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THE APPLICATION OF THE VARIABLE-GRADIENT
METHOD FOR GENERATING A LIAPUNOV FUNCTION

FOR THE VAN DER POL EQUATION

I. INTRODUCTION

A problem of considerable interest in stability theory is the de-

termination of the domain of attraction of an equilibrium point of an

autonomous differential equation. Several approaches based on

Liapunov's direct or second method have been presented and have

yielded some interesting results. In 1961, SzegO [18] investigated

the stability of nonlinear autonomous systems with the non-linearity

representable in a polynomial form. A theorem is presented which

gives a sufficient condition for the local stability of a nonlinear dif-

ferential system as the existence of a positive definite function:

such that

V = ci)(x) (1)

V = e(x)g[(x)] (2)

where 8(x) is a semidefinite function not identically equal to zero

on a solution of

x = X(x)

g(x) is such that g(0) = 0 and

(3)

sign g(u) sign g(-u) (4)
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and (x) = 0 is a closed surface, or a family of closed surfaces.

A procedure for constructing Liapunov functions based upon the use of

a generating V function, that is, a V function with some variable

coefficients, has been developed. The generating V function chosen

has the following form:

where,

V(x) = x'A(x)x (5)

A(x) = {a..(x1 .,x.)}., (a.. = a..) (6)
13 3 13 31

Szego [18] concludes that this method of generating a Liapunov func-

tion is more suitable for identifying limit cycles of the Van der Pol

equation. In the same year, SzegO [19] also contributed a new proce-

dure for plotting phase plane trajectories of second-order systems by

giving one example on the Van der Pol equation.

In 1962, Zubov's construction procedure received further atten-

tion in a paper by Margolis and Vogt [14] in which they discuss the

control engineering applications of the procedure. They consider the

existence of a Liapunov function, the equations for the boundary of the

domain of asymptotic stability of the perturbed motion, the necessary

and sufficient conditions for global asymptotic stability and an approx-

imate for obtaining the domain of asymptotic stability. The Van der

Pol equation has been used to provide computational evidence of the

method for obtaining the approximate domain of asymptotic stability.
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In 1963, Infante and Clark [8] also gave a method for the deter-

mination of the domain of stability of second-order nonlinear auto-

nomous systems by giving an example on the Van der Pol equation.

The essence of the method is the construction of Liapunov -like func-

tions. The result obtained is general, and it is the same as given

previously by La Salle [11, 12].

In 1964, another paper on limit cycle construction of the Van

der Pol equation using Liapunov functions was also given by Goldwyn

and Cox [6]. It also deals with a generalization of the method of

Zubov [18, 20] for the construction of Liapunov functions which are

useful in estimating the location of stability boundaries.

The author found that the major difficulty in using Liapunov's

direct or second method for general stability analysis is in finding a

suitable Liapunov function for a given system. By using the work of

Schultz and Gibson [17], a Liapunov function can be found. A second-

order nonlinear, autonomous system, the Van der Pol equation, is

used to illustrate this method. In this paper the problem of stability

of a certain equation will be investigated by means of the second

method of Liapunov which will also enable us to locate the limit cycle.



II. SYSTEM REPRESENTATION

A description of Liapunov's direct or second method requires

the use of the vector state of the dynamic system, that is, a repre-

sentation of system behavior in terms of a vector or a matrix set

whose components are the variables and their derivatives. It is al-

ways possible to describe a system by the vector differential equa-

tion:

x X(x, u(t), t) (7)

4

u(t) is the external forcing function or input, which is assumed to be

identically zero. The system is now called free or unforced system,

that is,

x = X(x, t) (8)

The system in Equation (8) with the presence of t as one of the in-

dependent functional variables means that the system is not stationary

(nonstationary). This system is time varying.

If the system is both unforced and time-invariant, it can be

specified by a function X that depends upon x alone and not upon

the time t or input u(t), that is,

X(x)

A system of this nature called autonomous. Otherwise, it is

(9)
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nona.utonomous as in Equation (8). The Van der -Poi equation [Equa-

tion (20)] which will be given next represents a nonlinear, autonomous

system, that is, in the form of Equation (9) where the origin is an

e uilibrium state.

X(x) is a vector function of the vector x which satisfies the

conditions for existence, uniqueness, and continuity of the solution of

Equation (9) [2, 10].

