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THE DISTRIBUTION OF CERTAIN SEQUENCES OF
n-TUPLES OF NUMBERS MODULO 1

I. INTRODUCTION

The problem to which this thesis addresses itself is an outgrowth

of a question asked of Richard Crittenden of Portland State University

by Charles S. Rees of the University of New Orleans. In his work in

Fourier series Rees found he had need for a sequence of positive

integers
{nk}

that, for k large enough, has the following

properties:

1/4 <
nk log log nk(modulo 2Tr) < 1/2

and

0 < log log nk(modulo 21r) < 1/4.

Since then Crittenden, F.S. Cater, and Charles Vanden Eynden

[I] have published a paper that proves the existence of such a sequence

in a rather general way. This thesis is an extension of the first

theorem of that paper, which we state after giving some preliminary

definitions.

Definition 1. Let <x> = x - [x], where [x] is the greatest

integer function.

Henceforth, the symbols R, R+, N, and Z will be reserved

for the sets of real numbers, positive real numbers, natural numbers,

and integers, respectively.



Theorem A. Suppose f is defined for x > a, f(x) eventually

tends monotonically to 0 as x tends to +00, and
Sb

f )dt h(x) tends to +00 as x tends to +00.
a

If 1(x) = h(t)dt, then {(<h(i)>, <1(i)>) i E I\T} is dense in
a

[0, 1] x [0,1].

If we consider the interval {x I x > el and define

/(x) = xlog log x - x + e,

1h(x) = log log x
4. log x

and

1f(x) - -
1

x log x
x(log x)2

then the functions 1, h and f satisfy the conditions of Theorem A,

and so

{(<1(1)>, <h(i)>)11. E N.}

1is dense in [0, 1] x [0, 1]. But since lim - 0, the setlog x
x-4"+00

S = {(<i log log i>, <log log i>)1 i E N)

is also dense in [0, 1] X [0, 1]. We could have, as well, looked at the
1 1 1functions rir-1, 271. h, and 2.n. f. They also satisfy the conditions

of Theorem A and hence
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1 1S = {(<-2 1 (i)>, < h(i)>)1 i E
27r

is dense in [0, 1] X [0, 1]; therefore

G= [ (i)(mod ulo 210,h( i) (mod ulo Tr) i EN}

is dense in [0, 2Tr] X [0, 2Tr]. We see then that the Rees sequence

{nk} exists.

In this thesis we take a somewhat different tack. We first make

the following definition.

Definition 2. Let f(0) = f and f(n) = f(n-1)' for n e N.

Our approach is to look at a real valued function f defined and

having n derivatives for x > a, and such that the lim f(n)(x)= 0,
x

and give necessary and sufficient conditions for the set

= {(<f(i)>, <ft(i)>, <f(11-1)(i)>)li E

n-1
to be dense in X [0, di. In the language of this thesis, Theorem A

i=0

would be stated as follows:

Let f be a real valued function, defined, and having a first

and second derivative on {x x > a} for some a, let

f"(x) tend monotonically to 0 as x tends to +00, and

3
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let lim fl(x) = +00. Then the set
x +00

S = {(<f(i)>, <fl(i)>) i E N}

is dense in [0, 1] X [0, 1].

Theorem 5 of this thesis restricted to the case n = 2 implies

Theorem A, but gives necessary and sufficient conditions rather than

just sufficient conditions. The monotonicity of f" is found to be

unnecessary and the condition, lirn fi(x) = +00, is replaced by the
+co

condition, f' is unbounded or lim sup f1 - urn inf f' > 1. Adding this

alternative condition for bounded functions allows us to apply the

theorem to trigonometric functions which were out of reach of the

original theorem. Lemma 3 allows us to conclude that sets like

S {(<i(2n+1)/2)>, <i(2n-1)/2 >, . , <i1 /2>) i E N.)

are dense in X [0, while Corollary 7 may be used to show that
i=0

the set

S = {(<in log log iw>, <log log iw),) Ii E N},

where n E N and w > 0, is dense in [0,1] x [0, lb

We have chosen to view the sets as being subsets of Euclidean

n-space. The topological closure, then, may contain points with some

or all co-ordinates equal to 1. Since 1 is not in the range of the
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function <x> this might seem inappropriate. Alternatively we could

view the sets as being subsets of the n-dimensional torus X (R /Z)..
i=1

This approach would necessitate identifying numbers with equivalence

classes- For this reason and the fact that most people have a more

intuitive feeling about a 17-dimensional cube than a 17-dimensional

doughnut, we chose the first alternative.

