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DESIGN CRITERIA TOR

LONG CURVED PANELS 07 SANDWICH CONSTRUCTIO N

IN AXIALCO=SSION1

By E . W. KUENZI, Enginee r

Summary

This investigation was conducted at the :crest Products Laboratory

to establish design criteria for curved plates of sandwich constructio n
under axially compressive loads .

The axial buckling strength of a well-made, long, curved plate o f
sandwich material may be computed by adding the critical stress of a com-
plete cylinder, of which the plate may be considered a part, to th e
critical stress of a flat plate having the same dimensions as the curve d
plate . The stress at which crimping of the entire sandwich will occur i s
equal to or greater than the computed critical stress, provided there ar e
no structural defects . The analysis presented includes methods of calculat-
ing the critical stresses when the facings are stressed beyond the
proportional limit .

Introductio n

Attempts Have been made to analyze mathematically the behavior of a
curved elate under axially compressive loads . No adequate mathematica l
analysis has yet been developed that enables the designer to calculate th e
critical loads of curved sections . Available formulas are based upon th e
assumption that the critical stress of the curved plate is determined b y
some combination of the complete-cylinder and flat-plate theories .
Lundquist? stated that the critical stress is equal to either tte critica l
stress of an unstiffened cylinder o the same radius-thickness ratio as tha t

'This report is one of a series of progress reports prepared by the Fores t
Products Laboratory . Results here reported are preliminary and may b e
revised as additional data become available .

	

A
2
-Lundquist, Eugene E ., "Preliminary Data on Buckling Strength of Curve d

Sheet Panels in Compression," NACA, November, 1941 .
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of the curved plate, or the critica l - "stress for the-same plate when flat ,
whichever is the larger . Redshaw arrived at an expression that can b e

	

written

	

-

P c r

	

I12 + 4 2 .+ 2 P

where,
p cr = critical stress of a curved :?lat e

`'1 = critical stress of a complete cylinder of same radius a s
the curved plat e

	

p

	

- critical stress of a flat plate of the same size as th e
curved plat e

Wenzel' presented the empirical 'relation that the critical stress of _the
curved plate is equal to the sum of the critical stress of a complet e
cylinder and that of a flat plate of the same size as - the curved plate .

Lundquist, Redshaw, and Wenzek were concerned with plates of soli( z ,
isotropic material's .' The behavior-' of a plate of sandwich construction
involves the possibilities of crimping (fig . 1) and wrinkling of the facin ,
in ' addition to the formation of large buckles, the buckling at facin g
stresses-above the proportional limit, any of the reduction of critical
stresses•due to. the low shear modulus of the-core.

The object of the work reported herein was to establish, desig n
criteria for curved plates of sandwich construction . Formulas are develoe,'
for calculating the compressive strength when buckling or crimping failure s
occur either below or above the proportional limit stress of tat : facing
material .

. Development of Formulas

ava.ilable'thec*ies assume the critical stress of a carved plate to be
, some combination of the critical stresses of a co: lete cylinder ana a -fia t

, plate . The theory of Ltindquis't2 gave values that are lo ws compared to thos e .
of experimental data in which the computed critical stresses of th e
equivalent flat plate and cylinder are nearly equal . Values by aedshav' s
theory are also too low, compared to such data, although they are hip_ ;her
than those given by Lundquist . The formula that agrees beet with the
experimental. data of ,this report is -thp .t presented by Wehzek .

Redshaw, S . C . ; "The Elastic Stability of a Thin Curved Panel Subjected t o
an Axial Thrust, Pt'S Axial and Circumferential Edges Being Simpl y
Supported," R. & M. 1565 .

4We•nzek, N . A., "The effective Width of Curved Sheet after Buckling," : AC:i .
Tech . liemo . No . 880, November, 1'138 ,
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Notation
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The following notation is use d. :

' a = width of plate, measured in the circumferential direction .

b = length of plate, measured in the axial direction .

•~~ c = core thickness . As a subscript, "c" refers to the core .

= Young's modulus of elasticity of the facing material .

Et = tangent modulus of elasticity of the facing material .

-'1a = apparent compressive modulus of elasticity of the sandwich ,
measured in the axial direction .

~ El = apparent bending modulus of elasticity of the sandwich ,
.

	

Measured in the axial direction .

E2 = a pparent bending modulus of elasticity of the sandwic h
measured in the circumferential direction .

f = facing thickness . As a subscript "f" refers to the facing .

h = total thickness of the sandwich .

p = mean theoretical buckling stress of a flat plate of width "a "
+ and length "b" .

pi = mean theoretical buckling stress of a thin-walled cylinde r
of radius of curvature "r" .

per = mean theoretical buckling stress of a curved plate .

r = mean radius of curvature .

= mean compressive strength, over thickness "h" ., at the
compressive strength of the facing material .

r

	

:# SP . = mean compressive stress, over thickness "h", at th eeal
proaortional limit stress of the facing material .

0-) ,i where a- i Poisson's ratio .

According to Wenzek the buckling stress of a curved plate is give n
by the formula

-fl



where pi is the critical stress of a complete cylinder of which the curve d

plate can be considered a part, and R . is that of a flat plate of the sam e

dimensions and materials as the curved ' plate .

Cylinder Theory .

	

yf

The.,theoret .cal as well . as. ,the experimental . treatment of the bucklin g
of plywood cylinders under axial compression has been published in Fores t

Products Laboratory reports Nos . 1322, 1322-A, and 1322-8, . :jhe resulting
form of the equation giving the critical stress is

t

If the facings and core of the sandwich areisotropic, the theor y
of Re)ort No . 1322-A leads td the formula (see derivation in Appdndix )

pl = 0 .2426 LtE . Elh
r

3

	

(2 )

If it is considered that the core positions the facings but does no t
contribute to the stiffness of the sandwich ,

3
El =E(l -- -)

h

The accuracy of these formulas can be-illustrated by comparing the com-
puted values of_ Ea and El with t 4e values obtained , from tests of coupons ,

As an example the values of Ea and El will be computed for a sandwic h

having 0 .012 inch aluminum facings on a 1/8-inch core . The total thick-
ness . will•be about 0 .153 inch--allowing 0 .002 inch for each glue line .

Then
Ea = 107 1 _

	

(0 .129) _ 1,570,,000 pound s
0 .153

7 0 .129 . ~~

per square inch .

.
El

= 10 Cl _ ( 0.153 ) = 4,010,000 potuzds

per square inch.
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The average values obtained from test coupons ar e

Ea = 1,490,000 pounds per square inc h

E1 = 4,110,000 pounds per square inc h

The theory (Report No . 1322-A) presents the following formula fo r

El
plywood cylinders, for which the value of the ratio

	

	 1	 lies betwee n
El + E2

0 .3 and 0.6 (^ig. 1 of Forest Products Laboratory Report No . 1322) ,

p1 = 0 .12 ET h
J r

For plywood it is known that E 1 + E2 = EL + ET , where EL and ET

are the elastic moduli of the wood in the longitudinal and

	

tangential

directions, respectively . Since ET is only about 5 percent of EL , the

value of ET may be neglected and the formula become s

P1 = 0 .12 (El + E2) h
r

This equation can be .obtained from the theory in Report No . 1322-A

by replacingEL by E1

	

E2 ) . in formulas 48, 49, and 50 of that report .

Formula (3) can be appldAd :Ao sanawitk-

	

nations having facings o f

(3)



Flat-plate Theory

The theoretical .traat.ment of the buckling , of flat plates has bee n
published in Forest Products Laboratory Report No . 1525 . The theory
includes isotropic and orthotropic materials .

The theoretical criticalu sit,re.ss of a flat plate is given by th e
equation

p =

	

\1El

	

2

	

(4 )

a

This equatjoii is obtained from,fs2rmul&.6 of Forest Products Labo-
ratory Re_o rt No .' 1525 by replacing Dl and D2 (notation from ReL ort No .
1525) by the equivalent expressions „lh3 and E2h3 , respectively, an d

12.',N.

	

12k

	

,
dividing the load (per ) per inch of edge by the thickness (h) to obtain p i n
mean stress units . The constant k was determined for panels simply sup-
ported on four edges by use of the curves of figure 2 , of Report No . 1525 .
For this purpose values of K were computed from formula 8 of deport No . 1525 .

(K =
, f

2~'	 from formulas on rage 3 of Report No . 1525 .) Values of D 1 and D2

V D1D2
were computed from . the average values,,of E1, and E2 obtained from tests o f
coupons of-sandwich. Values of K were computed from well-established value s
of Ex ,

	

, and
axy

for the materials in question as follows .

-or birch plywood facings-on a quipo core, the value of a was com-
puted to be 0 .37 by assuming for the computation of K tha t

Exf = 2,300,000 pounds per square inch, cyxf = 0 .02 ,

-kf 0'' 99,, 4xyf = '180,000 pounds per square inc h

Exc

	

40,000 pounds per square inch, o

	

= 0 .20, r c = 0 .9' ,

µ'xyc = 26,000 pounds per square inch .

