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Robust stability problem for nominally linear systems

with nonlinear, time-variant structured uncertainties is

considered. The systems are in the form

X=Anx+E piAix .
i -1

The Lyapunov direct method is utilized to determine the

robustness bounds for nonlinear, time-variant uncertainies

pi. Determination of the robustness bounds consists of two

principal steps: (i) generation of a Lyapunov function and

(ii) determination of the bounds based on the generated

Lyapunov function. Presently in robustness investigations,

a Lyapunov function is generated by inserting the nominal

matrix to the Lyapunov equation and setting Q as identity

matrix. The objective of this study is to utilize struc-

tural features of the uncertainties to develop a recursive
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algorithm for the generation of the globally optimal qua-

dratic Lyapunov function. The proposed method is seemingly

an improvement with respect to those reported in recent

literature in three senses: i) ease of application, given

an interactive program which requires only system matrices

as inputs; ii) provision of improved estimates of the

robustness bounds; and iii) extendability of the procedure

to the design of robust controllers. The algorithm and the

program prepared (in MATLAB) are presented. Several exam-

ples are considered for purposes of the comparison of

robustness bounds estimates. Examples are demonstrated to

show the superiority of the robustness bounds estimated by

the proposed method over those obtained by small gain

theorem. In a number of cases, the estimated robustness

bounds are proven to be the exact robustness bounds.
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Robustness of Uncertain Systems:

Globally Optimal Lyapunov Function

CHAPTER 1

INTRODUCTION

The design and analysis of a controller is based on

the mathematical model of the physical plant directed for

control. This model is obtained following simplification

such as lumped parameter approximations, simplified

relations, linearizations about operating points, and

neglecting the instrumentation uncertainties and changes in

the system component properties due to time and envi-

ronmental influences. Most often the nominal model will

end in the form of a linear autonomous system in which

uncertainties are modeled as perturbation elements. The

perturbation elements can exist in form of structured or

unstructured perturbations [1].

In controller design, these perturbations can be

accommodated by the use of either adaptive or robust con-

trollers. If the bounds of the perturbations are known,

robust controllers are often utilized for reason of the

practical advantages they offer. These are the basic facts

which have motivated the design of robust controllers for

multivariable linear systems [2]-[4].
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The fundamental requirement for the design of robust

controllers is the ability to analyze system stability and

robustness. Stability analysis is concerned with the state

trajectories for perturbations of an initial condition from

its equilibrium point or reference trajectories. The ana-

lysis of robustness is concerned with the determination of

the bounds for perturbation elements in which the system

stays stable. These bounds are referred as robustness

bounds.

There are two basic approaches to the analysis of

system robustness, including the time domain approach,

based upon state equations, and the frequency domain

approach, based upon system transfer functions [5]. The

most important developments in robust stability analysis

and control have been achieved in H2 and H. theories within

the frequency domain, where the nonsigularity of a matrix

is the criterion developing the robustness bounds. Barett

[6] presented a useful summary and comparison of the

different robustness tests that are available with respect

to their conservatism [7]. The underlying concept for

these theories was explored by Zames [8], who introduced

the concept of the "small gain principle,". This method is

concerned only with nominally linear systems.

For the time domain problem in robust design, the

application of the Lyapunov direct method has been widely

investigated. This interest has been prompted by the fact

that this approach provides ready accommodation for both
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nonlinear and time-varying systems. The drawback in the

application of these methods is that their estimates of the

robustness bounds are generally conservative, and conserva-

tive estimates often result in controller design

distinguished by poor performance. Thus, the development

of procedures for the improvement of estimation is highly

desirable.

The analysis of the robust stability based upon the

application of Lyapunov theorems consists of two principal

steps: (i) generation of a Lyapunov function, and (ii)

determination of the robustness bounds based on the

generated Lyapunov function.

Mohler [9] and Schultz [10] have reviewed a variety of

techniques to generate the Lyapunov function, including the

Aizerman method, the variable gradient method, and the

Zubov method. Based upon the Lyapunov direct method,

Siljak [11] and Patel et al. [12] established procedures

for the estimation of the robustness bounds. Lee [13],

Yedavalli [14], Yedavalli and Liang [15], and Zhou and

Khargonekar [16] further contributed and improved the

robustness bounds of the perturbation elements. Siljak [4]

has demonstrated that the estimation of the robustness

bounds of perturbation is strongly dependent upon the

selection of the system state space. Matrosov [17] and

Bellman [18] introduced the concept of the vector Lyapunov

functions. Further, Olas and Ahmadkhanlou [19] proposed

and presented the algorithm for generation of piecewise
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Lyapunov functions. Chen and Chen [20] used an optimiza-

tion technique to formulate the necessary and sufficient

conditions for quadratic stabilizability and found better

gains for linear state feedback than those previously

reported.

Based upon the small gain theorem, Qiu and Davison [5]

obtained estimates of robustness bounds for the

perturbation elements. Subsequently, Peterson [21]

demonstrated that the conditions of small gain theorems for

unstructured perturbations are necessary and sufficient for

the existence of the Lyapunov function. Becker and Grimm

[22] have shown that the application of the small gain

theorem to systems with unstructured perturbations provides

robustness bounds which are in every case greater or equal

than those reported for the state transformations by

Yedavalli and Liang [15].

It should be noted that in the case of structured

perturbations, the conservatism of the estimates was

principally caused by the failure to consider the structur-

al features of the uncertainties when generating a Lyapunov

function. The Lyapunov function was obtained by inserting

the nominal matrix to the Lyapunov equation and setting Q

as identity matrix.

For the current investigation, the properties of qua-

dratic functions, system linearity, and the structure of

perturbations were used to prove a theorem which has en-

abled the development of a recursive algorithm for the
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generation of a globally optimal Lyapunov function. The

program developed requires only a single solution for the

Lyapunov equation, followed by the recursive determination

of the eigenvectors and eigenvalues for a symmetric matrix.

The robustness bounds obtained by the development of these

functions cannot be contained and extended by any other

quadratic functions. Further improvement may be possible

by consideration of piecewise Lyapunov functions [19].

In the mathematical models, the perturbations elements

are modeled for different mathematical or physical causes.

For example, one perturbation element may have been modeled

due to a change in weight, whereas another may have been

modeled due to the imprecision of its sensors. In each

case, these perturbation elements were not generally with

the same range of magnitude, and one magnitude range may

have been significantly greater than others. Thus, to

develop the algorithm, the desirable ratios for the esti-

mated robustness bounds were selected. The proposed method

provides three distinct advantages: 1) Ease of applica-

tion, given an interactive program requiring only system

matrices as inputs (i.e., for this study, both the algor-

ithm and the MATLAB program are considered); 2) provision

of improved means to estimate the robustness bounds; and 3)

the extendibility of this procedure to the design of robust

controllers. Several examples are considered to demon-

strate the advantages of this method for the estimation of

robustness bounds with respect to previously reported
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methods. Examples are demonstrated to show superiority of

the robustness bounds estimated by the proposed method over

those obtained by small gain theorem. In number of cases,

the estimated robustness bounds are proven to be the exact

robustness bounds.

Presentation of the results of this investigation is

organized as follows. Chapter 2 presents a discussion of

the issues of stability, and robustness is considered in

Chapter 3. The program developed for the optimization of

the Lyapunov function is presented in Chapter 4, followed

by consideration of possible applications for the recom-

mended approach in Chapter 5. Conclusions and recommen-

dations are included in Chapter 6.



CHAPTER 2

STABILITY ANALYSIS

2.1 Introduction

7

Stability of the system is the fundamental requirement

in design of control systems. In general, issues of

stability are concerned with the state trajectory, when the

system is perturbed from the equilibrium point or a refer-

ence trajectory. There are a number of different

definitions of stability, and the underlying concept which

is common to each may be described as follows: Employ some

measure called the norm, which characterizes the state at

any desired time; let the state whose stability is under

investigation be perturbed, then define measures for per-

turbation as well as for the norm. From this concept, it

follows that stability may be defined as follows: If the

perturbation does not exceed the defined measure, then the

unperturbed state is stable when the change in the norm

caused by the perturbation does not exceed its established

measure. The specific definition of Lyapunov stability for

an equilibrium point is given in section 2.3.

From engineering point of view, these analyses are

important because of state perturbations caused by the

existence of such external disturbances as noise and envi-
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ronmental changes around the equilibrium points [23]. In

nonlinear time-variant systems, one of the tasks in sta-

bility analysis is to determine the region of stability.

So long as the system is operated within this region, the

stability of the system is assured.

2.2 Stability Analysis for Time-Variant Systems

Stability analysis may be conducted in either the time

or frequency domains. If the system is linear time-

invariant, stability analysis may by established by the

Routh-Hurwits or Nyquist criteria. Unfortunately, methods

that have proved to be so useful for the estimation of

stability for autonomous linear systems cannot be applied

directly to nonlinear time-variant cases. The following

examples provided by DeCarlo in [24] demonstrate this fact:

Example 1. Consider the time-varying linear system

= A(t) x(t)

with

A( t)
1-9cos2 (6 t) + 12sin (6 t) cos (6 t) 12cos2 (6 t) + 9sin (6 t) cos (6 t)

=
-12sin2 (6 + 9sin(6 t) cos (6 t) -1-9sin2 (6 t) -12sin (6 t) cos (6 t)

where the eigenvalues of A(t) are -1 and -10 for all t.

However the state transition matrix is

[cos (6 t) + 2sin (6 t) 2cos (6 t) - sin (6 t) 1 e2t 2e2t
(t, 0) = 0.2 2cos (6 t) sin (6 t) -cos (6 t) - 2sin(6 t) J 2e-13c -13-13t

For an initial condition (e.g., x(0) = (1,0)T), the term e2t

causes an unbounded zero-input response. Thus, the
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location of the eigenvalues of the matrix A in the left-

half plane do not imply stability for time-variant cases.

Example 2. Consider the time-varying linear system

with

JC = A(t) x(t)

A ( t) =
-5.5 + 7 . 5sin (12 t) 7 .5cos (12 t)

7 . 5cos (12 t) -5 .5-7 .5sin (12 t)

where the eigenvalues of A(t) are 2 and -13 for all t.

However the state transition matrix is

(t,0) cos (6 t) + 3sin (6 t) cos (6 t) - 3sin(6 t)
3cos(6t) sin(6t) -3cos(6t) sin(6t)

0.5e" (1/6)e"
0.5e-1" - 3Lice-iot

Thus, the presence of the positive eigenvalue at 2 cannot

imply instability. In the following section, the various

concepts of Lyapunov stability are examined.