From Equation (9), we have

Therefore,

xi(xr x2)
x2 = X2(xi, x2)

;c
2 X 2(x 1,

x2)7x
1

X1 (xl, x2)

= f(x
1,

x2)

(10)

The sufficient conditions for a unique solution are that

1) f(x1, x2) is continuous for all values of x
1

and x2 in

the solution, and

2) the Lipschitz condition is satisfied.

The Lipschitz condition is satisfied only when the following in-

equality holds:

where

f(x 1 x2a )-f(x x2b)1 < K I (x2a -x213)
(12)

x, and x are any two arbitrary values of x2 and

is a csitive number.



III. DEFINITIONS

Motion

In defining stability, asymptotic stability, and instability we

shall frequently use the word "motion." A motion is defined as a

trajectory starting from any state or any point in the n-dimensional

state space. Here, trajectory, motion, and solution of the differen-

tial equations are used interchangeably.

The motion of autonomous systems has the important property

that it is invariant under translation in time; that is,

(t, x0, t0) = cl) (tt T, x0, t0+ T), T = constant

for any admissible x0, t0, T. Figure 1 illustrates this property.

(13)

( t2; , ) = (I)( t2; xo, to

t
x

2

6

x(t) 1(t;x0, t ) cHt;xi, ti)

ure 1. Notation for motion.
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Equilibrium States

In dealing with stability analysis we are concerned with the

equilibrium states (or points), sometimes called critical points,

which are those states where X(x) 0. For the free, dynamic sys-

tern as in Equation (8), a state xe is called an equilibrium state if

X(x ,t) = 0, for all t (14)
e

c,5(t,xe, 0) = xe, for all t (15)

Therefore, a motion passing through an equilibrium state at any time

remains at the same state for all times. If the system under consid-

or, equivalently,

eration is linear and autonomous, x = Ax, where A is a (n x n)

matrix with real constant elements. There will be only one equilibri-

um state if A is nonsingular and there will be many equilibrium

states if A is singular. If the system under consideration is non-

linear, there could be many equilibrium points. Note that x = A(x)x

for nonlinear system.

Since we have defined the equilibrium states of the system, we

should also know an important method to determine the stability of

tie uilibrium states of a nonlinear autonomous system as an exam-

ple by applying known linear methods.

From



x = X(x) (9)

The equilibrium points given by x = 0 are determined from

X(x) = 0 (16)

Unlike linear systems, nonlinear systems can have more than one

equilibrium point (it is not unique), as is clear from Equation (16),

which can have more than one solution. We will consider the case

where the origin of the state space is an equilibrium point (xe = 0).

Then, expanding each component of X(x) in a Taylor series about

the origin and considering only the linear terms, we get the linear-

ized equations:

x = J(0)x

where J(0) is the Jacobian matrix evaluated at the equilibrium

point x = 0. That is,

axJ(0) ,5 =ax

ax ax
1

ax
1

ax
1

ax
2

axn

ax
2

ax
2

ax
1

ax
2

ax
2

ax
n

ax axaxn ax
axl ax

2
axn

x=0

(17)

(18)

8
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Equation (17) is a linear, homogeneous, differential equation

that, for the autonomous case under consideration as in Equation (9),

has a constant Jacobian matrix J. Therefore, we can determine the

stability of the linearized equation from the roots of the characteristic

equation:

1,]-(0)_ ul =0 ( 1 9 )

We will consider the well-known Van der Pol equation as an ex-

ample for this part. The Van der Pol equation is

with p. > 0.

Let

We have

2x - µ(1 -x )x + x = 0

X1 = X

X2 X

X1 = x2
2x2 = -x1 + p.(1-xi )x2

(20)

(21)

Equation (21) is in the form of Equation (9), that is, x = X(x). The

equilibrium points xe can be determined from X(x) = 0. By sub-

stituting x1 = 0, it gives x2 = 0 and by substituting x2 = 0, it

gives x 0. Then,

x = 0
e



From Equation (18), we have

J(0)
0

-1-2p.xix2

1

N,

1

2
)

x-= x =0
e

From Equation (17), the linearized equations are

X1 = x2

x2 = -x1 + p.x2

From Equation (19), we have

1J(0) - >II =0

= 0

p.± - 4
1,2 2

10

(22)

(23)

From the eigen values obtained, we can conclude that Equation

(22) represents an unstable system; all solutions of the linearized

system [Equation (22)] leave the equilibrium point as t increases.
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Definitions of Stability

Before we use Liapunov's direct method as a tool for stability

analysis of the Van der Pol equation, we will study here some prin-

cipal definitions of stability. Good sources for the following defini-

tions of stability can be found in Kalman and Bertram [10] and

LaSalle and Lefschets [12].

