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Caissons on permeable seabeds have been designed and constructed

for a variety of needs in coastal and offshore engineering. An eval-

uation of the adequacy of the foundation beneath the structure is

required for an economic and safe design. To address this require-

ment, a two-dimensional analytical model of the foundation response

is developed. The caisson is assumed to be placed on a rubblemound

bedding layer overlying a soil of finite depth. The soil is con-

sidered to be homogeneous, isotropic, and linearly poroelastic. The

soil responses, including displacements, stresses and porewater

pressure, are modeled by Biot consolidation theory. This theory

couples the soil skeleton motion and fluid flow. A boundary layer

approximation technique is employed which enables the soil motion and

pore pressure in the Biot theory to be solved separately. Linearity

allows the wave-soil-caisson system to be decomposed into scattering

and radiation problems. In the scattering problem, the caisson is

assumed to be fixed and the soil response depends on the wave

pressure on the mudline alone. In the radiation problem, the soil



and wave forces on the caisson determined in the scattering problem

impose caisson motion which in turn forces the soil response. Both

problems are solved for the total stress employing classical elasti-

city. In the vicinity of the mudline, the boundary layer approxi-

mation yields one-dimensional Terzaghi consolidation theory to adjust

the soil response due to fluid flow. In solving both scattering and

radiation problems, a mixed-type boundary condition arises at the

mudline. This mathematical complication is simplified by applying a

solution technique developed for a contact problem of a rectangular

stamp on a thin elastic layer. This thin layer limitation is to

ensure negligible shear stress and vertical normal stress along the

exposed surface of the seabed.

The analytical solution is verified by comparison with a numeri-

cal solution developed for an elastic soil of finite depth. Results

are in good agreement. In addition, large-scale experiments were

conducted at the O. H. Hinsdale Wave Research Facility at Oregon

State University. The wave flume is 342 ft long, 12 ft wide, and 15

ft deep. A 10-ft-high, 8-ft-long and 4-ft-wide caisson was placed on

a bedding layer and 1 to 3 ft of underlying soil. The caisson was

exposed to 0.68 to 4.40 ft waves with periods of 1.77 to 8.84 sec.

Wave pressures were measured on the face of the caisson. Pore pres-

sures were monitored in the bedding layer and soil under the

caisson. Displacements of the caisson were also monitored. Compari-

son indicates that the theory may underestimate the horizontal and

vertical displacements, but the predicted pore pressure is in good

agreement with the data.
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OCEAN WAVE-SOIL-CAISSON INTERACTION

1. INTRODUCTION

1.1 Motivation and Objective

Caissons are often constructed as box-like units with a closed

bottom and partitions to provide strength. This type of caisson is

usually filled with sand or gravel to increase the weight which pro-

vides stability. Caisson-type structures are commonly employed as

breakwaters, bulkheads, and seawalls. Caissons have been used quite

extensively in the Great Lakes, Europe, and Asia. In Holland

caissons were employed to create a storm surge barrier at the en-

trances to Oosterschelde and Easternschelde. Many ports have cais-

son-type quay walls, for instance, Taichung, Taiwan and Shibath,

Kuwait. In Japan, caissons have been widely used for seawalls to

protect reclaimed land from the sea. Additionally, caisson-like

gravity structures have been used in the North Sea and Prudhoe Bay

for oil exploration and production platforms.

To reduce differential settlement and eccentric loading, a

gravel or crushed-stone bedding layer is commonly placed below the

caisson. This bed provides drainage and a foundation which distri-

butes the structure and wave loads to the underlying soil. However,

there is still a risk of failure at the caisson toe and in the under-

lying foundation. These failures often result from wave-induced

scouring, high porewater pressure and large stresses developed in the

foundation soil. These processes may lead to rapid and deep erosion

at the toe as well as liquefaction of the foundation material. An
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example is the failure of a 400-m caisson breakwater in Algiers which

tilted seaward due to erosion [Agerschou et al. (1983)]. Because of

this type of problem, an understanding of the failure mechanisms for

the foundation and an evaluation of the foundation stability are

necessary.

Present design practice has relied heavily on model tests and

static analysis. However, physical models are costly and time-con-

suming and the accuracy of the test results are highly dependent upon

the facilities and techniques. The static analysis only considers

the static load applied to an impermeable seabed. Hence no porewater

pressure and displacements are considered. It is known that a

caisson founded on a poroelastic soil will respond dynamically when

subjected to wave forces. When soil is subjected to wave-induced

cyclic pressure and caisson-induced cyclic motion, porewater

pressure, stresses, and displacements are created. The decrease of

effective stresses due to porewater pressure has a great influence on

the shearing strength and bearing capacity of the soil. However, few

design guidelines on the dynamic load approach are available.

Durand and Monkmeyer (1982), Liu (1985), and Dias and Monkmeyer

(1986) have developed analytical solutions to estimate the wave-in-

duced dynamic porewater pressure underneath a fixed caisson or a

fixed plate founded on a porous rigid seabed. However, Stematiu and

Stera (1985) pointed out that the structure-soil interaction is ex-

tremely significant in the foundation design of a caisson. This

interaction results in high local stresses in the soil skeleton.

Attempts to model the combined effect of porewater pressure and dis-
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placements were made by Lindenberg et al. (1982) and Stematiu and

Stera (1985) using finite element methods. Finite element models

have the disadvantage that they do not provide the physical insight

into the problem which is often revealed in an analytical solution.

The first steps toward an analytical solution were made by Mynett and

Mei (1982) for a caisson sitting directly on the seabed, assuming the

soil to be a poroelastic half-space. These assumptions limit the

range of application of the model in many practical applications.

Therefore, the objective of this project is to develop an analytical

model to estimate foundation stresses, porewater pressures, and

structure motions for wave-loaded caissons. The caisson is founded

on a rubblemound bedding layer overlying a soil of finite depth.

1.2 Literature Review

1.2.1 Wave-Seabed Interaction

The degree of the interaction of surface water waves and the

seabed depends upon wave and soil properties. The interaction may

result in the modification of the wave field, such as wave damping

and a local change in wave kinematics. Significant wave damping may

occur if the seabed is soft, rough, or porous. This damping is

accentuated if the waves propagate a long distance in shallow

water. The propagation of the waves may also cause significant bed

deformation, liquefaction or the triggering of large-scale mass move-

ment of soil. These may induce large loads on structures such as

cables, buried pipelines, piles, and footings. These soil responses

tend to reduce the strength of the soil, which also contributes to

the potential for foundation failure.
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A variety of assumptions and techniques have been employed to

evaluate the wave-soil interaction process. McDougal et al. (1981)

have categorized the common assumptions in modeling wave-seabed

interaction as: 1) impermeable soil, rigid skeleton; 2) porous soil,

rigid skeleton, compressible or incompressible fluid; 3) impermeable

soil, deformable skeleton; and 4) porous soil, deformable skeleton,

and compressible fluid. These categories are given in order of in-

creasing sophistication. Also the problem changes from a one-phase

system to a two-or three-phase system. These assumptions also re-

flect the nature of the bottom response. Wave-induced pore pressure

in a permeable, stiff, dense sand may be represented by the porous

soil and rigid skeleton. However, for a sand or silt with a lower

relative density, the assumption of a porous soil and deformable

skeleton is more representative of the bottom response.

The assumption of an impermeable, rigid and smooth seabed

associated with inviscid fluid has been widely made for most wave

theories. If the real fluid effects are taken into account, the

viscous damping due to the boundary layer near the bottom is signifi-

cant for shallow water waves [Jonsson (1966), Dalrymple et al.

(1984), and Liu (1986)]. A number of solutions have been developed

which include bottom friction which causes wave energy dissipation

[Ozhan and Shi-igai (1977), Kamphuis (1978), Nielsen (1983), and Liu

and Tsay (1985)].

If the soil is assumed to be porous and rigid, Darcy's law has

often been used to describe the flow within the soil skeleton. The

porewater pressure is then governed by the Laplace equation. Based
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on this assumption, Putnam (1949) derived an equation for wave-

induced pressures in a sand layer of finite depth. Sleath's (1970)

experiments strongly supported this assumption for both fine and

coarse sand. Tsui and Helfrich (1983) compared measured pressure in

the laboratory with second-order wave theory predictions. Both are

in good agreement for short waves, but the measured pressures decay

with depth more rapidly than predicted.

Beyond the assumption of a rigid soil skeleton, various solu-

tions have been developed which model the seabed as an impermeable,

linearly elastic continuum. These solutions can include inertia

effects, layers with different elastic moduli, and traveling waves

[Mallard and Dalrymple (1977), Dawson (1978) and Kraft and Helfrich

(1983)]. There is excellent agreement between predictions from an

elastic theory of seafloor response and field measurements of the

water column pressure and bottom horizontal and vertical acceler-

ations [Dawson et al. (1981)].

To examine both pore pressure and stress, Demars and Vanover

(1985) developed a decoupled rigid bed model which uses elastic

theory for porewater pressure. The theory and experimental measure-

ments were in reasonable agreement. A more consistent approach is to

consider the coupled response of the elastic deformation of the soil

skeleton and the pore fluid interaction. This approach was developed

by Yamamoto (1977) and Yamamoto et al. (1978). They employed Biot

consolidation theory [Biot (1941)] to study the response of a poro-
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elastic soil of finite or infinite depth to water waves and succeeded

in verifying the theoretically predicted pore pressure by laboratory

experiments.

Biot theory has been successfully used to model a variety of

wave-seabed interaction problems. Madsen (1978) assumed the soil to

be an anisotropic medium and explicitly solved the porewater pressure

and effective stresses for an infinite homogeneous bed. McDougal et

al. (1981) developed an analytical model to quantify the response of

a horizontal, three-layered, soil-geotextile-soil system to propa-

gating waves and concluded that the permeability and degree of satur-

ation of the soil are significant to the Biot solution. Yamamoto has

continued to apply Biot consolidation theory in the marine environ-

ment and has developed solutions for an inhomogeneous seabed approxi-

mated by many layers of homogeneous soils, each of which has differ-

ent properties (1981) and for an inhomogeneous seabed with nonlinear

elastic moduli and nonlinear Coulomb damping (1982). These theoret-

ical solutions were also verified by physical models [Yamamoto et al.

(1983a), Yamamoto and Schuckman (1984)]. Mei and Foda (1981a)

studied the wave-induced stress in a poroelastic medium based on Biot

theory and developed a boundary layer approximation which simplifies

the mathematical treatment.

Biot theory has also been applied to predict seabed responses to

random waves. Rahman and Layas (1986) have developed an analytical

model to predict the wave-induced pressure on the seafloor, stresses,

and porewater pressure in the soils by formulating the solution in a

stochastic framework. Seafloor responses to random waves were based



7

on Madsen's (1978) solutions to the Biot equations. From the respon-

ses, the local seafloor instability was then developed in probabilis-

tic terms. Similarly, Jaber et al. (1986) also developed a probabi-

listic analysis based on Yamamoto's (1983b) solutions to the Biot

equations for seabed response, but the interaction of waves with the

pervious and deformable bed is included.

A further extension of Biot theory has been given by McDougal

and Liu (1986). The Biot equations were cross-differentiated, inte-

grated over depth, and time-averaged to yield a one-dimensional con-

solidation equation with a mean accumulation source term which is

associated with the surface water waves. From this equation, two

analytical models for deep soil and shallow soil were developed,

respectively, following the methodology of earthquake engineers to

predict the pore pressure accumulation in marine soils.

1.2.2 Wave-Soil-Structure Interaction

The stability of a structure founded on the seabed requires a

consideration of the porewater pressure in the underlying soil, the

deformation of the seabed, and the stresses in the subsoil. To exam-

ine these processes various assumptions similar to the wave-soil

interaction problem have been invoked.

The assumption of an impermeable and rigid seabed is usually

made for wave-structure interaction problems, such as wave

reflection, diffraction, and wave forces [Ippen (1966), Dean and

Dalrymple (1984)]. In essence, these problems include no wave-seabed

or structure-seabed interaction.
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Analytical solutions with the assumption of permeable and rigid

seabed have been developed to estimate the wave-induced seepage pres-

sure under a caisson. Durand and Monkmeyer (1982) applied Dual inte-

gral equations to the mixed boundary value problem governed by the

two-dimensional potential flow theory. Dias and Monkmeyer (1986)

used the same technique to develop the solution for the problem of

wave-induced seepage on a plate resting on the seabed. In contrast

to the Dual integral equations, the Riemann-Hilbert method was em-

ployed by Liu (1985) to solve the mixed boundary value problem. Both

analytical methods assume a porous rigid soil and a fixed caisson.

Their solutions are all in reasonable agreement with laboratory

measurements and applicable to any soil depth.

Broughton (1975) developed a finite element method by treating

the soil as a linearly elastic material. The movements of the soil

and the deck of an oil production platform and the contact stresses

due to the interaction of the platform with a stratified seabed were

determined. The results show that the rotation of the structure base

provides a significant contribution to the horizontal movement of the

structure at the deck level and that peak values of vertical contact

stress occur near the outer edge of the structure. However, a linear

elastic solution may overestimate the possible failure load of the

soil foundation. Therefore, Munro et al. (1985) attempted to include

the nonlinear behavior of the seabed in a finite element simulation

of a soil-structure interaction system. This model allowed elasto-

plastic soil properties, foundation stratigraphy, and structure em-

bedment to be incorporated. The results show that the vertical
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spring constant from the finite element solution is close to that

obtained from the elastic half-space equation. However, both the

horizontal and rocking stiffness from the finite element solution are

considerably lower than those obtained from the elastic half-space

equation.

Rahman et al. (1977) developed a finite element method to evalu-

ate the pore pressure under the Ekofisk tank by assuming the soil is

poroelastic. They used a one-dimensional storage equation by replac-

ing the volumetric strain term with a pore pressure generation func-

tion and introducing the coefficient of volume compressibility. This

yields one equation for one unknown, pore pressure. They evaluated

the pore pressure generation function empirically. Laboratory tests

were conducted to determine the number of cycles of loading that are

required to develop a pore pressure ratio of 100% under undrained

conditions. The analysis provides a time history of pore pressure

response of the soil underlying the Ekofisk tank during a storm and

suggests that the critical support conditions are most likely to

develop around the outer edges of the tank. Similarly, Zen (1984)

developed a finite element method model to predict the pore pressure

in the underlying soil that supports a caisson breakwater resting on

a rubblemound foundation. He also used the storage equation to eval-

uate the residual pore pressure, but employed the Endochronic tech-

nique to estimate the pore pressure generation. The results show
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that wave height, wave period, subsoil permeability, and thickness of

rubblemound are the major factors affecting the pore pressure.