2.3 Stability in the Sense of Lyapunov

If the solutions for the state equations are avail-

able, it is easy to determine stability for a particular

case. However, solving the nonlinear differential equa-

tions is frequently a difficult or impossible task. The

objective of Lyapunov stability theorems is to analyze

system stability in the absence of the knowledge of

solutions to the system differential equations. In theory,

an isolated (i.e., zero-input) system remains in the equi-

librium state if that is where it initially started. In

this sense, Lyapunov stability is concerned with the
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behavior of the system trajectories when the initial state

is near the equilibrium point. As mentioned earlier, the

results of this analysis are important because of the exis-

tence of such external disturbances as noise and environ-

mental influences. Initially, Lyapunov stability theorems

have been established for perturbations of initial

condition near an equilibrium point. However, as explained

in following chapter on issues of robustness, these

theorems can be extended and thus applied in the case of

system parameter perturbations.

The underlying concept for the Lyapunov theorems is as

follows: Consider a system with no external forces acting

upon it. If 0 is one of the system equilibrium points, it

may be assumed that it is possible to define a function

which represents the total energy of the system, such that

it is equal to zero at the point of origin and positive

elsewhere; if the system dynamics are such that the energy

of the system is nonincreasing over time, dependent upon

the nature of the energy function, the stability of

equilibrium point 0 may be implied. The virtue of the

Lyapunov theorem has been to employ this concept in a

mathematical form [23].

2.3.1 Basic Definitions

Consider the vector differential equation

X= f(x,t). (2-1)
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Then, assume that 0 is an equilibrium point of the system

equation (2-1), which may be done since the equilibrium

point can always be transferred by a simple transformation

of the states. As described by Vidyasagar [25], the basic

definitions of stability for the equilibrium points are as

follows:

Definition 1: The equilibrium point 0 at time to is

said to be stable if, for each e > 0, there

exists a b(to,e)>O, such that

I x(to)I<o(to,e) = I x(t)I <e , Niftto.

It is said to be uniformly stable over [to,co) if,

for each e>0, there exists b(e)>0 such that

x(ti)I <6(e) , tIto 1 x(t)1 <e ,

Definition 2: The equilibrium point 0 at time to is

unstable if it is not stable at to.

Definition 3: The equilibrium point 0 at time to is

asymptotically stable at to if (1) it is stable

at time to, and (2) there exists a number o1 (to)>0

such that

I x(to)1<51(to) = I x(t)I --> 0 , as t - - >x.

It is uniformly asymptotically stable over [to,c0)

if (1) it is uniformly stable over [to,00), and

(2) there exists a number k>0 such that

I x(t1)1<ö, tito= I x(t)I -->0 , as t - - >oo.

Definition 4: The equilibrium point 0 at time to is

globally asymptotically stable if it is asymp-

totically stable for all initial states (i.e.,
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x(t) -> 0 as t -> 00 regardless of x(to)); thus,

if 0 is a globally asymptotically stable equi-

librium point at time to for a given system, then

it should be the only equilibrium point at time

to.

2.3.2 Lyapunov Stability Theorems

The basic stability theorems for the Lyapunov direct

method, as formulated by Vidyasagar [25], are as follows.

Let

= f (x, t) , where f(0, t) = 0 V t

describe a given system equation. It follows that:

Theorem 2.1: The equilibrium point 0 at time to is

stable if there exists a continuously

differentiable local positive definite function

(l.p.d.f.) V(x,t) such that

1:7(x,t)s0, V tats V x E Br for some ball Br.

If V(x,t) is a decrescent locally positive definite func-

tion in Theorem 2.1, the equilibrium point 0 at time to is

said to be uniformly stable over [to,m).

Theorem 2.2: The equilibrium point 0 at time to for

the system is asymptotically stable over the

interval [to,m] if there exists a continuously

differentiable l.p.d.f. V(x,t) such that - V(x,t)

is a l.p.d.f.
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Theorem 2.3: The equilibrium point 0 at time to is

globally asymptotically stable if there exists a

continuously differentiable decrescent p.d.f.

V(x,t) such that

11(x,t)s-G(1 xi ) V tt., V x E Ril 1

where G is a function belonging to class K.

Theorem 2.4: The equilibrium point 0 at time to is

unstable if there exists a continuously differen-

tiable decrescent function V(x,t) such that (i)

V(x,t) is an l.p.d.f., and (ii) V(0,t)=0, and

there exists points x arbitrary close to 0 such

that V(x,t.)>0.

Clearly, the advantage of the Lyapunov stability theo-

rems is that they do not require solution of the state equa-

tions; in contrast, they are disadvantaged in that only

sufficient condition are provided. If a particular

function fails to satisfy all of the conditions, then no

conclusions can be drawn and another function candidate

should be attempted. For this reason, a function is refer-

red to as a Lyapunov candidate when subject to testing

under the conditions described above; if all of the condi-

tions for one of the theorems can be satisfied, then it may

be termed a Lyapunov function [23]. Thus, the principal

drawback of the Lyapunov theory is that there is no general

procedure for generating a Lyapunov function. However,

though it is difficult to find a Lyapunov function for a

given system, the choice of a Lyapunov function is rela-
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tively easy in the case of linear or weakly nonlinear sys-

tems.

The objective of the current investigation is to pre-

sent a simple algorithm for the generation of the globally

optimal Lyapunov function for nominally linear autonomous

systems with nonlinear, time-varying structured

perturbations.

2.4 Linear Autonomous Systems

Consider the following linear autonomous system

k = A x.

Usually the selected Lyapunov function is in the quadratic

form

V(x) = xT Sx, (2-2)

where S is a positive definite symmetric matrix. The class

of quadratic Lyapunov functions is often used as a part of

the Lyapunov function vector, or as the function itself.

This results from the properties of quadratic functions and

the fact that general energy functions are of the form of

quadratic functions, such as "Kinetic Energy = 1/2 mv2."

The derivative of V(x) along the solution of the system is

= XTSx + xTSX = (Ax) TSx + xTSAx

= xTATSx + xTSAx

= xT( ATS + SA )x.



Consider the equation

ATS+SA=-Q.

15

(2-3)

Theorem 2.5: Equation (2-3) provides a unique solu-

tion for S corresponding to every Q E R' if and

only if

Xi + Xi * 0 , V i,j

where X1,...,X, are the eigenvalues of A and *

denotes a complex conjugate.

Theorem 2.6: The system is asymptotically stable if

and only if for every positive definite matrix Q

there exists a unique solution for S and this

solution is positive definite.

The proofs for Theorems 2.5 and 2.6 may be found,

respectively, in Chen [26] and Vidyasagar [25]. It is com-

mon to select Q as a positive identity matrix, I, and to

solve for S. The system is asymptotically stable if and

only if the solution of S is unique and is positive

definite. Therefore, it is evident that the conditions for

the Lyapunov theorem 2.6 are necessary and sufficient in

the linear autonomous case [9]. This conclusion plays a

key role in the generation of the Lyapunov function and the

design of robust controllers.

2.5 Lyapunov Function Generation

Of the different techniques for the generation of the

Lyapunov function, the most important factor is to deter-
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mine a function which provides the least conservative re-

sults. In the case of stability analysis, conservatism of

results is referred to the estimated size of regions of

stability for state perturbations around equilibrium points

or reference trajectories. However, for the analysis of

robust stability, the conservatism refers to the estimated

size of the robustness bounds. To determine less

conservative estimates, the nominal part of the system as

well as the structure of the perturbation elements must be

considered when generating the Lyapunov functions. Mohler

[9] and Schultz [10] have demonstrated a variety of tech-

niques for the generation of a Lyapunov function, two of

which are considered in the following sections.

2.5.1 The Aizerman Method

In the Aizerman method, the system is first linearized

at 0, the linear part of system is then used to generate

the Lyapunov function. For small perturbations, the linear

part is dominant. Hence, the generated Lyapunov function

can then be used to determine the range of the perturba-

tions so that Q remains positive definite. Since the struc-

ture of the perturbation elements is not considered for

this method, the results generated are generally conserva-

tive. Despite of this, in the case of linear autonomous

systems with unstructured as well as structured pertur-

bations, this method has been given considerable practice.
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2.5.2 Variable-Gradient Method

In 1962, Schultz [10] and Schultz and Gibson [27]

illustrated this method for the construction of nonlinear

autonomous system Lyapunov functions. The methodological

concept is to start from a general variable gradient func-

tion. A positive definite Lyapunov function can then be

determined from the constraints on the V and the n(n-1)/2

generalized curl equations. In autonomous nonlinear sys-

tems, V is equal to

dV aVV = = f (x) = V TV f (x) .dt at

Substituting x for f(x), V(x) can be obtained from

V = JVTV(a) da .

The complete procedure is as follows:

1) Assume VV to be a column vector whose coeffici-

ents are functions of the states such that

VV =D(x) x, where D(x) is an nxn matrix whose

elements are

D" (x) = a"k + a, (x) ,

and where a"k is the constant and a"v(x) is the

variable part of D"(x). Since any constant V(x)

represents a closed surface, D(.) is chosen inde-

pendent of xn by setting annv at zero.
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V(x) is obtained from the line integral of VV .

This integral can be calculated independent of

the path of integration, the simplest of which is

X1 X2 X,

V(x) = fV1V CIO + P72 ior dot . . . P7,21, don ,

0 0 0

where the following curl equations should satisfy

aV(20 aVV WV
V111- a ( ) 8x 8x

Check that i(x) is constrained to be at least

semi-definite, with a definiteness opposite to

that of V(x).
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ROBUST STABILITY ANALYSIS

3.1 Introduction
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The design and analysis of a controller is based on

the mathematical model of the physical plant directed for

control. As mentioned earlier, the mathematical model is

not exact. Inaccuracies are modeled in the form of struc-

tured or unstructured perturbations. In controller design,

these perturbations can be accommodated by the use of

either adaptive or robust controllers. If the bounds of

the perturbations are known, robust controllers are often

utilized for reason of the practical advantages they offer.

One of the fundamental requirement in the design of robust

controllers is the ability to analyze system robustness.

The most important developments in robust stability

analysis and control are the H2 and H. theories, developed

from the "small gain principle" introduced by Zames [8].

Levine and Reichert [28] have provided an introduction to

H. system control design, and Francis [29] has also contri-

buted an excellent introduction to H. theory. Most of the

investigations of this subject have been based upon trans-

fer function representation. Qui and Davison [5] used the

small gain theorem to consider the robust stability of lin-
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ear time-invariant systems for state space models, formu-

lating estimates of the robustness bounds for both struc-

tured and unstructured perturbations. This method was

subsequently extended in their two later reports [30] and

[31].

For the time domain, the Lyapunov direct method has

been widely used for the investigation of system robust-

ness. The interest has been prompted by the fact that this

method provides ready accommodation for both nonlinear and

time-variant systems. It should be noted that the small

gain theorem is concerned only with nominally linear

systems. This is an important factor since the solution of

nonlinear differential equations can be a difficult to

impossible task.

For robustness, the application of the Lyapunov direct

method consists of two principal steps: (i) generation of

the Lyapunov function and (ii) the determination of the

robustness bounds based on the generated Lyapunov function.

In Section 2.5, a selection of methods for the generation

of the Lyapunov function was reviewed. Patel and Toda [12]

considered linear autonomous systems with nonlinear, time-

varying unstructured vector perturbations and unstructured

perturbations, and formulated estimates for the robustness

bounds. Lee [13] improved the unstructured robustness

bounds for the systems with stable polar decomposition.