Stability in the Sense of Liapunov

For the system as in Equation (9), Kalman and Bertram [10]

have defined that the equilibrium point xe is stable in the sense of

Liapunov if for each E > 0 there can be chosen a real number 6(E)

such that from the following relation

it follows that

11 to) < 6(E)

Ilx(t)II <

Figure 2 illustrates the definition of stability in the sense of Liapunov.

The x - x2 plane is for t t
1 2

to. If 11'011 is in the interior of

th.e circle of radius 5, the curve x(t) in the motion space re-

ma._;:,s inside the cylinder of radius c for all future times.



(a) Motion space

12

(b) State space

Figure 2. Definition of stability in the sense of Liapunov (by
Kalman and Bertram).

Again, for the same system as in Equation (9), LaSalle and

Lefschetz [12] have assumed that the equilibrium state being investi-

gated is located at the origin. They denote S(R) as a spherical

region of radius R > 0 around the origin, where S(R)

consists of points x satisfying II x < R and H(R) as a

spherical region with 11x11 = R. Then, the origin is said to be

stable in the sense of Liapunov, or simply stable, if, corresponding

to each S(R), there is an S(r) such that solutions starting in

S(r) do not leave S(R) as t 00. Figure 3 illustrates the defi-

iiticn of stability.
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H(A)

,Asymptotically
stable

Stable in the
sense of Liapunov

Figure 3. Definition of stability (by LaSalle and
Lefs chetz).

Asymptotic Stability

For the system as in Equation (9), Kalman and Bertram [10]

have defined that if the equilibrium state xe is stable in the sense

of Liapunov, and also

lim 11 x(t) 11 = 0, if II x(to) II < 6
t 00

the equilibrium state xe is said to be asymptotically stable.

Figure 4 illustrates the definition of asymptotically stable in the

sense of Liapunov. When t 00, it is seen that the curve in the

motion space approaches the t-axis.

Again, for the same system as in Equation (9), LaSalle and

Lets chetz [12] have given that if the origin is stable and, in addition,

every solution in S(r) not only stays within S(R) but approaches
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the origin as time increases indefinitely ft ---- 00], then the system

is said to be asymptotically stable. This can be seen from Figure 3.

x2

(a) Motion space (b) State space

Figure 4. Definition of asymptotic stability in the sense of
Liapunov (by Kalman and Bertram).

Asymptotic Stability in the Large

If asymptotic stability holds for all points in the state space from

which motions originate, the equilibrium state is said to be asymp-

totically stable in the large.

Instability

..An equilibrium state is said to be unstable if it is neither stable

nor asymptotically stable. Figure 3 shows an unstable equilibrium

at the orig of a second order syst.m and a representative



trajectory starting from xo

15

As may be seen from Figure 3, in the

case of an unstable equilibrium state, for some real number R > 0

and any real number r > 0, no matter how small r, there is al-

ways a point x
0

in the spherical region S(r) [circular region for

second order system] such that the motion starting from this point

reaches the boundary sphere H(R) [circle for second order system]

of S(R).

Limit Cycles

A limit cycle of the first kind is a closed curve on the phase

plane. The determination of the existence and location of limit cycles

is an important purpose of any analysis method for the study of non-

linear systems. Both the describing-function approach and the phase-

plane analysis provide techniques for the investigation of limit cycles.

The existence of a limit cycle corresponds to a system oscillation of

fixed amplitude and period. The limit cycle may be stable, unstable,

or semi-stable. Figure 5a illustrates a stable limit cycle. A limit

cycle is called stable if all near trajectories both from the inside and

from the outside approach the limit cycle as time approaches infinity.

A stable limit cycle corresponds to a stable periodic motion in a phy-

sical system. Figure 5b illustrates an unstable limit cycle. It is

called unstable if all near trajectories both from the inside and from

the outside approach the limit cycle as time approaches minus
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infinity, in the other words, all near trajectories move away from the

closed curve. Figure 5c illustrates a semi-stable limit cycle. It is

called semi-stable if all near trajectories on one side of the limit

cycle approach it as time approaches infinity, while those on the other

side of the limit cycle leave it. For nonlinear systems, limit cycles

do not depend upon the initial conditions.

