromatography on silica gel using 5% ethyl acetate-hexane as elutant provided 91 ($43.6 \mathrm{mg}, 96 \%$) as a clear oil: [α]D -8.0° ($c=1.20, \mathrm{CHCl}_{3}$) IR (neat) 2933, 2891, 2862, 1252, 1109, 1056, 838, $774 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.64-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (dddd, $J=17.8 \mathrm{~Hz}$, $10.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.78 ($\mathrm{s}, 2 \mathrm{H}$), 3.68-3.56 (m, 3H), 3.43-3.35 (m, $1 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 2 \mathrm{H})$, 2.04-1.96 (m, 2H), 1.53 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.33-1.23 (m, 1H), 1.08-0.84 (m, 5H), $0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3 H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 141.6,135.6,130.9,113.2,94.3,82.8,82.4,79.4,64.8,57.4,42.4$, $36.3,34.7,30.9,30.8,25.9$ (x3), 18.2, 18.1, 16.0, 11.9, -1.4 (x3), -4.4, -5.0; MS (CI) m / z (rel. intensity) $499(M+1,22), 443$ (100); HRMS, m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{Si}_{2}(\mathrm{M}+1)$: 499.3639. Found: 499.3640 .

Aldehyde 74. To a solution of 91 ($31.7 \mathrm{mg}, 0.06 \mathrm{mmol}$) in tetrahydrofuran (1 mL) and pH 7 phosphate buffer (1 mL , aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$) was added osmium tetroxide ($9.7 \mathrm{~mL}, 0.002 \mathrm{mmol}, 4 \%$ in water) along with one equivalent of sodium metaperiodate ($15.0 \mathrm{mg}, 0.06 \mathrm{mmol}$). The reaction mxture was stirred for 4 h before an additional three equivalents of sodium metà-periodate ($40.7 \mathrm{mg}, 0.18 \mathrm{mmol}$) were added. This mixture was stirred for 20 h at room temperature, quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$, and stirred an additional 20 min before being extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined ether extracts were dried over magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 30% ethyl acetate-hexane as elutant provided 74 ($19.8 \mathrm{mg}, 62 \%$), $[\alpha]_{D}-9.8^{\circ}$ ($\mathrm{c}=0.53$, CHCl_{3}); IR (neat) 2931, 2893, 1727, 1460, 1054, 1034, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H})$, $4.21(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$, 3.13-3.05 (m, 1H), 2.49-2.44 (m, 1H), 2.25-2.20 (m, 1H), 2.06-1.94 (m, 2H), $1.58-1.52(m, 1 H), 1.57(d, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.87(\mathrm{~m}$, $4 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) 0.00(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,134.0,131.6,94.3,82.7,79.3,77.2,64.8,57.5,50.8$, $36.3,34.8,30.8,30.7,25.7$ (x3), 18.1, 18.0, 12.6, 8.9, -1.4 (x3), -4.3, -5.2; MS (CI) m / z (rel. intensity) 501 ($M+1,1.3$), 391 (100); HRMS, m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{O}_{5} \mathrm{Si}_{2}(\mathrm{M}+1): 501.3432$. Found: 501.3431.

Ester 92. To a solution of 89 ($23.7 \mathrm{mg}, 0.06 \mathrm{mmol}$) in methylene chloride (4 mL) was added dicyclohexylcarbodiimide ($63.6 \mathrm{mg}, 0.31 \mathrm{mmol}$) and N, N-dimethylaminopyridine ($15.0 \mathrm{mg}, 0.12 \mathrm{mmol}$) under argon atmosphere. The reaction mixture was stirred for 20 h at $-15^{\circ} \mathrm{C}$, quenched with saturated sodium bicarbonate (3 mL), and allowed to stir for an additional 15 min at room temperature. The organic layer was extracted with methylene chloride (3×10 mL), and the combined organic extracts were dried over magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:3 ethyl acetate-hexane as elutant provided 92 ($26.4 \mathrm{mg}, 72 \%$) as a clear oil: IR (neat) 2935, 2868, 1741, 1700, 1157, $1044 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 333 \mathrm{~K}$) $\delta 5.66-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.80(\mathrm{~m}$, $2 \mathrm{H}), 4.80-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.57(\mathrm{~m}, 2 \mathrm{H})$, 3.423.34 (m, 1H), 3.39 (s, 3H), 3.11-3.03 (m, 1H), 3.00-2.90 (m, 1H), 2.49 (d, J= $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-1.17(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{~s}$, 3 H), 1.44 ($\mathrm{s}, 9 \mathrm{H}$), 1.43-1.24 (m,5H), 1.09-0.88 (m, 3H), $1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 0.01 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.1, 155.8, 139.9, 133.3, 131.5, 131.4, 114.8, 94.6, 83.1, 82.9, 82.3, 79.8, 79.4, 64.9.40.2, 36.5, 35.1, 31.0, $30.7,28.5$ (x3), 26.9, 24.9, 24.7, 20.8, 18.2, 15.8, 13.1, -1.4 (x3).