The main result of this thesis, Theorem 6, is proved by an

induction. Theorems 1, 2, and 4 of Chapter II constitute the proof of

Theorem 6 for the case n = 1. Theorem 5 is devoted to showing

certain sets are dense in the n-cube, (n > 2), if and only if certain

other sets are dense in the (n-1)-cube.

Theorem 6 of Chapter IV combines Theorems 1, 2, and 4 with

Theorem 5 in an induction that yields the main result.

In Chapter V some examples of the use of Theorem 6 and

Corollary 7 are examined.



II. SOME PRELIMINARY THEOREMS

This cpte7 is ,'e7oted to proving three rather short theoi:.;:ris

that, taken together, amount to the first step of an induction.

Theorem 1 is well known, and in fact if lim f(x) = +C)°,

X +0°

lim fI(x) = 0, and urn xf1(x) = +00 then the set
+00 x'" 00

S = {( <f( i)>) E N} is uniformly dense in [0,1] [2]. Here a sequence

fkil is defined to be uniformly dense in [0, 1] in the following way.

Let n(a,b) equal the cardinality of the set {kili < n and ki E (a, b)}.

Then {k.} is uniformly dense in [0, 1] if for all 0 < a < b < 1,

the lim n(a, b) In = b - a.
n

Before we prove Theorem 1 we make the following definition.

Definition 3. For any set S in Euclidean n-space Rn, g

is the topological closure of S.

Theorem 1. Let f be a real valued function defined on

{xl x > a} for some a which satisfies

lim fl(x) =
00

and

f is unbounded.

Let S = {<f(i)>1 i E N}. Then S= [0, 1].

6



But x > x

or

Proof. Let p E (0, 1) and let c be a positive number

satisfying

E < minfp, 1-pl.

Now by part (i) of the hypothesis, there exists a number0 such that

IfI(X)1 < E when x > x

From the Intermediate Value Theorem, it follows that either

{YI y ?thcog or {YI Y <_f(x0)} is a subset of {f(x)lx > xo}. In any

event there exists a number x1 such that x1 > xo and

<f(x1
)> = p; that is,

f(x1) = j P

where j is an integer.

Put k = [x1] + 1. Then 0 < k - x1 < 1. Applying the Mean

Value Theorem, we obtain a number x such that
x1

< x < k and

f(k) = f(xi) + ft(x)(k-x1).

1

0 < k - x1 < 1, then if T(x)(k-x1) I < c. Thus

f(xi) - c < f(k) < f(xi) + c,

and x1 > x0' and so ft(x- ) < C Since

7



j p - e < f(k) < j p + E.

Since c < rr in{p 1 -n} then

j <j+p-e<f(k)<j+p-I-e<j+1.
Therefore,

I <f(k)> < E

Since p is an arbitrary element of (0, 1), it follows that

= [0, 1].

Theorem 2 is proved in much the same way as was Theorem 1

which is as follows.

Theorem 2. Let f be a real valued function defined on

{x lx > a} for some a which satisfies

urn fl(x) = 0
x'00

and

lim sup f - lim inf f > 1.

Let S = {<f(i)> i E 1\11. Then "g = [0, 1].

Proof. Put s = lim sup f and i = lim inf f. From (ii) we

see that

(2.1) i < s - 1.

Let p E (0,1) where p <s> and let c be a positive number

8



satisfying

c < minfp, 1-0

By (i) there exists a number x0 such that

(2.2) If '601 < c when x > x .

From (2. 1) and the Intermediate Value Theorem, it follows that

(s-1, s) C {f(x)Ix > x0}. There exists a number y such that

s-1<y<s and
(2.3) <y> = p.

Choose x1 >x0 such that f(x1) = y. Let k = [x11 + 1. Then

0 < k - x1 < 1. By the Mean Value Theorem, there exists a number
-

x such that x1 < x <k and

f(k) = f(x1) + ft(x)(k-x1).

_
Since x > x1 and xl > x0 ' then I f ' (7c) I < e by (2. 2). Thus

le(;)(k-x1 )1 < c, and so

y - e = f(x1) - E < f(k) < f(x1) + c = y + E.

From (2. 3), we then obtain

[y] < [y] + p - E < f(k) < [y] + p + E < [y] + 1.

9



Therefore,

and the theorem follows.

After Theorems 1 and 2, Theorem 4 almost states itself, since

it is what is needed to produce necessary and sufficient conditions for

set {(<f( i)>) i E N} to be dense in [0, 1]. However, before we

prove Theorem 4 we have need for the following lemma which is used

also in Chapters IV and V.