For birch plywood facings on a 1/10- and 2/10-inch pulpb•oard core ,
the values of K were computed to be 0 .29 and 0 .24 respectively, by assuming
for the computation of K that E xf = 2,300,000 pounds per square inch ,
0-yxf = 0 .02, kf = 0.99, k`'xyf = 180,000 pounds per square inch, and that '
the- contribution of the core to K could be neglected.

For specimens with fiberglas facings the value of a was computed t o
be 0.55 by assuming for the computation of K that Exf = 'yf = 2 , 200,0 00
pounds per square inch, °yxf = 0 .20, k f = 0 .96,

1t
.xyf = 400,000 pounds pe r

square inch, and that the contribution of the core to :K could be neglected.

r
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For sandwich constructions having aluminum facings, the value of- K
is 1 .00 as a consequence of the assumption t-Yiat• ''the- facings and core are
isotropic .

Curved-plate Theory

-The critical stress of a curved plate was calculated as .the sum of
the critical stress of a complete cylinder o f . which the curved ,pl,ate could .
be a part, and the critical stress of . a flat plate the same size as th e
curved plate ; that is,

Per

	

pl + P

	

(1 )

where pi and p were obtained as outlined in the preceding paragraphs . .

	

-

The discussion up to this point has assumed that the s ttr.es.ses in th e
facings are below the proportional limit . When't,he stresses exceed th e
proportional lithit, it is necessary to replace the : moduli of elasticity in
the formulas by reduced moduli, one . for the modulus in bending -and anothe r
for the modulus in compression . For the bendi•Rgof sandwich construction
having isotropic facings, the modulus applicable when the strepses in th e
facings are below the proportional limit, is . ;.to be replaced by the reduce d

22Et

	

.

modulus E =	 when these stresses are above thel .nroportional''-limit .
r E +Et

This expression was derived at the Forest Product s. Laboratory for sandwich,
constructions in the same way as was the similar formula given b y
Timoshe-nko :for solid plates . _5- For the behavior under compressive stresses ,

E + P
the modulus Ea is to be replaced by the redu'ced= modulus   -	 - t , ' which'4is tLre

2
average of the moduli in the two faces at the instant buckling begins . On
the concave side the modulus of the face is E t , while onthe:ionvex side i t
is E .

	

. .

By replacing E l and Ea in formula 2 and El in formula 4 by the corre-

sponding reduced moduli, the following formulas were obtained for calculat-
ing the critical stresses when the'facings are stressed beyond thei r
proportional limit . It was assumed that the facings were isotropic, tha t
the contributions of the core t o, the load-carrying ability of the sandwic h
and to its stiffness could be neglected, and that the reduction in shea r
modulus corresponds to the reduction in-bending modulus .' `

5
-Timoshenko, S. "Theory of Elastic Stability" p . 156, Art . 29 1936.
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E +, Et

	

c

	

2t

	

c 3

	

Q P

	

' r

	

( ,l h}
E
	 +	 E {1 h3 for cylinders and

	

t

	

k

	

2EEt

	

3 h2
P _

	

(1 -

	

for flat plates . These expressions were furthe r
^ E+Et

	

h3 a2 _

simplified to=

p' 1 = 0.2426 /EaEl

k

	

h2
2 t

p,

	

E1 a2	
it

1+ -
E

p '

	

I Et.
E.

= p 1+Et
J

where pi and p are the stresses computed by formulas 2 and 4, respectively ,

and p' 1 and p' represent the critical stresses of the cylinder and fla t

plate above the proportional limit stress of the facing material .

The expression for the critical stress of a curved panel is agai n
given by the sum of the two previous equations as indicated by equation (1) .

or

dJ-
t
E

pcr (5 )

Since the magnitude of the stress in the facings is the factor unde r
consideration, however, this expression can be changed t o

E

	

2
EE.+ p

	

(6 )
Lt1 +
.Lt

h
pcr. f

	

2f pi

where pcr .f is the stress in the facing at which buckling of the sandwic h

will occur .
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2 't
E

	

to pcr .f to be represented by a straight line be•tgee n the propo rE
1+~

t

] +

The straight line 1T is defined by the equation s

mate solution can be obtained by assuming the relation•of both t and
E

E

	

-

	

-

	

-

	

ti .

tional limit stress and the maximum stress . The accuracy-of this assuhptio n
can be seen by referring to .figure 3 . . The curves show that both the

2 yt

Et and	 ratios are fairly well re?resented by the straight line . N .
E

	

Et

There are two unknowns i n , these-equations, the- str.ss•• that is desired ,

and the tangent modulus of the facing material at that stress . Their solu-
tion depends, therefore, upon knowledge of the relation between stress an d
the tangent modulus . Curves showing the relation between-_

	

-
Et
E and the facing stress (p cr . f) for aluminum facing materials are shown i~

n

figure 2 . The points p

	

•4.n that figure represent va'l'ues ;obtained from
the stress-strain data of compression tests . The . curves' :are'd'rawn t o
represent the plotted points . Thus,it,is seen that 'the solution" of equation

E
6 must be such that the relation between pcr•f and t given by this equation

E
is also . satisfied by the cu.rve between pcr , f and

E
A curve representing

the relation of pcr•f to values of
t

can be determined b_ymeans of equation

(6) and plotted in figure 2 . The intersection of this curve 'with the ' _
appropriate curve of figure 2 will give the stress in the facing a t` vnh,e~h: - 7 : r •"::~ r
buckling will occur. .

The preceding, discussion supposes that a stress-strain curve •of the

facing material is available . If such a curve is not available, an .appr.oxi,=

t

p cr . f = - Csf -
Sp i

2 .Et .

E
substituting the expressions obtained in,equation 6, and then

solving for pcr .f results-in :
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pe r .f

	

-( Sf - S oil )-	 E -- ,+- z :S.

1. +'t . . -

	

,

where Sp if and Sf are the •proportional limit stress- n _t're; maximum stres s ' .

of the facing material .. Solving, these :_equations for .i, . -'t

	

and



Pcr, f
(Pl + p / .=- Sf

	

S

(p i + p) 2 Sf
f (7)

Theoreticca1- buckling stre-s'ses for panels having aluminulii facings wer e
computed, by using each of equations 6 and s 7 . A comparison of the results ob-
tained by the two equations can be seen by referring .to figure 44 which show s
that stresses computed by equation 7, in which Sf .- 57,000 pounds per square
inch, and Splf Y 27,000 pounds per square inch, do not differ greatly fro m
the values giveP-i by equation 6 . The line MN was used for both the 24ST an d
the-24$H aluminum-alloys . - Good agreement could - be-expected at 'stresses 'belo w
about 50,000 pounds per square inch because the straight line is a goo d
azrprocimation of the curve 1n that range .

No attempt was made to develop a means of including the effect on th e
critical stresses of shear deformations in the core . Because the plate i s
curved, the wave length of the buckle pattern is unknown ; - and, therefore, an
analysis of the deflections due to shear is exceedingly difficult .

Preparation of Material s

This study was undertaken primarily to investigate the buckling o f
curved panels . Hofsandwich construction . Therefore the specimens were des-igne d
so that they would buckle before the compressive strength of the materia.. .wa.s
reached . For this reason it was necessary to use .rather thin cores so that
specimens -of.,small enough size'in width-and length to fit the testing machine
could be employed. . . . Even though -cores of 1/8 inch thickness, were used it was
necessary to make several specimens as large as 6 feet square to determin e
buckling characteristics of some of the panels having large radii of curvature .

Facing Material s

The materials that were used for the facings of the sandiicn ar e
listed as follows :

Plywood .--The plywood was made of two plies of yellow birch venee r
1/100 inch thick bonded together with a film glue . The grain of adjacent ,
plies was placed at right an gles .

Aluminum.--Sheets of alelad aluminum alloy,24ST were used in thick-
nesses of 0 .012, 0 .020, and 0 .032 inch. Sheets of aluiuinuri alloy 24SH wer e
used in a thickness of. 0 .605 inch .

a
Fiberglas .--The-glass cloth used to make the, facings was/continuou s

filament cloth 0 ;003 inch thick and of a pI&.i'ir type weave with 40 end's to the
inch in the warp and 39 ends to the inch in the fill direction . The cloth
had been treated to remove lubricants, The facings were made of either 3, 6 ,
10, or 16 layers of cloth impregnated with a contact pressure type of resin .
The resin also acted as bonds between the facings and the core . The layers
of cloth were placed so that the warp of one piece was always at right angle s
to the warp of the adjacent piece .
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Core Material s

Quipe .-.-Quipo was used'in quarter-sawn sheets 1/10 inch thick . The

density was from 6 to 11 pounds per cubic foot .

Impregnated fiberboard .--The impregnated fiberboard was a special
lightweight insulating type of fiberboard containing 50 to 65 percen t
thermosetting, spirit-soluble, phenolic resin . The board was used in thick-
nesses of 1/10 or 2/10 inch . The density was from 10-1/2 to 12-1/2 pound s
per cubic foot .