A more realistic representation of the soil properties is given

by Biot consolidation theory. Several numerical and analytical wave-

soil-structure interaction models have been developed using Biot

theory.

To verify the predicted deformations and pore pressure developed

in the subsoil due to waves for the storm surge barrier in the

Netherland, large model tests were conducted. deQuerlerij et al.

(1979) used the Biot equation as a guideline to determine the model

scale. These tests revealed unexpected large hydraulic gradients

which led to a redesign of the original foundation bed. Lindenberg

et al. (1982) established a finite element simulation of Biot equa-

tions to predict the foundation displacement and pore pressures. The

results were compared with a large-scale model test. General agree-

ment was found between the calculations and the measurements.

Stematiu and Stera (1985) have also developed a finite element

simulation based on Biot equations to predict the pore pressure and

stresses in the subsoil under a caisson breakwater. They concluded

that the structure-soil interaction should be a major consideration

in the foundation stability.

Mynett and Mei (1982) have developed an analytical model based

on Biot equations to predict the pore pressure and stresses in a

half-space subsoil under a rectangular caisson. The boundary layer

approximation was applied to correct the solutions of the outer

region problem, which was solved by means of complex variables.
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1.3 Biot Consolidation Theory

The saturated soil is considered to be a poroelastic continuum

which is a two-phase or three-phase system consisting of porewater,

air, and the elastic soil skeleton. Terzaghi (1943) proposed a one-

dimensional consolidation theory assuming that the grains consti-

tuting the soil are more or less bound together by molecular forces

and constitute a porous material with elastic properties. The con-

solidation theory describes the deformation of a porous elastic

material, the pores of which are filled with fluid. Thus the deform-

ation may cause fluid flow and excess porewater pressure. Biot

(1941) developed a three-dimensional consolidation theory which de

scribes the interaction of pore fluid and soil skeleton. This theory

may be employed to determine the distribution of stresses, water

content, and settlement as a function of time in a soil under given

loads. This has been termed the "quasi-static" Biot consolidation

theory because soil inertia terms were neglected. Inertia was in-

cluded in later Biot papers (1956a, 1956b).

A detailed derivation of the Biot equations was given by

Verruijt (1969). The Biot equations consist of three stress equil-

ibrium equations for the x, y, and z directions and a fourth equation

which is the continuity equation for the pore fluid. This fourth

equation has been called the storage equation. Biot theory has the

following basic assumptions [Foda (1980)]: 1) isotropy of the mater-

ial, 2) reversibility of stress-strain relation under final equil-

ibrium condition, 3) linearity of stress-strain relation, 4) small
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strains, 5) compressibility of the pore fluid, and 6) applicability

of Darcy's law to the fluid flow through the porous skeleton. In

spite of these assumptions, Biot theory has been shown to be a rele-

vant model for small responses in dense sands and silts. Accord-

ingly, Biot theory is employed in this study.

1.4 The Boundary Layer Approximation

The Biot equation couples the motions of fluid and solid

phases. This coupling increases the mathematical difficulty. Only

in a few cases can the Biot equations be solved analytically. In

other cases the only recourse is to resort to a numerical method

[Christian and Boehmer (1970), Hwang et al. (1971), and Booker

(1973)]. If only simple, harmonic responses are to be modeled, the

mathematics is simplified considerably. Such an assumption is in-

voked in this study. Unfortunately, this precludes the examination

of pore pressure accumulation and net soil deformations.

Mei and Foda (1981a) developed a boundary layer approximation

which decouples the pore pressure and soil motion. The boundary

layer develops near the mudline. Near the mudline drainage is rela-

tively unimpeded and there is significant relative motion between the

fluid and the solid. Farther from the mudline there is little drain-

age so the fluid and solid tend to move in phase. This is termed the

outer region problem, which can be reduced to solving a classical

elastostatic problem. However, the boundary conditions on the mud-

line are not satisfied. Hence, corrections are made according to the

boundary layer solution so that the boundary condition on the mudline

are satisfied. This approximate solution is in good agreement with
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the exact solution developed by Yamamoto (1977) for a wave-soil

interaction problem.

Mathematically, in the boundary layer approximation, a physical

quantity f is given by

f = fo + fb (1.4.1)

where f° belongs to the outer region solution and fb is the boundary

correction which is significant only within the boundary layer.

Physically, the boundary layer approximation implies that the distri-

bution of the applied forces over the fluid and the solid skeleton

has to be adjusted according to their relative stiffnesses. Appli-

cations of the boundary layer approximation have been given by Mei

and Foda (1981b, 1982) and by Mynett and Mei (1982, 1983).

1.5 The Contact Problem of a Rectangular Block on a Thin Elastic

Layer

The bottom-founded caisson is similar to a rigid stamp attached

to an elastic layer: the so-called contact problem in elasticity. A

mixed boundary condition occurs along the mudline where stress condi-

tions are imposed on the exposed portion and displacement conditions

are imposed under the caisson [Kreyszig 1983]. It is difficult to

analytically solve mixed boundary-value problems. A number of numer-

ical solutions have been developed [Francavilla and Zienkiewicz

(1975), and Tseng and Olson (1981)]. At present, only approximate

analytical solutions can be obtained for contact problems correspond-

ing to either very thick or very thin elastic layers [Alblas and

Kuipers (1969, 1970b)]. Even so, the contact problems for small but
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finite depth elastic layers are quite difficult. Alblas and Kuipers

(1969) applied the technique of Wiener-Hopf to solve the displace-

ments at the upper boundary of a thin elastic layer loaded by a rec-

tangular block for heave and pitch. Their solutions will be employed

to quantify the displacement boundary conditions along the exposed

mudline immediately adjacent to the caisson. Results for the surge

condition will be approximated from the known solution for heave.

The details are addressed in Appendix B.

1.6 Scope

A rigid caisson is founded on a rubblemound foundation overlying

a poroelastic seabed of finite depth. Caisson motions are induced by

wave and soil forces. The caisson motion is transmitted to the sub-

grade through a permeable yet stiff rubble base. Thus, both dis-

placements and pore pressure are transmitted to the subgrade. Stress

singularities are developed at the toe and heel of the rubble founda-

tion. The dynamic response of the soil due to these applied dis-

placements and stresses is analytically modeled.

The governing equations for the analytical model are based on

Biot consolidation theory. The boundary layer approximation devel-

oped by Mei and Foda (1981a) is employed to decouple the pore pres-

sure and the displacements of the solid skeleton in the Biot

theory. The mathematical difficulty of solving a mixed-type bound-

ary-value problem is addressed by employing an approximation tech-

nique developed for contact problems on thin elastic layers [Alblas

and Kuipers (1969), (1970a)]. The problem is then separated into

scattering and radiation problems. The limitation of the thin soil
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layer assumption in the analytical solution is discussed and compared

with the finite element results for an infinitely long strip placed

on a finite thickness elastic layer. The behavior of the solution is

then examined for a variety of wave and soil conditions. Largescale

experiments were conducted to verify the analytical solution.



16

2. BOUNDARY-VALUE PROBLEM

2.1 General Assumptions

The wave-soil-caisson interaction problem is depicted in Fig.

2.1.1, in which h is the still water depth; d is the thickness of the

soil skeleton; b is the thickness of the rubble bedding layer; 2c' is

the width of the caisson; and 2c is the width of the mound foundation

on the mudline through which the dynamic response of the caisson

completely transfers to the soil skeleton. 2c is defined by 2V:1H

slope rule [Bowles (1982)], and is termed the effective width of the

caisson base.

The following assumptions are made in the analytical model:

1. Caisson and rubble bedding layer

a) The rectangular caisson is infinitely long in

the direction normal to the plane of the figure

and the waves are normally incident. This

allows a reduction to a two-dimensional problem.

b) The caisson is impermeable and rigid.

c) There is no slip between the caisson and the

thin rubblemound foundation. Thus, the rigid

body displacements of the caisson will be com-

pletely transferred to the softer seabed

below. Accordingly, the shaded portion in Fig.

2.1.1 forms an entire rigid body.

d) The mound foundation is hydraulically permeable

but mechanically stiff compared with the under-

lying soil.
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Figure 2.1.1. Definition sketch for the coordinate system and wave

soilcaisson system.



2. Soil

a) The soil stratum is confined by a horizontal

mudline above and a horizontal impermeable,

rigid bed below.

b) The soil is considered to be homogeneous, iso-

tropic, linearly elastic, permeable, and satur-

ated with water.

3. Water column

a) Small amplitude wave theory is assumed to be

applicable.

b) The water depth is constant.

c) The domain being modeled is small with respect

to the horizontal length scale of soil-induced

wave decay. Therefore, the soil and wave re-

sponses are decoupled.

2.2 Governing Equations

Mei and Foda (1982) provided a derivation of the Biot equations

based on conservation of momentum and conservation of mass of the

solid and fluid. In the equations of conservation of momentum, grav-

ity terms are neglected which are small compared with the stress and

pressure terms for the dynamic wave loading cases.

Solid

.

-
ay

i
aT'

i a n
-2- j - p -

p
s

(1-n) (1-n) + p g(u-v)
J

at ax ax
i
pw i i

(2.2.1a)
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Fluid

3u. -2
- - 1 - 3p n - ,..

1

x
p n n p gku.-v ,
w at ax. p w i

1

- -
in which p

s
and p

w are the solid and fluid densities,

(2.2.1b)

.

respectively; v and u are the solid and fluid velocity vectors, re-

spectively; p is the pore water pressure; 71 is the porosity; g is the

coefficient of permeability; T!.
li

is the effective stress tensor; t is

time; and g is the gravitational acceleration. The parameters with

an overbar denote the sum of the values at static equilibrium and the

values due to the dynamic perturbation. For instance, n = n
o

+ n,

in which n
o
is the static porosity, and n is the dynamic perturba-

tion.

The equations of conservation of mass for the solid and fluid

phases are given by

Solid

at
[(1-n) Ps] +

ax
[p

s
(1-ii) ;J.] = 0

i

Fluid

(npw) + ax c (p
w
nu) = 0

i
i

(2.2.2a)

(2.2.2b)

The governing equations for both the outer region and boundary

layer correction were derived by Mei and Foda (1981a). Their deri-

vation is presented for completeness.



2.2.1 Outer Region Approximation

The governing equation for this region will be derived where

( )
o
denotes a parameter in the outer region. For sandy sea beds,

the inertia terms in (2.2.1) are negligibly small compared with the

stress or pressure terms [Mynett and Mei (1982)]. This observation

was also made by Dalrymple and Liu (1982) for sands and other stiff

materials in which the shear modulus and permeability are high. For

these materials the shear wave velocity in the soil is much greater

than the celerity of the free surface water waves and the quasi

static assumption is valid. Neglecting the inertia terms and summing

the two equations of conservation of momentum yields

aT!° -06..). I,
1J

ax. (2.2.3)
J

in which Sii is the kronecker delta. This equation suggests the

introduction of the total stress tensor

T .
1

. = T . . p
O
o..

3 13 1 3

Hence, (2.2.3) may be written

(2.2.4)

(2.2.5)

This is a quasistatic equation of motion excluding body forces.

Applying Hooke's law for total stress

3vo 3v, 3v.2Gv
T . A' + G( + 1)I-J1-21)61-jaxt3x.a)(i

.1

to (2.2.5) yields

o o
3
2
v
o

, 3v. 3v.2Gv 2,

a .
0 d ( 1 ,_ J) n-r v -- --r v1-2v ij 3x 3x. 3x. 3x. 3x

X J J i

(2.2.6)

(2.2.7)
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In (2.2.6) G and v are the shear modulus and Poisson's ratio of the

soil, respectively; (vi, vj, and vL are the displacement vectors

corresponding to the total stress tensor.

In a two-dimensional problem, the following two equations can

easily be obtained from (2.2.7).

V
2
u
o 1 3 (3u 3v )

1-2v 3x3x 3y )

2 o 1 a 3u
o

av
o

V v + ( + 0
1-2v ay ax ay

(2.2.8a)

(2.2.8b)

in which x and y are the horizontal and vertical axes of the

Cartesian coordinates system; u°and v° are the displacements corres-

ponding to the total stress in the x and y direction, respectively;

and V
2
(.) is the LaPlacian operator. Equations (2.2.8a) and (2.2.8b)

are the governing equations from which the displacements of the soil

skeleton will be determined.

The porewater pressure is still unknown; thus, one more equation

is required. This equation will be derived from the equations for

conservation of mass and momentum.

Linearizing the equations of conservation of mass, (2.2.2a) and

(2.2.2b), by neglecting the second order terms and then adding them

yields

0 -

.
n
o

p

axi
+ n

o 3x

av
,.0 0, w

.

. ) =
1 1

1
pw

(2.2.9)

If there is air in the porewater, the compressibility of the

pore fluid (water plus a small amount of air) is significantly dif-

ferent from the compressibility of pure water. The combined air-

water compressibility a, is defined by the relation



a' dp°
dpw

(2.2.10)

pw

where $' is related to the compressibility of pure water $ and the

degree of saturation of soils sr by

1-sr

B' = $ +
Pa

(2.2.11)

in which pa is the absolute porewater pressure which may be approx-

imated by the absolute static pressure for wave-induced pressure

fluctuations in soils [Yamamoto (1977)].

It follows that (2.2.9) may be written

ap
o

1 a . .+ n
o ;xi

(u.
o
- v

i
) = -$'n

ax
i

1
no

at
(2.2.12)

This is the storage equation which physically states that the rate of

change of fluid pressure is due to the dilation of pore fluid and the

volume strain of the soil skeleton.

The quasi-static assumption for the sandy sea bed implies that

the relative velocity between pore fluid and the solid skeleton is

small [Mynett and Mei (1982)], i.e. 1.1° = vi; thus, (2.2.12) takes the

form

. 0
oay

i
= -$'n

xia 0 at (2.2.13)

Eliminating the pressure term by using the derivative of (2.2.4)

with respect to time

ap
o

6
ij

aT
ij

=
at ij at at

gives

(2.2.14)
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0 0 .0
aT.. 3Tj. 3v

i 1

at at S'n 3x
i

sij (2.2.15)

Also taking a time derivative of Hooke's law for the effective

stress T!.o , and applying (2.2.6), yields
ij

.0 .3T!
2Gv

3v 3v
i

31.7
0

jij
+ G (- +

at 1-2v
d
ij ax

t
3x. 3x.