Yedavalli [14] improved the accuracy of these estimates

when considering structured perturbations. The bounds
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obtained by the application of these methods were not

directly dependent on the structure of the nominal matrix.

Yedavalli and Liang [15] obtained improvements for the

estimation of the bounds by transformation of the states.

For the case of structured perturbations, Zhou and

Khargonekar [16] improved the robustness bounds by

separating independent perturbation elements within the

perturbation matrix. Juang [32] considered robustness for

linear time variant systems, including linear autonomous

systems with time-varying perturbations as a special case.

Siljak [4] suggested the use of a vector Lyapunov function

introduced by Matrosov [17] and Bellman [18], to reduce the

conservatism of the estimates.

However, the referred estimates remained more conser-

vative than those obtained from the use of the small gain

theorem [5] and [22]. In the case of structured pertur-

bations, the conservatism of the estimates was principally

caused by the failure to consider the structural features

for the perturbations when generating a Lyapunov function.

The Lyapunov function was generated by inserting the

nominal matrix to the Lyapunov equation and setting Q as

identity matrix. Further Radziszewski [33], in the

examination of two-dimensional structured systems,

discussed the candidature of quadratic forms as a class of

Lyapunov functions and determination of the best Lyapunov

functions. It was determined that the estimates of the

robustness bounds obtained by the best Lyapunov function of
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this class were still less than those obtained by some

other methods for evaluation of two dimensional systems.

Olas and Ahmadkhanlou [19] have proposed a piecewise

Lyapunov function for the improvement of estimates for the

robustness bounds.

The remainder of this chapter is organized as follows:

Section 3.1 provides explanations of the basic differences

between the analyses of robustness for structured and un-

structured perturbations; Sections 3.2 and 3.3 provide

explanation for applications of, respectively, the Lyapunov

direct method and the small gain theorem to problems of

robust stability analysis.

3.2 Structured and Unstructured Perturbations

In general, structured and unstructured perturbations

are the two types of perturbations distinguished in the

development of robustness theory. Their existence is

dependent upon the physics of the physical plant under

consideration. A state matrix for the plant perturbation

may be represented by the summation of a nominal fixed

matrix and a perturbation matrix, that is,

A( t) = AN + AA( t) . (3-1)

Most engineering plants such as aircraft or robot can

be described with known dynamical equations. The design

uncertainties which exist are with regard to the values of

specific physical system parameters. Examples of struc-
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tured perturbations in aircraft models include the param-

eter values for the spring constant, mass, inertia, aerody-

namic coefficients, and changes in air pressure. These

values cannot be considered as constant known values, but

they affect only specific system parameters [1].

Unstructured perturbations are modeled in cases such

as unmodeled dynamics. Modeling continuous systems as

finite lumped masses is one of the examples of unmodeled

dynamics. In the unstructured perturbations, only the norm

AA is specified. When possible, perturbations elements

should be modeled as structured perturbations since less

conservative estimates may be then obtained.

These are the basic facts which have motivated growing

interest in the robust control of systems with structured

perturbation [1]. In the case of structured perturbations,

the system matrix is usually is written in the following

form:

= AN x + piAjXj (3-2)

where pi is a perturbation element also called parameter

perturbation and Ai is a constant matrix called

perturbation matrix. The advantage of this form is that it

separates each of the independent perturbation parameters

from the others ( see section 3.3.5).
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3.3 Application of the Lyapunov Direct Method

As mentioned earlier, the Lyapunov stability theorems

have been first established for the perturbations of ini-

tial conditions near an equilibrium point. These theorems

were subsequently extended for application to perturbations

of the system parameters [23].

The following conclusion may be derived from the

Lyapunov direct method:

CONCLUSION: If for a system, there exists a single

Lyapunov function for all choices of the

perturbation parameters within a compact bounded

set, the stability of 0 equilibrium of the system

for the nonlinear, time-variant perturbations so

bounded is insured.

The remainder of this section reviews selected research on

the robust stability analysis of nominally autonomous

linear systems with nonlinear, time-variant perturbations.

3.3.1 Robustness Bounds, Patel and Toda

Patel and Toda [12], in an extension of their paper on

robustness analysis for linear state feedback design [34],

considered nonlinear unstructured vector perturbations and

unstructured perturbations for nominally autonomous linear

systems.

1) Nonlinear unstructured vector perturbations:

The following system



= AN X + f (x, t) ,
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(3-3)

where AN is a time-invariant asymptotically stable matrix

and f(x,t) is a time varying nonlinear vector function of

x(t), representing the nonlinear unstructured vector per-

turbations within the system and f(0,t)= 0 for all times,

was considered. It was demonstrated that the system would

be stable if

If (x, minl (Q) A (3-4)
VI maxl(S) P

where S is the unique positive definite solution of the

Lyapunov equation

S +S AN = -2 Q , (3-5)

where Q is a positive definite matrix. Further, it was

proved that for unstructured perturbations, the robustness

bound vp in equation (3-4) is maximum when the matrix Q=I,

thus

1

a (s) ' (3-6)

where a (S) is the maximum singular value of S. It was

then demonstrated that

a 1(
s min J A (AN)

aaX
(3.7)

and that equality is maintained when AN is a normal matrix.

This indicates that the robustness bounds of the unstruc-

tured perturbations is less than or equal to the dominant

eigenvalue of the system's nominal matrix.
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2) Unstructured perturbations:

For the case of unstructured perturbations where

x( t) = AN x( t) + AA( t) x( t) , (3-9)

it was reported that the system is stable if

IAA" ( t) IS 1 An a(S)

where Alkii(t) is the (i,j)th element of AA(t).

3.3.2 Robustness Bounds, Lee

Lee [11] considered unstructured perturbations as

(3-9)

follows. Assuming the existence of a stable orthogonal

matrix U for the polar decomposition of A,

AN= UHR or AN =HL U, ( 3-10 )

it was proved that the system is stable if

a (AA) < -amin(A) cos (emin) A PLU (3-11)

where Omin is the smallest principal phase of A measured

counter-clockwise from the positive real axis. Principal

phase of A in (3-10) is defined as the arguments of the

eigenvalues of U in (3-10). If A is normal, then

= min I Re A (A) I. (3-12)

3.3.3 Robustness Bounds, Yedavalli

Yedavalli [14] considered structured as well as

unstructured perturbations.
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1) Structured perturbations:

Estimates for the robustness bounds were improved for

the case of structured perturbations. It was demonstrated

that the system will remain stable if

1
e S

°max [ I S I LTa] 11" , (3-13)

where 1 . 1 is the modulus matrix, [.]. = [ (0.4.(0T ild2 is

the symetric part of the matrix, and U. is an n x n matrix

whose entries are such that

eajj
Umai = and e a max (tali) .

2) Unstructured perturbations:

Yedavalli further proved that for unstructured

perturbations, the bound

(3-14)

a (AA) < amin (AN) A µYu (3-15)

insures the stability of the system. Note that the advan-

tage of this expression is that it does not require solu-

tion of the Lyapunov equation. In contrary, for the case

when A. is not normal, the methods considered in Sections

3.3.1 and 3.3.2 require solution of the Lyapunov equation

or a requirement that the polar decomposition U is stable.

Estimates for the upper bounds of perturbation ele-

ments presented by Patel and Toda [12] and Yedavalli [14]

were not directly related to the structure of the nominal

system matrix (e.g., equations (3-9) and (3-13)), rather

they were indirectly affected through the matrix S.
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3.3.4 Robustness Bounds, Yedavalli and Lianq

Based upon the fact that the stability of a system is

invariant with respect to nonsingular linear transforma-

tion, Yedavalli and Liang [15] transformed the state vector

through M, x = MR for the new system

i=,fi(t) R(t) where Ai= hr141(t) M.

By changing the system matrix to A in the Lyapunov

equation while maintaining Q = I, a(S) may be reduced which

results in improvement of robustness bounds Pop (see

equations (3-9) and (3-13)). Examples were presented to

demonstrate improvement of the bounds, with respect to

those achieved by Patel and Toda [12], for the structured

as well as unstructured perturbations. However, with the

exception of a special case limited to the diagonal

transformation matrix, the question of generating the

matrix M remained unsolved.

(3-16)

3.3.5 Robustness Bounds, Zhou and Khargonekar

Zhou and Khargonekar [16] considered the structured

perturbations. Previous research had been based upon the

assumption that the various elements of the system matrix

were perturbed independently. However, it was considered

that for the practical case in many systems, the entries

for the perturbation matrix may be dependent. For example,

if
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AA =[P1

+ a P2 P
Y p2 0

where a, p, and y are constants, AAn is a linear combina-

tion of AAn and AA21. Thus, the following general form was

suggested:

q
X = AN X + E pi Ai x,

where pi is a perturbation element (parameter perturbation)

and Ai represents a constant matrix called perturbation

matrix.

1) Structured perturbations:

For the case where pi varies in the interval around

zero, that is, Pi E , p+i ], it was demonstrated that

the system was stable if one of the following conditions is

true:

i) E Pi <
1

1=1
02

ii) E I Pi I orra,c(Si) < 1,

iii) I Pj I < j=1,2 q

amaxE I Si I)
1=1

where
(3-17)



Si = S + S Ai ) /2 , i = 1,2,...q .

Se A [S1 S2 Sg]
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These bounds were less conservative than those considered

prior to this formulation. Yedavalli's [14] bounds were a

special case of the condition (iii).

3.3.6 Robustness Bounds, Juanq

Juang [30] considered the system

= ( t) Ai X
i=i

where pi s pi (t) s pi E 'pi( t) * 0

(3-18)

as a special case for the robustness analysis of autonomous

linear systems with structured perturbations. Note that

for p1(t)=1, the system is identical to that represented by

Zhou and Khargonekar (16].

1) Structured perturbations:

Defining

q
vk = E Pi( t) Ai 1p/co =pi or Pi ' k=1,2, . .2g , (3-19)

it was demonstrated that the system is stable if an invert-

ible matrix S existed such that R2(S uk S-1) < 0 for all

k=1,...2q, where [4,2(.) denotes the matrix measure [25]

corresponding to a 2- norm. As before, this approach left

the issue of the generation of Lyapunov function an open
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question, where the Lyapunov function is V(x) = xT S' S x

and S' is the complex conjugate of S.

3.3.7 Vector Lyapunov Functions

The concept of vector Lyapunov function was introduced

by Matrosov [17] and Bellman [18]. This concept associates

several scalar functions with a given dynamic system in

such a way that each function determines a desirable

stability property in a part of the state where others do

not. These scalar functions are considered as components

of a vector Lyapunov function. The next step is to

determine stability for the entire system, or its "connec-

tive stability." For more detail see Siljak [35].