Balsa.--The balsa that was used was fabricated to sheets 1/8, 1/4, o r
1/2 inch thick and was placed so that the grain direction was normal to th e
surface of the sheet . The sheet was made up of blocks about 2 by 4 inche s
in size that were edge-glued to each other with a thermosetting syntheti c
resin glue . The density of the cores was from 5 to 9 pounds per cubic foot .

Cellular celluloseacetate .--The cellular cellulose acetate was an
extruded and expanded cellular cellulose acetate containing about 3 percen t
chopped-glass fibers . The cores were made up of strips 1/8 inch thick and
about 2 inches wide, edge-glued together with a thermosetting synthetirc
resin glue, The density of the cores was 6 to 7 pounds per cubic foot .

Hard spongerubber.---The hard sponge rubber was an expanded, hard ,

synthetic rubber sponge . The cores were made up of strips 1/8 inch thick
and about 2 inches wide, edge-glued together with a thermosetting syntheti c
resin glue . The density of the cores was 6 .2 to 7 .2 pounds per cubic foot .

Manufacture of Specimens

All -specimens ; and matched coupons, were made by the bag-moldin g
process . The specimens were bag-molded to the desired curvature on stee l
molds . The coupons were bag-molded on a flat steel sheet . A. more detaile d
description of manufacturing ~technique and types of bonding materials i s
discussed in the Forest Products Laboratory Report, The Manufacture o f
Lightweight Sandwich Test Panels . "

Test specimens .--The sandwich specimens made of combinations o f
facings and cores as described previously are listed as follows . The pane l
sizes and radii of curvature are shown in tables 1, 2, and 3 .

(1) Plywood facings ; auipo core,--The plywood was placed so that the
grain of the face plies was parallel to the axis of the curved plate . The
grain of the core was placed in the axial direction .

(2) Plywood facings ; . impregnated . fiberboard ere .. aT:heoplywood wa s
placed with the face grain either parallel or perpendi'cudan .to'tb7e axis o f
the curved plate .

(3) Aluminum facings balsa core ..
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(4) Aluminum facings ; cellular cellulose acetate core .

(5. Aluminum facings ; hard sponge rubber core .

(5) Fiberglas facings ; balsa core .

(;7), Fiberglas facings ; cM ular cellulose acetate core .

(8)' iberkl&s ' facings ; hard sponge rubber core .

Coupons .-The coupons were, made of the same combination of material s
and b .:7' the same manufacturing technique as the specimens . They were made i n
a single sheet and finally cut t,o'sizes bf 1 by 4,-1/2 inches for compressio n
specimens and 1 by 18 inches for bending specimens .

Preparation for,Testing

,The edges and ends of the 'specimens with plywood facings were , =saWed
square -ah.d the edges' were fitted with maple guides .

The specimens with aluminum facings were each fitted with four strip s
of thin aluminum 1 inch wide and 0 .02 inch thick, bonded to the facings a t
the loaded edges .- These strips were then covered with 1/8- by 1-inch stee l
bars, which were fastened to the sandwich by means of . 1/4 inch bolts space d
about 4- inches on centers . The ends of the--specimens were then machined .
The addition of the strips of aluminum and steel prevented the formation o f

, sharp wrinkles or- folding under of the facings at the ends of the s , -;ecimens .
Maple guides were fitted to the .unloaded edges of the specimens .

The specimens having Fiberglas facings were fitted with strips o f
thin plywood 1 , inch wide bonded to the facings at the loaded edges . The
ends of the specimen , were then sawed square and true . The-plywood stri p
was added .to . prevent-the facings from .folding under at the-ends of•the .
specimen; Maple giggles were fitted to the unloacded :edges- of the veecimens .

The edge - guides were pieces of maple about•2 by 2 inches in cros s
section with a length about 1/4 inch shorter than the length of the tes t
specimen: ,The guides were grooved in the lengthwise . direction with grooves ,
1/4 inch deep and wide enough to allow them to be slipped onto the edges o f
the test specimen.

Testing Methods

Spec-imens that were not wider than 30 inches were placed on a ':heavy
flat plate, which was supported by a spherical bearing placed on the lowe r
head of a hydraulic testing machine (figs . 5 and 5) . The heads of the
testing machine were then brought together until the sie,cimen. just touche d
the u pper platen with no load indicated :- ' Adjustments were made on the. .
spherical base until no light could be seen between the ends of the ,
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specimen and the loading heads ;• Screw jacks were thien placed under the
lower loading plate to -prevent; tilt-irig of the plate a while the load wa s
being applies }- "b epecimen: - . The load was then appl* ed slowly until .
failure occurred,

	

£r
4

Specimens wider than 30 ' inches. were tested between th e - heads of a
four-screw, mechanically operated, tersting machine . Nro .s'pherical bearin g
was used. The specimens were cut at true as possible . If 'light could b e
seen between the ends of the specimen and the head!4 4f the .:testing machine ,
shims of paper or brass were inserted until the gap was closed . The wide
specimens were also very long; therefore, small irregularities at the end s
were taken up as the load was applied without causing-large variations fro m

uniformity in the stresses in the facings . ,

The coupons were tested in bending and compress'ion to determine the
moduli of elasticity. The bending specimens : were .tested .e er a long span
so that deflections due to shear•were negligible .

	

.eh

a

	

-

	

'

A curved panel of sandwich material loaded in-axial con?riss•io'n .t .y .e
fail in one of five-different ways : (1) buckling, (2) , crtmping (fig . 1) ,
(3) compression failure in the facings, (4) .wrinkling of. the facings, o r
(5) by separation of the facing from the major pek't of the-core

	

The
buckling type of failure is of the general instability type involving-th e
facings and the core-and maybe relieved by _ reducing•th'e-applied load . The
crimping failure is more of a localized bend resulting in shear failure o f
the core (figs . 1, 5, and 6) . Wrinkling of the facings can occur on
specimens with relatively thick and weak cores . . The wr'iAle - in the facing s
moves into or away from the core . Separation of the facings from the core .
appears as a buckle of the face and occurs when bnnding between the facings _
and core is poor . The specific• types of failures of the pa

n
els are

tabulated in-tables 1, 2, and 3,

	

'

The panels with plywood facings failed by buckling .' The buckles . '
were small compared to those observed in the specimens with aluminum o r
fiberglas facings . The failure Was sudaen, - .and, since the travel of th e
movable head of the testing machine could not be stopped instantaneously ,
the buckles observed were very sharp and crinkles in th e: plywood appeared '
at the edges of the buckles .

The most typical failures of the specimens with -aluminum facing s
were buckling or crimping . Figures 5 and 6 show,the,f•crimning type o f
failure, which occurred in many panels of sharp curvature or small size .
The size or sharpness of the crimp seemed to depend somewhat on the thick- ,
ness of the facings of the specimen . This can be seen by 'ceEparing the
failure of the panel having facings 0 .012 inch thick (fig. 5)rvith the, '

-
panel having facings 0,005 inch thick (fig . 6) . Large, slightly dur 'ved
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panels ;.failed :by b cleling .; Aim air ct ;•ratio of the buc l•es was about 1 .0 .
Either type of failure caused an , ' maAd t,e ,drop i.n the load . Many of the
specimens wese :so damaged by the =f.®.itre ia0at . the lead droppod to zero afte r

- failure .

- The:Tmels, :havjig fiberglas facings .- fiaiied by buckling, ,by crim,;dng ,
or by `E-omRnOPttgn failure -of the facings,. Tk,e cempr€scion failures some-
times pcc'Ored. after buckling Most of t#e . pane:ls . having facings of
fiberglas fai l-qd :by . bruq*1t4ge

The failures•_j'us-t described were for panels that were sound. .he
results for ;•a"1hespecimen4,., sound-~or'-defec•tivie-,• are presented in the tables ;
but the curves.of figures 7, 8, 9, and 10 show only the-results of :the

	

-
tests on sound panels . Some of the defective panels were known to contai n
unborided areas before they were tested . Other spe fMen.s• that exhibited n o
defeats prror .-td testing, failed 'by-facing separation or crimping during
test, and their'defects were found by ex. mThation of the panel after testing .
The only defect responsible for the failures at'low stresses was that o f
poor bonding of the facings to the core . In some instances where unbonde d
'areas were known to exist, attempts were, male.' !C, reglue these areas, but
the attempts were not always successful . The defective specimens-were thos e
that were manufactured early in the investigations of sandwich constructions ,
during the-period when manufactur-ing-techniques were being developed : Panel s
made at a later, date were not defective if the proper materials were use d
and' proper manufacturing techniques'care :.fully followed.

Presentation and Disoussion of Data

The experimental results and t.he- results of theoretical comutation s
are .presented in -tables 1, 2, and 3 . The for.inulas and constants, used t o
obtain - the .theoretica], values in the tables were given in the section o n
development of -formulas . Table 1. contains the data for sandwiches wit h
plywood facings ; table 2, aluminum facings ; and table 3, fiberglas facings .
The resulting -theoretical stresses are plotted against the experimental
values .in figures 7, 8, 9, and 10 .

