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The parallel implementation of a large number of functional units is necessary for

any industrial scale microfluidic process. The concept of a ’numbering up’

strategy where a single highly optimized functional unit that has a low individual

production is replicated a large number of times to create a device that has the

necessary output. Designing a system using this strategy assumes that the final

device will have the performance characteristics of the individual unit. In reality

there will be a distribution of operating conditions clustered around the set

point, and this will impact the performance of the overall device. The main

operating condition of the microfluidic device under consideration here is the

average fluid velocity in each channel.

Most techniques that could measure the fluid velocity in each channel require an

optical path to the measurement point. For a device with a large number of



channels, it is highly unlikely that every channel will be accessible for observation.

Even if they were, it would be extremely time consuming to measure each

channel individually. Another approach would be to use an impulse response test

to infer the velocity distribution; if an adequately narrow input pulse would yield

a output pulse that would be a reasonable approximation of the system response

function. In the case at hand, the input pulse is too broad to be able to directly

infer the velocity distribution from the output pulse. A numerical deconvolution

technique was applied to the data to be able to effectively remove the error

associated with the input pulse. For sufficiently accurate impulse response data,

this method would yield an accurate estimate of the system response function.

Once an estimate of the velocity distribution is known, a method for inferring the

performance impact is needed. Two approaches were used: 1. A stochastic

simulation that directly generates possible device internal states and then

calculates the performance; and 2. A theoretical approach based on the

performance surface and and assumed velocity distribution form. Both methods

require knowledge of the performance surface of an individual channel with

respect to the local velocity. To generate this surface a finite volume was

developed in FORTRAN that directly simulates a single microchannel pair. The

stochastic model predicted a negative performance impact with increasing

velocity distribution variance. A theoretical model was developed that calculates

the difference between the real and ideal case using the covariance matrix and

Hessian as well as provides a framework for predicting the sign of the deviation in

advance.
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Chapter 1 – Introduction

The miniaturization of chemical processes and unit operations has been an ac-

tive area of research because of the process intensification that can be achieved

by engineering systems with characteristic dimensions of less than one millime-

ter. Transport processes are more efficient at a smaller length scale because the

gradients become very large. Most microfluidic devices can be grouped into two

application areas: (1) the production of bulk material and energy, (2) the produc-

tion of information. Currently, almost all microfluidic and miniaturized devices

fall into category two [16].

The problem with applying the principles of microtechnology to bulk material

processing is that one micro process unit (MPU) can only process a minuscule

amount of material. This is both the strength and the weakness of microtechnology.

A MPU can be very highly optimized to most efficiently carry out a operation,

but a large number of parallel units will be necessary to process material on the

commercial or pilot scale. Many different kinds of microdevices have been been

designed and successfully built, ergo the design and construction of a single micro

process unit is well within the means of the current state of the art. The technical

challenge now is to develop the necessary technologies to ’number up’ the micro

process units in order to attain the required volume for bulk production.

The numbering up strategy [13], for the scale up of microtechnology based
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processes are implicitly based on a fundamental assumption, that an extremely

large number of parallel units can be manufactured, and that they will perform

identically. The technical challenge of satisfying this requirement may or may not

be great, but this is likely dependent on the sensitivity of the individual process unit

to errors in manufacturing and conditions. In the case of a microfluidic device that

is based on parallel microchannels, the largest deviation in operating conditions

from channel to channel will be each channel’s velocity. The deviation in channel

velocity can be traced to three main causes. The first is a large bubble that

completely blocks the flow in one or more channels. The second is a micro-bubble

that reduces the local cross-section of the channel, and the third is variance due to

manufacturing variation. The first case can be directly detected through a large

shift in residence time, which is easily detectable with existing methods. The

second and third cases are unlikely to cause a readily detectible shift in residence

time or pressure drop, so more sensitive methods of analysis are required to detect

these variations.

In the kind of array being analyzed here the decrease in performance of the

overall device, when compared to an ideal MPU, will be caused primarily by flow

maldistribution within the target device. In this context flow maldistribution will

be taken to be a deviation from the intended operating velocity for each channel.

The measurement of flow maldistribution in microfluidic devices has been largely

conducted by optical means, usually by the measurement of the velocity of a tracer

being carried within the fluid. The problem with this is that in many microfluidic

devices, both lab and commercial scale, it is impossible gain access to the channels
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Figure 1.1: Example Flow Distribution in a Microchannel Array

for an optical measurement. An obvious answer to this would be to perform a

computational fluid dynamics simulation on the entire device to be able to quan-

tify the local operating point of each channel. While this may be feasible for a

lab scale device, present and near future computing capacity will not allow the

accurate simulation of a microfluidic device at the bulk production scale. What

is needed is a means of characterizing the flow within the device without directly

measuring the flow in each channel.

A simpler method for determining the mean residence time in the device is

from an impulse response test by injecting a tracer into the inlet of the device

and then measuring the output. From this output the mean residence time can be

calculated. In order to quantify the impact of flow maldistribution on performance,

it is necessary to have more detailed knowledge of the flow field. Much of the

information that is contained within the output of the device is lost due to the

dispersion of the tracer because of diffusion as well as the imperfect shape of the

original impulse. One of the goals of the present work was to develop a method

for removing the dispersive and input error in an attempt to recover a closer

approximation of the original exit age distribution (E curve) [14].
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Chapter 2 – Stochastic Simulation

2.1 Purpose and Methodology

A model to simulate the operational characteristics of a microchanel array will

require at least two pieces of information for each channel. The first is that the

mean velocity in each channel is known, and the second is that the performance of

a microchannel pair will be known for this possible combination of channel-channel

velocities. If both of these conditions can be satisfied, then the simulation is strait

forward. The fractional removal can then be shown as:

Fr =
Qin · Cin −Qout · Cout

Qin · Cin
(2.1)

Where Fr is the fractional removal, C is the concentration, and Q is the total

flowrate into the system. For an ideal situation where the channel velocities are

known explicitly, the expression above would be exact. For the purposes here

the velocities in each channel will not be explicitly known, only the E curve will

be known for the device. This stochastic simulation will attempt to determine

what is the most probable value of Fr. If an accurate approximation of the E

curve is known and each microchannel has a steady state velocity field, then the E

curve can be used to reconstruct the population of microchannel velocities. Since

only the population distribution will be known, then it will not be possible to
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uniquely assign a velocity to a given microchannel. It will be possible, however,

to reconstruct the extrema values for Fr. Since the extrema represent one unique

internal device state then these will also be the least likely of the possible states

and the most probable state will be bounded by these values. The set of possible

internal states would then be:

Fr ∈
∑

i uCoutAc
QinCin

(2.2)

Where the lack of superscript i denotes the non-uniqueness of the velocity and

concentration conditions for a given channel.

In order to evaluate the possible fractional removal space, it is necessary to

first have a means of approximating each microchannel’s local mean velocity. If

one were to integrate the E curve from t to t + ∆t such that it would represent

an integer population of microchannels then the average velocity in that set of

microchannels could be approximated by the first moment of that slice of the E

curve [6].

nu =

∫ t+∆t

t

nE(t)dt (2.3)

and

u ∼=
∫ t+∆t

t
nE(t)tdt∫ t+∆t

t
nE(t)dt

(2.4)

These equations allow for the calculation of the average velocity in a single

microchannel in the device. Once this method is applied to the full E curve, then
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the approximate population of channel velocities will be known.

At this point the distribution of microchannel velocities is known as well as the

surface of possible performances, the combination of which allow for the prediction

of microchannel performance based on arbitrary channel-channel velocity pairings.

This is all the information that is needed to be able to begin calculating possible

internal states.

2.2 A Priori Data

This section assumes the knowledge of two important data sets, the performance

characteristics of a single micro process unit under arbitrary operating conditions,

and the exit age distribution of the fluid. For a microfluidic device, the most

obvious means of predicting the performance is a computational fluid dynamics

simulation that was in good agreement with known operating points for a well

functioning device. This is the method used in the present study. The exit age

distribution requires a little more insight into the functioning of the particular

device under consideration.

