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The agricultural industry in the Western United States continues to possess issues of 

overwatering, accounting for over 80% of consumed water per year in the country. While 

technologies such as satellite imaging and sensor networks have slowly improved irrigation 

Best Management Practices to reduce superfluous water consumption, limitations associated 

with these technological advancements include complex designs, high installation and 

equipment costs, and intensive maintenance labor. A proof-of-concept autonomous irrigation 

system installed at Peoria Gardens aims to alleviate these shortcomings through the use of 

cheap passive RFID tags from SmarTrac, which utilizes RFMicron’s environmental sensing 

technology to sample moisture value of its surroundings. These tags, calibrated using 

Adafruit Capacitive Soil Sensors, are placed in the soil of pansy crops at Peoria Gardens. A 

SparkFun Simultaneous RFID Reader is used to read moisture values sensed by the passive 

RFID tags, which then communicates the readings to an onboard Feather M0 WiFi via 

UART for microprocessing. The firmware for the Feather M0 contains a state machine that 

uses the communicated moisture values, converts it to a subjective Likert Scale Peoria 

Gardens uses for their crops to determine the activation of an onboard power relay that 

controls the irrigation switch for the irrigation boom. 
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Introduction 
 

The denotation of irrigation is an artificial application of water to crops, simulating that of 

nature, in order to enhance the crops’ growth rates. This concept, and its associating 

efficiency, continues to be a large research interest in the agriculture industry. Regarded as 

one of the more prominent causes of plant and crop issues, the issue of overwatering is 

common among many gardens, farms, and private lawns. In recent years, agriculture 

overwatering has been a ubiquitous issue, accounting for the use of over 80% of available 

consumable water in the United States alone [1]. These overwatering practices pushes the 

United States into second place as the country with the water waste, with 216 trillion gallons 

wasted per year, right behind China’s 362 trillion gallons per year [2]. Since 1998, however, 

advancements in irrigation Best Management Practices (BMPs) have resulted in overall 

decreases in total applied irrigation water, declining from approximately 76 million of acre-

feet to 72 million of acre-feet of irrigation water, despite about a 7.5% increase in irrigated 

acreage in the western United States [3]. 

 

A large part of increased BMP within the United States is a rapid growth and incorporation 

of precision technologies to irrigation practices, such as satellite data, sensor networks, data 

analytics, etc. By aiding commercial gardeners and farmers with greater water precision, 

these precision technologies allow an increased throughput of crops while simultaneously 

minimizing input costs. However, these added efficiencies to the irrigation practices do not 

come without drawbacks, such as cost and financial considerations, in which 25% of crop 

growers in the United States stated that they could not justify the added installation costs [4], 

with 46% of farmers expressing disinterest in the willingness to pay for the satellite imaging 

technology [5], and labor and technology requirements, in which a great degree of technical 

knowledge is needed to maintain these added technological practices [3]. 

 

The Oregon State University Openly Published Environmental Sensing Lab (OPEnS Lab) 

recognizes the environmental and cost benefits of increased BMP and aims to eliminate the 

two stated drawbacks of precision technologies through inexpensive and simple plug-and-

play electrical and mechanical systems. The OPEnS Lab current solution to irrigation 

overwatering is through the use of SmarTrac Passive RFID Soil Moistures to autonomously 

control an irrigation system in a commercial irrigation boom, as examined in this thesis. 

 

RFID Technology 
 

Frequency Identification (RFID), is a type of automatic identification and data capture 

technological method that automatically identifies RFID objects (or “tags”) using radio 

waves, captures digital data stored within each RFID tags, and sends the collected data into a 

database [6]. Due to its automatic nature, very little human interaction is needed. 

 

Two types of RFID tags exist in the market today: active tags and passive tags. Active RFID 

tags contain a dedicated microchip on the tag itself that stores the digital data, usually in the 

form of an Electronically Erasable Programmable Read-Only Memory (EEPROM), an 

antenna that receives the radio frequency signal from an antenna, and a dedicated onboard 

battery to provide the necessary power to transmit data to the reader. Active RFID tags are 



 

 

attractive over barcodes due to the avoidance of an optical scanner to obtain the EEPROM 

data – in other words, because Active RFID tags utilize RF radio waves for communication 

instead of an optical scanner, they can transmit data at great lengths (up to 100 feet) and 

without line-of-sight to the reader [7]. Passive RFID tags also contain a dedicated EEPROM 

and antenna to receive the radio frequency signal, but benefit from a much smaller, simpler, 

and cheaper design due to the lack of an onboard battery and its associating battery 

management system circuit. Instead, the passive RFID tags receives its power directly from 

the RF radio waves itself. While the lack of an onboard battery results in smaller data 

transmission distances (approximately 5 feet), it is an attractive technology due to the 

simplistic and cost-effective design from the added benefit of not needing to swap batteries 

[8]. 

 

Because the RFID tag and RFID reader are usually housed as separate units, the requirement 

for the RF signals to penetrate through a specific medium before read by the RFID tag can be 

used to sense different environmental conditions. This is done by allowing the RF signals to 

manipulate the circuitry on the RFID tag itself [9]. This was seen in a 2012 collaboration 

between SmarTrac and RFMicron, in which RFMicron’s Chameleon technology was utilized 

in the creation of passive RFID tags [10]. With this Chameleon technology, the passive RFID 

tags senses its frequency shift and performance loss via differences in its Received Signal 

Strength Index (RSSI) due to disturbances and dielectric in its environment, and uses an 

internal variable capacitor to offset the impedance of its antenna, thereby offsetting that 

performance differential. This adjusted capacitor value is then stored in the RFID EEPROM 

memory bank, accessible via the RFID reader [11]. 

 

SmarTrac Passive RFID Tags as Soil Sensors 
 

SmarTrac and RFMicron released its collaboration passive RFID tag product in 2015, 

commercialized as the Dogbone Passive RFID Tags, advertising the tags’ capabilities to 

sample moisture content in the environment [12]. Originally intended for the automotive 

industry to aid in the automotive manufacturing process by detecting leaks during 

environmental testing, these tags have since been thoroughly examined within the OPEnS 

Lab as potential soil moisture sensors. SmarTrac advertises 5-bits of resolution, scaling from 

0-31, of moisture level, posing 16 times more resolution than a standard Boolean logic of 

“dry” versus “wet.” 

 

In a previous thesis, these SmarTrac Dogbone Passive RFID Tags were calibrated with 

dedicated Decagon 5TM Soil Moisture Sensors. These Decagon 5TM Soil Moisture Sensors 

uses the frequency response of the probe submerged in a medium to determine that medium’s 

relative permittivity. The Volumetric Water Content of soil (VWC) is obtained by its relative 

permittivity (ɛa) via this equation [13]: 

 

VWC = 4.3x10-6 ɛa
3 – 5.5x10-4 ɛa

2 + 2.92x10-2 ɛa – 5.3x10-2 

 

In the above thesis experiment, 49 distinct trials were conducted with soil moisture levels of 

1-31% VWC, measured by an industry-recognized Decagon 5TM Soil Moisture Sensor. 