A preliminary analysis of the data was wade on-the assumption tha t
the curved-•ielate would .behave the same as a complete cylinder . The buckling
stresses, were computed ,by the formula

pelf = 0 .2426

	

'JaE,

	

•

	

r

	

2f.

	

E

A comparison between this computed stress and the experimental value may b e
seen by referring to figure 7 . The scatter of points above the line
representing (experimental stress) _ (theoretical stress) indicates that
the theoretical values are too low. -
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i

The results of the final analysis, wh gh ;assumet that the .critircal'. '
stress of a curved plate is equal to the cri-tica stress of a complete
cylinder p lus the critical . stress of. a- flat plate ( '''enzek's theory), ar e
presented in figures 8, 9, and 10 . , A comparison of =the-iio 'ition of th e
points shown on,figu.re 7 with those shown, on figure 8 indicates that the
addition method is not -too -far in -error .

The test data exhibit -considerable variabili'ty,' hes4 a riations
are usually due to the presencelof small-irregularities . :_n the surface . 'or
in the cross section of the specimen . A considerable . discussion of the .
effect of these irregularities upon the critical stresse's. : was , given in'
Forest Products Laboratory Repo. t- No . 1322-A,-- ' I Bickling 'of Long, . Thi n
Plywood Cyliwievs in Axial Comp•4ession ." Graphs of the -results of tests On
plywood cylinders and plywood curved plates are : reproAuced in:.figures . 11 -
and 12 herein .

A review of the result-s df the tests on . sandwich materials as
presented on the graphs ._ of figures 8, 9,-10 shows that the magnitude of at

the scatter is somewhat different for-different 'sandwich constructions.
For sandwiches of aluminum or fberlas facings• oh- balsa cores- ( fig. 8)`
the trend of the data may be fai}r1y - repre•sent'ed by the theoreti-cal- line .
The data representing specimens with the same kinds . ..of facings on cellular
cellulose acetate or hard sponge rubber cores (fig . .9) show experimenta l
values to be a considerable amount lower-thaw-the theoretical ones:•-' The
results of tests of sandwich materials having plywood facing 's (fig ; '• X10)'
show experimental values about equal to theoretical values for low s .t•ie :'osc s

, but much higher than theoretical values fo-r .higher stresses .

- The data for the specimens having balsa cores agree well• wtth . .t.heory .

except for one point on the extreme right of figure 8 : } This•po 'n't,.

	

.
represents a- specimen having a -1/2-inch core . The , ratio of the experimental' '

critical stress to the theoretical critical stress for this specie wa'' -

less than similar ratios for thiJnner specimens with the same length, width,
and curvature . Therefore, the correction due to shearing defomations i s
likely to be greater for this specimen than,that .for the specimehs having
the thinner cores . No method has yet been--devised-to correct th e
theoretical critical,-stress of a curved plate for the effect of shear
deformation . This specimen with a 1/2-inch core might need a correction of
about . 20. percent .

The specimens having cellular cellulose acetate = or hard spong e
rubber cores showed lo w er critical stresses than the theorT predicts (fig .
9) . The shear moduli of the cores of these specimens are lower than tha t
of balsa wood.; therefore some correction fore shear deformation may b e
needed . The modulus of elasticity in the direction normal--to-the•plane of'• '

the sheet of these cores is also lower than that of balsa ; therefore ,
incipient dents , or buckles, which may have,.caursed the early failures, mere
probably larger in these specimens than in those with balsa cores,

{
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The experimental values of the critical loads of the specimens wit h

plywood facings were somewhat higher than theoretical values . Thes e
plywood facings were relatively thicker than the other types of _°acings anu ,

therefore, had smaller incipient dents or buckles . A discussion on page 2 5
of Forest Products Laboratory Retort No . 1322-A shows that it is possible ,
for the critical stress of a specimen to exceed the minimum as determine d
by formula (3), p rovided the initial imperfections are very small . The
theoretical values of the stresses also may be low because the behavior o f
the plywood at stresses greater than the proportional limit may not hav e
been adequately taken into account by the use of equation (7) .

The type of failure of the sandwich depends upon the elastic proper -

ties of the facings and core, the relative thickness of the facings an d
core, and the magnitude of the small irregularities of the facings . The
crimping type of failure, which was observed in many of the sandwiches wit h
aluminum facings and in some panels of other constructions, occurred at o r

above the critical load of the panel . A crimp can appear if a large imper-
fection develops and causes severe bending stresses in the sandwich and ,
therefore, high shear stresses in the core . The crimp may cause a shea r
failure in the core . Most of the sandwich specimens were well-constructea ,
and the initial irregularities were small ; therefore the facings did no t
crimp until buckling occurred because no appreciable amount of bending wa s

developed before buckling .

Sdme of the panels with cellular cellulose acetate or hard sponb e
rubber cores failed by crimping at very low loads . These panels ha d
blisters in them immediately after manufacture, but after the panels wer e
cooled the blister contracted and could not be detected . It was no t
ascertained whether the blister was located between the facings and core s
or whether the cores failed in tension normal to their plane . Thes e
specimens were manufactured during the early period of the study o f
sandwich constructions . The best gluing techniques were not establishe d
at that time .

No theoretical estimate of the loads at which separation of th e
facings occurred could be made because of the great number of res ;,onsibl e
.,causes, such as insufficient strength of the bond between the facings an d
the core, weak core, large initial imperfections, and localized weakness i n
the facings,

Conclusions

Results obtained in the study, as given in the foregoing discussion ,
lead to the following conclusions .

The axial compressive strength of a long curved plate of sandwic h
material may be computed by adding the critical stress of a complet e
cylinder, of which the panel can be considered a part, to that of a fla t
plate identical in size and construction to the curved plate .
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Buckling at stresses greater than the proportional limit may b e
computed by either of the two methods presented .

Panels of sandwich material with weak cores may buckle at stresse s
lower than stresses computed by these methods .

Poor bonding of the facings of a sandwich to the core will caus e
failure at very low loads .

Crimping types of failure occur at loads equal to or greater tha n
the computed critical loads, provided the panels have no structural defects .

Appendi x

The derivation of formula 2 from the mathematics of Forest Product s
Laboratory Report No . 1322-A is presented in the following .

If it is assumed that the facings are isotropic and that the contri-
bution of the core to the stiffness and load-carrying ability of th e
sandwich can be neglected, then

Ec =O

	

0-c=0

	

µc = 0

Ex = Ey = Ef

Ea = Eb = 'f (1 - c) -= Ef 2f
h

3Fl = E2 = Ef ( 1 - c` )

h

and eq uations 2 of Forest Products Laboratory Report No . 1322-A become

(K' x) f =

	

(e' er + of e' yir

T,

(Y' )f = of (e' yy
+ °f e' xx )

f

(X I ) f

	

'- f e 'y -

	

xy'

( 2 )
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and equations 4 become

E

X' x =

	

( e lm + of

E
'`'v =

	

(e'yy + cf e' xx )
XT

X'y Pf -a et xy
f

Then solving for e' ,

e t

	

= R~ 1 - -D
xx

	

y
Ea

	

a

1

	

fe ' T = Yy Ea - Xx Ea

e'

	

, Ef 1
xy

	

y 'Ea !`f

From equations 10 of Forest Products Laboratory Report No . 1322-A ,

(7 )

02F

~y2 '
x

	

a
v

x 6y

(10 )

Then by introducing (10) in (7) and substituting the results in (11) o f
Report No . 1322-A, the left-hand member of the eo.uation for the stres s
function (equation 12, Report No . 1322-A) F is obtained as follows :

a FA	 + B a4F+ 0	 F '
8x4

	

8y4

	

ax2 y2

where
A = B = 2

Ea

Ef,

	

2of

	

20 =	 -

	

_
Ea,'f

	

Ea

	

1 a

.'f
- 2(1+ c f. )

since

and

for the sandwich construction .
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The next step is to evaluate the constants in terms of Properties of
the sandwich construction so as to determine the values of K1,~K2, etc ., of

equation 39 of Report No . 1322-A . A, B, and C have been found. The con-
stant N is found as follows : For plywood, N = EL °tL + 2 X.LLt from

equation 33 of Report No . 1322-A. Since N is associated with flexural energy
of deformation, it becomes for sandwich construction, if the contribution o f
the core is neglected,

3
N = [Ef +2 f ]Cl _

Ef
But since A = (1 - 0-2f ) and µf

= 2(1 + o -f )

3
N = Ef (1 - -) = El = E2

11.3

Since the material is ass :med to be

	

otropic, the aspect ratio (Z )
of the buckle is unity, and equations 39 of rRe ox-tij,No . 1322-4 become

100-Ea

-100K 2 _
Ea

K

	

= 43

	

Ea

K4 = 8E1

c .
If y. (i = 1, 2, 3, 4) is substituted for ? it equat.ioh 44 of - .