N -(tert-Butoxycarbonyl)-L-piperidine-2-carboxylic acid (93). To a solution of 94 ($100 \mathrm{mg}, 0.78 \mathrm{mmol}$) and 2-tert-butyloxycarbonyloxyimino-2phenylacetonitrile (BOC-ON) 95 ($210 \mathrm{mg}, 0.85 \mathrm{mmol}$) was added triethylamine ($0.16 \mathrm{~mL}, 1.16 \mathrm{mmol}$). The reaction mixture was stirred for 24 h at $25^{\circ} \mathrm{C}$ and extracted with ether ($3 \times 5 \mathrm{~mL}$) and the layers separated. The aqueous layer was acidified with 1.5 M hydrochloric acid (2 mL) and extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), and the combined organic extracts were dried over magnesium sulfate then concentrated in vacuo to provide a white solid.

Recrystallization using hexane (10 mL) provided 93 ($114 \mathrm{mg}, 64 \%$) as a white solid: mp $120-123^{\circ} \mathrm{C}\left[\mathrm{Lit} 4^{2} \mathrm{mp} 124^{\circ} \mathrm{C}\right] ;[\alpha] \mathrm{D}-42.4^{\circ}(\mathrm{c}=1.00, \mathrm{MeOH})$, $\left[\mathrm{Lit}{ }^{42}[\alpha] \mathrm{D}\right.$ -45.1° ($\mathrm{c}=1.0, \mathrm{MeOH}$)]; IR (thin film) 3431-2867 (br), 1738, $1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.95-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.80(\mathrm{~m}$, $1 \mathrm{H})$, 2.23-2.15 (m, 1H), 1.75-1.60 (m, 2H), 1.43 (s, 9H), 1.50-1.22 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}$) $\delta 177.2,157.0,79.9,56.5,42.2,28.6$ (x 3), 27.3, 25.3, 21.1; MS (EI) m/z (rel. intensity) 84 (100), 128 (60).
(2S,3S)-Ethyl-2-allyl-3-hydroxybutyrate (97). Hydroxy ester $96{ }^{36}$ was prepared in the same manner as described for the preparation of its enantiomer in part IC: 62% yield; colorless oil; $[\alpha]_{D}+7.8^{\circ}\left(c=0.55, \mathrm{CHCl}_{3}\right)$, $\left[\mathrm{Lit}^{36}[\alpha] \mathrm{D}+14.5^{\circ}\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right)\right]$.
(2S,3R)-2-Allyl-3-hydroxybutanol (98). To a solution of 97 (777 mg , $4.52 \mathrm{mmol})$ in dry ether $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added lithium aluminum hydride ($514 \mathrm{mg}, 13.6 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature over 2 h then recooled to $0^{\circ} \mathrm{C}$ before being quenched with water (5 mL) and hydrochloric acid (2 mL). The two phases were partitioned, and the aqueous layer was washed with ethyl acetate ($5 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate then concentrated in vacuo. Purification by column chromatography on silica gel using 1:1 ethyl acetate-hexane as elutant provided 98 ($402 \mathrm{mg}, 68 \%$) as a clear oil: $[\alpha] \mathrm{D}+3.2^{\circ}$ (c = 2.57, CDCl_{3}); IR (neat) 3353 (br), 3078, 2974, 2925, 2896, $1038,912 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}$, 2H), 3.94-3.86 (m, 2H), 3.66 (dd, $J=6.2 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (s, 2H), 2.25$2.05(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.4,116.6,71.4,64.2,45.9,33.2,22.0 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity)