Siljak [35] considered the system

N
SE JCi = Ai x j + E pii Ai j xi , i = 1, . . , N, (3-20)

to be an interconnection of N subsystems

Si : JCi = Ai xi , (3-21)

where Ai is a negative definite matrix and 'Nil< pij+ is the

perturbation element. (3-21) implies that the couplings

between the subsystems consist only of the perturbation

elements, and the perturbation within each subsystem is

unstructured. Let Vi(x) represent the Lyapunov function

for the ith subsystem Si



Vi ) ( Xi Si 2C1 ) 1 / 2
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(3-22)

where Si is the symmetric positive definite solution for

the Lyapunov equation. The Lyapunov function for the over-

all system SE is selected as

V ( X) = d T V( X) ,
(3-23)

where d E R.,' is a positive vector. It was then demon-

strated that the overall system, SE, is connectively stable

if the following matrix is an M matrix, i.e.

where

9111

w21

Wk1

w12

w22

Wk2

wti

"

=
1

{ 2

w1k
w2k

Wkk

lm(Qi)

> 0 ,

*

-Pii Qi

k = 1, . ,

i = j
i *j ,

, (3-24)

(3-25)Am(Hi)

and a" = Au(A"T A"). As may be seen from (3-25), Qi may be

set as the solution to the following problem to maximize

chances of proving stability

Ind : MAX "m(Qi)
°I m(Si)

subject: Ai Si + Si Ai = -Qi
(3-26)

Based upon the assumption that Ai has all distinctive

eigenvalues, the maximum value of the ratio found to be



1,E(Qi)
am(Ai) .max

°i

For the special case were SE is reduced to a single

subsystem
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SE : x = AN X + AA x , (3-27)

the system is stable if

a (AA) < "(0 ,

Am(S)

a result identical to that achieved by Patel and Toda [12]

for the case of unstructured perturbations.

3.3.8 Piecewise Lyapunov Functions

Olas and Ahmadkhanlou [19] have proposed an algorithm

for the generation of piecewise Lyapunov functions,

demonstrating by example how this method can be used to im-

prove estimates for the robustness bounds in nominally

linear systems with structured perturbations.

With the exception of the report by Olas and

Ahmadkhanlou [19], none of the research reviewed in Section

3.3 has used the structural features of the perturbation

elements to generate an improved Lyapunov function with

less conservative results. However this information was

used in determining the robustness bounds based on the

generated Lyapunov function.
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3.4 Application of the Small Gain Theorem

For the frequency domain, small gain theorem is used

extensively to determine the robustness of the nominally

linear systems with perturbations elements.

3.4.1 Robustness Bounds, Qiu and Davison

Qiu and Davison [5] demonstrated examples showing that

the small gain theorem provides better estimates of the

robustness bounds than those developed earlier from the

application of Lyapunov direct method.

1) Unstructured perturbations:

The class of systems considered was identical to the

systems considered in Section 3.3. For unstructured

perturbations,

= A x + AA x ,

it was shown that the system would be stable if

IAA lip <
1

suP..0 I I (i6) 1-A) -1 1 1p

IsILOU (3-28)

where 1 . 1p is the p-norm of (.). The robustness bounds

described by equation (3-28) were either larger than or

equal to those reported earlier using Lyapunov stability

analysis.

2) Structured perturbations:

For structured perturbations, it was assumed that AA

has the structure



AA = S, AE S2 ,
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(3-29)

where S1 and S2 are known constant matrices, and AE

represents the perturbation matrix. This structure was

selected for the practical reasons, e.g. the perturbation

of sensors/actuators for a closed-loop system can be repre-

sented in this form. The following bounds,

E <
1

sup.,on (I S2 (j w A) -1 S1I Ue l
(3-30)

where t(.), called the Perron-eigenvalue, is a real,

positive eigenvalue of the positive matrix (.) which is

greater than or equal to the moduli of all of the other

eigenvalues of matrix (.), and U. is as defined in Section

3.2.3.

EXAMPLE: The following system with structural pertur-

bations AE

= A x + AE x , where A=r3
1 0

was considered for different forms of AE. For the case

where AE is

E11 E1zAE= where
I en I = I e12 I = I en I se

821 0

the matrix U will thus be

=[1 11
U

1 0

From equation (3-30), the estimates of the bounds are
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I ell I ' I ei2 I ' I en I < c =0.6848 ,

compared to the bounds 0.317 obtained by Yedavalli [12].

In section 5.3, additional comparisons of the estimates ob-

tained by Yedavalli [7], Qiu and Davison [5], globally

optimal Lyapunov functions, and the exact bounds are

provided. For examples of unstructured perturbations, see

Qiu and Davison [5].

3.4.2 Comparison of Robustness Bounds Obtained by the

Small Gain Theorem and the Lyapunov Theorem for

Unstructured Perturbations

For unstructured perturbations, Peterson [21] demon-

strated that the conditions for the small gain theorem were

necessary and sufficient for existence of a Lyapunov func-

tion which provides the same robustness bounds. Becker and

Grimm [22] considered the same case, demonstrating that the

estimates determined by the application of this method

would always be larger than or equal to those determined by

any state transformations in the time domain presented in

Yedavalli and Liang [15].

Khargonekar et al. [36] expanded Peterson's [21] re-

sults for quadratic stabilizability, based upon the princi-

ple of linear output feedback. The results in [21] were

expressed in the form of the following corollary.

COROLLARY: Consider the system with unstructured

perturbations as described by Qiu and Davison
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[4]. There exists a positive definite matrix S

such that

+ AA)T S + S + AA) < 0 , VOA,

if and only if the conditions of the small gain

theorem are satisfied.

This corollary concludes that in the case of unstructured

perturbations, there exists no quadratic Lyapunov function

which provides better estimate of the robustness bounds

than small gain theorem. Note that from this approach, the

question of structured perturbations remained an open

issue.
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CHAPTER 4

GLOBALLY OPTIMAL LYAPUNOV FUNCTIONS

4.1 Introduction

Lyapunov stability theorems have been widely used in

robust controller design and robust stability analysis.

[14] Design of robust controller based upon application of

Lyapunov theorems was initiated by Barnett and Story [37],

Bellman [38], Desoer et al. [3], Davison [39], Ackerman

[40], Barmish [41], and Eslami [42]. Consideration of

explicit robustness bounds for linear systems with non-

linear, time-variant perturbations was explored by Siljak

[11], Patel et al. [34], Patel and Toda [12], Lee [13],

Yedavalli [7,14], Yedavalli and Liang [15], Zhou and Khar-

konegar [16], Siljak [4], Juang[32], Olas and Ahmadkhanlou

[19]. Application of the Lyapunov direct method to robust

stability analysis consists of two principal steps: (i)

generation of the Lyapunov function and (ii) determination

of the robustness bounds based on the generated Lyapunov

function.

The most important factor in the selection of the Lya-

punov function is to provide the least conservative esti-

mates of the robustness bounds. In the Chapter 3, previous

reports on the robust stability of linear systems with
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nonlinear, time-variant perturbation elements were con-

sidered. It was noted that the Aizerman method was used to

generate the Lyapunov function. Since structure of the

perturbation matrices were not considered, the Lyapunov

functions obtained by this method are generally not good

choices and result in conservative estimates. However the

structural features of the perturbation elements were used

in estimating the robustness bounds based on the generated

Lyapunov function.

For the system to remain stable, the derivative of

Lyapunov function along the solution of states should

remain non-positive. Maximum and minimum eigenvalues and

singular values for each term of the Lyapunov derivative

are commonly used to determine estimates for the perturba-

tion bounds. However, the maximum values for each term of

the Lyapunov derivative do not necessarily occur at the

same vector. Thus, in the algorithm presented for con-

sideration in this study, the maximum eigenvalues of the

derivative of the Lyapunov function (i.e., the matrix Q)

for the worst cases of the uncertainties were considered.

The properties of the quadratic functions were then

employed to generate the globally optimal Lyapunov function

and obtain the robustness bounds.
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4.2 Problem Statement

Consider a nominally linear system with the structured

perturbation

= AN X + pi Aix
1=1

(4-1)

where pi = pi(x,t), pi is assumed to be bounded and to

fulfill conditions on existence and uniqueness for solu-

tions to (4-1) and AN has negative real parts for its

eigenvalues. The system may of course be of the closed

loop form (A-BK) as in section 5.5. Let p a [pi,

and Au =Epi Ai . The general robust stability problem
i=i

for (4-1) is defined as to determine the set E belonging to

the parameter space P5 such that if p(x,t) E E for all x,t,

then the system (4-1) is stable in the sense of Lyapunov.

For most cases, a reduced problem is discussed when in

place of the set E, a parallelepiped or a ball embedded in

E is to be determined. For details of this argument, see

Siljak [4].

Let II denote the parallelepiped in P5

II= (p e Rq : p- spsp+) , (4-2)

and p(i) i =1, ..2q to be the vector of parameters on the ith

vertex of H. Since for the small parameter perturbations

the nominal part will be dominant, it is the common prac-

tice to generate a quadratic Lyapunov function



V(x) = xT S x,

where S is the solution of Lyapunov equation

AN S + S AN = I
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(4-3)

The derivative of the generated Lyapunov function

along the solutions of equation (4-1), V, is a quadratic

form of x and is linearly dependent upon parameters

pi(t,x). A convenient way to analyze the sign properties

of N.7 along solutions of equation (4-1) for x * 0 is to con-

sider the derivative on the unit sphere 01 E R. The

relation

dV(x)/dt s 0 for x e dal

implies that

dV(x)/dt s 0 for x e R n.

This is true because x can always be written in the form of

its magnitude times the unit vector. Since the vector

magnitude is always positive, the sign of 1.7 will not be

affected. Thus, if Lyapunov derivative is negative on the

unit sphere x E (1)1, then it is negative for all x E WAO.

The common procedure to obtain the robustness bounds based

on the generated Lyapunov function is to substitute the

maximum bound of each individual quadratic terms in V (e.g.

see [16]),

I I p1 I lm(Q1) +11)2 I AM(Q2) . . s 0

where
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Q1 =AITS + S Ai

Since the maximum values of Qj are not attained on the

same value of x, thus it will be less conservative to

consider the robust stability problem of the parallelepiped

II E R5 as follow: If the 2q quadratic forms

QFj A XT (141,TS + SAN + AAp(P)S + SAG(pu))) x ,

j= 1, ,2q ,

generated by the values of the parameters on the 2q

vertices, p( i),...,p( 2°) , are non-positive for all x, then II

is a solution for the problem of robust stability (see

[43]). In such a case, it may be said that Lyapunov

function V(x) guarantees the solution II for the robust

stability problem.

With respect to the applied Lyapunov function, the

parallelepiped n is called maximal if enlarging it by

decreasing a single bound pi- or increasing a single bound

pi' causes at least one of the forms QFj to attain a posi-

tive value for some x. Such a definition implies that if

the parallelepiped is maximal, then for each pi-, pi' there

is at least one vertex, referred as active vertex, such

that the corresponding form QFj attains the value zero at

some point x * 0. The point EEO, is referred to as a

root of the form QFj if QFj() = 0.