All of the mathematics presented so far assume direct knowledge of the E curve.

In the present study the E curve is measured by impulse response experiments, so

there is a significant amount of error associated with the original measurement.

The differences between the centroid of the input pulse and the exit pulse would

ideally be the residence time in a channel, but in actuality there is a significant lag

time associated with the headers and the impulse measurement devices themselves.
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This, along with the error in the E curve due to the imperfect inlet pulse, is what

necessitates a more advanced approach to recovering an accurate representation

of the exit age distribution. The approach under consideration here applies de-

convolution methods developed for high resolution spectroscopy to remove error

from the E curve, where the sources of error can be approximated and successfully

removed.

2.3 Implementation Details

After the calculation of the E curve and the performance surface for the device is

complete, then a means of assigning internal device states for analysis is needed.

In this case each microchannel needs to be assigned a mean velocity in such a way

that the total population of microchannel velocities matches that of the E curve.

In order to satisfy these constraints, it will be necessary to be able to uniquely

identify each microchannel in a random manner. The most straightforward way

would be to randomly assign a unique random number to each channel. If the

channels are then sorted in order from smallest to largest random number, then

they can be assigned a mean velocity that fits the distribution, and in effect be

’shuffled’ in a way as to create a unique internal state for the device. Then the

overall performance metric can be calculated by summing the removal contribution

from all of the channels using Equation 3.5.

F p
r =

∑
upCp

outAci
QinCin

(2.5)
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The superscript p denotes a velocity assigned probabilistically according to a

known distribution.

If one were to evaluate the above equation for a very large sample size, then

the distribution of possible internal states can be found. This distribution should

provide both the most probable internal state, and therefore the most probable

performance, and a measure of the likely deviation from the expected performance

via the variance in the distribution.

2.4 Simulation Data

In the absence of accurate experimental data on the microchannel velocity distri-

bution, several test cases were run using the performance surface calculated for a

5.58 cm channel. In order to bring some amount of comparability to standard devi-

ations at different velocities, the index of dispersion was used to generate iso-lines.

The index of dispersion is defined as:

Id =
σ2

µ
(2.6)

Each iso-line corresponds to a constant index of dispersion. So the variance

was dependent on the velocity. This can be expressed in a convenient manner by

making the variance a fraction of velocity.

σ2 =
µ

I−1
d

(2.7)
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The data can be seen in Figure 2.1. Simulation data with a larger index of

dispersion could not be accurately obtained due to the error associated with out

of bounds interpolation of the performance surface.

Figure 2.1: Data from the stochastic method compared to the ideal case, Id =
[0.2, 0.1, 0.05]

The data points represent the average of 1000 unique internal states which

conform to the distribution function. Although individual internal states could

have performance values that are slightly higher than the ideal case (> 1%), the

averages of the data sets showed a net reduction in fractional removal with respect

to the ideal case where variance is equal to zero in most cases. Two cases showed

a greater performance, but by less than 0.01%. It is highly likely that this is due

to errors in values that are interpolated from the pointwise defined performance

surface.. The data suggests that for this particular geometry of the performance

surface the decrease in fractional removal is direcly related to the magnitude of

the variance.
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Chapter 3 – Finite Volume Simulation

3.1 Simulation Goals

The stochastic simulation described for the determination of distribution of internal

states of a device assumes an accurate knowledge of the performance characteristics

of a single micro process unit. The purpose of the simulation presented here is to

accurately predict the mass transfer performance of a single pair of microchannels

for a given set of possible flow parameters.

3.2 Model Definition

The computational domain consists of two parallel microchannels separated by a

porous membrane. The two channels are designed to operate in the counter current

flow regime, having equal and opposite magnitude and direction of flow. In practice

there will be some error associated with the flow rates into each channel, so the

mathematical model will need to be able to include any possible mean channel

velocity.

The model was broken into three effective computational domains, the two

channels and the membrane. This was done for two reasons. The first is that

this cut the memory usage for solving the fluids problem by at least one half

including the memory used in preconditioning the problem. The second is that
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Figure 3.1: Simulation Geometry, Scaled in X

since the pressure correction equation is symmetric and positive definite, precon-

ditioned conjugate gradients is extremely effective at solving this equation set. If

the membrane domain were included in the pressure correction equation, then the

coefficient matrix would possibly no longer be positive definite and therefore a

solver for general equations would be necessary [7]. Of the optimized solvers that

were available to the author, all of solvers are Krylov subspace methods, includ-

ing generalized minimum residual method (GMRES). All of the Krylov subspace

methods, with the exception of GMRES, operate on the artificially positive definite

coefficient matrix ATA and therefore the condition number of the equation set is

squared. This makes the solution of the equation set more difficult and will result

in more stringent precondtioning requirements [3]. GMRES has the disadvan-
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tage of having about 150X the memory requirements of conjugate gradients and

is in general not as effective at solving the SIMPLE pressure correction equation.

For these reasons GMRES was used to solve all scalar transport equations, while

conjugate gradients was used for the pressure correction equation.

The incompressible Navier-Stokes equations were used to model the fluid me-

chanics in each microchannel. The equation set in three dimensions [20]:

U Velocity Component

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
) =

∂p

∂x
+ µ(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) (3.1)

V Velocity Component

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
) =

∂p

∂y
+ µ(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) (3.2)

W Velocity Component

ρ(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
) =

∂p

∂z
+ µ(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
) (3.3)

The boundary conditions were symmetric for each channel. The boundary with

the porous membrane was assumed to be continuous in y across both domains.
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Boundary Condition

Inlet u = uo

Outlet ∂u
∂x

= 0

Wall u = 0

Membrane Interface vm = vc, continuity

The transport of fluid within the membrane domain was modeled with Darcy’s

law. It is assumed that vm � (um, wm) so the membrane velocity can be found by

[5]:

vm = Hp∆P (3.4)

Where vm is the y velocity in the membrane and ∆P is the pressure drop across

the membrane. Hp is the hyadraulic permeability of the membrane.

Scalar transport is solved throughout the entire computational domain and is

modeled with the convection-diffusion equation [21].

∇(ρuφ) = ∇(Γ∇φ). (3.5)

The transport of solute in the membrane uses the effective diffusivity to account

for diffusion in porous media. The effective diffusivity, Deff , is calculated from

literature values for the membrane used in this study [4].

The concentration is defined at each fluid inflow condition, and a convective

outflow condition is specified in the fluid outlet.
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Boundary Condition

Blood Inlet C = Co

Dialysate Inlet C = 0

Outlet ∂C
∂x

= 0

Wall D∇C − ρuC = 0

Membrane Interface Cm = Cc, continuity

3.3 Details of Finite Volume Implementation

For this simulation the finite volume method was chosen to solve both the computa-

tional fluid dynamics problem and the scalar transport problem primarily because

of the necessity that the method be conservative. Package finite element method

simulations were found to have errors in conservation that were larger than the

laboratory error associated with the data that it was to be compared against for

reasonably fine mesh.

Since the Reynold’s number for the microchannels and flow under considera-

tion is Re < 10, then a steady state analysis of device performance is sufficient.

The computational domains under consideration have extreme aspect ratios, so

it was thought that a pseudo-steady state (PSS) solution might be more efficient

than the steady state calculation. Initially the pressure closure scheme impli-

mented was the pressure implicit with splitting of operators (PISO) method. This

method has the advantage of being explicit in time, at the expense of solving a

second pressure correction equation. After optimizing the simulation it was found
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that a PSS solution was not needed and therefore the second pressure correction

equation was unnecessary. The semi-implicit method for pressure linked equations

(SIMPLE) approach is computationally more efficient with a judiciously chosen

under-relaxation parameter for pressure [2].