Lemma 3. Let gl, g2, gn be real valued functions and let

f(x) = k x) + h(x) where k E N and lim h(x) exists and is
gJ x--"+00

finite. If

{(<g1(i)>, <g2(i)>, , <gn(i)>)1i E

is dense in x [0, 1].,
i=1 L

<f(k)> < c.

then so is

{(<g1 (i)>, , <g 1(i)>, <f(i)>, <gi+1(i)>, , <g(i)>) 1 E

Proof. With no loss in generality, we assume j = 1. Put

c = lim h(x). Let (r1, r2, r ) E X (0, 1). where
r1

<c> .
n i=x +00

Observe that <r1-c> 0, for otherwise r1-c=vEZ,

r1 = v + c, and r1 = <r1> = <c>. Let E be a positive number

10



satisfying

(2. 4) e < rainfr 1-r1' <r1 -c>, 1

and let t be a number satisfying

(2.5) 111(x)-c < /2 (x > t).

1Since (
k <r1 -c> r2' ,r ) E X (0, 1)., there is an i E N, i >t,

n i.1
for which

and

Therefore,

and so

(2. 6)

1<gi(i)> -j <2.1-c>1 < ei2k

I <gi (i)> - r < E (i = 2,3, ...,n).

-_1 <r
_2kk 1

< <gi(i)> < <r1-c> + 2k

0 < <r1-c> - c/2 < k<g1(i)> < <r1 -c>+ c/2 < 1.

Since kgi(i) = k[gi(i)] + k<gi(i)> and k[gi(i)] is an integer, then

= <k<gi(i)>>

From (2.6) we have <k<gi(i)>> = k<gi(i)> ; thus,

<kgi(i)> = k<gi(i)> ,

11



and

(2.7) <rre> - E/2 < <kgi(i)> < <r-c> + E/2.

Now <r1-c> + c = r1 - c - [r1-c] + c = r1 - [r1-c]; hence,

(2.8) <r1-c> + c = ri + m

where m = 4r1-c] is an integer. From (2.4), (2.5), (2.7), and

(2.8) we have

f(i) = kgi(i) + h(i)

= [kgi(i)] + <kgi(i)> + h(i)

[kgi(i)] + <r1-c> + E/2 + E/2 + c

= [kgi(i)] + m + r1 + E

[kgi(i)] + m + 1

and

f(i) = [kgi(i)] + <kgi(i)> + h(i)

[kgi(i)] + <r1-c> - E/2 - E/2 + c

= [kgi(i)] + m + ri -

[kgi(i)] + m.

From the preceding inequalities we obtain

<f(i)> r1 <

This together with inequality (2.6) yields the result of the lemma.

12



13

Theorem 4. Let f be a bounded real valued function defined

on {x I x > a} for some a. If

lirn sup f - lirn inf f < 1

then {<f(i)>I i E N} is not dense in [0, 1].

Proof. Let a = lim inf f and p = lirn sup f.

From the preceding lemma we have that {<f(i)>I i E N} is

dense in [0, 1] if and only if {<g(i)>1 i E N} is dense in [0, 1]

wher e

Note that
a+13- 1lim inf g = a - 2

1-(3-a) >0
2

and

g(x) = f(x) -

a+P-1lim sup g 13- 2

1+(p-a) < 1.

Therefore, with no loss in generality we assume 0 < a < 13 < 1.

Let = min{a/2, (1-13)} . Since f is bounded we have from the

definition of lim sup f and lirn inf f, the existence of a number t

for which
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a - < f(x) < 13 + e (x > t)

Thus,

n/2. < f(x) < 1 (x >t),

and so

a/2 < <f(x)> < 1 (x > t).

But then the intersection of [0, a/2] and {<f(i)>I i E N} is finite,

and the theorem follows.



Let

III. THE INDUCTIVE STEP

Theorem 5, which we now state, is really the heart of the

thesis.

Theorem 5. Let n > 2 and let f be a real valued function

with an nth derivative defined on {xlx > a} for some a, which

satisfies the condition

(i) urnf(n)(x) = 0.

S = {(<f(i)>, <V(i)>, , <f(i)>) Ii E

and

S' = {(<fl(i)>, N}.