Ef

pr -

Efh

Re,)ort No . 1322-A, there result

s )

	

Y2
( 3 e+ ~o)

	

)'3

	

74 7)~ ,.( - 'fa )

Let pr = k ,
Efh
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and equatibn (44) can be reduced to equation (52) on page 26 of Report No .
1322-A by the methods described therein and is : }

('

	

1/2
k = [ 2) Y4 (32y1y3 - 9y22 )] 1

4 yic5
(52 )

By determining the values of c1 , c2 , c3 , c4 , and c5 by weans o f

equations (41) of Report No . 1322-A, and then determining values of wl ,

y2 , y3 , and y4 from the relation yi = ~i and substituting in equation (52) ,

~Ea! 1
k = 0 .2426

Mof

Then since pr = k,
Efh

p1 = 0.2426 \EaEl
h

If the center material has the same •properties as the material i n
the facings, the value of E a = J1 = E, and the formula reduces t o

p = 0 .2426E r, which is that derived for isotropic cylinders (page 28 o f

Report No . 1322-A) .
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Table 2 .2-Ax1al-oompresslontots of cursed sssnele of eand2ich cow:traction barlag aluminum facing

Specimen : Total

	

Width Length ;Moan radius :Facing stress :

	

Type of failure

	

Data from tests of coupons

	

: :

	

Theoretical stresse s
number thickness :

	

of

	

:

	

at

	

:3■■■■	
:

	

h

	

002,atUre

	

f•11UW8

	

=

	

ISa

	

13.

	

s

	

P.2

	

P cr . f
: :1 .000 lb . :1 .000 lb .
: - -

	

- -

	

,
1w2222: 2,235

	

Inchon., :1k.per 2o.1x .:

	

61&2_22z.616 . 222 :2613222231112 nor : k._21261&2222
:perso . in.:2.22222A.222a,_24k.

	

Sa. 212,222,22,22222 :gg,.22212,

P221&2: 0200521222 2458aluminum 21122
Cart11221a22,1221-121212balm

18-1

	

0 .147 1 11.7

	

30.0

	

9 .4 : 127,000

	

Crimping many unbonded

	

742

	

2 .109

	

1 .830 I 3.880 : : 4.746 1 .244 i 3,180 t 46,70 0
arsao present before testing :

18-2

	

.133 c 11 .6 [ 26.5

	

10 .4

	

:

	

45,400

	

:Crimping - good bond

	

: :

	

752

	

: 2 .030

	

: 2.030 : 4,280 : : 3,833 t

	

982 t 3.286 1 43 .700
18-3

	

s

	

:142

	

11 .6 : 30 .0 3

	

10.1

	

45 .100	 do	 ' :

	

675

	

1,928

	

2.000 1 4.220 : 3 .699

	

970 : 3 .222 43 .=
19-1

	

12 :1 : 30 . 0 t

	

16.4

	

2

	

46,900	 do	 : .

	

743

	

. 1 .989

	

: 1 .450 : 3.900 : : 2 .626 :

	

558

	

2 .712 39 .
19-2

	

.137 1

	

30 . 0

	

15.5

	

: 17 .800

	

:Separation of facing - poor : :

	

717

	

: 2,085

	

1,970 4,160 : : 2,622 :

	

520 1 2,810 38,50 0
bond

19-3

	

s

	

.140 1 16 .6 : 26 .6

	

16.1

	

126,000

	

:Crimping - attempt was mad* : :

	

728

	

0 2,349

	

; 1,930 4,070 : : 2,759 1 633 1 2,854 2 40,000
: to reglm unbonded arms : :

	

.

:
: before testing

20-1

	

.135

	

19 .6 :. 30 .0

	

28.2

	

124,800

	

Separation of f•014g - :a

	

850

	

1 .995

	

: 2,000 4.220 ss 1,512 :

	

367 : 1,879 t 25,400
:

attenpt was made to regime 1 :
: unbonded areas before %sting : :

20-2

	

: .138 1 19 .6 : 30 .0 28.5

	

34,800

	

:Buckling and crimping - bond : :

	

854

	

: 2 .276

	

t 1 .960 4,130 : : 1 .638 : 438 : 2,069 2 28.600
: under regluad areas was

	

: :
; fai r

20-3

	

r

	

.141

	

19 .6

	

30 .0 :

	

28 .5

	

: 114 .900

	

Separation of facing - many : :

	

881

	

x 2,207

	

1 .910 : 4,040 : : 1,674 :

	

443 : 2,110 i 29.800
unbonded areas were present : :

	

t
before testing

55-1

	

.139

	

19.2 : 29.0

	

63 .2

	

16 .500

	

Sudden buckling followed by : ;

	

728 s
,

	

a :

	

2,214

	

: 1,940 x 4,100 : :

	

677 :

	

449

	

1,126 :15 .700
I end crimping

55-2

	

:
.141

	

14: 06 : 29 .
0 28.9 :

	

63 .1

	

18 .300

	

:Sudden buckling 2

	

681

	

: 2,140

	

: 1 .910 1 4 .040 :8

	

654

	

453 : 1,107 1 15.600
.139 59 .9

	

22.000

	

:Bucklingcrimping
followed by

	

1 :

56-2

	

141

	

14.6 : 28.9

	

63 .2

	

20,000

	

Sudden buckling

	

764

	

2,181

	

: 1 .940 2 4,100 : :

	

727 :

	

717 : 1 .444 20,100

:1

	

717

	

: 2,058

	

1,910 : 4,040 : :

	

657 :

	

696 : 1 .353

	

19.100
:

:

	

:

	

2

	

:

Facing : 0 .012-inch 2422 aluminum alloy
Core : 1/8-inch end-grainbalsa

2

26-1

	

.155 : 12:1 1, 29.0 1

	

15 .0

	

37 .100

	

Crimping at sad 2 good bond : 1 .598

	

4,163

	

4 .120 8,820

	

6.466 1,471 1 5 .613 36.300
26-2

	

.158

	

29.3

	

12:0

	

125,700

	

:Crimping at end - poor bond : : 1,618

	

: 4,337

	

1 4 .3.oo 8,660 . 6 .769 1,451 1 5,597 36,800
2623

	

r

	

.153

	

16.6

	

28.0

	

1

	

125,100

	

:Crimping - poor bond

	

1 : 2;2,

	

4,233 : 4 .240 8 .940

	

6,390 : 1 .336 5 .600 : 35.700
27-1

	

.151 : 31 .2 1 30 .0

	

38 .4

	

15,000

	

:Buckling and crimping

	

4,647

	

: 4 .290 9 .060 31 2 .428 1 395 2,823 : 17.800
27-2

	

.152 : 31 .0 s 30.0

	

38.2

	

18 .700

	

:	 do	 ; : 1,655

	

: 4,260 t 9,000 : : 2 .459 :

	

342 2,801 1 17,700.92
0 27-3

	

.154 : 30 .8 : 30 .0 :

	

37 .6

	

20,000

	

:Crimping at end

	

: : 1,536

	

: 14,379

	

4,210 : 8,880 1 2,577

	

397 : 2,974 : 19.100
56-1

	

.155

	

41 .2 : 41 .1 :

	

4::03

	

19,700

	

:Buckling

	

1 1,294

	

4 .023

	

: 4,180 6 .830 :3 1 .682 :

	

206 t 1,888 :12,200
58-2

	

.156

	

41 .2

	

41 .0

	

:

	

17,900

	

:	 do	 : . 1 .354

	

: 3,847

	

: 4,150 8,770 : : 1,788 1

	

200 6 1 :988 : 12.900
:

58-3

	

:

	

.160

	

41 .3 : 41 .0

	

51 .7

	

:

	

20,300	 do	 : : 1,382

	

1 4
,841

	

t 4,050 1 8 .550 t1 1 .730 :

	

209

	

1,939 1 1
7
2.9

9
0
0
0
061-1

	

:121 : 69 .2 : 70 .0 :

	

92.9	 do	 : : 1 .531

	

.343

	

4 .15o : 8 .710 : 1 .057 1

	

82 1 .139

	

1,=
61
61

-
-

2
61-3

	

:

	

.153 : 69 .2 : Z; . ;

	

73.2

	

:

	

8,300

	

:	 do	 : : 1,483

	

: 4,004

	

c 4,24o 1 8,940 : : 1,236

	

71 : 1,307 1 8.300104.0

	

:

	

; :'3t

	

:	 do	 : : 1 .439

	

: 3,711

	

: 4,050 0,55p fl :1 862 t

	

99

	

961 : b:

	

59 .2 :

72

	

:

	

.150 : 11 .5 : 30 .2 :

	

20.6

	

:

	

33 .100

	

:Crimping - good bond

	

: ; 1,600

	

1 4,073

	

: 4 .320 9 .120 : 4,51o

	

2 .513 : 5 .488 34,300
s

	

1 3
Facing: 0 .D12-inch 24STaluminum allov

Core:1/4-inch balsa

71

	

t

	