The other concern was the problem of accuracy, stability, and the memory

limitations of the linear algebra solution of very large data sets. The face interpo-

lation method used needed to be of at least second order accuracy to ensure mesh

independent results with a reasonably spaced mesh. The Quadratic Upwind In-

terpolation for Convective Kinetics (QUICK) was implemented because it is third

order accurate and easy to implement [18]. Since all high order methods are prone

to causing oscillations, or wiggles, in the solution a deferred correction strategy was

implemented to render the method unconditionally stable [9].

The implementation of the SIMPLE method involves solving three nonlinear

and one linear coupled systems of equations. Picard iteration was implemented to

deal with both the nonlinear equations and the equation coupling [7].

Solve A∗x = b for x∗

update coefficients of A→ A∗

check norm of Ax− b, terminate if below tolerance
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3.4 Mesh Dependence Analysis

Even when using a high-order scheme, it is still necessary to determine the mesh

dependence of the solution. For the ideal case using QUICK interpolation the error

should go down with the cube of the discretized quantity, ∝ O(∆ξ)3 [18]. Since the

mass transfer is heavily dependent on the correct velocity profile, it will take the

convergence of all five scalar fields for the mass transfer performance to stabilize.

For the purposes of this study, the discretization in both directions orthogonal to

the flow, ∆y and ∆z were changed and the mass transfer performance recorded.

The final fractional removal was used as the metric for grid dependence. As

the mesh is refined , it is assumed that the fractional removal would approach

some asymptotic value as ∆ξ → 0. The value for the termination of SIMPLE

iterations by some threshold value of the pressure correction equation also has an

influence on the solution. This is both due to the accuracy of the velocity profile,

and therefore the residence time, but also by the accuracy of the convective term

of the transport equation in the membrane. The termination value in this code

is determined by the relative maximum to the initial maximum of the simple

pressure correction equation. This relative pressure correction value, P ′r, should

be proportional to the error in continuity after the solution of the scalar transport

equations for velocity.

P ′r =
max(P ′n)

max(P ′0)
(3.6)

Values of the relative pressure correction from 1·10−1 to 1·10−3 were calculated
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to determine the necessary level for solution independence. In this simulation it

seems that the necessary value of P ′r is mesh dependent, but a value of 1 · 10−2 is

sufficient for solution independence with the grid at the necessary resolution for

scalar transport solution.

The necessary level of reduction of P ′r is dependent on the spacial grid refine-

ment. It was found that as the mesh was refined, the necessary level of reduction

of the pressure correction values to achieve mesh independence was reduced. This

is important because a reasonably preconditioned solver should converge in� (n)

iterations [21]. The neccessary reduction in pressure correction tolerance necessi-

tates at least O(n) computations per outer iteration. It was found that in order

to achieve the minimum accuracy necessary for this study, high grid refinement in

the direction normal to the membrane surface is needed.

Maximum Differential Element

∆x 0.1cm

∆y 2.5 · 10−4cm

∆z 1 · 10−3cm



18

Chapter 4 – Estimation of the Exit Age Distribution

An important characteristic of a flow system is the exit age distribution (E-curve).

This is the output response for the system where the impulse response is a dirace δ

function. It describes the residence time that each fluid element experiences in the

device. An accurate estimation of the exit age distribution must be known for the

population of microchannel mean velocities to be calculated. In order to measure

an approximation of the E curve in the lab, a dye is injected into the flow and the

output from the device measured. The raw data for such an experiment can be

seen below.

Figure 4.1: Example pulse response data for 0.8 ml
min
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The output curve from the device contains the information necessary to recover

the true E curve, but the measured data is not accurate enough to be used directly

[14]. The device output will include the convolution of the E curve and the original

pulse shape. For now it will be assumed that the variance of the response function

of the laminar microchannel is much smaller than the variance of the original

pulse width, V AR(Schannel) � V AR(Spulse). In this case the convolution integral

to arrive at the observed output would be [11]:

O(t) =

∫ −∞
+∞

E(t)S(t+ dτ) (4.1)

The standard notation for this integral is:

E(t) ? S(t) =

∫ −∞
+∞

E(t)S(t+ dτ) (4.2)

This is the definition of the convolution integral. Mathematical methods have

been developed to deal with the deconvolution of a response from the system

response function. These methods have been used almost exclusively in electrical

engineering and spectroscopy [12]. In spectroscopy and most electrical engineering

problems, the response function can usually be calculated so the response function

is deconvolved with the observed function to give the original impulse. In this

case, however, the observed function and the impulse function are known and the

system response function is sought.
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4.1 Deconvolution of Pulse Response Data

In order to be able to derive the system response function for a system of mi-

crochannel arrays, it is necessary to have an approximate shape of the impulse in

each experiment. When methods for deconvolution are applied to spectrometer

data, as most methods have been developed to deal with, the response function

is known beforehand. Usually the response function is calculated from quantum

mechanical peak broadening due to the excited gas in the spectrometer source. In

the case at hand the response function is what is desired, and the input is measured

and assumed to be known.

4.1.1 Ill-Posedness of the Deconvolution Problem

The discrete case of the convolution integral is the product of the input pulse and

the system response function [11].

in =
n∑
k=1

o(k)s(k − n) (4.3)

From the bounds on the sum then it is obvious that if s were used to generate a

symmetric toeplitz matrix then the matrix form of the convolution integral would

be:

in = onsnn (4.4)

It follows that by the symmetry of the convolution integral then this would be
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equivalent to

i = snonn (4.5)

This sets the basis for solving for the system response function, sn, from known

input and observed pulse shapes. The solution of this linear set of equations for

sn would then require the inversion of the toeplitz matrix onn.

sn = ino
−1
nn (4.6)

For this reason the deconvolution problem is a general inverse problem. An

inverse problem is where the inverse of matrix of experimentally measured coeffi-

cients must correlate a known to an observed variable. A general inverse problem

is of the form

d = G(m) (4.7)

Where G is a linear operator that operates on m to find d. In the case of de-

convolution the operator G = s−1
nn , hence being an inverse problem. The problems

of stability in solving this linear equation set can be readily seen by the fact that

an experimentally measured array of values are highly unlikely to be diagonally

dominant or to satisfy the Scarborough criterion.

Inverse problems are, in general, ill posed. The main theoretical limitation

(of performing) any true deconvolution is that the solution of the deconvolution

operation is not necessarily unique. A perturbation, Θ(x), whose integral over all
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space is vanishing as seen in Equation 5.7

∫ +∞

−∞
s(x− x′)Θ(x′) = 0 (4.8)

Will form a valid solution to the convolution integral with the perturbed input

function Θ(x′) + o(x′) [11].

i(x) =

∫ +∞

−∞
s(x− x′)(Θ(x′) + o(x′)) (4.9)

Another problem relating to deconvolution is that the data will necessarily fail

the Scarborough criterion; since the measured set of data points is not diagonally

dominant then the toeplitz matrix derived from that data will not be diagonally

dominant. This is true even for a judicious choice of data reordering. The max-

imum value of the outlet pulse was aligned with th first element in all of the

simulations conducted. For a an inlet peak of low enough variance it would be

possible for the Scarborough criterion to be satisfied, but if this were the case it is

unlikely that a deconvolution method would be necessary.

This posses the greatest problem along the baseline of the solution. Since the

Central Limit Theorem suggests that the random error associated with the large

number of near-zero data points should be a normal Gaussian distribution with an

expected value of zero, deconvolution methods are sensitive to error in the baseline

of a measurement [11].

As far as solving the linear system of equations, any direct inversion techniques

for the topelitz matrix s show an unacceptable amount of baseline error growth.
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This generally shows up as synthetic high-frequency peaks in the baseline of the

measurement. Mitigation of this effect by low pass filtering has been used [11], but

in this study no frequency domain filtering was necessary to stabilize the solution

process.