1

Substitution into (2.2.15) yields

.0 .0 o3T. 3v
i

av
j (2Gv 1

av

at tax. 3x. ) 8'n
o

3x
t

ij

(2.2.16)

(2.2.17)

For plane strain, tensor contraction of (2.2.17) using (2.2.13)

introduces the relation of total stress components and the porewater

pressure [Mynett and Mei (1982)]

0
p

in which

m -
o 1-2v

0 0
T
XX

T
yy

2(1+m
o

)

R' n
o
G

(2.2.18a)

(2.2.18b)

and is a parameter indicating the relative stiffness between the

solid matrix and the pore fluid. For a saturated soil, m0 is in the

order of 0 (10 -2 ); thus, the pore pressure is approximately the nega-

tive of the average of two total normal stress components.

The governing equations, (2.2.8a) and (2.2.8b), will be solved

for specified boundary conditions; the shear stress and normal

stresses may be obtained from

,

day

3v )
T L- )
xy ay ax

y
(au

o
v au

o
3v

o

T = ---
xx

GU
ax 1-2v @x 3y

(2.2.19a)

(2.2.19b)
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= 2G
,av°

(

v 3u
o

+
av

o

yy 1-2v ax ay
(2.2.19c)

The pore pressure is given by (2.2.18a), and the effective stresses

are given by (2.2.4).

It is convenient to define dimensionless variables which will be

denoted by upper case letters. Lengths and displacements are scaled

by the effective caisson half-width, c; and stresses and pressures

are scaled by the mudline pressure amplitude due to the free surface

propagating waves, pc). The dimensionless governing equations are

given as

V
2
U +
o 1 3 (30 3e)

1-2v aX LaX 3Y

V
2
V +
o 1 a aU ° 3V

o

1-2v 3Y '3X 3Y )

(2.2.20a)

(2.2.20b)

2.2.2 The Boundary Layer Correction

The governing equation for the boundary layer correction will be

derived from the momentum equations and the storage equation. Scal-

ing techniques will be applied according to the characteristics of

the boundary layer. Again, ( )
b
denotes a parameter in the boundary

layer.

Taking the leading terms of (2.2.1a) and (2.2.1b) yields

b,. ,
dV 3r! .

p (1-n --.- -
13

(1-n
af.b n

o
-v1 )
b b(u..

SO o
)

at 3x o
)

ax k'
i i

+

b
au.

1
n

DP
b n

':.

- vi)
.b,

--- ---p
wo

n
o at o ax

i
k'

k
i i

)

in which

(2.2.21a)

(2.2.21b)
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k' = -11--
P gwo

(2.2.21c)

and is the intrinsic permeability. Summing and applying (2.2.16)

leads to

2b .1) 2.b 201)
b 9 v.a vi 3vt,

a 3P 1 au
G( 2 + 1-2v 3xi 3xt) 3x. at

= p (1-n ) 2-- + pwono
so o

axi 1 3t

(2.2.22a)

in vector form

, 2 1 % ) % -:G v
h

+ V (V.v ))-V P
b =p(1-n )v+pnu 1)

1-2v t so o tt woo tt

(2.2.22b)

Taking a derivative of (2.2.20b) with respect to xi and applying

(2.2.12) to eliminate the term of relative velocity of fluid and

solid yields

4,1) 2.b
3 u.

a
2
p
b 3v.

ap
b

k' 1 + f3'n p
wo

k'
ax1.

;
t2

1
ax. o at

9x.
i

in vector form

+

k'V
2
p
b
= Vvth + st no pt

b
- p

wo
k' (Vu b

)
t

(2.2.23a)

(2.2.23h)

3 aIn the boundary layer it is expected that --
3y

>>
ax

. If the

boundary thickness is denoted by d, then

3/3x .67537 (
c
) « 1 (2.2.24)

where c is the effective half-width of the caisson base and used as a
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length scale. Hence, the combined momentum equation (2.2.22b) is

dominated by the term

1.
3 v

1)

G( \ tb

(5

G 0 ----) v
2

ay

The inertia terms are negligible since

4.

p
so

(1-n
o
)v

tt
p
so

a262
a
2

(5

2
d
2

.1)

= << 1
G 922b c

2

D v
t

s
G

3y
2

(2.2.25)

(2.2.26)

in which a is the angular wave frequency; cs is the shear wave velo-

city and defined as / p---
G

, and 2. is the shear wave length.
so

Likewise, the inertia term in (2.2.23b) is also neglected.

Equations (2.2.22b) and (2.2.23b) consequently become

G(V24b + 1.1_2vV (.713)) - Vpb = 0
t

b
10V

2
p
b = Vvb

+ a'n
o
p
t

(2.2.27)

(2.2.28)

To examine the order of the vertical and horizontal velocities

of the solid skeleton, the curl of (2.2.27) is taken and it can be

shown that

V
2
(V x v

.1) ) =0 (2.2.29)

3
2

and since the dominant term in the LaPlacian is clearly thus
3y

+
a
2

2
(V x v

b
) =0

3y

(2.2.30)

4.

1).
vto the leading order. The curl (V x ) vanishes identically outside

the boundary, lyl>,5; therefore, it must be zero throughout, i.e.
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V x v
13

= 0 (2.2.31)

Thus, the boundary layer correction of the solid velocity is irro-

tational and results in

av
b

3u
b

3x 3y

which implies

.13
u

--) << 1(6
.13

0
c

v

(2.2.32)

(2.2.33)

the horizontal velocity is much less than the vertical. Con-

sequently, to the leading order the two components of (2.2.27) are

given by

.2b 2
u

+

1 3
b

) 3
2 b
p

v(---- -,- 0 (2.2.34a)
ay

2 1-2v 3x3yJ axat

2.b
n 3 v 1 3

2
v
.1)

) a2pb
G + __ 0 (2.2.34h)

ay
2 1-2v

ay
2) ayat

Integrating (2.2.34b) in y gives

G
2(1-v) av

13

3p
b

1-2v ay at
(2.2.35)

Because both vb and pb vanish outside the boundary layer, the inte-

gration constant that is a function of time also vanishes.

Similarly, taking the dominant terms of (2.2.28) yields

+ f3

2 b .1) b

ktD-2--) Dv 'n DP
2 3y o at

ay

1)
3v

Substituting
3y

from (2.2.35), (2.2.36) takes the form

3p
b

a2pb

at
c
v

ay
2

(2.2.36)

(2.2.37)
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This is the one-dimensional Terzaghi consolidation equation in which

cv is the coefficient of consolidation.

1 1-2v -1
cv k' ('no G 2(1-v)) (2.2.38)

It is useful to introduce dimensionless variables, which are

denoted by upper case letters, to scale the problem. x is scaled by

the effective caisson half-width c and y by the boundary layer thick-

ness 6.

X = x/c

Y
b

= y/6

and the time by the wave frequency

Tb = ta

(2.2.37) then takes the form

b c 2 bap _vap
aT

b
a6

2
a(Y

b
)
2

The scale of the boundary layer thickness follows to be

/iT (0,,n 1 1-2v )- 1/2
a

no
G 2(1 -v)

(2.2.39a)

(2.2.39b)

(2.2.39c)

(2.2.40)

(2.2.41)

The dynamic mudline pressure amplitude of the incident progressive

wave pc, is used to scale both pore pressure and stresses

b , b b
(P, T ) = kp , .)/Pij ij 0

(2.2.42)

Substituting the above dimensionless variables into (2.2.35) yields

2(1-v) av
b

3PbG
1-2v

daY
b

p
o

a

aTb
(2.2.43)
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This suggests a dimensionless solid vertical velocity

c
.1)

=

p
o
ad

.13 Po°. d
)V = v / v / (--

G G c
(2.2.44)

and from (2.2.33) the dimensionless solid horizontal velocity appears

to be

U

cb b %a d 2
= u /

G (c)
(2.2.45)

In a dimensionless form the consolidation equation (2.2.40) reads

aP
b

3
2
P
b

3T
b

3(Y
b

)
2

(2.2.46)

This is the governing equation of porewater pressure in the boundary

layer.

The dimensionless solid vertical velocity correction is readily

obtained from (2.2.43)

3V
1)

1-2v ap
b

_

3Y
b 2(1-v)

aT
b

and the horizontal from (2.2.34a) and (2.2.45)

3
2
U
b

1-2v ap
b

a(y
b

)
2 2(1-v)

axaT
b

(2.2.47a)

(2.2.47b)

1) .130

Hence, the dimensionless solid velocities, U and V , can be ex-

pressed in terms of dimensionless pore pressure Pb.

Also from Hooke's law and (2.2.47), taking the dominant terms,

the dimensionless effective normal stresses are obtained.

T'
b

xx
v

1-v
Pb (2.2.48a)

b b
T' = P (2.2.48b)
YY
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and the irrotationality of (2.2.31) implies that the shear stress is

zero, i.e.

and

T
b

= 0 (2.2.48c)
xy

If the outer region variables are introduced

(SY
b

= cY

e
d

c

then the solid velocities are given as

V
b

(Y) e
1-2v r ap
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dYb
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.13
(Y) = e

2 1-2v 82P
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b
U

2(1-v)
1 [f

axaT
b

(2.2.49)

(2.2.50)

(2.2.51a)

(2.2.51b)

after variables are changed. Thus, the displacement components for

boundary layer correction are at most of order e and can be ignored.

The boundary layer correction is summarized as

PbP

T,b
xx
T,b

yy

T
b

xy

/
1

v

1v

1

0

P
b (2.2.52)

Only P
b remains unknown and is obtained by solving (2.2.46) with

specified boundary conditions.



2.3 Boundary Conditions

The boundary conditions for the wave-soil-caisson problem are:

1. Along the exposed portion of the mudline, the wave

pressure and the total normal stress are continuous

and the shear stress is negligible [McDougal et al.

(1981)].

2. Under the structure, the displacements are continuous

at the caisson-soil interface.

3. At the bottom of the soil along an underlying rigid

bed, no- slip conditions are imposed.

For convenience, all length scales will be nondimensionalized by

c (the effective half-width of the caisson), and the pore pressure

and stresses are nondimensionalized by pc) (the incident wave mudline

pressure amplitude). Dimensionless variables are denoted with upper

case letters. Mathematically, these conditions for the exposed por-

tion of the mudline are expressed as

T
xy

(X,O) = 0

T
YY

(X,0) = -Pw(X)e
-iat

; l<IXI<00

; 1(IXI<co

in which P
w

(X) is the pressure distribution function along the mud-

line. Underneath the caisson, the displacement boundary conditions

read

U(X,0)1
caisson

= U(X,O)
'soil

V(X,O) 'caisson = V(X,O)
Isoil

;Ixl<1

dxl<1

(2.3.2a)

(2.3.2b)
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Along the underlying rigid bed, the no-slip conditions are

U(X,D) = 0 ;o4lxI<- (2.3.3a)

V(X,D) = 0 ;041X1<co (2.3.3b)

These boundary conditions are summarized in Fig. 2.3.1.

The soil displacement and the caisson motion are coupled. The

wave forces along the exposed portion of the mudline induce soil

stresses and displacements underneath the caisson. The wave forces

on the caisson induce caisson motions which result in stresses and

displacements in the soil away from the caisson. Linearity allows

these two effects to be decoupled into scattering and radiation pro-

blems. In the scattering problem, the caisson is assumed to be fixed

and the soil response is completely driven by the wave pressure on

the mudline. The forces on the caisson determined in the scattering

problem are applied on the caisson in the radiation problem. These

forces result in caisson motion on an otherwise static seabed. The

sum of these two components, the scattering problem and the radiation

problem, yields the total response. This technique is illustrated in

Fig. 2.3.2.

2.3.1 The Outer Region Problem

2.3.1.1 The Scattering Problem. For the scattering problem the

caisson is fixed and the mudline boundary conditions are

T° (X,O) = 0
xy

T° (X,O) = -P
w
(X)e

-iat

yy

;041X1<co

;14IXI<co
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Figure 2.3.1. Boundary conditions for the wave-soil-caisson problem.
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Figure 2.3.2. Decomposition of the wave-soil-caisson problem.
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U
o
(X,O) = 0

V °(X,0) = 0

;IXI41 (2.3.4c)

(2.3.4d)

and, along the underlying rigid bed, no-displacement conditions given

by (2.3.3a) and (2.3.3b) are imposed. The conditions along the mud-

line yield a mixed boundary-value problem. This is addressed by

seeking a sequence of two solutions: one which satisfies the stress

boundary conditions [problem (a)] and then one which satisfies the

displacement boundary conditions [problem (b)].

The mudline boundary conditions for problem (a) are

aTo T (X,O) = 0
xy

-P (X)e
-iat

a
T
o

(x,o) = w
YY to

;041X1<ce

;1<lX1<co

dx141

(2.3.5a)

(2.3.5b)

The solution for the mudline stress boundary conditions (and no-dis-

placements at the lower rigid bed) yields a solution for the dis-

placements along the mudline: aU°(X,O) and aV°(X,0). These dis-

placements are modified to provide the boundary conditions for pro-

blem (b). The first modification is that under the structure the

displacements are set equal zero. The second modification is based

on the solution to the contact problem on a thin layer developed by

Alblas and Kuipers (1969). This solution provides appropriate dis-

placements adjacent to the structure. This solution has been ex-

tended to the surge displacement and made applicable for all IXI>1.

Details are presented in Appendix B. The resulting boundary condi-

tions for problem (b) are



buo(x,o)

) ;-co<X<-1

dX141 (2.3.6a)

auo(x ,0) th(2/(1-v)(-1-X)

IT D

auo(x,0) th(2/(1-v)(X-1) ) ;14X<co

D

bvo(x,o) .)
(

a
V
o
(X,O) th(2/A(-1-x) ) ;-co<X<-1

dxl<1
;1<X<03

(2.3.6h)
r D

a
V
o
(X,O) th(2/A(X-1) )

D

The functions cosh(x), sinh(x), and tanh(x) are abbreviated as ch(x),

sh(x), and th(x), respectively. The solutions for these mudline

displacement boundary conditions (and no-slip bottom conditions)

satisfy the original mixed boundary-value problem with (2.3.4) on the

mudline.

These boundary conditions for the scattering problem are illu-

strated in Fig. 2.3.3.

2.3.1.2 The Radiation Problem The radiation problem is a mov-

ing caisson on an otherwise static soil. The response of the soil

must satisfy the caisson displacement conditions on the mudline. The

caisson responds to both wave and soil loadings from the scattering

problem and the resistance to deformation in the radiation problem.

The scattering loads are known but the motion is still unknown. A

dynamic boundary condition must also be prescribed to solve for the

unknown caisson motion. This condition yields the amplitude of the

caisson motion.