.275 : 11 .6 t 29 .1 :

	

23 .4

	

:

	

39,100

	

Buck11ng and crimping

	

873 2 2,396

	

: 2,360 :4,970 5 : 4,123 4,957 :3 .753 : 43.000

Facing;0.012-inch24ST almainumalloy
Core:12-inchbalsa

: I
20

	

.530

	

11 .5 : 29-2 6

	

20 .6

	

: 44,200

	

:Crisping 11

		

453 y 1,298 : 1,220 : 2 .580 : : 4,740 10 .149 2 .468 54.500
3t

		

:[ 7
Facing : 0.020-inch 24ST aluminum alloy

Core : 1/0-inch end-rainbalsa

	

34,600

	

Crimping - good bond

	

: ; 2,396

	

1 5.053

	

35 .600	 do	 : : 2,428

	

1 5,593

	

30 :400

	

:	 do	 : : 2 .396

	

I 5,367

	

14,800

	

:Crimping- fair bond

	

: ; 2,376

	

5.473

	

22 .200

	

:Buckling and crimping -

	

11 2 .374

	

5 .757
fair bond

	

23,500

	

:Crimping - good bond f.: 643

	

: 6 .013

	

15,100

	

:Buckling and crimping

	

4,687

	

14,700

	

:Crimping

	

: : 2,071

	

5,463

	

13 .900

	

:	 do	 H 2,552

	

1 5. 49 3

	

60-1

	

:

	

.200 1 51.9

	

60 .1 :

	

79 . 2

	

60-2

	

.201 : 57.9 : 59 .9 :

	

77 . 4

	

60-3

	

.207

	

59.7 : 60 .0

	

75.4

2,050 : 4.320 : : 2 .613 4
: 2.080 : 4,380 : : 3 .yO A

1,960 : 4,130 :1 1,567

iWointa r2pr222nting thee. spacLms 422 not shown on flows, 8 . 9, or 10 b2cause these specimen. mess defective.

(Disport No. 1558)
2 1( 708lb b' ,

	

28-1

	

.lt2

	

16.7 : 29.9

	

16 . o

	

26-2

	

.1

	

: 16.7 s 30.0

	

15 . 9

	

28-3

	

.168 : 16.8 : 29.9

	

15 . 9

	

29-1

	

.166 : 31.2 : 30.0 t

	

38 .1

	

:

	

29-2

	

.165 : 31.2

	

30.0 :

	

39 .6

	

1

	

29-3

	

:

	

.167
1 g:l

1 29.8

	

8
:

	

64.5

	

1

	

59-1

	

:
59-2

	

:

	

:11: . 35.0 : 50.0 :

	

65. 9

	

59-3

	

.168

	

34.8 :

	

:

	

50 . 2

35-1
38- 3
39-2

34221

3
434-
23

35- 1
35- 2
35-3

:

	

.132 : 16 .7 : 29 .9

	

15. 7
.130 1 16 .8 : 30 .0 :

	

15.0
:

	

.138 : 19 .5 : 30 . 0

.342 . 16 .6 : 30 .0 :

	

.140

	

16 .7 : 30.0 t

.141 1 16 .7 : 30.1.

	

.142

	

19 .6 : 30. 0

	

.144

	

19.7 : 30. 0
.141 i 19.6 : 30. 0
	 2

Faoi2x :0 .032-inch2422 alwn.i=alloy
Core : 1/8-inch end-grainbalsa

	

9,100

	

:Crimping at corner

	

: : 3,247 t 6,210

	

8,100

	

:Buckling

	

: : 2,969

	

7 .16 7

	

10 .500

	

;Crimping at corner

	

: : 2.896 1 6 .513
s

140102 :	 24SH aluminum.alloy.00inch
Cora:1/2-2226cellular mallnlose acetat e

:

	

28 .600

	

:Crimping - good bond

	

: :

	

770 : 2,131

	

33,900	 do	 : :

	

640

	

: 2,986
28.0

	

: 111,800

	

:Separation of facing -

	

: :

	

780 s 2,20 1
good bond

	 23=2.24 2s 4=1222 2u22
2

	

; :

	 0 .902	

Core : 11521206Lm22 22wmg,222bo r

	

16.0 : 14.500

	

:Crimping at end - good bond : :

	

805

	

2,02 9
	 do	 844 1 2,08 2

12:

	

1:1 :rg

	

:Dent near end - grew to

	

: :

	

889 : 2,10 5
crimping

	

: :
2

	

28.0 : 23,000

	

:Crimping - fair bond

	

. :

	

811

	

1 . 9
28 .0

	

26,600

	

:Crimping at and - good bond ts

	

762 : 2,10 4
27 .7

	

21,400

	

:	 do	 : :

	

739

	

t 2,078

0 6 .50 :13 .810 : 8,705 I 1 .510 1 2 .267 1 34,100
6 .580 :13 .900 I : 9,221 : 1 .980 : 8 .512 34,900
6,430 :13 .570 r: 9,192 1 1,970 . 15 .01 , 35, 200
6 .500 :13,740 2 :73,812 i 562 4,374 18 .200
6,540 :13 .810 2 : 3,73715 544 4,321 17 .800

6,470 13,660

	

4 .093 :0 605 :

	

4 .628 19 .600
6,170 :13,030 : : 1,953 .W 167 4 2 .426 1 10,600
6 .070 :12.810 2i 2,184 '4 556 : 2 .740 1 12,200
6,430 :13,570 : : 3,0404 513 1 3 .553 1 14 .900

11

	

t

	

:

: t
0 1,900 : 4,010 . : : 2 .752 1

1,930 : 4,070 2,866 3
1,920 : 4,040 s : 2,906 1

: 1 .900 : 4,010 : : 1,560 3
1,870 : 3,960 : : 1,580
1,920 : 4,040 : : 1 .530

8,6110 :16 .2140 3 : 2,821
8 .600 ;18,150 : : 2,906 :4
8,350 :17,620 U 2 .893 i

296 : 3,177 9,900
315 : 3,221 t 10,100
266 : 3 .179 10 .300

487 : 2,848 : 37,600
6561 3,162 : 41,100
424 1 .266 : 27 . 1600

543 2,799 39 .702
537 6 2,857 : 40,000
551 2,055 40,300

404 1,951 1 27,700
436 : 2,007 28 .900
417 : 1,936 27,300
	 2



Table 3 .--Asial-compression tests ofcurved panels of sandwich construction having fiberkl= faoi=s

Gore : 1/B-loch eod-strain balsa

22-1

	

|

	

0 .140

	

|

	

11 .5

	

30 .0

	

|

	

10.0

	

: 16,650
: 1'

xacung compression I ; 319
22-2

	

:

	

.um

	

:

	

11.5 :

	

30 .0

	

.

	

o^*

	

. 14,000 	 m~	 o 313
23-1

	

:

	

.142

	

:

	

16 .4 :

	

30 .0

	

:

	

15.4

	

:
'

9,9* :Buckling and

	

i i
: breaking

	

;3
322

.23-2

	

.

	

. *~

	

.

	

16 .3 .

	

29.5

	

15.6

	

: 11,300 a nd

	

ii 339
.

	

.138

	

:

	

.

	

.

	

e5.9

	

.25 .2

	

29 .5 6,6oo :Buckling

	

i s
24-2

	

:

	

.

	

.

	

25 .1

	

.

	

29 .2

	

.

	

28.2

	

. ~ ~~~- * ^	
:

	

.140

	

:

	

.

	

.

	

.24-5

	

25 .5

	

29.

	

29.0 5 .900 ,	 *^	 351
25-1

	

:

	

.142

	

:

	

30 .7 :

	

29 .6

	

:

	

=0 .2

	

: 3,500 ,	 ^~	 352
25-2

	

:

	

.138

	

:

	

30 .9

	

.

	

29 .5

	

.

	

39.6

	

. 	 - ._m^	 " 3119
25-3

	

:

	

.141

	

.

	

30 .8

	

.

	

29 .5

	

:

	

41 .0

	

. 3,450 	 *	 " 338
47-1

	

:

	

.1 110

	

.

	

.

	

29 .7

	

.

	

37 .6

	

` 4,900 	 *°-- . "
47-2

	

.

	

.148

	

:

	

31 .8

	

.

	

29 .8

	

.

	

, 	 *^ . . .-- "
47-3

	

145

	

31 .:

	

'

	

:

	

* .

	

29 .8

	

'

	

: ~ .nm 	 *^	 "
326

48-1

	

.

	

.144

	

.

	

25 .6

	

:

	

31 .0

	

:

	

35.3

	

: 	 m	 250
48-2

	

.

	

.1 147

	

:

	

25.1

	

:

	

31 .0

	

.

	

37 .0

	

: 4,750 ^" ."	 do " .-", 293
48-5

	

.

	

.145

	

:

	

25 .3 :

	

31 .0

	

:

	

39 .7

	

: 4 .300 ,	 ^~	 " 293
49-1

	

.