With suspected outliers removed from the collected dataset, the SmarTrac Dogbone Passive 



 

 

RFID Tags found a linear relationship with the Decagon 5TM Soil Moisture Sensor relative 

permittivity readings, with a calculated R-squared value of 0.72 [14]. Since the relative 

permittivity is proportional to the VWC of the soil, that statistical relationship from the 

passive tags applies to the Volumetric Water Content of the surrounding soil. In other words, 

72% of the variation of the RFID tag samples used in the experiment is explained by the 

VWC of the soil, without the control of other external variables. While an R-squared value of 

0.72 is not considered a substantial correlation by many statistical standards, it is considered 

valid in this case because many irrigation monitoring applications generally only need a 

qualitative scale of 1-5.  

 

Due to the Passive RFID technology, cheap commercial selling price of the tags, and a found 

relationship with the Volumetric Water Content of the soil, the SmarTrac Dogbone Passive 

RFID Tags are a highly attractive soil moisture sensor for the autonomous irrigation system 

described in this thesis. 

Design 
 

Electrical Design 
 

The SmarTrac Dogbone RFID Tag uses ultra-high frequency for RFID communication, 

which ranges from 902MHz – 928MHz within the United States. As a passive tag, these 

RFID tags do not require batteries, but rather sources its power from the reader itself. Passive 

RFID tags itself contain two elements: the antenna, and the EEPROM integrated circuit [8]. 

When hit by the radio frequency band emitted from a reader, the antenna portion of the RFID 

tag converts this RF energy to low voltage capable of waking the EEPROM, thus being able 

to access its data. The result is a cheap and simple RFID system capable of providing unique 

identification, albeit at the cost of communication range when compared to active RFID tags, 

which features dedicated onboard batteries. 

 

The system at Peoria Gardens features an ALIEN ALR-8696 UHF RFID Antenna due to its 

desired IP67 Water and Dust Resistant rating, relatively high 11.0dBic signal gain, and the 

ability to tune the readability cone through simple power adjustment [15]. This RFID reader 

synergizes well with the SparkFun Simultaneous RFID Reader containing a ThingMagic 

Nano M6E RFID Reader Module, which acts as the interface between the RFID antenna and 

a microprocessing unit for data interpretation. While the SparkFun Simultaneous RFID 

Reader is not the only RFID Reader on the market, nor the cheapest, it is one of the more 

attractive options due to its availability and open-source firmware support. 

 

The SparkFun Simultaneous RFID Reader, with its Arduino-shield footprint, was built to 

interface with an Arduino Uno and readily accepting 5V logic signals produced by the 

ATMega328P General Purpose Input/Output (GPIO). As industry slowly moves away from 

AVR architecture to a more capable ARM architecture, OPEnS Lab follows suit, with a 

recent adoption of the ubiquitous Adafruit Feather M0, which contains the ATMEL 

SAMD21 microcontroller, for its projects. The system at Peoria Gardens is no different; for 

feature expandability and promising libraries available for the Adafruit Feather M0, this was 



 

 

the forefront runner for the microcontroller needed to interpret the RFID data stored in its 

EEPROM. 

 

Due to the SparkFun Simultaneous RFID Reader’s 5V capability and its 3.6V VIH, a proper 

hardware interface was needed to communicate the SparkFun Simultaneous RFID Reader to 

the Feather M0 microcontroller, which uses 3.3V communication methods. A BOB-12009 

SparkFun Bi-Directional Level Shifter was initially considered for this design for its low 

BOM cost and ubiquitous nature, but was quickly discarded for other implementations. This 

particular level shifter utilizes BSS138 NMOS MOSFETs for quick level shifting. With an 

input capacitance of 27pF, these MOSFETs are a standard method for level shifting slow I2C 

bus lines. The SparkFun Simultaneous RFID Reader communicates with the system’s 

microcontroller using UART at 115200 baud, thus requires faster logic level shifting for its 

TX and RX communication. Traditionally, these level shifting approaches are done with 

digital buffer or inverter integrated circuits (i.e. Schmitt Triggers). For this application, two 

SN74AHCT125N Logic Level shifters were chosen for its backward compatibility; 

depending on the voltage applied to its Vcc pins, any incoming digital signal would be level 

shifted to that voltage level. As such, two of these ICs were necessary for the application: one 

that translates 3.3V digital logic to 5V, and another that steps voltage down from 5V to 3.3V. 

 

 
Figure 1. Schematic of the Interface PCB. 

 



 

 

 
Figure 2. PCB Layout of the Interface PCB. 

 

The intent for the interface PCB is to offer connections for both the SparkFun Simultaneous 

RFID Reader and Feather M0 for a quick “plug-and-play” solution. The top layer of this two 

layer PCB contains the 5V voltage rail extracted from the USB pin of the Feather M0, used 

to power the Nano M6E RFID Reader on the SparkFun board, which then feeds its power to 

the system antenna. The Feather M0 contains an onboard linear voltage regulator that steps 

down the 5V to 3.3V to power the ATMEL SAMD21 microcontroller. Due to this, all 

onboard electronics receives its power from a single 5V power source supplied to the USB 

pin of the microcontroller. 

 

 
Figure 3. Electronics Sandwich Stack. 

 

The autonomous irrigation system is controlled by the Feather M0 microcontroller. This 

microcontroller connects to an Adafruit Power Relay Breakout Board, which acts as a digital 

switch, to control the irrigation spray of the system. Before, the irrigation spray is initially 

manually controlled with a MTE-106E TriState Latching Switch that has three discreet 



 

 

positions: OFF, forward spray, and forward and backward spray. This new, autonomous 

functionality makes use of the forward spray functionality rather than both the forward and 

backward spray, as it was believed that the latter state would be redundant for the proof-of-

concept implementation; with the forward spray implementation, the irrigation could still 

turn on for the entirety of the irrigation boom path. The new, autonomous functionality 

identifies which row of crops need to be watered beforehand, manipulate the spray quickly 

using the forward spray functionality, and then shut itself off. This is done by connecting the 

Adafruit Power Relay Breakout Board directly onto the MTE-106E hardware switch. 

Through this connection, either one of the two ways can be used to turn on the irrigation 

spray (the physical switch or the digital switch); in a digital logic sense, an OR gate is created 

between the two – either the Power Relay or the switch can turn on the watering system. 

 

 
Figure 4. The Peoria Gardens Irrigation Controller, highlighting the Irrigation Switch. 