Underneath the caisson the motions are specified while on the

exposed portion of the mudline zero stress conditions apply. Mathe-

matically, these conditions are as follows.
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Figure 2.3.3. Boundary conditions for the outer scattering problem.



T° (X,O) = 0
xy

T° (X,O) = 0
YY

Uo (X,0)1
caisson

= uo Isoil

V°(X,0)1
caisson

= V°I
soil

;1<lX1<co

;1<lX1<co

dx141

(2.3.7a)

(2.3.7h)

(2.3.7c)

(2.3.7d)

These boundary conditions are of the mixed-type, and are depicted in

Fig. 2.3.4.

The caisson motion and the accompanying soil deformation are

coupled. However, linearity allows the soil response to be de-

composed into three problems corresponding to each of the three de-

grees of freedom of caisson motion. The caisson is assumed to be

rigid and the effects of the structural damping in the caisson are

assumed to be negligible compared with the soil.

According to (2.3.7), the respective boundary conditions at the

mudline for the problems of surge, heave and pitch are the following.

(1). Surge

Assume the normal stress T° at the caisson-soil interface is
yy

negligibly small. Thus the boundary conditions for the problem of

surge are

T
o

(X,O) = 0
YY

T
o

(X,O) = 0
xy

u°(x,o) = u:

;O<IXI<0.

;I<IXI

;1)(141

(2.3.8a)

(2.3.8h)

(2.3.8c)
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Figure 2.3.4. Boundary conditions for the outer radiation problem.
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(2). Heave

Assuming the shear stress T
o

xy
at the caisson-soil interface is

negligibly small results in the following boundary conditions.

T° (X,O) = 0
xy

T°
YY

(X,O) = 0

V
o

(X,O) = V
o

c

(3). Pitch

;0 <IX1<co (2.3.9a)

;1<lX1<03 (2.3.9b)

;1X1<1 (2.3.9c)

Assuming the shear stress T
o

xy
at the caisson-soil interface is

negligibly small results in the following boundary conditions.

T
o

xy
(X,O) = 0

T
o

YY
(X,O) = 0

V
o
= -a

c
X

;041Xl<=. (2.3.10a)

;141X1<co (2.3.10b)

;IXI41 (2.3.10c)

These conditions are still of the mixed-type. Displacement condi-

tions over the entire upper boundary may be written by introducing

o1
U
o

f'

2
V
o

f
, and

3
V
f'

which account for the unknown displacements

along the exposed portion of the mudline.

(1) surge

T
o

YY
(X,O) = 0

U
o

(X,O) = Uc +
lUo

f

(2) heave

T
o

xy
(X,O) = 0

;041Xl<=, (2.3.11a)

;041X1<ce (2.3.11b)

;041Xl<=. (2.3.12a)
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17°fV°(X,O) = Vc + 2

(3) pitch

T
o

xy
(X,O) = 0

V °(X,0) = -acX + 3ef

;041X1<co

;041Xl<03

;041X10,

(2.3.12b)

(2.3.13a)

(2.3.13b)

These are no longer mixed-type boundary conditions, and the boundary-

value problem can be easily solved. In (2.3.11b), (2.3.12b), and

o 2 o 3 o
(2.3.13b), the displacements

1
Uf , Vf , and Vf can be evaluated by

employing the thin soil layer contact problem solution technique

presented in Appendix B. The assumption of thin layer [i.e.

(d <<2c)] is to ensure negligible stresses along the exposed

surface. This assumption will be examined numerically in Chapter

4. To satisfy the original boundary conditions, the solutions for

the above assumed boundary conditions are expected to produce

relatively small stresses along the exposed seabed surface. From

Appendix B

1 o
Uf = Uc

2 o
Vf = Vc

(1-th(2/A

3
Vf = Xcl

;-=,<X<-1

;14X<...

;-0.<X4-1

;14X<0.

;-0,<X4-1

(2.3.14a)

(2.3.14b)

(2.3.14c)

1 - th(2)/(1-v)(-1-X) )

7D

)1 - th(2 /(1- v)(X -1)
V nD

)

)

(1

...

+ i Si(0))1

(-1-X)
7D

1-th(2i/A (X-1)
7D

(-1-X)

7D

1-tht2 ../A (X-1) (1 + i S'(0))} ;1<X<
7D



In (2.3.8c), (2.3.9c) and (2.3.10c), Uc, Vc, and ac are the

displacements of the caisson in surge, heave and pitch,

respectively. A positive ac is in the counterclockwise direction.

These displacements are unknown, but may be determined from the dy-

namic boundary conditions on the soil-caisson interface. These cond-

itions are determined from the equations of the motion of the

caisson.

m 0 0

0 m 0

0 0 I
m

fwl
f
w2

f
w3

+ f
s2

f
s3,

+ f

f
r3

(2.3.15)

where m is the mass of the caisson, 1m is the inertia moment of mass

of the caisson, uc, vc, and ac are the accelerations of the surge,

heave, and pitch of the caisson, respectively; fwd are the wave

forces on the caisson; fsj are the exciting soil loads on the caisson

determined in the scattering problem; and fry are the restoring

forces on the caisson when the caisson is moving. The exciting and

restoring, forces are obtained by integrating the stresses along the

caisson-seabed interface.

2.3.2 The Boundary Layer Corrections

Along the mudline, the summation of the pressure from the boun-

dary correction and outer region solution is equal to the wave-

induced porewater pressure. Along the rigid bed underlying the soil,

the normal derivative of the pore pressure must be zero, i.e.

at Y=0

at Y=D

Po + Pb = no Pw
(X)

a(po
Pb)

BY

0 <IX1<ce (2.3.18)

0,41XH (2.3.19)
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3. SOLUTIONS TO THE ANALYTICAL MODEL

3.1 General Solution to the Dynamic Response of the Soil Skeleton

For convenience, the non-dimensionalized elastic equations

(2.2.20a) and (2.2.20b) are rewritten

V
2
U +
o 1 a rau

o
av°)

1-2v ax 3)C ay

V
2
V
o

+
1 a rau

o
av

o
)

1-2v DY L3X DY

(3.1.1a)

(3.1.1b)

Since the poroelastic layer occupies the space -co < X < co,

0 < Y < D, a Fourier transform may be applied with respect to X to

equation (3.1.1). Consequently, the transformed equations are

2^o ^o
2 ^o U 1 ( 2,,o

i
D )

= 0 (3.1.2a)- s U + + s u + s
V

DY
DY

2 1-2v

2"o "o 2", o

2"o a v 1 DU 3 V
- s V + + (is + 0

1-2v aYay2
DY

2

where the Fourier transform is denoted as

CO

U
o

= U
o
(s,Y)

1 uo(x,y)e-isXdx

27 -co

(3.1.2b)

(3.1.3a)

0 1
fV

0
= V (S,Y) V0(X,Y)e

-isX
dX (3.1.3b)

27 -co

and the transform of a derivative is given by

1
j
f DU

o
-isX

i
o

e dX = s U

27 -co

(3.1.3c)
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Since s can be treated as a parameter in the above

equations, 130 and V° are functions of Y only. Thus, (3.1.2) is a

second-order ordinary simultaneous differential equation.

2o o
d U 2(1-v)s "o is dV

U + 0
2 1-2v 1-2v dY

dY

is s dU
o

2(1-v) d
2
V
o

2"o
+ s V = 0

1-2v dY 1-2v
dY

2

Written in matrix form, (3.1.4) yields

, .

2 2(1-v)s
2

is
D - D

1-2v 1-2v

is

1-2v
D

2(1-v) D2 s2
1-2v

(3.1.4a)

(3.1.4b)

(3.1.5)

in which D is the differential operator. This is a system of two

simultaneous, linear and homogeneous ordinary differential equations

of second order. Employing Cramer's rule [Wylie and Barret (1982)1,

if (3.1.5.) has a nontrivial solution, then its characteristic equa-

tion is

2 2(1-v)s
2

is
X

1-2v 1-2v

= 0 (3.1.6)

is 2(1-v) 2 2

1-2v 1-2v

When expanded, (3.1.6) is a fourth degree equation in A:

A4 - 2 s2A2 + s4= 0

Solving for A yields two sets of double roots.

(3.1.7)
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A=ts;ts (3.1.8)

Since (3.1.7) is of order four, the number of independent constants

in the general solution of the system must also be four. Also, be-

cause of the finite thickness of the elastic layer, the solutions are

given by hyperbolic functions as opposed to exponential solutions.

11°(s,Y) = alch(sY) + a2sh(sY) + a3Ych(sY) + a4Ysh(sY)

V °(s,Y) = bich(sY) + b2sh(sY) + b3Ych(sY) + b4Ysh(sY)

There are eight unknown coefficients and only four boundary

(3.1.9a)

(3.1.9b)

conditions. Four of the constants are not independent. Substituting

(3.1.9) into (3.1.4) and requiring the coefficients of ch(sY),

sh(sY), Ych(sY) and Ysh(sY) to satisfy the equations yield

a

b
1

3
= i[(3-4v) - a

2
]

s

a
4

b2 = i[(3-4v) -T - a2]

b
3
= -ia

4

b
4

= -ia
3

Accordingly, the general solution takes the form

U °(s,Y) = alch(sY) + a2sh(sY) + a3Ych(sY) + a4Ysh(sY)

(3.1.10a)

(3.1.10b)

(3.1.10c)

(3.1.10d)

(3.1.11a)
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1713(s,Y) = -ilalsh(sY) + a2ch(sY) + a3[Ysh(sY) 3s 4v ch(sY)]

+ a4[Ych(sY)
3-4v

sh(sY) }}
s

(3.1.11b)

The coefficients al, a2, a3, and a4 will be quantified by applying

the proper boundary conditions.

Taking inverse transformations, (3.1.11a) and (3.1.11b) read

m

;U°(X,Y) = f U° (s,Y)e
isX

ds1

27 -op

V°(X,Y) -
1

m
^

j V
o
(s,Y) e

isX
ds

2ir -00

(3.1.12a)

(3.1.12b)

For evaluating stresses, the following derivatives are required,

3U
o

ax

m

1 f is ;°(s,Y) eisX ds
211. -0,

.
au

o
1 3U

0
(s,Y)eisXds

311 v77 3Y

o .
av

f is V
ax

°(s,Y) e
isX

ds

av
0

1
.

av
0
(s,y) eisxds

ay /27 ay

(3.1.13a)

(3.1.13b)

(3.1.13c)

(3.1.13d)

The inverse Fourier transform cannot be evaluated explicitly, but can

be evaluated with a fast Fourier transform technique.

A superscript a,b,1,2, or 3 will be used to denote the

quantities referring to problem (a), problem (b), surge, heave, and

pitch, respectively, when the boundary conditions are applied.



3.2 Solutions for the Scattering Problem

3.2.1 Problem (a)

The general solution for this problem has been given by

(3.1.11). The homogeneous boundary conditions (2.3.3a), (2.3.3b) and

(2.3.5a) enable the determination of aa2, aa3, aa4 in terms of aal.

Then aa
1
is determined by the total normal stress boundary condition

at the mudline,(2.3.5b). It follows that

where

[(1-2v)(3-4v)sh2(sD) -
iw(s)

a
a
1

s[(1-2v)
2
+ (3-4v)ch

2
(sD) + s

2
D
2

]

(1- 2v)[sD - (3-4v)ch(sD)sh(sD)] fw(S)
a
a
2

s[(1-2v)2 + (3-4v)ch2(sD) + s2D2]

[sD - (3-4v)ch(sD)sh(sD)] fw(s)
a
a
3

(1-2v)
2
+ (3-4v) ch

2
(sD) + s

2
D
2

[(3-4v)ch
2
(sD) - (1-2v)] fw(s)

a
a
4

(1-2v)
2
+ (3-4v)ch

2
(sD) + s

2
D
2

"
f (s) =

2G
P
w
(s)e

-iat

(3.2.1a)

(3.2.1b)

(3.2.1c)

(3.2.1d)

(3.2.2)

3.2.2 Problem (b)

Taking the Fourier transforms of the boundary conditions

(2.3.3a), (2.3.3b), (2.3.6a) and (2.3.6b), the unknown coefficients

in (3.1.11) are obtained without difficulty.

"b
a

1

bU o
= (s,0) (3.2.3a)
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b^o r 3-4v 3-4v iD2b1jo(s,D)
- U (s,O)LD ch(sD)sh(sD)]

b
a - s s
a2

D2 (3-4v)2sh2(sD)
s )

" r 3-4v i 3-4v b,
b

b
U
o
(s,0)1.1) ch(sD)sh(sD)]+i v

o
ks,O)sh

2
(sD)

a
s s

a3 D2 (3-4v)2 sh2(sD)
L s

(3.2.3h)

(3.2.3c)

b s s

3-4v bno 2 bo 3-4v
u (s,O)sh (sD)-i V (s,0)[D + ch(sD)sh(sD)]

a4 D2 (3-4v)2 sh2(sD)
s

(3.2.3d)

3.2.3 Soil Loads from the Scattering Problem

From (2.2.19a) and (2.2.19c), the Fourier transforms of the

shear and vertical normal stresses on the caisson bottom due to the

scattering problem are given by

bT°

b"o

=
Gra u isy)

xy
Y=0

ayb"^bo 1-3 V
o

v b"o a
bo
V

T
yy

I = 2GL---- is U + -----11

Y=0
aY 1-2v

+ 3Y "

Integrating the stresses along the caisson base yields the

horizontal, vertical and moment loads, respectively.

(3.2.4a)

(3.2.4b)
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1
1 b"o

isX
it at -j at

c f T eds]dXe= F
sl
ecYt

- 1 -co "IY=0

r 1
f
s2
=cf i

- 1 /TT.

1

CO

r b" ojTledsiisX
e
-iat

dXe
-ia

t= F

-03 YY Y=0
s2

^
f
s3

= -c
2 f XiLljr bTo 1 eisXdsj dXe

-jot
= F

s3
e
-iat

-1 /27 YY Y=0

(3.2.5a)

(3.2.5h)

(3.2.5c)

3.3 Solutions for the Radiation Problem

3.3.1 Wave and Restoring Forces

Expressing the wave forces in terms of their complex amplitudes,

Fwd, and simple periodic in time yields

f . = F .e
-iat

wJ wj
(3.3.1)

The restoring forces are obtained by integrating stresses along

the caisson base and can be expressed by the forces for unit motion.

f
rl

= c f
1

x
1To

y
-1

r

1
2 o

f
r2

= c j T
yy

-1

1

f
r3

= -c
2

f x
-1

Y=0

Y=0

'To
YY1

-1 ot
dX = F

rl
U
o
e

dX = F
r2

V
o
e
-lat

I dX = F
r3

a
o
e-iat

Y=0

(3.3.2a)

(3.3.2b)

(3.3.2c)

in which Fri, Fr2'
and F

r3
are the restoring forces for the unit

surge, heave and pitch motion of the caisson, respectively. The dis-

placements are also assumed to be simple periodic



Uc

V
c

a

Uo

Vol

a
o

e-icrt (3.3.3)

where U
o
, V

o
, and a

o
are the coupled amplitudes of the caisson

motion.