Then

n-1
S = X [0, 1].

i=0

if and only if

n-1
S' = X [0,1], .

i=1

Since the proof of the if part is rather long and involved a little

overview is in order. We first choose a point
n-1

in X (0, 1).. For a given s we find a new point
i=0 1

Q1 = (b0,b within a distance E of Q and which is of the farm

15
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a0 al a2 an-1 where p is prime, p and k are
P P 2k 2k

large deperrrg rr c and the a's are determined by the q's.
n-1

We use the fact S' = X [0, ].]. to find an integer x which has the
i=1 i 0

property I <f(i)(x0 )> - b. I is small for 1 < i < n.
i

We then expand the function using Taylor's Theorem, about

A new integer xr is then found with the property that
0

<f(j)(xro)> - b. I
is small for 0 <j < n. The point

Q (<f(x )>, <fl(x )>, <f(n-1) (x )>) is within a distance E

0 ro
0 0

of
Q1

and hence close to Q.

n-1
Proof. Since S' is the projection of S on x [0, di, it

i=1
n-1

is clear that if S is dense in X [0, l]i then S' is dense in
i=0

n-1
x [0, 1].

i=1 n-1
Henceforth, assume S' .= X [0, a and let

i=1

Then Q = (q0, q1, .,q1) where 0 < qi < 1

Let E > 0 and

(3.1) E < qi/2 and E < (1-qi)/2 (i = 0,

Choose k E N satisfying the condition

16

n-1
Q E X (0,

i=0
1)..

for i = 0, 1, ..., n-1.

1, ..., n-1).

(3.2) 112k < E /2n.



Let p be a prime such that

(3.3) p > 2kn! .

Then from (3.2) and (3.3) we obtain

(3.4) 1/p < 112kn1 < 1 /2kn < E /2n2 .

Next, let a. E N (i = 0,1, ... ,n-l) be determined by the following

inequalities:

(3.5) ai/p <q. < (ai+1)/p (i = 0,1)

and

(3.6) a /2 < q < (a.+1)/2k (i = 2, ...,n-1).
1.

Set 130 = a0/p, b1 = al /p, and b. = a. /2k (i = 2, . , n-1). Let

Q = (b 0,b1, .. ,b )
1 0' n-1

and

= (b .. b
1 1" n -

. (n)Since urn f (x) = 0, there exists t E R such that
x co

(3.7) I f(n)(x) < E /2n2(p2kn ! )n (x > t).

n-1
Since QI e X [0, we see from (iii) that there exists

1
i=1

such that xo E N and

x0 >t

17



(3.8)

Put

(3.9)

where [x] is the greatest integer function, and

(3.10) h. = f(i)(x ) - k. - b
0 i

= <f(1)(x0)> - b. (i = 1, ..., n-1).

From (3.8) we have

(3.11) I < E /2n2(p2kn!)n (i = 1, ...,n-1).
1.

Define

(3.12) s =kn! and xr = x0 + rs (r E N).

By using Taylor's Theorem we can express for i = 1, ..., n-1, and

r = 0 or r E N,

n-1

f(1)(x ) =
(rs)j-i f(n)( ) (rs)11-i
(j-i)! xr (n-i)!

where x < x < x . Hence0 r r

1<f(i)(x0)> - bj < c/2n2(p2kn!)n (i = ., n-1).
I.

k. [f(x0 )] (i = 0,1, ... , n-1),

18



<f(i)(xr)>= <

n-1

We now proceed to reduce f(i)(xr) modulo 1 for

i = 1, ..., n-1, and r = 0, ...,p-1. From (3.9) and (3.10), we have

n-1

i=i

Since s = 2'n! and 0 < j-i < n, it is the case that

(rs)j-i/(j-i)! E Z;

and therefore,

(rs)j-i+ f (n)(. x ) . > .(j-1)! r (n-1)!

(rs)j-i (n) (rs)n-i
(k.+b.+h.) . . + f (x ) > .

J 3 J (3-1)! r (n-i)!

n-1

k.
(=LI0_0! E Z

i=i

(i = 1, ,n-1; r = 0, ...,p-1).

Also, when i < j < n and 1 < i then b. = a./2k, and so
J 3

b r.( s)j-i/(j-i)! = (a./2k)(r2knni-i /(j-i)!
3

k j-i-1 k k . .= a.(r2 n!) (r2 n! /2 (3-0!).
3

Thus,

b.(rs)j-i/(j-i)! E Z (1 < i <j < r = 0; p-1).

It follows that for i = 1, ..., n-1, and r = 0,

19



n-1

<f(i)(x )> = <b. + h (rs)j-i + f(n)(x )
(rs)11-i

j (j-i)! r (n-i)!
i=i

From (3.11) and (3.12), we have for 1 < i and j =

and r = 0, 1, ..., p-1,

< Ih.(p2knOnl

c(p2kn!)n

2n2(p2kn!)n

= E/2n2.