 

Mechanical Design 
 

Each passive RFID tag is enclosed in 3D printed ABS plastic. It was observed in testing that 

normal moisture levels could overwhelm the sensitivity of the tags. By 3D printing tag 

coverings, we can simultaneously protect tags from wear and tear, and control the thickness 

to optimize tag sensitivity to this particular application. To ensure near water-proof measures 

for the RFID tags, the 3D printing procedure for the RFID case offers a rather idiosyncratic 

instruction set: the 3D printer was paused after half of its printing duration to apply the RFID 

tag sticker to the base of the 3D printed ABS plastic, before resuming the 3D print to finish 

the encasement. While this procedure offers more meticulous care and planning, it was 

preferred over the initial experimented method of adhering two separate pieces of 3D printed 

ABS plastic, the bottom and the top, that sandwiches the SmarTrac RFID tag. 3D printing the 

casing as a singular unit offered consistent water-proofing, which was heavily desired for this 

application. 



 

 

 

 
Figure 5. CAD model of the 3D Printed RFID case. 

 

 
Figure 6. SmarTrac RFID Tag encased in the 3D Printed case. 

 

For consistent readings of the passive RFID tags by the ALIEN ALR-8696 UHF RFID 

Antenna, the antenna was mounted to the irrigation spray boom itself. The antenna mount 

designed utilizes the four M3 screws on the back of the antenna to mount a 3D printed ABS 

plastic plate containing a rotating shaft holder for antenna angle adjustability. A metal bar is 

then fed into that shaft holder to lower the antenna towards the crops and thus, closer to the 

passive RFID tags in the soil. 

 



 

 

 
Figure 7. The antenna mount for the ALIEN ALR-8696 RFID Antenna. 

 

The metal bar is then fed to another 3D printed grip that attaches itself onto the 2” diameter 

metal rod of the irrigation boom, where the water is sprayed from. To avoid a direct 

connection between metal and ABS plastic, which can potentially wear the 3D printed 

bracket over time, rubber tape was added between the plastic and metal connection, thus 

increasing friction. The bracket then clamps down to the metal rod through four hex screws. 

 

 
Figure 8. The irrigation boom 3D Printed mount. 

 



 

 

 

 
Figure 9. The irrigation boom 3D Printed mount implementation with rubber tape. 

 

The electronic sandwich stack is protected in a water-resistant pelican case, with holes drilled 

on the top of the case to feed in the necessary wires for power and antenna coax cable. This is 

stored on the side of the irrigation rail to be near the irrigation boom controller for the 

onboard Adafruit relay. A momentary button is attached to the reset pin of the Feather M0, 

which shorts the pin to ground when pressed. This provides a quick, rudimentary way of 

giving a system reset for debugging purposes. Similarly for debugging, a multi-color LED is 

placed inside the Pelican case, with the LEDs illuminating through a thin layer of ABS 

plastic indicating current moisture reading status of dry, medium, or wet. 

 



 

 

 
Figure 10. The water-resistance pelican case containing the onboard electronics and custom 

3D printed irrigation mounting system (in white). 

 

Firmware 
 

The SparkFun Simultaneous RFID Reader and the ThingMagic M6E both contain open-

source APIs to handle protocol communication between a microprocessor and the EEPROM 

of the passive RFID tags. Due to its compatibility with the Arduino IDE, the main platform 

used throughout OPEnS Lab hardware, the SparkFun open-source code, written by SparkFun 

CEO Nathan Seidle, was used for this system. 

 



 

 

Intended for the Arduino Uno, which runs on AVR architecture, the SparkFun Simultaneous 

RFID Reader uses UART soft-serial protocol to communicate with that AVR 

microcontroller. This was done with the intent to preserve the hardware UART functionality 

for the Arduino Uno, which is the main communication method from the programming PC to 

the Arduino. Soft-serial is an interrupt-driven library for the Arduino family of 

microcontrollers used to mimic the functionality of hardware serial by synchronously 

generating digital pulses on any available GPIO. 

 

To read the EEPROM data on the passive RFID tags, which contain the RSSI value, dictating 

the strength of the signal, unique TagID, programmable EPC data, communication 

frequency, and surrounding moisture value, the SparkFun library initially sends out read or 

write power of the antenna from the microcontroller to the ThingMagic M6E. This library 

also sends out region information (i.e. North America, Europe, China), as different regions 

around the globe have different radio frequency bands associated with their ultra-high 

frequency RF signals. One last data packet is then sent to the ThingMagic chip, dictating byte 

information to be transferred back to the microcontroller. 

 

This last data packet was intercepted early in the design process after the realization that the 

byte information sent back did not contain all the necessary details needed for the design. In 

a previous thesis, the moisture value read by the passive RFID tags and programmable EPC 

data were not contained in the same packet transmission. This intercepted data packet 

ciphered string of bytes found in the transport logs from the Universal Reader Assistant made 

from ThingMagic. When pulling for both the EPC data of the passive RFID tag EEPROM, a 

different ciphered string of bytes was intercepted: 

 

Table 1. The transferred packet from the Feather M0 to the ThingMagic M6E 

module for RFID communication. 

Original Packet 0x00, 0x00, 0x01, 0x22, 0x00, 0x00, 0x05, 0x07, 0x22, 0x10, 

0x00, 0x1B, 0x03, 0xE8, 0x01, 0xFF 

New Packet 0x00, 0x00, 0x01, 0x22, 0x00, 0x00, 0x05, 0x16, 0x22, 0x88, 

0x10, 0x01, 0x1F, 0x03, 0xE8, 0x0F, 0xFF, 0x01, 0x00, 0x01, 

0x09, 0x28, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0B, 

0x01, 0xFA, 0xE6 

 

While these data packets are ciphered, they are abstracted out to beyond the scope of this 

thesis. Using SparkFun library, by feeding these bytes to the M6E reader upon start-up, it 

mimics the transmission of that of the Universal Reader Assistant, effectively spoofing the 

hardware to send EEPROM data back to the microcontroller. 

 

As previously mentioned, the SparkFun library uses soft-serial for the TX and RX pins on 

GPIO 2 and 3 of the SparkFun Simultaneous RFID Reader to preserve the functionality of 

the hardware serial for the PC programmer. When porting the firmware over to the Feather 

M0, this soft-serial implementation is not available due to incompatible interrupts for the 

ATMEL SAM20, thus alternatives were needed. Fortunately, the Feather M0 contains 

multiple dormant hardware UART support. Adapted from Adafruit’s website on ‘Adapting 

Uno Sketches to the M0’, the Feather M0 PIO_SERCOM pinPeripheral was initialized on the 



 

 

code to the Feather M0’s pins 10 and 11 for TX and RX, respectively. This allowed the 

creation of a new serial object in the program, one that ties in with the hardware UART 

communication, arbitrarily called rfidSerial. 

