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Field observations are made of the formation of backwash ripples

on the beachface, formed by undular hydraulic jumps generated by back-

wash down the beach face colliding with wave bores. Measured ripple

wavelengths range from set averages of 48 to 70 cm. Within a particu-

lar set of ripples there is a tendency for the spacing to decrease in

the offshore direction. These field observations are compared with

laboratory experiments where undular jumps are generated in a flume,

and with a computer simulation model which models both the flow within

an undular hydraulic jump and the resulting sediment transport which

gives rise to the backwash ripples. The computer model involves a

numerical solution of the Boussinesq equations which govern the fluid

flow, and sediment transport equations which relate the sand transport

rate to the local mean flow velocity. The computer model permits a

study of the detailed time-history of the undular jump development and

the formation of the backwash ripples. This model shows good agreement

with the field observations of backwash ripples, predicting an offshore

Redacted for Privacy



decrease in their spacing as observed. The laboratory experiments

showed a similar result so long as the Eroude number of the supercriti-

cal flow before the jump occurs is small, on the order of 1.4. Dif-

ferences between the computer model and experiments were small and arose

principally from the neglect of internal friction and surface tension

in the model. The study demonstrates the usefulness of the simultaneous

application of computer simulation models and laboratory experiments to

understand complex flow and sediment transport conditions such as occur

on beaches.
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SEDIMENT TRANSPORT BENEATH AN UNDULAR HYDRAULIC JUMP

INTRODUCTION

Wave action on a beach forms a great variety of sedimentary struc-

tures in the sand. Among these structures are regular patterns of rip-

ples known as backwash ripp7es (Figure 1). They are often made readily

visible by selective sorting of sediments such that heavier and darker

minerals are left in the troughs and the lighter quartz and feldspar

sand grains form the crests. The wavelengths of backwash ripples

generally range 30-70 cm. They are a distinctive class of ripples due

to their low amplitudes compared to their wavelengths giving a ripple

index (ratio of length to height) of 30 to 100, much larger than other

types of ripples (Tanner, 1965). Backwash ripples are temporary struc-

tures in the sense that they persist on a beach during a falling tide

only when subsequent waves fail to reach them. They are washed away

on the next rising tide only to reform as the tide again recedes.

Little study has gone into the actual formation of backwash rip-

ples, although it is generally recognized that they form when the back-

wash of a wave becomes supercritical (Froude number greater than unity)

as it flows seaward down the beachface, giving rise to a hydraulic jump

(Hayes, 1972, p. 344). The jump so produced may be an undular hydrau-

lic jump with a series of undulations or wavelets forming on the water

surface, the uridulations in the water forming similar uridulations or

backwash ripples on the sand beneath.
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Figure 1: Backwash ripples covering the beach face at Agate Beach,

Oregon, at low tide. The ocean is to the left in the photo.

These backwash ripples have been modified by swash action

after their initial formation within uridular hydraulic jumps,

some of the sand of the crests having been carried over into

adjacent seaward ripple troughs.
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The purpose of this study is to understand the causes and flow

characteristics of undular hydraulic jumps on beaches, and how they

give rise to backwash ripples. Of special concern will be how the rip-

ple geometry, mainly the spacings of the backwash ripples, relates to

the flow in the hydraulic jump. The first step of this study is to

undertake field observations of backwash ripples being formed, and to

obtain measurements of the resulting ripple spacings. With these mea-

surements as a guide we will then devise a computer model that describes

the flow of water in an undular hydraulic jump. Measurements in undular

hydraulic jumps in a laboratory flume are used to test the computer

model and to properly scale the solutions. The computer flow model will

then be used as a forcing function for a sediment transport model which

will simulate the movement of sand beneath the undular hydraulic jump.

As will be seen, this numerical model simulates the formation of back-

wash ripples, which can then be compared with real backwash ripples ob-

served on the beaches. The numerical results thus give us a detailed

time history of the formation of backwash ripples by an undular hydrau-

lic jump. These results are then used to describe what the physical

conditions were on the beach at the time the field measurements were

taken.

Although the scope of this study is directed toward a better under-

standing of the formation of backwash ripples on a beach, undular hy-

draulic jumps also form in rivers and streams. This study can also

give information on what is happening in these places. Conditions in
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channels are more difficult to model; the flow conditions are steady

for longer periods and there are side walls that may affect the flow.

Under these conditions, the model described in this study may well fail;

however, it is a good way to begin further study of such a flow regime

in a channel.



FIELD OBSERVATIONS AND MEASUREMENTS

Observations of the formation of backwash ripples and measurements

of their wavelengths were made at several beaches, but principally at

Agate Beach, Oregon, 5 km north of Newport on the mid-Oregon coast.

Due to the high concentration of heavy minerals in Agate Beach, the

backwash ripples are very apparent (Figure 1). The exposed portion of

beach face upon which the backwash ripples form has a uniform slope of

about 0.01 . The beach is exposed directly to the full ocean waves

which average 1-2 in significant height breaking waves in the summer,

increasing to an average of 4 in in the winter with individual storms

forming breakers of 6 to 7 in (Komar et al., 1976). Wave periods aver-

age 8 sec during the summer, increasing to 10 to 15 sec in the winter.

Tides are mixed with a Spring tidal range of 3.5 m.

