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A MODEL FOR THE MECHANICAL BEHAVIOR OF. IRRADIATED MIXED CARBIDE

SPHERE PAC FUEL PINS

1.0 INTRODUCTION

The safe and economical operation of a fast breeder reactor (FBR)

is greatly influenced by the materials and design of the fuel pins. A

pin consists of a cylindrical tube enclosing the reactor fuel and a

plenum region to accommodate released gaseous fission products. From

a safety standpoint the cladding represents the first barrier to con-

tain the radioactive fuel and fission gases, and therefore the clad-

ding integrity is a primary concern in the pin design. The economical

operation of the reactor requires that the pin withstand high tempera-

tures to maximize thermal efficiency, and high fluences to allow

longer periods between reloading. It is also desirable to keep the

cladding thickness as small as possible to reduce the overall core

material requirements and the parasitic absorption of neutrons.

There are a variety of material and geometry choices for the fuel

and cladding, each having particular qualities that make them attrac-

tive from an economic or safety viewpoint. To determine acceptable

design parameters for various material choices, it is necessary either

to run experiments covering the range of expected reactor steady-state

and transient conditions or to use mathematical models to predict the

behavior of a fuel pin during its in-reactor lifetime. The experi-

mental method, though accurate and conclusive, is very expensive and

time consuming. The mathematical model approach is an alternative

that can provide useful design criteria as well as insight to the pin

behavior. However, it is necessary to demonstrate that the model is

in reasonable agreement with experimental results.

The present work is directed toward a more complete mathematical

model for one particular fuel type (mixed carbide sphere pac). Pre-

vious work by Ades (1979) modeled the thermal behavior of sphere pac

fuel. This model is herein extended to include the mechanical
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response of an irradiated sphere pac pin. The mechanical model pro-

vides the fuel hydrostatic stress required in several of the thermal

model components. It also predicts the cladding stresses and strains

that are required to determine pin lifetimes. The thermal and mechan-

ical models are so closely inter-related that a reasonable fuel pin

model cannot be formulated without treating the two effects simultan-

eously.

Most FBR pins in use today employ a mixed oxide fuel [(U,Pu)02]

in a 20% CW 316 stainless steel cladding. The mixed oxide fuel was

chosen based on its high burnup potential and its known in-reactor

behavior from experience in thermal reactor applications. The stain-

less steel cladding was chosen mainly because of its strength char-

acteristics at high temperatures. There are other fuel and cladding

combinations (known as advanced fuels and advanced claddings) that

could lead to significant improvement in the economics and safety of

FBR operation. Among the advanced fuels are the mixed carbides -

[(U,Pu)C], carbonitrides [(U,Pu)CN], nitrides [(U,Pu)N], and metal

fuels. The advantage of the advanced fuels is due largely to their

higher thermal conductivity, that allows higher linear power ratings,

and to their shorter doubling time resulting from the lower specific

fissile inventory and higher breeding gain (Waltar and Reynolds,

1981). These fuels are at a disadvantage, however, by their increased

swelling due to retention of fission products. A variety of stainless

steel alloys are being evaluated for use as FBR fuel pin cladding.

Reduced swelling at high fluences is the main advantage of these

advanced alloys.

The overall pin performance is also influenced by the fuel geome-

try. Usually the fuel is formed in sintered cylindrical pellets

(90-95% ID) designed so that some nominal gap exists between the fuel

and the cladding at room temperature. This gap is necessary to

accommodate some of the differential thermal expansion of the fuel and

cladding and to increase the initial pin average (smear) porosity so

that some of the swelling due to fission products can be taken up
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within the fuel. At some time after reactor startup, the initial gap

closes and the resulting fuel-cladding mechanical interaction (FCMI)

becomes an important phenomena that can determine the lifetime of the

pin. Large cladding strains resulting from FCMI may lead to pin

failure by a breach of the cladding or excessive cladding strain.

Vibro fuels are being investigated as an alternative fuel geome-

try. These fuels consist of either small irregular fuel particles

(VIPAC fuel) or microspheres of various sizes (sphere pac). The pins

are manufactured by loading the fuel particles into the cladding and

vibrating the pin to ensure uniform and dense packing. In the case of

FBR sphere pac fuel, the spheres are of two sizes mixed together so

that packing densities around 75-80% TD are obtained. Besides provid-

ing a simpler and cleaner pin manufacturing process (Stratton, 1977),

there is evidence that the sphere pac geometry has less detrimental

FCMI than pellet pins of similar smear density (Fitts and Miller,

1974; Barner, et al., 1981; Smith, et al., 1974, 1977; Bart, 1982).

This is especially beneficial for the advanced fuels that are prone to

higher swelling rates.

A model for predicting the behavior of sphere pac mixed carbide

fuels under steady-state operating conditions is described in this

work. In the remainder of this first chapter the physical character-

istics are given. The important phenomena occurring during irradia-

tion are described including their interactions, and related modeling

work is reviewed. The chapters that follow concentrate on the mechan-

ical model for the sphere pac fuel pin including the governing equa-

tions, elastic and plastic constitutive relations, creep, swelling,

sintering, and other important phenomena in the fuel and cladding.

The numerical scheme used to solve the coupled thermal-mechanical

model is described, and the results of the numerical simulations of a

sphere pac fuel pin irradiation experiment are presented. Finally,

some conclusions are drawn as to the model's strengths and weaknesses

and recommendations are made for further experimental and analytic

investigations.
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1.1 SPHERE PAC FUEL PIN DESCRIPTION

The physical characteristics of a sphere pac fuel pin given in

this section are taken from the more complete description by Ades

(1979). The fuel microspheres are manufactured by the Swiss Federal

Institute for Reactor Research (EIR) using a wet gelation process

(Stratton, 1977). The fuel consists of two sphere sizes, the larger

having diameters between 600 and 800 microns and the smaller in the

range 40 to 60 microns. The smaller spheres are small enough to

easily infiltrate a packed bed of large spheres. The mixed carbide

fuel, (U, Pu)C, is usually produced with the heavy metal atoms con-

sisting of 85% uranium and 15% plutonium. The spheres have nominally

about 94% of the fuel theoretical density. The grain diameters of the

smaller spheres range between 5 and 20 microns while those of the

large spheres are between 20 and 60 microns.

For most of the experiments run so far, the cladding used was

AISI M 316 stainless steel, 20% cold worked. A solid UC pellet is

usually placed at the sealed end of the cladding before filling with

the fuel spheres. The filled pin is vibrated resulting in fuel smear

densities between 75% and 80% TD. Another UC pellet is placed at the

top of the fuel column and a light retaining spring inserted to hold

the fuel in place during shipping and handling. A gas plenum volume

is included in the pin (usually above the fueled region) to provide

space for the fission gas released during irradiation. The plenum and

the void space in the fuel region are filled with helium at just above

atmospheric pressure before sealing the cladding. The pin dimensions

differ for the various experiments, but usually the outside cladding

diameter is about 8 mm with a wall thickness of about 0.5 mm.

1.2 SPHERE PAC FUEL PIN IRRADIATION BEHAVIOR

The behavior of a sphere pac fuel pin during irradiation is

briefly described in this section to provide an understanding for some
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of the assumptions made in the model. Many complex and interacting

phenomena are involved in the thermal-mechanical response of a fuel

pin and none of them can be fully described without referring to

others. Therefore, there is no way of ordering this discussion so

that only previously defined concepts are referred to. In an attempt

to order the phenomena, the following is a list of the most important

phenomena as they occur chronologically during irradiation (keeping in

mind that, at least to some extent, all the processes can occur

simultaneously).

1. A conceptual diagram of the unirradiated sphere pac fuel is shown

in Figure 1.1. The small microspheres are packed into the inter-

stitial spaces of the large sphere array. The cross section

shown does not pass through the equator of all the large spheres,

giving the appearance that there are more than two sphere sizes.

2. As the reactor is brought to full power, the fission process

begins to generate heat in a fresh sphere pac fuel pin. The heat

density depends on the magnitude of the flux and the local fuel

density, burnup, and chemical composition of the fuel. The

resulting temperature profile depends on the fuel and cladding

conductivity, the coolant temperature, and the heat density. As

the reactor power rises the fuel temperature increases due to the

increased fission rate and the rising coolant temperature.

3. The thermal expansion coefficients for the fuel and the cladding

are about equal, but the higher fuel temperatures result in

higher thermal expansion rates for the fuel. The interaction

between the fuel and the cladding puts the fuel under a compress-

ive load. If the fuel does not slip at the fuel-cladding inter-

face, the cladding will be subject to axial tensile stress as

well as the radial and tangential stress resulting from the

internal radial pressure exerted by the fuel. Due to the radial

temperature variation in the fuel and the no-slip condition at

the interface, the fuel is put in some deviatoric stress state

(the stress state less the hydrostatic stress). The
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Large
Spheres

Small
Spheres

FIGURE 1.1. Conceptual Diagram of an Unirradiated
Sphere Pac Fuel Pin

unrestructured sphere pac fuel, like any granular material, can

support a shear load proportional only to the compressive

hydrostatic stress. This implies that there is the potential for

plastic flow in the fuel from the very beginning of the reactor

startup. Plastic flow may also occur under hydrostatic compres-

sion because of the large contact stresses developed.

4. The high fuel temperatures and compressive loads on the sphere pac

fuel results in the formation of neck regions between adjacent

spheres (initial stage restructuring). The neck results from the

migration of atoms by various mechanisms from the contact region

or the free surfaces of the sphere. The necks have an important

influence on the thermal and mechanical properties of the fuel.

Before the necks are established most of the heat transfer in the

fuel takes place through the gas occupying the voids between the
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spheres. As the necks grow, more heat passes through the contact

region, and the effective thermal conductivity is increased. The

necks also make the bed elastically stiffer and increase the

shear strength. If the neck growth mechanism takes atoms from

the contact region, the sphere centers approach one another.

This effectively shrinks the sphere bed, relieving some of the

compressive stress imposed by the cladding. There is a negative

feedback in this restructuring phenomena since the two driving

forces (temperature and compressive stress) are reduced as the

process continues. Another restructuring phenomena that occurs

simultaneously is grain growth. At high temperatures, grains

with convex boundaries are eliminated as their atoms pass across

the boundaries to the more stable concave boundaries of larger

grains. [See Ades (1979) and Matthews (1979) and Section 5.2 of

this report for discussions on restructuring in mixed carbide

sphere pac fuel.]

5. As the fuel temperature increases the temperature and, 'therefore,

pressure of the free gas in the plenum and fuel void space

increases. This tends to increase the effective thermal conduc-

tivity of the fuel bed and is an additional force acting on the

cladding.

6. The fission events leave fission products (stable gas atoms and

solid fission products) that accumulate in the fuel grains. The

solid fission products result in immediate swelling of the fuel

grains and therefore create additional FCMI. The gas atoms dif-

fuse through the grains and collect in bubbles or existing pores

in the fuel. The size of the pores and bubbles may be influenced

by the hydrostatic stress in the fuel. Eventually the bubbles

grow to such a size that they contribute significantly to the

swelling of the fuel. The swelling is a function of fuel temper-

ature and burnup.
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7. The deviatoric stresses developed in the fuel and cladding are

relieved to some extent by creep. Thermal and dislocation creep

is important at high temperatures, but significant creep also

occurs at low temperatures due to the fission process. In the

cladding this fission-induced creep is.the dominant mechanism.

If the stresses are high enough, plastic flow may occur in the

cladding. The cladding is also subject first to some initial

densification and then to swelling resulting from the neutron

flux.

8. In the central hotter region of the fuel, necks between spheres

continue to grow and eventually begin to interfere with one

another, marking the end of initial stage sintering. At this

point the thermal mechanisms for neck growth rate begin to

increase and closed pores are formed at the sphere interstitial

spaces. The central region of the sphere pac fuel no longer

looks like a sphere bed but rather like a porous pellet and, as

such, has the thermal and mechanical properties of pellet fuel.

The newly formed pores become more spherical in shape as they

migrate up the temperature gradient toward the center of the

pin. The fuel may continue to densify by hot pressing

mechanisms. Figure 1.2 is a conceptual diagram of the sphere pac

fuel when it has restructured to this extent. Blank (1977) has

described the restructuring in mixed carbide pellet fuel in terms

of four fuel zones, each with distinct restructuring characteris-

tics. The same zones can also be recognized in sphere pac fuel

and are noted in Figure 1.2. The characteristics of each zone

are given below.
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1 1
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FIGURE 1.2. Conceptual Diagram of an Irradiated Sphere
Pac Fuel Pin
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Zone I - This is the central region of the pin and fuel temper-

atures usually greater than 1300°C are needed for this

zone to develop. The pores are large with diameters

about the same as the grain diameter (20-500m).

Zone II - In this zone the pores and grains are large, but the

pore diameter is less than the grain size. This

region occurs at temperatures in the range 1150 to

1300°C, with slightly higher radial temperature grad-

ients than in Zone I. The grains are elongated

parallel to the temperature gradient. The porosity is

less than the average initial fuel porosity since

pores from this zone migrate into Zone I.

Zone III - The outer edge of this zone corresponds to the outer

edge of the restructured (pellet-like) region of the

sphere pac fuel. The temperature is around 1100°C,

and there is a heavy accumulation of fission gas on

grain boundaries. The grains in this zone are

equiaxed.

Zone IV - In this zone the sphere pac fuel retains its particu-

late nature although there may be some neck growth

between spheres. The grain structure and porosity are

essentially the same as that for unirradiated fuel.

The porosity profile associated with the depicted pin

is also shown in Figure 1.2. In carbide fuel the

central region may develop a large porosity, but no

central hole develops as in oxide fuel. Whether or

not all the zones develop in a given axial section of

the fuel depends on the coolant temperature and linear

power. In low power pins only Zones III and IV may be

observed. The changes in porosity associated with the

restructuring affect the thermal and mechanical

properties of the fuel and the local heat generation.
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9. The fission gas continues to accumulate in the fuel grain and

diffuses into bubbles on grain boundaries. Small fission gas

bubbles are swept up by migrating pores and bubbles and by moving

grain boundaries. Eventually some of this gas is released from

the fuel to the free gas. The introduction of fission gas into

the free gas decreases the gas conductivity and, therefore, the

effective fuel conductivity in the outer regions of the fuel

where little restructuring occurs. This is partially offset by

the conductivity increase due to increased gas pressure. The

increased gas pressure also constitutes an additional load on the

cladding.

10. The chemical components of the fuel can migrate from their

initial location affecting the local power density. In mixed

carbide fuel, plutonium has been observed to migrate down the

temperature gradient (Kleykamp, 1977) resulting in a somewhat

flattened radial temperature profile.

11. If the combined effects of the fuel shrinkage and cladding swell-

ing are large enough, the radial load imposed on the cladding by

the fuel may become small enough to allow slip at the

interface. This affects the stress distribution in both the fuel

and cladding. Further cladding swelling or fuel shrinkage could

lead to an opening of a gap between the fuel and cladding,

increasing the thermal resistance of the pin and causing the fuel

temperature to increase.

12. The cladding mechanical properties are functions of the tempera-

ture and fluence. The stiffness and strength decrease with

increasing temperature but increase with increasing fluence. If

the cladding deforms plastically the effective yield strength

increases slightly due to work hardening. The fuel mechanical

properties are similarly affected by temperature.

13. If the accumulated inelastic strain in the cladding is large

enough, then pin failure can occur through cladding rupture. The
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cladding failure limit is given either by a maximum allowable

inelastic strain or the cumulative damage function (CDF) that

assigns a damage fraction for each period of time that the clad-

ding operates at a given stress level and temperature. Failure

is predicted when the cumulative damage fraction equals unity.

14. The thermal cycling resulting from normal reactor power cycles

can also affect the mechanical performance of the pin. The clad-

ding strength can be reduced by fatigue resulting from the

cycling.

15. Finally, off-normal transients (undercooling, overpower, etc.)

can result in premature pin failure due to large cladding stress

and strains. The pin response during the transient depends on

all of the pin conditions at the time of the transient as well as

the particular imposed driving force (e.g., sudden rise in

power).

This list represents the most important phenomena, either

observed or postulated, occurring in a mixed carbide sphere pac fuel

pin. There may be other phenomena that are equally important but not

as yet identified. Figure 1.3 shows schematically the interaction of

these phenomena. Only the direct influencing phenomena are indicated

by arrows. An arrow with points at both ends indicates a direct feed-

back between two phenomena. The operating conditions and physical

parameters (pin dimensions, etc.) influence all the phenomena in some

way and are also included in the diagram.

Most of the phenomena are modeled using one or more differential

equations so that the prediction of the overall pin thermal-mechanical

behavior requires large computer codes and the development of such a

code is one of the objectives of this research.
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1.3 REVIEW OF PIN MODELING CODES

A comprehensive review of codes developed to predict various

aspects of fuel pin behavior is given by Ades and Peddicord (1978a,

1978b) and Ades (1979), so only a brief review is presented here with

emphasis on the mechanical model. Most of the codes were developed

for application to LMFBR oxide fuels in pellet form. The most

comprehensive and widely used code in the U.S. is LIFE (Billone, et

al., 1977). For the mechanical model the pin is divided into a number

of annular rings and an analytic solution obtained for each ring that

depends on the boundary conditions imposed by adjacent rings. The

stress distribution throughout the fuel and cladding is obtained by

solving for the interface loads and deformations. Generalized plain

stress is assumed and the effects of creep, fuel cracking, and fuel-

cladding slip are included. The CYGRO (Newman, et al., 1977) code

solves the same equation set as LIFE but uses a finite-element

method. In Germany the SATURN (Kummerer, et al., 1971) and URANUS

(Lassman, 1977) codes have been developed and have capabilities simi-

lar to LIFE. There are several codes, including COMETHE (Godesar, et

al., 1970) and DEFORM (Merckx, 1968) that treat most of phenomena

modeled in LIFE but incorporate more empiricism for some of the models

(e.g., swelling and gas release). There are also codes available that

are concerned with only one or more aspects of the pin behavior. In

particular the CRASH (Guyette, 1970) code models only the cladding and

requires the fuel radial dimension or pin internal gas pressure from

another code.

Modifications have been made to some of the above codes to make

them applicable to carbide pellet fuel. The LIFE-4C (Liu and

Zawadzki, 1981) code is a modified version of LIFE (via UNCLE)

(Billone, 1979) for carbide fuel and treats all the phenomena con-

sidered in LIFE.

Since all of these codes were developed for pellet fuel pins, one

of the main concerns is closure of the gap between fuel and cladding,
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and much of the modeling is based on whether the gap is open or

closed. Sphere pac fuel pins do not have an initial gap, so the

modeling approach is considerably different. Further, although fuel

structuring occurs in both pellet and sphere pac fuel, it plays a much

more important role in the overall thermal-mechanical behavior in

sphere pac fuel pins. Finally, the nature of the sphere pac material

(granular versus solid) dictates that a different modeling approach be

used. It is known that the FRUMP (Haynes and Wilmore, 1973) code is

being developed to model advanced fuels, including sphere pac, but

there has been no recent publication of its progress. For these rea-

sons, none of the available mechanical models seemed suitable for

modeling a sphere pac fuel pin, and it was evident that a mechanical

model starting from basic principles was needed.

1.4 RESEARCH OBJECTIVES

The primary objective of this research is to provide a capability

to predict the thermal-mechanical behavior of an unirradiated mixed-

carbide sphere pac fuel pin under steady-state operating conditions.

As outlined by Ades (1979), the overall behavior can be broken down

into four categories:

1. a neutronics model that provides the local heat generation rate

in the pin

2. a thermal model that predicts the temperature distribution, fis-

sion gas behavior, and restructuring

3. a chemical redistribution model that predicts the local concen-

tration of heavy metal atoms

4. a mechanical model that predicts the cladding stresses and

strains and the hydrostatic fuel stress required in the thermal

model.
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The thermal model was developed by Ades (1979) and constituted

the SPECKLE-I code. To eliminate the other three components of the

model, it was assumed that the fission rate was radially uniform, that

there was no chemical redistribution, and that the fuel hydrostatic

stress was constant (50 MPa) through the operating history of the

pin. The SPECKLE-II (George and Peddicord, 1981) code was essentially

a rewrite of SPECKLE-I with improvements to the numerics, restructur-

ing model, and user conveniences. A neutronics model has been

developed by Robinson (1981) to be incorporated into the SPECKLE-III

code and a chemical redistribution model is being developed.

The development of a mechanical model includes:

1. The important phenomena must be identified and the necessary

equations developed to predict the response. Justifiable simpli-

fying assumptions must be made so that a tractable solution may

be obtained. The results and experiences of the developers of

other fuel pin behavior codes can be used for much of the work

required in this first step.

2. The elastic and plastic constitutive properties of the pin com-

ponents must be obtained. This is not a major obstacle for the

cladding, since these are in use in other pin behavior codes.

For the fuel, however, there are no experimental data or analytic

models that provide the mechanical material properties of a

restructuring fuel bed. In this research, models are developed

that give two elastic constants and the plastic constitutive

relations of a restructuring fuel bed that depend on the material

properties of the spheres themselves, neck growth, hydrostatic

compression, bed porosity, and temperature. The model can be

used for a randomly packed array of uniform spheres or the binary

array of the EIR fuel.

3. Appropriate expressions must be obtained for the fuel and clad-

ding creep and swelling rates. Here again, previous work in fuel

pin modeling can be relied upon.
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4. A numerical scheme must be devised that can solve the necessary

equations for the mechanical model in a reasonable amount of

computer time. This scheme must mesh with the previously devel-

oped thermal model solution scheme as the two models are closely

coupled by the temperature and fuel hydrostatic stress.

The results of the above effort must be compared with existing

experimental data and the other analytic or computer solutions to

verify the basic assumptions and solution procedures. Conclusions can

then be drawn concerning the range of application of the code and

areas where more research is required.

The complete thermal-mechanical model in its coded form (SPECKLE-

III) is not intended to be the definitive model for mixed carbide

sphere pac fuel pins. Rather, it represents a first effort and pro-

vides a framework for the extension and improvement of the model seg-

ments as more experimental and analytic experience is obtained.
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2.0 ELASTO-PLASTIC EQUATIONS

The set of equations required for the solution of general

problems in elasto-plastic materials consists of 1) equilibrium

equations to ensure force and momentum equilibrium, 2) kinematic

relationships that give the strain in terms of the local deformation,

and 3) constitutive equations that relate the strains to the

stresses. The equilibrium equations are linear, but the kinematic and

constitutive relationships are, in general, nonlinear. For the

elasto-plastic analysis of a fuel pin, Figure 2.1, a number of

assumptions are made that considerably simplify the equation set.

These assumptions are:

1. The length of the pin can be broken up into a number of shorter

segments and within each segment a state of generalized plane

strain exists in the fuel and the cladding separately, i.e., the

axial strains in the fuel and cladding are independent of radial

position but not necessarily equal.

2. The solution is axisymmetric.

3. Both the fuel and cladding materials are isotropic.

4. The deformations are small, i.e., the nonlinear terms of the

kinematic relations are neglected.

Under these assumptions the equilibrium equations for one axial seg-

ment reduce to

da
r r

- a
'

0Tr

where a
r

and a
0
are the radial and tangential normal stress

components.

2 . 1
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FIGURE 2.1. Coordinate System for Fuel Pin Analysis



The linear kinematic relations are

Cr

{e} = ce

eZ

du/dr

u/r

constant

where Cr, ee and are the radial, tangential, and axial normal

strain components respectively, and u is the radial displacement.

20

2.2

The nonlinearities in the kinematic relations have been removed

by assumption 4 above, but the stress-strain constitutive relation is

still nonlinear. This nonlinearity arises from the inclusion of plas-

tic flow in the analysis and from the nonlinearity of the elastic

stress-strain relationship. The elastic stress-strain relation can be

written as

{ce}
2.3

where {Ee} is the elastic strain, {a} is the stress state,

and represents a combination of parameters that affect the stress-

strain relation, e.g., temperature, porosity and fuel restructuring

effects on the elastic moduli.

The deformation of an elasto-plastic material depends on the

stress-strain history as well as the current stress state. For this

reason it is helpful to express the stress-strain relationship as a

rate equation, thus

. .

{e
e
} = e( {a}, 2.4
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where the overdot indicates a time rate of change. Carrying out the

differentiation gives

e . ae
{e } = {a).3(al

An elastic modulus matrix is defined as

[E] =
-1 ae

D{a}

2.5

The specific form of [E] is discussed in Chapters 3 and 6. A strain

rate due to elastic nonlinearities is defined as

.en ae
CE 1 = a C

This strain rate results from some change in the material elastic

properties at constant stress. Combining the above definitions with

Equation 2.5 gives

{e}
[E]-1 {en}

The total strain consists of elastic deformation, plastic flow,

thermal expansion, creep and fission induced swelling giving

2.6



22

[E]-1 {Ep}
{et} {Ec} {Es} {Een}

The last four strain rate terms are combined to give an initial strain

rate {e}. In the numerical scheme used to solve the equation set it

is assumed that {0} can be specified from the previous time interval

stress and strain state, i.e., this term is treated explicitly in

time. For the remainder of the development in this section then, it

is assumed that {0} is specified. The various contributions

to {e} are discussed in Chapters 5 and 6. Using the definition of

the initial strain rate

o .t .c .s .en
{c } = {c } + {c } + {c } + {c }

the stress-strain relation can now be expressed as

{1 = [E]-1 01 + {e} + {e} 2.8

Following the development by Zienkewicz (1969) the plastic strain

rate can be related to the total strain rate as shown in the

following.

From the generally accepted theory of plasticity (Mendelson,

1968), a material begins to yield plasticity upon loading when a sur-

face in stress space (called the yield surface) is reached. The shape

and position of the yield surface depends on the material properties

and the loading history. The yield surface can be expressed as
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Mal, (2}, x) = 0 2.9

where x represents a combination of parameters (e.g., restructuring,

temperature, etc.) that influences the shape or location of the yield

surface. If for a given set of conditions f < 0, then the material is
in an elastic state and any loading or unloading will be elastic as

long as f remains less then zero. Continued loading from this state

causes f to increase (by definition). When f=0 the material is in an

elastoplastic state and further loading will result in plastic flow.

Unloading (f decreasing) from a point on the yield surface will be

accompanied by elastic strains only.

The yield function determines whether or not the material will

yield upon loading but not how it yields, i.e., the relative magnitude

of the plastic strain components are not determined. This information

is obtained from a plastic potential function and the normality

rule. The plastic potential function is another surface in stress

space and the normality rule states that the plastic strain increments

must be normal to the potential surface. The potential function can

be expressed as

g({'1}, {2}, x) = 0

The normality condition requires that

p ag
(e } = dX

3a

2.10

2.11

where dA is a non-negative scaling factor to be determined.

