DESIGN CRITERIA FOR IONG CURVED PANELS OF SANDWICH CONSTRUCTION IN AXIAL COMPRESSION

December 1946

INFORMATION REVIEWED
AND REAFFIRMED
March 1956

This Report is One of a Series Issued in Cooperation with ARMY-NAVY-CIVIL COMMITTEE on AIRCRAFT DESIGN CRITERIA Under the Supervision of the AERONAUTICAL BOARD

No. 1558

LONG CURVED PANELS OE SMNDWICH CONSTRUCTION

Iiv AXIAL COMFRESSIONI

By E. W. KUMNZI, Engineer

Summary

This investigation was conducted at the Eorest Products Laboratory to establish design criteria for curved plates of sandwich construction under axially compressive loads.

The axial buckling strength of a well-made, long, curved plate of sandwich material may be computed by adding the critical stress of a complete cylinder, of which the plate may be considered a part, to the critical stress of a flat plate having the same dimensions as the curved plate. The stress at which crimping of the entire sandwich will occur is equal to or greater than the computed critical stress, provided there are no structural defects. The analysis presented includes methods of calculating the critical stresses when the facings are stressed beyond the proportional liait.

Introduction

Attermpts have been made to analyze mathematically the behavior of a curved plate under axially compressive loads. No adequate mathematical analysis has yet been developed that enables the desiener to calculate the critical loads of curved sections. Available formulas are based upon the assumption that the critical stress of the curved plate is determined by some cnmbination of the complete-cylinder and flat-plate theories. Lundquist 2 stated that the critical stress is equal to either the critical stress of an unstiffened cylinder of the same radius-thickness ratio as that

[^0]of the curved plate, or the critical stress for the same plate when flat, whichever is the larger. Redshaw 3 arrived at an expression that can be written
$$
p_{c r}=\sqrt{p_{1}^{2}+\frac{1}{4} p^{2}}+\frac{1}{2} p
$$
where,
\[

$$
\begin{aligned}
P_{c r}= & \text { critical stress of a curved plate } \\
{ }^{0}= & \text { critical stress of a complete cylinder of same radius as } \\
& \text { the curved plate } \\
= & \text { critical stress of a flat plate of the same size as the } \\
& \text { curved plate }
\end{aligned}
$$
\]

Wenzek 4 presented the empirical relation that the critical stress of the curved plate is equal to the sum of the critical stress of a complete cylinder and that of a flat plate of the same size as the curved plate.

Lundquist, Reảshaw, and Wenzek were concerned with plates of soliu, isotropic materials. The behavior of a plate of sandwich construction involves the possibilities of crimping (fig. 1) and wrinkling of the facin in addition to the formation of large buckles, the buckling at facing stresses above the proportional limit, and of the reduction of critical stresses due to the low shear modulus of the core.

The object of the work reported herein was to establish design criteria for curved plates of sandwich construction. Formulas are develoue for calculating the compressive strength when buckling or crimping failures occur either below or above the proportional limit stress of the facing material.

Development of Formulas

Available theories assume the critical stress of a curved plate to be some combination of the critical stresses of a comlete cylinier and a ilat plate. The theory of Lundquist gave values that are low compared to those of experimental data in which the computed critical stresses of the equivalent flat plate and cylinder are nearly equal. Values by fedshav's theory are also too low, compared to such data, although they are nigher than those given by Lindquist. The formula that agrees best with the experimental data of this report is that presented by Wenzek.

[^1]
Notation

The following notation is used:
$a=$ width of plate, measured in the circumferential direction,
$b=$ length of plate, measured in the axial direction.
$c=$ core thickness. As a subscript, "c" refers to the core.
$E=$ Young's modulus of elasticity of the facing material.
$\mathbb{P}_{t}=$ tangent modulus of elasticity of the facing material.
$3_{a}=$ apparent compressive modulus of elasticity of the sandwich, measured in the axial direction.
I_{1} = apparent bending modulus of elasticity of the sandwich, measured in the axial direction.
$E_{2}=$ aparent bending modulus of elasticity of the sandwich measured in the circumferential cirection.
$f=$ facing thickness. As a subscript "f" refers to the facing.
$h=$ total thickness of the sandwich.
$p=$ mean theoretical buckling stress of a flat plate of width "a" and length "b".
$p_{1}=$ mean theoretical buckling stress of a thin-walled cylinder of radius of curvature "r".
$p_{c r}=$ mean theoretical buckling stress of a curved plate.
r = nean radius of curvature.
S = wean compressive strength, over thickness "h", at the compressive strength of the facing material.
$S_{F l}=$ mean compressive stress, over thickness " h ", at the proportional limit stress of the facing material.
$\lambda=\left(1-\sigma^{2}\right)$, where σ is Poisson's ratio.

According to Wenzek the buckling stress of a curved plate is given by the formula

$$
\begin{equation*}
p_{c r}=p_{1}+p \tag{1}
\end{equation*}
$$

where p_{1} is the critical stress of a complete cylinder of which the curved plate can be considered a part, and p is that of a flat plate of the same dimensions and materials as the curved plate.