131 ($\mathrm{M}+1,44$), 113 (43); HRMS, m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}(\mathrm{M}+1)$: 131.1072. Found: 131.1072.
(2S,3R)-2-Allyl-3-hydroxy-[1-(triphenyl)methyoxy]butane (99). To a solution of $98(208 \mathrm{mg}, 1.60 \mathrm{mmol})$ in dry methylene chloride (20 mL) was added triphenylmethyl chloride ($468 \mathrm{mg}, 1.68 \mathrm{mmol}$) and triethylamine (0.25 $\mathrm{mL}, 1.76 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 24 h then concentrated in vacuo. Purification by column chromatography on silica gel using 15% ethyl acetate-hexane as elutant provided 99 ($504 \mathrm{mg}, 84 \%$) as a clear oil: $[\alpha] \mathrm{D}+4.9^{\circ}\left(\mathrm{c}=1.33 . \mathrm{CHCl}_{3}\right.$); IR (neat) 3438 (br), 3064, 2973, 2925, 2890, 1447, 1062, $703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.44-7.40 ($\mathrm{m}, 6 \mathrm{H}$), 7.32-7.20 (m, 9H), 5.70-5.558 (m, 1H), 4.96 (ddd, $J=17.1 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$, 2 H), 3.80 (q, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=9.5 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=9.5$ $\mathrm{Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.06\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7$ (x 3), 136.6, 128.6 (x6), 127.9 (x6), 127.1 (x3), 116.4, 84.8, 70.1, 64.2, 45.1, 33.2, 21.0; MS (CI) m / z (rel. intensity) 243 (100), $131\left(\mathrm{M}+1-\mathrm{C}_{19} \mathrm{H}_{15}, 8.7\right)$.
(3R)-3-Allyl-[4-(triphenyl)methyoxy]butan-2-one (100). To a solution of 99 ($483 \mathrm{mg}, 1.29 \mathrm{mmol}$) in dry methylene chloride (20 mL) was added the Dess-Martin perodinane ${ }^{29}(658 \mathrm{mg}, 2.58 \mathrm{mmol})$ and pyridine $(0.209 \mathrm{~mL}, 2.58$ $\mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 h then concentrated in vacuo. Purification by column chromatography on silica gel using 15% ethyl acetate-hexane provided $100(456 \mathrm{mg}, 95 \%)$ as a white solid: $\mathrm{mp} 40-44^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-14.5^{\circ} \mathrm{C}\left(\mathrm{c}=2.03, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3064,3028,2927$, $1714,1167,704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.35(\mathrm{~m}, 6 \mathrm{H}$), $7.30-$ $7.18(\mathrm{~m}, 9 \mathrm{H}), 5.64-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.91(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{q}$,
$J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3,143.7$ (x 3), 135.1, 128.6 (x 6), 127.8 (x 6), 127.0 (x 3), 116.9, 86.7, 63.9, 52.8, 32.5, 29.8; neg. FABMS, m / z (rel. intensity) 369 [(M -1)-, 16], 243 (20). Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{2}$: $\mathrm{C}, 84.29, \mathrm{H}, 7.07$. Found: C , 84.40, H, 6.92.