(4-4)
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4.3 Definitions and Lemmas

Let and V be two quadratic Lyapunov functions of

the system (4-1). In addition, let t I *** I lc** ;
corre-

spond to the roots of the forms QFj, QFj for, respectively,

11' and V. The function V" is called better than function V

if either

i) the maximal parallelepiped generated by is

larger and contains the one generated by V,

that is,

or

(ii) I1 = IT and the number of roots of the forms

QF; is less than the number of roots of QFj.

Since each quadratic form may be associated with a single

symmetric matrix, a space of quadratic Lyapunov functions

may be introduced with the distance d between the two func-

tions V1 = x' S1 x and V2 = XT S2 x defined by a norm of a

difference between the matrices S1 and S2, or

d = Isi -S21 .

The function V is called optimal if all of the neighboring

functions at less than some distance d from V are not bet-

ter than V; finally, the function V is called globally

optimal if the entire space of functions does not contain a

better choice.
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It is of interest to the argument presented to prove

the following lemmas related to the properties of quadratic

forms.

Lemma 1. Let Q have m repeated maximum eigenvalues,

i.e. A.1 = A.2 = . = > km+1 Z Z kn . Then

xr x s Al V x e 41 (4-5)

and equality holds if and only if x is an

eigenvector associated to Al i=1,...m.

Lemma 2. Define a form x'Qix such that it has a single

root E 41, and fulfills an inequality

xT123.x0 Vxc4), (4-6)

(a) if a matrix Q2 fulfills
(i) riTQA > o , or

(ii) riTQA = 0, 1 is not an eigenvector of

Q1

then for any e > 0

XTQ X C XTC X> 0 for some x c 4)1 (4-7)

(b) if the matrix Q2 fulfills

TITQA = 0, is an eigenvector of Q1

then there exist an el > 0 such that for all

0<e<el

xrCsix + e xTQ2x s 0 Vxe4)1,0<e<e1

(c) if the matrix Q2 fulfills

iTQ2Ti
< 0

(4-8)
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then there exist an e2 > 0 such that for all

0<e<e2

x7.01A7+ exTg2Ipc< 0 bfxe .1 , 0< e < e 2
(4-9)

Proofs for Lemmas 1 and 2 are given in Appendix A.

The following restriction is imposed on the forms QFj:

Assumption A: Each of the quadratic forms QFj,

corresponding to the active vertices, have a

single root. Thus, there are k s 2g roots.

For the sake of simplicity, it may be presumed that

the forms are numbered so that the roots denoted by

correspond to the roots of the first k forms QFj,

j = 1,2 ,...,k. Finally, it is further assumed that with

respect to the applied Lyapunov function, the parallele-

piped n is a maximal solution for the robust stability

problem of the system in equation (4-1).

4.4 Principal Results

Assume that by any procedure a quadratic Lyapunov

function

V (x) = x Tsx (4-10)

has been selected and the 2q quadratic forms QFj in (4-4)

have been generated. Introduce an arbitrary quadratic form

AV(x) = xTASx and consider the Lyapunov function V* = V +

eAV, where e > 0 is subsequently selected as sufficiently

small. Differentiate V* along solutions of system and

enter the values of parameters on vertices of the parallel-
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epiped n, p( 1) ,...,p( 2g) , to the derivative. Denote the 2q

quadratic forms thus obtained as QFj + cAQFj, where QFj is

the previously defined forms generated by the functions V,

and similarly AQFj represents the derivative of the form AV

along solutions of (4-1) evaluated at 1(j).

Theorem. Let n be the maximal solution for the robust

stability problem in system equation (4-1)

obtained by Lyapunov function V. Let the

assumption A be satisfied. The function V is

then globally optimal iff for any matrix AS at

least one of the following three conditions is

satisfied:

(a) there exists 0 < i s k such that the i-th

form AQFi fulfills

AQFi (ci) > 0

(1) there exists 0 < i s k such that the i-th

form AQFi fulfills

AQFi (Ci) = 0

is not the eigenvector of the matrix of

the form AQFi.

(y) AQFj(j) = 0 j = 1, ...,k

Proof of the Theorem is given in the Appendix A. Alter-

native formulation of the Theorem can be found in [44].
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4.5 Optimization of the Lyapunov Function

A simple technique for the optimization of the Lyapu-

nov function is based upon the Theorem in previous section,

utilizing the observation that if there is a matrix AS such

that the corresponding forms AQFj, j = 1,...,k satisfy

AQFj (Cj) < 0 , j = k (4-11)

then for sufficiently small e, the function V + eAV is

better than the function V.

Let p(i) and Vi) j = 1,... k be the vector of the

parameters on the active vertices and their associated

roots for the maximum parallelepiped 11 of the Lyapunov

function V. Let AV = xT AS x. Derivative of AV along the

solutions of the (4-1) evaluated for the parameters on the

k active vertices, p(j), and x = result in the following

k forms of AQFj(W

AGIF1(Ci) a C.T WAS + As AN + AAp(-1))AS + AS Arip(.i))) (.1 ,

To solve for matrix AS which

we carry out the following

satisfy

substitution

U1

j= 1,

sii

. ,k.

the inequality (4-11),

U2 As12

Un Asin (4-12)
U

1171+1

tin (n+1) /2

a AS22

Asnn

and introduce the matrix B such that



B u = [Ar)Fi, . . . . , AQFK] T.

Thus B will be the k by [n(n+1)/2] dimensional matrix:

B=

C11)[an a1n]C(1) Cnan ain]C(k)

[w) cp.)] all . [00 (k) an a (k)

a21 a2n an a2n

an an al I(k)[cno.) cp.)] alto.) [civc) cpc)]
ant ann anl ann

[a21 a2n]((1) 0c)[a21 a2n]C(k)

[cv cp.)] an. a 21( a) oc) clic)] an a2n C(k)
' a31 a3n -4 a31 a3n

i[(n1) (Cl)] an a2n [((k) c?) a2n c (k)
an, ann ani ann

CW-43[ anni(1) c(k)n

where 1(i) is the ith element of the vector 0).
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T

. ann]((k)

(4-13)

The matrix

B is called the discrimination matrix. Substituting the

values for p(i) and V) j = 1,... k in (4-13), we can

calculate the matrix B, and thus find u from (4-11). The

matrix AS can then be found. Further steps are explained

through the algorithm. The following conclusion will then

be used in the algorithm.

Conclusion: If the system of k linear inequalities

Bu < 0 , u E Rn(n+1) / 2 (4-14)

has the solution u, then the corresponding matrix

AS defines the quadratic form AV such that for a



49

sufficiently small e, the function V + eAV is

better than the function V.

4.6 General Algorithm

Based upon the conclusion provided in Section 4.5, the

principal stages of the algorithm are as follows:

1) Solve the Lyapunov equation (4-3) to

determine the zero-approximation Lyapunov

function matrix;

2) Assign the desired ratios of the

uncertainties:

3

4

5

6

, . .

.P1

Form the 2q quadratic forms QFi, determining

the largest eigenvalue Ai for each; if all

the eigenvalues Ai are negative, go to step

(7)-

Select the k forms QFi with eigenvalues Ai

larger than or equal to zero; for each Ai,

determine the eigenvector ti and form the

discriminating matrix B using (4-13);

Solve the inequality equation (4-14), deter-

mine the corresponding AS; if there is no

solution for (4-14), go to step (8);

Create a new Lyapunov function with the ma-

trix S + eAS, where e is set to be four
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times the minimum value of Ai found in step

(4). If the new matrix S is positive

definite or any of the new forms QFi eval-

uated at the previous robustness bounds

found in step (3) shows to be no longer non-

positive, then e should be divided by two

and the same step repeated.

7) Enlarge the previous step parallelepiped 111_1

by assigning increments of uncertainties,

Api, i = 1,...,q, then return to step (3).

8) The function is globally optimal with regard

to assumed algorithm and the end of the al-

gorithm is reached.

Remark. For the solution of the inequality (4-14) in

step (5), the values of the elements ui should be

proportional to their corresponding Bik

coefficients. As will be illustrated in Section

5.6, the bounds resulting from the application of

the described procedure are highly dependent upon

the way the parallelepiped 11..1 is enlarged in

step (7).



4.6 Alternative Algorithm
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An alternative algorithm is as follow:

1) At the kth step, let AS00 E 1:0" be a

symmetric matrix corresponding to the vector

1200 as defined in (4-12). Let um to be a

vector with all its elements equal to zero

except the lc' element to be equal to e. Set

k=0 and e=1.

2) Solve the Lyapunov equation (4-3) to deter-

mine the zero-approximation Lyapunov func-

tion matrix.

3) Assign the desired ratios of the

uncertainties:

112
I

p1 101

4) Set k=k+1. If k > n(n+1)/2, set e = e/10

and k=1. If e < 0.001, go to step (10).

5) Form the 2q quadratic forms QFj, determining

the largest eigenvalue Ai for each; if all

the eigenvalues Ai are negative, go to step

(9)

6) Select the first form QFi which has an eigen-

value Ai larger than or equal to zero; deter-

mine the eigenvector

7) Calculate AQFk(i), where AS(k) is defined in step

(1). Set e = - sign(AQFk(i)) e.
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8) Create a new Lyapunov function with the ma-

trix S + eAS. If the new matrix S is posi-

tive definite or any of the new forms QFi

evaluated at the previous robustness bounds

found in step (5) shows to be no longer non-

positive, return to step (4);

9) Enlarge the previous step parallelepiped 113_1

by assigning increments of uncertainties,

Api, i = 1,...,q, then return to step (5).

10) End of the algorithm.

Remark. This algorithm does not require determination

of the matrix B and the solution of the inequal-

ity (4-14), thus it is faster. However, it may

not provide the globally optimal Lyapunov func-

tion. This results from the fact that, for

instance, in the case where

B= 1

-.3

-2

. 2

3 I

. 1
B

there is no AS00, as defined in step (1), to

provide better Lyapunov function. However by

solving the inequality (4-14), the matrix AS

corresponding to u = [.1 .1 0]T,

.1 1
AS =

{.1
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guarantees improvement of the previous Lyapunov

function. The program in Appendix B and the

results in Chapter 5 are based on this algorithm.
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CHAPTER 5

APPLICATIONS OF GLOBALLY OPTIMAL

LYAPUNOV FUNCTIONS

5.1 Introduction

The application of the Lyapunov direct method on

explicit robustness bounds for nominally linear systems

with nonlinear, time-variant perturbations was explored by

Siljak [11], Patel et al. [34], Patel and Toda [12], Lee

[13], Yedavalli [7,14], Yedavalli and Liang [15], Zhou and

Kharkonegar [16], Siljak [4], Juang[32], Olas and Ahmad-

khanlou [19]. Most researches focused on the small gain

theorem promoted by the results obtained by Qiu and Davison

[5] and Becker and Grimm [22], and the theorems proved by

Petersen [21].