 

With the adjusted packet sent to the M6E by the Feather M0, a single array of bytes is 

returned from the SparkFun Simultaneous RFID Reader to the microcontroller, containing 

pulled data from the RFID tags’ EEPROMs. This array of bytes, containing at least 33 

unique bytes, includes the frequency of communication, programmable tag EPC, tag ID, 

RSSI signal strength, and the surrounding moisture value, and is parsed after looking through 

the Transport Logs of the Universal Reader Assistant software. The breakdown of the parsed 

information are as follows: 

 

Table 2. The indices of RFID communication in the single array of bytes. 

Tag Moisture Data Index 28 

Tag RSSI Index 13 

Tag Frequency Index 15 to 17 

Tag EPC Index 33 to the end of message array 

 

Tag ID is not utilized in this application due to its unprogrammable nature; every worldwide 

RFID tag contains its own unique RFID code, or tag ID, given during its manufacturing 

process. While this tag ID could be used to associate tags for different crops in Peoria 

Gardens through a database or look-up table, utilizing a programmable tag EPC provided 

more flexibility and user control to this design. 

 

The EPCs of each RFID tag are programmed through a separate Feather M0 sketch, which 

utilizes a write() function for the ThingMagic M6E, and sets a write power to the module 

upon initial start-up. 

 

It must be noted that the desired functionality of an autonomous irrigation system is 

dependent on the grower’s need, dependent on the crops grown. For this application, there is 

a need for two distinct irrigation passes: irrigate, which waters the crops, and fertigate, which 

waters and fertilizes the crops. Customizing the EPCs of each RFID tag is an integral part of 

determining whether one tag is to be used in either the irrigate or fertigate state, and thus is 

an integral part of the overall autonomous functionality. The target moisture values that each 

tag needs to achieve are also encoded into their EPCs, that determine the stopping points for 

the crops’ wetting and drying cycles. Without the autonomous functionality for the irrigation 

system, all of this process was done subjectively: the grower would feel the soil moisture 

with hands, and then determine its moisture value on a subjective, Likert Scale from 1-5. The 

stopping points for the wetting and drying cycles ranged from 2-4. A state-machine is created 

to do this process automatically. 

 

Below is a detailed diagram of this state-machine. 

 



 

 

 
Figure 11. The State Machine Firmware Diagram. 

 



 

 

The autonomous functionality of the irrigation system continuously loops through two 

conditional elements: if the irrigation boom reached the end of the rail, or if an RFID tag has 

been identified by the system antenna. Though the fertigate aspect of this state machine 

remains untested and will be a main next step for the future of this project, the logic behind 

this specific state has been added into the overall state machine design: upon reading an 

RFID tag, the program reads the current state of GPIO pin FERTIGATE to determine 

whether this state is in a fertigate pass or not. Thus, the fertigate state is user controlled 

through an onboard switch to the overall design. 

 

Utilizing the programmable EPC, a fertigate tag is identified as RFID tags containing an 

arbitrary 0xFF heading to that EPC, parsed from the message array of bytes. All other tags 

arbitrarily contain the heading 0x0F, though as mentioned previously, can be programmed to 

contain different byte codes. During the fertigate state, the RFID reader will ignore all read 

RFID tags that contain the 0x0F heading, and will proceed to sample tags that contain the 

fertigate 0xFF code in the EPC. 

 

 
Figure 12: The oscillation curve for the wetting and drying cycle for the overall state 

machine. 

 

Regardless of a fertigate state or not, the sampled RFID moisture value is then compared to 

predefined threshold moisture values dictating wet or dry soil. Per the request of Peoria 

Gardens and their Likert 1-5 moisture value scale for the pansy crops, with a 1 indicating 

very dry and a 5 indicating very wet, all pansy crops are initially watered up to a 4, before 

drying down to a 2. This process is then repeated, with it being watered back up to a 4, and 

then drying back down to a 2. As such, with this functionality, the irrigation boom state-

machine is not handled through simple Boolean logic – is this current sampled soil value dry 

or wet? Rather, this value is compared to a threshold value indicating either a 2 or a 4 in the 

Peoria Gardens Likert scale, with additional information on whether the cycle is in a drying 

or wetting cycle. Once the sampled RFID moisture value is interpreted as dryer than the dry 

threshold value, that particular crop state information is then flipped from a drying cycle to a 

wetting cycle, with the compared threshold value updated to a wet threshold value. Once the 

sampled RFID moisture value is interpreted as wetter than the wet threshold value, that 

particular crop state information is then reverted back to a drying cycle, with the compared 

threshold value changing from a wet threshold value to a dry threshold value. Through this 

algorithm, the oscillation in crop irrigation is then preserved. So, in a sense, this is a self-

adjusting algorithm that regulates transitioning between user-defined dry and wet states. 

 



 

 

The data of each tag is abstracted and grouped into tag data structs in the C programming 

language, which is defined globally in the state-machine program. These structs contain the 

byte EPC, which acts as the RFID tag ID, a fertigate variable, defined as the EPC header of 

either 0xFF or 0x0F, the threshold moisture value of either dry or wet, a current state 

machine state, the RSSI information for that particular tag, the frequency of communication, 

and the moisture value. The motivation behind constructing tag objects is that each tag 

detected can have a separate state machine for added robustness on the overall 

implementation; rather than constantly inferring that each tag will share the same state, they 

can all be separated into different states for a more precise irrigation system, albeit with the 

cost of added computation and complexity. These tag objects are stored in a global tag object 

array of a known size, of which can be quickly changed depending on the crop implementing 

the passive RFID system. 

Results 
 

Calibration 
 

The onboard EEPROM of the SmarTrac Dogbone Passive RFID tag contains 5 bits of 

resolution for the sensed moisture value of its surroundings, thus ranging from 0-31, where 

31 is the driest the tags can sense. To fully integrate the functionality of the autonomous 

irrigation boom system, one of the earlier steps in the system design was calibration of the 

the 0-31 moisture value scale to Peoria Garden’s Likert scale of 1-5, with 5 being the wettest 

the crops will see. 

 

This calibration process was done through an intermediate step by taking pre-existing 

capacitive soil moisture sensors, the Adafruit I2C Capacitive Sensors, for moisture value 

comparison. These dedicated soil sensors were chosen for their wide availability and easy 

integration with the Feather M0, as well as their capacitive nature over typical resistive 

probes, which may degrade over time. The Adafruit I2C Capacitive Sensors suffered initially 

from saturation in their 10-bit resolution; at Likert Scales 4 and 5, dictating wet and very wet, 

respectively, the Adafruit I2C Capacitive Sensors reached its maximum possible capacitive 

values at 1016, thus providing inadequate data for comparison. This was combated using heat 

shrink to add an additional buffer layer between the capacitive probe and the surrounding 

soil. The number of heat shrink layers was optimized through thorough experimentation - a 

total of 5 different Adafruit I2C Capacitive Sensors were used, one without any heatshrink, 

two with one layer, and the last two with two layers, to sample the moisture values of soil 

with differing volumetric water content – ones that fit with Peoria Garden’s Likert Scale. 