Loading from one elastic-plastic state produces another elastic-

plastic state during which the yield function remains constant and

equal to zero giving



af af afdf = 0 =
T

{do} +
T

{de
p
} + dx3a

30) aX

If Equation 2.12 is rewritten as a rate expression

af T . . af
X

0 = {a} +
af p

} + 15i-
acP
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2.12

2.13

and combined with Equations 2.8 and 2.11, then the scaling factor can

be obtained giving

f T . af
C-a-71 [E] {el - {-70

T
[E] {e} + -93.1

dx °u
T ,f T

{-6} [E] {4} {ly} 4}
ae

If the plastic modulus matrix is now defined by

[P]
49,1-} 4}T [E]

f
ag

1 {

af cag

3er

Ll [E] {ry aa3a

2.14

2.15

then using the normality rule (Equation 2.11) the plastic strain rate

can be given in terms of the total strain rate and the initial strain

rate as

{g} = [P] [{} - {e}] + {g13} 2.16
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The last term on the right hand side of Equation 2.16 is the plastic

strain rate that results from a change in material properties (e.g.,

due to a temperature change) rather than a change in loading. It is

defined by Equations 2.11 and 2.14 as

of 3g

{Epp}-, (171

3f 3f ag
(7,31 [E] {TO

af
{-5-c7}

aEp

Finally, substitution of Equation 2.16 into Equation 2.8 gives the

elasto-plastic stress-strain relation

2.17

{Z:r} [E] ([I] - [p]) (al - {.°})+ [E] aPP1 2.18

where [I] is the identity matrix.

If the material is not in an elastic-plastic state then [P]

and {03} are equal to zero and Equation 2.18 reduces to the elastic

incremental stress-strain relation.

The expression for the plastic modulus matrix can be simplified

if it is assumed that the material does not strain or work harden

(perfect plasticity model) which implies that

1..f n
u

ae

For many materials experimental evidence indicates that the yield

surface and the plastic potential surface are the same surface. The

normality condition then is referred to as the associated flow rule.

Under this assumption the plastic modulus matrix for a perfectly plas-

tic material becomes



3f 3f T{} [E]
[P] ac; T acj

af af
{-5.31 [E] {--3}

26

2.19

Whether or not these two assumptions are valid for the materials of a

sphere pac fuel pin is discussed in the sections on the plastic con-

stitutive relations.

The equilibrium equations (Equation 2.1), the kinematic relations

(Equation 2.2), and the stress-strain relationship (Equation 2.18)

constitute the basic equation set to be solved. Before they can be

solved the initial strain increment must be specified (Chapter 5) as

well as the elastic modulus matrix, the yield function, and the plas-

tic potential function. These later three constitutive relationships

are the subject of the next two chapters.
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3.0 STRESS-STRAIN RELATIONSHIPS

The stress-strain relationship (Equation 2.18) linearly relates

the local stress and strain rates. The proportionality matrix is made

up of the elastic and plastic modulus matrices. For sphere pac fuel

these modulus matrices can be expected to depend on the elastic and

plastic properties of the sphere material, load state, packing

density, particle size distribution, particle packing arrangement,

particle surface characteristics and, as the fuel begins to restruc-

ture, on the radius of the necks joining particles. As restructuring

continues into the intermediate and final stages, the modulus matrices

will be influenced by the fuel porosity, pore size and shape distribu-

tions, and the material properties of the continuous fuel matrix. The

material properties of the fuel spheres will be functions of the local

temperature and the intrasphere porosity introduced during the fabri-

cation process.

Some experimental data exists for the temperature and porosity

dependence of the elastic properties of (U,Pu)C. However, there is no

data that provides the elastic properties for a sphere pac bed under-

going initial stage restructuring. Although very desirable, it does

not appear that such data will be available in the near future. As an

alternative, a model has been developed for the elastic properties of

a restructuring sphere bed that depends only on the previously

measured physical properties of the material that make up the (U,Pu)C

spheres. Models for both single-size sphere arrays and binary arrays

of the EIR fuel type are developed in this chapter.

3.1 BACKGROUND

Several models have been proposed to describe the elastic

behavior of a packed bed of spheres. All of these models rely on the

work done by Hertz (Timoshenko and Goodier, 1951) on the contact

between two spheres and the later extensions to this theory by Mindlin
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(1949), Cattaneo (1938), and Mindlin and Deresiewicz (1953). Accord-

ing to Hertz, when two spheres (see Figure 3.1) of the same diameter

are brought into close contact by opposing forces, N, that are

directed along the line of the centers, the center-to-center approach

is given by

2

= (1) 3.1

where n is the approach distance, R is the sphere radius, and a is the

radius of the contact area. The contact area radius is given by

nm 1/3
a/R =

R`
3.2

where Q = 3(1-v
2
)/4E with v and E being Poisson's ratio and Young's

modulus for the sphere material. The theory also predicts the normal

stress distribution at the contact surface as

3N
(a2

21

2Tra

1/2
a ka - p

3

where p is the distance from the contact center.

3.3

Equations 3.1 through 3.3 indicate the nonlinear nature of the

elastic deformation of spheres in contact, with the center approach

proportional to the 2/3 power of the normal force. Hertz's analysis

was based on the assumptions that a/R<<1, the contact surface is

planar, and there are no tangential components to the traction on the

contact surface, i.e., the sphere surfaces are frictionless. Numerous

experiments have confirmed the contact theory for cases that fall

within the assumptions (Handbook of Eng. Mech., 1962).



FIGURE 3.1. Schematic for Two Spheres in Contact

Cattaneo (1938) and Mindlin (1949) extended the Hertz contact

theory to include tangential stress on the contact plane. For a set

of spheres compressed by a normal force N and subject to a shearing

force T, the sphere centers displacement in the direction of T is

given by

2-v
v 4Ga

where G is the shear modulus.

3.4
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This solution was based on the assumption that there is no slip

at the contact plane. The solution predicts infinite shear stress at

the outer edge of the contact area. To remove this physically unreal-

istic result, Cattaneo and Mindlin further extended the contact theory

by allowing slip to occur in the outermost annular region of the
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contact area. Within this annular region the shear stress, T, is

related to the normal stress by the coefficient of static friction Cf,

so that Va = Cf. Under this assumption the equation for the

tangential displacement becomes

3(2-v)CfN
T 2/3

8Ga [1-(1 T7T) ] 3.5

Johnson (1955) verified experimentally that the response to a cyclic

tangential load was an agreement with Equation 3.5. Since a shear

load is accompanied by some slip, the tangential displacement does not

vanish when the load is removed, i.e., there remains some permanent

displacement. The contact response to a normal and tangential load is

therefore inelastic as well as nonlinear. Equation 3.5 was based on

the assumption that the normal load was applied first and then the

tangential load applied. Mindlin and Deresiewicz (1953) solved the

problem for arbitrary rates of normal and tangential load

application. In this case the tangential displacement depends on the

entire loading history. The effect of twisting moments about the line

through the sphere centers has also been investigated and torgue-twist

relations have been derived (Deresiewicz, 1954).

The results of the extended Hertz contact theory have been used

to predict the behavior of sphere arrays. Duffy and Mindlin (1957)

obtained differential stress-strain relations for an assembly of

spheres in a face-centered cubic packing. The stress-strain relations

were obtained by considering a face-centered cubic unit cell subject

tosomesurfacestressesa..ij .Then by considering the additional

deformation of each contact point when the surface stresses were

changed by an amount da..1J , average displacements of the unit cell

surfaces were obtained giving an incremental stress-strain relation.

Due to the inelastic behavior of the sphere array, the initial contact

forces and displacements (corresponding to surface stress au) depend
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on the entire loading history. For some simple loadings (hydrostatic

stress, e.g.) the incremental stress-strain relations can be

integrated to provide the initial contact forces and displacements.

The theory was checked experimentally by constructing a bar made up of

identical spheres in a face-centered array enclosed by a thin rubber

membrane. The membrane was then evacuated to hold the spheres in

place and provide an initial normal contact load for each sphere

pair. Compression wave speeds through the bar were measured for var-

ious confining pressures. The theory-predicted wave speeds were

lower than those observed experimentally when the forces tangent to

the contact were neglected. Much better agreement was obtained when

the theory included the effects of tangential forces. Both theories

predicted the experimentally observed dependence on confining pressure

(wave speed proportional to 1/6 power of confining pressure).

Similar incremental stress-strain relations were developed for

simple cubic (Deresiewicz, 1957), hexagonal close packed (Duffy,

1959), tetragonal-sphenoidal and cubical-tetrahedral (Marklouf and

Stewart, 1967) sphere arrays. All of these regular packings exhibit

anisotropic behavior whereas a randomly packed bed is generally con-

sidered isotropic. There have been several attempts to predict the

elastic constants for a randomly packed bed. Brandt (1955) considered

a random sphere array with successively smaller spheres occupying the

interstitial spaces left by the next larger size. Using the Hertz

theory with normal contact loads only, Brandt calculated the volume

change for each set of sphere sizes when the aggregate was subjected

to some compressive hydrostatic load and obtained an expression for

the bulk modulus. From the bulk modulus a linear wave speed was cal-

culated and compared to data taken on sandstone. The results were in

good agreement and again showed the 1/6 power dependence on the con-

fining pressure. Brandt's model does not provide any information for

the second elastic constant.

A randomly packed array can be considered to consist of small

regions of various regular packings oriented at various angles with
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respect to some reference coordinate system. The isotropic aggregate

therefore consists of anisotropic parts oriented at various angles.

Takahashi and Sato (1949) developed a relationship for the elastic

constants of an isotrope made up of smaller parts each having the same

anisotropic properties but at different orientations. The relation-

ship was developed by assuming that each of the anisotropic parts was

subjected to a common strain field and calculating the volume average

strain energy. The volume average strain energy could then be used to

obtain the isotropic elastic constants. This is analogous to the

Voight (see eg, Wu and McCullough, 1977) model for composite materials

and provides an upper bound for the material stiffness.

Yanagisawa (1978) attempted to extend the results of Takahashi

and Sato by considering the random array to consist of various regular

packings oriented at arbitrary angles. He quantified the distribution

of regular packings by experimentally determining the distribution of

the number of contacts per sphere (coordination number) in a random

bed of glass spheres. Each of the regular packings has an associated

coordination number so that the regular packing distribution could be

obtained from the coordination number distribution. The elastic pro-

perties of the aggregate were than calculated by applying the results

of Takahashi and Sato (1949) to anistropic stress strain relations for

each of the regular packings and taking an average weighted by the

packing distribution. The theory predicted shear modulus was approxi-

mately 60% higher than experimental results on glass spheres and

sand. The model did show, however, the correct dependence on the bed

porosity and confining pressure.

More recently Digby (1981) developed a model for the elastic

constants of a random sphere array where the spheres could be

initially bonded together across small areas. The model considered a

single sphere out of an array of spheres under hydrostatic

compression. Using the Hertz contact theory Digby calculated the

resultant force on the sphere when it was subjected to contact forces

required to provide the contact deformation consistent with a uniform
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strain increment in the sphere array. From these results he was able

to obtain expressions for two elastic constants. The model reduced to

Brandt's model for the case with no adhesion. Assumptions made for

the model require that the radius of the initial bonding area is small

compared to the sphere radius. No comparisons with experimental data

were presented.

The models for the elastic behavior of sphere arrays and their

comparisons with experimental data demonstrate that reasonable results

can be obtained using models based on the Hertz contact theory. None

of the models, however, can be used to model the binary sphere array

in a sphere pac fuel pin. The model for the sphere pac fuel must

account for two sphere sizes and fuel restructuring. The model should

give elastic properties which approach those of a porous body as the

second phase of the sintering process (pore closure) is completed.

Brandt's model does account for more than one sphere size but only

provides one elastic constant and does not consider bonded spheres.

The model by Digby includes the effect of only very small necks and is

developed for a single sphere size. In the following section a model

is proposed that includes the effects of neck growth and two sphere

sizes (the smaller spheres must infiltrate the large sphere array).

3.2 UNIT CELL

The model is based on the elastic response of a unit cell shown

in Figure 3.2. The cell consists of two four-sided pyramids (forming

an octahedron) sharing a common base and each having its apex at the

center of one of two spheres in contact. The angle between the sphere

center-to-center line and each of the sides of the octahedron is a.

The cell includes the portions of the two spheres and the void space

enclosed by the octahedron. It may be noted that a simple cubic array

can actually be constructed of these unit cells (with 8 =450) but other

regular arrays and random packings cannot. The cell does, however,

have the essential characteristics of a random or regular packing;
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FIGURE 3.2. Random Sphere Array Unit Cell
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contact point at a particular orientation, void space, and solid mate-

rial. It also allows consideration of material deformation away from

the contact point which becomes important when significant necks are

established. The cell can be used as a reasonable approximation for

the unit cell of any packing configuration, regular or random, as will

be shown.

The dimensions of the unit cell, except for the angle B, are

determined by the sphere radii. The angle B is chosen so that the

unit cell has the same void fraction as the sphere array to be

modeled. To obtain B, let CN be the average coordination number (num-

ber of contacts per sphere) of the sphere array. Then by associating

equal surface areas of the sphere with each contact point, B can be

obtained from

where,

A($) 41T2

A(B)
4 f

B

sin (tan
-1

(cos (3 tan B)) de
0

2

3.6

3.7

and A(B) is the surface area per contact. The packing factor (volume

of solid/total volume) is related to the coordination number and B by

pf
Vs

=
T CN tan

z
$

3.8

Equations 3.7 and 3.8 are derived in Appendix C. Thus, for any pack-

ing factor (or coordination number), Equations 3.6, 3.7, and 3.8 can

be combined to yield the angle B and a coordination number (or packing

factor). The form of Equation 3.7 dictates a numerical solution for

the equation set. Figure 3.3 shows the predicted coordination number
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versus the sphere array packing factor using the octahedral unit

cell. Included in the figure are the porosity and corresponding coor-

dination number for some regular packings and some experimental data

for random-packed beds. The present unit cell correlation predicts

the packing factor for the regular packings very well except for a

regular packing with a coordination number of eight. There are two

regular packings with coordination number eight, cubical tetrahedral

with packing factor 0.605, and body-centered cubic with packing factor

of 0.68. For the same coordination number the unit cell correlation

predicts an intermediate packing factor of 0.64. Most of the data

falls above the unit cell curve except for the results of Bernal and

Mason (1960). In their investigation, Bernal and Mason distinguished

between close contacts (spheres actually touching) and near contacts

(spheres located within a radius of 1.05 times the sphere radius).

The data from the other investigators includes both the near and close

contact points. With this consideration it can be seen that the octa-

hedral unit cell reasonably represents any packing arrangement at

least in terms of the packing factor versus the average number of

contacts per sphere.

The octahedral pyramid unit cell can be used to develop an incre-

mental stress-strain relationship for an aggregate assumed to be com-

posed of these unit cells. The derivation of this stress-strain rela-

tionship is discussed in the next two sections.

3.3 ELASTIC CONSTANTS FOR AN ISOTROPE MADE UP OF ANISTROPIC PARTS

Some materials (e.g., polycrystals and granular media) are gener-

ally considered to behave isotropically although their smaller compos-

ing parts may be anistropic. The anistropic effects are washed out by

the many orientations of the anistropic parts. To derive the

properties of the isotropic aggregate from the known properties of the

anistropic parts it is assumed that both the aggregate and the



individual parts behave linearly elastically. Thus an incremental

form of Hooke's law can be expressed as

j
de13.. = Di. da

kz
3.9
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where e..
13

is the linear strain tensor, D.. is a fourth order tensor
ijkt

dependent on the material elastic properties, and 0 is the stress

tensor. (It may be recalled that the general contact theory predicts

inelastic behavior while the assumption here is that all behavior is

elastic. In the next section an assumption will be made that removes

the inelastic behavior making the results in this section

applicable.) From thermodynamics it can be shown that for an adiaba-

tic or isothermal process a strain energy density function exists (see

e.g., Dym and Shames (1973)) and is defined as

dh = a.. dc..
13 13

where h is the strain energy per unit volume.

3.10

Now consider an anisotropic unit cell whose orientation with

respect to a set of reference axis (X1, X2, X3) is given by three

rotations, (01, (1)2 and (1)3 (see Figure 3.4). A set of coordinate axii

fixed to the unit cell (one-half of the cell is shown in Figure 3.4)

is identified as xl, x2 and x3. The transform tensor from the (xl,

x2, x3) system to the (X1, X2, X3) systems is tit where

ti I = cos ei



XI

FIGURE 3.4. Coordinate System for Rotating Unit Cell
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and ei, is the angle between xi and XI. Further consider a stress

field aij and differential stress field dale referenced to the (X1,

X2, X3) system. Assume that these stress fields are constant within

and on the surfaces of the unit cell. The differential strain energy

of the unit cell resulting from the application of claw is given by

dh (4)1, 4)2, $3) = criideii 3.11

where au and deij are the stress and differential strain referenced

to the (xl, x2, x3) coordinate system.
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Now it is assumed that the strain energy density of the aggregate

is the volume average of the strain energy of the unit cells compris-

ing the aggregate. Thus, assuming a uniform distribution of cell

orientations, it is shown in Appendix C that

2ff 21.
1

dh
o

= J f 5 dh sin coid(pid4)2d43
8n" 0 o o

where 0 is the strain energy density of the aggregate.

Then substituting Equations 3.11 and 3.9 into 3.12 gives

3.12

2n 21 it
0 1

dh = J 5 f a.. D.., dak& sin 41.thpid4:261,3 3.13
ij ijx2. kR.o o o

The elastic constants of the isotropic aggregate are defined as those

that give the same value for the strain energy density as Equation

3.12. Thus

dh° = aij dew = a D° da
IJ IJKL KL 3.14

where DIJKL is the elastic property tensor for the aggregate.

Applying the coordinate transformation to Equation 3.13 gives

21. 21T n
0 1 2 2 2 2dh = f f 5 ap til tjJ tkK Diikt daKi. sin 4)04)04)2d4)3

£37r` o o a

3.15



so that by comparison with Equation 3.14 the elastic property tensor

for the aggregate is

2w 2T1- n

0IJKL
0 1

I I ti

2 +2 *2 +2
Dula sin 4)1414243

8w
2

o 0 0
I rkK'itL

3.16
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The strain energy calculated from Equation 3.14 with D°
JKL

defined by
I

Equation 3.16 is a lower bound on the actual strain energy of the

aggregate as discussed by Paul (1960). It is analagous to the lower

bound provided by the Reuss (see eg., Garg, et al, 1973) model for

composite materials.

An upper bound on the aggregate strain energy can be found if the

definition of complementary strain energy is used in place of Equation

3.11, i.e.,

with

dh (4)1, (02, 4)3) sijdaij

d6.. = C.. Ae
ijkt k2,

3.17

3.18

Then if it is assumed that the unit cell exists in some constant

strain state E
IJ

and is subjected to surface displacements consistent

with a constant differential strain field then the elastic properties

for the aggregate are given by
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27 27 it

CIJKL
1

2
f f f

ti I
t t2 t2 C?
JJ kK tL ijkt

sins1414243 3.19
87r o o o

For the special case of an orthotropic material the stress-strain

relation (Equation 3.9) can be written as

where

and

{dc} = [D] {da} 3.20

{de}T = [de
11'

de
22'

de
33'33' '12' d'13' dy23]

{da}T = [da
11'

da22, da33, dT
12'

dT
13'

(IT
23

]

D
11

D
12

D
13

0 0 0

D
21

D
22

D
23

0 0 0

D D D 0 0 0
[D] =

0
31

0
32

0
33

D
44

0 0

0 0 OODO
0 0 0 0 0

55
D
66

with Dij = Dji

For an othotropic unit cell it can be shown (see Appendix C) that

Equation 3.16 reduces to

no

1=no 2=no3 T
in

114n 224n 33' +
2
5

in
124n 23+n 131 +

1

5
tn

44J'J 55-'66'

0012=n023=n01 3=

1

1 5

in

11
1

+ 1 5
t012

23Ln 131 310
tn

44Jn 55,n66

)

D° D° D°
44
=55 =66 = 2 (D

11
-D

12
)

o o 0 0 0
D
14

=D
15

=D
16

=D
24

=0
25

0 0 0
D45- D46 -D56 = 0

3.21



giving the aggregate differential stress-strain relation

{dc} = [0] {d Q}

with [1:7P] symmetric.
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3.22

The analogous results for [C°] were obtained by Takahashi and Sato

(1949) and are

' 11 7 iv
11+r 224v 33% + 5 (v lev 23+v13) + 5

tv444v55+v
661

ro 1 tr _Lr J.r % J. E. tr J.r 1 2 (r _i_r

C12 15 (C11 +C22 +C33) + E. .12'v 234-C13' 15 ---""44 55+C66)

0 1

C44
(C -C )

44 2 11 12

3.23

The actual material elastic properties for the aggregate lie somewhere

between [0] and [C°]-1. Some work has been done in the theory of

composite materials to improve the bounds imposed by [D°] and [C°].

However, Wu and McCullough (1977) showed that these are the best pos-

sible bounds unless something is known about how the differential

stresses (or strains) within the unit cell vary as the cell is rotated

in the stress field. For the analysis of the sphere pac fuel the

definitions for elastic properties are assumed to be those given by

Equation 3.24. Comparisons with experimental data and previous models

gave much closer agreement to the lower bound equations.

As necks begin to grow between the spheres the unit cell becomes

more isotropic and [C °] -1 and [D°] approach each other. The largest

errors in the constitutive relation resulting from the use of the

lower bound will therefore be for the completely unrestructered fuel.

To obtain the two elastic constants for the isotropic

aggregate, D11 and all it is first necessary to develop the stress-
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strain relationship for the octrahedral unit cell (Equation 3.20).

This relationship is developed in the next section.

3.4 UNIT CELL STRESS-STRAIN RELATIONSHIP

The stress-strain relationship for the orthotropic unit cell is

derived using again the concept of a strain energy density function.

Fortheoctahedralunitcellorientedinastressfielda..with the

represented sphere centers on the z-axis, as shown in Figure 3.5, the

strain energy density function can be expressed as

dh = Cal
T
[D]ldol

where h is the strain energy density and

lal Txy' Txz' Tyz3

3.24

[D] is the compliance matrix to be derived that relates the stresses

to the strains as

where

{de} = [D] {da} 3.25

{de} = [e y
X y' 'xy' 'xz' 'yz]
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Contact-Neck
Region

FIGURE 3.5. Unit Cell Oriented in Stress Field {a}
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For two spheres in contact, the deformation (and stresses)

resulting from the contact are localized in the contact region. At

distances greater than 3a (a is the contact radius) from the contact

center, the stresses can be neglected (Handbook of Eng. Mech.,

1962). It is assumed then that all of the strain energy associated

with the contact deformation is located in the region between the set

of planes parallel to the contact plane with each a distance

R(1-coso) away from the contact plane as shown in Figure 3.5. It is

also assumed that the strain energy associated with the accumulated

neck material is localized in the contact-neck region shown in

Figure 3.5. The rest of the unit cell can also deform in response to

applied surface tractions. This deformation is referred to here as

solid body (as opposed to contact) deformation. It is assumed then

that the unit cell strain energy can be separated into two parts so

that

Vdh = dH = dHCN + dHs 3.26

where V is the unit cell volume, dH is the unit cell differential

strain energy, dHCN is the energy due to contact and neck deformation,

and dH is the strain energy due to the solid body deformation.

To obtain a value for dH
S

it is assumed that the stress distribu-

tion within the solid body portion of the unit cell is uniform and is

given by the average surface stresses. The surface of the unit cell

associated with the contact-neck region cannot support any load. For

any particular surface of the unit cell the effective stress on the

surface associated with the solid body portion is assumed uniform and

is obtained from a simple force balance. For example

a' = A /A' a
x xxx 3.27
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where a' is the effective stress in the x direction on the solid sur-

face, Ax and A:( are the projected areas in the x-direction of the

particular unit cell surface, and the solid body surface,

respectively, and ax is the x-direction stress component on the unit

cell surface.

Under the assumption that the stresses on the solid body are

uniform, the effective stress state in the solid body is given by

where

{ai} [A/A'] {ai 3.28

[AM] =

Ax /Ax
'

Ay /Ay

Az/A;

Ax/
Ax

Az/A;

Az/ A;

The area ratios are all equal to 1/cos 2 5 (see Appendix C) so that

[A/Al] 12 [I]

cos 0

The solid body strain energy can be written in terms of the com-

pliance matrix for the sphere material, [Dm], as

dH = {a}T [A/A1][Dm][A/A1](da}V
s

3.29
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T
V

= {Q}T [Dm]{da}
cos B

where Vs is the solid volume and [Dm] is the compliance matrix for an

isotropic material.

[Dm] = E:.

1 -v -v 0 0 0

- v 1 -v 0 0 0

- v -v 1 0 0 0

0 0 0 E/G 0 0

0 0 0 0 E/G 0

0 0 0 0 0 E/G

3.30

The unit cell stress-strain relation must account for the

increased stiffness due to the formation of necks in the contact

region. Using the principle of virtual work, the strain energy in the

contact-neck region can be written as

dH
CN

= {F}T [A} 3.31

where {F} is the effective force vector and {A} is the corresponding

displacement vector due to deformation in the contact-neck region.

{F} and {A} are given by

and

{F}T = [cIA,a
y

,crA,T A,T A,T
y
A]XX y zz xyx xzz z z

{A}T = [A
y

,A,A,r ,r ,r]x'
z xy xz yz



49

where A
x
is the displacement at the point of application

of a
x
A
x'

etc. The only deflections considered in the contact neck

region are deformations normal to the contact plane and shear deforma-

tions parallel to the contact plane. This implies that

A
x

= A
y

= r
xy

0. The displacements are related to the forces through

the stiffness equation

{dF} = [C
CN

] {,6,1 3.32

It is now assumed that the total contact neck region stiffness is the

sum of the contact stiffness and the neck stiffness, i.e., the neck

and the contact act as independent parallel springs. The contact-neck

region stiffness matrix is then written as

[ccw] [cc] + [CN] 3.33

where [Cc] is the stiffness matrix resulting from the Hertz contact

theory and [CN] is the stiffness matrix for the neck material.

It will be recalled that the generalized Hertz contact theory

implies that the transverse deformations are inelastic because of slip

along the contact plane. However, since in sphere pac fuel small

necks are formed between adjacent particles very early in the loading

process, it is reasonable to assume that there is no slip in the con-

tact plane. The normal and transverse compliances can therefore be

obtained by differentiating Equations 3.1 and 3.4 with respect to the

loads giving



4
dn/dN = T Q/a

2-v
d6/dT

The contact stiffness matrix can now be written as

0

[C
c

]

0
3a

0
4Ga
2=7

4Ga
TT)
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3.34

3.35

The stiffness of the neck material is assumed to be that of a

circular column with radius x and height Leff (see Figure 3.5). It is

not clear what the effective column height should be, but as the neck

gets large, Leff should approach 2R(1-cosa) (the height of the contact

region) so that all of the solid body type strain energy in the unit

cell is accounted for. For very small necks the contact-neck stiff-

ness should be dominated by the contact stiffness. By letting

Leff = 2R(1-cosa), independent of the neck radius, both of these

requirements are satisfied. The neck stiffness matrix can be written

as

2

LAN] "
teff

0

0

E

0

G

3.36



A contact-neck compliance matrix [Dcw] is now defined by

[DCN] [CCO
-1

0

0
1

ETrx
--2

4Q IT
"eff

1

R

0

1

4Gi Gffx
-2

2-v

Leff

1

GTrx
-2

2-v
:eff 3.37
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ffewhere = a/R, Leff =
2'

I, and x = x/R. The contact-neck compliance

matrix depends on the contact radius, a, which is a function of the

force normal to the contact plane. Since all possible orientations of

the unit cell are considered in evaluating the elastic properties for

the isotropic aggregate, the contact force is assumed to be given by

N -a
h

A
z 3.38

where a
h

is the hydrostatic stress in the aggregate.