In the balance of this chapter, the application of

globally optimal Lyapunov functions for systems which have

been the focus of various studies is presented. In Section

5.3, examples show that the approach presented in the

current investigation provides less conservative estimates

than those obtained for the small gain theorem. The exam-

ples show improvement in the bounds up to 24 percent. In

some cases, the small gain theorem may provide better

estimates, but it should be noted that the robustness
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bounds obtained by GOLF approach may be further improved by

piecewise Lyapunov functions. In Sections 5.5 and 5.6, the

robustness of actual dynamics of aircraft vertical take-off

and landing (VTOL) systems are considered. This example

demonstrates the practicality of the approach considered in

the current investigation, further indicating that the

procedure is not affected by an increase in system dimen-

sions. The program was prepared in MATLAB and has been

generalized for systems of all dimensions with any number

of perturbation elements. The procedure requires only the

standard routines of determining eigenvalues and eigen-

vectors for symmetric matrices.

5.2 Two-Dimensional System

Radziszewski [33] considered the robust stability

problem for the system

x = AN X + Pi (X, t) Aix, x E R2 , (5-1)

where pi(x,t) is a scalar function, and

0 0 0

-111 'Li 01

Applying the optimization algorithm presented here,

the globally optimal Lyapunov function

v(x) = 4- x1 x2 + ,

is obtained. The one-dimensional maximal parallelepiped II

was found to have the parameter values p(l) = -V372, p(2) =

372 on the active vertices. To carry out the procedure
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presented in the current study for this problem, the forms

QF1, j = 1,2, associated with p(l) and p(2), were analyzed.

The two forms QFJ have the corresponding roots

= [0.939, 0.344 ]T and 2 = [0.5907, -0.8069]T. Using

(4-13) and normalizing coefficients,

1.000 -1.000 -.5000
B =

-1.000 1.000 .5000
(5-2)

is obtained at an accuracy of four digits.

It is easy to determine that the vector B u, where B

is given by equation (5-2) and u is an arbitrary non-zero

three dimensional vector, fulfills the Assumption p as

given in the Theorem. It is thus determined that the

Lyapunov function is globally optimal for the problem in

question. Using methods specific for a two-dimensional

case, Radziszewski [33] also demonstrated that there is no

quadratic Lyapunov function that can guarantee larger

bounds for the parameter pl(t,x) than the bounds

V7/2 < pi ( t, x) < VT/2 .

However, these bounds may be enlarged when the piecewise

quadratic Lyapunov function is used. In Olas and Ahmad-

khanlou [19], the bounds

-.999 < pi(t,x) < .999

were found; where the Lyapunov function obtained by

piecewise Lyapunov function algorithm was



V(x, t)

1

.999

[1

.333

.999]
X

1

.3331

1
X

2 71 A 72

A 71 x2 <

0

0
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For the case where pl is restricted to attain only constant

values, the bound pl > -1 is found. It should be noted

that for the application of the piecewise Lyapunov func-

tion, the planes should be assigned such that the first

condition of the Theorem given in section 4.4 does not

satisfy for the forms AQFj inside any sector.

5.3 Comparison of the GOLF approach and the Small Gain

Theorem Approach for a Two-Dimensional System

Qiu and Davison [5] considered the system

[-3 -21 [1 01 [0 [0 01
x + pi x + p2 x + p3

1 0 0 0 0 0 1 0

Using the small gain theorem, equation (3-30), the

estimates of the robustness bounds were found to be

I P1 1_ 11)2 1_ 1 P3 1

s 0.6848 .

Applying the optimization algorithm presented here,

results in the GOLF and robustness bounds
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1.644 1.103
S,, =

L..103 3.7651

I Pi 1 = 1 .1)2 1 = I
A ( s 0 . 8 5 4 ,

which are more than 24 percent greater than those obtained

with the small gain theorem. The example indicates that

the Lyapunov method may provide less conservative estimates

of the robustness bounds for linear systems with nonlinear,

time-variant structured perturbations. Table 5.1, where U

is as defined in equation (3-14), provides a comparison of

the results obtained by Yedavalli [7], small gain theorem

as described by Qui and Davison [5], application of GOLF,

and the exact bounds for different values of Ai.

Table 5.1 Comparison of robustness bounds for different
techniques.

u
101
[0 01 [00 011

[01 001 [00 Oil

'exact

3 2 1 0.6667

NYS 1.657 1.657 0.655 0.396

Ns 3 2 1 0.6667

NOLP

3 2 1 0.6666

saw
{113 02]

[ 1.8 .a

1.8 2.4.1

l [2.18 1.391

1.39 7.49

[.216 .4991

.499 1.398
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Table 5.1 (continue)

u
[01 011

0

{3. 01

1

[1 01

1 0

[0 11

1 0

exact

2 0.5616 1 1

NTS 1 0.382 0.48 0.5

Ns 1.5201 0.5612 0.9150 0.8108

RGOLF

1.6360 0.5615 0.9740 0.9460

s Goup [ 1.501 .725

14

1

.725 2.7

[281 .497
.497 1.487

] [1.495 1.031]

1.031 4.011

[1.616 1.024]

1.024 4.248

Table 5.1 (continue)

u

[I3D 11

[10 01

1 1

[1 11

1 0

[1 1]

0 1

exact

0.5 0.4 1 0.4495

Pys 0.324 0.3027 0.397 0.311

RQS 0.5 0.4 0.6848 0.4486

Nom. 0.498 0.4 0.8540 0.4494

SGOLF [189 .501
.501 1.5

[.4 .51

.5 1.5

[1.644 1.103

1.103 3.765

[278 .502]
.502 1.526
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Table 5-1 (continue

u
[13. 0i {0 11

1 1

[1 1

1 1

.'exact 0.3723 0.3542 0.3333

liys 0.273 0.256 0.236

RQS 0.3714 0.3528 0.3333

Noll, 0.3723 0.3542 0.3333

S GoLF
[.492 .4891
.489 1.35

[395 .501]
.501 1.596

11 11
11 3j

Analysis of the example leads to an interesting

observation, formulated as:

Remark: Consider the system

[-3 -2+p21

1 0
x.

The robustness bound under the restriction that

p2 is constant is p2<-2. For p2*=-2, the system

has a second equilibrium point xe

0 0[-3

1
x

e
O= ,

01
x

e
=

1
I.

For any quadratic Lyapunov function V(x) = xTSx,
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1.7(xe)= (A(p*) xe) T S 2C9 + 4' S (A(p*) x0)

= (0)T S xe + xe S (0) =0

By virtue of Lemma 1, for 1.7(x) to be non-

positive, xe should be the eigenvector cor-

responding to eigenvalue zero of Q(p*)

where

Thus

Q(p*) xe = (0) xe = 0,

Q(p*) = AT(p*) S + S A(p*)

-6s3.3.+2512 -3512+522

-3 S12 +S22 0

-3512 + S22 = S22 = 3S12,

Q(p*) =
11+2S12 0

0 01

Since Q should be negative semi-definite,

c S12
S11

3

and S11 should be selected such that S is non-

negative. Thus

1 1
S = [1 31.

This matrix of the Lyapunov function also provides the

bound
I P2 I < 2 . By virtue of Lemma 1, the Lyapunov

function which provides maxmimum I P I
without iterations
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was found directly. This would seem to suggest further

consideration of this remark.

5.4 Three-Dimensional System

Consider the system

x=
-2
0

-1

0

-3
-1

-1
0

-4

1 0
x + p1 {0 0

1 0

1

0

1

0

x + p2 [()

0

0

1

1

0
0
0

x.

Zhou and Khargonekar [16] proved that the system is stable

within the following robustness bounds:

i) I pj(t,x) I < 1.55328, j = 1,2

or

ii) 0.60521
I
p1(t,x) I + 0.351205 I p2(t,x) I < 1.

or

iii) p12(t,x) + p22(t,x) < 2.72768

and Siljak [3] obtained the robustness bounds:

iv) -0.875 < pl(t,x) < 1.75 and p2(t,x) < 3,

whereas the bounds obtained under restriction that the

parameters p1, p2 be constant are

p1 < 1.75 and p2 < 3 .

The first step to optimize Lyapunov function is to

solve the Lyapunov equation

AT S + S A = -I ,

resulting in the matrix
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.5714

.3487 -.0462 .

-.1429 -.0462 .2857

Utilizing the quadratic Lyapunov function x' S x, the

robustness bounds

-6.47 < pl(t,x) < 1.600 and -13.76 < p2(t,x) < 2.741

are obtained. Applying the optimization algorithm

presented, results in GOLF and robustness bounds

SGOLF

.5714 .0378 -.1429

S

[

1.0000 .1407 -.0190

= .1407 30916.9163 -.4867

-.0190 -.4867 1.0266

-1500 < p2(t,x) < 1.7486 and -3000 < p2(t,x) < 2.9985 ,

which for applications is seemingly the equivalent of the

bounds determined while restricting the parameters to a

constant value. Figure 5.1 shows the comparison of the

robustness bounds.
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P^2

GOLF

1.75
>p

1

Figure 5.1. Comparison of different robustness bounds.
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The following two examples are concerned with the de-

sign of a robust controller for the dynamical control of a

helicopter in a vertical plane. From Narendra and Tripathi

[45], the dynamics are described in the following system

AA =

x = (A + AA) x + (B + AB) u ,

-.0366 .0271 .0188 -.4555
. 0482 -1.0100 .0024 -4.0208

A =
. 1002 .2855 -.7070 1.3229

O 0 0 0

0 0 0 0
O p1 0 p2

0 0 0 0
B

0 1

.4422 .1761
3.04475 -7.5922
-5.5200 4.49

AB =

0 0

where the state and the control inputs are:

x1

X2

X3

x4

horizontal velocity"
vertical velocity

pitch rate
pitch angle

0 0

p3 0

0 0

0 0

collective cycleand u
u2 longitudenal cycle

For the assigned range of air speed, a significant change

was observed in the values of some elements of the matrices

A and B, wherein the parameters were subject to variance

and their bounds were specified as follows (i.e., following

symmetrizing all of the perturbation bounds within the

matrices):

p1I s 0.2192 p2I s 1.2031 I p3I s 2.0673 . (5-3)
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5.5 Aircraft (VTOL) System

5.5.1 Robust Helicopter Control (I)

Singh and Coelho [46] used a linear quadratic optimi-

zation approach to design a robust control for a helicop-

ter, based upon the following feedback gain matrix:

[-0.8143 -1.2207 0.2660 0.8260
K
-- 0.2582 1.1780 0.0623 -0.2120

The following closed loop system was then obtained,

(5-4)

.4422 .3052 .1474 .1276
.4708 .8143p3 13.6703 1.2207p3 .3393 + .266p3 .1037 + .826p3

x
3.4358 12.3130 + p1 1.8956 4.1885 + p,

0 0 1 0

where pi is the symmetrized structured perturbation

element. However, the stability of system could not be

verified analytically throughout an entire range of parame-

ter variations. The estimates obtained were well below the

bounds indicated in (5-3). The stability of the system was

confirmed only by simulation. Lyapunov function obtained

from solving the Lyapunov equation

AN S + S A = -I ,

provides the robustness bounds

dpi s 0.0693 11)21 s 0.3804 jp3js 0.6536 .