 



 

 

 
Figure 13. The Adafruit Capacitive Soil Sensor without Heat Shrink. 

 

 
Figure 14. The Adafruit Capacitive Soil Sensor with Heat Shrink. 

 



 

 

 
Graph 1. Adafruit Capacitive Soil Sensor capacitive readings vs. the Peoria Gardens Likert 

Scale with increasing heat shrink. 

 

The Adafruit sensors sampled different soil moisture levels roughly 30 times with 5 minute 

intervals and logged the data on an onboard microSD card, written from the Feather M0. For 

these 30 samples on the differing moisture values, correlating to the Likert Scale, each were 

then averaged and plotted, as shown above. The graph above shows the average capacitive 

reading by the Adafruit sensors vs. the Likert Scale, with differing heat shrink layers. 

 

It was identified that the Adafruit sensors provided adequate resolution through one layer of 

heat shrink to shield the sensor from direct contact with the soil. For each additional layer of 

heat shrink, the maximum value read by the sensors at maximum Likert Scale decreased, thus 

preventing oversaturation in the readings. However, the addition of extra layers narrowed the 

resolution through the intermediate Likert Scale steps. Thus, the one layer solution was 

chosen for the optimal lower readings vs. narrower resolution trade-off. 

 

From there, the Adafruit sensors were then plotted on different Peoria Gardens plot, sampling 

capacitive readings and differing Likert Scale values. 
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Graph 2. The Adafruit Capacitive Soil Sensor capacitive readings vs. the Peoria Gardens 

Likert Scale, showing linear relationship. 

 

With the Adafruit sensor to Likert Scale conversion solidified, the passive RFID tags were 

then placed in soil with differing volumetric water content, initially measured by the Adafruit 

sensors, and using the provided polynomial line of best fit equation shown above to dictate 

the Likert Scale of 1-5. The RFID data was sampled 16 times for each Likert Scale soil, in 5 

minute intervals. The 5 different colored data samples shown in the graph below indicate the 

different levels of moisture levels from the Likert Scale of 1-5. 
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Graph 3. The SmarTrac Dogbone Passive RFID tag moisture readings sampled every 5 

minutes at increasing Likert Scale values, normalized by RSSI. 

 

Upon Initial glance on the RFID data obtained at the different Likert Scale, variation of the 

data can be spotted, even with the mean filter presented. Below details a table of the 

coefficient of variation of the presented 16 samples at the different moisture ranges. 

 

Table 3. The Coefficient of Variation for the RFID tag data sampled at different 

moisture values. 

Likert Scale Coefficient of Variation 

1 0.029 

2 0.044 

3 0.033 

4 0.064 

5 0.059 

 

The low coefficient of variation from the collected data suggests a relatively small level of 

dispersion and variation around the mean of each Likert Scale reading, thereby giving a 

certain degree of precision from the sampled dataset. 

 

These 16 samples were then averaged throughout the different soil moisture levels, providing 

an RFID 5-bit reading that correlates with the Likert Scale used at Peoria. 
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Graph 4. The SmarTrac Dogbone Passive RFID tag moisture readings averaged at increasing 

Likert Scale values, normalized by RSSI. 

 

Peoria Demonstration 
 

Once the electrical, mechanical, and software designs were completed, the system was taken 

to Peoria Gardens to prove its viability out in the field. The water-tight Pelican case 

containing the onboard electronics was mounted to the side irrigation rail, near the irrigation 

boom controller. The RFID antenna, connected via a 3-feet coax cable to the SparkFun 

Simultaenous RFID Reader, was mounted onto the metal 2” diameter rail that contained the 

irrigation spray, with the antenna positioned parallel to the RFID tags for best response. 
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Figure 15. Final hardware implementation setup at the Peoria Gardens irrigation boom. 

 

Eight SmarTrac RFID tags, encased in the ABS plastic casing, were programmed with 

unique EPCs, ranging from 0xA8 to 0xAF, and placed in the soil of the pansy crops, as 

shown below. 

 



 

 

 
Figure 16. The SmarTrac Dogbone Passive RFID tags in pansy crops at Peoria Gardens. 

 

The irrigation controller was connected to the Adafruit Power Relay board, connected to the 

Feather M0, which controlled the irrigation system of the RFID tags. A video was shown of 

the irrigation system spray functioning autonomously. For the purpose of clarity, and for 

needed extra calibration to the RFID tags (see the Potential Improvements section), the video 

shows this functionality on only selected crops. The link is provided below. 

 
https://tinyurl.com/y3wetnsf 

Conclusion 
 

Potential Improvements 
 

The autonomous irrigation system design at Peoria Gardens serves as a proof-of-concept 

design aimed to minimize water consumption and irrigation implementation expenses. While 

the outlook for this system is promising, there are improvements to be made for a more 

universal appeal. 

 



 

 

During the calibration phase for this project, it was identified that the RSSI value stored in 

the EEPROM of the passive RFID tag had certain influence to the overall moisture value 

readings made by the SmarTrac tags. These unnormalized RSSI and moisture value readings 

are shown in the graphs below. 

 

 
Graph 5. The SmarTrac Dogbone Passive RFID tag moisture readings sampled every 5 

minutes at increasing Likert Scale values, unnormalized by RSSI. 
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Graph 6: The SmarTrac Dogbone Passive RFID tag moisture readings averaged at increasing 

Likert Scale values, unnormalized by RSSI. 

 

It can be easily noticed that the graph obtained in Graph 6 varies drastically from the values 

shown in Graph 4. For Graph 4, the moisture readings from the passive RFID tags were 

normalized by RSSI. The procedure done to normalize the RSSI was a physical one: the 

RFID antenna’s distance from the RFID tags were manipulated for each Likert Scale value 

such that each trial contained consistent RSSI values. However, for Graph 6, the RFID 

antenna was instead normalized by distance rather than RSSI; for the five different Likert 

Moisture Scale values, one consistent distance was used to read the data from the RFID tag. 

This leads to a different produced curve, showing that RSSI affects the moisture value 

readings produced by the passive tag. 

 

One suggested reasoning behind this condition is due to the way the moisture values is 

obtained from the passive RFID tags. Due to their passive nature, all of the energy to sense 

the dielectric constant onboard the tag is done through the RF energy given by the antenna. 

Obscuring the beam path from the antenna to the associated tag downplays the RF energy 

needed to create the moisture value measurements, thus provides inaccurate moisture value 

readings, as shown in the collected data above. The solution for this is twofold: one can 

address this potential improvement through a mechanical aspect, in that the distance from the 

antenna to the RFID tag is adjusted during a read cycle to normalize the RSSI value. Another 

approach is a software one, in which an algorithm is created that takes in both the RSSI and 
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moisture value readings to appropriately normalize the readings based off of that given RSSI 

value. 