	

.146

	

:

	

20 .4 :

	

31 .0

	

:

	

42.2

	

: 5,050 	 *	 " 305
49-2

	

.

	

.148

	

1

	

mw .

	

31 .1

	

.

	

. 4,550 ,	 *	 " 307
49-3

	

.

	

.147

	

.

	

20 .5

	

31.0

	

:

	

36 .1

	

: 5,400 	 m	 303
50-1

	

.

	

.149

	

:

	

15 .14

	

31.1

	

.

	

39.5

	

. 5 : 450 ,	 m^	 " 250
50-2

	

'

	

.*n

	

'

	

15 .3 :

	

31 .0

	

:

	

57 . 11

	

: 6,450 	 *	 27 6
50-3

	

:

	

.148

	

.

	

15 .1

	

.

	

31 .0

	

:

	

39 .8

	

. 6 .ooo ^	 w^	 " 27 1
51-1

	

31 .0

	

32 ..1148

	

.

	

10-3

	

:

	

:

	

o

	

: *50 	 m^	 "
51-2

	

.

	

.

	

:

	

/u . .

	

31 .0

	

:

	

37 .4

	

: mo ,	 m^	 ^ . 276
51-3

	

:

	

.146

	

.

	

10 .2 :

	

.

	

4g .'

	

. 5,750 ^	 m	 271
52-1

	

:

	

.147

	

:

	

5 .3

	

.

	

31 .

	

.

	

: u^ ^	 *^-	 ^^ 305
52-2

	

:

	

.147

	

:

	

5 .3

	

31 .0

	

'

	

~~

	

' " ." ."*°"--" 307
53-1

	

:

	

.142

	

:

	

3 .0 :

	

30 .5

	

.

	

55.0

	

. 11 .850 .Fa"*m"ompr"=*" " 250
53-2

	

:

	

.14i

	

:

	

uv .

	

31 .0

	

.

	

39.0

	

1 ,	 *^	 ~ . 293
. 053-3

	

:

	

.150

	

:

	

3 .0 :

	

30 .5

	

:

	

. 11 .100 `-- . do	 293
54-1

	

.

	

.147

	

.

	

20 .2 :

	

31 .1

	

:

	

w^o

	

: 4 .900 :Buckling

	

: 3 231
54-2

	

:

	

.149

	

:

	

20 .3 .

	

31 .1

	

:

	

w^/

	

. 	 *	 " 256
54-3

	

.149

	

:

	

20 .3 :

	

31 .1

	

.

	

46 .3

	

: 4,800 	 *	 264
57-1

	

:

	

.146

	

:

	

7 .5

	

:

	

31.4

	

29.14

	

. 7,400 	 *	 " 31 7
57-2

	

.

	

.146

	

:

	

7 .5 :

	

31 .4

	

.

	

33.5

	

: 6 .500 	 *	 " 31 7
57-3

	

:

	

.146

	

.

	

7 .5

	

:

	

31.4

	

:

	

43.6

	

: 7,850 ^	 m^	 " 31 7
64-1

	

:

	

.136

	

:

	

70 .* .

	

70̂ 5

	

.

	

m-o

	

. 1 .500 .- ' . ' 	 do	 ' ., 321
64-2

	

.

	

.138

	

.

	

70 .5 .

	

70 .5

	

.

	

74.5

	

. 1,600 `	 *^	 " 31 1
6~3

	

.

	

.137

	

.

	

n^o .

	

70 .5

	

:

	

72.3

	

: 1,650 ^	 m^- . . ., 31 6

W28 : lPg-inoh end-ci:ain balsa

30-1

	

.159

	

!

	

15 .8

	

!

	

29.5

	

!

	

15 .1

	

! 13,*00 ;Buckling and em
' ; breaking

	

"
30A,l :

	

.152

	

:

	

16 .6 :

	

30 .8

	

:

	

14+9

	

: 11,250 :Breaking

	

11 5 1
30-e

	

:

	

."=

	

:

	

15 .7 :

	

29 .5

	

:

	

15.8

	

: 19 .900 :Separation of

	

: ; 59 3
.

	

.

	

.

	

.

	

. : facing - poor bond : :
301-2 :

	

.152

	

.

	

16 .* .

	

30 .8

	

:

	

14.5

	

: 13,200 :Breaking

	

:1 553.
30-3

	

:

	

' 159

	

.

	

16 .1 :

	

30 .0

	

.

	

15./

	

. :1 mm
.

	

.

	

.

	

.
81 : : 51:.05100

: facing-poor ^=m .
301-3

	

'

	

.152

	

'

	

16 .5

	

'

	

30 .8

	

'

	

14.s ' m=~~u

	

1 : 58 5
'

	

Specimen : Total : Width . Length u*= "adiu" .Fa " in«mress . Type of failure " Data from tests of coupons "

	

Theoretical "*= "ss .

	

number :thickness :

	

.

	

:

	

of

	

.

	

at

	

.

	

.

	

.

	

.

	

curvature .

	

failure

	

' x'i

	

. ~ "
~_

.

	

.
~. -

	

.~-

	

_--. ----g 	 ~	 ~	 ~_

	

.	 .

	

llmmm ia.Qjut JAW=

	

zE.ggu ' pumx~u in. '

	

:11 .000 lb .

	

uy.t.-u2i'
'	
"

'

	

mm

	

! z .sw
!! z .nv |

	

339 | z .sw 15 .000
.

	

819 . 1 .sw " 1 .6a . 32e .1 .930 .m/mo
:

	

836 .z .wm . .1.u* : nw .z.zn .10 .nw
"

1 .w~ : 1.54 : 1 .wm . ~' .mm:

	

870

	

: ~

	

: 1

.111

	

702 .

	

71 :

	

. 5 . 900

	

.930 : :

	

6611g55

	

1 .955
5,700

.

	

'

	

1 '

	

"

	

.

	

.

	

. 5,500
:

	

908

	

.~

	

"

	

.

	

.

	

:
.

	

890

	

. 1 : 990055

	

tI 2 "

	

:

	

:

	

530 : 4,200
.

	

nm

	

:

	

.

	

.

	

. 525 .
L1906~ :

	

1,915 "

	

1{1+4

	

.

	

:

	

.
.

	

mm

	

: 1,930 "

	

479 :

	

45 :

	

524 : "
mv . ~ .~~ " 454 :

	

' 534

	

4
.

	

~~

	

. .

	

51 .

	

577 1 "

:

	

66

	

.1 .

	

:

	

57 :

	

:
. 103

	

.1,835 "

	

8 '

	

n .

	

'

	

,450
.

	

829

	

.1 .825 "

	

1446 .

	

pv .

	

. 4,300
. 519

	

.1 .850 : :

	

463 :

	

pu .

	

584 . 4 .750
.

	

794 .z .mn "

	

. vu .

	

564 :
.

	

, m,"

	

: oo . bD9 : " .mn
.

	

763

	

./ .mo "

	

400 .

	

190 .

	

590 . 4 .9 m
.

	

752

	

: 1 .110 "

	

4110 :

	

189 :

	

629 1 5,200
750.

	

: 1 .825 3s

	

1407 :

	

191 :

	

598 . 4,500
.

	

.z .m~ :1

	

:

	

~~ :

	

n°

	

,147 8
752.

	

.1.m*,

	

443 : 416 :

	

15 : 7 .150
:

	

750

	

: 1,850 : :

	

496 .

	

408 : .
.

	

m»

	

1 .835 ,

	

.1 .1 .835 :
.

	

794

	

1 .535 : :

	

~~ : 1,622 '

	

: 1 .835 ' 15 .000
.

	

646

	

: 1,900 : :

	

252 . 3,84 : 1,900 : 15,000
:

	

803

	

.z .nw "

	

4 ° .5, 1106 .1 . 15 .000
.

	

529

	

.1 .nm .

	

359 : 5.505 1,800 . 15,000
.

	

. 1 . 8 35 : :

	

357 .

	

119 :

	

476 : 3 .900
:

	

655 .1 .wm " 305 . we .

	

: 3,350
.

	

701

	

. 1,110 "

	

336 :

	

108 :

	

4144 . 3,700
'

	

883

	

.1,550 "

	

6n '

	

889 ' 1 .526 12,400
.

	

1 .350 v

	

.

	

1 . 448 : 11 .750
.

	

583

	

.1,850

	

~= .

	

689 .1 .

	

: 10 .700
:

	

830 . 1 .955 " am :

	

w : m* : zww
.

	

a~ .1 .mm " 2~ '

	

o ' *^' 1,850
.

	

836

	

. 1 .970 .

	

236 :

	

8 :

	

2414 . 1 .550
"

! 1 .419

	

! 3 .395

	

2 .353 ~

	

389 :2,742 :12 .100

' 1 .330

	

: 3 .555 " v,050 :

	

302 .2,382 . 10,050
: 1 .329

	

: 3 .375 , 2,151 .

	

37 : 2,*5 : 11 .300
.

	

.

	

.

	

.

	

.