Iterative methods seem to have been the most successful in mitigating base-

line error growth and stabilizing the solution, although the toeplitz matrix is ill

conditioned for solution by common methods such as Gauss-Seidel or successive

over relaxation (SOR) [12]. The matrix s is also not positive definite, so Krylov

subspace methods are ineffective at iterative solution of the system of equations.

Many methods based on point iterative techniques have been suggested, with vary-

ing degrees of success, but most of these methods suffer from physically unrealizable

results, which in this case would result in negative concentration. One method,

proposed by Jannson et al, uses an approach that not only enforces physical bounds

on the solution, but also enforces conservation of area for the curves undergoing

deconvolution. This is particularly important for this study as the material balance

of the solute is an important metric of the device performance.

4.1.2 Jannson’s Method

For the purposes of this text the term deconvolution will be defined only as the

opposite of convolution. The convolution integral is defined as

i(x) =

∫ +∞

−∞
s(x+ x′)o(x)dx′. (4.10)
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Where s(x) is the system response function, o(x) is the true impulse response

function and i(x) is the observed impulse response function. The discrete vector

form of the the convolution integral is the basis for all of the subsequent numerical

deconvolution methods and can be seen below:

in = snnon. (4.11)

In the above case s would be a structurally symmetric toeplitz matrix, with

each row corresponding to the discrete values of the measured input impulse. For

the case of a perfect Gaussian input pulse the matrix would be symmetric, which

could be exploited to yield a computational savings during the deconvolution op-

eration. The purpose of deconvolving the imperfect pulse from the input is to gain

accuracy in the final approximation of the system response function. General ma-

trix inversion techniques are the obvious first choice to solve this linear system due

to the speed and maturity of the algorithms. Due to the high condition number

of the toeplitz matrix, the successfull implimentation of direct solvers for normal

equation sets is problematic at best [15]. In general, the condition number for the

coefficient matrix is at least 105.

Jannson’s method is based on the same principle as the SOR method. The

method is, in fact, identical to SOR except that the relaxation parameter κ is

calculated dynamically for each value. As can be seen below the method uses the

relaxation parameter κ to constrain the iteration to a physically bounded solution.
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ô(k+1)
n = ô(k)

n +
κ(ô

(k)
n )

[s]nn

(
in −

∑
m<n

[s]nmô
(k+1)
m −

∑
m≥n

[s]nmô
(k)
m

)
(4.12)

The relaxation paramater, κ, is a function of the previous iterate of the system

response function. As can be seen in Equation 4.13 κ . This forces the next iterate

to be within the physical bounds of the simulation, which lends stability to the

solver.

The relaxation parameter for Jannson’s method requires the beforehand knowl-

edge of the physical limitations of the solution extrema. Since the method was

developed for spectrometry, the default range of the function is between zero and

one. It is reasonable to assume that a physically realizable system response func-

tion will be everywhere positive so the first criterion should be satisfied. As far as

the maximum values is concerned, the values of s(t) could become unbounded as

long as the area of the response function is one. If Jannson’s method for calculat-

ing kappa is used, careful attention must be paid to make sure that the response

function is not clipped at one by the relaxation parameter.

κ[ôkn] = κ0

(
1− 2

∣∣∣∣ôkn − 1

2

∣∣∣∣) (4.13)

Jannson’s method was stable for the deconvolution problem at hand. The

residual tended to stagnate, but this is likely due to the error inherent in the

observed measurement.

As can be seen from the reconstructions of the observed images from the input

image and system response function, the solution was a reasonable representation
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Figure 4.2: Deconvolution Result Using Jannsons Method

of the system response function. The high-derivative region in the begining of the

input pulse has been broadened, but this corresponds to the limitations in the

time-domain deconvolution model. The rise time of the output curve should be

less than the decay time of the inlet curve. Since this is not the case for this data,

it causes a slight error in the reconstructed image.

All of the work until this point assumes that the distribution of microchannel

velocities is proportional to the system response function. This is true under

the condition that the lag time associated with the header is the same for each

microchannel. The driving motivation for the design of the header in the device

under consideration was the need to keep the total time spent in the header nearly

constant for all fluid elements. In order to use this knowledge then it also must

be assumed that the center of mass for the system response function represents
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Figure 4.3: Example Impulse Response Test With Labeled Lag Times

the average fluid velocity for all channels. In fact this is a necessary condition for

continuity to be satisfied in the device.

To be able to use the reconstructed output data, the difference in the means of

the input and the output image have to be about equal to the expected residence

time for the device. A small increase in the measured residence time caused by

the header and line volumes is unavoidable. This shift is most pronounced at the

slowest flowrate, for which the residence time is increased by about 2 seconds. Un-

fortunately, detailed drawings of the header region are unavaliable, so the expected

lag time cannot be computed. The residence time shift was trivial for most of cases

described here.

As can be seen from Figure 4.6, the system response function can now be

reclassified based on the lag time between the center of mass of the input pulse
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and the output image.

tres ∝ toutput − tinput (4.14)

Now the system response function can be redefined in time with zero being the

center of mass of the input pulse. The x-direction index can then be converted

from time to velocity by:

v =
L

t− tinput
(4.15)

The velocity distributions calculated from the data can be found in the ap-

pendix.
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Chapter 5 – Sensitivity Analysis of Model Space

The sensitivity of the system to flow maldistribution can be inferred by the shape of

the model space, S(u, v). A system whose model space is very highly dependent on

flowrate, i.e. S(u, v) has a high curvature, then the system will be more sensitive to

flow maldistribution than a system where the model space is nearly flat. There are

two extremes that illustrate this point. If the space were everywhere uniform then

the performance would be independent of flow so no amount of flow maldistribution

would be able to impact device performance. At the other extreme, if S(u, v) is a

δ function at the operating point, then any imperfection in the flow distribution

will have a catastrophic impact performance.

To be able to find some relationship between device performance and S(u, v),

then a geometrical interpretation of performance is needed. Let’s assume that

the model space is a two dimmensional continuously differentiable function at the

target operating point of the process, say a concave down parabola.

y = −x2 (5.1)

If the system were sufficiently optimized to maximize y, then it can be assumed

that the operating point is at the point of inflection of the parabola. Now if a

perturbation were to be introduced in x so that x = xs +x′ then it is obvious that
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ys ≥ −(xx + x′)2 (5.2)

That is equivalent to saying that for any perturbation in x, the performance of

the system will decrease. Conversely, for a concave up parabola, any deviation in

x will cause an increase in the effective performance. What is needed is a means

of analyzing the local shape of the performance surface to determine the system’s

local sensitivity to flow maldistribution.

For the subsequent analysis a local operating point must be defined, here de-

noted with a subscript s. That is the point at which the system with no variance

in mean channel velocity would be operating, us, vs. The performance in f(u, v)

would be defined as:

f(u, v) = CouFr(u, v)Ac (5.3)

This equation would describe the mass being removed from the system per

second. This surface is not sufficient since f(u, v) does not take into account the

conservative nature of the system. If one channel experiences a positive deviation

in velocity, then that means another channel is experiencing a negative deviation

in flow to keep the total device flowrate constant. In order to take into account

the population of microchannels at a given position (u, v), then f(u, v) needs to

be multiplied by the population density distribution P (u, v).