3.3.2 Surge Motion of the Caisson

The displacement at the upper boundary, (2.3.11b), can be re-

written as

- th[2 y/(1-v)(-1-x)1
ID

;--<X4-1

1 - th[2
/(1-v)(X-1)1

J

;IX141 (3.3.4)

;1(X<0,

if (2.3.14a) is introduced. For convenience, f1(X) is introduced to

represent the bracketed expressions on the right-hand side of

(3.3.4). Thus, (3.3.4) can be replaced by

1
U
o
(X,O) = U

c
f

1
(X) (3.3.5)

From the Fourier transformations of boundary conditions,

(2.3.3a), (2.3.3b), (2.3.11a) and (3.3.5), the unknown coefficients

are obtained

lal
= Uc fl (s)

[s
2
D
2
+ 2(1-v)(3-4v) ch

2
(sD)]

1
a

11
a2 2(1-v)(sD + (3-4v)ch(sD)sh(sD)]

s[2(1-v) + (3-4v) sh2(sDnial
1
a
a3 2(1-v)[sD + (3-4v)ch(sD)sh(sD)]

(3.3.6a)

(3.3.6b)

(3.3.6c)
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1

1
s

al
a4

2(1-v)
(3.3.6d)

The caisson motion Uc, which is still unknown, will be solved by

applying the dynamic boundary condition, (2.3.15),

m uc = f
wl

+ f
sl

+ f
rl

(3.3.7)

Integrating the shear stress along the caisson-soil interface

yields the restoring force for unit surge motion of the caisson.

1 co

32

.

1
F
rl

= 2cG f 1 1 f [s la' - (1-2v) la' ] f (s) e
isX

dsIdX (3.3.8)

-1 2Tr --co

in which

1 la /la
a2 2 1

1 1 1
a3 = a3/ al

(3.3.9a)

(3.3.9h)

Substitution of (3.3.1), (3.3.2a), (3.3.3), (3.3.8), and (3.2.5a)

into (3.3.7), yields

U
o

= -(F
sl

+ F
wl

)/(F
rl

+ ma
2
)

where Fri and F
sl

can be evaluated numerically.

(3.3.10)

3.3.3 Heave Motion of the Caisson

If (2.3.14b) is introduced, the displacement at the upper bound-

ary, (2.3.12b), is given by
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2
V
o
(X,O) = V

c

1 - th[2 //A(-1-X)1
nD -I

1

/A(X-1)
1 - th[2

nD

;-0*<X(-1

;IX141

;14X<00

(3.3.11)

With the bracketed expressions denoted by f2(X), (3.3.11) reads

2
V
o

(X,O) = V
c

f
2

(X) (3.3.12)

This, combined with (2.3.3a), (2.3.3b) and (2.3.12a), provides the

unknown coefficients

- i[(1-2v)(3-4v)sh
2
(sD) -s

2
D
2

] Vcf2 (s)
2
a

1 2(1-v) [sD - (3-4v)ch(sD)sh(sD)]

2
- i(1-2v) Vc f2(s)

2(1-v)

-is V
c

f
2
(s)

2
a3

2(1-v)

is[(1-2v) - (3-4v)ch2(sD)] Vc f2(s)
2
a
4 2(1-v) [sD - (3-4v)ch(sD)sh(sD)]

(3.3.13a)

(3.3.13b)

(3.3.13c)

(3.3.13d)

Similar to the surge motion, the displacement amplitude of heave

is solved by employing the equation of motion, (2.3.15),

V
o

= -(F
s2

+ F
w2

)/(F
r2

+ ma
2
) (3.3.14)

in which the restoring force for unit heave motion of the caisson is

given by

1 00 .

F
r2

= 2cG f 1 f [2(1-v)
2
a4

1
- s

2
at]f

2
(s)e

isX
dsIdX (3.3.15)

-1



and

2
a' =

2
a

1
nV

c
f
2
(s)]

2
a' = 2a

4
/[V

c
i
2
(s)]

3.3.4 Pitch Motion of the Caisson

By introducing (2.3.14c), the displacement at the upper

boundary, (2.3.13b), is rewritten as

1 - th{2 //A(-1-x) [1 + iS'(0)]). ;-0,<X4-1
IrD -

3V°(x,0) = a
c

-X ;IXItl

-1) .

1 - th{2
//A(X

[1 + iS'(0)]} ;14X<co
11.1)

(3.3.16a)

(3.3.16b)

(3.3.17)

3
V
o

is related to f3(X) by

3V°(X,O) = ac f3(X) (3.3.18)

Employing (2.3.3a), (2.3.3b) and (2.3.13a) to solve for these coeffi-

cients,

2 "
- i[(1- 2v)(3-4v)sh2(sD) - s

2
D Ja

c
f
3
(s)

3a

1 2(1-v)[sD - (3-4v)ch(sD)sh(sD)]

3
- i(1-2v) ac f3(s)

2(1-v)

-is a
c

f
3
(s)

3
a
3 2(1-v)

(3.3.19a)

(3.3.19b)

(3.3.19c)
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is[(1-2v) - (3-4v)ch2(sD)] aci3(s)
3
a
4 2(1-v)[sD - (3-4v)ch(sD)sh(sD)]

(3.3.19d)

Employing the dynamic boundary condition, (2.3.15), the ampli-

tude of the angular displacement ao is determined

a
o

= -(F
s3

+ F
w3

)/(F
r3

+ lm u
2
)

in which

1

F
r3

= -2c
2
G f XI

1 3

4 1
f [2(1-v)

3
a'- s at]f

3
(s)eisXdsIdX

-1 i2.11.

and

3 , 2
a

1
= a'

1

3
a'

2
'

4
= a4

(3.3.20)

(3.3.21)

(3.3.22a)

(3.3.22h)

3.4 Solutions to the Boundary Layer Correction

Solving the consolidation equation (2.2.46), for simple harmonic

waves, it is assumed that

P
b
= A(X) B (Y

b
) e

-iT
b

(3.4.1)

Substituting (3.4.1) into (2.2.46) and solving for B(Yb), yields

Thus

B(Y
b

) = a' ch(1-i---- Y
b
) + a2 Yb)

1 r 2

P
b

= a
1
(X) ch(1-i---- Y

b
) + a

2
(X) sh(1-i Y

b
)

(3.4.2)

(3.4.3)

Applying the boundary conditions (2.3.16) and (2.3.17), al(X) and

a2(X) are readily obtained.
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a1(X) = no pw(X) - PI (3.4.4a)

Y = 0

a2(X) = [P°1 - n P__(X)] th (ILL Db)

Yu= 0 w

0
1+1 aP 1

riblyb.pb Db)

)/2

Hence

P
b

no p
w
(X)][th (-1:1L Db) sh(1i yb)

Y = 0
1-i b

sh(--- Y )

1-i b 1+i aP° -iT
/7 b

- ch( Y--- )
7.

e
7--2 2 9Y---3 Y

b
=D

b
ch(--- D

b
)7

1-i

(3.4.4h)

(3.4.5)

Written in dimensionless outer variables, (3.4.5) takes the form

chi
rl -I D -Y1

i

IT c
Pb

pn
0 w Y=0

VZ.,()
cu(.1

-i D)

T ''

sh(1:1 2-)

I+i 3P°1 T c
1 e-iT

b

3Y (1-i D
1/2

e

Y=D cht---- ---)

if c

where

y = --
e

aP
The second term is in order of e, if

ay
- 0(1). It is hence neg-

ligible compared to the first term. As a result, (3.4.6) is approx-

imately given by

0

(3.4.6)

(3.4.7)



1-i D-Y
ch(--------)/I e

e
-iTb

P
b
= [no Pw(x) - Pluy._]

ch(1-i -2)
/2 c

(3.4.8)

The corrections of effective stress in the boundary layer are easily

obtained from (2.2.52).

3.5 Summary of the Solution

The linear superposition of the solution components leads to the

solution of the original problem.

The horizontal displacement,

U = bUo +1Uo +2Uo +3Uo

The vertical displacement,

V =
bVo

+1Vo +2Vo +3Vo

The shear stress,

T =
bTo

+1To +2To +3To
xy xy xy xy xy

The porewater pressure induced by the moving caisson,

bT o
+

lTo
+

2
T
o

+
3
T
o

+
bTo

+
lTo

+
2
T
o 3 o

P -

+ T
Po xx xx xx xx yy yy yy yy

2(1 + mo)

The effective normal stresses induced by the outer problem,

to b o
T = T +

1To +2T° +3T° +P°
xx xx xx xx xx

'obo lo 2o
3T°T =T+T+T+T+ P°

YY YY YY YY YY

The resultant effective normal stresses,

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)
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T' = T + P

xx xx 1-v

,

T = T
'o

+ Pb
yy yy

The resultant porewater pressure,

P = P
o

+ P
b
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(3.5.7)

(3.5.8)

(3.5.9)
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4. ANALYTICAL SOLUTION BEHAVIOR

The analytical model developed has been generalized for a

caisson placed on a rubble bedding layer overlying a soil of finite

depth. However, the response of the soil to waves and caisson

motions is not readily apparent from the analytical solution. There-

fore, in this chapter the general solution will be examined for dif-

ferent wave and soil conditions. In addition, the implications of

the thin layer limitation will be discussed.

4.1 Wave Loadings and Soil Properties

4.1.1 Wave Loadings

An analytical model is being developed for the wave forces on

the caisson in parallel with this study [Ward et al. (1986)]. The

wave force model will include the modification of the wave field due

to the rubble bedding layer. Forces are determined along the front

face, bottom and back of the caisson. Unfortunately, the wave force

model was not completed in time to be incorporated into the caisson-

soil model. Therefore, an idealized wave condition is assumed. At a

later date, the more realistic wave force model may be easily incor-

porated into the soil model.

The idealized wave condition is to assume that a partial stand-

ing wave is formed, in which the dynamic wave pressure underneath the

caisson is linearly dissipated from the toe to the heel of the

caisson. Thus, the pressure on the mudline is
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P
w
(x,t) =

(l +kr)IH

cos(kx) e
2ch(kh)

(l+k
r
)yH

c'-x -iat
2ch(kh) E-1 e

0

(4.1.1)

in which y is the unit weight of water; H is the incident wave

height; k is the wave number; h is the water depth; and kr is the

reflection coefficient.

The horizontal force and moment induced by the wave acting on

the front face of the caisson are obtained by integrating the pres-

sure and pressure moment along the caisson face. The moment is taken

around the midpoint of the caisson-soil interface. The force on the

front face of the rubble bedding layer is assumed to be small and

neglected. The vertical wave force on the bottom of the caisson is

evaluated from a triangular wave pressure distribution. The moment

induced by this pressure is also taken around the midpoint of the

caisson-soil interface. For partial standing waves, the dynamic

pressure on the vertical caisson face is

ch(k(z + h)]
P = y

1 ch(kh) n

in which n is the free surface fluctuation and given by

n -
(1 + kr)H

2

-iat
e

(4.1.2)

(4.1.3)

and z is the vertical axis in a Cartesian coordinate system, conven-

tionally, negative if below the still water level, and z=-y-h.



The horizontal wave force Fwi is given by

0 n

F
wl

= f Y
chrk(z+h)1

ch(kh)
ndz + f y(n-z)dz

-h+b 0

= 1-2 [th(kh)
k

sh(kb) + , n
2

ch(kh)J ' 2
(4.1.4)

where the pressure above the still water level is assumed to be hy-

drostatic [Dean and Dalrymple (1984)].

The wave pressure at the caisson toe is

ch(kb)

P2 Y ch(kh) n

from which the vertical wave force F w2 is readily obtained,

ch(kb)
F
w2

= yc'
ch(kh) 11

Furthermore, the moment is

(4.1.5)

(4.1.6)

c V

M
2

=
3

F
2

(4.1.7)

The moment due to pressure on the front face of the caisson is

0
ch[k(z +h)] ,

Jr

-h+b
ch (kh)

nkz+h)dz +
n

Y(nz)(z+h)dz
0

Y71 [(kh)sh(kh) - ch(kh) - (kb)sh(kb)

k
2
ch(kh)

n
3

hn
2

+ ch(kb)] + yn(
6 + 2 J

Thus, the wave-induced total moment on the caisson is

(4.1.8)

60



61

F
w3

= -(M
2
+ M

3
) (4.1.9)

where positive is counterclockwise.

Again, it should be noted that this idealized wave field was

assumed so that the caisson-soil model could be exercised. The more

accurate wave force model will only influence the boundary conditions

in the caisson-soil model, i.e. the wave forces on the caisson and

the pressure along the mudline.

4.1.2 Soil Properties

Typical values of Poisson's ratio, Young's modulus, shear

modulus, and porosity of cohesionless soil are shown in Table 4.1.1

[Das (1983)]. Poisson's

are related by

E
G

ratio, Young's modulus, and shear modulus

(4.1.10)

4.1.1 Typical soil properties [Das (1983)]

2(1+v)

Table

Poisson's Modulus Porosity

Soil Type Ratio (psf) 0.30 0.35 0.40

Coarse sand 0.15 E 943,200 820,800 676,800
G 410,000 357,000 294,000

Medium coarse 0.20 E 943,200 820,000 676,800
sand G 390,000 342,000 282,000

Fine-grained 0.25 E 763,200 576,000 489,600

sand G 305,000 230,000 196,000

Sandy silt 0.30- E 288,000 244,800 208,800

0.35 G 111,000 94,000 80,000
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4.2 Examination of the Thin Layer Limitation

4.2.1 Examination of the Normal and Shear Stresses Along

the Exposed Surface

As discussed in Chapter 2, the outer region solutions are

developed under the assumption of a thin soil layer expecting negli-

gible vertical normal stress and shear stress along the exposed mud-

line. The influence of the soil depth on the stresses along the

exposed mudline is shown in Figs. 4.2.1 and 4.2.2 for eight soil

depths and four points with dimensionless distances of 0.001, 0.005,

0.01, and 0.1 from the caisson toe. The following data are assumed

for this calculation.

Wave period - 4 sec.