Cylinder Theory

The theoretical as well as the experimental treatment of the buckling of plywood cylinders under axial compression has been published in zorest Products Laboratory reports Nos. 1322, 1322-A, and 1322-B. The resulting form of the equation giving the critical stress is

$$
p_{1}=\frac{k T h}{r}
$$

If the facings and core of the sandwich are isotropic, the the ory of Rejort No. 1322-A leads to the formula (see derivation in Appendix)

$$
\begin{equation*}
\mathrm{p}_{1}=0.2426 \sqrt{\mathbb{E}_{\mathrm{a}} \mathbb{M}_{1} \frac{h}{r}} \tag{2}
\end{equation*}
$$

If it is considered that the core positions the facings but does not contribute to the stiffness of the sandwich,

$$
\begin{aligned}
& E_{a}=E\left(1-\frac{c}{h}\right) \\
& E_{I}=E\left(1-\frac{c^{3}}{h^{3}}\right)
\end{aligned}
$$

The accuracer of these formulas can be illustrated by comparing the com-puted values of E_{a} and E_{1} with the values obtained from tests of counons. As an example the values of E_{a} and E_{1} will be computed for a sandwich having 0.012 inch aluminum facings on a $1 / 8$-inch core. The total thickness will be about 0.153 inch allowing 0.002 inch for each glue line. Then

$$
\begin{aligned}
& E_{a}=10^{7}\left[1-\left(\frac{0.129}{0.153}\right)\right]=1,570,000 \text { pounds } \\
& \text { per square inch. } \\
& E_{1}=10^{7}\left[1-\left(\frac{0.129}{0.153}\right)^{3}\right]=4,010,000 \text { pounds } \\
& \text { per square inch. }
\end{aligned}
$$

The average values obtained from test coupons are

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{a}}=1,490,000 \text { pounds per square inch } \\
& \mathrm{E}_{1}=4,110,000 \text { pounds per square inch }
\end{aligned}
$$

The theory (Report No. 1322-A) presents the following formula for plywood cylinders, for which the value of the ratio $\frac{E_{1}}{E_{1}+E_{2}}$ lies between 0.3 and 0.6 (Iig. I of Forest Products Laboratory Report No. 1322),

$$
\mathrm{p}_{1}=0.12 \mathrm{E}_{\mathrm{L}} \frac{\mathrm{~h}}{\mathrm{r}}
$$

For plywood it is known that $E_{1}+E_{2}=I_{L}+E_{T}$, where I_{L} and E_{T} are the elastic moduli of the wood in the longitudinal and tangential directions, respectively. Since E_{T} is only about 5 percent of m_{L}, the value of \mathbb{E}_{T} may be neglected and the formula becomes

$$
\begin{equation*}
P_{I}=0.12\left(I_{1}+3_{2}\right) \frac{\mathrm{h}}{\mathrm{r}} \tag{3}
\end{equation*}
$$

This equation can be obtained from the theory in Report No. 1322-A by replacing \mathbb{E}_{I} by $\left(F_{I}+E_{2}\right)$ in formulas 48,49 , and 50 of that report. Tormula (3) can be applied to sandwich combinations having facings of plywood if the values of E_{1} and E_{2} are those of the entire sandwich.

Flat-plate Theory

The theoretical treatment of the buckling of flat plates has beer published in Forest Products Laboratory Report No. 1525. The theory includes isotropic and orthotropic materials.

The theoretical critical stress of a flat plate is eiven by the equation

$$
\begin{equation*}
p=\frac{k}{\lambda} \sqrt{E_{1} E_{2}} \frac{h^{2}}{a^{2}} \tag{4}
\end{equation*}
$$

This equation is obtained from formula 6 of Forest Proucts Laboratory Report No. 1525 by replacing D_{1} and D_{2} (notation from Rejort No. 1525) by the equivalent expressions $\frac{E_{1} h^{3}}{12 \lambda}$ and $\frac{E_{2} h^{3}}{12 \lambda}$, respectively, and dividing the load ($p_{c r}$) per inch of edge by the thickness (h) to obtain p in mean stress units. The constant k was determined for panels simily supported on four edges by use of the curves of figure 2 of Report No. 1525. For this purpose values of κ were computed from formula 8 of zeport No. 1535. ($k=\frac{K}{\sqrt{D_{1} D_{2}}}$ from formulas on page 3 of Report No. 1525.) Values of D_{1} and D_{2} were computed from the average values of E_{1} and \mathbb{E}_{2} obtained from tests of coupons of sandwich. Values of K were computed fron well-established values of E_{X}, $\mu_{y \mathrm{X}}$, and σ_{xy} for the agterials in guestion as follows.

For birch plywood facings on a quipo core, the value of k was computed to be 0.37 br assuming for the computation of Z that

$$
\begin{aligned}
& T_{x f}=2,300,000 \text { pounds per square inch, } \sigma_{y x f}=0,02 \\
& \lambda_{f}=0.99, \mu_{x y f}=180,000 \text { pounds per square inch } \\
& E_{x c}=40,000 \text { pounds per square inch, } \sigma_{y x c}=0.20, \quad \lambda_{c}=0.9 \% \\
& \mu_{x y c}=26,000 \text { pounds per square inch. }
\end{aligned}
$$

Tor birch plywood facings on a $1 / 10$ and 2/10-inch pulpboard core, the values of k were computed to de 0.29 and 0.24 respectively, by assuming for the computation of K that $E_{x f}=2,300,000$ pounds per square inch, $\sigma_{y X f}=0.02, \quad \lambda_{f}=0.99, u_{x y f}=180,000$ pounds per square inch, and that the contribution of the core to \mathbb{K} could be neglected.

For specimens with fiberglas facings the value of k was couputed to be 0.55 by assuming for the computation of K that $\bar{x}_{x f}=E_{y f}=2,200,000$ pounds per square inch, $\sigma_{y x f}=0.20, \lambda_{f}=0.96, \quad \mu_{x y f}=400,000$ pounds per square inch, and that the contribution of the core to X could be nealected.

Fior sandwich constructions having aluminum facings, the value of k is 1.00 as a consequence of the assumption that the facings and core are isotronic.