S(u, v) = f(u, v)P (u, v) (5.4)
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It is now necessary to be able to describe the likely distribution of microchannel

velocities. If the variations in flow distribution is due to random factors that

affect each channel, then it is reasonable to assume that the velocities will be

normally distributed around the most probable channel velocity. The bivariate

normal distribution is then [8]:

P (u, v) =
1

2πσuσv
e

1

2
√

1−ρ2
(
(u−us)2

σ2v
+

(v−vs)2

σ2v
− 2ρ(u−us)(v−vs)

σusigmav
)

(5.5)

Where σ2 is the variance with respect to the subscript, and ρ is the correlation

coefficient. In the case of an uncorrelated distribution the correlation coefficient

will be zero. The population distribution has the property:

∫∫
AcuP (u, v)dudv = Qin (5.6)

In order to be able to evaluate the system with respect to perturbed velocities,

u = us + u′ and v = vs + v′, a second order Taylor Series in two dimensions will

be used to approximate the surface [22].

f(u, v) =f(us, vs) + (u− us)
∂f(us, vs)

∂u
+ (v − vs)

∂f(us, vs)

∂v
+

1

2
[(u− us)2∂

2f(us, vs)

∂u2
+ 2(u− us)(v − vs)

∂2f(us, vs)

∂u∂v

(v − vs)2∂
2f(us, vs)

∂v2
]

(5.7)

So now the surface can be approximated in the vicinity of the operating point.
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An algebraic relation is now known for both the distribution function and the

probability distribution. The surface S(u, v) can now be calculated:

S(u, v) =Af(us, vs)e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

Ax
∂f(us, vs)

∂u
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

Ay
∂f(us, vs)

∂v
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

A

2
[x2∂

2f(us, vs)

∂u2
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

xy
∂2f(us, vs)

∂u∂v
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

y2∂
2f(us, vs)

∂v2
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
]

(5.8)

The area under the surface S(u, v) then represents the total transfer of solute

from the inlet stream at the given channel population. The volume under this

surface is the total transfer of solute for the whole device. This integral is then:

∫∫ ∞
−∞

S(x, y) = A2πσxσy
√

1− ρ2f(us, vs) +
A

2
[πσ3

xσy
√

1− ρ2
∂2f(us, vs)

∂u2
+

4πρσ2
xσ

2
y

√
1− ρ2

∂2f(us, vs)

∂u∂v
+ 2πσxσ

3
y

√
1− ρ2

∂2f(us, vs)

∂v2
]

(5.9)

The full derivation can be found in Appendix A. The integral of S over all

space becomes:



33

S = f(us, vs) +
1

2

[
σ2
u

∂2f(us, vs)

∂u2
+ 2ρσuσv

∂2f(us, vs)

∂u∂v
+ σ2

v

∂2f(us, vs)

∂v2

]
(5.10)

A perfectly functioning system would have a variance for velocity of zero. The

difference between this perfectly functioning system and the imperfect system

would then be:

D =
1

2

[
σ2
u

∂2f(us, vs)

∂u2
+ 2ρσuσv

∂2f(us, vs)

∂u∂v
+ σ2

v

∂2f(us, vs)

∂v2

]
(5.11)

The deviation function, D, can be be further simplified. The covariance matrix,

Σ, for a bivariate distribution is [22]:

Σ =

 σ2
x ρσxσy

ρσxσy σ2
y

 (5.12)

The Hessian, H, for the original Taylor expansion is also needed [17].

H =

 ∂2f(us,vs)
∂u2

∂2f(us,vs)
∂u∂v

∂2f(us,vs)
∂u∂v

∂2f(us,vs)
∂v2

 (5.13)

Assuming that f(us, vs) is continuous, then the Hessian is symmetric and the

Schur Product of the covariance matrix and the Hessian is:
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Sh = Σ ·H =

 σ2
x
∂2f(us,vs)

∂u2
ρσxσy

∂2f(us,vs)
∂u∂v

σxσy
∂2f(us,vs)
∂u∂v

σ2
v
∂2f(us,vs)

∂v2

 (5.14)

The deviation function can then be described by:

D =
1

2
Σ (H · Σ) (5.15)

5.1 Geometric Interpretation of Sensitivity

To be able to draw broad conclusions about the performance impact of flow mald-

istribution on performance, it is necessary to take a closer look at the shape of the

deviation space. The performance space is:

S(u, v) =Af(us, vs)e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

Ax
∂f(us, vs)

∂u
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

Ay
∂f(us, vs)

∂v
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

A

2
[x2∂

2f(us, vs)

∂u2
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

xy
∂2f(us, vs)

∂u∂v
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

y2∂
2f(us, vs)

∂v2
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
]

(5.16)

Now to characterize the resulting surface the Jacobian and Hessian matrices at

the operating point are needed. The Jacobian evaluated at the operating point is:
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J =

 0 0

0 0

 (5.17)

Since the first derivative is zero at the operating point, then it must be a max-

imum or minimum. The concavity of the surface can be determined by calculating

the eigenvalues of the Hessian matrix. The Hessian for this system is:

H =

 A∂2f(us,vs)
∂u2

A∂2f(us,vs)
∂u∂v

A∂2f(us,vs)
∂u∂v

A∂2f(us,vs)
∂v2

 (5.18)

The eigenvalues can be calculated by the characteristic equation [1]:

H =

∣∣∣∣∣∣∣
∂2f(us,vs)

∂u2
− λ ∂2f(us,vs)

∂u∂v

∂2f(us,vs)
∂u∂v

∂2f(us,vs)
∂v2

− λ

∣∣∣∣∣∣∣ (5.19)

So the characteristic equation becomes:

λ2 −
(
∂2f(us, vs)

∂u2
+
∂2f(us, vs)

∂v2

)
λ+(

∂2f(us, vs)

∂u2

∂2f(us, vs)

∂v2
−
(
∂2f(us, vs)

∂u∂v

))
= 0

(5.20)

Combine variables to simplify.
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det(H) =

(
∂2f(us, vs)

∂u2

∂2f(us, vs)

∂v2
−
(
∂2f(us, vs)

∂u∂v

))
(5.21)

C =

(
∂2f(us, vs)

∂u2
+
∂2f(us, vs)

∂v2

)
(5.22)

(5.23)

Which simplifies the characteristic equation to:

λ2 − Cλ+ det(H) = 0 (5.24)

Solving for eigenvalue cases [1]:

det(H) > 0 ∂2f(us,vs)
∂u2

> 0 positive definite

det(H) > 0 ∂2f(us,vs)
∂u2

< 0 negative definite

det(H) < 0 saddle point

det(H) = 0 indeterminate

(5.25)

If the determinant of the Hessian is zero then the point is degenerate and

the eigenvalues have only the trivial result. The only way that the determinant

could be negative is to have mixed signs on the on-diagonal terms. If the surface

in question is negative definite, then flow maldistribution will have a uniformly

detrimental impact on performance. If the matrix is positive definite then the flow

maldistribution will cause an increase in performance. In the case of a negative

determinant, the deviation depends on the magnitude of the on-diagonal elements
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as well as the variance in the orthogonal direction.

5.2 Comparison with Ideal Model Results

The deviation function relates the error associated with flow maldistribution with

the ideal case. A comparison between the corrected fractional removals and the

ideal case can be seen in Figure 5.1.

Figure 5.1: Fractional Removal Comparison, σ2 = 0→ v
2.5

It can be seen that as the velocity approaches zero and the system becomes

more nonlinear, the effect of flow maldistribution becomes more pronounced. A

comparison graph with bounds representing the operating range of experimental

data can be seen in Figure 5.2. For all but the most extreme cases, the deviation

would be hard to detect through comparison of experimental data with model
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results. Since the blood velocity cannot safely be less than 1 cm
s

then the extrema

are not important for the present study.

Figure 5.2: Fractional Removal Comparison Within the Operating Range

The ’wiggles’ in the corrected fractional removal iso-lines is due to instability in

the numeric differentiation of the performance surface. The surface was evaluated

using central differencing of O(h4). This decreased the numerical noise significantly

from second order central differencing. For fourth order central differencing:

f ′′(x0) =
−f2 + 16f1 − 30f0 + 16f−1 − f−2

12h2
(5.26)
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5.3 Comparison Between Stochastic and Analytic Solution

A parametric study of fractional removal with respect to blood channel velocity

and index of dispersion was conducted from both the analytical and stochastic

framework. Both approaches were based on the performance surface generated by

the finite volume simulation of a 5.58 cm channel. The data for σ2 = v
5

can be

seen in figure 5.3. The two methods predict nearly identical fractional removal

decreases for the non ideal case.