Combining Equations 3.31, 3.32, and 3.37 the contact-neck strain

energy becomes



where

[A] =

dH
CN

= {a}
T

[A][D
CN

][A]{da}/R

A
A

A
z

A
x

A
z

A
z

The projected areas are given by (see Appendix C)

A
x

= A
y

= 2R
2

tans

A
z
= 4R

2
tan

2
0

3.39

3.40

52

The results of equations 3.26, 3.29 and 3.39 can now be combined

to give the unit cell differential strain energy

1
dH = {a}

T
(IT [A][DCN][A] + Vs[A/A1][Dm][A/A1]){da}

Then, by comparison with Equation 3.24, the unit cell compliance

matrix is given by

V
,

[D]
= TR- [A][Da][A] + vs [A/A ][Dm][A/A1]

It is shown in Appendix C that Equation 3.42 reduces to

3.41

3.42



with

[D] = A
CN

[D
CN

] + A
m
[D
m
]

A
CN

= 6 tangs

A
m

= 14 [pf - w/4
(l-cosa)

2
(2+cosa)

]

cos 0 tan
2
0

3.43
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where pf is the sphere array packing factor. As will be shown, the

first term of Equation 3.43 dominates for small neck growth but as the

neck radius becomes significant the second becomes more important, and

the compliance due to contact deformation decreases. The coefficient

,511 determines the effective stiffness of the array at the end of

initial stage sintering.

Equation 3.43 provides the results needed to obtain the effective

elastic constant matrix [D°] for the isotropic aggregate via

Equation 3.21. In the next section some results are obtained for the

elastic properties of a random packed bed of uniform spheres and

compared to some experimental results and previous theories.

3.5 ELASTIC CONSTANTS FOR A RESTRUCTURING RANDOM PACKED BED OF

UNIFORM SPHERES

A small computer program was written to solve the equations

presented in Sections 3.2, 3.3 and 3.4 for two elastic constants of a

sphere bed as a function of the confining pressure and the neck

ratios. The elastic properties predicted by the model for a bed of

uniform spheres at a packing factor of 0.61 are shown in Figures 3.6

through 3.9. Figures 3.6 and 3.7 show the effective elastic

modulus (! /E where E is the elastic modulus of the sphere material)

and Poisson's ratio as a function of the normalized confining
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pressure (P/E) for various neck ratios. When there is no neck growth

the elastic modulus increases proportional to P1/3 while Poisson's

ratio is essentially independent of P and is small (-0.05). This

prediction for Poisson's ratio is in agreement with the analytic

results for regular packed sphere arrays (see, e.g., Deresiewicz,

1957) and experimental evidence for cohesionless granular material

(Lade and Duncan, 1975). As the neck radius becomes larger the

initial stiffness increases and is less dependent on the confining

pressure. Poisson's ratio also increases as the neck radius increases

and approaches the value of Poisson's ratio for the sphere

material (v = 0.3). This again is in agreement with experimental

evidence that indicates that Poisson's ratio for a porous body is not

much less than that for solid material. For a sphere bed with small

necks established, Poisson's ratio initially decreases with increasing

pressure. In terms of the model equations, this is because the normal

stiffness to shear stiffness ratio for the contact alone is greater

than that for the neck alone. As the confining pressure increases the

contact region stiffness becomes dominated by the Hertz contact

terms. It is not known whether or not the behavior of Poisson's ratio

with respect to pressure shown in Figure 3.7 is physically realistic.

Figures 3.8 and 3.9 show the elastic properties for the same bed

as a function of neck ratio at three different confining pressures.

3.6 COMPARISON WITH EXISTING MODELS AND EXPERIMENTAL DATA

The model presented in Sections 3.3 and 3.4 can be compared to

some experimental results and existing theories. Brandt (1955)

derived an expression for the bulk modulus of a sphere array

consisting of successively smaller infiltrating sphere sizes and

included the possibility of a fluid filling the remaining void. For

the case of one sphere size with a packing factor of 0.61 and no

fluid, the expression for the bulk modulus reduces to
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K/E = 0.3443 (-IFT.

P/E 1/3
3.44
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The effective bulk modulus for an aggregate can be calculated from the

present model by

K/E
E(3D

11
+ 6D

12
)

1

resulting in

K/E
2 1/3 2 2/3 -1/3Am(3-4v) + (2AcN) (1-v ) (P/E)

1

3.45

3.46

If the first term in the denominator (solid body compliance) is

neglected and AcN calculated using f3 = 39.5° (corresponding to pf =

0.61 from the unit cell correlation) then the effective bulk modulus

is

K/E = 0.3114 (
P/E 1/3

(1-v
2

)
2) 3.47

which is within 10% of the results obtained by Brandt. It has the

same functional dependence on P and the sphere material elastic

constants as Brandt's model as expected, since both were derived from

the Hertz contact theory. Brandt's model predicts that the bulk

modulus continually increases as the confining pressure, P, increases

whereas the bulk modulus predicted by the present model is limited by



K/E <
1 0.8 1

Am (3-4v) 7:21ST 3(1-2v) 3.48
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The last term in the above expression is the normalized bulk modulus

for solid material. Thus the present model could potentially be used

for very large confining pressures, where the Hertz theory may no

longer be valid, to provide a reasonable estimate for the effective

elastic properties. Brandt did not compare his model to experimental

data directly, but he did compare an extension of the model for

nonspherical particles, which included an arbitrary constant, to the

confining pressure dependence of porosity and sound wave velocity in

sand and sandstone. The agreement was good, indicating that the

functional dependence (Equation 3.44) on pressure is essentially

accurate.

Duffy and Mindlin (1957) measured the velocity of a compression

wave in a sphere array. The array was constructed of steel spheres in

a face-centered cubic arrangement. The spheres were held in place by

a thin rubber membrane, evacuated to provide a range of confining

pressures. The spheres were arranged so that the bar was parallel to

[100] or the [110] direction of the array (i.e., parallel to an edge

or face diagonal of a unit cube). The experimental results are given

in Figure 3.10, that shows the wave velocity (normalized by twice the

wave velocity in steel) as a function of the confining pressure for

bars in the [100] and the [110] orientations. Excellent agreement is

shown between the experiment and the present model at the higher

confining pressures. Mindlin and Duffy attributed the decreasing

pressure dependence as pressure increases to spheres not initially in

contact. The effect was more pronounced when spheres of lower

diameter tolerance were used. The present model predicts only one

wave velocity, independent of the orientation of the bar. However,

the experimental wave velocities are so close for the two

orientations, it is not unreasonable to expect the wave velocity to be

about the same for any orientation and therefore comparison with the

present model is valid.
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Yanagisawa (1978) measured the shear modulus in random arrays of

uniform glass beads and in packed sand. The resonant column method

was used to obtain the frequency response to a torsional oscillation

applied to a cylindrical sampled under some confining pressure. The

shear wave velocity and shear modulus can be calculated from the

resonant frequency. The experimental data for the shear modulus

(normalized by one-half of the shear modulus of glass) versus void

ratio (void volume/solid volume) at a confining pressure of 0.1 MPa is

shown in Figure 3.11. Also shown in the figure are results using the

present model. The model accurately predicts the void ratio

dependency but predicts shear modulii about 20 to 30% low at each

pressure. This effect can also be seen in Figure 3.12 that shows the

shear modulus of glass beads at a void ratio of 0.60 as a function of

confining pressure. Again the predicted shear modulus is low and

shows a 1/3 power dependence on confining pressure. The experimental

data, however, increases in proportion to the 0.43 power of confining

pressure. This may be the same effect seen in the wave speed

experiments of Duffy and Mindlin where increased confining pressure

brought more spheres into contact. Presumably, at higher contact

pressures, the slope of the experimental curve would decrease to

correspond to the Hertz contact theory. There may be several

explanations as to why the model predictions are low. The elastic

properties of the glass beads used in the experiment were not reported

so there is some uncertainty in the values used in the model (E = 6.9

x 104 MPa, v = 0.2). The model provides a lower bound on the strain

energy which is consistent with the lower prediction of the shear

modulus. Finally, the particular choice of the geometry of the unit

cell could be an influencing factor since the unit cell underpredicts

the number of contact points at a given packing factor for random

packed beds. The fact that the model predicted the wave velocity in

the steel sphere bar so closely (a case where the unit cell packing

factor and coordination number closely match those of the experiment)

indicates that the low predicted shear modulus could be attributed to

the underprediction of coordination number for random beds.
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Based on the above results, the model for predicting the elastic

constants of a sphere bed provides reasonable estimates for sphere

arrays without necks. No data has been found that gives the elastic

properties of a bed with specified necks between particles. As the

neck gets very large the elastic properties should approach those of a

porous body for which there is some data available. Such a comparison

is made in the next section after the extension of the model to a

binary sphere array is described.

3.7 ELASTIC PROPERTIES FOR A BINARY ARRAY

The model described in Section 3.4 is here extended to provide

estimates for the elastic properties of a binary sphere bed. For this

model, it is assumed that the bed consists of uniform spheres of two

sizes. The smaller spheres must be small enough to easily infiltrate

the large sphere array. This will occur if the small-to-large sphere

diameter ratio is less than 0.15 as is the case for the EIR sphere pac

fuel (diameter ratio -0.07). Further, it is assumed that loading of

the small spheres can only occur through deformation of the large

sphere array. The effective stress on the large spheres are therefore

the same as those described in Section 3.1.4 but there is an

additional reaction force on the large spheres due to the interaction

with the small spheres as depicted in Figure 3.13. As the large

sphere array is compressed, the small sphere array is subjected to

some boundary displacement due to the contact deformation of the large

spheres. The resulting stress in the small sphere array acts to

oppose the stress causing the contact deformation in the large sphere

array. It is evident then that, under the above assumption, the

stresses in the small sphere array will not be the same as those of

the aggregate or the large sphere array.

The model for the elastic properties should account for the

stresses in each of the large and small sphere arrays separately and

relate them to the stresses in the aggregate. The restructuring of
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FIGURE 3.13. Schematic Diagram of Binary Sphere Array

the binary bed provides another complication in the binary elastic

model. The neck growth is dependent (among other parameters) on the

contact stresses and on the sphere diameter. The neck growth rate

increases with increasing contact pressure and with decreasing sphere

diameter. The initial neck growth can be expected to be considerably

larger between the small spheres due to the small diameter

influence. The neck growth is accompanied by sphere center-to-center

approach resulting in shrinkage of the small sphere array. As the

small sphere array contracts, the load on the small spheres will be

relieved and the contact load on the large spheres will be

correspondingly increased. The increased contact load on the large

spheres results in increased neck growth between largc spheres and

more shrinkage of the large sphere array. The shrinkage of the large

sphere array results in further interaction with the small sphere

array.

A rather simplified model is proposed to account for all of these

complex inter-related phenomena. It is much in line with the model



proposed by Brandt (1955) for the effective bulk modulus of a four-

sphere size aggregate with a saturating fluid. The theory of

composite materials is used to provide an estimate for the second

elastic constant.

To obtain an estimate for the bulk modulus of a binary sphere

array consider a volume, VB, of the array under some hydrostatic

stress, a
h

. The binary bulk modulus, KB, can be defined by

6am
KB = VB 3.49
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where SVB is the change in volume VB due to a change in the

hydrostatic stress, Bah. Momentarily neglecting the small spheres, a

volume change of a large sphere array consists of two parts: a volume

change due to deformation in the contact-neck region, and a volume

change due to compression of the solid sphere material. The

compliance matrix for an array of uniform spheres considered an

isotrope can be expressed as

[D °] ACN ED2m3 Am41 3.50

where A
CN

[D
CN

] and A
m
[0

o
] are the isotropic compliance matrices for

the contact-neck region and solid body deformations obtained by

applying the isotropic relationships (Equations 3.21) to the unit cell

compliance matrices, ACNEDCN3 and Am[Dm], derived in Section 3.4. The

bulk modulus for each of the two volume change components can be

obtained from the respective compliance matrix giving

3.51
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where KC and KS are the bulk moduli corresponding to contact-neck

deformation and solid body deformation, respectively. The total

volume change of the large sphere array is given by

6V
L

= 6V
L

C
+ 6VL

where 6V
L
and 6V

L
are the volume changes due to contact-neck

deformation and solid body deformation, respectively.

3.52
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Now consider again the small spheres in the interstitial spaces

of the large sphere array. It is assumed that only contact-neck

deformations of the large spheres are responsible for the interaction

of the large and small sphere arrays. If the small sphere array has

contracted due to sintering shrinkage, some initial

load, a*, (positive in compression) on the large sphere array will be

required before there is any interaction between the large and small

spheres. Assume, for now, that the hydrostatic compression on the

aggregate is larger than d* so that the large and small sphere arrays

are interacting. Contact-neck deformations result in a reduction of

the interstitial volume of the large sphere array. Therefore, it is

assumed that the volume change of the small sphere array is given by

6V = 6V
c

S L 3.53

and that the volume change of the binary array is equal to the volume

change of the large sphere array.
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Let a
s
be the hydrostatic stress in the small sphere array

resulting from the interaction with the large sphere array. Then the

various volume changes can be related to the pressure changes by

6V
S

L S
K
L

= 6a
h

SV
L

1r--
K
L

C
= sah - 6a

s

6V
S

(1 - pfL)VB KS 6as

3.55

3.56

3.57

where pfL is the large sphere packing factor. Equation 3.56 relates

the large sphere array volume change to the difference between the

applied pressure increment and the small sphere stress increment.

This is analogous to the effective pressure used in the mechanics of

granular media where a
s
corresponds to the pore pressure developed in

a saturating liquid. It should be noted that K
L

c

is a function

of ah - as and K
S
is a function of a

s
as these pressures are used to

define the contact forces.

give

Equations 3.49, 3.52, 3.54, 3.55, and 3.56 can be combined to

1 - 6a
s
/6a

h1/K
B

= 1/K
s

+

K
C

L

and Equations 3.53, 3.56, and 3.57 combine to yield

3.58



KL (1 - pfL)
Sa

s
/da

h
= 1 + 3.59
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Equation 3.59 represents the following differential equation for

the small sphere array hydrostatic stress with the functional

dependence of KL and KL indicated.

(1 - pfL) KCL(ah - as)
das/dah = 1 +

K
S

(a )

s

3.60

Recalling that some initial hydrostatic stress on the binary

array may be required before there is any interaction between the

large and small sphere arrays, the small sphere array hydrostatic

stress may be written as

av,

a
s

= f " dos /doh doh for -a
h

> a*

-a*

a
s

= 0 for -a
h

a* 3.61

A numerical procedure is required to solve Equation 3.61 for

given values of a*, oh, the small and large sphere neck radii, and the

temperature dependent elastic properties of the sphere material. In a

computer simulation of a sphere-pac fuel pin lifetime irradiation

there will be on the order of 10,000 such solutions required.

Fortunately, for a given set of parameters, dos /doh is nearly

independent of the binary array hydrostatic stress. Thus dos /doh is

treated as an unknown constant and the small sphere array hydrostatic

stress is given by

dos /doh (ah + a*) -a
h

> a*

0 -a
h °I*

3.62
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An iterative procedure is used to solve for das/dah from

Equations 3.60 and 3.62. Once as is determined, kiL_ can be obtained

from Equation 3.51 and the binary bulk modulus calculated from

Equation 3.58.

To complete the solution for the binary bulk modulus the initial

stress for interaction a* is still required. It is assumed that if

there has been no shrinkage of either the large or the small sphere

array then a* = 0, i.e., the initial sphere pac bed is tightly

packed. The sintering model provides the sphere center-to-center

approach, normalized by the sphere diameter, for the large and small

sphere arrays. Let these be SL and S respectively. The volume

occupied by an array of M spheres is

41T R
3

V = M
157

The relative volume decrease associated with a shrinkage, S is

3.63

V

V dR " " 3.64

For a given volume of the binary mixture, VB, let Us and (AIL be the

volume decreases of the small and large spheres, respectively, due to

shrinkage. The volume of the binary must be reduced by an amount

SV* = SV
S

- (SV
L

before there will be any interaction between the large and small

sphere arrays. Consistent with previous assumptions, the volume

change dv* must be due to large sphere contact-neck deformations

only. Thus

3.65
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OV* r

d*
dP

o K (P)

3.66

In terms of the large and small sphere shrinkages, the volume

change is given by

OV*

V 3 SS (1 PfL) -3 SL 3.67

Equation 3.66 is easily solved numerically for dk. It is assumed

that a* = 0 if SV*/V from Equation 3.67 is less than zero.

A second constant is required to determine the elastic behavior

of the binary array. Paul (1960) derived an expression for Poisson's

ratio for a two material composite. If it is assumed that for a

composite subjected to uniaxial strain, E
x'

the strains along the

other two coordinates are

Cy = ez = -vex 3.68

then the effective Poissons ratio for the composite is

v1(1+v2)(1-2v2)fEl + v2(1+v1)(1-2v1)(1-f)E2
v

(1 +v2)(122v2)fEl + (i+v1)(1-2v11(1-f)E2 3.69

where the subscripts refer to the two materials and f is the volume

fraction of material 1. Equation 3.69 is used for the effective

Poisson's ratio for the binary sphere mixture with f given by the

large sphere packaging factor.



The stress-strain relation for the restructuring sphere bed is

then
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where E = K 3(1-27).

Thus, an elastic stress-strain relation has been obtained for

restructuring sphere pac fuel that depends on sphere properties,

packing, restructuring (neck growth), and hydrostatic stress in the

fuel. No experimental data has been found for the elastic properties

of a binary sphere array such as the one used for the EIR fuel. Some

representative results are provided here to show the effect of the

various parameters on the effective elastic properties.

Figures 3.14 and 3.15 show the effective elastic modulus and

Poisson's ratio of a binary sphere array as a function of the neck

radius of the small spheres. Results are plotted for three values of

the normalized confining pressure, P/E, where E is the elastic modulus

of the sphere material. Poisson's ratio for the sphere material

represented in these plots is 0.3. The packing factors for the large

and small spheres are 0.61 and 0.56 respectively. The neck ratio of

the large spheres was assumed to be 1/2 the neck ratio for the small
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spheres. This approximates the fuel restructing during the initial

stages of the neck growth. For these simulations it was assumed that

there was no shrinkage of the small or large sphere arrays. The

general trends for the elastic modulus and Poisson's ratio of the

binary sphere array are similar to those observed for the single size

sphere array. The binary array elastic modulus is about a factor of

two larger than that for the single size sphere array at small neck

ratios and is about 20% larger at large neck ratios. Possion's ratio

is nearly the same for the binary and single size arrays.

The elastic constants appear to approach a limit as the neck

ratio gets large. From geometry considerations, at neck ratios of

about -0.45 closed pores begin to form and the fuel no longer

resembles a sphere bed. An estimation of the elastic properties of a

continuous material with distributed porosity can be obtained from the

model by calculating the properties with both the small and large

sphere neck ratios set to 0.5. Various material porosities can be

modeled by changing the initial packing factors for the two sphere

sizes. This procedure was used to obtain model-predicted elastic

constants of porous material as a function of porosity. Results are

shown in Figure 3.16 and compared to some existing theories and

experimental results as presented by Marlowe and Wilder (1965). The

model compares very well with the experimental data by Marlowe and

Wilder for yttrium oxide and with Gatto's (1950) theory in the range

of interest for sphere pac fuel.

Figure 3.17 shows the small sphere array pressure derivative,

da
s
/da

h
as a function of the small sphere neck ratio. Here, again,

the large sphere neck ratio was taken as 1/2 the small sphere neck

ratio. As previously indicated, it can be observed in Figure 3.17

that the pressure derivative is fairly insensitive to the

hydrostatic stress in the binary array. For a* = 0., the hydrostatic

stress in the smaller sphere array is between 75 and 85% (depending on

neck ratio) of the binary array hydrostatic stress.
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For the previous results it was assumed that there was no

shrinkage of the large or small sphere arrays. Figures 3.18 and 3.19

show the effect on the elastic modulus and Poisson's ratio of some

shrinkage in the small sphere array. The plots show the elastic

property as a function of the normalized confining pressure on the

binary array. Table 3.1 shows the values used for the large and small

sphere neck radii and the small sphere array shrinkage for each of the

three curves in Figures 3.18 and 3.19.

TABLE 3.1. Shrinkage and Neck Ratios Values for the Curves on
Figures 3.18 and 3.19

Curve
(X/R)s (X/R)L

SS

1 0.05 0.025 0.005
2 0.10 0.05 0.01
3 0.20 0.10 0.02

The initial stress, a*, required to bring the large and small

sphere arrays into contact is clearly evident in the first two cases

shown in Figure 3.18. For the third case a* was never reached.

a* increases as the small sphere array shrinkage increases and as

neck radius in the large sphere array increases.

Although the data for elastic properties of sphere arrays is

limited (and even more so for restructuring beds), there is enough

evidence to indicate that the model presented here can be used to pro-

vide reasonable approximations for the elastic properties of a

restructuring sphere pac fuel bed. It is difficult to determine

whether or not the proposed model represents a conservative estimate

of the elastic properties in terms of the effect on the overall pin

behavior during irradiation. If the stiffness is too small, the

cladding stresses due to fuel thermal expansion will be

underpredicted. If the stiffness is too large, higher contact stress
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will result and the restructuring rate may be overpredicted and

therefore give smaller cladding stress. Until experimental data is

available, the proposed model must be accepted as a "best estimator"

for the elastic properties.

3.8 ELASTIC PROPERTIES FOR RESTRUCTURED FUEL

Once the sintering process reaches the point where pores begin to

close up, the fuel can be considered to have properties similar to

those of a porous pellet. Since there is little data available for

the elastic properties of (U,Pu)C, the properties of UC are used. The

restructured fuel properties are assumed to depend only on the fuel

temperature and porosity. Table 3.2 gives the temperature and

porosity dependence for two sets of data.

TABLE 3.2. Porosity and Temperature Effects on Elastic Properties of

UC

alE/E NE/E / NV%
E
o

Reference
aT 3T

(at 250C)

(im)
(0c-1x100

(at 2500)

2.25x105 0.814 2.31 0.29

1.10 0.29-0.30 0.29

0.99 Padel and

de Kwon (1969)

14111 (1970)

In addition, Padel, et al. (1970) reported the elastic modulus

and Poisson's ratio of 90.1% dense (U,Pu)C at 25°C as 1.83x105MPa and

0.265 respectively. From the results in Table 3.2, the elastic

properties of (U,Pu)C are given by

E = 2.25x10
5 (1.0 - 2.31p)(1.0 - 1.0 x 10

-4
T) MPa 3.71
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v = 0.29 (1.0 - 0.99p)(1.0 - 0.29x10-4T) 3.72

where p is the porosity and T is the temperature in degrees C.

Equations 3.71 and 3.72 are also used for calculating the elastic

properties of individual fuel spheres, as this information is required

in the model to predict the sphere array effective properties. In

this case the as-fabricated porosity of the fuel spheres is used in

Equations 3.71 and 3.72. The fuel is claimed to be restructured when

the neck ratio of the small sphere array reaches 0.45. The elastic

properties predicted by the model for restructuring fuel are about 10%

lower than those given by Equations 3.71 and 3.72 when the X/R = .45

limit is reached. This difference in stiffness is attributed to the

formation of closed pores towards the end of initial stage

sintering. This closure of pores is not accounted for in the

restructuring fuel elastic property model. To provide a smooth

transition from restructuring to restructured fuel properties, the

restructuring fuel properties are averaged with the restructured fuel

properties after the small sphere neck ratio reaches 0.4. The

transition properties are given by

ET = - .4)20. (E
rd

- E
rg

) + E
rg

v
T

= - .4)20. (v
rd

- v
rg

) + v
rg

3.73

3.74

for .4 4 xs 4 .45. The subscripts rg and rd refer to restructuring

and restructured fuel, respectively and -is is the small sphere neck

ratio.
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4.0 PLASTIC CONSTITUTIVE RELATIONS FOR SPHERE PAC FUEL

The elasto-plastic stress-strain relation given by Equation 2.18

requires the plastic modulus matrix. This matrix is defined in terms

of a yield function and a plastic potential function (Equation

2.15). The yield and potential functions may depend on the material

properties, load state, and accumulated plastic strain. For the

restructuring fuel, the yield and potential function will also depend

on the changes in the macroscopic material properties due to the

restructuring process. Yielding and plastic flow for completely

unrestructured fuel is expected to be similar to the plastic behavior

of granular materials while the completely restructured fuel should

exhibit plastic behavior similar to that of porous ceramic solids.

The yield and potential functions developed in this chapter reflect

this transition from granular to solid material and provides a first

estimate for the plastic modulus matrix.

4.1 PLASTIC CONSTITUTIVE EQUATIONS FOR GRANULAR MEDIA

4.1.1 Plastic Yield Functions

The stress-strain behavior of typical granular material samples

is shown in Figure 4.1. Figure 4.1a shows a stress-strain curve for a

triaxial compression test where the sample is first loaded with some

hydrostatic compression P, and then an additional load, al is applied

uniaxially. The response to the initial loading up to point 2 is

similar to that of solid materials in that there is first some linear

relationship between stress and strain to point 1, followed by some

nonlinear response to point 2. Unloading at point 2 reveals that the

nonlinear strain between points 1 and 2 is irrecoverable and therefore

plastic. From point 2 the material is unloaded and, after recovering

the elastic strain, begins to deform plasticly in the reverse direc-

tion even before the uniaxial load is completely removed. Reloading

from 3 brings the sample back onto the initial loading curve at 2.

From the stress-strain curve it can be observed that the yielding is
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anisotropic (i.e., yielding in compression is not the same as yielding

in tension) and thereis some kinematic hardening of the sample.

Depending on the initial compaction of the sample the material may

experience some kinematic softening rather than hardening after the

initial yield point is reached. Figure 4.1b (Christian and Desari,

1977) shows the volumetric strain response to hydrostatic compression

of a previously uncompacted sample. The sample contracts nonlinearly

in response to the hydrostatic compression up to 1. Unloading from 1

follows a linear elastic response curve indicating that some of the

initial volume change is irrecoverable or plastic. Figure 4.1c (Harr,

1977) shows the response of a granular sample when it is strained

under some shearing force. A sample that is initially densely com-

pacted will expand in volume under the shearing action. This response

is termed dilatancy and is a major difference between granular and

solid materials which generally maintain constant volume during plas-

tic deformation. A loosely compacted sample may initially contract

during the shearing process. Samples that do not change volume appre-

ciably during plastic shear are said to be at the critical void ratio.

The plastic deformation of granular material involves individual

grains sliding across one another. The surface friction and the con-

tact load between particles are therefore important factors in deter-

mining the plastic behavior of granular material. Figure 4.1d shows

the Mohr circles at yield plotted for a series of triaxial compression

tests at various levels of hydrostatic compression. The shear

strength increases linearly with increasing hydrostatic compression.