Thus for i = 1, ..., n-1, or r = 0, . p-1,

n-1

(3.13) hj I < (n-1)c/2/12 .

i=i

Since Tc >x > t' from (3.7) and (3.12) we see that for
r

i = 1, ,n-1, and r = 0,

If (x
) c(p2kn!)n

I r (n-i)! 2n2(p2kn!)n

From (3. 13) and (3. 14) we conclude for i = 1, ,n-1, and

r = 0, ...,p-1, that

>.

(3. 14)

20



(rs)j-i (n)+ f (x I < chi
j (j-i)! r) (n-1) !

(rs)j-i (n) (rs)11-i
fh+ (xr )

j (j-i)! (n-i)!
j=i

for i = 1, ..., n-1, and r = 0, p-1. Then

(3.15)

and

(3.16)

<f(i)(xr)> = <b. + c. >,
1, r

Ic. <C/fl.
1, r

We now look at If(i)(xr) - b for i = 1, , n-1, and

r = 0, ,p-i. Recall b1 = a1 /p,/p
a1 /p <q1 < (a1+1)/p, and for

i = 2, ... ,n-1, b. = a. /2k, and a /2k <q < (a.+1) /2k. From (3.4)
1 1

and (3. 16) we obtain for r = 0, . . .

1c11 (bl+cl,r)I 1c11 lel, rl

< 1/p+ Ic12r1

< E /2n + E/n < E

Also, from (3.2) and (3. 16) we have for i = 2, ..., n-1,

21

n-1

Set

n-1

C.1, r



(3.18) f(x ) = f(xo) +

1 q - (13.+c )1 < 1
_ b I + lc.

i,ri

1/2k + I c. I1, r

E/2n + ein < E

By (3.1), it follows that

0 <qi-e<bi+ci2r<qi+c< 1

(i = 1, ...,n-1; r = 0, ...,p-1).

Since 0 < b. + c. < 1, then <b. + c. > = b. + c. . A substitu-
1 1, r 1 1, r 1 1, r

tion in (3.15) gives <f(i)(xr)> = b. + c. Therefore,
1 1, r

(3.17) <1r )> - b. I < ein

for i = 1, ,n-1, and r = 0, p-1.

Now turning our attention to the function f we see from

Taylor's Theorem that for r = 0,

n-1

i=1

where x <x <x . Let a satisfy
0 r r

(3.19) a E Z, 0 <a < p, and a/p < <f(x0)> < (a+1)/p

(n)(
(rs)n

) f xr) n!i!

22



(3.21)

(3. 22)

_
a alrs
P P

0 <h0 = <f(x0 )> - aip < 1 ip < c/2nz .

Thus, from (3.10), (3.18), and (3. 20) it follows that

n-1-
a

f(x ) = k + h +
r Op 0

i=1

(rs)i (n) (/_:s)1±1_
k.+b.+h.) + f (xr) n!i. i. i. 1.!

n-1n- n-1
i. i , ,irs 11 sL...

k. b. h
i. i! i. i!

i i!

23

Put

(3. 20) h0 = f(x0 ) - k0 - alp

where ko = [f(x0'd. Then (3.4), (3 19), and (3.20) yield the inequality

i=0 i=2 i=0

(n) (1 1L.+f (xr) n!

for r = 0, ..., p-1.

We now reduce f(xr) modulo 1. Since s = 2kn! then

(rs)iii! = (r2kn!)iii! E N (i = 0, ..., n-1; r = 0, ...,p-1).

Hence,

n-1(3.23)r/k.( s)i
i.

. E Z (r = 0, ... , p-1).

i=0

For i = 2, ... ,n-1, since b. = a. /2k and a. E N, then
I I I



and

So if we set

rb.(rs)i/i!
= a.( 2kn!)i/2ki! E Z (1- = 2,

= 0, p-1).

Thus

n-1

(3.24) /bi(rs)i/i! E Z (r = 0, p-1).

i=2

By (3.21) and (3.11), respectively,

1h01 < c/2n2

n-1

i=0

1 h.1 < e/2n2(p2kn!)n (i = 1, ...,n-1).
I.

Thus, for r = 0,

c/2n2 +

i=1

= ne/2n2 = c/2n

n-1

n-1

E /2n2 (r2kn!)n
(p2kn!)n

i=

n-1

i!2(p2kn!)nn

24

i!
(rs)i 2e/2n



ur = .h r( s)i/i! ,

i=0

we have

(3.25) ur < E /2n (r = 0, , p-1)

Since x > x >t, from (3. 7) we see thatr 0

I f(n)(; ) I < /2n2(p2kni)n
r I

from which we obtain

f(n)(7c-r)(rs)nin! I < e(r2kn!)n /2n2(p2kn! )11

< E /2n2 (r = 0, p-1).