Curved-plate Theory

The critical stress of a curved plate was calculated as the sum of the critical stress of a complete cylinder of which the curved plate could be a part, and the critical stress of a flat plate the same size as the curved plate; that is,

$$
\begin{equation*}
p_{c r}=p_{1}+p \tag{1}
\end{equation*}
$$

where p_{1} and p were obtained as outlined in the preceding paragraphs.
The discussion up to this point has assumed that the stresses in the facings are below the proportional limit. When the stresses exceed the proportional limit, it is necessary to replace the moduli of elasticity in the formulas by reduced moduli, one for the modulus in bending and another for the modulus in compression. For the bending of sandwich construction having isotropic facings, the modulus applicable when the stresses in the facings are below the proportional limit, is to be replaced by the reduced modulus $\mathbb{E}_{r}=\frac{2 E \mathbb{I}_{t}}{\mathbb{E}+\mathbb{E}_{t}}$ when these stresses are above the proportional limit. This expression was derived at the Forest Products Laboratory for sandwich constructions in the same way as was the similar formula given by Timoshenko for solid plates. $\frac{5}{}$ For the behavior under compressive stresses, the modulus \mathbb{F}_{a} is to be replaced by the reduced modulus $\frac{E+T_{t}}{2}$, which is the average of the moduli in the two faces at the instant buckling begins. On the concave side the modulus of the face is \mathbb{E}_{t}, while on the convex side it is E .

By replacing \mathbb{E}_{1} and \mathbb{E}_{a} in formula 2 and E_{1} in formula 4 by the corresponding reduced moduli, the following formulas were obtained for calculating the critical stresses when the facings are stressed beyond their proportional limit. It was assumed that the facings were isotropic, that the contrioutions of the core to the load-carrying ability of the sandwich and to its stiffness could be neglected, and that the reduction in shear modulus corresponds to the reduction in bending modulus.

5
Timoshenko, S. "Theory of 巴lastic Stability" p. 156, Art. 291936.
$P_{1}^{\prime}=0.2426 \frac{h}{r} \sqrt{\frac{E+E_{t}}{2}\left(I-\frac{c}{h}\right) \cdot \frac{2 n I_{t}}{E+E_{t}}\left(I-\frac{c^{3}}{h^{3}}\right)}$ for cylinders and
$p^{\prime}=\frac{k}{\lambda} \cdot \frac{2 \pi{ }^{2} t}{E+E_{t}}\left(1-\frac{c^{3}}{h^{3}}\right) \frac{h^{2}}{a^{2}}$ for flat plates. These expressions were further
simplified to

$$
\begin{aligned}
& p_{1}^{\prime}=0.2426 \sqrt{E_{a} a^{B}} \frac{h}{r} \sqrt{\frac{B_{t}}{E}} \\
& p^{\prime}=\frac{k}{\lambda} E_{1} \frac{h^{2}}{a^{2}} \frac{2 \frac{B_{t}}{E^{\prime}}}{1+\frac{E_{t}}{E}} ;
\end{aligned}
$$

or

$$
\begin{aligned}
& p_{1}^{\prime}=p_{1} \sqrt{\frac{\bar{E}_{t}}{\mathbb{M}}} \\
& p^{\prime}=p \frac{2 \frac{\bar{E}_{t}}{E}}{1+\frac{\mathbb{E}_{t}}{E}}
\end{aligned}
$$

where p_{I} and p are the stresses computed by formulas 2 and 4 , respectively, and $p^{\prime} I$ and p^{\prime} represent the critical stresses of the cylinder and flat plate above the proportional limit stress of the facing material.

The expression for the critical stress of a curved panel is again given by the sum of the two previous equations as indicated by equation (1).

$$
\begin{equation*}
p_{c r}=p_{1} \sqrt{\frac{E_{t}}{E}}+p \frac{2 \frac{E_{t}}{E_{1}}}{1+\frac{F_{t}}{\mathbb{E}}} \tag{5}
\end{equation*}
$$

Since the magnitude of the stress in the facings is the factor under consideration, however, this expression can be changed to

$$
\begin{equation*}
p_{c r . f}=\frac{h}{2 f}\left[p_{1} \sqrt{\frac{E_{t}}{\#}}+p \frac{2 \frac{T_{t}}{M}}{1+\frac{P_{t}}{M}}\right] \tag{6}
\end{equation*}
$$

where $p_{c r . f}$ is the stress in the facing at which buckling of the sandwich will occur.

There are two unknowns in these equations, the stress that is desired, and the tangent modulus of the facing material at that stress. Their solution depends, therefore, upon knowledge of the relation between stress and the tangent modulus. Curves showing the relation between $\frac{E_{t}}{E}$ and the facing stress ($p_{c r . f}$) for aluminum facing materials are shown in figure 2. The points plotted in that figure represent values obtained from the stress-strain data of compression tests. The curves are drawn to represent the plotted points. Thus it is seen that the solution of equation 6 must be such that the relation between $p_{c r . f}$ and $\frac{E_{t}}{E}$ given by this equation is also satisfied by the curve between $p_{c r . f}$ and $\frac{E_{t}}{E}$. A curve representing the relation of $p_{c r . f}$ to values of $\frac{E_{t}}{\Xi}$ can be determined by means of equation (6) and plotted in figure 2. The intersection of this curve with the appropriate curve of figure 2 will give the stress in the facing at which buckling will occur.