Mohr and Coulomb (see, e.g., Zienkiewicz and Humpheson, 1977) proposed

a yield criteria that describes the envelope of the Mohr's circles

shown in Figure 4.1d. The yield function can be written as

f = T
max

+ (al

+ a
3

tan
(0) sin (I)

2
4.1
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where T
max

is the maximum shear stress, a
1

and a
3
are the maximum and

minimum principal stresses, C is the cohesion, and
(1) is the internal

friction angle. For a friction angle of zero, Equation 4.1 reduces to

the Tresca or maximum shear yield criteria if C is the shear yield

strength. Mathematically, Equation 4.1 is difficult to work with

since the minimum and maximum stresses must be found before the yield

criteria can be applied and the surface has sharp corners. Drucker

and Prager (1952) proposed a von Mises form of the frictional yield

criteria given by

f = al
1
+ J

2

1/2
- k 4.2

where a and k are parameters that depend on the friction angle and

cohesion of the material. 11 is the first invariant of the stress

tensor

Ii =
all

and J2 is the second invariant of the stress deviator tensor

4.3

12
+

f 12
+

1 121J2 = 1/2 sijsij = 1/2 [(al - ah, . ,,a2 - ah, . a3, - ah, J

4.4

where sib is the stress deviator tensor, a
h

is the hydrostatic stress

and a1, a
2'

a
3

are the principal stresses. The Drucker-Prager cri-

teria has been used extensively in soil and rock mechanics because of
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its mathematically convenient form even though there is evidence that

the Mohr-Coulomb criteria better predicts the yielding of granular

material (Bishop, 1966). Assuming that the Mohr-Coulomb surface is a

true representation of the material yield surface, then the param-

eters a and k in the Drucker-Prager criteria should be chosen so that

the Mohr-Coulomb surface is closely approximated. In stress space,

the Mohr-Coulomb surface is a six-sided pyramid while the Drucker-

Prager surface is a circular cone. Figure 4.2 shows the intersection

of the Mohr-Coulomb surface with the octahedral plane along with some

possible choices for the Drucker-Prager surface. By choosing the

external envelope for the Drucker-Prager criteria the yield surface

reduces to the von Mises surface for zero friction angle. The proper

definitions for a and k for this surface are given by (Zienkiewicz and

Humpheson, 1977)

2 sin (0

a

J (3 - sin 4))

6C cos (0

k

)q (3 - sin 4))

4.5

Drucker and Prager (1952) proposed other definitions for a and k by

matching the Mohr-Coulomb criteria for plane strain. These Drucker-

Prager parameters define a lower bound on the Mohr-Coulomb criteria.

The upper bound parameters can be as much as 50 percent larger than

the lower bound parameters for reasonable values of the friction

angle (4) 4 350).

The yield surface described so far cannot account for the exper-

imentally observed kinematic hardening or the plastic deformation

under hydrostatic stress. Drucker, Gibson and Henkel (1957) proposed

that the Drucker-Prager yield surface should have a spherical end cap,

the position and size of which would depend on the plastic volumetric

strain. The model predicted qualitatively the experimentally observed

behavior of soils, but no mathematical definition of the yield surface

was given. The hardening predicted by the model results from the
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FIGURE 4.2. Mohr-Coulomb and Drucker-Prager Yield Surfaces
On the Octahedral Plane

movement of the end cap away from the cone vertex as the plastic volu-

metric strain increases negatively.

There have been several variations on the capped end model.

Roscoe and Burland (1968) proposed that the yield surface could be

represented as an ellipse in the I
1,

iT
2
plane. Figure 4.3 shows a

series of elliptic yield functions for a frictional material under-

going plastic deformation. The size of each ellipse is determined by

the critical state line which passes through the end of the minor axis

of each ellipse. Loading at points to the right of the critical state

line result in negative volumetric plastic strain while loading at

points to the left cause positive volumetric strain. The major axis

of each ellipse depends on the volumetric plastic strain, and experi-

mentally determined values for the initial void ratio, swelling and

compression indices, and an initial value for the length of the major
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axis, Lo. The initial major axis length depends on the preconsolida-

tion pressure to which the material was subjected. As the material is

subjected to larger and larger compressive hydrostatic stress the

major axis length increases and the minor axis length is determined by

the critical state line.

Dimaggio and Sandler (1971) proposed a capped model that uses two

yield functions as shown in Figure 4.3b. The first function, fl,

assumes perfect plasticity and defines a failure envelope similar to

the Mohr-Coulomb envelope. The second function, f2, accounts for the

strain hardening and volumetric strains under hydrostatic load. A

total of eight experimentally determined parameters, including two

effective elastic constants, are required to explicitly define the

yield surface. The model was in good agreement with experimental

results on dry sand.

The capped models can predict the hardening (or softening)

behavior of granular materials, but all hardening is assumed

isotropic. Mroz, Norris and Zienkiewicz (1978) proposed a hardening

model that accounts for the anisotropic behavior. The model uses a

bounding surface determined by the preconsolidation of the material.

The yield surface (similar to that proposed by Roscoe) translates and

contracts within the bounding surface. The translation and contrac-

tion depends on the hardening parameters of the materials. If the

yield surface contracts the bounding surface expands isotropically in

accordance with a consolidation hardening parameter. The model quali-

tatively predicts the anisotropic behavior of granular materials for

some assumed functional forms of the hardening parameters.

Recent literature (Tatsuoka, 1980; Mullenger and Davis, 1981)

indicates that there is still ongoing work to determine a yield cri-

teria that encompasses all of the observed behavior of granular mate-

rials with a minimum of experimentally obtained parameters.
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4.1.2 Plastic Potential Function

The specification of the plastic behavior of any material depends

not only on the yield function but also on the plastic potential func-

tion that prescribes the relative magnitude of the plastic strain

components. The standard practice of assuming that the yield and

potential surface are the same predicts plastic behavior that is not

in satisfactory agreement with experiment when using such yield models

as the Mohr-Coulomb or Drucker-Prager surfaces. Since the plastic

strain direction is normal to the plastic potential surface, these

theories always predict some dilation. While tightly compacted sam-

ples do expand when sheared plasticly, the volumetric strain is gener-

ally less than that predicted by the Mohr-Coulomb type models, and

loosely compacted samples may contract rather than expand. This fact

led to the formulation of the critical state models that predict con-

traction or expansion depending upon which side of the critical state

line the material resides. The critical state models for yielding

were developed with the idea that they would also provide the plastic

potential surface giving an associated flow law. Most plasticity

models for granular material incorporate an associated flow law

regardless of the yield criteria chosen. However, there have been

some attempts to formulate nonassociated flow laws.

Poorooshasb, Holubec and Sherbourne (1966, 1967) obtained a plas-

tic potential surface from experimental results on sand in triaxial

compression tests. The potential surface shape was very close to the

yield surface proposed by Roscoe. An experimentally determined yield

surface was similar to the Mohr-Coulomb surface. lade and Duncan

(1975) fitted yield and deformation results for dry sand using a yield

function of the form

f =
1

3
/1

3
- k

1
4.6



and a potential function

g = 113 /13 - k
2

4.7
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where 13 is the third invariant of the stress tensor (1
3

= a
1
a
2
a
3

) and

k
1
and k

2
are experimentally determined parameters. kl and k2 were

found to be linearly related as

k
2
= Ak

1
+ 27(1 - A) 4.8

Both A and k1 can be determined from triaxial tests only. Work

hardening was also considered and an expression given for k1 that

again involved parameters determinable from triaxial compression

tests. One advantage of the yield function chosen by Lade and Duncan

is that the surface shape closely approximates the shape of the Mohr-

Coulomb surface. The model does not have a capped end but was applied

only to preconsolidated samples so that the Mohr-Coulomb type yield

surface was adequate.

It is not yet clear whether a nonassociated flow law is required

to predict the deformation of granular material or if a more versatile

yield criteria with associated flow will suffice. Most of the effort

has been toward developing a yield surface that can also be used as

the potential surface.

4.1.3 Micromechanical Models

The previously discussed models for a yield surface and plastic

potential surface are based on experimental results from samples of

granular material treated as a continuum. Another possible approach

is to try to predict the macroscopic behavior of a granular material
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by considering the behavior of individual grains. This approach was

taken by Rowe (1962) (and further developed by Horne (1965)) when he

derived a stress-dilatancy law by considering the interaction of indi-

vidual spheres in regular packings under triaxial test conditions. By

minimizing the amount of energy lost to heat during intergrain

sliding, Rowe obtained a stress-dilatancy law which relates the dila-

tion to the stress ratio, a1 /a3 and the friction angle, (1) . a
1

is

maximum principal stress and a3 is the principal stress in the orthog-

onal directions. The friction angle, (1)

u
, is not the internal friction

angle of the Mohr-Coulomb criteria but is the static friction angle

for a sphere on a flat surface. The stress-dilatancy law worked well

for regular packings, but for random packings it was necessary to

replace (1,11 by (pf which was allowed to vary to fit the dilatancy for

various loading and initial packing densities. Presumably, this was

to account for the rearrangement of particles and the corresponding

change in the number of active contacts (contacts where sliding

occurs) as a random packing is loaded.

Recently, there have been several micromechanical models

[Christoffersen, Mehrabadi and Nemat-Nasser (1981); Tokue (1979);

Matsuoka and Takeda (1980); Nemat-Nasser (1980); and Uda, Konishi and

Nemat-Nasser (1980)] that at least qualitatively predict the macrosco-

pic stress-strain behavior of granular systems. Generally these the-

ories consider an individual rigid grain, or cluster of grains which

act as one grain, together with the direction and magnitude of the

contact forces at active contacts. By assuming various spatial dis-

tributions of the active contact orientations and applying force and

moment equilibrium for individual grains, macroscopic stresses can be

related to the contact force distribution. Macroscopic kinematic

relationships can also be obtained from the contact orientation dis-

tribution. A stress-displacement relationship is obtained by assuming

that energy is dissipated only by frictional sliding. The external

work by the macroscopic stresses can therefore be equated to the

internal frictional sliding work. Some of the theories also account
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for variations in the active contact distribution as loading proceeds

to model the experimentally observed strain hardening or softening.

4.1.4 Application to Restructuring Sphere Pac Fuel

The plastic stress-strain theory for granular materials is still

clearly in a development stage. There is no fundamental agreement as

to the best yield criteria or plastic potential or even if the class-

ical continuum plasticity theory applies to granular material. For

sphere pac fuel, the sintering mechanism further complicates the situ-

ation since any model must be able to account for the changing cohe-

sion. Further, since the stresses and temperatures anticipated in a

fuel pin are much larger than those generally considered in soil

mechanics, the yielding under hydrostatic stress may be of an entirely

different nature. In the mechanics of granular material, yielding

under hydrostatic stress is considered to be associated with particle

rearrangement. In sphere pac fuel the high temperatures and high

contact stress can result in local yielding at contacts when the

aggregate is under hydrostatic compression.

Based on the review of the plastic behavior of granular materials

and the above observations, a plasticity model for sphere pac fuel is

developed in accordance with the following:

I. Since the loading of the fuel is in one direction (with possible

unloading only to the initial load state) the anisotropic yield-

ing can be ignored and the Drucker-Prager yield criteria applies.

2. Large hydrostatic stresses can result in local yielding at con-

tacts and a cap is provided for the surface to account for this

yielding.

3. A plastic potential function is chosen that does not allow dila-

tion under shear.

4. The parameters a and k in the Drucker-Prager yield law can be

suitably modified to account for the neck growth effects so that



the yield law becomes the von Mises criteria for completely

restructured fuel.

4.2 FRICTIONAL YIELDING

Under the above assumptions the frictional yield surface for an

array of uniform spheres undergoing restructuring can be given by a

generalization of Equation 4.2:

1 --f
1 1

= aIs + J
2

/2
- k(x) 4.9
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The functional dependence of the parameter k on the neck ratio, 7, is

noted and I'
1

is the effective stress invariant (three times the effec-

tive hydrostatic stress) for computing the frictional effect on yield-.

ing. Since Equation 4.9 should approach the von Mises yield law as

the neck ratio gets large, the relationship between a and k and the

friction angle and cohesion are chosen as Equations 4.4 where the

cohesion, C, depends on the neck ratio.

The effective hydrostatic stress for friction effects is assumed

to be that portion of the stress supported by the contact (the neck

supporting the rest). Assuming again that the neck and contact stiff-

nesses act in parallel, that the contact-neck load is proportional to

the hydrostatic stress, and that the neck and contact deformation are

equal, the expression for the stress supported by the contact can be

obtained. Let FT be the total contact-neck load, FN the portion of FT

supported by the neck and Fc the portion of FT supported by the con-

tact. Then

4.10
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and assuming equal deformation of the neck and contact gives

I
1/I'1

= 1 + kN /kC 4.11

where kw and kc are the neck and contact stiffnesses, respectively.

The stiffness ratio is obtained from the elastic stress-strain model

(Equation 3.37) resulting in

Eirx
2

4Q
k
N
/k

C L
eff S

i
4.12

Thus, as the neck ratio gets large, Ii approaches zero and the fric-

tional effects in the yield law become small. Equation 4.9 can be

rewritten in terms of an effective friction angle (or the

equivalent a parameter) as

where

--
f = a' I

I
+ J

2

1/2
- k(x)

a' = a/(1 + kN/kc)

4.13

4.14

The effective friction angle, (1)e, is then computed from Equation 4.5

so that



2 sin +e
a' 4.15

/T (3 - sin +e)

Then, dividing Equation 4.15 by Equation 4.5, the effective friction

angle is given in terms of the stiffness ratio and the initial fric-

tion angle CZ = 0) as

or

1 _
sin sie

(3 - sin +)
=

1 + kw/kc (3 - sin +e) sin +

sin +e
sin + 1

3 - sin +e 3 - sin 4 1 + km/KC

4.16

4.17
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Equation 4.17 implies that as the neck radius increases, the effective

friction angle decreases as required.

The second parameter, k, in Equation 4.13 is now defined in terms

of the material cohesion and the effective friction angle via Equation

4.5 giving

6 C(X) cos +e

k 4.18

(3 - sin +e)

As
4e

approaches zero, k approaches 2/11-C so that if C is the shear

strength of the material, then the yield law becomes the von Mises

criteria

f = J2
1/2 2C 4.19
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It remains to develop an estimate for the cohesion, C, as a function

of the neck radius.

4.2.1 Cohesion of a Restructuring Fuel Bed

Consider a sphere array made up of various rotations of the unit

cells shown in Figure 3.2 and a pure shear field applied to'the

array. If the array is sheared plastically a series of parallel shear

surfaces (not necessarily planar) will develop in the material. For

arrays with small neck growth these surfaces will be discrete, separ-

ated, on the average, by a distance at least as large as the sphere

diameter, since the shear surface will pass mainly through the neck

region of the unit cells. As the neck radius increases, the shear

surfaces become less distinct and the shear strain approaches a con-

stant value throughout the media. The model for cohesion described in

this section reflects this transition in the shearing properties of

the restructuring fuel.

The shear field is referenced to a fixed coordinate system

(x,y,z) as shown in Figure 4.4. The orientation of a particular unit

cell is determined by the orientation of the z' axis of the unit cell

(the z' axis passes through the represented sphere centers) given by

the angles * and 0 as shown. Since the neck region is cylindrical and

determines the shear strength of the cell, it is not necessary to

consider rotations of the unit cell about the z' axis. The cohesion

of the restructuring array is now assumed to be the average friction-

less shear strength of all the unit cells that a typical shear surface

passes through. Considering all possible orientations of the unit

cells intersected by the shear surface, the average cohesion can be

represented by

IT/2 4)

f max Syu sin * d*do

=o 0

.ff/2

sin * d*de
of

*max
sin

4.20
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z

FIGURE 4.4. Coordinate System for Rotations of the Unit Cell

where *
max

is the maximum rotation (in the * direction) made by any of

the unit cells intersected by the shear surface and Syu is the shear

strength of a unit cell oriented at (*,0) in the pure shear field.

If the array is considered to be made up of spheres arranged as

tetrahedrons as shown in Figure 4.5, then the *max is 60°C. If the

rotation is greater than 60°C then the shear surface will pass between

some other pair of spheres with smaller shear strength. In the pres-

ent model *max is assumed to be equal to 60°. It is now necessary to

obtain the shear strength of a unit cell as a function of * and e.

The coordinate transformation from (x,y,z) to (x',y',z') as shown

in Figure 4.4 is

cos 8 cos sin 0 cos * -sin IT

[T] = -sin e

cos 6 sin q

cos 0

sin 6 sin 4,

0

cos

4.21
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FIGURE 4.5. Schematic of Four Spheres in Contact Oriented in a
Shear Field

Given a pure shear stress field, T, referenced to the unprimed coor-

dinates, the stress field in the primed coordinates is given by

where

[a]. = [T][a][1.]T 4.22

0
[a]=T 0 0 1

0 1 0
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[

-2 sin*sinecos* -cosesin* sine(cos241-sin20

EcT T -cos esin* 0 COSOCOS AP

sine(cos2*-sin20 COSIPCOSO 2sinecosoin*

4.23

It is required to find T that results in yielding of a unit cell when

subjected to the stress field [a]'.

It is assumed that the unit cell will yield when the maximum

shear stress in the unit cell reaches the shear strength of the sphere

material. For most orientations of the unit cell the yield strength

will be determined by the shear stress in the neck region. For cells

at a large angle, *, and with a large neck radius the shear strength

of the cell may be limited only by the shear strength of a solid

sphere. From the discussion on the elastic constitutive model, the

effective shear stress in the solid body portion of the sphere is

Ts = T/,COS
2

4.24

Thus, regardless of the cell orientation, the unit cell shear strength

is limited by

S
yu

S
y

cos
2

a

where S is the shear strength of the sphere material.

4.25
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As in the elastic constitutive model, it is assumed that

ax', a
y x
', and TI

y are zero in the neck region. Then, from Equa-

tion 4.23 the stress in the neck region is

0 0 sine(cos2*-sin2J

[a
N
]' = TA

f
0 0 cosecoss

sine(cos *2- sin 1,)2 cosecos* 2 sinecos*sin*

4.26

where Af is the area factor given by the ratio of the projected areas

of the unit cell and the neck in the z' direction. The area factor is

given by

4 tan
2

13A
f 2

Tr x

From Equation 4.26 the principal stresses in the neck can be obtained

and are

a
1
= 0

'

a
2,3

a
z

' + I
a'

2
+ 4(T'

2
+ Ti

2
)

z xz yz

2
4.27

where a', TI
xz y

and TI
z
are the nonzero components of [a

N
31. The maxi-

mum
z

shear stress in the neck is then

(12-'13

T
max 2

= TA
f cos

2
* - cos

4
i + sin

2
8 (1 - 2 sin

2
0

2

4.28



Tmax will limit the shear strength of the unit cell as long as

the corresponding shear plane can pass through the neck region only.

For some orientations of Tmax and some neck radius the shear plane

will pass through the solid body portion of the sphere (see Figure

4.6a). If this occurs, Ti;lax will not limit the unit cell shear

strength since the shear stress on the Ti'llax shear plane will be much

lower in the solid body portion of the sphere and yielding would not

occur over the entire plane. In this case the maximum shear stress

for determining yield in the neck region is the shear stress on

the w-plane that passes through the extreme boundaries of the neck

regions indicated in Figure 4.6a. The angle between the xly' plane

and the Tmax shear plane can easily be obtained from the Mohr circle

representation, Figure 4.6b, and is given by

a
1

z sin e cos 1p sin
tan 2

V
cos

2
* cos

2
0 + sin

2
e (1-2 sin

2
e)

2

'2where T
,2

= T
'2

T
xz yz

The angle w can be computed from the neck ratio as

-2

tan W
1 - 1 - x

and the shear stress on the w-plane is given by

Ti
w

Tmax1 cos (2 - 2w)

4.29

4.30

4.31
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Then by combining the results given in Equations 4.25, 4.28, and 4.31,

the unit cell shear strength can be expressed as

(

if vw
S
yu

= 1

-72 2 ..-2 u)) if )('`)Af
/
cos

2
ig) - cos4ip+ sin e (1 - 2 sin ip) cos (2

subject to

S
yu

< S
y

cos
2
0 4.32

Equation 4.20 can now be integrated numerically for a given value

of the neck radius to give the effective cohesion of an array of uni-

form spheres with connecting necks. The normalized cohesion (C/Sy) as

a function of neck ratio is plotted in Figure 4.7 for two values

of a (corresponding to packing factors of 0.56 and 0.62). The curves

show that the array has no cohesion at zero neck ratio and approaches

a limiting value as the neck ratio gets large. This is the model

predicted value of the shear strength of a porous material with uni-

form pores uniformly distributed throughout the body. The model-

predicted porous body effective shear strengths are 0.59 Sy and 0.54

Sy for initial packing factors of 0.62 and 0.56 respectively. The

limiting value is closely approached at a neck ratio of 0.55. This is

reasonably close to the suggested end of initial stage sintering

limit.

Using this model for the cohesion as a function of the neck

radius together with the effective friction angle from Equation 4.17,
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the strength parameters, a' and k required in the yield function

(Equation 4.13) can be determined. This provides the yield condition

for a restructuring array of uniform spheres. The model must now be

extended to the case of smaller spheres in the large sphere array

interstitial spaces.

4.2.2 Binary Array Shear Strength

Consider a binary array with only small necks between the large

spheres. Under plastic shear, shear surfaces will be established that

pass through the contact-neck regions of the large sphere array. The

relative displacement of large spheres on opposite sides of the shear

surface will result in shear stress applied to the small sphere arrays

and accompanying plastic shear. Due to this rigid body motion of the

large spheres (with respect to the small sphere array) the plastic

shear strain in the small sphere array is expected to be larger than

that of the binary mixture (see Figure 4.8). The small sphere array
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Shear
Surface

FIGURE 4.8. Schematic Showing Relation Between Binary and Small
Sphere Array Plastic Shear Strain

shear strain is assumed to be proportional to the binary array strain

giving

Y
S

= Y
B

4.33

The proportionality constant c is expected to be a function of the

initial packing factors of the two sphere sizes and of the large-to-

small sphere diameter ratio. When the neck radius becomes large in

the large sphere array, the shear surface does not necessarily pass

only through the neck regions of the large sphere array as discussed

in the previous section. If the large spheres themselves are shearing

plasticly the small sphere array is not subject to the rigid body

motion of the large spheres and the strain in the small spheres is

assumed to be equal to the binary array strain.
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So, for unit cells that shear in the neck region, c has a value

determined by the packing parameters, say co, while for unit cells

that shear through the solid body portion 4 is equal to 1. The effec-

tive value of c is assumed to be the average value over all unit cells

along the shear surface, giving

C =
0
f
'/2

0

ax
f411 c

u
sin*dipde

(4.34)

0

w/2

0

p
fm ax

sinipdipde

Co if the unit cell shears in the neck region
where c

u
1 if the unit cell shears in the solid body region

The specification of co is described in the next section.

The binary array shear strength can be obtained by assuming that

the work required to shear the binary array is equal to the sum of the

work involved in shearing the large and small sphere arrays. This can

be expressed by

where

dWB = dWL + (1 - pydWs 4.35

dW
L =

S
L
di

B
4.36

4.37
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dWB is the work per unit volume required to shear the binary array an

amount dYB, pfl. is the large sphere packing factor, SL and Ss are the

large and small sphere array shear strengths respectively, and dWL and

dWs are the large and small sphere shear work per unit of binary

volume. The shear strength of the binary array is related to the

binary shear work by

dW
B
= S

B
dy

B
4.38

Then combining Equation 4.33 with Equations 4.35, 4.36, 4.37 and 4.38,

the binary array shear strength is given by

SB = SE + (1 PfL) r Ss 4.39

Equation 4.39 relates the shear strength of the binary array in

pure shear to the large and small sphere array shear strengths. The

shear strengths of the various sphere arrays is given by the Drucker-

Prager yield criteria (Equation 4.13) and is

S = (a'I
1
+ k)

2
4.40

Substituting Equation 4.40 for the large, small, and binary sphere

arrays into Equation 4.39 results in

kB aBI1B kL aLI1L (1 PfL) (kS aP1S)
4.41
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where In, In, and Iis are the stresses for computing frictional

effects in the binary, large and small sphere array respectively. The

effective stress for frictional effects in the large sphere array is

assumed to be

I
1L

= I
1B

- I
1S

4.42

and In and 'is are three times the hydrostatic stresses computed for

the binary and small sphere arrays from the solution of the elasto-

plastic equations.

By separating the frictional and nonfrictional strength terms in

Equation 4.41, the binary array strength parameters can be defined by

and

kB = kL + - pf
L
)k

S
4.43

aB (1 I1S/I1B) aL 4- (1 PfL) I1S/I1B
4.44

Equations 4.43 and 4.44 give reasonable results when the neck

ratio for the large spheres is not too much less than that of the

small sphere. For the more typical case where the small sphere neck

ratio is considerably larger than the large sphere neck ratio, the

predicted shear strength (related to kB in Equation 4.43) may be lar-

ger than the shear strength of solid material. For this case the

model predicts that shear surfaces pass mainly through the neck

regions of the large spheres resulting in solid body motion of the
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large spheres and therefore large plastic work done on the small

sphere array is close to s3). When the strength of the small

sphere array becomes large it is more likely that the large spheres

themselves will shear rather than impose large strains on the small

spheres, i.e., the value of should be closer to unity. A limiting
value for may be obtained by considering the maximum possible plas-

tic shear work for a restructuring binary array. It is assumed that

this maximum would be obtained when both the large and the small

sphere arrays are shearing through the solid body portion of the unit

cell. Thus, from Equations 4.32 and 4.35

dW
B

= S
y

cos
2
a
L
d1B + (1 - pf

L
) S

y
cos

2
asdy13

max
4.45

where a
L
and as are the unit cell defining angles for the large and

small sphere arrays. The maximum binary shear strength is then

S
B

= Sy(cos a
L
+ (1 - pfd) cos

2
f3.

s
)

max
4.46

The limiting value for can now be obtained by combining Equations

4.39 and 4.46 giving

S

Y

(cos
2
a + (1 - Pf ) cos

2aS)
- SL

-max i1 7:7) S
L S

4.47

Now substituting the shear strength definition of Equation 4.40

the limiting value of 4 is given by
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Cmax

2/T S (cos2aL + (1 - pfL) cos
2
8s)

(kL 11./10

(1 PfLi(kS acrlS)

4.48

The shear strain ratio is then given by Equation 4.34 subject to the

limit imposed by Equation 4.48.

Several parameters are still required to complete the model for

the restructuring fuel frictional yield strength. These are the small

and large sphere array internal friction angles, the small -to -large

sphere plastic shear strain ratio, co, and the yield stress of the

sphere material itself. The specification of these parameters is

discussed in the following sections and Section 4.4..