Figure 5.3: Comparison of the decrease in fractional removal with σ2 = v
5

for
Stochastic and Analytic Approaches

Figure 5.3 represents the largest variance as well as the largest deviation from

the ideal. In Figure 5.4, a simulations with a variance of v
10

is presented.

As in the previous example, there is good agreement between the analytic

and stochastic methods. Both predict a decrease in fractional removal that is
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Figure 5.4: Comparison of fracional removal reduction data for σ2 = v
10

proportional to variance. A detailed plot of this comparison can be seen in Figure

5.5.

Since both methods give comparable results, then no method is obviously su-

perior to the other. For a case where the performance surface is known to be

monotonic, then the analytic method requires far less information about the per-

formance surface than the stochastic method does. On the other hand, if the

surface has either local extrema or a distribution that is much larger than the

characteristic curvature of the surface then the analytic approach loses validity

and a stochastic simulation is necessary.
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Figure 5.5: Closup of fractional removal comparison for σ2 = v
10
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Chapter 6 – Materials and Methods

6.1 Mass Transfer Data

The mass transfer data used to compare model results in this paper are mostly

taken from Alana Tuhy’s thesis, so the interested reader should refer to [19]. A

section on the methods used to collect this data is included here is to give the

reader a basis for understanding how to compare the experimental data with the

experimental work done here.

The microchannel device for which the mass transfer results of the simulation

are compared against has the following characteristics.

Device Parameters

Channel Length (cm) 5.58

Channel Depth (µm) 100

Channel Width (µm) 200

And the membrane characteristics.

AN69 Membrane

Thickness (µm) 20

Material acetonitrile

Manufacturer Gambro
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This device and membrane combonation was used to test several solutes, not

all of which are included in this paper. Urea was chosen as the solute for this

paper since it’s diffusivities in water and the effective diffusivity in water are well

known. The exact data collection protocol can be found in [19], so the details of

device assembly and membrane preparation will be skipped. The preparation was

conducted so that there were no residual contaminants in the membrane and the

device was sealed with the lowest possible amount of force.

The experiment was conducted as follows. First, a solution of known concentra-

tion of solute was prepared using deionized water and reagent grade solute. This

solution was then pumped at constant volumetric flowrate through one side of the

device. On the opposing side an equal flowrate of deionized water was pumped

in counter flow configuration. The system was allowed to reach steady state and

then a sample was collected. The collection time and mass collected was recorded

for each sample. A commercial spectrophotometric test was used to determine the

solute concentrations in both outlet streams. In order for the data to be considered

accurate the material balance of the entire system had to be less than two percent.

6.2 Pulse Test Experiments

The experimental determination of the exit age distribution curve was carried out

by injecting a pulse of known shape into the inlet flow into the microchannel array.

By measuring the output it will be possible to infer the true E curve. Both the

inlet and the exit pulses were measured to ensure that a perceived flow irregularity
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was not in fact merely a misshapen inlet pulse. The injector [Valco] is of the type

used to for the injection systems in high pressure liquid chromatography (HPLC).

It is necessary for the analyte pulse in the inlet of the chromatographic column

be of narrow variance to be able to resolve the eluted peaks. A diagram of the

apparatus can be seen below.

Figure 6.1: Pulse Test Apparatus

As can be seen from the input pulse shown previously, the Valco injector was

very effective at generating a narrow distribution input pulse.

The detectors used were single wavelength spectrometers manufactured by

[Corwin]. The low current signal output from the detectors were amplified by

a custom amplification system [Flying Sparks Electronics]. This output was digi-

tized at a sampling rate of 1kHz by a National Instruments DAQ-mx and recorded

by NI-DAQmix. The choice of flow conditions and tracer was tailored to be as

close as possible to the conditions where the experimental data was collected for
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this device.

There are several requirements for a particular tracer to be effective. The

tracer itself, a dye in this case, needs to be relatively non-interacting with the

fluid. Any significant change in density or viscosity will lead to inaccurate results.

It is also necessary that the effective diffusivity of the tracer in the membrane be

as low as possible, to prevent tracer loss through diffusion. The tracer also must

not adsorb onto the microchannel surface in way significant enough to change the

apparent residence time. Finally, the tracer needs to be easily detectable at a

sampling frequency that is much faster than the rise time of the pulse shapes.

Blue dextran was chosen as a dye for these reasons. Since it has an extremely high

molecular weight, it’s effective diffusivity in the membrane is small. Blue dextran

is very water soluble and has an intense color whose absorbance peak is close to

the emitted wavelength of the detectors.
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Chapter 7 – Data

7.1 Finite Volume Simulation Data

An assumption inherent in the methods presented here is that the finite volume

model accurately simulates the functioning of a single microchannel. All effects

not taken into account by the model need to be trivial, otherwise error that is

due to model inaccuracy will be attributed to flow maldistribution. The best

means of validating this model is to compare the experimental results from a

single microchannel to the model results. Unfortunately the flow rates from a

single microchannel are so small that it would be difficult to accurately measure

its performance. The only convenient way to test a microchannel’s performance

is to test a device with a small enough number channels that the distribution of

channel velocities is so close to the ideal case that the flow distribution error is

negligible. The data presented here was collected from a device with 26 channels

which was directly machined and has an engineered header system to minimize

flow maldistribution.

The simulation calculated the fluid dynamics and transport of scalar through

the device for a single microchanel. The velocity field for a rectangular microchan-

nel can be seen in Figure 7.1.

The flow in the x-direction is presented in Figure 7.2. The channel with positive
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Figure 7.1: Slice plot of velocity magnitude for normalized velocity

flow is the blood channel, i.e. Co 6= 0, while the negative flow channel has an inlet

concentration of zero.

The y-direction component of flow determines the convective flux through the

membrane. The normalized y-velocity can be seen in Figure 7.3.

A slice plot of the normalized z-direction flow is shown in Figure 7.4.

The velocity in the membrane is proportional to the trans membrane pressure

drop. The velocity profile on the membrane centerline along the length of the

microchannel is shown if Figure 7.5.

The transport of scalar within the device was calculated using the convection

diffusion equation at the infinite dilution limit. The scalar field was evaluated

using the calculated velocity field.
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Figure 7.2: Slice plot of normalized x-velocity

Figure 7.3: Slice plot of y-direction velocity
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Figure 7.4: Slice plot of z-velocity

Figure 7.5: Y-Velocity in membrane along length of channel
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Figure 7.6: Concentration profile of the microchannal pair. Iso-surface and color
by concentration.

A plot of the pressure profile in the device is presented in Figure 7.7.

The fractional removal for the device was calculated based on the convective

fluxes out of the device relative to the inlet flux. The data shown below uses urea

diffusion coefficients at 30 degrees Celsius, corrected from measured values at 25C

using the Stokes-Einstein equation. The effective diffusivity in the membrane was

calculated from published membrane resistances for the AN69 membrane. The

simulation results compared to experimental data are shown in Figure 7.8.

As can be seen from the figure, there is extraordinarily good agreement between

the simulation and experimental data. This lends some credence to the concept

that the simulation results are a good representation of the actual device. Once this

relation was established, an entire surface of fractional removals were calculated

for the operational range of the microchannels. An example surface can be seen in

Figure 7.9.
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Figure 7.7: Pressure profile for 1 cm
s

and a channel length of 5.58 cm

Figure 7.8: Model Results with Experimental Data



52

Figure 7.9: Fractional removal surface for a 5.58cm channel

This surface represents the predicted fractional removal at a given operating

condition. The true performance surface of the device, however, must take into

account the total amount of material removed from the channel. The surface

corresponding to this condition is shown in Figure 7.10.

This surface allows for the calculation of the performance of a device that is

made up of a plurality of microchannels at unique operating conditions within the

operating range.