 

The antenna is prone to premature readings of the RFID tags and may, as a result, 

prematurely activate the irrigation spray system. This can be identified in the figure below. 

 

 
Figure 17. Result of the irrigation spray, showing premature turn-on distance of 

approximately 3 feet. 

 

Further calibration is needed on the RFID tags and the antenna readings of the RSSI and 

moisture values to determine the appropriate delay time procedure to improve upon the 

premature irrigation spray in an attempt to avoid heavy water consumption. Possible 

solutions include appropriately setting the antenna power upon initial start-up and creating an 

RSSI threshold value to ignore read tags of a certain distance from the reader. One must note, 

however, that different moisture values on the soil may impede with the RSSI values, thus a 

constant RSSI threshold may not provide for a robust implementation for this design. 

 

Further Development 
 

Project Loom at the OPEnS Lab is a multidisciplinary collaboration of multiple open-source 

projects aimed to create fully modular and user-friendly sensor and actuator system kit for 

environmental research. A fully extensive library system for the Arduino IDE, Project Loom 

allows for rapid prototyping on commonly used electrical and mechanical hardware. Many 

OPEnS Lab associated projects have been adapted to the Project Loom framework, and the 

RFID Soil Moisture Sensor is near the top of the list for this systematic integration. 

 

The motivation behind the Project Loom integration as a potential further development of the 

project is to provide additional user-friendly control to the project state machine. While the 

state-machine sketch abstracts many variables, soil moisture thresholds, and program objects 

to readable macros, the core of the OPEnS Lab community is to tailor environmental 

research and benefits to interested businesses and individuals outside the engineering realm. 

While slight adjustment to the program macros calls for minimal coding expertise, consistent 

adjustments through the design’s calibration phase leaves much to be desired. Through 

integration with Project Loom, these macros can easily be adjusted through JSON text files, 



 

 

which are automatically imported over to the program once the source code is compiled. This 

provides a rudimentary user interface for program adjustment, and takes the necessary steps 

to ensure proper plug-and-play hardware. The Project Loom team is currently collaborating 

with the greenhouse managers to identify user-driven features to interact with the 

autonomous irrigation system to further explore ways of providing user-friendly experiences 

with this hardware. 

 

The current method for logging the soil moisture data is through an onboard, local microSD 

card attached to the Hypnos Board in the electronic stack. This allows all crops with the 

passive RFID tags to be later reviewed by the tag EPC, see the soil moisture value at a 

specific time, and provide information on drying or wetting cycle. Through an onboard 

microSD card, the system utilizes no WiFi capabilities, tailored towards individuals or 

businesses with limited WiFi or cellular connectivity. With an ever growing IoT domain to 

this society, however, it is believed by the OPEnS Lab to start translating services and data to 

the cloud. In the case for this application, the logged RFID data can be transferred over to a 

Google Sheet for a more interactive database system with the data collected. This would 

provide additional functionality to the design that tailors towards a larger commercial 

audience. Such functionality would require the utilization of a Feather M0 WiFi board. 
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Appendix 
 

Source Code 
 

 

/* 

  Reading multiple RFID tags, simultaneously! 

  By: Nathan Seidle @ SparkFun Electronics 

  Appended By: Matt Guo 

  Date: March 4th, 2020 

  https://github.com/sparkfun/Simultaneous_RFID_Tag_Reader 

 

  Constantly reads and outputs any tags heard 

 

  If using the Simultaneous RFID Tag Reader (SRTR) shield, make sure the ser

ial slide 

  switch is in the 'SW-UART' position 

*/ 

 

//TODO: clean up relay_switch function so that toggling is not necessary for

 each iteration 

//      of state machine. 

//TODO: test fertigate functionality 

 

//#include <Loom.h> 

#include <Adafruit_NeoPixel.h>        // Library for NeoPixel functionality 

#include "wiring_private.h"           // pinPeripheral() function 

#include "SparkFun_UHF_RFID_Reader.h" // Library for controlling the M6E Nan

o module 

 

#define NEOPIXEL A1 

#define RELAY_SWITCH A0 

#define UART_TX 10 

#define UART_RX 11 

#define FERTIGATE_SWITCH A2 

#define RELAY_RSSI_THRESHOLD -80 

 

#define NUMPIXELS 1 

#define NUM_TAGS 10 

#define RSSI_THRESHOLD -60 

#define WET 16 

#define DRY 21 

#define MAX_VALUE 26 

#define MIN_VALUE 17 

 



 

 

bool _debug_serial = true;      //global bool for serial debug mode 

 

enum state_enum { 

   COMPARE_THRESHOLD, 

   WET_CYCLE, 

   DRY_CYCLE, 

}; 

 

//struct for tag object, stores tag EPC, fertigates, 

//moisture value, frequency of communication, etc 

typedef struct{ 

 

   byte EPCHeaderName; 

   byte fertigate; 

   uint8_t threshold; 

   uint8_t state = COMPARE_THRESHOLD; 

   int rssi; 

   long freq; 

   long moisture; 

   byte tagEPCBytes; 

     

} tag; 

 

tag tag_array[NUM_TAGS];      //global array for tag objects 

int current_num_tags = 0;     //global counter for current number of tags 

uint8_t fertigate_state = 0;  //global variable for the state of fertigate p

ass 

 

Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, NEOPIXEL, NEO_GRB + 

NEO_KHZ800); 

 

//const char* json_config =  

//#include "config.h" 

//; 

//// Set enabled modules 

//LoomFactory< 

//  Enable::Internet::Disabled, 

//  Enable::Sensors::Enabled, 

//  Enable::Radios::Disabled, 

//  Enable::Actuators::Disabled, 

//  Enable::Max::Disabled 

//> ModuleFactory{}; 

// 

//LoomManager Loom{ &ModuleFactory }; 



 

 

 

//Tx ---> 10 

//Rx ---> 11 

Uart rfidSerial(&sercom1, UART_RX, UART_TX, SERCOM_RX_PAD_0, UART_TX_PAD_2 )

; 

 

void SERCOM1_Handler() { 

   rfidSerial.IrqHandler(); 

} 

 

RFID nano; //Create instance 

char color[10]; 

char EPCHeader_Hex[3]; 

int timeout_counter = 0; 

 

int rssi; 

long freq; 

long moisture; 

byte tagEPCBytes; 

byte EPCHeader; 

byte EPCFertigate; 

 

void setup() 

{ 

 

//  Loom.begin_serial(true); 

//  Loom.parse_config(json_config); 

//  Loom.print_config(); 

// 

//  LPrintln("\n ** Setup Complete ** "); 

 

   pinMode(RELAY_SWITCH, OUTPUT); 

   pinMode(FERTIGATE_SWITCH, INPUT_PULLUP); 

   

   pixels.begin(); 

   setColor(-1, -1); 