(n)So if we set r = f (xr)(rs)n/n! we have

(3. 26)l/rI < E/2n2 (r = 0, ...,p-1).

Returning to (3.22) we see that

a+alrs<f(x )> = < + Y. b (rs)i
ii!

i=0 i=2

n-1
h. (rs)i

+ f(n)(x )
(rs)n

> .r n!
i=0

25



Using (3.23), (3.24), (3.25), and (3.26) we see that for

r = 0, 1, ...,p-1,

a+alrs
(3. 27) <f(x )> = < + u + >r r

where a, al' r' and s are nonnegative integers, lurl < /2n,

and 1/r < c12n2.

1
Since q1 < 1 and since < £ <

q1
by (3.1) and (3.4), then

0 <a1 <p by (3. 5). Also, 0< s <p by (3.3) and (3.12). Hence,

the set of all products of the form a1rs (r = 0,1, ... ,p-i) com-

prise a complete residue system modulo p; that is, for each integer

k there exists an integer r, 0 < r < p, such that a1rs = jp + k,

where j is an integer. We see then that there exists an integer ro,

0 < r0 < p, and an integer j for which

(3. 28) a + a1r0s = jp + a .
0

A substitution using (3. 28) in (3. 27) gives

jp+a0
<f(x )> = < +u + >

r0 r0 r0

a
0= <j + u +1 >.

0 0

Since j is an integer it follows that
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(3. 29) <f(x)> = <
a0

+u u +1 >.r0 p ro rO

1 <f(x_ )-alp >1 In (3.5) we find
10 u

a0
/p <q0 < (ao+1)/p, and thus 0 < qo - ao/p < 1/p. From (3.4)

we have 1/p < E and from (3.1) we have 2E < Thus

2E - ao/p < c, or c < a0/p. Using (3. 25) and (3. 26) we see that

(3.30) 1 u +1 1 < lu 1 + 11 1 < /n < E._
r0 r0 r0 r0

Therefore,

0 < ao/p + u +i -

r0 r0

From (3.1) and (3.5) we have 2E < 1 - qo and ao/p <q0 ; that

is,

a0 /p + 2E < 1.

It follows that

ao /p + u +1 <a /p + E < 1.r0 r0 o

Since 0 < ao/p + u + / < 1, then from (3.29) we obtain
r0 r0

<f(x )> = ao/p + u +
r0 0

r0

We now consider

Using (3.30) and the fact that bo = a0/p, we then have
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Hence,

Set

(n-1),Q = (<f(x )>, <f'(x )>, ..., <f tx )>)
0 r0 r0 r0

and let do be the distance from
Qo

to Q1' d1
the distance

from
Q1

to Q, and d the distance from Q to Qo. Then we

see that from (3.17) and (3.31), we obtain

-1

d0 = (<f(i)(x )> - b.)2
1.r0

i=0

in-1
< / (din)2 <C

i=0

By (3.4) and (3.5) we have

I qi - bil < 1/p <c/n (i = o, 1),

and by (3.2) and (3.6) we obtain

I qi - bi 1 < 112k < E in (i = 2, 3, .. .

28

(3.31)
1 <f(x )> - b < Emil.

r0



dl =

Now d < d + d1 and, consequently, d < 2E . So for any
n-1

E > 0 and any point Q E X (0, 1)i we have found a point Q0 such
i=0

that Q E S and the distance from Q to Q0
is less than 2c.

0

Thus
n-1

= X [0, 1]. .

i= 1

29

in)2 < E .

i=0



or

(
(i) fn-1)

IV. THE MAIN THEOREM

We now use the results of Chapters II and III in a proof by

induction of the main theorem of the thesis.

Theorem 6. Let n > 1 and let f be a real valued function

defined and having n derivatives on {xl x > a} for some a and

let lirn f(x) = 0. Then
x-4- +00

S {(<f(i)>, <00>, , Im>) Ii E

n-1
is dense in X [0, l]. if and only if

i=0

is unbounded as x +00

(ii) lim sup f(n1) - lirn inf f(n1) > 1.

Proof. For k = 1, 2, ..., n, define

S {vf(n-k)(i)>, <f(n- 1) (i) >)
E N).

Note S = Sn.