Stable
limit cycle

(a)

cycle
mittaAle

Uns
li

(b)

Figure 5. Limit cycles.

Semi-stable
limit cycle

(c)

There are several theorems which aid the analyst in determin-

ing the existence of limit cycles [15]. For example, Poincare has

shown that within any limit cycle the number of node, focus, and cen-

ter types of singularities must exceed the number of saddle points by

one A second example is Bendixson's second theorem [see Appendix

which states that, if a path stays inside a finite region D and

does not approach a singular point, it must either be a limit cycle or

approach a .1.1-1(1, cycle asymptotically.
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Liapunov's second method has also been applied to the case of

systems with limit cycles. There are many papers written on the

determination of the limit cycle of the Van der Pol equation with the

use of Liapunov's second method. Such papers are due to LaSalle

[11, 12], SzegO [18, 19, 20], Infante and Clark [8], Goldwyn and Cox

[6], and etc.

Definite and Semidefinite

The Liapunov function is given the symbol V(x). There are

two important types of the function V(x) which are the semidefinite

and the definite forms . Let II x II , the norm of x, be the Euclidean

length of the vector x, or II x 112 = xi 2+ x + . . . + xn2 .
2

Positive [Negative] Definite

The function V(x) is definite in a neighborhood about the

origin if it is continuous and has continuous first partial derivatives,

and if it has the same sign throughout the neighborhood, and it is no-

where zero, except possibly at the origin. In brief, a scalar function

V(x) is positive [negative] definite if, for IIxll 5h, we have

V(x) > 0 [V(x) < 0] for all x 0 and V(0) = 0.

Positive [Negative] Semidefinite

The function V(x) is semidefinite in a neighborhood about the
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origin if it is continuous and has continuous first partial derivatives,

and if it has the same sign throughout the neighborhood, except points

at which it is zero. In brief, a scalar function V(x) is positive

[negative] semidefinite if, for < h, we have V(x) > 0

[V(x) < 0] for all x 0 and V(0) = 0.

In the preceding definitions, h may be arbitrarily small, in

which case V would be definite in an arbitrarily small region about

the origin. If h is infinite, V is definite in the whole state

space.

Indefinite

A scalar function V(x) is indefinite if it is neither sign-

definite nor sign-semidefinite, and therefore, no matter how small

the h is, in the region jjx11 <h, V(x) may assume both positive

and negative values.

In general, the simplest positive definite function can be written

as a quadratic form

V(x) =

i=1 j=1

a..a..x.x., a. = a..
13 1 J1

An alternate expression of V(x) is

V(x) = x'Ax, a.. = a..
J1

(24)

(25)
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where x is a column vector, x' is its transpose, and A is a

square symmetric matrix. The necessary and sufficient conditions

in order that V(x) be positive definite were given by J. J. Sylvester.

They are that all the leading principal minors of A [also called the

discriminants of the quadratic form] be positive, that is,

all > 0,
all a

12

a2
1

a 22

> 0, . . . ,

all a12 . aln

a21 a22 a2n

and ant ann

> 0

The proof of this theorem can be found in Bellman [1].

In addition, Liapunov's second method requires consideration

of the time derivative of V(x) along the system trajectories cor-

responding to Equation (9). The time derivative of V(x) is

dV av av - av
V(x)

TIT
1 2

x2 axn n

av av 3VX (x) + x X (x) + + X (x)
aax, 1 axn n

2
z

= (vV)'; (26)

where 71,T is the gradient of V(x), that is,



vV =

av
axi

av
axn

20

vV (grad V) is a vector with a direction which is normal to the V

surfaces (defined positive in increasing V direction) and a magni-

tude which is a measure of the rate of increase of V with respect

to the space coordinates.



21

IV. LIAPUNOV'S STABILITY THEOREMS

Liapunov's direct method is a mathematical approach to derive

stability information about a system without solving the differential

equations. It is a generalization of Lagrange's theorem of minimum

potential energy to establish a condition of stable equilibrium. A

large number of theorems which are related to Liapunov's direct

method have been written by many authors, such as Hahn [7],

Ingwerson [9], Kalman and Bertram [10], LaSalle and Lefschetz [12],

etc., Those theorems are defined on the same principal ideas and

theorems of Liapunov, and some theorems are developed. The fol-

lowing Liapunov's stability theorems which will be given here without

proofs are concerned with the system of Equation (9) whose equilibri-

um state is at xe = 0. They are based on the notation of sign-

definite functions. The proofs of the theorems can be seen in the

works of LaSalle and Lefschetz [12] and Kalman and Bertram [10].