7.2 Velocity Distribution Data

One of the tools developed here is an algorithm that uses pulse test data to be able

develop an estimate of the population of microchannel velocities. To be able to
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Figure 7.10: Performance surface [S] for 5.58 cm channel. Note: z-axis units
g

s·channel

accomplish this it is necessary to have an estimate of the system response function.

The output from an impulse response test would be equal to the system response

test if the input pulse was a δ function. For the non-ideal case the output represents

the convolution of the input pulse with the system response function. Example

pulse response data can be seen in Figure 7.11.

Jannson’s point iterative method is then used to attempt to generate an esti-

mate of the system response function. The system response function for a 0.6 ml
min

pulse is shown in Figure 7.12.

Since there is an inherent amount of error present in the experimental data

the residual for the solution process would stagnate before a ’vanishing’ residual

could be reached. In order to test for convergence the observed function was
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Figure 7.11: Impulse response experimental data

Figure 7.12: System response function for 0.6 ml
min
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reconstructed using the input pulse and the system response function, and this

result was then compared to recorded output pulse. The reconstructed image

using the previous response function is shown in Figure 7.14.

Figure 7.13: Image reconstructed from system response function compared to Ob-
served image

There is obvious broadening in the reconstructed image, but overall the re-

construction is a good representation of the observed function. Once an accurate

representation of the system response function is know; it can be converted to a

velocity distribution. A representative distribution for 1 ml
min

can be seen in Figure

7.15. The ideal velocity for the system at this flowrate is about 3 seconds. This is

easily within the range of calculated values.

The velocity distribution for the set of impulse response tests conducted can be

found in Appendix C. The velocity distribution functions are generally of Gaussian
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Figure 7.14: Velocity distribution for 1 ml
min

form, with variance that is necessarily velocity dependent.

7.3 Stochastic Model Data

The stochastic model uses a known distribution of microchannel velocities to gen-

erate sets of internal device states to find the most probable performance given

that particular distribution. A parametric study was conducted, with the index of

dispersion being the parameterized variable, to be able to identify the impact of

index of dispersion on the fractional removal of the device. This parametric study

is shown in Figure 7.15.

The stochastic model predicts a slight decrease in fractional removal overall.

This tendency increases as the channel velocity is decreased and the curvature of
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Figure 7.15: Comparison between stochastic removal data and finite volume sim-
ulation

the performance surface increases.

7.4 Analytical Solution

The analytic approach for determining the deviation of the real performance from

the ideal yielded an that is linearly dependent on the variance for a constant

curvature system. The Hessian of the performance surface, which describes the

surfaces curvature, is not constant over the operating range. The Hessian is nega-

tive definite as low velocities, but the second partial derivative test fails far into the

operating range. In actuality, both the jacobian and hessian approach zero as the

velocities reach a critical magnitude and this influences the solution. A parametric
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study in dispersion number was conducted. The fractional removal comparison for

the ideal and non-ideal cases can be found in Figure 7.16.

Figure 7.16: Comparison between finite volume and non-deal flow calculateion

It is apparent from the Figure that the deviation can be quite large as the

velocity is decreased. The operating range of the device is determined by the

minimum safe blood velocity, which is about 1 cm
s

. So if the plot is rescaled to

show the allowable operating range of the device then the true susceptibility of

performance to flow distribution will be apparent.

If the data is inspected within the operating range of the device, it is apparent

that the fractional removal is fairly insensitive to flow maldistribution. One of the

initial conjectures of this work was that the device that was being used as a model

was close enough to the ideal case that the simulation results could be directly

compared with the experimental data. This appears to be a valid assumption not
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Figure 7.17: Comparison of ideal and non-ideal simulation results within the op-
erating range of the test device

because the flow distribution is close to ideal, but because the performance surface

has too little curvature to allow large perturbations in fractional removal.

7.5 Comparison of Stochastic and Continuum Methods

Parametric studies were conduction with both the analytic and stochastic methods

to determine the impact of flow maldistribution on device performance. Since the

studies were done with identical indexes of dispersion and zero and uncorrelated

data, they should yield similar reductions in fractional removal with respect to

velocity and index of dispersion. A comparison of the two methods for an index

of dispersion of 0.2 with the finite volume simulation is shown in Figure 7.18.
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Figure 7.18: Comparison of stochastic and analytic results at an index of dispersion
of 0.2 to finite volume simulation

The two methods agree quite well in the operating range, limiting to nearly

identical values for 1 cm
s

. A comparison of the two methods at a index of dispersion

of 0.1 can be found in Figure 7.19.

Again, the two methods are in agreement on the reduction in fractional removal.

The values are almost identical for the low end of the operating range, which is

the range susceptible to flow maldistribution.

7.6 Comparison Between Simulations and Experimental Data

The models presented here are in general agreement on the reduction of fractional

removal at a given distribution of flowrates. In Figure 7.20 a comparison between
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Figure 7.19: Comparison of stochastic and analytic models at a index of dispersion
of 0.1

the simulation results and experimental data is shown.

Even with the decrease in fractional removal predicted by both methods the

simulation data is still slightly higher than the experimental data. The velocities

for which velocity populations could be measured are in the flow regime where the

decrease predicted by the models is much below experimental error.
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Figure 7.20: Comparison between experimental data and model results
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Chapter 8 – Conclusions

This study attempted to find a means of calculating the impact of flow maldis-

tribution on the performance of a microfluidic array. It is necessary to have both

an approximation of the performance characteristics of the array as well as the

velocity distribution of the channels in the array. A finite volume simulation was

developed to be able to predictively generate the performance surface for the de-

vice. The simulation results compared favorably to experimental data. To be able

to generate the vast amount of data needed for the stochastic simulation in a rea-

sonable amount of time it was necessary to write the simulation in FORTRAN

using Intel’s Math Kernel Libraries optimized linear solvers.

A deconolution method was implemented attempted in order to recover the

system response function and then derive the velocity distribution. The deconvo-

lution algorithm was successful in converging to a reasonable approximation to the

system response function. The velocity distribution was then calculated using the

computed system response function. This distribution was then used to generate

fractional removal data using both the stochastic and analytic models. Parametric

studies using index of dispersion, Id, as the parameterized variable to be able to

generalize the ipact of velocity distribution on performance.

The stochastic simulation predicted an overall decrease in fractional removal

as the variance increased. The decrease is highly correlated with the Hessian
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of the performance curve in the vicinity of the expected value of the velocity

distribution. Regions of high second order curvature were more susceptible to flow

maldistribution than are regions of low or zero curvature. The simulation results

were in good agreement with experimental data, but for this system extremely

channel velocities would be necessary to be able to benchmark the method.

If the distribution of microchannel velocities is simplified to the normal bivari-

ate case, then an analytic approach to characterizing the performance impact of

flow maldistribution can be taken. By using a second order Taylor expansion to

approximate the performance surface in the vicinity of the operating point, it is

possible to get an analytic representation of the deviation surface. The integral of

this surface gives the absolute deviation of the system with respect to the ideal.

This representation led to the generation of two useful relations. The first is that

the ability to determine the sign of D by the eigenvalues of the Hessian of Taylor

series, and the second is an equation relating D to the Hessian and the variance

of the velocity distribution. To compare this model to experimental data, the

variances for the experimentally determined distribution were evaluated using the

Hessian from the finite volume simulation. This data agreed perfectly with the

stochastic model, and slightly overpredicted the actual fractional removal.