Aldol adduct (73). To a solution of $\mathbf{1 0 0 (1 2 . 3 ~ m g , ~} 0.04 \mathrm{mmol})$ in dry tetrahydrofuran (.5 mL) was added lithium bis(trimethylsilyl)amide ($35 \mu \mathrm{~L}, 0.04$ $\mathrm{mmol}, 1.0 \mathrm{M}$ in THF) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Aldehyde 74 ($11.1 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added via a canula as a solution in tetrahydrofuran (0.5 mL). The reaction was immediately quenched with saturated ammonium chloride (0.3 mL) after 3 min , warmed to room temperature, dried over magnesium sulfate, and concentrated in vacuo. Purification by column chromatography on silica gel using 15% ethyl acetatehexane as elutant provided a 9:1 mixture of 73 and 101 ($12.3 \mathrm{mg}, 62 \%$) as a clear oil: IR (neat) 3464 (br), 2934, 2891, 1706, 1450, 1033, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.62-5.53(\mathrm{~m}, 1 \mathrm{H})$, $5.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=4.2,1 \mathrm{H})$, 3.84-3.75 (m, 1H), 3.70-3.58(m, 2H), 3.42-3.31 (m, 1 H), $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.20$ $(\mathrm{m}, 3 \mathrm{H})$, 3.15-3.06 (m, 1H), 2.77-2.73 (m, 1H), 2.54-2.50 (m, 2H), 2.35-1.95 (m, $4 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.85(\mathrm{~m}, 5 \mathrm{H}), 0.87$ (s, 9 H), 0.67 (d, J=6.8 Hz, 3H), $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.9,143.6,135.2,135.0(\mathrm{x} 3), 130.1,1286$ (x 6), 127.9 (x6), 127.1 (x3) , 117.1, 94.4, 86.9, 82.9, 79.4, 77.2, 68.3, 64.8, 64.0, $57.6,52.7,46.4,41.6,36.6,34.8,32.4,30.9,30.8,25.9$ (x3), 18.2, 18.0, 13.3, 9.6, -1.4 (x3), $-4.4,-5.1$; neg. FABMS, m / z (rel. intensity) $869[(M-1) ; 1.4], 243$ (23), 131 (100).