   Serial.begin(115200); 

   //while (!Serial); //Wait for the serial port to come online 

    

   rfidSerial.begin(115200); 

    

   pinPeripheral(10, PIO_SERCOM); 

   pinPeripheral(11, PIO_SERCOM); 

    



 

 

   while(!rfidSerial); 

    

   delay(1000); 

    

   StartOver: 

    

    if (setupNano(115200) == false) //Configure nano to run at 38400bps 

    { 

      Serial.println(F("Module failed to respond. Please check wiring.")); 

      for(int j = 0; j < 5; j ++){ 

         for(int i = 0; i < NUMPIXELS; i++){ 

            pixels.setPixelColor(i, pixels.Color(150, 150, 150)); 

            pixels.show();   

         } 

         delay(300); 

         for(int i = 0; i < NUMPIXELS; i++){ 

            pixels.setPixelColor(i, pixels.Color(0, 0, 0)); 

            pixels.show();   

         } 

         delay(300); 

      } 

    

      delay(10000); 

      goto StartOver; 

    } 

    

   nano.setRegion(REGION_NORTHAMERICA); //Set to North America 

    

   nano.setReadPower(2600); //5.00 dBm. Higher values may caues USB port to 

brown out 

   //Max Read TX Power is 27.00 dBm and may cause temperature-

limit throttling 

    

   //Serial.println(F("Press a key to begin scanning for tags.")); 

   //while (!Serial.available()); //Wait for user to send a character 

   //Serial.read(); //Throw away the user's character 

    

   nano.startReading(); //Begin scanning for tags 

} 

 

//Gracefully handles a reader that is already configured and already reading

 continuously 

//Because Stream does not have a .begin() we have to do this outside the lib

rary 

boolean setupNano(long baudRate) 



 

 

{ 

 

   delay(200); 

   nano.enableDebugging(); 

    

   nano.begin(rfidSerial); 

    

   //Test to see if we are already connected to a module 

   //This would be the case if the Arduino has been reprogrammed and the mod

ule has stayed powered 

   while(!rfidSerial); //Wait for port to open 

    

   //About 200ms from power on the module will send its firmware version at 

115200. We need to ignore this. 

    

   while(rfidSerial.available()) rfidSerial.read(); 

   delay(100); 

    

   Serial.println("Getting Version..."); 

   nano.getVersion(); 

    

   if (nano.msg[0] == ERROR_WRONG_OPCODE_RESPONSE) 

   { 

      //This happens if the baud rate is correct but the module is doing a c

continuous read 

      nano.stopReading(); 

    

      Serial.println(F("Module continuously reading. Asking it to stop..."))

; 

    

      delay(1500); 

   } 

   else 

   { 

      //The module did not respond so assume it's just been powered on and c

ommunicating at 115200bps 

      Serial.println("Setting Baud..."); 

      nano.setBaud(baudRate); //Tell the module to go to the chosen baud rat

e. Ignore the response msg 

    

   // rfidSerial.begin(baudRate); //Start the software serial port, this tim

e at user's chosen baud rate 

   } 

    

   //Test the connection 



 

 

   Serial.println("Getting Version..."); 

   nano.getVersion(); 

    

   delay(200); 

    

   nano.getVersion(); 

    

   if (nano.msg[0] != ALL_GOOD){ 

      Serial.println(nano.msg[0], HEX); 

      return (false); //Something is not right 

   } 

    

   Serial.println(nano.msg[0], HEX); 

    

   Serial.println("Setting Tag Protocol..."); 

   //The M6E has these settings no matter what 

   nano.setTagProtocol(); //Set protocol to GEN2 

    

   Serial.println("Setting Antenna Port..."); 

   nano.setAntennaPort(); //Set TX/RX antenna ports to 1 

    

   nano.disableDebugging(); 

    

   return (true); //We are ready to rock 

} 

 

//main loop of the program, calls the state machine for individual 

//tags upon successive tag responses 

void loop() 

{ 

   //readFertigateSwitch(); 

  if (nano.check() == true) //Check to see if any new data has come in from 

module 

  { 

    byte responseType = nano.parseResponse(); //Break response into tag ID, 

RSSI, frequency, and timestamp 

 

    if (responseType == RESPONSE_IS_KEEPALIVE) 

    { 

      Serial.println(F("Scanning")); 

    } 

    else if (responseType == RESPONSE_IS_TAGFOUND) 

    { 

      //If we have a full record we can pull out the fun bits 



 

 

      rssi          = nano.getTagRSSINew();     //Get the RSSI for this tag 

read 

      freq          = nano.getTagFreqNew();     //Get the frequency this tag

 was detected at 

      tagEPCBytes   = nano.getTagEPCBytesNew(); //Get the number of bytes of

 EPC from response 

      EPCHeader     = nano.getEPCHeader();      //Get the EPC header for ide

ntification 

      EPCFertigate  = nano.getFertigateTag();   //Get the EPC fertigate code 

      moisture      = nano.getMoistureData();   //Get the moisture data of t

he current read 

 

      if(freq < 1000000 && nano.getAntennaeIDNew() == 17 && tagEPCBytes <= 2

0){ 

 

//       if(_debug_serial){ 

//          Serial.print("Fertigate State: "); 

//          Serial.println(fertigate_state);  

//       } 

 

         //checking the fertigate pass 

         //means that current sweep is not fertigate sweep 

         //if(!fertigate_state){ 

 

             for(int i = 0; i <= current_num_tags; i++){ 

                if(tag_array[i].EPCHeaderName == EPCHeader){ 

                   //run state machine at i 

                   updateData(i); 

                   state_machine(i);   

                } 

                //no tag found, add in this new tag 

                else if(i == current_num_tags){ 

                  if(current_num_tags < NUM_TAGS){ 

                    addNewTag(i); 

                    current_num_tags++; 

                  } 

                } 

           } 

             

         //} 

         //we are in the fertigate sweep, do not call state machine on non-

fertigate tags 

//       else{ 

// 

//             for(int i = 0; i <= current_num_tags; i++){ 



 

 

//                if(tag_array[i].EPCHeaderName == EPCHeader && tag_array[i]

.fertigate == 0xFF){ 

//                   updateData(i); 

//                   state_machine(i);  

//                } 

//                //no tag found, add in this new tag 

//                else if(i == current_num_tags){ 

//                   if(current_num_tags < NUM_TAGS){ 

//                      addNewTag(i); 

//                      current_num_tags++;   

//                   }   

//                } 

//             } 

//           

//       } 

 

        //reset timeout 

        timeout_counter = 0; 

 

        delay(100); 

 

        setColor(moisture, rssi); 

 

        itoa(EPCHeader, EPCHeader_Hex, 16);  

 

//        Loom.measure(); 

//        Loom.package(); 

//        Loom.display_data(); 

// 

//        Loom.add_data("RFID", "RSSI", rssi); 

//        Loom.add_data("Frequency", "Frequency", freq); 

//        Loom.add_data("Moisture", "Moisture", moisture); 

//        Loom.add_data("EPC", "EPC", EPCHeader_Hex); 

//        Loom.add_data("Color", "Color", color); 

//        Loom.SDCARD().log(); 

//        Loom.pause(); 

 

      } 

      else{ 

         //implement timeout function 

        timeout_counter++; 

        if(timeout_counter > 10){ 

          setColor(-1, -1); 

        } 



 

 

      } 

 

    } 

    else if (responseType == ERROR_CORRUPT_RESPONSE) 

    { 

      Serial.println("Bad CRC"); 

    } 

    else 

    { 

      //Unknown response 

      Serial.println("Scanning..."); 

    } 

  } 

} 

 

//Takes inputs of moisture and rssi values, sets the color on the NeoPixel 

//accordingly. 