Applying the optimization algorithm provides the quadratic

Lyapunov function and robustness bounds



67

11.003 -.597 .117 -3.896

-.597 4.446 .695 .001

Swix .117 .695 1.000 .823

-3.896 .001 .823 4.371

1p11 1 0.2209 Ip21 s 1.2113 Ip31 s 2.0815 .

Thus, the bounds obtained were higher than the bounds spe-

cified in (5-3). It must be noted that since only a

limited sequence of possible time-dependent functions may

be inserted as varying parameters, simulation is not always

a reliable test. In contrast, the bounds determined with

the procedure presented in the current study are valid for

all of the possible functions considered.

5.5.2 Robust Helicopter Control (II)

Chen and Chen [20] reconsidered the robust controller

design developed in the Narendra and Tripathi [45] helicop-

ter model. The task was to obtain a less conservative con-

troller: that is, a controller that could guarantee sta-

bility for the parameter bounds in (5-3), with a matrix

that would reflect only minimal gains. The Davison-Fletch-

er-Powell optimization technique was used to determine the

gain matrix, obtaining

[-.1640 .2699 .4511 .4308]
K =

.0364 .1692 -.1066 -.4519
(5-5)

For this matrix, the closed loop system assumed the form
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-.1027 .1762 .1995 -.3446

1c=
-.7275 .1640p3 -1.4728 + .2699p3 2.1852 + .4511p3 .7218 + .4308p3

x
1.1689 -.4446 + pl -3.6757 -3.0841 + p2

0 0 1 0

(5-6)

To allow for a 70 percent increase in parameter bounds, a

new controller, with the gain matrix

0.272 0.083 0.878 1.502
K =

0.024 0.279 0.169 -0.150

was formulated. Note that in comparison to (5-5), some of

the gains increased considerably.

To test the gain matrix in (5-5) for conservatism, and

to determine if there is a need to increase the gains to

ensure robust stability for extended parameter bounds, the

GOLF

SGoLF

4.0530 .3630 -.3680 -1.7870

.3630 .5180 .2810 -.5750

-.3680 .2810 2.2220 1.5920
-1.7870 -.5750 1.5920 5.9110

was developed. The resulting robustness bounds were

pl S .3888 p2I S 2.1308 1 p3I s 3.6613. (5-7)

Comparison with the bounds described in (5-3) indicates

that the bounds in (5-7), obtained by the optimal Lyapunov

function, average approximately 70 percent larger than

those for (5-3). The gain matrix in (5-5) remains conser-

vative and assures robust stability for extended bounds.
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5.6 Selection for Desired Parameter Ratios for an Aircraft

(VTOL) System

Finally, the system described in (5-6) is considered

to investigate different means of enlarging the parall-

elepiped given in step 7 (Section 4.6) to extend the influ-

ence of the algorithm upon the resulting bounds.

a) The bounds for (5-7) were obtained from the ra-

tios of increments described in (5-3):

IA1021 _ 1.2031 IAP31 2.0673
iTiTij 0.2192 ' TEiTIT 0.2192 '

S .3888 I p21 s 2.1308 I p3I s 3.6613.

b) Assigning the ratio

c)

IAPd _ IAP31
1 . 0

74;7 -TAPTI"

results in the following matrix Swid, and the

bounds

Socjiy =

4.115 .452 -.091 -2.213

.452 .687 .150 -.583

-.091 .150 1.497 .911

-2.213 -.583 .911 4.414

Ipd 1 1.4426 I pd 11.4418 I pd 11.4418.

Finally, assigning

IAP21 IAP3110.0 , 6.0epl

yields
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SG0LF =

6.625 .257 -.169 -1.289

.257 .668 .150 -.579

-.169 .150 1.627 1.511
-1.289 -.579 1.511 7.217

I p11 s 0.2783 I p21 s 2.7600 I p3I s 1.6560.

Figure 5.2 demonstrates different optimal parallelepipeds.

P3

Figure 5.2. Comparison of different optimal
parallelepipeds.
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CHAPTER 6

CONCLUSION

The subject of the current investigation has been the

robust stability of nominally linear systems with non-

linear, time-variant structured perturbations. The Lya-

punov direct method and the class of quadratic functions

were used to develop the analysis. An original and less

conservative method for estimation of the perturbation

bounds, in comparison to previously developed approaches,

has been presented. The principal advantage provided by

the proposed method is that it uses the structural features

of the uncertainties to generate the Lyapunov function.

Previous investigations in this problem area have ignored

these features when generating the Lyapunov function.

The Theorem formulated in Section 4.4, provides a com-

plete solution for the problem described above for the

class of quadratic functions. The optimal uncertainty

bounds, pr, pr, i = 1,...,q (i.e., as obtained by appli-

cation of the globally optimal Lyapunov function), cannot

be improved by the application of alternative quadratic

functions. By the improvement of the bounds pi, pi, it is

understood that
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P; S Pi* Pi k Pia i = 1.... ,c1

where at least one of the inequalities remains strong.

None of the other techniques restricted to the use of qua-

dratic Lyapunov functions is able to provide comparable or

better results. For structured perturbations, as shown in

Section 5.3, it was demonstrated that the results obtained

through application of the proposed approach are superior

to those obtained from application of the small gain

theorem. In some cases, small gain theorem may provide

better estimates of the robustness bounds, but it should be

noted that the robustness bounds obtained by GOLF approach

may be further improved by piecewise Lyapunov functions.

As shown in Section 5.6, there are possibly more than

one globally optimal Lyapunov function and set of optimal

bounds. A unique solution for this problem may be found

when the desired proportions between the bounds can be

inserted into the input data. In addition, the type of

problem considered may be easily expanded to consideration

of convex bodies with protruding vertices, rather than

consideration of parallelepiped within a parameter space.

The Theorem described in Section 4.4, provides the

basis for development of a simple and effective algorithm

for Lyapunov function optimization. Only the standard

numerical procedures are required, principally those to

determine the eigenvalues and the eigenvectors of symmetric

matrices. Nonetheless, quadratic Lyapunov functions are
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not always the option best suited for solution of the

robust stability problem. The optimal Lyapunov function

used in Example 1 provided the bounds 1pi(x,t) I < .8660,

whereas the piecewise quadratic Lyapunov function guar-

anteed the bounds 1pi(t,x)I < .999. Since the piecewise

Lyapunov functions were constructed by modifying the qua-

dratic Lyapunov function, the role of the optimal Lyapunov

function is twofold. First, it may provide satisfactory

estimates of the bounds; second, if the estimate is not

sufficient, then the function may be considered as the

first approximation for the iterative process of designing

the piecewise Lyapunov function. In Section 5.4, in the

practical sense, the optimal Lyapunov function effectively

reached the exact robustness bounds. In Section 5.5, for

VTOL aircraft system applications, the practicality of the

proposed method was evident, demonstrating that this method

can be effectively used to directly analyze the behavior

and conservatism of the robust controllers. It further

demonstrated that the procedure is not affected by an

increase in system dimensions. Further consideration of

the direct calculation of SGoL as noted in section 5.3, is

suggested, as well as the extension of presented algorithm

for vector Lyapunov functions, piecewise Lyapunov func-

tions, systems with combined structured and unstructured

perturbations, and determination of the region of stabil-

ity. The most important factor may be the application of
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the technique developed for the current investigation to

the determination of improved gains of robust controllers.
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Appendix A

Proofs of Lemmas and Theorem

PROOF OF THE LEMMA 1:

Lemma 1. Let Q have m repeated maximum eigenvalues, i.e.

= = . = > km.a k . . 2 kn . Then

79

XTQXSA1 V e 4)1,

and equality holds if and only if x is an eigenvector

associated to ki i=1,...m.

Proof. Let Xi and ni be the eigenvalues and the associated

eigenvectors of Q such that X1 = k2 = > km+1 k k An.

Let U be the orthogonal matrix which diagonalize the matrix

Q. Thus

U =
[1r11

112 , ,

and

. , 1-6],

UT Q U = D where D = diag (Xi . . 1) .

Substituting x = U y, we have

xTQx= yT Ur Q Uy=yrDy

= Y1
2

Ai Yi 24.2 + + +Ya2 ln

Since y is also on 41, and Xi = A.2 = kin > kin+ 2. .2 kn

max ( XT QX ) S Al ( + + + Yr1 ) = V x

Thus, the equality holds iff yj = 0 for j > m, therefore



x=Uy=U

-Y1

Y2

Y,
0

0

= Y1111 + Y2 112 + + +Ym ilm
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Since im are the eigenvectors associated to A, thus x is an

eigenvector associated to X1,, and it ends the proof.

PROOF OF THE LEMMA 2:

Lemma 2. Define a form xTQ1x such that it has a single root

E 01, and fulfills an inequality

,CTQI sO Vxe 1.

(a) If a matrix Q2 fulfills

(i) riTQA > 0, or

(ii) reclig = 0, 11 is not an eigenvector of Q1,

then for any e > 0

xrQix + e xT)22x > 0 for some x e

(b) If the matrix Q2 fulfills

TITQA = 0, 11 is an eigenvector of Q1,

then there exist an el > 0 such that for all 0<e<el

xTCsix + e )r7.02x S 0 b(2:e 01

(c) If the matrix Q2 fulfills

< 0,

, 0< e < Cl.

then there exist an e2 > 0 such that for all 0<e<e2
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xriOlx+ ex%x< 0 b(xe .1 , 0< e < e 2'

Proof. Let cr represent the sufficiently small subset of +I

around where there is no other eigenvectors than 11.

Since

xr x< 0 Vxe

a sufficiently small el >0 always exist such that

(max ( T 01 X ) I > max ( c XT 02 X) Vxe C/4)*, e <

thus

T Q1 x+ e x r Q2 x<0 V X E 4)314)*, e < el.

Therefore to prove the part (b) of the Lemma, we only need

to consider the subset cr.

(a) If (i) is fulfilled for any e > 0, we have

nr c 11T 02 = 0 02
T)

> 0.

If (ii) is fulfilled, then

+E11TQ2 =0 +e (0) =0.

By definition, i is the eigenvector of Q if Q =

where k is a scalar (eigenvalue). Since is the

eigenvector of Q1 associated to zero eigenvalue and is not

the eigenvalue of Q2, we have
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01 n = (0) (II) =0 and Q2 n * (n) =0

e 02) n = Ql n 02 * '

Therefore i is not the eigenvector of (Q1+ e Q2), associated

to zero eigenvalue. Thus by virtue of the Lemma 1, for any

e > 0 we have

max (.2.01)1C+ XT 02 21:) > 117. 01 T1 e nT(22 n,

which ends the proof of part (a)

(b) Again note that for sufficiently small e < el, the only

values of x where the form may be positive must be located

in the neighborhood of 1(set 4'). If 1 is an eigenvector

of Q2, then

(Qi + 02) n = n 02 =0.