4.2.3 Shear Strain Ratio of Unstructured Fuel

Equation 4.44 together with some triaxial compression test data

was used to determine co. Triaxial compression tests (see Appendix B)

were performed on samples of steel spheres, alumina spheres, and a

binary sample of the steel and alumina spheres. The steel-to-alumina

sphere diameter ratio was 15.6 which is in the range of the large-to-

small sphere diameter ratio of the sphere pac fuel (-40 - 20). In the

binary mixture the large and small sphere packing factors were both

0.58. From tests on the steel spheres and the alumina spheres indi-

vidually, the angle of internal friction was found to be 13.5° for the

steel and 18.5° for the alumina spheres. The binary mixture had a

friction angle of 27°. Using the elastic constitutive model the

small-to-binary stress ratio was given as Ils/In = 0.911. Equation

4.15 provided values for as for each of the sphere arrays giving

aL .0974, as = 0.1221, and a; = 0.2059. Substituting these values

in Equation 4.44 and solving for c results in c = 4.22. This is the

value used for co.
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Figure 4.9 shows as a function of the large sphere array neck

radius. For small necks has the value of indicating that the

shear surface passes mainly through the neck regions of the unit

cells. As the cohesion approach its limiting value (see

Figure 4.7) approaches unity indicating that the shear surfaces pass

through the solid body portion of many of the unit cells.

For some values of the large and small sphere neck ratios the

value of 6 used for calculating the binary strength parameters may be

limited by Equation 4.48 and will not be as large as the value shown

in Figure 4.9.

4.2.4 Internal Friction Angle for Unrestructured Fuel

The frictional yield model requires values for the internal fric-

tion angles for the large and small sphere arrays for unrestructured

fuel. A value of (1) = 200 was chosen for both the large and small

sphere arrays. This value was based on the measured angle of repose

of a conical pile of UO2 spheres. The angle of repose gives a reason-

able estimate for the internal friction angle (Gray, 1968). Soil

mechanics tests (e.g., triaxial compression, shear box, angle of

repose) are required on the mixed carbide sphere pac fuel to improve

the estimate for the internal friction angle.

4.2.5 Frictional Yield Parameters for Binary Sphere Array

As described in the preceding, the strength of the binary array

depends on the yield stress of the sphere material, the internal fric-

tion angles, neck ratios, and effective hydrostatic compression in

each of the large and small sphere arrays. Figure 4.10 shows the

binary strength parameters as a function of the small sphere neck

radius. For this representative plot the large sphere neck ratio was

taken as 0.5 times the small sphere neck ratio. No shrinkage of the

large or small sphere arrays was assumed and so the small-to-binary

hydrostatic stress ratio was taken as a constant equal to 0.8. The

internal friction angle for both arrays was 20°.
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The curves in Figure 4.10 show that as the neck ratio increases

aB decreases, thereby decreasing the frictional effects in the yield

function. The value of kB, (normalized by the sphere material shear

strength) however, increases with increasing neck ratio reflecting the

increased cohesion of the sphere array. The predicted equivalent

shear strength of restructured fuel is approximately 0.85 Sy.

The quantitative accuracy of the yield model cannot be assessed

at this time due to the lack of experimental data. The model does,

however, provide a means of estimating the shear yield strength as a

continuous function of the restructuring from a cohesionless sphere

bed to a material with closed pores.

4.2.6 Plastic Potential Function for Frictional Yielding

The use of an associated flow law for granular material generally

leads to an overprediction of the dilation under plastic shear. Plas-

tic potential functions have been proposed (Christian and Desai, 1977)
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that eliminate the volumetric strain. Such a plastic potential

function is chosen for this analysis and is obtained by ignoring the

frictional effects in the yield function. Thus the plastic potential

function becomes

a
1 2

= J
1/2

k(x)
- 4.49

Equation 4.49 is equivalent to the von Mises yield law so that as the

fuel restructures, and the frictional effects become small, the yield

function approaches the plastic potential function and associated flow

is obtained.

4.3 HYDROSTATIC YIELDING

Yielding under hydrostatic load is an important phenomena that

occurs during the very early stages of restructuring. It results from

the large localized stresses at the sphere contacts. Most of the

early densification of the fuel is due to the plastic flow under

hydrostatic stress. This plastic flow also contributes to the neck

growth between spheres and therefore increases the effective thermal

conductivity. Without plastic flow under hydrostatic stress the clad-

ding would yield before the fuel could densify through the other

shrinkage mechanisms.

The hydrostatic yield surface is represented by a cap on the

frictional yield surface as shown in Figure 4.11. The exact shape of

the surface is unknown but the point where the surface intersects the

hydrostatic stress axis can be estimated. It is known that when a

flat piece of material is loaded by a hard spherical or cylindrical

punch, the punch begins to deform the material plastically when the

average pressure across the punch face is 2.5 to 3.0 times the yield

stress (Tabor, 1951). It is assumed that the punch analysis can be

applied to two spheres in contact, and that plastic flow will not

occur as long as



FIGURE 4.11. Capped Yield Surface for Sphere Pac Fuel

N/A < 2.5 a 4.50

where N is the load normal to the contact area, Ac and a is the

sphere material yield strength. The normal force is obtained from

Equation 3.38 giving the yield condition

- ah 4 R
2

tan
2
$

4 2.5 a 4.51

The contact area is assumed to be either that obtained from the cur-

rent value of the neck ratio or from the Hertzian contact radius,

whichever is larger.
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It is assumed that the binary sphere mixture can yield plasti-

cally under hydrostatic stress only if the large sphere array

yields. The hydrostatic stress used for computing the contact force

on the large sphere array is

ahL ahB ahS 4.52
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where a
hB

and a
hS

are the hydrostatic stresses for the binary mixture

and the small sphere array respectively. The maximum allowable

hydrostatic compression on the binary mixture can now be obtained by

replacing ah in Equation 4.51 by am. and combining with Equation 4.52

to give

2.5 Ac ay
-a

hB
<

ahS
4 R

2
tan

2
a
L

4.53

Equation 4.53 gives the point of intersection of the hydrostatic yield

surface with the hydrostatic stress axis. The parameter pc identified

in Figure 4.12 is therefore given by

2.5 Ac ay

Pc
4 R

2
tan

2
fL

4.54

The hydrostatic yield surface is assumed to be spherical with its

center of curvature on the hydrostatic axis. It is somewhat arbitrar-

ily assumed that the surface intersects the J2 axis at k, the strength

parameter for the frictional yield surface. This insures that there

will never be yielding on the hydrostatic surface if the hydrostatic

stress is positive. From geometry, the center of curvature is located

at



Po
1

(k2/pc
Pc)

The yield function is then the equation of a circle in

the a
h'

J
2

1/2
space and is given by

f2 (j2 (ahB Po)

2

) (Pc Po)

2
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4.55

4.56

It is assumed that the plastic flow under hydrostatic yielding is

associated so that

g2= f2 4.57

4.3.1 Neck Growth and Shrinkage Associated with Hydrostatic Yielding

When the fuel yields on the f2 surface there is some center-to-

center approach of the spheres (shrinkage). The shrinkage rate of the

large sphere array, §1. is related to the plastic volumetric strain
.Prate, e
v'

by (see Equation 3.64)

L
= - 2/3 4.58

The relation between neck growth rate and shrinkage rate due to plas-

tic flow is assumed to be the same as that for viscous flow and is

given by (Kingsley, et al. 1976)

SL =
x L7L

where XL is large sphere neck ratio.

4.59
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4.3.2 Neck Growth and Shrinkage in the Small Sphere Array due to
Plastic Flow

The model discussed in the previous two sections can only account

for neck growth due to plastic flow in the large sphere array. How-

ever, plastic flow can also be an important mechanism for neck growth

between small spheres and effectively limits the maximum compressive

stress developed in the small sphere array. Since the yield stress of

the binary mixture is a function of the small sphere array hydrostatic

stress (inequality 4.53), yielding of the small sphere array

indirectly influences the yielding of the binary mixture.

From inequality 4.51 the hydrostatic compression in the small

sphere array is limited by

2.5 ay Ac

ahS 4 2 2 am
4 R

s
tan 0

s

4.60

If the hydrostatic compression in the small sphere array is less

than a
m then there is no shrinkage or neck growth due to plastic

flow. If the hydrostatic compression exceeds am it is assumed that

sufficient shrinkage occurs to make
-ahS m

a

The small sphere hydrostatic stress is given by Equation 3.62.

The shrinkage of the small sphere array is related to e through Equa-

tions 3.65 and 3.66. It is required to find the the small sphere

array shrinkage (or equivalent, a*) that makes -ahS mm. Substitut-

ing am for the small sphere array hydrostatic compression and solving

for a* from Equation 3.62 gives

a* (-ahB am)/ das/dah

Now Equations 3.66 and 3.67 can be solved for the required small

4.61



sphere shrinkage giving

+ _ )

d*

SS
[s 3 0) KC F L

4.62

For a finite time increment the shrinkage rate is approximated by

1 0
S - S
S S

SS et
4.63
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where s1 is the shrinkage calculated from Equations 4.62 and s0 is the

shrinkage at the end of the previous time step. Equation 4.59 can be

applied to obtain the corresponding neck growth rate due to plastic

flow.

4.4 YIELD STRESS OF (U,Pu)C

The yield stress of mixed carbide is required in the model

described for the restructuring fuel yield functions. There is only

limited data available for the yield stress for (U,Pu)C. Werner and

Blank (1981) reported the yield stress of (U.8P.2)C (93% ID) in the

temperature range 1400 4 T 4 1550°C. They also obtained the yield

stress of mixed nitride and carbonitride over a larger temperature

range. These results can be used to infer the qualitative behavior of

the mixed carbide over a large temperature range. Their results indi-

cate that mixed carbonitride ceramics (MC.8N.2) fail in brittle frac-

ture at temperatures below about 1100°C and flow plastically above

this temperature.

In the present model the mixed carbide fracture and flow stress

is assumed to parallel the results for the mixed carbonitride as shown

in Figure 4.12. For temperatures above 1600°C the yield stress is
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expected to be very small as it is for UC (Routbort and Singh, 1975)

which has a yield stress of -20 MPa at temperatures above 1500°C. The

yield stress is assumed to linearly approach zero as the fuel tempera-

ture approaches the melting temperature. The yield (or fracture)

stress assumed for the mixed carbide fuel is given by

a =
y

546. - 0.19T 1.549 x 10
-4

T
2

2263. - 1.17T

20.(2753. - T)/836.

0 4 T < 1413K

1413 4 T < 1917K

T > 1917K

4.64

where T is in degrees K and a is in MPa. The shear strength required

for the cohesion is assumed to be a /2.

The plasticity model is based on an assumption that the material

flows plastically and does not fracture. In the central portion of

the pin where most of the densification occurs through plastic yield-

ing on the hydrostatic surface the temperature is above the transition

temperature and the plastic flow assumption is acceptable. In the

outer regions of the fuel yielding can occur on either the hydrostatic

or the frictional surface. In these regions the strength of the fuel

may be overestimated since fracture in the neck region would result in

a new contact with no necks. This possible shortcoming of the model

is recognized and should be investigated in the continuing effort to

provide an accurate mechanical behavior model.
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4.5 PLASTIC MODULUS MATRIX

All the functions required for the plastic-modulus matrix have

now been presented. The matrix can easily be constructed by taking

the required derivatives of the plastic yield and potential functions

(see Equation 2.15). If the fuel is yielding according to the fric-

tional yield law then fl and gl are used to define [P] while f2 and g2

are used if yielding is on the hydrostatic surface. The explicit form

of [P] is rather cumbersome and is not presented here.

The plastic strain rate due to changes is the yield stress is

defined by Equation 2.17. The derivative of the yield function with

respect to x cannot be obtained analytically, nor is X explicitly

known. However, the required strain rate can be approximated by

*
Cc

PP
1

ag
-

[fi (at, Xt+a) fi (cft'xt)] f7;/

af ag af ag
At [E]

3a 3a 3cP 3a

4.65

where the i subscript on f is either 1 or 2 depending on which yield

surface the fuel is on and f.
1

(a
t'

x
t

) is the yield function evaluated

at the time t values of stress and the material property parameters

(temperature and neck ratio).
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5.0 INITIAL STRAINS FOR SPHERE PAC FUEL

The total stress-strain relation (Equation 2.7) requires the

initial strain rate consisting of the thermal, creep, and swelling

strain rates and the elastic strain rate resulting from changes in the

elastic properties (nonlinear elastic strain rate). Each of these

strain rates is specified for the fuel in the following sections.

5.1 FUEL THERMAL STRAIN RATE

The fuel thermal strain rate is assumed to be isotropic and is

given by

e =e =e =C (T) t 5.1
r e z t

where C
t is the coefficient of linear thermal expansion and T is the

time rate of temperature change. Ogard, Land, and Leary (1965)

experimentally determined the expansion coefficient for (U0.87Pu0.13)C

in the temperature range 25 - 900°C. The expansion coefficient is

C
t

= 8.7 x 10
-6

+ 6.0 x 10
-9

T, 1/0C 5.2

with T in degrees centigrade. Equation 5.2 is assumed to apply at all

calculated fuel temperatures.

5.2 FUEL CREEP AND SHRINKAGE RATE

In the restructuring fuel the sintering-induced shrinkage is

assumed to dominate over any creep within the sphere themselves. For
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most of the initial critical stage sintering the dominant shrinkage

mechanism is expected to be the irradiation and temperature-induced

viscous flow (Matthews 1979) which is essentially a creep phenomena

that occurs locally in the contact-neck region. In the fully

restructured regions of the fuel, shrinkage is due to hot pressing

under hydrostatic compression. Creep to relieve the deviatoric stress

is also considered.

5.2.1 Restructured Fuel Creep

The shrinkage in the restructured fuel is due to hot pressing.

Under a compressive load and high temperatures the fuel porosity is

reduced as the pores shrink and become more spherical. The hot

pressing model used to simulate this effect is the same as that found

in the UNCLE code (Billone 1979) for carbide pellet fuel. The

volumetric strain due to hot pressing is given by

ak
p uOp . 9./4. Ahp

1.12
1/s

where p is the fuel porosity and p is the fuel viscosity given by

5.3

1/11 = 202./d
2

exp (-80,000/RT) + 6.944x10
-25

F, MPas 5.4

d is the grain diameter in microns, ah is the hydrostatic stress in

MPa and F is the fission rate in neutrons/cm
3

s.

The parameter Ahp was fitted to pin strain data for pellet fueled

pins giving Ahp = 15.0. The same value is used for the restructured

portion of sphere pac fuel. The hot pressing strain rate is assumed

to be isotropic giving



erp = eep = 413 = 13/3.
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5.5

A deviatoric creep is also considered in the restructured fuel.

The usual assumption for pellet fuel analysis is that most of the

creep strain is due to secondary creep that is independent of the

total creep strain. This assumption is also used in the present model

although there is evidence that, for mixed carbide fuel, primary creep

may represent a significant portion of the total creep strain (Singh

1967). The creep data for mixed carbide fuel is so limited and

scattered that it is not reasonable to model the more complicated

primary creep at this time. The secondary creep rate is assumed to be

the sum of a thermal creep rate and a fission-induced creep rate. The

rate expressions chosen for this model are based mainly on a review of

carbide fuel properties by Routbort and Singh (1975).

The thermal creep rate is taken from the work of Tokar (1973) who

measured the compressive creep of (U0.79Pu.21)C1.02 at temperatures of

1300, 1400, and 1500°C and stresses of 13.8, 27.6, and 41.4 MPa. The

initial porosity of the sample was 0.14, and densification of the

samples occurred during the primary creep phase reducing the porosity

to as low as 0.08 at the onset of secondary creep. It should be noted

that the steady-state creep of mixed carbides is sensitive to small

variations in the stoichiometry with hypostoichiometric samples

creeping faster than hyperstoichiometric samples (Routbort and Singh

1975). The secondary rate expression obtained by Tokar is

e
t

= 4.15 x 10
6

a
2.44

exp(-126.4 kcal/mol/RT), 1/hr 5.6
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For a slightly different stoichiometry [(U0.8Pu0.2) C1.0] Singh (1977)

obtained a creep rate dependent on stress to the 3.0 power and with an

activation energy of 296.6 kcal/mol. The creep rate was a factor of 5

greater than that observed by Tokar indicating the sensitivity to

stoichiometry.

Other workers have obtained values of the stress exponent in the

range 0.35 - 1.9 and activation energy in the range 45 - 117 kcal/mol

for samples of various porosities and Pu contents between 13 and

15%. There is not enough data to determine the strain rate dependence

on porosity or Pu content although samples with higher Pu content

generally have higher thermal creep rates.

Below a certain temperature the creep rate predicted by

Equation 5.6 becomes small compared to the fission-induced creep

rate. The usual form for fission-induced creep is

f
= C

f
aP 1/hr 5.7

For UC the temperature at which c. dominates is 12000C (Solomon

1973). The fission-induced creep is independent of temperature for

carbides. From the data of Dienst (1977) the proportionality constant

for Equation 5.7 is estimated at Cf = 2.5 x 10-21 with a given in MPa

and F in fissions/cm3s.

The creep rate is a function of porosity although there is not

enough data to determine the functional dependence for

t
and

f"
Until more data becomes available the total deviatoric

creep rate is assumed to be linearly related to the porosity according

to

cd
= Cp (1 - p) (Et + 5.8
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The porosity coefficient is determined from the steady-state creep

results of Tokar assuming a porosity of 0.08. This gives a value for

C = 1.087. Combining Equations 5.6, 5.7,. and 5.8, the total

deviatoric creep rate is given by

1.087 (1 - p) (4.15 x 106 a2.44 exp (-126.4/RT)
cd

+ 2.5 x 10
-21

aF), 1/hr 5.9

5.2.2 Creep Strain Components

Equation 5.9 gives the uniaxial creep rate in response to an

applied uniaxial stress, a. To get the three-dimensional deviatoric

strain rate (see Kraus 1980) in response to an arbitrary three-

dimensional stress state the components of the creep rate are assumed

to be proportional to the deviatoric stress as

.cd
cis) sij

If the effective stress for use in Equation 5.9 is defined by

e 2

5.10

5.11

and the resulting effective creep rate is related to the creep rate

components by



ccd = 401 .cd 1/2

ij

3

then substitution of Equation 5.10 into 5.13 yields a value

for A given by

3

A To; ecd

For the axisymmetric case Equations 5.10 and 5.12 reduce to

with

.cd
er

.cd

o

.cd

Z

3e
cd

tae

jar crh

ae

az - ah

ae
2

=
3
2 Par - an)

2
+ (a

e
- )

2
+ (az - an)

2
]
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5.12

5.13

5.14

These equations are analogous to the Prandtl-Reuss equations for

plastic flow using the von Mises yield criteria and the associated

flow rule. They provide the deviatoric creep rate components in the

restructured fuel. The total creep rate in the restructured fuel is

the sum of the deviatoric creep and the hot pressing creep giving

.c .hp .cd
, etce = Cr + er

r
5.15



126

5.2.3 Restructuring Fuel Shrinkage

The initial stage sintering model provides a value for the

center-to-center approach rate of two spheres. The modeled mechanisms

are the same as those described by Ades (1979), except for the viscous

flow mechanism. Matthews (1979) obtained an expression for the

viscous flow neck growth rate that corresponds to the creep law of the

solid material. If the material creep law is of the form

e = Bc an

then the viscous flow neck growth rate is given by

- 9743 (2n - 1) Fa n
_ C r

XVF T- I
6n

2
R
2 1

5.16

5.17

where Fa is the applied force (Fa = ah Az) on the contact area.

Matthews also included a driving force term proportional to the

surface tension of the material but this requires an assumption that

the material at the neck surface is redistributed by some surface

diffusion mechanism. Since the surface diffusion is small compared to

the neck growth rate due to viscous flow, the surface tension term is

neglected in this analysis.

The creep law for mixed carbide is discussed in Section 5.2.1.

The creep rate is the sum of a thermal induced and a fission induced

creep and so there are two corresponding terms for the viscous flow

neck growth rate. The viscous flow neck growth rate is assumed to be

given by the sum of these terms.

The shrinkage rate corresponding to the viscous flow neck growth

rate is given by (Kingery, et al, 1976)



S = x x
VF VF
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5.18

There have been some attempts to determine the dominate sintering

mechanism for mixed carbide fuel (Guenther, 1978; Ades, 1979;

Matthews, 1979). Since the fuel operates over such wide ranges of

temperature and stress and consists of two sphere sizes, these studies

have not been conclusive. While viscous flow is the major contributor

during most of initial stage sintering there is potential for any one

of the mechanisms to contribute significantly at certain points in the

restructuring process. Rather than try to anticipate the dominate

mechanism it is assumed that the total instantaneous neck growth rate

is the sum of the growth rate from each of the mechanisms giving

:._

+ 3i + x
ViscousIrotal = 7Volume Grain

+
Surface

+
Evaporation

Diffusion Boundary Diffusion Condensation Flow
Diffusion

5.19

For Equation 5.19 to hold it must be assumed that the processes do not

interfere with each other. This is not totally valid since, for

example, grain boundary diffusion must be accomplished by surface

diffusion to distribute the material at the neck surface. Further, when

considering processes with and without shrinkage simultaneously, the

basic neck geometry assumption (which is different for the two

processes) it is not valid for either type of mechanism. Nevertheless,

should one mechanism clearly dominate at any particular point in the

sintering process, Equation 5.19 will reflect that dominance and provide

a reasonable estimate for the neck growth rate.

A similar assumption is made for the shrinkage so that the total

center-to-center approach rate is given by



. . .

S = S + S + S
Total Volume Grain Viscous

Diffusion Boundary Flow
Diffusion
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5.20

The shrinkage and neck growth that occurs due to plastic flow in the

neck region has been discussed in Chapter 4. The plastic neck growth

and shrinkage are added to the contributions from Equation 5.19 and

5.20. Neck growth and shrinkage are calculated for both the large and

the small sphere arrays. The effective hydrostatic stress is required

for the volume diffusion, grain boundary diffusion and viscous flow

mechanisms. For the large spheres it is calculated from Equation 4.42

and for the small spheres from Equation 3.62.

It is assumed that the shrinkage of the binary sphere array is only

as large as the shrinkage of the large sphere array. The binary array

shrinkage is therefore related to the large sphere shrinkage by (see

Equation 3.64)

sh
e = -S
v L

where S
L

is the large sphere shrinkage rate (a positive quantity).

It is assumed that the shrinkage is isotropic giving

sh .sh .sh -sh
er = e

e
= ez = ev /3.

Equation 5.22 gives the creep strain rate components in the

restructuring fuel.

5.21

5.22
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5.3 FUEL SWELLING

The swelling of advanced fuels has been separated into four

categories:

1. swelling due to solid fission products

2. microscopic swelling resulting from the nucleation and growth of

fission gas bubbles within and on fuel grain boundaries

3. local swelling resulting from pore shrinkage (hot pressing), pore

growth due to fission gas precipitation, grain growth, pore

coalescence, crack healing, and gas release

4. crack formation and propagation.

The bubble and pore growth in mixed carbide fuels is not yet fully

understood or quantified. Ronchi and Sari (1975) and Blank (1977) have

qualitatively related the compressible gas swelling to the four

restructuring zones described in Chapter 1 as follows:

Zone IV very small bubbles (diameter < 0.1 01) only at higher burnups

Zone III grain boundary bubbles (diameter > 0.5 um) ranging from small

isolated bubbles on cold side of Zone III to interlinked

bubbles on hot side

Zone II large pores and bubbles (less than grain diameter) although

overall porosity on the cold side may be lower than Zone III

and IV porosity. Small pores and bubbles are eliminated by

grain growth and pore migration.

Zone I large pores (20 - 50 um), high porosity region

Ronchi, et al (1978) and Blank (1975) identified a critical fuel

temperature, located within Zone III that is an important parameter in

determining the fission gas bubble growth. In fuel regions at

temperatures below the critical temperature, Tc, the fission gas bubbles

remain small and their effect on fuel swelling is small. Above Tc there

is a large increase in the larger bubbles (diameter > 0.10n)
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concentration which represents a main portion of the microscopic

swelling. The critical temperature decreases with increasing burnup.

Recently Blank, et al have obtained some quantitative results for

the microscopic swelling in mixed carbide pellet fuel. By measuring the

bubble diameters in pellets at various burnup levels and at various

radial locations in each pellet, they were able to get a bubble size

distribution function that gives the bubble concentration for a

particular size bubble as a function of fuel temperature and burnup. In

this study they only considered intragranular bubbles. Expressions were

obtained for the swelling of two bubble classes as a function of burnup

and temperature. The bubble classes considered were the intragranular

bubbles with diameters in the 0.03 - 0.4 0 range and below the

transition temperature where large bubble growth begins, and the

intragranular bubbles in the same diameter range but above the critical

temperature. Only bubbles in Zone IV and in Zone III near the Zone IV

boundary were considered. The results were based on experimental data

from sodium - bonded carbide pellet pins that experience little or no fuel

cladding interaction. The predicted swelling using this model is

therefore stress-free swelling.

There have been other correlations for the swelling in mixed

carbide fuel that do not separate the swelling into its four

contributing parts. Dienst (1979) obtained a swelling correlation that

depends on the fuel centerline temperature and gives the overall

swelling of a pellet. For a centerline temperature of 1050°C the

overall swelling rate was found to be about 1.7%/%FIMA (Fissions per

Initial Metal Atom, unit of burnup). This increased to about 2.5%/%FIMA

at 1400°C and 3.5%/%FIMA at 1600°C. At lower temperatures Clottes,

et al (1973) observed a swelling rate of 1.45%/%FIMA in mixed carbide

pellets with centerline temperatures between 830 and 880°C.

This data based on centerline temperatures is not too useful for

the sphere pac fuel since the centerline temperatures change

considerably over the pin lifetime due to the restructuring. Further,
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the swelling rate is a function of burnup as observed by Blank. A

recent correlation by Zimmerman (1982) gives the swelling rate as a

function of local temperature and burnup. His correlation is based on

data taken on annular and solid pellet fuel (94 - 96%TD) in both stress-

free and restrained conditions (confining pressure up to 40 MPa). The

(U0.85Pu0.15)C pellets were irradiated at spatially uniform temperatures

in the range 280 - 1750°C and over a range of burnup up to 5.5 %FIMA.