Wave height - 4 ft

Water depth - 8 ft

Rubblemound thickness - 1 ft

Caisson half-width - 4 ft

Mass of the caisson - 83 slugs

Mass moment of the inertia of the caisson - 3,660 slugs-ft2

Poisson's ratio - 0.3

Shear modulus - 80,000 psf

Fig. 4.2.1 reveals that at a dimensionless distance of 0.1 from

the toe, the normal stress is less than one percent of the peak

stress at the caisson toe, even though the dimensionless soil depth

is up to 6. At a distance of 0.001, the stress ratio is small

(0.15%) only for dimensionless soil depths less than 0.25.
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Figure 4.2.1. Outer vertical normal stress ratio along the exposed
mudline as a function of soil depth for the radiation
problem.
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Figure 4.2.2. Outer shear stress ratio along the exposed mudline as
a function of soil depth for the radiation problem.
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Fig. 4.2.2 shows the shear stress ratio under the same condi-

tions for the normal stress examination. At a dimensionless distance

of 0.1 from the caisson toe, the shear stresses are less than 2% of

the peak stress for all soil depths. At a distance of 0.001, only

dimensionless depths less than 0.25 produce a small shear stress,

(i.e. the stress ratio is about 1.3%).

Figs. 4.2.3 and 4.2.4 show the distribution of the normal stress

and shear stress around the caisson toe for soil depths 0.25 and 6,

respectively. The thinner the soil is, the higher and sharper the

peak stress is. These results indicate that the assumption of negli-

gible normal and shear stress are sensitive to the soil layer thick-

ness. However, the error associated with this assumption appears to

be small for dimensionless soil depths less than 0.25.

4.2.2 Comparison with the Finite Element Method for an Elastic

Soil of Arbitrary Depth

A finite element solution for an elastic layer due to inclined

and eccentric load over an infinitely long rigid strip was developed

by Milovic et al. (1970). This numerical solution was for a static

load on an impermeable elastic strip space. The present analytical

solution is applicable to an elastic soil by defining the pore pres-

sure to be zero. The definition sketch for the loading condition

examined is shown in Fig. 4.2.5. The following conditions are

assumed for this comparison.

Thickness of the elastic layer: 10 ft; 30 ft

(dimensionless D = 2.0; 6.0)

Eccentricity: e = 0.5; 1.0
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the radiation problem for two soil depths: (a) D=0.25
and (b) D=6.0.
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Angle of the inclined load:

Total load:

Averaged load per unit area:

Half-width of the strip:

45.0°

F = 1000. lb

Pav = F/ 2c

c = 5 ft

The comparison of contact stresses is shown in Figs. 4.2.6

through 4.2.9 The agreement between the two methods is reasonable

for D = 2.0 and D = 6.0, particularly for the normal stresses. For

larger eccentricity, the analytical solution has larger shear stress

than the finite element solution. At the corners, the analytical

solution also has bigger stresses; this may be due to the effect of

the finite element size in the numerical model. The stresses change

rapidly at the corners and a very fine element mesh must be used to

get a more accurate solution.

The stress profiles at X = 0 are compared with the finite ele-

ment method in Figs. 4.2.10 through 4.2.13. Generally, there is

better agreement between these two solutions for D = 6 than for -

D = 2. The normal stresses at X = 0 are independent of eccentricity

in both methods. This property can be seen from Figs. 4.2.10 (b),

4.2.10 (c), 4.2.11 (b) and 4.2.11(c).

From the above comparison, the analytical solutions are in good

agreement with the numerical solutions for both depths of elastic

layer even though they are not thin. It is, therefore, concluded

that the analytical model for predicting the stresses under the

caisson is applicable to a much greater range of depths than

suggested by the thin layer assumptions in the development of the

solution.
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Figure 4.2.7. Comparison of the analytical model and numerical model
for the contact stresses on an elastic layer:
(a) shear stress, (b) horizontal normal stress, and
(c) vertical normal stress (D=2.0, e=1.0).
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Figure 4.2.11. Comparison of the analytical model and numerical
model for the stress profiles in an elastic layer:
(a) shear stress, (b) horizontal normal stress, and
(c) vertical normal stress at X=0 (D=2.0, e=1.0).
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Figure 4.2.12. Comparison of the analytical model and numerical
model for the stress profiles in an elastic layer:
(a) shear stress, (b) horizontal normal stress, and
(c) vertical normal stress at X=0 (D=6.0, e=0.5).
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The analytical model is compared with the numerical model for

displacements in the three degrees of freedom. These results are

shown in Fig. 4.2.14. The analytical model predictions are little

less than the numerical model values for all three modes of motion.

The distribution of the vertical contact stress is also compared

with the base contact stress calculated by the finite element method

for an offshore gravity structure subjected to waves. In the case of

an elastic soil, the calculations show that the stress distribution

is almost linear within the inner 80% of the diameter and that sig-

nificant stress concentrations may occur towards the periphery -

[Schjetne, et al. (1979)]. Figure 4.2.15 shows that the distribu-

tion of the caisson base contact stress follows the above

statement. The distribution is linear in the inner 80% of the

caisson width and concentrates at the caisson edges.

4.3 Examinations of the Behavior of Base Contact Stresses and

Mudline Displacements

Base contact stresses are important for the design of a caisson

base slab, and the mudline displacements are significant for the

settlement prediction. In order to examine their behavior, the fol-

lowing conditions are assumed, unless otherwise defined.

Wave period - 10 sec.

Wave height - 20 ft

Water depth - 40 ft

Thickness of the rubblemound - 5 ft

Caisson half-width - 21 ft
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Figure 4.2.14. Comparison of the analytical model and numerical
model for the surface displacements of an elastic
layer.
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Mass of the caisson 4400 slugs

Mass moment of inertia of the caisson - 4,716,800 slugs-ft2

Dimensionless soil depth - 1.0

Poisson's ratio - 0.15

Shear modulus - 410,000 psf

Porosity - 0.4

Coefficient of permeability - 3.3x10
-4 ft/sec

Figure 4.3.1 shows the dependency of contact shear stress,

effective normal stresses, and displacements on wave period. For

shorter waves, the shear stress is larger than for longer waves be-

cause the ratio of wave forces to Po increases with the decrease of

wave period. Dimensionless effective normal stresses are relatively

insensitive to the wave period, except very long waves. However,

displacements increase with the wave length.

Figure 4.3.2 shows the results for five different wave heights. -

Obviously, wave forces increase with an increase of wave height.

Therefore, stresses and displacements are proportional to wave

heights.

Figure 4.3.3 presents the results for four different Poisson's

ratios with a constant shear modulus of 410,000 psf. The figures

show that contact stresses depend slightly on Poisson's ratio, except

the horizontal normal stress which is proportional to the Poisson's

ratio. It is also interesting to note that the horizontal displace-

ment at the exposed mudline is proportional to Poisson's ratio while

underneath the caisson the displacement is inversely proportional to

Poisson's ratio. Unlike the horizontal displacement, the vertical
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displacement is inversely proportional to Poisson's ratio over the

entire mudline.

Displacement amplitudes are obtained from the equation of motion

of the caisson, Eq. (2.3.15), in which the soil scattering and re-

storing forces and the inertia forces of the caison are involved.

Since the caisson motion has the same frequency as waves and this

frequency is low, the inertia forces are much smaller than the soil

resistance forces. The equation of motion is, therefore, essentially

a static equilibrium equation. As a result, the displacement ampli-

tude is inversely proportional to shear modulus, and stresses are

independent of shear modulus. Conversely, displacements increase

with a decrease in the shear modulus. Figure 4.3.4 shows the dis-

placements for four different shear moduli with a constant Poisson's

ratio 0.2.

The stresses and pore pressure for two soils with different

porosity and permeability are shown in Fig. 4.3.5. The soil porosity

has a significant influence on the pore pressure but not on the dis-

placements or stresses except the vertical normal stress.

The effect of soil depth on the contact stresses and displace-

ments is illustrated in Figs. 4.3.6. For deeper soil, the shear

stress underneath the caisson becomes smaller, while the effective

normal stresses and displacements become larger.

4.4 The Distribution of Displacements, Stresses, and Porewater

Pressure in the Soil

Using the same data (unless otherwise defined) as in the pre-

vious section, the distribution of displacements, stresses and pore-
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water pressure for the scattering problem and the radiation problem

of outer region solution and the total solution including the bound-

ary layer correction are shown in Figs. 4.4.1 through 4.4.5

4.4.1 The Scattering Problem

To more clearly reveal the behavior of the soil motion in pro-

blem (a) and problem (b), a soft soil is examined (i.e. Poisson's

ratio v = 0.35, shear modulus G = 111,000 psf). Figure 4.4.1 shows

the horizontal and vertical displacements in problem (a). Although

wave pressure is restricted to the upstream portion of the mudline,

this pressure causes soil motion beneath the caisson and behind the

caisson. The maximum horizontal displacement occurs at the middle of

the soil layer under the caisson toe. The horizontal displacement in

the downstream portion in the soil layer is induced by the motion of

the soil in the part which is under the caisson toe and adjacent to

the hardbed. The vertical displacement spreads over from the maximum

point at the caisson toe to some extent under the caisson. In pro-

blem (b), there are no displacements along the caisson-soil inter-

face. The soil layer underneath the caisson is like a fixed-end

column. The influence of the displacement on one side on the soil

column is like a distributed load which induces deflection of the

column. These phenomena are shown in Fig. 4.4.2. Therefore, the

scattering problem does induce soil motion as well as stresses under

the fixed caisson.

Figure 4.4.3 is the response of a stiff soil (i.e. v = 0.15,

G = 410,000 psf) in the scattering problem. Comparison of Figs.

4.4.2 (a), (b) and 4.4.3 (a), (b) indicates that the stiffer soil has
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less displacement. The high total stresses and porewater pressure

are near the caisson toe and are due to larger displacements and dis-

placement gradients of the soil.

4.4.2. The Radiation Problem

The horizontal displacement is rather symmetrical with respect

to the caisson center line as shown in Fig. 4.4.4(a). The surge

motion of the caisson tends to dominate this displacement. The

vertical displacement, Fig. 4.4.4 (b), is antisymmetrical with re-

spect to the caisson center line because the pitch motion is dominant

in this displacement. Singularities result in high stress and pore

pressure concentration at the caisson toe and heel. These phenomena

are shown in Figs. 4.4.4 (c) through 4.4.4 (f). Interestingly, the

total horizontal normal stress decays with the depth much faster than

the vertical normal stress.

4.4.3 The Total Solution

The total horizontal displacement and shear stress are mainly

due to caisson motion. The vertical displacement is influenced by

both caisson motion and wave pressure, cf. Figs. 4.4.5 (a), (b) and

(c). After including the boundary layer correction, the effective

normal stresses and pore pressure have higher gradients under the

caisson toe and heel, cf. Figs. 4.4.5 (d), (e) and (f). The pore

pressure contours are similar to the numerical solution developed by

deQuelerij et al. (1979).
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1

(a) HORIZONTAL DISPLACEMENT VC X 10000.

(b) VERTICAL DISPLACEMENT V/C X 10000.

Figure 4.4.2. Contours of the outer soil displacements for

problem (b).
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Figure 4.4.3. Contours of the outer soil responses for the

scattering problem
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Figure 4.4.3. Contours of the outer soil responses for the

(contd.) scattering problem
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Figure 4.4.5. Contours of the soil responses for the total
(contd.) solution
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5. LARGE-SCALE EXPERIMENTS

Two series of experiments of wave-soil-caisson interaction were

conducted at the O. H. Hinsdale Wave Research Facility at Oregon

State University during the springs of 1984 and 1985. A variety of

wave conditions were examined. Incident waves, reflected waves and

transmitted waves were measured. Wave pressures were measured along

the front face and bottom of the caisson and along the upstream por-

tion of the mudline. Porewater pressure was also monitored in the

soil under the caisson. The three degrees of caisson motion, surge,

heave, and pitch were measured with displacement transducers.

5.1 Experiment Apparatus and Conditions

5.1.1 Wave Tank

The OSU wave flume is 342 ft long, 12 ft wide and 15 ft deep.

The hinged-flap-type wave generator is able to produce solitary,

periodic, and random waves. Simple periodic waves up to 8 seconds in

period and 5 ft in height can be generated. A polyeurathene seal

around the edges of the wave board confines the water to one side of

the board. Precast concrete panels are available to form a false

bottom with the desired water depth and slope.

5.1.2 Test Section

A test section, 30 ft long, 5 ft wide and 4 ft deep, was con-

structed at the downstream end of the wave flume. A false channel

bottom was installed to match the test section. The sides and ends

of the test section were fabricated with reinforced plyboard. The

entire test section was bolted to the channel bottom and side
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walls. Figure 5.1.1 shows the test section. The side chambers of

the test section were filled with highly permeable gravel to provide

extra strength and prevent side wall deflection during the test. A

perforated pipe was laid on the bottom of the channel to facilitate

drainage during dewatering. In the middle chamber, a 3 ft layer of

sand was used for the 1984 test. In the 1985 test, a 6 inch thick

reinforced concrete slab was constructed as an impermeable hardbed

1.5 ft above the bottom to provide a 1 ft deep sand layer above the

concrete slab. These sand beds were fluidized and then reconsoli-

dated back to a homogeneous condition. The fluidization was accomp-

lished by using an inverted T-shaped manifold to inject a high-

pressure water jet into the sand [Nath et al. (1977)]. This pro-

cedure prepared a uniform soil layer to ensure the repeatability of

the experiments. The reconsolidation was induced through an over-

burden of 6 to 12 inches of pea gravel separated from the sand by a

geotextile. Rubble then was placed over the lift of the pea gravel

to form a rubble bedding layer of approximately one foot thickness.

The rubble had a mean diameter of 4 inches. The test caisson was

then placed on the rubblemound foundation. Toe and heel protection

were added. The cross section of the test structure is shown in Fig.

5.1.2.

To provide a continuous caisson face across the width of the

flume, a fixed dummy side structure was constructed along each side

of the caisson. These dummy sections were rigidly attached to the

side walls of the wave flume. To allow caisson motion, a one-inch

gap was left between the caisson and side structures. The front of
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the gap was covered with a rubber strip to provide a watertight

seal. The side structures were 3 ft 10.5 inches wide, 12 ft 4 inches

long, and 10.5 ft high. They were constructed of heavily reinforced

plyboard and rigidly bolted to the bottom and sides of the wave

flume.

5.1.3 The Test Caisson

The test caisson was 10 ft high, 8 ft long and 4 ft wide. It

was also made of heavily reinforced plyboard. To obtain the desired

mass, the caisson was filled with concrete cylinders and sand bags.