Stability Theorem

For a system of Equation (9), if a V function of definite sign

dVcan be selected such that its time derivative dt is merely semi-

definite and opposite in sign, then the system is stable but not neces-

sarily asymptotically stable. This is applicable only in an arbitrarily

small region about the origin.



Asymptotic Stability Theorem

From the above stability theorem, whenever dV
dt is actually

22

negative definite in the region, then the origin is asymptotically

stable. Schultz and Gibson [17] have also defined that if there exists

a scalar function V(x) with continuous first partials so that

1) V(x) > 0 for all x 1 0 (positive definite)

2) V(x) < 0 for all x (at least negative semidefinite)

3) V(x) is not identically zero on a solution of the system

other than the origin (x = 0).

Then the system described by Equation (9) is asymptotically stable.

And if,

4) V(x) 00 as x II

then the system described by Equation (9) is asymptotically stable in

the large or globally asymptotically stable.

Instability Theorem

For a system of Equation (9), if there exists a positive definite

function V(x) in a neighborhood R of the origin where V(0) = 0,

and if V is positive definite on R, then the origin is unstable.
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V. THE APPLICATION OF THE VARIABLE-GRADIENT
METHOD FOR GENERATING A LIAPUNOV FUNCTION

FOR THE VAN DER POL EQUATION

The problem of stability of the Van der Pol equation from a cer-

tain equation will be investigated by means of the second method of

Liapunov which will enable us to locate the limit cycle.

When the second-order system (special case of Lienard's equa-

tion)

xl x2

x2 = -g(x) f(x)x2 (27)

is considered, the existence of the limit cycle of the first kind in a

phase-plane has been shown by Levinson and Smith [13] with the con-

ditions as follows:

1. f(x) is an even function such that for the odd function

F(x) = J xf(x)dx
0

(28)

there exists an x0 with F(x) < 0 for 0 <x < xo, and

F(x) > 0 and monotonically increasing for x > x0.
0

2. g(x) is an odd-differentiable function such that g(x) > 0

oo

for x > 0

3
pGO

f(x)dx = g(x)dx = 00
0 0

(29)



To satisfy the above conditions, a certain equation of second-

order system can be written in the following form:

x
1

= ax
2

= X
1

(x
1
,x

2
)

x2 = + µ(c -xi )
px2q = X2(xi, x2)

24

(30)

where r is positive even integer, p is positive odd integer and

q is introduced and assumed to be positive odd integer for further

purpose; a, b, c and p. are positive numbers. Here, for the Van

der Pol equation, we have a = 1, b = 1, c = 1, r = 2, p = 1 and

q= 1.

By applying Bendixson's negative criterion [see Appendix A] to

Equation (22), we have

Therefore,

ax1

axl = 0

ax2
ax p.q(c-x

1
r)Px (2 1-1

ax
1

ax
2 , p -1

ax 1-x1 -x1) x2q
1 2

(31)

(32)

We can see that the expression of Equation (32) does not change sign

in the strip - I rNrc
IrI

<x 1
According to Bendixson's negative

criterion, we can conclude that this strip does not contain the (stable)



limit cycle. From here, we introduce Liapunov's second method

which requires consideration of the time derivative of V(x) along

the system trajectories corresponding to Equation (30). We let

fax ax
2

V(x) = + ax P(x)ax ox2

25

(33)

where P(x) is a proper positive or negative definite (semidefinite)

function to be chosen. We have already proved that the expression
r-+ does not change sign in the strip -1k171 <x1 < r c I,axl ax

2

then, by multiplying this expression with a function P(x), we will

obtain the function which is positive or negative definite (semidefinite)
2according to that of P(x). Let P(x) = x2,

(32) and Equation (33), we obtain

then from Equation

V(x) = p.q(c-x1r)Px2+1 (34)

which is positive semidefinite in the strip I 1471 < x1 < I 147I and

negative semidefinite outside of this strip.