The preceding discussion supposes that a stress-strain curve of the facing material is available. If such a curve is not available, an approximate solution can be obtained by assuming the relation of both $\sqrt{\frac{F_{t}}{E}}$ and $\frac{2 \frac{E_{t}}{E}}{1+\frac{E_{t}}{E}}$ to Pcr.f to be represented by a straight line between the proportional limit stress and the maximum stress. The accuracy of this assumption can be seen by referring to figure 3. The curves show that both the $\sqrt{\frac{E_{t}}{E}}$ and $\frac{2 \frac{E_{t}}{E}}{1+\frac{E_{t}}{E}}$ ratios are fairly well represented by the straight line w. The straight line $\mathbb{N} \mathbb{N}$ is defined by the equations

$$
p_{c r . f}=-\left(S_{f}-S_{p i f}\right) \sqrt{\frac{P_{t}}{E}}+S_{f}
$$

or

$$
p_{\text {cr.f }}=-\left(S_{f}-S_{p ı f}\right) \frac{2 \frac{\Psi_{t}}{E}}{1+\frac{\Xi_{t}}{D}}+S_{f}
$$

where S_{p} ff and S_{f} are the proportional limit stress and the maximum stress of the facing material. Solving these equations for $\sqrt{\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{E}}}$ and
\qquad
$1 \cdot+\frac{I_{t}}{E}$, substituting the expressions obtained in equation 6 , and then
solving for $p_{\text {cr. }}$ f results in:

$$
\begin{equation*}
p_{\text {cr.f }}=\frac{\left(p_{l}+p\right) \frac{h}{2_{f}} S_{f}}{\left(p_{1}+p\right) \frac{h}{2_{f}}+S_{f}-S_{p_{l f}}} \tag{7}
\end{equation*}
$$

Theoretical bucking stresses for panels having aluminum facings were computed by using each of equations 6 and 7. A comparison of the results obtained by the two equations can be seen by referring to figure 4 , which shows that stresses computed by equation 7 , in which $S_{f}=57,000$ pounds per square inch, and $S_{p l f}=27,000$ pounds per square inch, do not differ greatly from the values given by equation 6. The line $\mathbb{N N}$ was used for both the $24 S T$ ard the 24 SH aluminum alloys. Good agreement could be expected at stresses below about 50,000 pounds per square inch because the straight line is a good approximation of the curve in that range.

No attempt was made to develop a means of including the effect on the critical stresses of shear deformations in the core. Because the plate is curved, the wave length of the buckle pattern is unknown; and, therefore, an analysis of the deflections due to shear is exceedingly difficult.

Preparation of Materials

This study was undertaken primarily to investigate the buckling of curved panels of sandwich construction. Therefore the specimens were designed so that they would buckle before the compressive strength of the material was reached. For this reason it was necessary to use rather thir cores so that specimens of small enough size in width and length to fit the testing machine could be employed. Fven though cores of $1 / 8$ inch thickness were used it was necessary to make several specimens as large as 6 feet square to determine buckling characteristics of some of the panels having large radii of curvature.

Facing Materials

The materials that were used for the facings of the sandwich are listed as follows:

Plywood,--The plywood was made of two plies of yellow birch veneer 1/I00 inch thick bonded together with a film glue. The grain of adjacent plies was placed at right angles.

Aluminum.--Sheets of alclad aluminum alloy 24 ST were used in thicknesses of $0.012,0.020$, and 0.032 inch. Sheets of aluninum alloy 245 si were used in a thickness of 0.005 inch.

Fiberglas. --The glass cloth used to make the facings was/continuous filament cloth 0,003 inch thick and of a plain-type weave with 40 ends to the inch in the warp and 39 ends to the inch in the fill direction. The cloth had been treated to remove lubricants. The facings were made of either 3,6 , 10 , or 16 layers of cloth impregnated with a contact pressure tyoe of resin. The resin also acted as bonds between the facings and the core. The layers of cloth were placed so that the warp of one plece was always at right angles to the warp of the adjacent piece.

Quipo.--Quipo was used in quarter-sawn sheets $1 / 10$ inch thick. The density was from 6 to 11 pounds per cubic foot.

Impregnated fiberboard. --The impregnated fiberboard was a special lightweight insulating type of fiberboard containing 50 to 65 percent thermosetting, spirit-soluble, phenolic resin. The board was used in thicknesses of $1 / 10$ or $2 / 10$ inch. The density was from $10-1 / 2$ to $12-1 / 2$ pounds per cubic foot.

Balsa. --The balsa that was used was fabricated to sheets $1 / 8,1 / 4$, or 1/2 inch thick and was placed so that the grain direction was normal to the surface of the sheet. The sheet was made up of blocks about 2 by 4 inches in size that were edge-glued to each other with a thermosetting synthetic resin glue. The density of the cores was from 5 to 9 pounds per cubic foot.

Cellular cellulose acetate.--The cellular cellulose acetate was an extruded and expanded cellular cellulose acetate containing about 3 percent chopped-glass fibers. The cores were made up of strips $1 / 8$ inch thick and about 2 inches wide, edge-glued together with a thermosetting synthetic resin glue. The density of the cores was 6 to 7 pounds per cubic foot.

Hard sponge rubber. --The hard sponge rubber was an expanded, hard, synthetic rubber sponge. The cores were wade up of strips $1 / 8$ inch thick and about 2 inches wide, edge-glued together with a thermosetting synthetic resin glue. The density of the cores was 6.2 to 7.2 pounds per cubic foot.

Manufacture of Specimens

All specimens, and matched coupons, were made by the bag-molding process. The specimens were bag-molded to the desired curvature on steel molds. The coupons were bag-molded on a flat steel sheet. A more detailed description of manufacturing technique and types of bonding waterials is discussed in the Forest Products Laboratory Report, "The Nanufacture of Lightweight Sandwich Test Panels."