For mixed carbide fuel at constant temperature he obtained a swelling

correlation given by

SW = 0.8B + C1[l - exp (- C2B)], % 5.23

where B is the burnup (%FIMA) and

24C
1
= 10

1400 - T1 + exp (---741
---'

C
2
= 0.06 + 8.025 x 10

3
exp(-2.027 x 10

4
/T)

5.24

5.25

The first term in Equation 5.23 describes the swelling due to solid

fission products, and the second term results from the fission gas-

induced swelling. The influence of applied stress was found to be

small. The solid fission product swelling is greater than the value

determined by Blank et al (1976) (0.5%/%FIMA). Figure 5.1 shows the

swelling predicted by Equation 5.18 as a function of burnup at several

temperatures. The temperatures and burnups have been extended beyond

the range of the data and the validity of the correlation outside of the

data range is unknown.
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Until more detailed swelling correlations are derived (such as an

extension of Blank's model) the fuel swelling is assumed to be given by
Equation 5.23. The swelling strain rate is obtained by differentiating

Equation 5.23 resulting in

.sw
c = 0.01 (0.8 + C C exp(-C 8)) B, 1/sec
v 1 2 2

5.26

where B is the burnup rate in %FIMA/sec. Since the swelling correlation

was obtained for 94 - 96% TD fuel, which is approximately the as-

fabricated porosity of the spheres, there is no porosity correction

factor for the swelling rate. The swelling correlation does not exhibit

any anomolies at temperatures and burnup outside the data range, so

Equation 5.26 is used to estimate the fuel swelling rate at all fuel

temperatures and burnups. This equation is used in both the
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restructured and unrestructured regions of the fuel. The swelling is
assumed to be isotropic, implying

.sw .sw .sw 1 .sw
er co cz cv

5.4 NONLINEAR ELASTIC STRAIN RATE

5.27

Changes in the elastic properties of a body under some nonzero

constant load will result in some strains to satisfy the elastic stress-

strain relationship. These changes in the elastic properties can result

from temperature changes, if the properties are temperature dependent,

and in the case of sphere pac fuel, changes in the material geometry

through restructuring. From Chapter 2 the elastic stress-strain

relation can be expressed as

.e ae . ae
{e

}
{al +

3{a}
5.28

where e is the elastic stress-strain function that relates the total

elastic strain to the total stress and a combination of influencing

parameters represented by E. The second term in Equation 5.28 is the

strain rate due to changes in E at constant stress and is the nonlinear

elastic strain rate giving

.en 9e
{e } =

aE
5.29
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5.4.1 Restructuring Fuel Nonlinear Elastic Strain Rate

In the restructuring fuel an explicit form for the elastic stress-

strain relation is not available. The nonlinear elastic strain rate

must be calculated from the differential stress strain relation. This

can be evaluated by calculating the total elastic strain rate at

constant stress expressed as

.en .e
tE } = {e 1

C

For a constant E, the elastic strain rate is given by

te
e

= [D]{dCy}

5.30

5.31

where [D] = [E]-1 is the elastic compliance matrix derived in

Chapter 3. Recall that [D] depends on the hydrostatic stress as well
as E. Integrating both sides of Equation 5.31 with respect to time and

assuming that {c} = {a} = 0 at t = 0 gives

taltel f [D] (d(;}
0

5.32

Equation 5.32 gives the total elastic strain for given values

of and {a}. The nonlinear strain rate can now be obtained by

differentiating Equation 5.38 with respect to time at constant stress

giving



d
{a}

{den
{

e
(3-C} f E°316-10

For a finite time increment Equation 5.32 becomes

1 {a} {a}

{erl} 7 I f [D(Et*At)] {d3} - f [D(E0]{C;}]
o o
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5.32

5.33

where E
t is the value of E at time t. Thus it is required to evaluate

integrals of the form

I = f

CO
ED(E)] {d Q}

0
5.34

Since here [D] depends only on the hydrostatic stress, it is convenient

to make the change of variable

131
I1 /I1 {a} 5.35

where I
1 and T are the first stress invariants associated

with {a} and {3}. Equation 5.42 defines a particular loading path from

zero stress to {a}. This does not cause any difficulty, since only

elastic strains are considered and the integral is path independent.

The integral then becomes

1

I = f [D] dA {a}
0

5.36
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where x = T
1
/1

1
. The functional form of the compliance matrix [D]

changes at d* (the hydrostatic compression at which the large and small

sphere arrays begin to interact) so the integral is separated into two

parts

x* 1

I = [ f [D]dx + f [D]dx] {a}
o

X

5.37

where X* = a*/I
1

The functional dependence of [D] on the hydrostatic stress is

deeply buried by the algebra in the derivation of the binary array

stress-strain relation in Chapter 3 making the analytic evaluation of

Equation 5.37 virtually impossible. The integral must be evaluated for

each fuel region at every time step so that any numerical scheme used

must be extremely fast. To obtain a suitable quadrature formula to

evaluate the integral it is observed that for a single-size sphere array

the entries in [D] are of the form (see Equations 3.2, 3.30, 3.37, and

3.42).

A+
Cal /3 + D

It is also observed (see Section 3.7) that the functional dependence of

the binary array on hydrostatic stress is not too much different than

that of the single-size sphere array. It is therefore expected that the

compliance matrix for the binary could be approximated by terms having

the above form. Any quadrature formula that could integrate terms of

the above form exactly should provide a good approximation to the

integrals given by Equation 5.37. Equivalently, the quadrature formula

should integrate



1 +
1

x
1/3

+ D/C
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exactly. This requires a quadrature formula that depends on the unknown

value D/C which is unfeasible. For large D/C (equivalent to material

approaching a porous body) the above term approaches unity and for small

D/C it approaches

1 + x
-1/3

A quadrature formula can easily be found (see Appendix C) that

integrates terms of this form exactly and is given by

1

f fdx = 0.4149993 f
.1

+ 0.5850007 f
.9

5.38

where f1 is f(X = 0.2) and f.9 is f(x = .9)

This two-point quadrature formula provides a reasonable

approximation to the two integrals in Equation 5.37 as can be seen in

Figure 5.2. This figure compares one strain component evaluated

according to Equation 5.36 or 5.32 using Simpson's rule and using the

two-point quadrature formula. The integral was evaluated for a case of

uniaxial compression and a variety of combinations (randomly chosen) of

stress, a*, and large and small fraction neck ratios. The good

agreement between the two integration schemes for all points indicates

that the simple two-point quadrature scheme is sufficient to evaluate

the required integrals. For sphere arrays with no necks the compliance



z

.oi AAA°
4 AterTa 0.00

138
.07 f a mime/ teallea at/ este/oast/a lea

.06

.05

.04

.03

.02

.40,410

AAir-
AP

AP

AAA

A
A

0.00 .02 .04 .06

AXIAL STRAIN (SIMPSON'S RULE)
FIGURE 5.2. Comparison of Two-Points Quadrature Formula and

Simpson's Rule for Integration of Equation 5.37

at zero stress is infinite. For these cases Simpson's rule does not

provide a good estimate of the total strain. The few points where the

two integration schemes differ by more than 2 or 3% have been identified

as being associated with an array with very small necks.

Once the integration has been carried out, the nonlinear elastic

strain rate can be obtained from

where

en I ,

3 EIt+t Iina}

1

It = f ED {y]d),

5.39
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5.4.2 Restructured Fuel Nonlinear Elastic Strain Rate

In the restructured fuel an explicit form for the total stress-

strain relation is available and is given by

{e} = [D]{a} 5.40

From Equation 5.28 and 5.29 the nonlinear elastic strain rate is easily

seen to be

{e
en

} = [a] {Q} 5.41

where [6] is the time rate of change of the compliance matrix.



140

6.0 CLADDING MECHANICAL MODELS

The mechanical models for the cladding are much simpler than

those for the restructuring fuel and, in most cases, are a reduced

form of the fuel mechanical models presented in Chapters 3, 4, and

5. The governing equations for the cladding are the same as those

given in Chapter 2. In this chapter the models for each of the total

strain components (elastic, plastic, etc.) are presented.

6.1 CLADDING ELASTIC STRESS-STRAIN RELATION

The cladding is assumed to be elastically isotropic and the

elastic strain rate is given by

where

{e
e
} = [D]{.0 + [o] {al 6.1

-1 -v -v

[D] =
1 -v

c
1 -v

c

-v
c

-v
c

1

and Ec and v
c
are Young's modulus and Poisson's ratio for the

cladding. Ec and vc are not specified here since there is a variety

of choices possible for the cladding material. Elastic properties for

stainless steel are available in the Nuclear Systems Materials

Handbook (NSMH 1976) and properties for advanced alloys can be found

in the Advanced Alloys Databook (AAD) (Laidler 1980). Generally,

these two elastic constants are functions of the temperature only.



6.2 CLADDING PLASTIC CONSTITUTIVE RELATION

The cladding yield function is assumed to be given by the

von Mises criteria

fy.
2

f 1/2J

3-

where a is the yield strength of the material in uniaxial tension.

The yield strength depends on temperature, strain rate, and reactor

fluence. As is usually done for metals, associated flow is assumed

for the cladding implying that the plastic potential and yield

function are identical. Thus

1/2 fy_

g J2
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6.2

6.3

Strain hardening of 20% cold worked stainless steel and the

advanced alloys is generally small and is neglected in this analysis.

Under the above assumptions, the plastic modulus matrix for the

cladding can be obtained from Equation 2.19 and is given by

[Pc] 2
2

s s
r
s
r

s
rse r

s
z

s s sosr
0 8

s osz

s s s s s s
z r z 6 z z_

6.3

where s
r'

s
0'

and s
z

are the stress deviator components. The plastic

modulus matrix is required in Equation 2.16 to relate the plastic

strain rate to the total strain rate, the initial strain rate, and the
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plastic strain rate due to changes in the yield stress of the

material. The plastic strain rate due to changes in the yield stress

is defined by Equation 2.17. Without knowing the explicit form

of of /ax X, the strain rate can be defined for a finite time increment

by

{e.PP }

(1 + v
c

) f(a
t'

xt+At ) - f(at,xt)
s
r

At Ec e

sZ

6.4

where f(at,xt) is the yield function evaluated at the stress at time t

and other influencing parameters (temperature, fluence) also at

time t.

6.3 INITIAL STRAIN RATE

Like the fuel, the initial strain rate for the cladding consists

of thermal, creep, and swelling strain rates and an elastic strain

rate resulting from changes in the elastic constants in the material

at constant stress.

The thermal strain rate is given by Equation 5.1 where the

coefficient of expansion is taken from NSMH or AAD. As implied by

Equation 5.1, the thermal strains are assumed to be isotropic.

The creep strain rate is given by Equation 5.14 where the

effective uniaxial creep strain rate ec is for the specific cladding

material being modeled. The uniaxial creep rate is generally given as

the sum of thermal and irradiation-induced creep rates. The creep

rate is generally a function of the effective stress, the fast

fluence, and the temperature. The correlations usually provide a

total creep correlation giving

e
c

e
t

(t
' e
a

'

T) + e
i

'

a
e'

T) 6.5
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where
t

and c
i
are the thermal and irradiation-induced components,

respectively, and t is time. ae is the effective stress (defined

with Equation 5.14), T is temperature and 0 is the fast fluence. The

creep rate is obtained from these correlations by differentiating with

respect to time giving

ae,
e = e (t,a

e
,T) + (0 a T)(1)

c c eft e'

where (I) is the fast flux.

6.6

The swelling correlation for cladding materials is usually given

as the sum of two components: a densification term and a swelling

term. The densification occurs early in the pin lifetime and

decreases as the fluence increases. The swelling increases with

fluence and overtakes the densification at fast fluences of about

1 x 10
22

n/cm
2

. The available swelling correlations are for stress-

free material. According to a theoretical swelling model by

Brailsford and Bullough (1973) the effect of stress on swelling is

small for stainless steel cladding at temperatures below 600°C. Data

reported by Bates, et al (1981) however, indicates that stress does

influence swelling at temperatures below 600°C, but the dependence has

not been quantified.

The swelling correlations are generally given in the form

evs = S
o
(0,T) - D(0)

where So is the swelling term and D is the densification term. The

swelling rate is then given by

6.7
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6.8

For cold worked stainless steel the stress-free swelling is

slightly anisotropic with the growth in the axial direction generally

larger than that in the other two directions, as observed by Bates,

et al. (1981). For stressed cladding the anisotropy was smaller.

Until the anisotropy can be quantified for the various cladding

materials and stress dependence, the swelling is assumed to be

isotropic. The components of the swelling strain rate vector can then

be obtained from Equation 5.27.

The final contribution to the initial strain rate is the

nonlinear elastic strain rate. As in the case of the restructured

fuel, a total elastic stress-strain relation is available so the

strain rate is simply obtained from Equation 5.41.

All the strain rates and material properties for the fuel and

cladding have now been specified, so the stress-strain relationship

(Equation 2.18) has been completely established. It remains to solve

the equilibrium and strain displacement equations coupled by the

stress-strain relationship. The numerical procedure used to solve the

equations is described in the next chapter.
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7.0 NUMERICAL SOLUTION

The solution of the elastoplastic equations described in

Chapter 2 is accomplished through the use of a finite-element method

(see e.g., Zienkiewicz 1971 or Bathe and Wilson 1976) incorporated in

the SPECKLE-III code. The numerical schemes used for the thermal

models (temperature distribution, fission gas model, etc.) were

discussed by Ades (1979) and George and Peddicord (1981) and are not

considered here. It is assumed that, for purpose of the mechanical

model numerics, the required input from the thermal model (temperature

rate of change, neck radius, etc.) are available in the required form.

The finite-element method chosen is based on the principle of

virtual work that states that for a body in equilibrium subject to

small additional displacement with external loads held constant, the

internal work done on the body is equal to the work done by the

external loads. This can be expressed as

I {ft}
T

{a} dV = j {60T {F}dA
V A

7.1

where V and A are the volume and surface area of the body

considered, {80 is the small displacement, [60 is the strain

increment consistent with {U}, {a} is the equilibrium stress state and

{F} is the external load. The pin is subdivided into a number of

finite elements as shown in Figure 7.1. The pin is divided axially

into segments, each of length Az. The fuel and cladding are further

divided into cylinders of equal wall thickness (Arc for the cladding

and Ar
f

for the fuel). There is also a fuel-cladding interface element

that allows slip between the fuel and the cladding as described later

in this chapter. The interface element radial dimension is 0.001rf

and is not considered in the thermal model.
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Since the system pressure in an LMFBR is low, it is assumed that

there is no radially applied external force at the cladding outer

surface. The bottom end of the pin is assumed fixed axially and the

top end is assumed to be free and without any axial load. The only

force considered that enters the right hand side of Equation 7.1 is

the force exerted by the gas in the pin on the cladding interior and

the outermost restructured fuel ring. The integration of Equation 7.1

is carried out over the individual ring elements giving

nVf

{den }T {a
n
} dV

n
= f {(SU

n
}T {F

n
} dA

n
n V

n
n A

n

where V
n

and A
n are the volume and surface area for an individual

element.

7.1 FUEL AND CLADDING ELEMENT STIFFNESS EQUATION

7.2

An individual fuel element is shown in Figure 7.2 (the cladding

elements are analogous). Under the general assumption listed in

Chapter 2 the fuel element has only four degrees of freedom: the

inner and outer radial displacement and the axial displacement at

either end. An isoparametric formulation is used and the radial and

axial displacements are assumed to vary linearly in the radial and

axial directions, respectively. The radial and axial displacements at

any point in an element are given by

un(so = -12-[4(1 sl) + 4(1 + s1)]

n
V
n
(s

2
) =

1
[V

1
(1 - s2) + Vn(1 + s2)] 7.3
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where s
1 and s2 are coordinates that run in the radial and axial

directions, respectively, and range from -1.0 (at the inner radius and

element bottom) to +1.0 (at the outer radius and element top).

For any displacement field (Un,Vn) the corresponding strain field

can be obtained from the kinematic relations (Equation 2.2) and

V2

FIGURE 7.2. Fuel or Cladding Ring Element
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Equations 7.3. This gives

{en(si,s2)} = [Bn] {Un} 7.4

where

0 0 -1/a
n 1/a n

[Bn] = -1/hR
n

1/ARn 0 0

1/R2
n

1/R2
n

0 0

TH IT v1, v2]
`-nl = [1.1

Un n n

,T r n n,

{en
}T Le

z'
e
r'

j

with R2n = rn + rni.1 and ARn = rn.1.1 - rn.

The strain increment corresponding to an incremental change in

the displacment field is given by

{den} = [B
n
]{dli

n
} 7.5

From Equation 2.18 the stress vector at time t can be written as

t
{an} = {a

n

o
} + f [En]([I] - LPn])( {En}

n
- (0}) + [E

n n
ilePPldt

0
7.6



where {4} is the stress at time t = 0.

The total strain rate is related to the displacement rate by

n
= CB

n
710

n
1

Substituting Equations 7.5, 7.6 and 7.7 into Equation 7.2 gives

T T t
f

n
} [B

n
] f [E ]([I] - [P

n
]) [B

n
]

n
} dt dVn

n V
n
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7.7

t

n V

= f
T
[Bn]

T
of [E

n
]([I] - [Pn]) - [E

n n n
itel/P}dt - {09} dVn

n

+ f nlT {Fn} dA
n

n An
7.8

In the following discussion, the displacements e Un Vn Vn are
1, 2' 1, 2

referred to as node point displacements even though the displacement

actually applies to an entire surface of the element. For the

assemblage of elements the incremental node point displacements are

arbitrary and it can therefore be shown (e.g., Bathe and Wilson 1976)

that Equation 7.8 reduces to

f [13

n
]

T
f [E

n
] ([I] - [P

n
I3]) [n

n
) dt dV

n V
n

f [Bn]
n V

n

] (CI] [PO) - [En] {Ord dt - forcid dVn

+ f {F
n
} dA

n
7.9

n A
n
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Then differentiating Equation 7.9 with respect to time gives

1 f [B ]
T

CE ] ([1] [P ]) CB ] {U) dV
n n n n n n

n V
n

= 1

V

f [B]T
"

[En] (El] - [Pn]) 4} - [E ] {PP} dV
n n n

n
n

+ 1 I {- } dA
n n

n A
n

This expression can be simplified by introducing the element

stiffness matrix [Ku] and forcing vector {Qn} defined by

[Kn] = f [B."
]T

[En] ([1] - [Pn]) [Bn] dVn 7.11

V
n

.

{Q } = f [B ]T CE ] ([1] - [P ]) {co}
o

- [E ] {Epp} dV
n

V
n n n n n n n

n

+ f {r' } dA
n n

A
n

The elastic and plastic modulus matrices are assumed constant

within an individual element and [Bn] is also constant over the

element so that

7.12

[Kn] = Vn [Bn]T [En] ([1] - [Pn]) [Bn] 7.13
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7.14

The last term of 0 } is due to gas pressure force on the
n

cladding or restructured fuel. For the inner most cladding element

this term has the form

A } = 2ir r Az P
n n f g

0

0

0
7.15

where 17) is the rate of change of the gas pressure. The force for the

outermost restructured fuel region is

01.

A {F } = -2.7r Az P 0
n n r g

0

7.16

where r
r is the radius of the restructured region.

The gas also exerts an axial force on the cladding transmitted

through the end plug. The end plug is not explicitly modeled but the

resulting axial force is applied to the innermost cladding element at

the top axial level. The force term for this element is



A {0 } = Tr r
n n f g
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7.17

For an individual element a stiffness equation is thus obtained
that relates the node point displacement rate to the forcing function
given by

7.18

An equation of the above form can be constructed for each of the fuel
and cladding elements. The stiffness matrix for the interface element
is somewhat different and is developed in the following section.

7.2 INTERFACE ELEMENT STIFFNESS EQUATION

It will be recalled from the assumptions in Chapter 2 that the
fuel and cladding are each separately in a state of generalized plane
strain. Slip between the fuel and cladding would result in different
axial strains for the fuel and the cladding. The slip/no-slip
condition at the interface can easily be included in the general

elastoplastic model. To accomplish this a special interface element
has been devised. When the element is in the purely elastic state, a

no-slip condition is imposed at the interface, while when it is in the

elastic-plastic state, slip is allowed until the interface frictional

force balances the difference in axial force across the interface.



The degrees of freedom for the interface element are shown in
Figure 7.3. The vertical surfaces of the cylinder can displace
radially and axially. The element is not connected to adjacent

interface elements at the top or the bottom and axial strain of the
elements is not considered. With the degrees of freedom shown in
Figure 7.3 the possible strains are

r

n
nEe

[Bn]
W1

n
n

W
2

The shear strain is given by

154

7.19

y = dW/dr
7.20
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FIGURE 7.3. Fuel-Cladding Interface Element

so that the [B
n
] matrix is defined by

-1/AR 1/AR 0 0

1/R2 1/R2 0 0

0 0 -1/AR 1/AR

In the solution for the node point displacements it is assumed
that W

1 is equal to V2 for the adjacent fuel element and that W2 is

equal to V2 for the adjacent cladding element. Any slip between the

fuel and cladding therefore results in shear strain of the interface

element. The elastic stress-strain relation for the interface element

is chosen so that it will provide the proper fuel cladding interface

pressure and shear stress but will not artificially restrain the fuel
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or cladding. This is accomplished by setting the radial elastic

modulus and the shear modulus to arbitrarily large values, the elastic
modulus for tangential strains to an arbitrary small value, and
Poisson's ratio to zero. The element is therefore very stiff radially
and in shear and effectively provides a matched displacement condition
for the fuel and cladding. By making the elastic modulus for

tangential strains small, the element cannot contribute significantly
to hoop restraint provided by the cladding. The stress-strain
relation is

ER

0

0

0

E
T

0

0

0

n
cr

n

Yn01

7.21

where ER = G = 1 x 107 MPa and ET = 1.0 MPa.

As long as the interface element is in an elastic state the

difference in axial displacement of the fuel and cladding will be very
small (but not zero) due to the large shear modulus and the thinness
of the element.

Fuel cladding slip occurs when the interface element goes to an
elastoplastic state. It is assumed that the interface shear stress
developed in a sphere pac pin is constant over the length of an axial
segment. This shear stress is represented by the shear stress

developed in the interface element. Slip at the interface will not
occur as long as

IT 14 - u
Iar

I

7.22

where T
I
and a

rI are the interface shear and radial stresses and is

the coefficient of static friction for the sphere pac fuel against the



cladding. The yield function chosen to represent this slip/no-slip
condition is

1 r +C1
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7.23

where C1 is a small positive stress. The intersection of the yield
surface with the (T1, art) plane is shown in Figure 7.4. C1 is
included in Equation 7.23 to avoid difficulties in going around the
sharp point at apex of the yield surface. The value of C1 is chosen

small enough so that when ITI 4 C1 the amount of axial strain in the
cladding resulting from a complete release of the shear stress would
be negligible. By the assumption of generalized plane strain, the
cladding does not experience the interface shear force directly, but
it shows up as an axial stress through the element coupling. The
total axial force experienced by the cladding elements for one axial
level is

IAI = C
AC

7.24

where A
1
is the interface area, Ac is the cladding cross section area,

and Tr is the average axial stress across the cladding cross
section. The axial strain in the cladding resulting from the

interface shear is then

7.25
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FIGURE 7.4. Yield Surface for Interface Element

where EC is Young's modulus for the cladding.

A value for C1 can now be obtained by setting T1 = C1 and

letting Er be the maximum allowable unrecovered axial strain, giving

max
C

E
C
A.

C
1 --A- 7.26

A value of Emax = 1 x 10
-6

is used to calculate C1.

A second yield surface represents the situation when the

interface radial stress is greater than or equal to zero and a gap is

opening between the fuel and the cladding. This surface is given by

7.27
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and is shown in Figure 7.4. Yielding occurs whenever fl or f2 exceeds
zero.

Equation 7.23 cannot be used for the plastic potential function

because the plastic flow would always include some radial strain along
with the plastic shear strain that simulates the slip. The plastic
potential function should predict only plastic shear when the stress
state is on fl and only radial strains when yielding on f2. A plastic

potential function that has these properties is given by

g =

1

91 = I'd when on fl

g
2

= a
r
I

when on f
2

7.28

and is shown in Figure 7.4.

The plastic flow rule resulting from application of Equation 2.11

to Equation 7.21 is

on fl

l on
2

= dx 0

sign(T) on f
plastic

ko on f
2

giving the desired plastic strain rate components.

From Equations 7.23, 7.27, 7.28, and 2.15 the plastic modulus

matrix can be obtained and is given by

[P ] =

TO on fl l

1onf
2

1

0 0

0 0 0
Er /G u sign(T) on fi (1 on fl)

0 on f
2

0 ko on f
2
)

7.29

7.30
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are no initial strain rates for the interface element and

rate due to the changes in the yield properties can be

om Equation 2.17. For finite time increments the parameter

term required in Equation 2.17 is given by

af _ 1

-57 x a k ft atixt+a) f(at ,xt) 7.31

where f(a
t'

x
t

) is the yield function evaluated using the time t values

for a and x. In the present model it is assumed that pi is constant,

which implies that i = 0 and Equation 7.31 appears unnecessary.

However, due to all of the nonlinearities in the equations, when

plastic flow is predicted, the stress state does not always remain

precisely on the yield surface, i.e., the yield function, f, has a

value not equal to zero after a time increment is completed. This

error in the stress state is corrected at the next time step by

solving

rather than

Equation 7.

Equation 2.

to changes

dfla
t+At' xt+At) -f(at'xt) 7.32

df = 0 as stated in Equation 2.12. Starting with

32 and following through the steps in going from

12 to 2.17 results in a modification to the strain rate due

in the yield parameters given now by

af 1 ag
+ f ( o {}

.PP ax et t' ;a
{e } =

af T ag af T ag

ae

[E]{.__}
au aa aa

P

7.33



Then, by substituting Equation 7.31 into 7.33 and assuming perfect
plasticity, the above strain rate becomes

1 ag

pp
At f clext+et){9a)

ce
af ag

}
aa

T
[E]{

aa
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7.34

Equation 7.34 applies to the fuel and cladding as well as the
interface element. For the interface element the strain rate due to
yield parameter changes is

1/0 on f1

kl on f
21

f( a )

lei TrEriMiTT
1' Er 2

0

/sign( T) on

k0 on f
2

r.ppi t
7.35

The interface element stiffness equation can be expressed in a
form similar to that for the fuel and cladding and is given by

[KO

with

-1Q

Q4

``2

Q3

7.36
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{Q I} = - CE
I
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I

PP
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This treatment of the interface provides the slip simultaneously with
the solution for the fuel and cladding response so that it is not

necessary to use an iterative process to obtain the slip.

7.3 STIFFNESS EQUATION ASSEMBLAGE AND SOLUTION

The element stiffness equations given by Equations 7.18 and 7.36
must be solved simultaneously to get the node point displacement rates
over the entire pin. The inclusion of slip at the fuel cladding

interface couples the elements axially as well as radially. If all

the element stiffness equations were assembled into a single stiffness

equation the solution would require inversion (or iterative solution)
of a sparse nxn matrix where n is the number of radial rings times the
number of axial segments. The problem is somewhat simplified and

storage requirements reduced by using a matrix condensation scheme.
In this scheme the element stiffness equations for one axial level are
assembled in a level stiffness equation and this equation is condensed
to a 4x4 matrix equation that involves only axial displacement rates
of the fuel and cladding. The condensed level stiffness equations are
then assembled into a pin stiffness equation and the axial

displacement rates obtained. The radial displacement rates can then
be solved for using the level stiffness equations.

The assumption that the fuel and cladding are in a state of

generalized plane strain requires that for all fuel elements

.n .F
V = V
1 1

.n .F
V = V
2 2

7.37



and for all cladding elements

.n .0
V = V
1 1

.n .0
V = V
2 2

C..

where y and V are the fuel and cladding

respectively. Als

= if and 1:1 =
1 2 2 2

equation takes the

cladding)
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7.38

displacement rates

, for the interface element it is required that

. Noting these equalities, the level stiffness

form (for four rings in the fuel and two in the
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where 6 is the node point displacement rate, a is the node point
1

forcing function, and an X in the matrix represents a nonzero entry.