Now we apply the variable-gradient method for generating

Liapunov functions [see Appendix B] to Equation (30) as follows:



V(x) = (vV)1X

av
av

a ax2

= [vV
1 vV 2]

26

(35)

Then V(x) can be obtained uniquely from a line integral of a vector

function vV under the condition that the curl equation

avV
1

avv2

ax2 ex
1

must be satisfied for this second-order system. Equation (35) be-

comes

V(x) (vVi)ax2 - (vV2)bxi + (vV2).1.(c-x1r)Px2 (36)

Comparing Equation (36) with Equation (34), we have

and

vV2 = qx2 (37)

(vVi)ax2 - (vV2)bx, = 0 (38)

Solving Equation (37) and Equation (38), we obtain



With VV =
1 a

qbx1

is satisfied.

vV
1

= ax2

(vV2)bx1

(qx2)bx1

ax2

qbxl
a

and VV2 = qx2, the curl equation

avv
1

avv2

ax
2

axl

Finally, from Equation (B-7) in Appendix B, we obtain

xl x2

V(x) = vV
2
dx

21Vldxl +
0 0

1 qbxi

a dxl +
x2

0 j0
2

bx1
2a[ + x ]

2 a 2

qx2 dx2
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(39)

(40)

which is positive definite and its time derivative is positive semide-

finite in the strip - +I <xl< i rr
c

,

From Liapunov's Stability Theorems, since V(x) > 0 and
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V(x) > 0 in the strip I rfc I <xl < IN/ c I, we can conclude that the

solution of the system of Equation (30) travels in the direction of in-

creasing V(x) inside the strip. But when it leaves the strip region,

V(x) turns negative, it will travel in the direction of decreasing V(x).

We can also conclude that no closed trajectory (limit cycle) remains

in the strip - I V7I < x
1

< Ik171. In addition, from Liapunov's In-

stability Theorem, the origin of the system as in Equation (30) is not

asymptotically stable.

The results are indicated in Figure 6, 7 and 8 which were taken

directly from analog simulation.
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X

Figure 6. x-x curves for x - p.(1-x2 )x + x = 0, with H. = 0.1.
(Error of the curves is due to the computer. )



Figure

x

7. x-x curves for X - p.(1-x2
)x

(Error of the curves is due
+ x = 0, with 11= 1.0.
to the computer. )
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Figure 8. x-x curves for x - p.(1-x 2
)x + x = 0, with p.= 4. 0.
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VI. CONCLUSION

The Van der Pol equation with the variable-gradient method of

generating a Liapunov function [17] for identifying a limit cycle has

received particular attention in this paper. The method is based upon

the assumption of a variable gradient function with the unknown ele-

ments of each of the n components of the variable gradient being

determined from constraints on the time derivative of V and

(n-1)
n /2 generalized curl equations. The V-function and its time

derivative obtained in this paper are the same as that presented by

LaSalle and Lefschetz [12]. LaSalle has first assumed the V-function

without systematic derivation but with the systematic method contrib-

uted by Schultz and Gibson [17], the V-function can be derived and V

is constrained to be positive semidefinite in the strip -1 < x
1

< 1 by

applying Bendixson's negative criterion. The information on the

region of asymptotic stability of the Van der Pol equation has been

presented by LaSalle [11].

In conclusion, through the study of the stability of the Van der

Pol equation with Liapunov's second method, the major difficulty is

in finding a suitable Liapunov function. It seems to the author that

i:}-1 the variable-gradient method by Schultz and Gibson [17] this

major difficulty is reduced and the great advantage of this method is

:nat it can be applied to higher order systems.
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APPENDIX A

Bendixson's Criteria for the Existence of Limit Cycles

Bendixson's theorem [5, 15] states that if a trajectory re-

mains in a closed bounded domain D without approaching a singular

point (equilibrium position), then the trajectory is either a closed

trajectory or approaches a closed trajectory. This theorem gives

sufficient conditions for existence of a closed trajectory-limit cycle.

Its principal limitation is the difficulty of determining the domain D

satisfying the requirements of the theorem. In the case of the domain

D bounded by two closed curves C1 and C2, as illustrated in

Figure 9 below, it is sufficient for the existence of a limit cycle that

1) Trajectories enter (leave) D through the boundary C1

and C2.

2) C1 and C2 contains a singularity or singularities but

there are no singular points in D.