Test specimens.--The sandwich specimens made of combinations of facings and cores as described previously are listed as follows. The panel sizes and radii of curvature are shown in tables 1,2 , and 3 .
(1) Plywood facings; quipo core.--The plywood was placed so that the grain of the face plies was parallel to the axis of the curved plate. The grain of the core was placed in the axial direction.
(2) Plywood facings; impregnated fiberboard core. --The plywood was placed with the face grain either parallel or perpendicular to the axis of the curved plate.
(3) Aluminum facings; balsa core.
(4) Aluminum facings; cellular cellulose acetate core.
(5) Aluminun facings; hard sponge rabber core.
(5) Fiberglas facings; balsa core.
(7) Pioerglas facings; cellular cellulose acotate core.
(8) Ziberglas facings; hard sponge rubber core.

Coupons.--The coupons were made of the same combination of waterials and by the same manufacturing technique as the specimens. They were made in a single sheet and finally cut to sizes of 1 by $4-1 / 2$ inches for compression specimens and 1 by 18 inches for bending specimens.

Preparation for Testing

The edges and ends of the specimens with plywood facings were sawed square and the edges were fitted with maple guides.

The specimens with aluminum facings were each fitted with four strips of thin aluminum 1 inch wide and 0.02 inch thick, bonded to the facinss at the loaded edges. These strips were then covered with $1 / 8-b_{i}$ l-inch steel bars, which were fastened to the sandwich by means of $1 / 4$ inch bolts sjaced about 4 inches on centers. The ends of the specimens were then machined. The addition of the strips of aluminum and steel prevented the foraation of sharp wrinkles or folding under of the facings at the ends of the specimens. Naple guides were fitted to the unloaded edges of the specimens.

The specimens having fiberglas facings were fitted with strips of thin plywood 1 inch wide bonded to the facings at the loaded edges. The ends of the specimen were then sawed square and true. The plywood strip was added to prevent the facings from folding under at the ends of the specimen. haple guides were fitted to the unloaded edges of the specimens.

The edge guides were pieces of maple about 2 by 2 inches in cross section with a length about $1 / 4$ inch shorter than the length of the test specimen. The guides were grooved in the lengthwise direction with grooves. 1/4 inch deep and wide enough to allow them to be slipped onto the edges of the test specimen.

Testing Methods

Specimens that were not wider than 30 inches were placed on a heavy flat plate, which was supported by a spherical bearing placed on the lower head of a hydraulic testing machine (figs. 5 and 5). The heads of the testing machine were then brought together until the specimen just touched the $u_{j} p e r$ platen with no load indicated. Adjustments were made on the spherical base until no light could be seen between the ends of the
specimen and the loading heads. Screw jacks were then placed under the lower loading plate to prevent tilting of the plate while the load was being applied to the specimen. The load was then applied slowly until failure occurred.

Specimens wider than 30 inches were tested between the heads of a four-screw, mechanically operated, testing machine. No spherical bearing was used. The specimens were cut as true as possible. If light could be seen between the ends of the specimen and the heads of the testing machine, shims of paper or brass were inserted until the gap was closed. The wide specimens were also very long; therefore, small irregularities at the ends were taken up as the load was applied without causing large variations from fniformity in the stresses in the facings.

The coupons were tested in bending and compression to deterinine the moduli of elasticity. The bending specimens were tested over a long span so that deflections due to shear were negligible.

Description of Test Failures

A curved panel of sandwich material loaded in axial compression may fail in one of five different ways: (1) buckling, (2) crimping (fig. 1), (3) compression failure in the facings, (4) wrinkling of the facings, or (5) by separation of the facing from the iajor part of the core. The buckling type of failure is of the general instability type involving the facings and the core and may be relieved by reducing the applied load. The crimping failure is more of a localized bend resulting in shear failure of the core (figs. 1, 5, and 6). Wrinkling of the facings can occur on specimens with relatively thick and weak cores. The wrinkle in the facings moves into or away from the core. Separation of the facings from the core appears as a buckle of the face and occurs when bonding between the facings and core is poor. The specific types of failures of the panels are tabulated in tables 1,2 , and 3.

The panels with plywood facings failed by buckling. The buckles were small compared to those observed in the specimens with aluminum or fiberglas facings. The failure was sudcen, and, since the travel of the movable head of the testing machine could not be stopped instantaneously, the buckles observed were very sharp and crinkles in the lywood appeared at the edges of the buckles.

The most typical failures of the specimens with aluminum facings were buckling or crimping. Figures 5 and 6 show the crimping type of failure, which occurred in many panels of sharp curvature or small size. The size or sharpness of the crimp seemed to depend somewhat on the thickness of the facings of the specimen. This can be seen by comparing the failure of the panel having facings 0.012 inch thick (fig. 5) with the panel having facings 0.005 inch thick (fig. 6). Large, slightly curved
panels failed by buckling. The aspect ratio of the buckles was about 1.0 . Either type of failure caused an immediate drop in the load. Many of the specimens were so damaged by the failure that the load dropped to zero after failure.

The panels having fiberglas facings failed by buckling, by criming, or by compression failure of the facings. The compression failures sometines occurred after buckling. Most of the panels having facings of fiberglas failed by buckling.

The failures just described were for panels that were sound. The results for all specimens, sound or defective, are presented in the tables; but the curves of figures $7,8,9$, and 10 show only the results of the tests on sound panels. Some of the defective panels were known to contain unbonded ereas before they were tested. Other specimens that exhibited no defects prior to testing, failed by facing separation or crimping during test, and their defects were found by examination of the panel after testing. The only defect responsible for the failures at low stresses was thet of poor bonding of the facings to the core. In some instances where unbonded areas were known to exist, attempts ware made to reslue these areas, but the attempts were not always successful. The defective specimens were those that were manufactured early in the investigations of sandwich constructions, during the period when manufacturing techniques were being develoned. Panels made at a later date were not defective if the proper materials were used and proper manufacturing techniques carefilly followed.