For the 1984 test, only the weight of the cylinders and bags were

measured. For the 1985 test, the locations of cylinders and bags

were also measured. The weight of the empty caisson in air was 1470

pounds. The total weight of the caisson including the ballast was

5640 pounds in the 1984 test. For the 1985 test, three different

weights of the caisson in water were tested, as shown in Table 5.1.1.

Table 5.1.1 Weight, mass, and mass moment of inertia of the caisson
in water for the 1985 tests

Weight Mass

(pounds) (slugs)

Mass Moment of Inertia
(slugs -f t2)

5,280 164 2,765

7,150 222 5,630

10,690 332 14,631

5.1.4 Sand Bed Properties

The physical properties of the soils for the 1984 and 1985 ex-

periments are summarized in Table 5.1.2.
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Table 5.1.2 Soil properties for the tests

Year 1984 1985

Poisson's ratio 0.3 0.3

Porosity 0.5 0.5

Shear Modulus 140,000 psf 110,000 psf

Permeability 0.00033 ft/sec 0.00033 ft/sec

Coefficient

5.1.5 Instruments and Their Locations

The wave profiles and caisson motions were measured with sonic

transducers. The dynamic pressures were measured with pressure tran

sducers (Druck model PDCR10). Carborundum filter stones covered the

transducer housings to prevent soil from clogging the pressure tran

sducers. A small amount of air in the stone may significantly affect

the dynamic response of the transducers. Therefore, the stones were

first boiled to remove air and then always kept underwater. The

transducers were calibrated by raising and lowering the still water

level in the channel before and after each sequence of runs.

The instrument locations for the 1984 and 1985 tests are shown

in Figs. 5.1.3 and 5.1.4, respectively.

5.1.6 Wave Conditions

The tests were run at a water depth of 8 ft. The periods and

heights of simple periodic waves were based on Dean's stream function

wave theory [Dean (1974)]. The relationship between the wave case,

wave steepness, and relative water depth is shown in Fig. 5.1.5. The

wave case, height, and period employed in the tests are shown in
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Table 5.1.3. In the 1985 experiments, the wave periods were slightly

adjusted to provide pure standing waves in the flume.

Table 5.1.3 Wave conditions for the tests

Wave Case

Wave Period
(sec.)

Wave Height
(ft)

8A 1.77 0.68

8B 1.77 1.36

8C 1.77 2.03

7A 2.80 1.28

7B 2.80 2.52

7C 2.80 3.76

6A 3.95 1.47

6B 3.95 2.92

6C 3.95 4.40

5A 5.59 1.55

5B 5.59 3.07

4A 8.84 1.56

5.2 Experimental Results

One of the sonic profilers used to measure the caisson motion

malfunctioned in the 1984 experiment. Several of the pressure trans-

ducers in the 1985 experiment did not calibrate well. Therefore,

only the pore pressure measurements of the 1984 tests and the caisson

motion measurements of the 1985 tests were analyzed.

Typical records of pore pressure and displacement are shown in

Figs. 5.2.1 (a) and 5.2.1 (b). Significant noise was observed in the

displacement measurements. To remove this noise, a moving box car

filter was used. Figs. 5.2.2 (a) and (b) show the mean and variance

of the data with respect to different filter widths. An eleven-point
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moving box car (i.e.At = 0.076-0.381 sec) was used. At this width,

the mean and variance are expected to be nearly constant.

The dimensionless pore pressure amplitudes are shown as a func-

tion of the period in Fig. 5.2.3. The pressure amplitudes were

scaled by S2; the pressure on the caisson front face measured one ft

above the mudline. A line has been drawn through the means of each

data set. The caisson motion had less influence on gages D3 and D4,

and the pressure decayed with the soil depth. The two pairs D5, D6

and S6, S7 were obviously affected by the caisson motion because the

pore pressure increased with the soil depth. This is predicted by

the theory. For the gages D3, D4, D5, D6 and D7, the dimensionless

pressure amplitudes are proportional to the wave period. For the

gages S6 and S7, the pressure amplitudes are inversely proportional

to the wave period.

The dimensionless mudline displacements are plotted against H/h

(wave height to water depth) for various values of h/Lo (depth over

deep water wave length) in Fig. 5.2.4. Generally, the displacements

increase with increases in wave height or wave period. This result

is anticipated because the wave force on the caisson is proportional

to the wave height and wave period. However, the vertical and rota-

tional displacements are somewhat scattered.

5.3 Comparison of Theory and Measurements

The measurements of D5, D6, D7, S6 and S7 (cf. Fig. 5.1.3) were

compared with the analytical model. Figure 5.3.1 shows the calcu-

lated pressure versus the measured pore pressure. Although the trend

is predicted, there is considerable scatter. This is clearly seen in
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Fig. 5.3.2 which shows the ratio of the measured to the predicted for

each gage. Except D5 and S7, the ratios are all within one standard

deviation from the mean. Figure 5.3.3 shows the computed contours of

pore pressure and measurements. Again, the trend is in general

agreement but there is considerable scatter. The deviation of the

predicted porewater pressure from the measured may result from the

assumption of a linear wave pressure distribution underneath the

caisson. A more accurate pressure model being developed by Ward

(1986) may be employed to obtain a more realistic pressure boundary

condition. Unfortunately, this model was not completed in time to be

used in present study.

The measured and the predicted displacements are shown in Fig.

5.3.4. The dimensionless displacements were plotted to the dimen-

sionless calculated horizontal wave force on the caisson F
1
/wh

2
.

The wave force F
1
was calculated by the method recommended in the

Shore Protection Manual (1984). The measured displacements are

rather scattered. The horizontal and the vertical displacement data

are larger than the predicted. However, the measured rotational dis-

placement data are in reasonably good agreement with the predicted.

The predicted angular displacement is in better agreement with the

laboratory results than both the horizontal and vertical

displacements because the angular motion is the largest among the

three degrees of the caisson motion. Thus, the noise effect on the

measured angular displacement is less than on the horizontal and

vertical displacement measurements.
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The predicted horizontal displacements were also compared with

the data obtained from large-scale caisson experiments conducted at

the Delft Hydraulic Laboratory [Lindenberg et al. (1982)]. This

comparison is shown in Fig. 5.3.5. For smaller wave forces, theory

and observation agree very well. However, for the larger waves, the

predicted horizontal displacement is somewhat above the measured.

This result is surprising since the displacement was underpredicted

for the OSU experiments. A similar observation was also made by

Lindenberg et al. (1982). The horizontal displacement predicted by a

finite element model was larger than the measured. One possible

reason is that the calculated wave force is larger than the real

force acting on the caisson model for the higher waves. Another

possible reason is the difference of the soil properties used for the

theory and the physical model. This would result from the soil bed

not being uniformly placed or reconsolidated back to the expected

density. In addition, the displacement data from the OSU experiments

was very noisy and required significant filtering. This reduces the

confidence in the data.

The noise reduces confidence in the displacement measurements.

Thus, the following modifications to the experimental procedure are

recommended:

a) Using an LVDT for displacement measurements.

b) Occupying entire wave channel width for caisson to

avoid the effects on the measurements from both the

side channels and dummy structures.

c) Making a stiffer caisson, e.g., concrete.
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Figure 5.3.5. Comparison of theory and the Delft Hydraulic Labora-
tory measurements for the horizontal displacement.
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6. CONCLUSIONS

6.1 Summary

The linear ocean wave-soil-caisson interaction system has been

addressed analytically. Two approximations were applied: the bound-

ary layer approximation and contact solution for a thin elastic

layer.

Using the boundary layer approximation, the soil displacement

and porewater pressure can be decoupled. Thus, solving the Biot

equations is essentially solving the soil displacement and porewater

pressure separately. Near the mudline, there exists a boundary layer

in which drainage is relatively unimpeded and the relative motion

between the fluid and solid is significant. Farther from the mud-

line, there is little drainage so the fluid and soil tend to move in

phase. This is termed the outer region problem.

In the outer region problem, the soil displacement is solved

from the quasi-static equation of motion by neglecting the inertia

force in the case of sandy seabed. The porewater pressure is related

to total normal stresses by combining the equations of mass and

momentum.

In the boundary layer problem, the porewater pressure correction

is solved from the one-dimensional Terzaghi consolidation equation.

The stress corrections are related to the porewater pressure correc-

tion by taking the dominant terms in the equation of momentum. The

displacement corrections are of the order of the ratio of the boun-

dary layer thickness to the effective caisson half-width. Hence,

they are negligible.
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To solve the outer region problem, the original problem is de-

coupled into two problems. The scattering problem is for a fixed

caisson. The exciting soil and wave forces from the scattering pro-

blem are applied to the radiation problem in which caisson motions

are imposed on a still seabed.

Employing the contact solution for a thin elastic layer deter-

mines the unknown displacement boundaries along the exposed portion

of the mudline. This yields a boundary condition along the mudline

for the outer region problem is no longer of a mixed-type. The

contact solution was modified by introducing the hyperbolic tanh

function; hence, the approximate solution approaches the original

solution near the caisson and approaches the undeformed mudline at a

large distance.

From the numerical results and comparisons with a finite element

numerical model solution, the influence of the thin soil layer

assumption on the analytical model may be summarized as:

a) For the soil regions under the caisson and under the

exposed mudline greater than 0.1c from the caisson,

the analytical model is applicable for all soil

depths.

b) For the response in the region (0-0.1)c from the

caisson, the model is applicable only for soil depths

d/c < 0.25.

An examination of the solution behavior indicates that Poisson's

ratio and the shear modulus have a significant influence on the dis-
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placements but not on stresses. The porosity is important for the

pore pressure only. The soil depth affects the displacements and

stresses significantly. The solution also reveals that the caisson

motion induces much larger displacements, stresses, and porewater

pressure in the soil skeleton than the wave alone. Pitch motion

makes the most significant contribution, while heave is the least.

At the caisson corners, high stresses and porewater pressure result

from singularities. It is, therefore, strongly recommended that the

dynamic caisson-soil interaction be considered in the foundation

design of caissons.

A general agreement between the analytical model and physical

model was obtained. However, more accurate methods to estimate the

wave pressure on the mudline, forces on the caisson and measure

caisson motions are recommended.

6.2. Applications

This analytical model only accounts for the dynamic response of

the soil behavior. For practical applications, the static loads

should also be considered. In addition to the design of caisson

foundations, this analytical model could also be applied to the fol-

lowing cases:

1) The caisson-soil interaction solution can be applied to

the design of machine foundations which are usually sub-

jected to periodic loadings. The soil can be either elas-

tic or poroelastic.

2) If the caisson is attached to the seabed directly, this

solution is still applicable. The seepage pressure could
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be separately estimated by using the methods developed by

Liu (1985) or Dias and Monkeyer (1986).

3) The preliminary design of gravity offshore structure

foundations in which a three dimensional model is required.

6.3. Future Research

This study provides the theoretical foundation for the exam-

ination of a number of other wave-soil-structure interaction pro-

blems, such as:

1) The wave-induced pore pressure, displacement, and stress

around a pipeline laid on the poroelastic seabed of finite

depth. This study of the caisson-soil interaction problem

employed a solution for a rectangular stamp contact pro-

blem. An analogous contact solution has also been devel-

oped for a cylindrical stamp on a finite elastic layer.

2) The wave-soil-caisson interaction problem for an inhomo-

geneous poroelastic soil of finite depth. To solve this

problem, the technique for a multi-layer system developed

by Yamamoto (1981) or McDougal et al. (1982) may be

applied.

3) The three-dimensional offshore structure-soil interaction

problem. In this case the water depth is often very

large. The stress induced directly by the wave becomes

minor compared with the structure-soil interaction.
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APPENDIX A

LIST OF NOTATIONS

3a
l'
Ja

2'
ja

3'
solution constants of soil displacement

3a4, j=a,b,1,2,3 in problem (a), problem (b), surge, heave,

and pitch motion of caisson

b thickness of rubble bedding layer

bi; j=1,2,3,4 solution constants

c caisson effective half-width

c' caisson half-width

cs shear wave velocity

cv coefficient of consolidation

Ac a distance from the caisson toe to a point on

the exposed mudline

d thickness of soil layer

e base of natural logarithms (2.71828)/eccen-

tricity

E Young's modulus

frj; j=1,2,3 restoring forces on the caisson in surge,

heave,and pitch of caisson motion

fsj; j=1,2,3 scattering forces on the caisson in surge,

heave, and pitch of caisson motion

fwj,. j=1,2,3 wave loads on the caisson in surge, heave,

and pitch of caisson motion

F total load on the rigid strip overlying

an elastic layer
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Frj; j=1,2,3 restoring forces for the unit surge, heave,

and pitch motion of the caisson

Fsj; j=1,2,3 amplitudes of horizontal, vertical, and

moment scattering force

Fwj; j=1,2,3 amplitudes of horizontal, vertical, and

moment of wave forces

g gravitational acceleration

G shear modulus of soil

h water depth

H incident wave height

i
-1

Im inertial moment of mass of the caisson

k wave number

k' intrinsic permeability

k
r reflection coefficient of waves

2, shear wave length

Lo deep water wave length

m mass of the caisson

m0 parameter indicating the relative stiffness

between the solid matrix and the pore fluid

M2 wave force moment on the caisson induced by

the wave pressure on the caisson base

M
3

wave force moment on the caisson induced by

the wave pressure on the caisson front face

n soil porosity of dynamic perturbation

n soil porosity
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n0 soil porosity at static equilibrium

P porewater pressure

Pa absolute porewater pressure

Pav average pressure on a rigid strip overlying

an elastic layer

PO mudline pressure amplitude of the incident

progressive wave

PI
wave pressure on the caisson front face

P
2

wave pressure at the caisson toe

Pw pressure distribution function along the

mudline

s Fourier transform parameter

Sr degree of saturation of soil

t time

T wave period

u displacement of soil in the x direction

ui displacement vectors of fluid

u
i

velocity vectors of fluid

u0 amplitude of horizontal displacement of

caisson in surge

Uc, Vc, ac displacements of the caisson in surge, heave

and pitch

U
c

, V
c

, a
c

accelerations of the caisson in surge, heave

and pitch



j
U
o

; j=a,b,1,2,3

1 o
U
f

v

Vi, Vj, Vt

vi

Vo

iV°; j=a,b,1,2,3

2
V
o

f

3 o
V
f

x

Xi, xj, xi

Y

z

a
c

horizontal displacements of soil in problem

(a), problem (b), and surge, heave, and pitch

of caisson motion

mudline displacement along the exposed sur-

face in the surge motion of the caisson

displacement of soil in the y direction

displacement vectors of solid

velocity vectors of solid

amplitude of vertical displacement of caisson

in heave

vertical displacements of the soil in problem

(a), problem (b) and surge, heave, and pitch

of the caisson motion

mudline displacement along the exposed seabed

in the heave motion of the caisson

mudline displacement along the exposed sur-

face in the pitch motion of the caisson

horizontal axis of Cartesian coordinates

system

axes of Cartesian coordinates system

vertical axis of Cartesian coordinates

system, downward positive

vertical axis of Cartesian coordinates

system, defined by z=-y-h

angular displacement of pitch motion of the

caisson
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a
c

angular acceleration of pitch motion of the

caisson

a
o

amplitude of angular displacement of pitch

motion of the caisson

a pure water compressibility

a. combined airwater compressibility

Y unit weight of water

6 thickness of the boundary layer

6ii Kronecker delta

e defined as 6/c

n free surface fluctuation of the incident

progressive wave

A the angle between the vertical and

an inclined load

X variable of characteristic equation

p coefficient of permeability

Poisson's ratio of soil

n mathematical constant (3.14159)

p
s

soil density of dynamic perturbation

p
s

soil density

p soil density at static equilibrium
so

Pw
fluid density of dynamic perturbation

Pw
fluid density

p fluid density at static equilibrium
wo

a angular frequency of wave

Tii total stress tensor



T1.
ij

Txy

TxxITyy

TI TI
xx, yy

V
2()

(upper case letter)b

(lower case letter)b

(upper case letter)°

(lower case letter)°

effective stress tensor

shear stress

total normal stresses in the x and y

directions

effective normal stresses in the x and y

direction

LaPlacian operator

dimensionless parameters in the boundary

layer

parameters in the boundary layer

dimensionless parameters in the outer region

parameters in the outer region

Fourier transform of ( )
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APPENDIX B

DISPLACEMENT BOUNDARIES ALONG THE EXPOSED MUDLINE

B.1 Contact Problem of a Rectangular Block on an Elastic Layer of

Finite Depth by Alblas and Kuipers (1969)

B.1.1 Assumptions

The following assumptions are made for a rigid rectangular block

on a thin elastic layer.