Assume (i) or (ii). Then by Theorems 1 and 2,
S1

is dense in
n-1

X [0, ii. = [0, 1] and by Theorem 5, 2< k < n if Ski is dense in
in
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n-1 n-1
X [0, 1]. then Sk is dense in X [0, Hence, by

i=n-(k-l) i=n-k
n-1

induction on k, S = Sn
is dense in X [0, 1]..

i=0

Now assume not (i) and not (ii). Then by Theorem 4, S1
is

n-1
not dense in [0,1] = X [0, 1]., and by the only if part of Theorem

i=n-1
n-1

5 for 2 <k <n, Ski not dense in X [0,1]. implies Sk
i=n-(k-1)

n-1
is not dense in X [0, 1].. Using induction on k, it follows that

i=n-k

S =
Sn

n-1
is not dense in X [0, .

i=0

Recall now from Chapter I that the original Rees problem

amounts to finding a sequence fk.} of integers that placed
1-

<k. log log k.> and <log log k.> within certain bounds. We would

now like to extend this result to put <knl log log k.> and

<1 ,oglog kt.> n E N and t E R+, within given bounds. For that

purpose <f(i)> and <f(n)(i)> are of interest to us, but not

<f(j)(i)> where 0 < j < n. For this example, and many like it, we

prove the following corollary.

Corollary 7. Let f and g be functions defined on {x x>

for some a which satisfy
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and

urnf(n)(x) = 0.
+00

Then the set {(<f(1)(i)>, <g(i)>)1i E 1\32 where j and

0 < < n, is dense in [0, 1] X [0, 1].

Proof. Let f, q, kl, k2, and j satisfy conditions (i), (ii),

1and (iii). Now the function f satisfies the hypothesis of the if
k2

part of Theorem 5; therefore, the set

S = < V(i)>, f(11-1)(i)>)li E N}
2 2

k2

n-1
is dense in X [0,1]. It follows that the projection of S on the

i=0
J2 -j plane

S = {(< f(1)(i)>, <Lf(3)(1)>)1/E N}
j k2 k2

is dense in [0,1] X [0, 1]. An application of Lemma 3 to the second

coordinate function gives

32

kl (j)
g(x) = (x) + q(x) where k1 E N' k2 E N, j E N or

k2

j = 0, and lirn q(x) exists and is finite. Also, for some
+00

n > max{j, 1}

(n-either f1) is unbounded or

1 (n-1) 1 (n-1)urnsup f lim inf > 1,
k k2



t( < 1 f (i)>, <
k1 (j)
I ; f (i) 4- cl(x)>) I i E N}

is dense in [0, 1] X [0, 1]. A second application of Lemma 3 to the

first coordinate function yields the desired result.
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and

Next assume

Observe that

V. APPLICATIONS AND UNSOLVED PROBLEMS

We now would like to show, as an example of the use of our

results, that the set

S {(<inlog log it>, <log log it>)I E N}

where n E N and t > 0 is dense in [0, 1] X [0, 1]. For that

reason we prove the following lemma.

Lemma 8. Let D(k)(xn/log x) be the kth derivative of the

function f(x) = xn/log x, x > 0. Then

lim D(n)(xn/log x) = 0

lim D(n+1)
n(x /log x) = 0.

x---1" 00

Proof. We claim that D(k)(xn/log x) is of the form

k+1
n-k

3x ik

i=1

for 1 <k < n+1.

D(1)(xnhog
x)

, nxn-1 /log x - xn- /(log x)2.
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where 1 < i < n. Then

hence,

D(i+1)(xn /log x) =

n/log x) =

(i+1) n
D (x /log x) =

i+1

j=1

i+2

b.xn-(i+1)/(log x)j

j=1

i+1

j=1

n-i/a.x (log x)i

n-i - 1 xn-i-1{(n-i)a. x - j a.
(log x)i (log x)j+1

where b = (n-i)a b. = (n-i)a. - (j-1)a. , (2 < j < i+1), and1
j J-1 -

bi+2 = -(i+l)ai+1. The claim follows by mathematical induction.
n+1

Example 1. The set

H = {(<inlog log ii>, <log log it>)1 N}

where n E N and t is a positive real number, is dense in

[0, 1] X [0, 1].
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Thus D(n)(xn/log x) has the form (a./ log x)i and

n+1 j=1

D(n+1)(xn/log x) has the formxc./ (log x)i+1, and the result of
j=1

the lemma is immediate.



Therefore,

Define

h(x) = n! D(11-i)(xn-i/log(n-i+1)!
i=1

From the preceding lemma, we have

lim h(x) = 0
00

and

Proof. Let f(x) = xn log log xt and g(x) = log log xt where

n E N and t E R+

A straight forward induction argument yields the following

formula for the jth derivative of f (1 < j in):

f(j)(x) =
n! xn-j log log x + n! n-jx log t

(n-j)! (n-j)!

n! D(j-i)n-i(x /log x).n-i+1)!
i=1

f(n)(x) = n! log log x + n! log t +
i=1

urn hi(x) = 0
x-1-00

It follows that

lim f(n)(x) = co.
x--" CO

n-i
n! D(n-i)( x ).n-i+1)! log x
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and

(n+1) n!= lim n!lim f + hl(x) = 0.x log xx-00 x-00

Next observe that

n!g(x) = n! log log xt

= n! log (t log x)

= n! log t + n! log log x

= f(n)(x) - h(x).