//NOTE: DEBUG FUNCTION ONLY 

void setColor(int moisture, int rssi){ 

  if(moisture >= 0 && rssi >= RSSI_THRESHOLD){ 

      if(moisture <= WET){ 

           for(int i = 0; i < NUMPIXELS; i++){ 

              pixels.setPixelColor(i, pixels.Color(0, 0, 150)); 

              pixels.show(); 

              strcpy(color, "blue");   

           } 

      } 

      else if(moisture < DRY){ 

           for(int i = 0; i < NUMPIXELS; i++){ 

              pixels.setPixelColor(i, pixels.Color(0, 150, 0)); 

              pixels.show(); 

              strcpy(color, "green");   

           } 

      } 

      else{ 

          for(int i = 0; i < NUMPIXELS; i++){ 

              pixels.setPixelColor(i, pixels.Color(150, 0, 0)); 

              pixels.show(); 

              strcpy(color, "red");;   

           }   

      } 

  } 

  else{ 

       for(int i = 0; i < NUMPIXELS; i++){ 

          pixels.setPixelColor(i, pixels.Color(0, 0, 0)); 



 

 

          pixels.show();   

       }  

  } 

} 

 

//Create a new struct tag object with a default initialization 

//setup, then store the information to the tag array 

void addNewTag(int i){ 

   i++; 

   tag newTag; 

   newTag.EPCHeaderName = EPCHeader; 

   newTag.fertigate     = EPCFertigate; 

   newTag.threshold     = MIN_VALUE; 

   newTag.state         = COMPARE_THRESHOLD; 

    

   tag_array[i] = newTag; 

} 

 

//Update the current tag object array to the most current values 

//from the irrigation sweep 

void updateData(int i){ 

   tag_array[i].fertigate   = EPCFertigate; 

   tag_array[i].rssi        = rssi; 

   tag_array[i].moisture    = moisture; 

   tag_array[i].freq        = freq; 

   tag_array[i].tagEPCBytes = tagEPCBytes; 

} 

 

//function that turns on the relay switch by pulsing high on 

//the GPIO 

void turnOnRelay(){ 

   digitalWrite(RELAY_SWITCH, HIGH); 

} 

 

void turnOffRelay(){ 

   digitalWrite(RELAY_SWITCH, LOW); 

    

} 

 

//void readFertigateSwitch(){ 

// if(digitalRead(FERTIGATE_SWITCH) == HIGH){ 

//    fertigate_state = 1;  

// } 

// else{ 

//    fertigate_state = 0;  



 

 

// } 

//} 

 

//Irrigation state machine with three states: compare the threshold 

//wet cycle (for continuous watering until low threshold is met), and dry cy

cle 

//(for continuous drying until high threshold is met). 

void state_machine(int index){ 

 

  switch(tag_array[index].state){ 

 

    case COMPARE_THRESHOLD: 

     

       if(_debug_serial){ 

          Serial.print("EPC Tag: "); 

          Serial.print(tag_array[index].EPCHeaderName, HEX); 

          Serial.println(" COMPARE_THRESHOLD state"); 

         

       } 

 

       if(tag_array[index].threshold == MAX_VALUE){ 

          if(_debug_serial){ 

             Serial.println("Transitioning to: DRY_CYCLE"); 

             Serial.println(); 

          } 

          tag_array[index].state = DRY_CYCLE; 

       } 

       else if(tag_array[index].threshold == MIN_VALUE){ 

          if(_debug_serial){ 

             Serial.println("Transitioning to: WET_CYCLE"); 

             Serial.println(); 

          } 

          tag_array[index].state = WET_CYCLE; 

       } 

 

       break; 

 

     case WET_CYCLE: 

 

      if(_debug_serial){ 

         Serial.print("EPC Tag: "); 

         Serial.print(tag_array[index].EPCHeaderName, HEX); 

         Serial.print(" Current RSSI: "); 

         Serial.print(tag_array[index].rssi); 

         Serial.print(" WET_CYCLE state "); 



 

 

         Serial.print("Current moisture: "); 

         Serial.print(tag_array[index].moisture); 

         Serial.print(" Threshold moisture: "); 

         Serial.println(tag_array[index].threshold); 

         Serial.println();  

      } 

      

       if(tag_array[index].moisture > tag_array[index].threshold){ 

          if(tag_array[index].rssi > RELAY_RSSI_THRESHOLD){ 

            turnOnRelay(); 

            tag_array[index].state = COMPARE_THRESHOLD; 

          } 

          else 

            turnOffRelay(); 

       } 

       else if(tag_array[index].moisture <= tag_array[index].threshold){ 

          tag_array[index].threshold = MAX_VALUE; 

          tag_array[index].state = COMPARE_THRESHOLD; 

          turnOffRelay(); 

       } 

 

       break; 

 

     case DRY_CYCLE: 

 

        if(_debug_serial){ 

           Serial.print("EPC Tag: "); 

           Serial.print(tag_array[index].EPCHeaderName, HEX); 

           Serial.print(" Current RSSI: "); 

           Serial.print(tag_array[index].rssi); 

           Serial.print(" DRY_CYCLE state "); 

           Serial.print("Current moisture: "); 

           Serial.print(tag_array[index].moisture); 

           Serial.print(" Threshold moisture: "); 

           Serial.println(tag_array[index].threshold); 

           Serial.println();  

        } 

      

        if(tag_array[index].moisture > tag_array[index].threshold){ 

           if(tag_array[index].rssi > RELAY_RSSI_THRESHOLD){ 

               tag_array[index].threshold = MIN_VALUE; 

               turnOnRelay(); 

               tag_array[index].state = COMPARE_THRESHOLD; 

             

           } 



 

 

           

        } 

        else if(tag_array[index].moisture <= tag_array[index].threshold){ 

          tag_array[index].state = COMPARE_THRESHOLD; 

          turnOffRelay(); 

        } 

  } 

} 
 

  



 

 

 