	

.
: 1,321

	

: 3,555 : : 2,170 .

	

301 : 2/71 s 10^5o
. 1 .3117

	

. 3.395 :1 2,190 :

	

36 : 2,546 . 11,250
.

	

.

	

"

	

.

	

.

	

.
' 1,495

	

. 3 .555 s : 2,330

	

.

	

3114 . 2,674 : 11,300
'

	

'/

	

'

	

'

	

'
Sheet 1 ° , o

.

.



Table 3.--4iial-oomid5oaoiOn testsof curved panels of sandwich construction having fiberglas facings (Continued )

Specimen :

	

Total

	

: Width Length :Mean radius ;Facing stress : Type of failure

	

: : Data from tests of coupons : : Theoretical stresse s
number :thickness : :

	

of

	

at _____ ---------------------------

h curvature

	

failure

	

' s

	

El s 21 P cr Pcr f
	 ..- :--	 :..	 	 :	 :	 : : 	 ------- ----------

: Inches : inches :

	

Inchon

	

:Ih .ner so .in. :

	

: :1 .000 lb .

	

:1 .000 lb . Lb . per : : Lb . per•Lb . per :Ib . per : Lh . pe r
: Per ga 1 4 : 9er. -

Facing : 0.018-inch fiberglas
Core : 1/8-inch end-grain balsa

311-1 0 .153 37 .2 : 29 .5

	

413.4

	

Buckling

	

573

	

1 .4524,250 3 :530 83g 70 9083. g5o
31-2

	

: .157

	

: 30 .8 : 29 .6

	

39.g

	

,250

	

:	 do	 : :

	

588

	

:

	

1,474

	

: 3 .440 : : 902 :

	

102

	

: 1,o04 4 .4oo
31-3

	

: .156

	

: 31 .2 : 29 .6

	

38.

	

3 .600

	

:Separation of facie :

	

598

	

:

	

1,235

	

:
: - poor bond

	

: :
3 .460 : : 843 :

	

82

	

: 925 : 4,00o

31A,3

	

: .147

	

: 31 .6

	

: 29 .8

	

:

	

40.0

	

:

	

4,000

	

Buckling

	

573

	

:

	

1,395

	

: 3,675 : : 797 :

	

80

	

: 877 : 3 .600
62-1

	

: .150

	

: 41 .4 : 39 .8

	

:

	

49.0

	

:

	

4,150	 do	 : .

	

609

	

:

	

1,601

	

: 3,600 : : 733 :

	

56

	

: 789 : 3,300
62-2

	

: .148

	

: 41 .4 : 39-8

	

:

	

45.5

	

:

	

:	 do	 : :

	

606

	

:

	

1,556

	

:g .6oo 3 .650 : : 766 :

	

53

	

: 819 : 3 .350
62-3 .149

	

: 41 .3 : 40 .0

	

:

	

45.6

	

:

	

.650

	

:	 do	 : :

	

611

	

:

	

1,510

	

:

Facing : 0.033-inch fiberglas

3,625 : : 761 : 52

	

: 813 : 3 .350

Core : 118-inch end-grain balsa

32-1 .182 16 .6 : 30 .0

	

15.2

	

14,050

	

Breaking

	

837

	

1,862 5, 4 110 3,626 : 606 4,232 11,650
32-2

	

: .182

	

: 16 .6 : 30 .0

	

:

	

15.1

	

:

	

13,950	 do	 : -

	

856

	

:

	

1,969 5, 4140 : : 3,796 :

	

641 4,437

	

: 12 ..250
32-3

	

: .175

	

: 16.5 : 30 .0

	

:

	

15.4

	

:

	

12,500	 do	 : :

	

896

	

:

	

1,932 5,655 : : 3,627 :

	

589 4,216 : 11,200

33-1

	

: .181

	

: 31 .4 : 29 .5

	

:

	

37.7

	

:

	

2 .150

	

:Separation offachc : ;

	

805

	

:

	

1 .672

	

:
: - poor bond

5 , 1470 : : 1,351 : 148 1,499 : 4,100

33A-1

	

: .172 31 .5 : 29 .8

	

:

	

40.0

	

:

	

4,250

	

Ighokling

	

: :

	

950

	

1,749 5 .755 : : 1 . 3115 139 1,484 : 3,850
33-2

	

: .183 31 .2 : 29 .6

	

:

	

38.4

	

:

	

3,050

	

:Separation offacing : :

	

857

	

1,740
- poor bond

5,410 : : 1 . 1412 :

	

159 1,571 : 4,350

33A-2 .173

	

: 31 .8 : 29.9

	

:

	

40.4

	

:

	

4,750

	

:Buckling

	

: :

	

944

	

2,271 5,725 : : 1,521 :

	

179 1,700 : 4,450

33-3 .183

	

: 31 .7

	

: 29 .6

	

:

	

37 .4

	

:

	

11,150

	

:Separation of facing ; :

	

829

	

1,80 3
1

	

: - poor bond
5,410 : : 1,451 :

	

160 1,611 : 4,450

33A-3

	

: .175 31.9 : 29 .9

	

:

	

38.4

	

:

	

4 .500

	

:Buckling and

	

: :

	

857

	

2 .07 5
1

	

: breaking

	

!

Facing : 0.048-inch fiberglas

5,655 : : 1 , 1474 :

	

166 1,640 : 4,350

Core : 1/g-inch end-grain bales

63-1

	

: .196

	

: 60.9 : 60 .6

	

:

	

62 .5

	

2,900

	

:Buckling

	

1,143

	

2 .333 7,345 : : 1,242 :

	

64 1,306 s 2,650

63-2

	

: .195

	

: 60.9 : 60.6

	

:

	

62 .3

	

2 .650	 do	 : .

	

1,154

	

2 .387

	

: 7 .355 : : 1,260 :

	

65 1,325

	

: 2,700

63-3

	

: .196

	

: 60.8 : 60 .6

	

:

	

60 .9

	

2,850

	

:	 do	 : :

	

1,273

	

2,51 3

Facing ; 0.009-inch fiberglat

7,345 : : 1 .396 :

	

69 1 .465 : 3,000

Core : 1/8-inch cellular cellulose acetat e

140-1

	

: .143 16 .6 : 29.8

	

15 .2

	

18,350

	

:Crimping - poorbon& : 1 .890 : : 1 .236 : 169 1,405 11 .15 0

40-2

	

: .149

	

: 16 .0 : 32223.1

	

:

	

15 .6

	

18 .200

	

:Separation of facing : :

	

IrO'- poor bond
1,810 : : 1,169 :

	

201 1,370 11,350

110-3 .1145 16.3 : 29 .8

	

1 14 .9

	

12,650

	

:Crimping

	

331

	

828 1,860 1,236 178 1,4 1 14 11,40 0
141-1

	

: .1 143

	

: 31.9 : 29 .8

	

:

	

37 .6

	

4 .500

	

:Buckling

	

: :

	

215

	

:

	

733 1,890 : : 366 :

	

39 405 : 3,200
141-2

	

: :.143 31.4 : 29 .6

	

:

	

38.8

	

11 ,750

	

do	 : .

	

278

	

814 2. . . . . . . . . . 46 479 1 3,800
141-3

	

: .1144

	

: 31.6 : 28 .9

	

:

	

38.5

	

5,200

	

:	 do	 : :

	

290

	

883

Facing : 0 .009-inch fiber

	

as

1 .Z5' 144
;
; :

	

50 509 : 4,05o

Core : 1/8-incb hard sponge rubber

36-1 .139

	

: 16.5 : 29 .6

	

:

	

15.6

	

:

	

13,650

	

:Separation of facing : :

	

310

	

:

	

744

	

:
- poor bond

1, 9110 : : 1,038 :

	

146 1,184 : 9,150

36-2

	

: .137

	

: 16.5 : 29 .5

	

:

	

15.7

	

6,300

	

:Crimping

	

276

	

790

	

: 1 .970 : : 988 : 150 1,138 x 8,650
36-3

	

: .130

	

: 16.4 :
!

29 .5

	

:

	

15.7

	

18,750

	

:Separation of facing : :

	

302

	

795

	

:
: - fair bond

2 .075 : : 9814 :

	

138 1,122 8,100

37-1 .131

	

: 31 .3 : 29 .6

	

:

	

37 .2

	

:

	

:Buckling

	

297

	

744

	

:
4
,650 2,060 : : 1102

4
4 437 :

4
,200

37-2 .136

	

: 31 .6 : 29 .6

	

:

	

36 .9

	

:

	

:100	 do	 ' :

	

333

	

885

	

: 1 .985 : : 485 ,000

37-3 .134

	

: 31 .6 : 29 .5

	

:

	

35 .6

	

:

	

4,1100
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Figure 5 .--Crimping type of failure of a panel having 0 . .012-
.inch aluminum facings on a 1/8-inch balsa .core .
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' Figure 6.--Crimping type of failure of a panel having 0 .005-
inch aluminum facings on a 1/8-inch balsa core .
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