Presentation and Discussion of Data

The experimental results and the results of theoretical comutations are presented in tables 1, 2, and 3. The formulas and constants used to obtain the theoretical values in the tables were given in the section on development of formulas. Table I contains the data for sandwiches with plywood facings; table 2, aluninum facings; and table 3 , fiberglas facings. The resulting theoretical stresses are plotted against the experimental values in figures 7, 8, 9, and 10.

A preliminary analysis of the data was made on the assumption that the curved plate would behave the same as a complete cylinder. The buckling stresses were computed by the formula

$$
p_{I f}^{\prime}=0.2426 \sqrt{B_{a} B_{1}} \frac{h}{r} \cdot \frac{h}{2 f} \sqrt{\frac{B_{t}}{2}}
$$

A comparison between this computed stress and the experimental value may be seen by referring to figure 7. The scatter of points above the line representing (experimental stress) $=$ (theoretical stress) indicates that the theoretical values are too low.

The results of the final analysis, wnich assumes that the critical stress of a curved plate is equal to the critical stress of a complete cylinder plus the critical stress of a flat plate ("enzek's theory), are presented in figures 8, 9, and 10. A comparison of the position of the points shown on figure 7 with those shown on figure 8 indicates that the addition method is not too far in error.

The test data exhibit considerable variability. These variations are usually due to the presence of small irregularities in the surface or in the cross section of the specimen. A considerable discussion of the effect of these irregularities upon the critical stresses was given in Forest Products Laboratory Report No. 1322-A, "Buckling of Long, Thin Flywood Cylinders in Axial Compression." Graphs of the results of tests on plywood cylinders and plywood curved plates are reproduced in figures 11 and 12 herein.

A review of the results of the tests on sandwich materials as presented on the graphs of figures $8,9,10$ shows that the magnitude of the scatter is somewhat different for different sandwich constructions. For sandwiches of aluminum or fiberglas facings on balsa cores (fig. 8) the trend of the data may be fairly represented by the theoretical line. The data representing specimens with the same kinds of facings on cellular cellulose acetate or hard sponge rubber cores (fig. 9) show experimental values to be a considerable amount lower than the theoretical ones. The results of tests of sandwich materials having plywood facings (fig. 10) show experimental values about equal to theoretical values for low stresses but much higher than theoretical values for higher stresses.

The data for the specimens having balsa cores agree well with theory except for one point on the extreme right of figure 8. This point represents a specimen having a $1 / 2$-inch core. The ratio of the experimental critical stress to the theoretical critical stress for this specimen was less than similar ratios for thinner specimens with the same length, width, and curvature. Therefore, the correction due to shearing deformations is likely to be greater for this specimen than that for the specimens having the thinner cores. No method has yet been devised to correct the theoretical critical stress of a curved plate for the effect of shear deformation. This specimen with a $1 / 2$-inch core might need a correction of about 20 percent.

The specimens having cellular cellulose acetate or hard sponge rubber cores showed lower critical stresses than the theory predicts (fig. 9). The shear moduli of the cores of these specimens are lower than that of balsa wood; therefore some correction for shear deformation way be needed. The modulus of elasticity in the direction normal to the plane of the sheet of these cores is also lower than that of balsa; therefore, incipient dents or buckles, which may have, caused the early failures, were probably larger in these specimens than in those with balsa cores.

The experimental values of the critical loads of the specimens with plywood facings were somewhat higher than theoretical values. These plywood facings were relatively thicker than the other types of facings and, therefore, had smaller incipient dents or buckles. A discussion on page 25 of Forest Products Laboratory Report No. 1322-A shows that it is possible. for the critical stress of a specimen to exceed the minimum as determined by formula (3), provided the initial imperfections are very small. The theoretical values of the stresses also may be low because the behavior of the plywood at stresses greater than the proportional limit may not have been adequately taken into account by the use of equation (7).

The type of failure of the sandwich depends unon the elastic properties of the facings and core, the relative thickness of the facings and core, and the magnitude of the small irregularities of the facings. The crimping type of failure, which was observed in many of the sandwiches with aluminum facings and in some panels of other constructions, occurred at or above the critical load of the panel. A crimp can appear if a large inperfection develops and causes severe bending stresses in the sandwich and, therefore, high shear stresses in the core. The crimp may cause a shear failure in the core. Most of the sandwich specimens were well-constructea, and the initial irregularities were small; therefore the facings did not crimp until buckling occurred because no appreciable amount of benaing was developed before buckling.

Some of the panels with cellular cellulose acetate or hard sponge rubber cores failed by crimping at very low loads. These panels had blisters in them immediately after manufacture, but after the panels were cooled the blister contracted and could not be detected. It was not ascertained whether the blister was located between the facings and cores or whether the cores failed in tension normal to their plane. These specimens were manufactured during the early period of the study of sandwich constructions. The best rluing techniques were not established at that time.

No theoretical estimate of the loads at which separation of the facings occurred could be made because of the great number of resonsible causes, such as insufficient strength of the bond between the facings and the core, weak core, large initial imperfections, and localized weakness in the facings.

Conclusions

Results ootained in the study, as given in the foregoing discussion, lead to the following conclusions.

The axial compressive strength of a long curved plate of sandwich material may be computed by adding the critical stress of a complete cylinder, of which the panel can be considered a part, to that of a flat plate identical in size and construction to the curved plate.

Buckling at stresses greater than the proportional limit may be coinputed by either of the two methods presented.

Panels of sandwich material with weak cores may buckle at stresses lower than stresses computed by these methods.

Poor bonding of the facings of a sandwich to the core will cause failure at very low loads.

Crimping types of failure occur at loads equal to or greater than the computed critical loads, provided the panels have no structural defects.

Appendix

The derivation of formula 2 from the mathematics of Forest Products Laboratory Report No. 1322-A is presented in the following.