1 (n) 1
Hence, g(x) = !f (x) - h(x), and by Corollary 7 we have that

n n!

{(<f(i)>, <g(i)>)I i E N} is dense in [0,1] X [0, 1].

The following is an example of the use of the condition of

Theorem 5 that lim sup f - lirn inf f > 1. It, along with many other

examples of functions that are compositions of periodic functions with

other functions, satisfies this condition.

Example 2. Let f(x) = x3 cos (log x). Repeated differentiation

yields

f(3)(x) = -10 sin(log x)

(4) -10
f (x) cos(log x).

We see then that f(3) satisfies (ii) of Theorem 5 and
(4)bin f (x) = 0, and so

x-4-00
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S = {(<f(i)>, <f(1)(i)>, <f(2)(i)>, <f3(i)>)I i E 1\T}

3

is dense in X [03 What is probably of as much interest is the
i=0

fact that { <f(i)>I i E N} is dense in [0, 1]. As a matter of fact, if

m and n are such that max{n,m} E N then it can be shown in

the same way that

.n.r m
{ <1 sin(log i ) + i cos(log i.$)>1 i E N)

is dense in [0, 1] if r > 0, s > 0.

Example 3. Let f be a real valued function defined on R

in the following way

m r,
if(x) = a.xi

i= 1

where r1 > ri for all 1 < i < m, r
1

> 1, and r 1 V N, and

set n = [ri] + 1. Then

n-2
f(j)(x) = al H (r 1 -i)x<1.1> + g(x)

' i=0 '

where g(x) has only powers of x less than r1>. Hence, the
(n-1)function f is unbounded. Differentiation yields

+

38



( n-1f(n)(x)=a if

1 i=0
)(rri)

x<r1>-1 + gi(x).

Hence by Theorem 5 the functions f, f', , fn satisfy the condition

of Lemma 3.

Looking at a special case of Example 3 we see the power of

Lemma 3. Set

n-1
f(x) = x(2n+1)/2/ n ((2n+1)-2i)

f(n)(x) = xl /2/n
f(n+1)(x) x-1 /2 /2n+l

. (n)And the lIrn f(X) = and lirn f(n+1)(x) = 0. Thus, by
x+00 x--"' +00

Theorem 5 and repeated use of Lemma 3
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Since all the powers of x in

lim f(n)(x) = lim a1
x co x 00

g'

n-1

II
i=0

are less

(1-14

than

<r >-1x 1

0;

+

thus

.g'(x) = 0.
co

then

(2n-1)/2fl(x) = x

i=0

n-1/2 n ((2n+1)-2i)
1=1

n-1
(2)(x) =

(2n-3) /2
f x /22

TI ((2n+1)-21)
i=2



S = {(<i1/2>, <i3/2>, ..., <i(2n+1)/2>)i E N}

n
is dense in X [0,11.

i=0 1

Theorem 5 may also be applied in the following way. Given a

sequence of integers {ni}, and a function f, that for some E > 0

satisfies

ln.-1/2 + c < f(i) < n.+ /2 - E
1 1

for all i, and where for some n E N, lim f(n)(x) = 0. Then the
x co

function f(n-1) is bounded and fails to satisfy the lirn sup-lim inf

condition of Theorem 5.

Let us now look at a few questions left unanswered by this

thesis. It might be tempting to try, in some way, to move to the

infinite case. There may well be some meaningful way to do this.

However, there are restrictions. Thus, consider the sequence

{ki} where

k. =
1

Now we know from the special case of Example 3 that for any n-tuple

(r1, r2, ..., rn), where 0 < r. < 1, 0 < j < n, and any E > 0,
J

that there exists an integer i such that I <r.- i(2i4-1)/2>1 < E for
J

all j. Looking at (k1,k2, we see that for any i E N,
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1k - <i >1 = 1/2.
i

(n),It may be of interest to look at the case where lim f(x) = 0
x-''' 00

and lirn f(n-1)(x) = c for some c 0. Then one might try to see,
x-°' 00

under what circumstances

{(<f(i)>, <V(i)>, ... , <f(n-2)(i)>1 i E N}

is dense in the (n-1)-cube.

Finally, the whole area of uniform density in the n-cube is an

open question that is of interest.
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