D =
1

2

[
σ2
u

∂2f(us, vs)

∂u2
+ 2σuσv

∂2f(us, vs)

∂u∂v
+ σ2

v

∂2f(us, vs)

∂v2

]
(8.1)
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det(H) > 0 ∂2f(us,vs)
∂u2

> 0 D > 0

det(H) > 0 ∂2f(us,vs)
∂u2

< 0 D < 0

det(H) < 0 saddle point

det(H) = 0 indeterminant

(8.2)
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Appendix A – Nomenclature

Symbol Units Description

A General n by n coefficient matrix

Ac cm2 Cross sectional area

C g
cm3 Concentration

D cm2

s
Diffusivity of solute in solvent

Deff
cm2

s
Effective diffusivity of solute in membrane

f(u, v) g
s·channel Performance surface of a microchannel at point (u,v)

Fr dimensionless Fractional removal of solute from the device

Hp
Q

∆P
Hydraulic Permeability of the membrane

H Hessian matrix

Id dimensionless Index of dispersion

i(t) absorbance Input pulse

n dimensionless Channel Index

o(t) absorbance Observed pulse response output image

P (u, v) dimensionless Distribution of microchannel velocities

P Pa Pressure

P ′ Pa Pressure correction term

(A.1)
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Symbol Units Description

Q ml
min

Flow rate

S(u, v) g
s·channel The performance surface of the device

s(t) absorbance System response function

t s Time

u cm
s

mean velocity

u cm
s

x-velocity component

us
cm
s

Operating condition set point

v cm
s

y-velocity component

vs
cm
s

Operating condition set point

w cm
s

z-velocity component

Θ Error whose integral is zero

ρ correlation coefficient

σi Standard deviation in the i-th direction

σ2
i Variance in the ith direction

Σ Covariance matrix

Σ sum

τ s dummy variable for convolution integral

µ Expected value

D g
s

Devation function for the flow maldistributed case

S g
s

Overall Device Performance

(A.2)



69

Appendix B – Derivation of Deviation Function

To start the derivation it is necessary to be able to algebraically represent each

surface. If the device under consideration can be assumed to have a large num-

ber of channels and no systemic manufacturing errors, then a bivariate normal

distribution should give a reasonable representation of the surface. For the per-

formance surface the case is not as straightforward since it will likely be either

generated numerically from a simulation or experimentally determined. In either

case it is unlikely that a global performance surface will be known, so it must be

approximated using what is known about the local performance characteristics. In

this study a multivariate Taylor series expansion will be used to approximate the

surface in the vicinity of the operating point.

Start with the bivariate normal distribution [8].

P (u, v) =
1

2πσuσv
e

1

2
√

1−ρ2
(
(u−us)2

σ2v
+

(v−vs)2

σ2v
− 2ρ(u−us)(v−vs)

σusigmav
)

(B.1)

To simplify the following variable change can be used [10].

x = u− us

y = v − vs

A =
1

2πσuσv

(B.2)
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The distribution function then simplifies to:

P (x, y) = Ae
1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
(B.3)

It should be noted that the variable substitution only moves the expected value

of the distribution to (0, 0), but does not alter the distribution itself. Therefore

the variances should be equivalent.

σx = σu

σy = σv

(B.4)

This allows the description of the distribution with two degrees of freedom. Now

to approximate the performance space a generalized bivariate Taylor expansion is

[22]:

f(u, v) =f(us, vs) + (u− us)
∂f(us, vs)

∂u
+ (v − vs)

∂f(us, vs)

∂v
+

1

2
[(u− us)2∂

2f(us, vs)

∂u2
+ 2(u− us)(v − vs)

∂2f(us, vs)

∂u∂v

(v − vs)2∂
2f(us, vs)

∂v2
]

(B.5)

Now this expression can undergo the simplifying variable substitution [10].
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f(x, y) =f(us, vs) + x
∂f(us, vs)

∂u
+ y

∂f(us, vs)

∂v
+

1

2
[x2∂

2f(us, vs)

∂u2
+

2xy
∂2f(us, vs)

∂x∂v
+ y2∂

2f(us, vs)

∂v2
]

(B.6)

So then the performance distribution will then be the product of the microchan-

nel flow distribution and the performance surface.

P (x, y)f(x, y) =Af(us, vs)e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

Ax
∂f(us, vs)

∂u
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

Ay
∂f(us, vs)

∂v
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

A

2
[x2∂

2f(us, vs)

∂u2
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

xy
∂2f(us, vs)

∂u∂v
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
+

y2∂
2f(us, vs)

∂v2
e
− 1

2
√

1−ρ2
( x

2

σx
+ y2

σy
− 2ρxy
σxσy

)
]

(B.7)

Now Equation B.7 needs to be integrated over all space. This will allow the

evaluation of integrals involving e−x
2

without the use of the error function. The

following identities are used for the evaluation of the integral [22].
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∫ ∞
−∞

e
x2

σ2x =
√
πσx (B.8)∫ ∞

−∞
xe

x2

σ2x = 0 (B.9)∫ ∞
−∞

x2e
x2

σ2x =

√
πσ3

x

2
(B.10)

(B.11)

The integral of each term in Equation B.7 then are:

∫∫ ∞
−∞

e
− 1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
= 2πσxσy

√
1− ρ2 (B.12)∫∫ ∞

−∞
xe
− 1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
= 0 (B.13)∫∫ ∞

−∞
ye
− 1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
= 0 (B.14)∫∫ ∞

−∞
xye

− 1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
= 2πρσ2

xσ
2
y

√
1− ρ2 (B.15)∫∫ ∞

−∞
x2e
− 1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
= 2πσ3

xσy
√

1− ρ2 (B.16)∫∫ ∞
−∞

y2e
− 1

2
√

1−ρ2
( x

2

σ2x
+ y2

σ2y
− 2ρxy
σxσy

)
= 2πσxσ

3
y

√
1− ρ2 (B.17)

Subsituting these values into the original integral expression. Now call the

surface distribution S(x, y).

S(x, y) = P (x, y)f(u, v) (B.18)
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∫∫ ∞
−∞

S(x, y) = A2πσxσy
√

1− ρ2f(us, vs) +
A

2
[πσ3

xσy
√

1− ρ2
∂2f(us, vs)

∂u2
+

4πρσ2
xσ

2
y

√
1− ρ2

∂2f(us, vs)

∂u∂v
+ 2πσxσ

3
y

√
1− ρ2

∂2f(us, vs)

∂v2
]

(B.19)

And the integrated area is:

∫∫ ∞
−∞

S(x, y)dxdy = S (B.20)

Now return substitution variable A to native variables.

∫∫ ∞
−∞

S(x, y) = f(us, vs) +
1

2
[σ2
x

∂2f(us, vs)

∂u2
+ 2ρσxσy

∂2f(us, vs)

∂u∂v
+ σ2

y

∂2f(us, vs)

∂v2
]

(B.21)

In order to analyze this surface it is necessary to be able to compare it against

a case where the flow distribution is perfect. Taking the limit of equation XXX as

σ2
x and σ2

y goes to zero.

lim
σx→0

(
lim
σy→0

f(us, vs) +
1

2
[σ2
x

∂2f(us, vs)

∂u2
+ 2ρσxσy

∂2f(us, vs)

∂u∂v
+ σ2

y

∂2f(us, vs)

∂v2
]

)
(B.22)

Which obviously becomes:
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f(us, vs) (B.23)

So the deviation between the ideal and nonideal case would then be:

D = S− lim
(σx,σy)→0

(S) (B.24)

D = f(us, vs)+
1

2
[σ2
x

∂2f(us, vs)

∂u2
+2σxσy

∂2f(us, vs)

∂u∂v
σ2
y

∂2f(us, vs)

∂v2
−f(us, vs) (B.25)

D =
1

2

[
σ2
x

∂2f(us, vs)

∂u2
+ 2σxσy

∂2f(us, vs)

∂u∂v
+ σ2

y

∂2f(us, vs)

∂v2

]
(B.26)
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Appendix C – Velocity Distribution Data

Figure C.1: Velocity Distribution for 0.4 ml
min

Phase II Dialyzer [5.58cm]
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Figure C.2: Velocity Distribution for 0.6 ml
min

Phase II Dialyzer [5.58cm]

Figure C.3: Velocity Distribution for 1 ml
min

Phase II Dialyzer [5.58 cm]
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