The nonzero entries in the lower triangle, excluding the 4x4 partition



in the lower right hand corner, are eliminated leaving a condensed

level stiffness equation of the form

[KL

VF
1

C

1

F

2

C

2

C

F

`42

C
Q2
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7.40

where [KO is the 4x4 partition in the lower right hand corner of the

level stiffness equation after the reduction. A condensed level

stiffness equation is obtained for each axial level and these are then
assembled into a pin stiffness equation. For a pin with three axial

levels the pin stiffness equation has the form
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The resulting block diagonal matrix equation can be solved

quickly for the axial displacement rates by Gaussian elimination. For
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this solution the displacement rates at the bottom end of the pin are
taken as zero, fulfilling the fixed end boundary condition. Having
obtained the axial displacement rates, the radial displacement rate
can be found by back substitution in the previously stored reduced
level stiffness equations.

7.4 STRESS AND STRAIN RATES

Once the displacement rates have been calculated the strain and
stress rates can be obtained. The strain rates are calculated from
Equation 7.7 for the fuel and cladding elements and from the rate

expression corresponding to Equation 7.19 for the interface
elements. For all elastic-plastic elements the plastic strain rate is
obtained using Equation 2.16. Finally, using the previously stored
initial strain rates, the stress rate for each element is calculated
using the total stress strain relation (Equation 2.18).

Once the strain rates have been obtained, all plastic elements
must be checked for unloading (i.e., return to an elastic state).
Unloading occurs when dx as calculated from Equation 2.14 is
negative. If this criteria alone is used the nonlinearties in the
equations and the explicit solution scheme lead to frequent switching
between elastic and plastic states for some of the elements. Some
further checks for unloading are made to ensure that the element

should truly be in an elastic state. According to Drucker (1950,
1952), for a material in a plastic state the plastic work done on the
material through the application of some load increment should be
positive. Negative plastic work is used as a second criteria for
unloading. In calculating the plastic work only the plastic strain

increments due to the stress increments are used and the plastic
strains due to changes in material properties are ignored. The
plastic work done during a time interval At is then given by

2 T .p ppdW = At fa} ({c } {c }) 7.42
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If dW is negative for a particular element then a final check for
unloading is made. In this final check the element plastic strains
are converted to elastic strains and the resulting stress increment
calculated. If these stress increments, when added to the total

stress, cause the yield function to decrease (compared to its value
when the plastic strains do not contribute to the stress increment)

then the element is assumed to unload. The elastic/plastic flag for
the element is switched and the deformation rates are recalculated for
the entire pin. If more than one element appears to be unloading

during a time increment then the element with the largest value of
negative work is switched to elastic first and the displacement rates
recalculated.

7.5 ELASTIC-PLASTIC TRANSITION

At each time step it is necessary to determine if the stress

state of any of the elastic elements moves outside of the elastic
region during a finite time increment. It is assumed that the

stresses increase linearly with time during the time step so that the

element stress at the end of the time increment is given by

{ait+At
{Q}t

{°. la 7.43

It is also assumed that the strength parameters change linearly with
time so that

Xt+At Xt 7.44



where x may represent temperature or neck ratio. Having calculated

the stress rate, the yield functions are evaluated at {a}ti.a

and xt+At for all elastic elements. For every elastic element in

which the yield function is positive, the time to yielding is

calculated from

where

f({a}t+hAt' Xt+het)

{a}
t+hat

= fa}
t

+ {Q}h At

xt+hAt
= x

t
+ ;Met
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7.45

Either a direct or an iterative solution is used, depending on the

form of f, to obtain a value for h for each element that yields during

the time step. The yield function can take on some unusual forms due

to its dependence on x and care must be taken to ensure that the first

root (i.e., the minimum h value) is found.

For the fuel and interface elements the treatment is somewhat

different since there are two yield functions. If the element is

elastic both fl and f2 are evaluated at {c/}
t+At.

If only one of the

two yield functions is positive then h is solved for as described

above. If both fl and f2 are positive then corresponding hl and h2

are found. The appropriate yield surface is determined by the smaller

of hl and h2.

For an interface or fuel element already in a plastic state it is

necessary to determine whether or not the stress state moves to the

other yield surface during the time step. If, for instance, the

element is plastic and on fl, then f2 is evaluated at {a}ti.a. If f2
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returns a positive value then the stress state moves to f2 during the

time step and the time to transition is found by solving

f
2
({a}

t+het ) = O.

From all elements in elastic-plastic transition, the one with the

smallest h value is found. The time step is then limited by

At' = het 7.46

and the elastic-plastic flag for the transition element is switched so

that at the beginning of the next time step the element will be

considered in an elastic-plastic state. This process effectively

allows the purely elastic stress increment to the point where the

stress state falls on the yield surface with subsequent stress

increments calculated so that the stress state remains on the yield

surface.

7.6 ADDITIONAL TIME STEP LIMITS

Since the initial strain rate components are calculated

explicitly and some of them depend on the stress state, it is

necessary to limit the time step so that the change in stress is not

too great. The time step is limited so that the maximum change in any

stress component in any element is less than amax. The time step is

also limited by maximum permissable increments in the swelling, creep,

neck growth, shrinkage and plastic strains. The limited time step is

given by

SW
Ali min ca Max cmax

e
sh

max 7max cmax Max

max ax Max max max

sh p
in

7'47

max
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where the denominators are the maximum rate of change over all

elements and the numerators are the maximum permissable changes. No

attempt has been made to analytically determine appropriate values for

the maximum permissable changes and, due to the complex interaction of

the equations, it is not probable that this will ever be

accomplished. With

a
max

10 MPa, esw =
sh

= cc ep = 5.E-4 and 3; = .05,max max max max max

the code has reasonable execution times and does not exhibit any

numerical instabilities. More refined time step limits may be

possible but not without much experience in running the code for a

variety of problems. The time step limit given by Equation 7.47 is

actually applied before that given by Equation 7.46 to eliminate

unnecessary searches for elastic-plastic transition times.

7.7 TIME INTEGRATION

The final major step required to complete the solution for a

single time increment is to calculate the time integrated values of

all the fundamental variables. The integrated value for each required

variable is obtained according to

Yt+At Yt ttl im 7.48

where y represents some variable and Atlim is the time step limited by

input, elastic-plastic transition, or the stress or strain

increment. The integrated variables include the axial and radial

displacements, stresses, elastic strains, temperature, large and small



sphere neck ratio and shrinkage, thermal strain, swelling, and fast
fluence. In addition, the porosity is adjusted to account for the
shrinkage of the large sphere array, plastic flow on the hydrostatic

stress yield surface and swelling due to gaseous fission products.

The porosity is defined by

P = I - VS /V
T

170

7.49

where V
S and V

T are the solid and total volume, respectively, so that
assuming the solid volume remains constant the porosity change rate is

V
V

S SIT

P =
1.

= (1-P)

V
2

Substituting in the appropriate volumetric strain results in

sh sw sw
P = (1-P) (e + e + e - e )

v v v,s

7.50

7.51

-sw
where e is the swelling rate due to the solid fission products.v,s

The new porosity is then obtained from Equation 7.48. At this point
the solution for the time increment has been completed and the
calculations continue at the next time increment with new values for
the driving functions (heat density, cladding temperature) obtained
from code input.
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7.8 CODE LAYOUT

A brief description of the SPECKLE-III code layout is given here
with more attention given to the mechanical model than to the thermal
model. A flow diagram is given in Figure 7.5.

A typical run begins with processing the user input and

initializing all the variables. A time step is chosen based on input
and the volumetric heat source is calculated. Since the conductivity
is temperature dependent, an iterative loop is used to calculate the
conductivity, temperature distribution and temperature rate change.
The free gas pressure and temperature are also calculated within the
iterative loop. Neck growth and shrinkage rates are then calculated
for both the large and small sphere arrays and the pore migration and

accompanying porosity change obtained in the restructured regions of
the fuel. The time step may be limited at this point if the neck
growth rate is large.

Using the neck ratio and hydrostatic stress from the end of the
previous time step, the elastic properties for the fuel and cladding
are calculated including the effective values for the fuel Young's
modulus and Poisson's ratio, e, and the small sphere to binary array
hydrostatic stress ratio. Thermal creep, swelling, and elastic
nonlinear strain rates are obtained and combined into the initial
strain rate for each finite element.

For each element the stiffness equation is formed and these are
combined into the level stiffness equations that are reduced and
combined to give the pin stiffness equation. This equation is solved
for the displacement rates from which the strain and then the stress
rates are obtained. If any plastic elements are found to be

unloading, the element is switched to elastic and the displacement
rate solution is repeated. The time step may be limited at this point
depending on the maximum stress or strain rate. All elastic elements
are checked for elastic-plastic transition and the time step limited
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accordingly. The time integration is then carried out for required
variables and the fuel swelling rate due to fission products is
updated.

The fission gas diffusion process occurs slowly in time and
therefore operates on a different time increment than the rest of the
code. Typically a time step of 50 hours is adequate for the fission
gas model. The fission gas model calculates the fission gas

distribution and gas release.

7.9 CODE VERIFICATION

The code contains so many interrelated models that it is
difficult to verify the code as a whole. Parts of the mechanical
model have been checked out against analytic or other established
codes. In Appendix A the results of the code are compared with an
analytic solution for two concentric thermal elastic cylinders with
slip, giving excellent agreement. The plasticity model was checked
against a finite-difference solution for an internally pressurized
cylinder using the von Mises yield criteria. A further check was made
against a finite-element solution for an externally pressurized hollow
cylinder using the Drucker-Prager yield criteria. In all cases
agreement was excellent.

The complete thermal mechanical model has been used to model

several experiments using sphere pac fuel. The results of one of
these simulations are discussed in the next chapter.
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8.0 CODE APPLICATION

The SPECKLE-III Code (George and Peddicord 1982) has been applied

to a variety of test problems to simulate the in-reactor behavior of

sphere pac fuel pins. The results from one of these test problems is

presented in this chapter to demonstrate the computational capability

of the code and to show qualitatively the behavior of the fuel and

cladding during irradiation. The test problem models one pin out of a

series of tests in the DIDO reactor at Harwell, U.K. (Bart 1982). The

particular pin modeled was one of four pins in the third of the test

series and is identified as DID03, pin 12 (D3P12). A pin from this

irradiation test was chosen because all of the required modeling

information was readily available and the post irradiation information

examination (PIE) included measurements of the diametral strain.

Pin 12 was modeled because the axial power profile was relatively flat

so that the pin could be adequately modeled using only one axial

section.

The DIDO3 pins each had a fuel stack length of 7.486 cm and a

total pin length of 10.0 cm. Each was incapsulated in a sodium filled

container with electrical heaters to control the sodium temperature.

D3P12 was irradiated for 230 days at -760 W/cm and reached a burnup of

-5.0% FIMA. The physical characteristics for D3P12 are listed in

Table 8.1.

The initial ramp to full power was accomplished over a period of

2.25 hours but the electrical heater rods were not switched on until

after -24 hours. The rise to full power was assumed to be linear with

time and the outer cladding temperature at 2.25 hours was assumed to

be 10% lower than that at 24 hours. The reactor was shut down and

returned to full power a number of times during the course of the

experiments but these power changes were not modeled. The total full

power time was assumed to be uninterrupted in the SPECKLE-III model.

The operating history, based on data given by Diess and Reindl (1982),

is listed in Table 8.2. The end of irradiation (HI) occurred after

5520 hours of full power operation.
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TABLE 8.1. DID03, Pin 12 Physical Characteristics

Cladding

Material - AISI M 316/18% CW

ID/OD - .700/.802 cm

Fueled length - 7.486 cm

Plenum Volume - .531 cm3

Fuel (U.85-Pu.15) C

Large Fraction

sphere diameter 724.6 um

packing factor .6330

sphere density .9467 TD

Small Fraction

sphere diameter 40-80 0

packing factor .5670

sphere density .9280

Smear Density .7920 TD

Fill Gas

Temperature 25. C

Pressure .122 MPa (1.2 atm)
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TABLE 8.2. DID03, Pin 12 Assumed Irradiation History

Irradiation

Time (hours)

Linear Power

(W/cm)

Cladding Outer

Temperature (C)

Plenum

Temperature (C)

0 0 25. 25.

2.25 760. 533. 412.

24.0 760. 590. 455.

5520.0 760. 590. 455.

The measured fast flux was 6.83 x 1012 n/sec-cm2. The fast flux-

to-linear power ratio was calculated at 8.99 x 109 n/cm-W-sec and

assumed constant over the irradiation history. The friction factor

for sphere pac fuel on stainless steel is unknown. A value of .5 was

used based on results for UO2 and A1203 on zircaloy (Nakatsuka 1981).

The pin was modeled using one axial section for the fueled region

wiht six rings in the fuel and two rings in the cladding. The

requested time step over the first 2.25 hours was .2 hours. It was

then increased to 2.0 hours until 24 hours of irradiation time was

reached. From 24 to 50 hours the requested time step was 5 hours,

increasing to 20 and then 50 hours at 50 and 200 hours irradiation

time, respectively. The time step for the fission gas model was set

to 50 hours. The requested time steps were limited by the code as

described in Chapter 7.

The creep and swelling correlations for the stainless steel

cladding were taken from NSMH (1976). Initial application of the

SPECKLE-III code with these correlations included resulted in the

prediction of very large cladding creep strains. Inspections of the

creep equation revealed that a term of the form

_ 3 7 A

c
e t sinh

(1 + 17-1) )
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was responsible for the large creep predictions. In the above term

ec is the effective creep strain, t is the irradiation time, -Eris the

effective stress, A is a constant and 0 is the fast fluence. The

first factor (t3) introduces time softening while the second factor

gives time hardening to the creep strain. The DIDO reactor is a

thermal reactor so that the fast fluence is very small. However the

creep correlation was based on data from pins irradiated in fast

reactors. The second factor has a nonzero value even for zero fluence

so that overall the term represents considerable time softening if the

fast fluence is small. The softening was so unreasonably large for

the D3P12 pin that the above term was neglected entirely.

Some results from the SPECKLE-III simulation of the D3P12

experiment are presented in Figures 8.1 through 8.8. Figure 8.1 shows

the predicted centerline temperature as a function of irradiation

time. A peak temperature of 1604°C was reached at 24 hours when the

outer cladding temperature first reached its maximum value. The

temperature gradually decreased throughout the remainder of the

irradiation due to the increasing fuel conductivity brought about by

the restructuring process. The predicted EOI centerline temperature

is 1250°C. These values can be compared to the 1820°C peak and 1505°C

EOI temperatures predicted by SPECKLE-II without the mechanical

model. The main reason for the difference between the two codes is

that the restructuring (hence, conductivity) can be more accurately

predicted with the mechanical model included.

Figure 8.2 shows the predicted fuel centerline and outermost ring

hydrostatic stress. During the initial start-up the centerline

compression increases very rapidly reaching a peak value of -30 MPa at

1.7 hours. This rise in stress is due mainly to the differential

thermal expansion between the fuel and cladding. After 1.7 hours, the

fuel centerline temperature reaches a temperature (1350°C) that is

high enough to allow rapid restructuring due to viscous and plastic

flow resulting in a sharp drop in compression to almost zero stress.

The restructuring makes the fuel stiffer, both elastically
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and plastically, so that as the swelling starts the fuel compression

increases. Three more reversals in the center ring loading can be

observed in Figure 8.2. These have been identified as resulting from

the explicit treatment of the plastic yielding of the small sphere

array under hydrostatic compression. When the small sphere array

yield criteria is exceeded the small sphere array is allowed to

shrink. This results in a decrease in the small sphere array

compressing and therefore increase in the effective compression on the

large sphere array. This increased compression is relieved by plastic

densification of the binary array resulting in a smaller binary array

hydrostatic compression.

The centerline compression reaches a maximum value of -48 MPa as

-2000 hours. At -2000 hours the center ring element satisfies the

criteria for restructured fuel and is allowed to densify by hot

pressing. The rapid change in stress is not unreasonable since the

fuel restructuring rate increases near the end of the neck growth

phase. Small, rapid changes in the hydrostatic stress can also be

noted at -2700 hours and 4800 hours. These correspond to the

transition to fully restructured fuel in the second and third rings.

The hydrostatic stress in the outer ring is relatively unaffected

by the dramatic changes in the interior of the fuel, although the

restructuring transition of the second and third elements is still

evident. These stress histories can be compared to an assumed value

of 50 MPa compression used in SPECKLE-II for all fuel regions.

The restructuring history can be observed in Figure 8.3 that

shows the radial profile of the small sphere neck ratio at three times

during the irradiation. By the end of the irradiation time,

SPECKLE-III predicted that the inner three rings were fully

restructured CZ > .45). This compares very well with the post

irradiation examination PIE that determined the radius of the fully

restructured region as -.21 cm (SPECKLE-III predicted .18 cm).
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Figure 8.4 shows the predicted gas pressure as a function of the
irradiation time. The initial pressure jump is due to the gas

temperature change during start up. The gas pressure remains nearly

constant until 1600 hours when fission gas release from the fuel

begins. The predicted E0I gas pressure (hot) is 23.0 atm (2.33 MPa)

which is small compared to the outer ring fuel radial compression of
23.6 MPa implying that the fuel is responsible for most of the load
placed on the cladding. The change in slope of the gas pressure curve

at 4800 hours results from the removal of some of the free gas volume
as the fuel becomes fully restructured.

The fuel and cladding axial strains versus irradiation time are
shown in Figure 8.5. The fuel and cladding axial strains are

identical throughout the irradiation indicating no-slip between the
fuel and cladding. The thermal and elastic strains make up the first
.96% strain at the initial ramp to full power. At the E0I the total

strain is 1.29% giving .33% total permanent axial strain. The

reported PIE results do not include axial strain measurements.

The cladding hoop stress history is shown in Figure 8.6. The
hoop stress is defined here as

hoop
= - a

rI
r
f
/(r

c
- r

f
) 8.1

where ar
I
is the interface element radial stress and r

f and r
c are the

cladding inner and outer radius. Some of the perturbations observed
in the hydrostatic stress are reflected in the hoop stress although
their magnitudes are greatly reduced. A spike in the hoop stress

occurs during the initial rise to power before the fuel temperature is

large enough to cause major restructuring. The maximum attained hoop

stress is 170 MPa, a factor of 2.5 less than the cladding yield
stress.



The permament tangential strain history in the outermost ring
element is plotted in Figure 8.7. It is defined by

e t
e0

=
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8.2

where e
6'

e

' 6
e et are the total, elastic and thermal tangential6

strains. The permanent diametral strain (permanent radial

displacement of cladding outer radius divided by cladding outer
radius) is also estimated by the code using linear extrapolation from
the strain results of the two outermost cladding ring elements.

Permanent diametral strain is slightly larger than the strain plotted
in Figure 8.7 with an EOI value of .344% or .07%/%FIMA. From PIE
results the peak (over the length of the pin) diametral strain of
D3P12 was .1%/%FIMA. The neglect of the time softening creep strain
term, the large uncertainty in the creep strain correlation (the

standard deviation equals .3 times the predicted creep strain), and
the use of only one axial segment to model the pin could all

contribute to the underprediction of the diametral strain.

Figure 8.8 shows the EOI predicted radial temperature and

porosity profile and the restructured fuel boundary. PIE results for
the fuel porosity and the observed restructured fuel boundary are also
plotted. As previously noted the predicted restructuring boundary is
in good agreement with PIE results. The radial temperature and

porosity profiles agree very well with the definitions of the

restructuring zones described in Section 1.2. For a central porous
region (Zone I) to develop temperatures greater than 1300°C are
required and clearly this zone did not develop. The temperatures in
the region (Zones II and III) are in the range of 1100 to 1300°C with
the restructuring boundary located where the temperature is 1100 to
1150°C. The predicted radial temperature profile is consistent with
the zone definitions.
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The large variations in the measured porosity near the cladding

results from the way the large spheres pack against the cladding.

Generally, a rather uniform layer of large spheres is packed against

the cladding. The minimum porosity measurement is at a distance from

the cladding of about one large sphere radius while the peak

measurement is at just over one sphere diameter. The model assumes a

random distribution of spheres so these variations of porosity are not
predicted. The wall effect tends to propogate in towards the pin

center (Benenati and Brosilow 1962) and could be responsible for some

of the porosity variation in the pin interior. The PIE results

indicate more densification at the pin center than predicted by

SPECKLE-III. In the current model the densification achieved by the

hot pressing mechanism is nearly balanced by the porosity produced by

fission gas retention. To achieve better agreement with the data

either one or both of the these models must be improved.

Based on the D3P12 simulation and other test problems run the

SPECKLE-III code appears to give reasonable results for mixed carbide

sphere pac fuel pins. However many more experiment simulations and

comparisons are required before the accuracy of the code can be
assessed.
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9.0 CONCLUSIONS AND RECOMMENDATIONS

A model has been developed to predict the mechanical behavior of
mixed carbide sphere pack fuel pins. The model was coupled with a

thermal model that provides the fuel temperature, fission gas behavior
and fuel restructuring. The mechanical model includes components to
predict the elastic and plastic constitutive relations for

restructuring fuel. Thermal, creep, swelling, elastic and plastic

strains of the fuel and cladding and slip at the fuel/cladding

interface are each considered separately in the model to predict the

fuel and cladding stresses. The fuel hydrostatic stress is an

important parameter in many of the thermal models so that the thermal
and mechanical behavior are tightly coupled. The thermal and

mechanical model equations are solved numerically in the SPECKLE-III

code.

The elastic properties of a restructuring sphere bed depend on

the elastic properties of the sphere material and the bed geometry.

The elastic properties of the sphere material are known but an

analytic model was required to obtain the properties as a function of
bed geometry. The factors that influence the bed geometry are the

initial packing factors of the two sphere sizes and the neck growth

and center-to-center approach between adjacent spheres as part of the

restructuring process.

Elastic properties were first obtained for a random array of

uniform spheres adjoined by a neck region. For this purpose a unit

cell was devised whose exact configuration depends on the packing

factor of the sphere bed. An incremental elastic stress-strain

relation was obtained for the unit cell. The relationship was

necessarily incremental because the elastic stiffness depends on the

load normal to the contact plane between two spheres and therefore on

the stress state. The Hertz contact theory (Timoshenko and Goodier
1951) and strain energy principles were used to obtain the stress-

strain relation. The unit cell is elastically anisotropic but the
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macroscopic behavior of a random sphere array can be considered

isotropic. The elastic properties of an isotropic aggregrate of

spheres were obtained by considering the aggregate to be made up of

unit cells with a uniform distribution of orientations. The stress-

strain relation could then be derived from the volume-average strain

energy of the aggregate through the application of strain energy

principles.

An approach similar to Brandt's (1955) was used to obtain the

bulk modulus of a binary mixture of large and small spheres. Brandt's

model was extended to account for the possibility of shrinkage of the

sphere arrays and the presence of necks between spheres. A second

elastic constant for the binary mixture was obtained using results

from the theory of composite materials. The model is formulated so

that the hydrostatic stress in the binary array and the small sphere

array are calculated separately.

Results from the elastic properties model were compared to

available experimental data and theories for the speed of sound, bulk

models and shear modulus of cohesionless (no neck) sphere arrays and

to theories and data for elastic modulus of porous materials (large

neck). Good agreement was shown between the model and data.

A two surface yield model was developed to describe the plastic

behavior of restructuring sphere pac fuel. The first surface

incorporates the frictional behavior of granular material and is an

extension of the Drucker-Prager yield law (1952). The Drucker-Prager

yield law depends on the experimentally determined internal friction

angle and cohesion of the granular aggregrate. The sphere pac fuel

begins irradiation as a cohesionless bed but as neck growth proceeds

the cohesion increases and the frictional effects diminish. Analytic

expressions were derived for the cohesion and effective friction angle

of a random array of uniform spheres. These expressions are functions

of the packing factor, neck ratio, sphere material yield strength, and

an experimentally determined friction angle of unrestructured fuel.
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The results of some triaxial compression tests on single size and

binary sphere arrays were used in the derivation of the two yield

strength parameters for a restructuring binary array. As the neck

growth increases the yield law approaches the von Mises yield criteria

for frictionless material. A nonassociated flow law was used to

remove the excessive dilation encountered with the Drucker-Prager

yield law and associated flow.

The second yield surface was required to allow plastic

deformation under hydrostatic compression. Hydrostatic compression

results in high localized stresses near the sphere contact points.

Results from punch analysis (Tabor 1951) were used to obtain one yield

parameter. The second yield surface was assumed to form a spherical

cap to the open end of the conical yield surface obtained

previously. The second parameter required to define the radius of

curvature was chosen so that the cap and the cone intersect when the

hydrostatic stress is zero. The yielding under hydrostatic

compression is treated separately in the large and small sphere

arrays. An associated flow law is assumed for yielding on the second

yield surface.

There is virtually no experimental data for the plastic

properties of sphere pac fuel either with or without restructuring.

Further, there is only very limited data for the yield strength of

mixed carbide. This data covers only a very small temperature range

and a single value of fuel porosity. Therefore, the validity of the

proposed plastic constitutive model cannot be assessed at this time.

The model incorporates features that should, at least qualitatively,

describe the plastic behavior of sphere pac fuel. It considers the

frictional yield of unrestructured fuel and continuously tends toward

von Mises yielding for fully restructured fuel. The actual shape of

the second yield surface (hydrostatic compression yielding) is unknown

and the proposed surface can only be considered a reasonable guess.

Yielding on this surface is the most important restructuring and

densification mechanism during the initial startup period. The one

indication that the model is correctly formulated is the good

comparison with E01 results from sphere pac fuel experiments.
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The proposed plasticity model offers a starting point for further
develpment as more experimental data from separate effects tests

becomes available and as more comparisons are made between the

SPECKLE-III code and irradiation experiments.

The elastoplastic equations were rederived for the case of

restructuring sphere pac fuel. These equations take into account the

changes in elastic and plastic properties as the geometry and

temperature of the fuel changes. They also allow thermal, creep and

swelling strains to be included in this analysis.

The fuel creep model includes hot pressing densification and

deviatoric strains to relieve the deviatoric stresses in the fully

restructured region of the fuel. In the restructuring fuel only a

densification creep is considered and is associated with the sintering

induced shrinkage.

The swelling model is based on an empirical correlation by

Zimmerman (1982) developed from experiments on mixed carbide

pellets. In this correlation the swelling rate depends on the local

temperature, burnup and burnup rate. Fuel stress effects are not

included and the effects of fuel geometry (sphere pac versus pellet)

are unknown. The correlation by Zimmerman is recognized as a

significant contribution to fuel pin modeling efforts since it was

based on separate effect tests rather than the end results of pin

irradiations. More work of this nature is needed to determine the

effects of stress and geometry.

The swelling strain and the creep densification were assumed to

be isotropic. This is probably not the case since the densification

(swelling) should be largest in the direction of maximum (minimum)

compression. However, if these strains are not considered isotropic

then, in the case of densification, the sintering and hot pressing

must become vector rather than scalar quantities. This greatly

increases the complexity of the entire thermal-mechanical model since

almost every component depends on the restructuring. The current

isotropic strain assumption appears to give reasonable results and



191

isotropic strain assumption appears to give reasonable results and

should be retained.