If it is assumed that the facings are isotropic and that the contribution of the core to the stiffness and load-carrying ability of the sandwich can be neglected, then

$$
\begin{aligned}
& \Xi_{c}=0 \quad \sigma_{c}=0 \quad \mu_{c}=0 \\
& E_{x}=E_{y}=E_{f} \\
& E_{a}=E_{b}=E_{f}\left(1-\frac{c}{h}\right)=E_{f} \frac{2 f}{h} \\
& E_{1}=E_{2}=E_{f}\left(1-\frac{c^{3}}{h^{3}}\right),
\end{aligned}
$$

and equations 2 of Jorest Products Laboratory Report No. 1322-A become

$$
\begin{align*}
& \left(X_{X}^{\prime}\right)_{f}=\frac{E_{f}}{\lambda_{f}}\left(e_{X X}^{\prime}+\sigma_{f} e_{y y}^{\prime}\right) \\
& \left(Y_{y}^{\prime}\right)_{f}=\frac{\prod_{f}}{\lambda_{f}}\left(e^{\prime} y_{y}+\sigma_{f} e^{\prime}{ }_{X X}\right) \tag{a}\\
& \left(X_{y}^{\prime}\right)_{f}=\mu_{f} e^{\prime}{ }_{X Y},
\end{align*}
$$

and equations 4 become

$$
\begin{align*}
& \bar{X}_{x}^{\prime}=\frac{E_{a}}{\lambda_{f}}\left(e_{x x}^{\prime}+\sigma_{f} e_{y y}^{\prime}\right) \\
& \bar{Y}_{y}^{\prime}=\frac{\bar{I}_{a}}{\lambda_{f}}\left(e_{y y}^{\prime}+c_{f} e_{x x}^{\prime}\right) \tag{4}\\
& \bar{X}_{y}^{\prime}=\mu_{f} \frac{E_{a}}{E_{f}} e_{x y}^{\prime}
\end{align*}
$$

Then solving for e^{\prime},

$$
\begin{align*}
& e_{x X}^{\prime}=\bar{X}_{x}^{\prime} \frac{1}{E_{a}}-\bar{Y}_{y}^{\prime} \frac{\sigma_{f}}{E_{a}} \\
& e^{\prime} y=\widetilde{Y}_{y}^{\prime} \frac{1}{E_{a}}-\bar{X}_{x}^{\prime} \frac{\sigma_{f}}{E_{a}} \tag{7}\\
& e_{x y}^{\prime}=\bar{X}_{y}^{\prime} \cdot \frac{E_{f}}{E_{a}} \frac{1}{\mu_{f}}
\end{align*}
$$

From equations 10 of Forest Froducts Laboratory Report No. 1322-A,

$$
\begin{equation*}
\bar{X}_{x}^{\prime}=\frac{\partial^{2} W_{T}}{\partial y^{2}}, \quad \bar{Y}_{y}^{\prime}=\frac{\delta^{2} T}{\partial x^{2}}, \quad \bar{X}_{y}^{\prime}=-\frac{\partial^{2}}{\partial x \partial y} \tag{10}
\end{equation*}
$$

Then by introducing (10) in (7) and substituting the results in (11) of Report No. 1322-A, the left-hand member of the esuation for the stress function (equation 12, Report No. I322-A) $ञ$ is obtained as follows:

$$
A \frac{\delta^{4} F}{\delta x^{4}}+B \frac{\delta^{4} F}{\delta y^{4}}+0 \frac{\delta^{4} w}{\delta x^{2} \delta y^{2}},
$$

where

$$
A=B=\frac{1}{E_{a}}
$$

and

$$
0=\frac{\mathbb{E}_{f}}{\Xi_{a} \mu_{f}}-\frac{2 \sigma_{f}}{E_{a}}=\frac{2}{\Xi_{a}}, \quad \text { since } \quad \mu_{f}=\frac{\Xi_{f}}{2\left(1+\sigma_{f}\right)}
$$

for the sandwich construction.

- The next step is to evaluate the constants in terms of properties of the sandwich construction so as to determine the values of $\mathbb{K}_{1}, \mathbb{K}_{2}$, etc., of equation 39 of Report No. 1322-A. A, B, and C have been found. The constant N is found as follows: For plywood, $N=E_{I} \sigma_{t L}+2 \lambda_{\mu} \mu_{t}$ from equation 33 of Report No. 1322-A. Since N is associated with flexural energy of deformation, it becomes for sandwich construction, if the contribution of the core is neglected,

$$
N=\left[\mathbb{E}_{f} \sigma_{f}+2 \lambda \mu_{f}\right]\left(1-\frac{c^{3}}{h^{3}}\right)
$$

But since $\lambda=\left(1-\sigma_{f}^{2}\right)$ and $\mu_{f}=\frac{E_{f}}{2\left(1+\sigma_{f}\right)}$,

$$
N=E_{f}\left(1-\frac{c^{3}}{h^{3}}\right)=I_{1}=E_{2}
$$

Since the material is assumed to be isotropic, the aspect ratio (3) of the buckle is unity, and equations 39 of Report No. 1322-A become

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{100}{\mathrm{E}_{\mathrm{a}}} \\
& \mathrm{~K}_{2}=\frac{100}{\mathrm{E}_{\mathrm{a}}} \\
& \mathrm{~K}_{3}=\frac{4}{\mathrm{E}_{\mathrm{a}}} \\
& \mathrm{~K}_{4}=8 \mathrm{E}_{1}
\end{aligned}
$$