Figure 9. Illustration for Bendixson's Theorem.
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There is also a test developed by Bendixson, sometimes called

the negative criterion of Bendixson, which does not give sufficient

conditions for the existence of limit cycles. It says: if the expres-
ax

sion ax
1 t

2

2 of equations
1

xl =
(A-1)

x2 = X2(x1, x2)

does not change its sign within a region D, then no closed trajec-

tory can exist in D.

This theorem can be proved as follows: from Equation (A-1)

or

dx
2

X 2(x1, x2)

dxl Xl(xl, x2)

X
1
dx

2
X

2
dx

1
= 0 (A-2)

which describes a relationship that must exist along any solution

trajectory in the state space. Gauss' theorem states that a surface

integral over a complete domain D is related to the line integral

around the closed path C
0

which is the boundary of the origin:

(A-3)
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In a limit cycle C
0

is assumed bounding the region D, the inte-

gral is zero everywhere on CO, this could be true if the integrand
(axi ax2

ax
1

+ ax
2

of the double integral changed sign within D, that is,

must change sign within D.

Hence, the criterion is proved.



APPENDIX B

The 'v. r'iable-Gradient Method for Generating
Liapunov Functions

As the name implies, the variable-gradient method is based

upon the assumption of a vector vV with n undetermined com-

ponents. The gradient of V, written mathematically as

av av av avvV-
8x1 axz 8x3

38

(B-1)

can be employed to compute both V and V. As already men-

tioned,

or

dV av av avV = = x + --x + + --xdt ax 1 ax2 2 ax
n

n
1

(B-2)

V = (vV)'x (B-3)

where (vV)' is the transpose of VV, and x is as defined in

Equation (9).

The Liapunov function V can also be obtained as a line inte-

gral of VV, i. e. ,

V (vV)Idx
0

where the upper limit of integration implies that the integral is

(B-4)
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extended to the arbitrary point (x1, x2, , xn). It is shown in

standard texts on vector calculus that, for a scalar function V

to be obtained uniquely from a line integral of a vector function vV,

the matrix formed by avVi/axi must be symmetrical; that is

avvl avv
2

avvn

ax
1

ax
1

axl

avv1 avv2

ax
2

ax
2

avv avv
2

avV
n1

ax ax axn ax
n

(B-5)

must be a symmetrical matrix. The condition of the matrix (1. is

thus a generalized curl requirement for the n-dimensional case, that

is,

avV. aVV,

ax. ax.
3

(i, j = 1, 2, , n) (B-6)

The integral of Equation (B-4) can now be written as
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x1,(x2=x3=...=x
n
=0) x2, (x =x ,x3=x4=...=xn= 0)

V vV
1
dx

1
+S vV dx

2
0 0

x ,(x ,x ...,x
' n- 1Xn- 1 )

+ + J vVndxn
0

(B-7)

where the components of the vector vV in the x. direction are

vV.. In actually mechanizing the technique, a gradient of the form

VV =

al
1
x

1
+ a

1 2
x2 + . . . + alnxn

a
21

x
1

+ a
22

x2 +

a , x , +an . + 2xn

(B-8)

is chosen. With no loss of generality, the a.. coefficients are re-

stricted to be functions of x. along, with the exception of ann

which is equated to the constant 2. The a.. elements are chosen
11

positive to increase the probability of obtaining a positive definite V.

With the exception of ann, the remaining a..'s form undeter-
11

mined quantities. Further, it is assumed that each a.. consists of

a constant part a.. together with a number of variable termsijk

a.. , which are functions of the state variables up to and includingijv

the (n- 1) variable, that is,



= a + a (x , x2, ,x )ijk ijv 1 2 n1
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(B-9)

Substituting Equation (B-9) into Equation (B-8) yields the most

general form of the gradient function. Thus

(al lk+ a 1 1 v)xl + (a12k+ al2v)x2 + . . . + (a
I nk+ a I nv)xn

(a 21k+ a 21v)x
1

+ (a
221c+ a 22v)x2

+ . . .

(an lk+ an I v)xl +
n

(B-10)

To this point, then, the steps in the variable-gradient method

of determining a suitable Liapunov function are:

I. Assume v'V is of the form illustrated in Equation (B-10).

2. From VV, determine V from Equation (B-3).

3. Constrain V to be at least negative semidefinite.

4. Use the equations implied by the statement that must be

symmetric to compute the remaining unknown coefficients

in VV.

5. Determine V from Equation (B-4), and verify V since

the addition of terms required in Step 4 may have altered

the original V.

6. Determine the region of closedness of V.