Thus n is the eigenvector of (Q1 + e Q2) associated to zero

eigenvalue. Therefore for all e < el, (Q1 +e Q2) has a

single eigenvalue at zero and (n-1) negative eigenvalues.

Thus

XT Q1 X + e XT Q2 217S 0 VA:e Si, 0 < e < e1/

which ends the proof of part (b). Note that if in

addition, Q2 satisfies XT Q2 x 5 0 for all x E .1, the above

form will be true for all e > 0.

(c) We can always find an e2 > 0 such that

max (xT0ix) I>max(ex2.02x) Vx401, 0 <e<e2,

then
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x7Q1x+exTQ2x<0 VxC, c < C2,

which ends the proof of part (c).

PROOF OF THEOREM 1:

Theorem 1. Let 11 be the maximal solution for the robust

stability problem in system equation (4-1) obtained by

Lyapunov function V. Let the assumption A be satisfied.

The function V is then globally optimal iff for any matrix

AS at least one of the following three conditions is

satisfied:

(a) there exists 0 < i s k such that the i-th

form AQFi fulfills

AQFi(Ci)> 0

(3) there exists 0 < i s k such that the i-th

form AQFi fulfills

AQFj(C1)= 0

is not the eigenvector of the matrix

of the form AQFj.

(y) AQFj(W = 0 , j = 1,-,k .

Proof. Note that the two conditions (i) and (ii) in

section (4.3) can be reduced to the following condition:

The function V' is better than the function V, if at least

one of the forms QF;, j=1,2, k, evaluated for the para-

meters on the active vertices becomes negative definite,

while the rest remain non-positive.
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Sufficiency. We prove that if at least one of the condi-

tions (a), (0), or (y) is fulfilled, V is globally optimal;

thus all the forms (QFj + eAQFj), j=1,2, k, on active

vertices remain negative semi-definite or attain positive

value for some x E 01. In Lemma 1 we proved that if either

of the conditions (a) or 0) is fulfilled, then

OFi + eA OFi > 0 for some x e (1), V e > 0;

and we also showed that if (y) is fulfilled, all the k

forms (QFj + eAQFj(W) remain negative semi-definite for

all sufficiently small e, and may become non-definite or

positive definite for large e. This ends the proof of

sufficiency.

Necessity. We prove that if V is globally optimal, then

either (a), (0), or (y) holds. Since V is assumed to be

globally optimal, thus for any e > 0 and AQFi the k forms

of (QFj + eAQFj(W) on active vertices should stay negative

semi-definite or attain positive value for some x E 01. If

for all e > 0, the form AQF, attains positive value for

some x E 0 then by means of lemma 2, either (a) or (f) is

fulfilled. If the k forms (QFj + eAQFj(W) on the active

vertices stay negative semi-definite for all sufficiently

small c > 0, then AQF,() = 0, and should be the eigen-

vector of AQF,. If the k forms (QFj + eAQFj(W) on the

active vertices stay negative semi-definite for all c > 0,

then in addition the k forms AQF, should satisfy AQF, s 0

for all x E 01. This ends the proof of necessity.
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Appendix B

Computer Programs

% oplf.m

% This program finds the globally optimal Lyapunov function

% thus providing the optimal robustness bounds in a n

% dimensional linear system with q nonlinear, time variable

% structured perturbations.

Dimension of system

n=input('please enter the dimension of the system :');

Number of parameters

nk=input('please enter the number of parameters :');

Increment of dp and dk

d=input('please enter the increment size of elements of P

matrix (1) :');

dk=input('please enter the increment size of parameters

(.1) :');

dc=d;dkc=dk;

Number of digits accuracy required for the bounds.

per=input('please enter number of digits required for the

bounds (2) : ');
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Entering the nominal and perturbation matrices

as =[];

eigcheck=1;

while eigcheck==1

aa(1:n,1:n)=input('please enter the nominal matrix : ');

if max(eig(aa))<O,eigcheck=2;break

else 'The nominal matrix should be negative

definite.',eigAn=eig(aa)

'Please enter proper nominal matrix.', end,

end

for i=1:nk;i

aa( 1: n,( i *n +1):((i +1) *n))= input('please enter the

perturbation matrix of ki : ');

end

Entering the desired diameter ratio of the

parallelepiped

dr=[1];

if nk>1;

drk=input('please enter the desired diameter ratios of the

parallelepiped in the following matrix form :

[k2/k1 k3/k1 k(nk)/kl] ; ')

dr=[1,drk]; end
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Starting from fixed diameters parallelepiped

par=0;

Starting with all parameters to be zero.

pkk=[0*(1:nk)];

Calculating the nominal matrix ( no perturbations )

[a,pkk]=amat(0,[0*(1:nk)],par,pkk,aa,n,nk,dr);

Calculating the P matrix for linear part

ee=3;

while ee==3

num=input('do you want to start with a specific P matrix

other than using Q=I in Lyapunov equation ?

N0 =1 ,YES=2 :');

if num==1

q=2*eye(n);

p=lyap(a(:,1:n)',q), break

end

if num==2

p=input('please input the starting P matrix.'),break

end,'please enter 1 or 2 '

end

Rounding off the P matrix to three decimals. since

dp>=.001

p=round(1000*p)/1000
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Starting k =0

ef=3;

while ef==3

nun=input('do you want to start k from k=0 ? YES=1 ,

NO=2 ');

if nun==2, k=input('please enter starting value for k :')

, break, end;

if nun==1, k=0, break, end;

end

tt=1;

for i=1:3;

while tt==1

[p,kn,pkk]=optimal(p,k,n,nk,d,dk,par,pkk,per,aa,dr);

if (kn-k)<5*10"(-(per+1)), d=d/10; end

if d<.001, break, end

k=kn;

end

d=dc, if nk==1, break, end

% Now we improve P unilaterally along each parameter.

if nk>1

for par=1:nk;

k=abs(pkk(par));

d=dc; dk=dkc;

while tt==1

[p,kn,pkk]=optimal(p,k,n,nk,d,dk,par,pkk,per,aa,dr);



89

if (kn-k)<5*10^(-(per+1)) , d=d/10; end

if d<.001, break, end

k=kn;

end;end

function [p,k,pkk]=optimal(p,k,n,nk,d,dk,par,pkk,per,aa,dr)

% This subroutine optimizes the Lyapunov function and

% determines the robustness bounds.

% Constructing matrix of the 2Ank vertices

kkk=edges(nk);

alr=0;

% Constructing the dp matrices.

for iii=1:n;

for jjj=iii:n;

dp=0*p;

dp(iii,jjj)=d;

dp(jjj,iii)=d;

vhp=100;saa=0; dd=1;

We now check for the bounds

zz1=1; zz2=1; ss=0;

while ss==0

s=0;dkk=0;k=round((10A(per+1))*k)/(10A(per+1));

if alr==0
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while s==0

as=0;

k=k+dkk

for ver=1:(2"nk);

[a,pkk]=amat(k,[kkk(:,ver)],par,pkk,aa,n,nk,dr);

q=a'*p+p*a;

if max(eig(a'*p+p*a))>O;

if dkk>0 ,if dkk<=10^(-(per+1)), [g,h]=eig(q);

[ll,j]= max(diag(h));

g=g(:,j)/norm(g(:,j)); h=max(eig(q)); end, end

if dkk==0; p=p-saa*dd*dp, k=k-dkk, alr=3; s=1; ss=1;

as=1; break, end;

k=k-dkk; g;kkk(:,ver); h; z=-1; as=1; break

end

if as==1, if dkk>10^(-(per+1)), dkk=dkk/10, else break;

end; end;

if dkk==0,dkk=dk;end

if ss==1, break, end

k,

% Checking to see if we should add or subtract dp to p.

dd=1; dp

[a,pkk]=amat(k+dkk,[kkk(:,ver)],par,pkk,aa,n,nk,dr);

dq=a'*dp+dp*a;

dv=g'*dq*g;

vhn=dv/h;

if (vhn /vhp) >.99, if (vhn/vhp)<1.01, break, end, end;
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vhp=vhn;

if abs(dv)<h/20, break, end

if dv<0 ,p=p+dd*dp, alr=0; zz1=-1; saa=+1;

else p=p-dd*dp, alr=0; zz2=-1; saa=-1;

end

if min(eig(p))<=0, p=p-saa*dd*dp, alr=2; break, end

if zzl*zz2>0, p=p-saa*dd*dp,zzl*zz2, alr=1;break, end

dvp=dv;

end

[a,pkk]=amat(k,[0*(1:nk)]+1,par,pkk,aa,n,nk,dr)

k;p

function kk=edges(nk)

This subroutine provides all the combinations of signs

of the edges.

s=-1

kk3=[]

for i=1:nk

kk2=[];

for j=1:(2^(nk-i+1))

s=-s

kkl=s*[0*(1:2"(i-1))+1]

kk2=[kk2 kkl]

end

kk3=[kk3;kk2]
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end ;

kk=kk3

function [a,pkk]=amat(k,x,par,pkk,aa,n,nk,dr)

% amat.m

% This is the subroutine to find the A matrix for systems

% with "nk" parameters

if par==0, for i=1:nk;

kp(i)=x(i)*abs(k)*dr(i); end ;end;

if par>0, for i=1:nk;

kp(i)=x(i)*abs(pkk(i));

end ;kp(par)=x(par)*abs(k); end;

pkk=abs([kp(1:nk)]); a=aa(:,1:n);

for i=1:nk;

ak=kp(i)*aa(:,(i*n+1):(i+1)*n);

a=a+ak; end;
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Appendix C

Geometrical View

For the generation of a globally optimal Lyapunov function

which provides less conservative estimates of the robust-

ness bounds, the Lyapunov function must be tailored to the

system structure. What effect do changes to the diagonal

and off-diagonal elements of the matrix S have upon tai-

loring the Lyapunov function? This Appendix shows the geo-

metrical view of the effects of the elements of matrix S

upon the constant paths of the Lyapunov functions. In

figure C.1, the circle drawn with a centered line repre-

sents the constant path of the Lyapunov function,

[2 0
V(x) XT

2

1

x .
0

Figures C.1(a) and C.1(b) show the effect, respectively, of

decreasing or increasing S12 on the constant path of the

Lyapunov function. Note that an increase of Sii is similar

to pushing the closed path from the quadrants, where xi xi >

0, causing the path to move inside the other quadrants.

The Lyapunov functions for figures C.1(a) and C.1(b) are

V(x) = XT
-1.5 2

51
X,

and
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V(x) = XT[
12

1.51
x.

.5 2

Figure C.1(c) shows the effect of increasing S11. In this

case, the increase of Sii was similar to pushing the closed

path through xi. The Lyapunov function for Figure C.1(c)

was

V(x) = XT{4 01 .-x
0 2

Figure C.1(d) shows the effect of a simultaneous increase

of Su and S12; the Lyapunov function is

V(x) = xT {4 31 x.
3 2
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Figure C.1. Geometrical view on the effects of
elements of S.

95