The elastic-plastic equations were solved using a finite element

approach. An explicit scheme is used to obtain the driving force

consisting of the thermal, creep and swelling strain increments. The

stress increments are then solved for simultaneously with the elastic

and plastic strain increments. The incremental approach allows

transition from elastic to plastic regimes at the end of a time

increment. This avoids the difficulties involved in trying to solve

the equations across a discontinuity if there is transition within a

time step. The plastic yielding of the small sphere array was treated

explicitly after the binary stress distribution has been obtained.

This appears to cause some unphysical perturbations in the fuel

hydrostatic stress near the center of the pin. This does not

represent a major difficulty since the effect on the cladding stress

is minimal.

A specialized fuel cladding interface element was devised that

handles the fuel-cladding slip problem within the context of the

elastoplastic model. This is an improvement over any of the schemes

used in pellet pin codes that require some type of iterative solution

to determine the relative axial strains of the fuel and cladding. In

test problems run so far fuel cladding slip has not been observed but

may be an important phenomena in transient analysis.

A SPECKLE-III simulation of a sphere pac fuel pin irradiation

experiment was presented to demonstrate the computational capability

of the code. The code was in good agreement with the PIE results for

restructuring and cladding diametral strain. No firm conclusions can

be drawn at this time regarding the overall accuracy of the thermal-

mechanical model. Many more experiment simulations are required to

establish the code's validity. However, since the code predictions

are in reasonable agreement with observed behavior, it appears that

the necessary phenomena have been included and that close agreement

can be obtained by improvement of individual model components.
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9.1 RECOMMENDATIONS FOR FUTURE WORK

As in any substantial research effort, the development of a

sphere pac fuel thermal-mechanical model served to point out areas

where further work is needed. A few of these are listed here.

1. For the elastic properties model a more rigorous treatment of the

stress-strain relation for two spheres joined by a neck is

needed. An analytic solution for the normal and shear stiffness

as functions of the neck ratio and plastic center-to-center

approach is desirable. This could be checked against

experimental results on steel spheres for relevant conditions.

The experiments could be carried out by welding two hemispheres

together at the contact and taking stress-strain measurements.

2. A method should be devised for obtaining samples of random sphere

arrays with nearly uniform neck growth throughout the array. The

amount of restructuring in these samples should be

controllable. The resulting samples could be used for a variety

of experiments including measurements of conductivity, stress-

strain, yield strength and plastic flow. The data would be

invaluable for checking analytic models.

3. For the proposed plasticity model the internal friction angles

for arrays of large and small spheres of mixed carbide fuel are

needed. The binary array friction angle should also be measured

and checked against the value predicted by the plasticity model.

4. More data is needed for the yield or fracture stress for mixed

carbide. This data should be obtained for the range of

temperatures and porosities anticipated in fuel pin irradiations.

5. Primary creep has been identified as potentially significant in

mixed carbide fuel. It could be responsible for some of the very

early restructuring now accounted for by plastic flow. More data

is needed to quantify the primary and secondary creep behavior as

as function of temperature and porosity.
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6. The current mechanical models assume plastic flow when the yield

stress is reached. At low temperatures the fuel is more likely

to fail in brittle fracture. A method for incorporating fracture

into the mechanical model should be investigated.

7. The dislocation creep of mixed carbide fuel is very sensitive to

small changes in the effective stress, causing some numerical

difficulties in the explicit solution scheme. These were solved

in SPECKLE-1II by using a semi-implicit formulation of the

creep strain (see George and Peddicord 1982). A better method

may be to extract the first order stress dependence from the

creep strain equation and form a creep modulus matrix (much like

the plastic modulus matrix) so that the creep strains can be

obtained simultaneously with the stress increments.

8. Models for the pin neutronics and the redistribution of the fuel

chemical components need to be incorporated in the SPECKLE-III

code.

9. Finally, specific model improvements required can only be

identified after the SPECKLE-III code has been compared to more

of the available irradiation experiment data.
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THERMAL ELASTOPLASTIC MODEL VERIFICATION

Several test problems were run using slightly modified versions

of the SPECKLE-III code. The modifications were mainly required to

give constant mechanical properties for the fuel and the cladding and

to remove some of the unnecessary calculations for the initial strain

rate. These problems and results are described in this appendix.

A.1 THERMAL-ELASTIC PROBLEM

This problem was chosen to represent the thermal-elastic behavior

of a fuel pin. The problem geometry, shown in Figure A.1, consists of

a solid fuel cylinder in contact with the cladding. The fuel and

cladding mechanical properties are assumed to be constant and the

temperature distribution in the pin is assumed to depend on the radial

dimension only. The interface pressure developed between the cladding

and the fuel is assumed to be constant, although slip is allowed to

occur at the interface. The bottom end of the fuel and cladding are

fixed, and the fuel and cladding are assumed to be in a state of

generalized plain strain. These assumptions (except for the constant

property assumptions) parallel those made for the thermal-elastic

model described in this report.

A.1.1 Analytic Solution

An analytic solution was obtained for the above described problem

as an extension of the single solid cylinder solution in Boley and

Weiner (1960) and is outlined here. The Navier equations for

axisymmetric geometry reduce to

dT
(x + 2G)e - (3x + 2G) Ct = 0 A.1
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FIGURE A.1. Thermal-Elastic Check Problem Geometry

where X, G are Lame's constants, e is the volumetric strain, r is the

radial coordinate, Ct is the coefficient of thermal expansion, and T

is the temperature. A plane strain solution is obtained first and

then the generalized plane strain solution is arrived at by

superposition of the negative of the average axial stress on the plane

strain stress distribution. Using the strain displacement relations

Cr = du/dr

c
o
= u/r

ez = 0

A.2



where u is the radial displacement, Equation A.1 can be integrated

twice to give

3K
r

(X + 2G)u - r Ct f Trdr + A
1
r + A

2
/r

0

A.3
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for the displacement solution. In Equation A.3, K is the bulk modulus

given by

3K = 3x + 2G

The boundary conditions for the fuel and cladding are

of (r=0) = 0

c;rf(r rf)
P

I

a
rc

(r = rf) = PI

a
rc

(r = r
c

) = 0

where the subscripts f and c refer to the fuel and cladding and PI is

the interface pressure (positive in compression). Application of

these boundary conditions to obtain the integration constants results

in
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3K
f
C
tf

G
f
r

f rfrdr
2(x

f
+ G

f
)

u =
f (A

3

I+

fC2 f

)r f
Trdr +

f f 0 (x
f
+ G

f
)(x

f
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A.4

and

3K
c
C
tc

r

f Trdr +

3K C
tc

G r r
c

, f TrdrU
c

=
(x + 2G )r

c c rf (x + G )(X + 2G )(r - 1)r' rcccc cf f rf

P r
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I c c
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c c
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where rfc = rc/rf.

and

These can be rewritten as

of = Fl/r f Trdr + F2r + F3Pir
o

u
c

= C
1
/r f Trdr + C

2
r + C

3
/r + C4PIr + C5PI /r

r
f

A.5

A.6

A.7

where the F and C constants are defined by comparison with Equations

A.4 and A.5. This gives the plane strain displacement solution. To

obtain the generalized plane strain solution the average axial stress

in the fuel and cladding must be calculated. The plane strain stress-

strain relations give



az = X(e
e

E
r

) - 3KC
t
T

The net axial stress is given by

=
z A

1T f ° r cr
z
dr

r.
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A.8

A.9

where A is the pertinent area and ri and 1.0 are inner and outer radii

respectively.

Combining Equations A.9, A.8, A.7, A.6 and A.2 gives

2(X

zf
= 2X

f
(F

2
+ F

3
P
I
) +

f
F
1

- 3K
f
C
tf

f

r

c Trdr
r
2

zc
c

2(X C
1

- 3K
c
C
tc

) r
= 2Xc(C2 + C4P/) + 2

2 2
r - r
c f

rf

A.10

A.11

If there is not frictionless slip at the interface, equal and opposite

shear loads will be applied to the fuel and the cladding. Since it is

assumed that the fuel and cladding do not experience any shear strain

(and therefore shear stress) the shear loads must be applied as

effective axial loads. The axial stress for generalized plain strain

can therefore be obtained from

ag = a - 7 + P
cif zf zf f

ag =a - Tr. +P
zc zc zc c

A.12
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where Pf and Pc are the axial stresses resulting from the interface

shear loads. The radial and tangential stresses are not affected by

the application of a uniaxial stress so that

g' ag
-rf -rf' -Of aef

A.13

arc arc'
09

6C
=

ref

The quantities PI, Pf, and Pc are as yet unknown. A relation

between these quantities can be obtained by requiring that

of (r = r
f c

) = u9 = r
f

) A.14

where of and ug are the generalized plane strain deformations

corresponding to the generalized plane strain stress field (Equations

A.12 and A.13). The generalized plane strain radial deformations at

r = rf are given by

r v
f f --

of of +-
E

(a
zf - Pf)

f
A.15

r v
--

u = u +
f c

( a - P )

c c E zc c

(i.e., the plane strain deformation plus the deformation resulting

from the unaxial stress).

Then, if Equations A.10 and A.11 are rewritten as

A.16
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Tr
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= C
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+ C2 PI
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A.17

where the F' and C' constants are defined by comparison with Equations

A.10 and A.11 and Equations A.6, A.7, A.15, A.16 and A.17 are

substituted into Equation A.14, the resulting relationship between PI,

P
f,

and Pc is

r
f rfvfF1 rf vf . rfvfPf

F
1
/r

f
of Trdr +F2 r

f
+F3 PI rf +

Ef + Ef
F2P

I Tf

vc . rf vc , r-v
t= C2r + C3 /r +CPr +CP/r +r C +CP2 f 3 f 4 If 5 I f fEc 1 Ec C2 PI Ec

c

Pc

A.18

If Pf and Pc are known then Equation A.18 can be solved for PI

and the generalized plane strain solution would be complete. Pf and

Pc can be specified for three possible cases.

Case 1: Free slip - there is no interface shear load so

P
f = Pc = 0

Case 2: No slip - the axial displacements of the fuel and

cladding must obey

Eg = Eg
zf zc

A.19



Since the axial strains are due only to the superposed

uniaxial loads, Equation A.19 becomes

(P
f

-
zf

1
) = (P

c
-

zc
)
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A.20

Also the axial load on the fuel and cladding due to the

interface must be equal and opposite giving

AfPf = - A P
c c

A.21

where Af and Ac are the fuel and cladding cross section

areas.. Then Equations A.18, A.20, and A.21 can be

solved for PI, Pf, and Pc to complete the solution.

Case 3: Slip limited by friction - in this case the interface

pressure is related to the cladding axial stress due to

interface shear

by

AcPc = PIAI p
I

A.22

where p
I

is the interface friction factor. Here,

again, Equation A.22 can be combined with Equations A.18

and A.21 to obtain PI, Pf, and Pc.

For a given friction factor the Case 2 solution can be compared to the

Case 3 solution to determine whether or not the slip is limited by

friction. Assuming that in the free slip case ege > egn then

if Pf > Pf (an impossible situation) it must be concluded
f
case 3

f
case 2

that the slip is not friction limited.
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A.1.2 SPECKLE-III Solution

The thermal-elastic problem described in Section A.1 was also

solved using the SPECKLE-III code. For this solution the code was

modified so that the only initial strain rate was that due thermal

expansion. Plastic flow was not allowed except in the interface

element, and the fuel and cladding material properties were set to

constants. A single axial section was modeled with ten ring elements

in the fuel and two in the cladding.

A.1.3 Comparison for Thermal-Elastic Problem

Analytic and SPECKLE-III solutions were obtained for the

particular case where the temperature profile was that resulting from

a uniform power density in the fuel. The physical parameters used for

the fuel and cladding are given in Table A.1.

Figure A.2 shows the analytic and code-predicted tangential

stress normalized by the cladding elastic modulus with pi = 0.008.

Figure A.3 shows the fuel and cladding axial strains from the analytic

and code solutions as a function of the interface friction factor.

The agreement between the two results is excellent including the

prediction of the point at which slip begins (11 = 0.0082). These

results show, in particular, that the special interface element can

accurately model the frictional slip condition. It should be noted

that these results do not give any information concerning the

fuel/cladding slip and interface friction factor for sphere-pac fuel

but are relevant only for the particular parameters given in Table

A.1.
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TABLE A.1. Parameters for Thermal-Elastic Check Problem

Ef 6.9 E4 MPa

E
c 2.07 E5 MPa

of 0.3

v
c

0.3

C
tf

1.E-5 1/C

C
tc

2.E-5 1/C

rf 0.254 cm

r
c 0.280 cm

Pin length 25.4 cm

Fuel conductivity 0.1 W/cm-C

Cladding conductivity 0.2 W/cm-C

Power 900 W/cm

Outer cladding temperature 500°C
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A.2 PLASTICITY PROBLEM

A simple elastoplastic problem was chosen to verify the SPECKLE-

III solution techniques and coding. The problem geometry, shown in

Figure A.4, consists of a hollow cylinder open on the ends. The

inside of the cylinder is loaded by a uniform compressive stress,

Po. The cylinder is assumed to be in a state of plane strain and

yields according to the von Mises law with associated flow.

A.2.1 Finite-Difference Solution to Plasticity Problem

Hodge and White (1950) obtained a solution to the above problem

using a finite-difference scheme for the particular parameters shown

in Table A.2. In Table A.2, Sg is the yield strength in pure shear, G

is the shear modulus, and v is Poisson's ratio.

Internal
Pressure P

FIGURE A.4. Elastoplastic Check Problem Geometry
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TABLE A.2. Plasticity Problem Parameters

Po/Sg = 1.25

Ro/Ri = 2.0

Sg = 333.33

= 0.3

A.2.2 SPECKLE-III Solution to Plasticity Problem

The SPECKLE-III code was modified to solve the problem described

in Section A.2. The plane strain assumption was incorporated by not

allowing any axial displacement. One element was used for the fuel

and eight elements were used for the cladding. To model a hollow

cylinder, Young's modulus for the fuel element was set to a very small

value. The cladding elastic properties were set to values

corresponding to those given in Table A.2. The load on the interior

of the cylinder was applied in the same manner as the gas pressure

load in actual pin calculations (see Section 7.1) and the initial

strain rate was set to zero.

A.2.3 Comparison for Plasticity Problem

The radial, tangential, and axial stress profiles from the Hodge

and White solution and from the SPECKLE-III code are shown in Figure

A.5. The agreement is excellent for the radial and axial stresses and

the elastic-plastic transition point. There is a slight discrepancy

in the tangential stress in the plastic region. Since the SPECKLE-III

results satisfy the von Mises yield law and the radial and axial

stresses are in close agreement, the discrepancy is attributed to

inaccuracies in the graphical representation of Hodge and White's

results.
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Another plasticity problem was solved to check the extended von
Mises yield law for frictional material. The problem was similar to

that described in Section A.2 except that the applied load was

external, rather than internal, compression. The SPECKLE-III code

results were compared with results from the NONSAP (Bathe, et al.

1974) code. The stress profiles and the elastic-plastic transition

point again were in excellent agreement.
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TRIAXIAL COMPRESSION TESTS
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TRIAXIAL COMPRESSION TESTS

Some triaxial compression tests were performed on various samples

of randomly packed sphere arrays to obtain a better understanding of

the plastic behavior of the granular material and the effect on

strength when two sphere sizes are combined.

A description of a triaxial compression test can be found in any

standard text on solid mechanics, so only a brief description is

presented here to give the details that relate to the sphere pac

Chart
Recorder

Deflectometer

Metal
Sleeve

Vacuum
Pump

FIGURE B.1. Schematic Diagram of Triaxial Compression Test Equipment
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fuel. The test equipment is shown schematically in Figure B.1. In a

typical test, a thin rubber membrane is placed inside a metal

sleeve. A vacuum is drawn between the inside of the sleeve and the

membrane and the spheres poured into the membrane. The sample is then

vibrated for approximately 30 seconds. If a second infiltrating

sphere size is included in the sample, they are loaded into the

already packed large sphere array. A weight is placed on the top of

the sample and the sample again vibrated, adding more small spheres as

necessary to fill the membrane. An end piece is then placed on the

sample and the membrane pulled up over it and secured with rubber

bands. The interior of the membrane is evacuated providing a

compressive load on the sample of approximately one atmosphere. At

this time the sample is rigid and the metal sleeve can be removed.

Additional hydrostatic stress can be applied by enclosing the sample

in a second container and pressurizing the container using stored

compressed air.

The sample is loaded axially using a standard tensile testing

machine in the compressive mode. For tests above atmospheric pressure

the sample is loaded by a frictionless piston that penetrates the

outside container. The axial deformation is recorded as a function of

the axial load using a deflectometer attached to a chart recorder.

The load is increased until the sample begins to experience large

deformation with only small load increases.

Typical load-deflection behavior is shown in Figure B.2. For

this particular test the sample was unloaded at point A and then

reloaded starting at point B. It is evident that plastic deformation

occurs upon unloading and that there is some kinematic hardening of

the sample. A rough approximation of the strength of the sample can

be related to the load at which very large deformations begin as

indicated in Figure B.2.

Table B.1 lists the relevant tests made. To simulate the large

spheres of the EIR fuel, 0.123 cm diameter steel spheres were used.

The small spheres were simulated using 0.0079 cm alumina spheres.



Axial Deflection

FIGURE B.2. Load Deflection Behavior for a Typical Triaxial Compression Test on a
Random Array of Uniform Steel Spheres
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Test No.

TABLE B.1. Triaxial Compression Tests

Confining PressureSphere Size (cm)

(MPa)

4 0.123 0.10

5 0.123 0.34

6 0.123 0.10

7 0.123 0.10

8 0.123 0.10

9 0.123 0.21

10 0.123 0.21

11 0.123 0.42

14 0.0079 0.10

15 0.123/0.0079 0.10

16 0.123/0.0079 0.10

17 0.123/0.0079 0.10

18 0.123/0.0079 0.42

20 0.0079 0.21

21 0.0079 0.10

22 0.0079 0.10

23 0.123/0.0079 0.10

24 0.123 0.10

25 0.123 0.10

26 0.123 0.21

27 0.123 0.42

28 0.0079 0.42
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Tests were made on each of these sphere sizes separately and mixed

together as in the EIR fuel. The internal friction angle can be

obtained by plotting the Mohr circle for each test at the failure

point. The Mohr-Coulomb yield criteria is given by the envelope of

these circles and the friction angle is the angle that the envelope

makes with the principal stress axis. Figure B.3 shows the Mohr

circles for the separate and mixed size sphere tests and also shows

the Mohr-Coulomb envelopes and friction angles. The friction angle

for the large and small sphere mixture is considerably larger than for

either of the sphere types alone.

Tests of this nature should be performed on the EIR fuel to

provide better estimates for the unrestructured fuel internal friction

angle required for the fuel plasticity model.
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FIGURE B.3. Mohr-Coulomb Envelopes for Triaxial Compression Tests

on Sphere Arrays
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APPENDIX C

DERIVATIONS OF SELECTED EQUATIONS
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DERIVATIONS OF SELECTED EQUATIONS

Equation 3.7 - The sphere surface area inside one-half of a unit cell

is given by

B Ed( 01 )
2

A(13) = f f R cos e
2
de

2
d0

1

-( el)

where the coordinates 0
1

and 0
2

are as shown in Figure C.1. From

geometry, the range on 02 (±w) is given by

C.1

tan[w(01)] = coseitana C.2

Then integrating Equation C.1 once and substituting Equation C.2 gives

A(0) = 2R
2

fB sin [tan
-1
(cose tanWde

1 1-B

Finally, by symmetry

B

A(B) = 4R2 f sin[tan
-1

(coseitano)]del

Equation 3.8 - The solid volume of one half a unit cell is

4nR
3

V
S 3CN

C.3

C.4

C.5
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FIGURE C.1. Coordinate System for Derivation of Equation 3.7

X

FIGURE C.2. Coordinate System for Derivation of Equation 3.12
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where CN is the coordination number. The volume of one half a unit

cell is the volume of a pyramid and is given by

1
V
T

=
2
R

The side length S is

s = 2Rtano

Then the packing factor can be obtained from

pf = Vs/VT

CNtan'o

C.6

C.7

C.8

Equation 3.12 - The various cell orientations can be represented by

vectors tangent to the surface of a unit sphere as shown in

Figure C.2. The point P defines the coordinates (01 and (02 and the

direction of vector ; defines 4)3 . For each element of surface area

of the unit sphere, the coordinate (03 can take on all values between 0

and 2ff. Equating the integrated value of the average incremental

strain energy to the integrated incremental strain energy gives

211- 271. 211.

f f f dh° sing:1:404)243 = f f f dh(4)1,412,4)3)si404)0(0243
o o o o o o

C.9



Then assuming dh° is independent of the orientation, the average

strain energy is

21. it

0
= --1dh i.. f f f dh sin41d42d0243

o o o
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C.10

Equation 3.21 - To establish Equation 3.16 for an orthotropic unit

cell it is helpful to use matrix notation rather than tensor notation

since so many of the components of Dijkl are zero. Vectors and

matrices with an overbar are referenced to the fixed coordinate system

and those without are referenced to the rotating coordinate system

attached to the unit cell. The unit cell stress strain relation can

be written as

{de} = [D]{da} C.11

and the incremental strain energy is given by

dh = {a}T {dE} = {a}T [D]{da} C.12

Denote the tensor equivalent of {a} by [a]. Then the stress tensor

referenced to the rotating coordinate system is related to the stress

tensor referenced to the fixed coordinate system by

[a] = [a][a][a]
T

C.13
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where

a
11

a
12

a
13

[a] = a
21

a
22

a
23

a
31

a
32

a
33

and the components of [a] are the direction cosines of the rotating

coordinate system axes. If the multiplication of Equation C.13 is

carried out the transformation matrix for the vector representation of

the stress can be obtained and is given by

where

[q] =

{a} = [Ora) C.14

2

all

2
a
21

a
31

2

2
a
12

2
a
22

2
a
32

2
a
13

2
a
23
2

a
33

2a
11

a
12

2a
22

a
21

2a
31

a
32

2a
11

a
13

2a
23

a
21

2a
33

a
31

2a
12

a
13

2a23a22

2a
33

a
32

2a11a21 2a22a12 2a23a13 aza.lz ,.....

l+alla22 a13a214-a11a23 al3aze ,+a 12-a 23

2a11a31 2a12a32 2a13a33 a.iz ....aJ.....i+alla32 a13a31 +alia33 aaJ4 _s

13a + 12-a 33

2a a 2a a 2a a a a +a a a a +a a a a +a21 31 32 22 33 23 22 31 21 32 23 31 21 33 23 32 22
a
33
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Then substituting Equation C.14 into Equation C.12 gives

dh=
T T

[D][q]{a}

By analogy with Equation 3.16 the compliance matrix for the isotropic

aggregate is

2n 2w w

[D
o] 19

f f f [q]
T
[D][q]sinct)44243

8.1e- o o o

C.15

The compliance matrix for the isotrope can be completely established

if D°
1 11

and D°
2

are known. To obtain D11 the matrix multiplication is

carried out giving

q2 ,sin04)0(02.432q21.a31
D +
32 41

D + q
44 51

D
+ c15a 61"n66

C.16

The components of [D] are independent of cell orientation so it is

only necessary to consider the integrals of the q coefficients. Since

all possible orientations of the unit cell are considered,
q11, q21,

and q31 will all take on the same values over the range of
2

integration. The integral of (In results in



233

2n 2n n
1 2

1 2n 2w w

8- 0 o

f

o
q11 sinhd41d.2d43 2-0

0 o

cosA4 sinhd.0.2d43 =E

C.17

Similarly, the coefficients on D12, 023, and 013 are equal as are

those on D44, D55, and D66. The integration could be carried out but

it is simpler to realize that if [D] is for an isotropic material

then [e] = [D]. D7.1 can be expressed as

Do. 1 In .un 4.nl + a(D12 + 013 + D23) + b(D44 +11 5 '-li
D22

44 055
+ D66)

C.18

where a and b are the coefficients resulting from the integration of

Equation C.16.

If [D] is for an isotropic material then

and

0
11

= 0
22

= D
33

= 1/E

D
12

= D
13

= D
23

= -v/E

D
44

= D
55

= D
66

= 2(1 v) /E

D
11

= 1/E

C.19

Substituting these expressions into Equation C.18 and matching the

coefficients on E and v gives two equations that can be solved for a

and b resulting in



a = 2/15

b = 1/15

A similar analysis can be applied to en giving
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C.20

1 (n
D12 011 D22 4- D33/ "4- 11;

(012
4- D23 D13' llf 44 4- 055 4. 066)

D
44

= 2 (D
11

- D
12

)

Equation 3.28 - The surface area of one side of the unit cell

octahedron is (see Figure C.3)

1
A= 7 s R /cos B= R

2
sino/cos

2
13

C.19

C.22

The area of the exposed sphere material on one side of the octahedron

is approximated by the area of the triangle ABC and is given by

1 2
A =

2
sR=Rsino.

S s

The ratio of the areas is then

A/A
s
= 1/cos

2
0

C.23

C.24
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FIGURE C.3. Random Sphere Array Unit Cell

and the ratio of the projected areas onto the orthongonal coordinate

planes is the same as that given in Equation C.24.

Equations 3.40 - Using Equation C.22 the projected areas in the x and

z directions of one side of the octahedron are



A
x

= Acosa = R2tanB

and A
z

= Asina = R
2
tan

2
0
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C.25

The total projected area in the x-direction is from two sides of the

octahedron and in the z-direction is from four sides of the octahedron

giving Equations 3.40.

Equation 3.43 - The only nonzero terms in [DCN] are multiplied by

Az. The coefficient on [DCN] is therefore

2
A
Z

A
CN 77

Substituting Equations 3.40, C.6 and C.7 gives

16R
4
tan

4
a3

A 6tan
2
aCN

8R
2
tan

2
aR

2

The volume of the solid body portion of the unit cell is

Vs Vsphere - n R3(1-cos B)2 (2 + cos B)

C.26

C.27

C.28

where V
sphere is the sphere volume in the unit cell. Then from

Equations 3.42, C.24, C.6, C.7, and C.8, the coefficient on [Dm] is



rV here 2n R
3
(1 - cos$)

2
(2 + cos031 1

Am L SPV r
R
3
8R

2
tan

2
$

J 4
cos e.

1
f[p

7 (1 - cos s)2 (2 + cos$)
I4 71

cos 0 tan
2
$
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C.29

Equation 5.38 - It is required to find a two-point quadrature formula

that integrates terms of the form a bx-1/3 exactly. The base points

are arbitrarily choosen as .1 and .9 times the integration interval.

The quadrature formula is of the form

Z
2

f f(z)dz = w
1
f(.1(b-a)) + w

2
f(.9(b-a))

Z1
C.30

Without loss of generality it may be assumed that z1=0 and z2=1 since

any limits can be reduced to these by an appropriate change of

variables. The weighting factors w1 and w2 are choosen so that each

of the required terms is integrated exactly. This gives two equations

for w
1
and w2.

1

f adz = a = w
1

a+ w
2

a

0

C.31

1

f bz
-1/3

dz = 1.5b = w1 b(.1) -1/3 + w
2

b(.9)
-1/3

0
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Solving Equations C.31 for the wl and w2 gives

w1 = .4149993

w2 = .5850007 C.32