If $\gamma_{i}(i=1,2,3,4)$ is substituted for $\frac{c_{i}}{\mathbb{E}_{f}}$ in equation 44 of Report No. 1322-A, there results

$$
\begin{aligned}
& \frac{\mathrm{pr}}{\mathrm{E}_{\mathrm{f}} \mathrm{~h}}=\left[2 \gamma_{1} \eta\left(\xi+\xi_{0}\right)-\gamma_{2} \frac{\left(3 \xi+\xi_{0}\right)}{2 \xi}+\frac{\gamma_{3}}{\eta \xi}+\frac{\gamma_{4} \eta}{\xi}\right] \frac{\left(\xi-\xi_{0}\right)}{c_{5}} \\
& \text { Let } \frac{\mathrm{pr}}{\mathrm{E}_{\mathrm{f}} \mathrm{~h}}=\mathrm{k}
\end{aligned}
$$

and equation (44) can be reduced to equation (52) on page 26 of Report No. 1322-A by the methods described therein and is:

$$
\begin{equation*}
k=\left[2 \gamma_{1} \gamma_{4}\left(32 \gamma_{1} \gamma_{3}-9 \gamma_{2}^{2}\right)\right]^{1 / 2} \frac{1}{4 \gamma_{1} c_{5}} \tag{52}
\end{equation*}
$$

By determining the values of $c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5} by ineans of equations (41) of Report No. 1322-A, and then determining values of γ_{1}, γ_{2}, γ_{3}, and γ_{4} from the relation $\gamma_{i}=\frac{C_{i}}{E_{f}}$ and substituting in equation (52),

$$
k=0.2426 \frac{\sqrt{E_{\mathrm{a}}{ }^{W}}}{\mathbb{E}_{\mathrm{f}}}
$$

Then since $\frac{p r}{\mathrm{E}_{\mathrm{f}} h}=\mathrm{k}$,

$$
r_{1}=0.2426 \quad \sqrt{\xi_{a} E_{1}} \frac{h}{r}
$$

If the center inaterial has the same roperties as the material in the facings, the value of $\mathbb{E}_{a}=\mathbb{E}_{1}=\mathbb{T}$, and the formula reduces to $p=0.2426 \$ \frac{h}{r}$, which is that derived for isotropic cylinders (page 28 of Report No. 1322-A).
Teble 1.-Axial-compresalon teats of curved panole of sandrich conotruction having plymood facinga

Table 2.--Axiaj-compregsion tente of corved panels of gandrich construction having aluminum facing

(Raport 110. 2555)
2 m 10815%.

Table 3.-Axdel-comprension teats of curyed panels of sandwich construction baying fiberslas facinge

Table 3.-Axial-compression tests of curved pangle of Bandwich construction having fiberglas facinga (Continued)

${ }^{{ }^{\text {points }}}$ representing these specimens are not nhown on figures 8,9 , or 10 because these specimens were defective.
(Report No. 1558)

Figure 1.--Edge view of crimping failure of minor specimens.
The appearance of this failure in the curved panels is
siwilar.
$2{ }^{M} 19224 F$

Figure 2.--Variation of $\frac{E_{t}}{E}$ with facing stress $\sigma_{c r f}$ for aluminum
facing materials. Z M 70846 F

Figure 3.--Variation of $\sqrt{\frac{E_{t}}{E}}$ or $\frac{2 \frac{E_{t}}{E}}{1+\frac{E_{t}}{E}}$ with facing stress, $\sigma_{c r f}$, for aluminum facing materials. ${ }^{1+\frac{L}{E}}$

Figure 4.--Comparison of the approximate with the exact method for computing the bucking stress beyond the proportional
limit.
zM 70848 F

Figure 5.--Crimping type of failure of a panel having 0.012inch aluminum facings on a $1 / 8$-inch balsa core.

Figure 6.--Crimping type of failure of a panel having 0.005inch aluminum facings on a $1 / 8$-inch balsa core.
2 x. 1926 :

Figure 7.-A comparison of experimental falling stress of a curved plate with the theoretical critical stress of a complete cylinder of sandwich construction under axial compression loads. The sandwiches were constructed of aluminum or fiberglas facings on end-grain balsa cores.
2 M 70849 F

Figure 8.--A comparison of experimental with theoretical critical stresses of curved panels of sandwich construction under axtal-compression loads. The sandwiches were constructed of aluminum or fiberglas facings on end-grain balsa cores.
2 M 70850 F

Figure 9.--A comparison of experimental with theoretical critical stresses of curved panels of sandwich construction under axial-compression loads. The sandwiches were constructed of aluminum or fiberglas facings on cellular cellulose acetate or hard sponge rubber cores.
2 M 70851 F

Figure 10.--A comparison of experimental with theoretical critical stresses of plywood-faced curved sandwich panels under axial-compression loads. ZM 70852 F

Figure 11.--Comparison of test and computed buckling stress of plywood cylinders under axial-compression loads. Direction (From fig. 3 of Report 1322).

Figure 12.--Comparison of test and computed buckling stress of curved plywood plates in axial compression. All plates were $3-\mathrm{ply}$ with faces of $0: 010$-inch and cores of 0.025 -inch yellow birch veneers, and were formed to a $5-1 / 4$-inch radius. (From fig. 9 of Report 1508).

Z M 54187 F

[^0]: IThis report is one of a series of progress reports prepared by the Forest Products Laboratory. Results here roported are preliminary and may be revised as additional data becouse available.
 ${ }^{2}$ Lundquist, Eugene 玉., "Preliminary Data on Buckling Strength of Ourved Sheet Fanels in Compression," NACA, Movember, 1941.

[^1]: BRedshaw, S. C., "The Tlastic Stability of a Thin Curved Fanel Suojected to an Axial Thrust., Its Axial and Circuaferential Adeses Being Simply Supported," I. \& 1h. 1565.
 Tech. Nerno. No. 880, November, 1938.