1. The thickness of the elastic layer is much smaller than the

width of the block.

2. The deformation of the elastic layer is sufficiently small

that linear elasticity theory is applicable.

3. The lower side of the layer is rigidly attached to an un-

deformable base.

4. The block has a smooth, rigid, and straight horizontal

base.

5. The block is of infinite dimension in the longitudinal

direction which allows the problem to be considered two-

dimensional (plane strain).

6. An additional assumption is required for the surge. The

friction between the mound foundation and the soil is suf-

ficient to maintain a no-slip condition such that the

caisson is welded to the soil.

B.1.2. A Rectangular Block with a Vertical Force Load

An elastic layer with a thickness d is loaded in plane strain by

a rectangular block having width 2c (Fig. B.1). The block has pene-
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trated into the layer a distance vc in the y direction. The force to

be exerted on the block of unit length is F2.

The equations governing the behavior of the elastic layer are

given by (2.2.8a) and (2.2.8b) which are classical elastostatic equa

tions.

The boundary conditions along the upper boundary (y=0) are

f2(x,0) = v(x) + g(x)

T
xy

(X,O) = 0

0

T
YY

(X,O) = f

1 p(x)

;Nlx1<-

;041x1<co

;Ixl>0

dx10

where f2(x,0) denotes the displacement in the y direction and p(x) is

the normal pressure; and

v(x) = v
c

v(x) = 0

g(x) = 0 ;Ix14c (B.1.1d)

g(x) * 0 dxl>c (B.1.le)

Along the rigid base, the nodisplacement conditions are imposed

u(x,d) = 0 041x1<m (B.1.2a)

v(x,d) = 0 041x1<- (B.1.2b)

The general solution to (2.2.8) has been given by (3.1.11) in

the form of Fourier transform. From the Fourier transforms of the

boundary conditions (B.1.la), (B.1.lb), (B.1.2a), and (B.1.2b) the

unknown coefficients in (3.1.11) are readily determined. Lengths are



denoted by upper case letters after they are nondimensionlized by

the block halfwidth c.

if
2
(s)[(1-2v)(3-4v)sh

2
(sD) s

2
D
2

I

a
1 2(1 v)[sD (3-4v)ch(sD)sh(sp)]

i(1-2v)f2(s)
a
2 2(1v)

isf
2
(s)

a3 2(1v)

isi
2
(s)[(1-2v)(3-4v)ch

2
(sD)i

a4 2(1v)[sD(3-4v)ch(sD)sh(sD)]

The normal stress condition (B.1.1c) leads to

2E r1 v DV v au'

2(1+v) 1 -2v DY 1-2v DXJp(X,O)

Scaling p(X,O) by E/[2(1v2)] yields

ilv DV v 3U1
P(X,O) = 2(1v)

L1-2v ay 1-2v DX -I

The Fourier transform of (B.1.5) takes the form

P(s,0) = 2(1v) r
1-, ay isv "

1 -2v 311 T=I; u]

(B.1 .3a)

(B.1 .3b)

(B.1 .3c)

(B.1 .3d)

(B.1.4)

(B.1.5)

(B.1.6)

. .

Substituting U and V given by (3.1.11) associated with the solution

coefficients al, a2, a3, and a4, into (B.1.6) yields

P(s,0) ,
1

f
2
(s)

in which

S(s)

(B.1.7)
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S(s)
(3-4v)sh(2sD)-2sD

(B.1.8)
sD[(3-4v)ch(2sD )+5-12v+ 8v2+2s2D2]

Since the solution is expected to have an accuracy of 0(e-cid)

(i.e. a thin elastic layer and negligible normal stress on the

exposed upper surface), equation (B.1.7) is replaced by the Wiener-

Hopf equation.

DP (s)

In which

-iV
1 cS(s)2n. s +

0

P (s)
1

f P(X+1)e
-isX

ds

,r-27 --co

and is regular in the lower-half plane.

co

G
+
(s) 1 f G(X+1) e

-isX
ds

/27 0

is regular in the upper-half plane.

(B.1.9)

(B.1 .10a)

(B.1 .10b)

By means of the decomposition [Alblas and Kuipers (1970a)],

1

S(s)

in which

.
S (s)

S (s)

(B.1.11)

sD sD -
sD

(

s* co s* co s*
sD, o f sD k 22

-)e
k -x(s)

II(1 + ---je 1 + )e H (1 - e
sk

o k=1 k=1 s*
k

S
+
(s) =

sD
sD sD

s . s .
+ sme °

, sD k r sD,
s
k

S(0)(1 11 (1 +
Tk

-)e H (1 - ---je
s
o

)
k=1 k=1 s

k

(B.1 .12a)



sD sD -
sD
-

03
D k

03
s1sD)e

s
o s

s
sD

s
k -x(s)

s
0

)
k=1

s
k

)
k=1 s

k
S (s)

e

sD sD -
sD

s* 03 s* 00 s*
sDN o sD k , sDN k

(1 - ---)e II (1 - -e n 0 + ---)e
s* s*
o k=1 k k=1 s*

k

where

1 (4k+1)7r .r 1) 0(1221h

k
)

s = log + 1(k +
2 3-4v 4) k

2k
1

(3

logk
s* = log

4k4v
272

) + ikff + 0( ----)
k
2

(B.1 .12b)

ik >> 1 (B.1.13a)

_ -
i(s*

k
- s*k ) i(s

k
- s

k
)

x(x) = isD 1 1

- -
1 sD(i- - 1--)

s* s
k=1 S S *

k
s
k

s
k

o o

Equation (B.1.9) is found to be

. . . -iv

sD P (s) S (s) = S +(s) [ + s G
+
(s)]

V27r

(B.1.13b)

(B.1.14)

Since an integrable singularity of the pressure at X=1 is

allowed, the entire function (B.1.14) must be constant, indicated as

c
o

. Because G+
(s) has to be regular at the origin, thus

c
o

iV
c
S
+
(0)

It follows that

-iV S (0)
c

G
+
(s) = [-+ 1]

ig s S +(s)

in which [Alblas and Kuipers (1970a)]

(B.1.15)

(B.1.16)
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2
1-

S (0) = A = -
1

+ 1

2(-2v v)
. (B.1.17)

S(0)

Using (B.1.10b) and (B.1.16), the displacement of the upper boundary

just outside the block appears to be

i/A(X-1)1
G(X) - V0[1-2

IrD -I

; 0 < X-1 << 1 (B.1.18)

B.1.2 A Rectangular Block with a Moment Load

Due to the antisymmetry of the problem the displacement of the

origin is zero (Fig. B.2). The angle of rotation is denoted by ac.

Equation (B.1.1d) is replaced by

v(x) = -a x
c

; 1 x 1 4 c (B.1.19)

while the remainder of (B.1.1a) through (B.1.2b) continues to

apply. Analogous to the vertical load problem, the Wiener-Hopf equa-

tion of this problem is expressed by

a
1

[

1

DP (s) =
r C i.DP_(s) G+(s)]

S(s) 17 s .2)

Applying (B.1.11) to (B.1.20) yields

2
a
c 2" 1

s DP (s)S (s) = S
+
(s)[ - ( is + 1) + s G

+
(s).1

V27r

(B.1.20)

(B.1.21)

Again, an integrable singularity of the pressure at X=1 is allowed.

On that account, the entire function defined by (B.1.21) is a poly-
.

nomial of the first degree do+ dis. The regularity of Gi. (s) at s=0

implies

d
o

and

a
c
s
+
(0)

(B.1 .22a)
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Figure B.1. The rectangular block with a vertical load.

Figure B.2. The rectangular block with a moment load.
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a
c

d [i S (0) - S'(0)]
1 fiTt

(B.1.22b)

in which S' (0) = A S' (0) and S' (0) is a function dependent on

Poisson's ratio and the thickness of the elastic layer and is given

in Table B.1 [Alblas and Kuipers (1970a)]. In this way G+(s) is

given by

a

c

-S +(0) + s[iS
+(0) - V(0)1 i 1

G
+
(s) = 1 + ---/

27r s
2

S
+
(s)

s
s
2

Substitution of (B.1.23) into (B.1.10b) yields

G(x) act]. - 2
A(x

-1) [1 + i S'(0)]} ;0 <X-1<<1

(B.1.23)

(B.1.24)

Table 8.1. Dependency of 5' (0) on Poisson's ratio [Alblas and
Kuipers (1970a)].

v 0.0 0.2 0.3 0.4

;'(0) -.176iD -.173iD -.115iD 0.118iD

B.2 Approximation of the Displacement Adjacent to the Block

Equations (B.1.18) and (B.1.24) are only valid in the region

just outside the corner of the block as shown in Figs. B.3 and B.4.

To formulate more realistic boundary conditions along the mudline,

no-displacement conditions at large X are imposed. Equations

(B.1.18) and (B.1.24) and the no-displacement condition at large X

are fitted by the following equations.

Heave

ce14X<;V2 = Vc11-th [2/7-
ADD

-1)11 (B.2.1)
JJ



Pitch

A(X-1)
V
3

= a
c
[1 th12// r1+1;1(0)111i ;14x<=

nD '

(B.2.2)

The hyperbolic function provides equations which are asymptotic to

the original equations when X-1 is small and to the undeformed mud-

line when X is large. The comparisons of (B.1.18) and (B.2.1), and

(B.1.24) and (B.2.2) are shown in Figs. B.3 and B.4.

B.3 The Displacement of the Upper Boundary for Surge

Alblas and Kuipers (1969) did not develop a solution for the

displacement of the upper boundary of a finite elastic layer to a

surge motion of a rectangular block when the block is subjected to a

horizontal load (Fig. B.5). Therefore, an approximate solution will

be developed from the solution for the heave.

Equation (B.1.18) for the heave is rewritten to provide guidance

for the surge.

G(X) = V0[1 - 2viri ] (B.3.1)

S(0)nD

In an attempt to seek a similar form for surge, it will be assumed

1

Ui(X) = Uc[1 - 2)//:(
J

-1

R(0)nD

(B.3.2)

where R(s), when s=0, is a transform function relating the shear

stress and the displacement function on the upper boundary, and is

similar to S(s) in (B.1.7).

If the horizontal stress on the block base is designated h(x,0),

then
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-0.20
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Eq. (B.1.18)

. (B.2.1)

1.00 1.20

Figure B.3.

1.00

-0.60

0.20
>

1.40 1.60 1.80 2.00

Comparison of equations (B.1.18) and (B.2.1) for heave

motion.

Eq. (B.1.24)

0.20 -

0.60

100 !

Eq. (B.2.2)

1.00 1.20 1.40
X

1.60 1.80 2.00

Figure B.4. Comparison of equations (B.1.24) and (B.2.2) for pitch
motion.
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h(x,0) = - Txyly=o

2(.1-v) (3; ::)Iy=0

Scaling h(x,0) by E/ [2(1-v2)] and length by c yields

1(3U 3V
H(X,O) = -(1 -v/LaY DX) 1Y=0

Taking the Fourier transform of (B.3.5) yields

(B.3.3)

(B.3.4)

(B.3.5)

3U
H(s) = -(1-v)(-57 + isV)Iy.0 (B.3.6)

Substituting U and V from (3.1.11) and using the coefficients given

1

by (3.3.6), in which (3.3.6a) is replaced by al=

into (B.3.6) yields

1 f,(s)

f1(s) for Y =O,

(B.3.7)

(B.3.8)

(B.3.9)

(8.3.10)

<< 1 (8.3.11)

DH(s)
R(s)

This equation has the same form as (B.1.7) and

f
1
(s) = u(s) + ui(s)

(3-4v)sh(2sD)+2sD
R(s) -

sD[(3-4v)ch(2sD)+5-12v+8v2+2s
21)2]

from which

1
1-v=

R(0)

Accordingly, by analogy (B.3.2) may be written

; 0 4 X-1
U'(X) = Uc[1-2

v/(1-v)(X-1)1
ID
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An approximation which matches (B.3.11) near the corners and is

asymptotic to the undeformed mudline at large X is

U
1
(X) = Uc[l - th (2 /(1-v)(D X-1))]

Ir

;14X<co

(B.3.12)

Thus, the upper displacement boundary is defined. The comparison of

(B.3.11) and (B.3.12) is shown in Fig. B.6.



148

+C

/7/////////////// ///////,

Figure B.S. The rectangular block with a horizontal load.
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Figure B.6. Comparison of equations (B.3.11) and (B.3.12) for surge

motion.