II-D. Bibliography

1. Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.; Hshimoto, M. J. Am. Chem. Soc. 1987, 109, 5031.
2. Sehgal, S.N.; Baker, H.; Vezina, C. J. Antibiot. 1975, 53, 727.
3. Starzl, T.E.; Todo, S., Fung, J.; Demetris, A.J.; Venkataramman, R.; Jain, A. Lancet. 1989, 11, 1000.
4. Ruegger, A.; Kuhn, M.; Lichti, H.; Loosli, H.R.; Huguein, R.; Quiquerez, C.; Von Warburg, A. Helv. Chim. Acta 1985, 68, 682.
5. Sell, S. In Immunology Immunopathology and Immunity 4th Ed.; Elsevier Science Publishing Company, Inc.: New York, New York, 1987, pp 3-17.
6. Schreiber, S.L. Science 1991, 251, 283.
7. Rosen, M.K.; Schreiber, S.L. Angew. Chem. Int. Ed. Engl. 1992, 31, 384.
8. Sell, S. In Immunology Immunopathology and Immunity 4th Ed.; Elsevier Science Publishing Company, Inc.: New York, New York, 1987, pp 1936.
9. (a) Ireland, R.E.; Highsmith, T.K.; Gegnas, L.D.; Gleason, J.L. J. Org. Chem. 1992, 57, 5071. (b) Wang, Z. Tetrahedron Lett. 1989, 30, 6611. (c) Maier, M.E.; Schoffling, B. Tetrahedron Lett. 1991, 32, 53. (d) Morimoto, Y.; Mikami, A.; Knwabe, S.; Shirahama, H. Tetrahedron Lett. 1991, 32, 2909. (e) Wasserman, H.H.; Rotello, V.M. J. Org. Chem. 1989, 54, 2785. (f) Kocienski, P.; Stocks, M.; Donald, D.; Cooper, M.; Manners, A. Tetrahedron Lett. 1988, 29, 4481. (g) Williams, D.R.; Benbow; J.W. J. Org. Chem. 1988, 53, 4643.
10. Jones, T.K.; Reamer, R.A.; Desmond, R.; Mills, S.G. J.Am. Chem. Soc. 1990, 112, 2998.
11. Nakatsuka, M.; Ragan, J.A.; Sammakia, T.; Smith, D.B.; Uehling, D.E.; Schreiber, S.L. J. Am. Chem. Soc. 1990, 112, 5583.
12. Jones, B.A.; Villalobas, A.; Linde II, R.G.; Danishefsky, S.J. J. Org. Chem. 1990, 55, 2786.
13. Gu, R.L.; Sih, C.J. Tetrahedron Lett. 1990, 31, 3283.
14. Corey, E.J.; Enders, D.; Bock, M.G. Tetrahedron Lett. 1976, 7.
15. (a) Evans, D.A.; Bartroli, J.; Shih, T.L. J. Am. Chem. Soc. 1981, 103, 2127. (b) Evans, D.A.; Nelson, J.V.; Vogel, E.; Taber, T.R. J. Am. Chem. Soc. 1981, 103, 3099.
16. Mills, S.; Desmond, R.; Reamer, R.A.; Volante, R.P.; Shinkai, I. Tetrahedron Lett. 1988, 29, 281.
17. Philippe, M.; Supulchre, A.M.; Gero, S.D.; Loibner, H.; Streidher, W.; Stutz, P. J. Antibiot. 1982, 35, 1507.
18. Smith III, A.B.; Hale, K.J. Tetrahedron Lett. 1989, 30, 1037.
19. Corey, E.J.; Huang, H.C. Tetrahedron Lett. 1989, 30, 5235.
20. Oppolzer, W.; Chapuis, C.; Bernardinelli, G. Helv. Chim. Acta 1984, 67, 1397.
21. Rama Rao, A.V.; Chakraborty, T.K.; Sankaranayanan, D.; Purandare, A.V. Tetrahedron Lett. 1991, 32, 547.
22. DePooter, H.; DeBrucker, J.; Van Sumere, C.F. Bull. Soc. Chim. Belg. 1975, 84, 835.
23. Hanessian, S.; Plessas, N.R. J. Org. Chem. 1969, 34, 1053.
24. White, J.D.; Cammack, J.H.; Sakuma, K. J. Am. Chem. Soc. 1989, 111, 8970.
25. Barton, D.H.R.; Hay Motherwell, R.S.; Motherwell, W.B. J. Chem. Soc. Perkin trans I. 1981, 2363.
26. Ohno, K.; Nishiyama, H.; Nagase, H. Tetrahedron Lett. 1979, 4405.
27. Lipshutz, B.H.; Pegram, J.J. Tetrahedron Lett. 1980, 21, 3343.
28. Wittig G.; Haag, W. Chem. Ber. 1955, 88, 1654.
29. Dess, D.B.; Martin, J.C. J. Am. Chem. Soc. 1991, 113, 7277.
30. Roush, W.R.; Palkowitz, A.D.; Ando, K. J. Am. Chem. Soc. 1990, 112, 6348.
31. Roush, W.R.; Ando, K.; Powers, D.B.; Palkowitz, A.D.; Halterman, R.L. J. Am. Chem. Soc. 1990, 112, 6339.
32. Roush, W.R.; Hoong, L.K.; Palmer, M.A.J.; Straub, J.A.; Palkowitz, A.D.; J. Org. Chem. 1990, 55, 4117.
33. Greene, T.W.; Wuts, P.G.M.; In Protective Groups in Organic Synthesis 2nd Ed.; John Wiley \& Sons, Inc.: New York, Chichester, Brisbane, Toronto, Singapore, 1991, p 77.
34. Nakata, M.; Osumi, T.; Ueno, A.; Kimura, T.; Tamai, T.; Tatsuta, K. Bull. Chem. Soc. Jpn. 1992, 65, 2974.
35. Somers, P.K.; Wandless, T.J.; Schreiber, S.L. J. Am. Chem. Soc. 1991, 113, 8045.
36. Itoh, M.; Hagiwara, D.; Kamiya, T. Tetrahedron Lett. 1975, 4393.
37. Frater, G. Helv. Chim. Acta 1979, 62, 2825.
38. Chaudhary, S.K.; Hernandez, O. Tetrahedron Lett. 1979, 95.
39. Roush, W.R.; Bannister, T.D. Tetrahedron Lett. 1992, 33, 3587.
40. Zimmerman, H.E.; Traxler, M.D. J. Am. Chem. Soc. 1957, 79, 1920.
41. Anh, N.T. Top. Curr. Chem. 1980, 88, 145.
42. Johnson, R.L. Rajakumar, G.; Yu, K.L.; Mishra, R.A. J. Med. Chem. 1986, $29,2104$.

[^0]: 77