All of our observations substantiated that the backwash ripples

are formed by the water undulations or wavelets of an undular hydraulic

jump. A clear example of this occurring is shown in Figure 2. The

upper photograph shows the undular hydraulic jump produced by the back-

wash running down the beach face colliding with a small incoming wave

bore. The bottom photograph of Figure 2 shows the backwash ripples so

produced. Backwash ripples do not form under each incoming wave bore,

only when there has been a series of large bores which wash high upon

the beach face. This causes a general flooding of the beach face fol-

lowed by a long steady return back flow lasting up to a minute. This

long return flow would then halt a sizeable incoming bore, producing
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Figure 2: Successive photographs about 15 seconds apart, showing

an uridular hydraulic jump with five wavelets (above), arid then

the backwash ripples produced by those wavelets (below).

Photos from Cape Kiwanda, Oregon.
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an undular hydraulic jump and the backwash ripples. Some seaward re-

turn flow would continue even after the bore with its undular jump had

become dissipated and disappeared. This caused the backwash ripples to

begin to migrate down the beach face; the actual migration involves only

a few centimeters, but it causes the characteristic asymmetrical shapes

of the backwash ripples with the appearance of offshore migration

(Figure 1). The backwash ripples are surprisingly stable; larger back-

wash ripples could still be clearly seen even after several waves

passed over them.

The undular hydraulic jumps generally had six to ten wavelets, the

average being eight. As will be seen, the number of backwash ripples

formed by the jump would generally equal the number of wavelets.

The undular jump is only one type cf hydraulic jump. In general,

a hydraulic jump is a sudden transition from "supercritical" to "sub-

critical" flow. These flow regimes are defined in terms of the Froude

Number

U

(1)

where u is the dimensional ter velocity, h is the local dimensional

water depth, and g is the acceleration of gravity. The flow is respec-

tively supercritical when F > 1 and subcritical when F < 1. The tran-

sition from supercritical to subcritical regimes can be accomplished

by the flow going through a hydraulic jump, which occurs at the posi-

tion where F = 1 ("critical" flow). The hydraulic jump can be thought
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of as a wave form which moves upstream with a velocity JjF which is

equal to the downstream water flow u so that the wave form is stationary

in position (since F = 1).

The type of hydraulic jump depends on the value of the Froude num-

ber before the jump occurs, that is, its value in the supercritical

stage. The types recognized are outlined in Figure 3 together with the

Froude number range; there is actually a continuum of types so the

classification of Figure 3 is somewhat artifical. The true undular

jump with its wavelets., important to the present study, is limited

to Froude numbers less than 2. At higher Froude numbers the wavelets

break. Such transitional jumps with breaking wavelets were at times

observed on the beaches, but only very rarely. The fully turbulent

jump has rio wavelets and cannot therefore form backwash ripples.

Direct determinations of the Froude number of the backwash down

the beach face are difficult to make because of the problem of measur-

ing the flow velocity u in the very shallow but rapidly flowing water.

Some measurements of the depth h were obtained and were found to be on

the order of 10 cm. This depth implies a velocity of between 100-200

cm/sec for the correct Froude numbers for the occurrence of an undular

hydraulic jump. These velocities are quite reasonable, supporting the

idea of a true undular hydraulic jump forming by the collision of the

backwash and an incoming wave bore.

In addition to the observations of undular hydraulic jumps on

beaches, some measurements were made of the resulting backwash ripples.



A. Undular Hydraulic Jump (1 < F < 2)

B. Transitional Jump (2 < F < 4)

C. Fully Turbulent Jump (F > 4)

Figure 3: The three different kinds of hydraulic jumps on the

basis of the Froude number F = u/Vgh.
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These were obtained at low tide using a 100-ft surveyor's tape stretched

out across the exposed beach face. The positions of each successive

ripple crest and trough were noted so that we could determine whether

there are any offshore variations in ripple spacings. Measurements

would be made by sets, the sets presumably formed under individual jumps.

As can be seen in Figure 1, on Agate Beach there are so many ripples

that it is difficult to tell where one set begins and another ends.

On other beaches (for example, Figure 2). individual sets are more

clearly identifiable, and there it is seen that a set usually comprises

some six to ten ripples, the same number as water undulations in the

jump, as is expected.

Table 1 gives the mean spacings of several sets of measured back-

wash ripples. It is seen that the mean spacings range from 48 to 70

cm. The spacings are higher than 20-50 cm spacings reported by Tanner

(1965). This range of ripple spacings is produced by the range of

size-scales of hydraulic jumps observed on the beaches; that is, there

is actually a range of sizes of undular hydraulic jumps found. It

should be realized that the nature of the hydraulic jump is governed

by the Froude number of equation (1) which is a dimensionless number.

Therefore, there can be different sizes of hydraulic jumps which will

otherwise be the same so long as the initial Froude number in the super-

critical region is the same. This was confirmed by observations on the

beach of different size undular jumps which otherwise did have the same

flow characteristics . The observed wavelet undulatioris



TABLE 1. - Field n7easw.'ements of bac7a.'ash ripple spacings

AGATE BEACH

Ave. Spacing Number of Standard
x, cm Rpp1es Deviation

70

69

59

60

60

59

53

51

5

69

54

67

10

7

6

9

7

3

5

11

5

7

7

10

DEVIL'S PUNCHBOWL BEACH 48 4

50 3

2.3

2.2

3.1

4.0

3.7

1.0

1.0

2.1
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ranged approximately from 50 to 75 cm in the different jumps, the

range of wavelengths which would be required to form the backwash rip-

ple wavelengths given in Table 1.

Figure 4 gives the offshore variations of spacings within indivi-

dual sets of backwash ripples. It is seen that there is a tendency for

the wavelengths to decrease in the offshore direction, that is, with

distance from the jump face. We will see in the next section that the

mathematical simulation of an undular hydraulic jump displays similar

offshore decreases in the wavelengths of the undulations. Due to dif-

ficulties of measurement, direct measurements of offshore variations in

wavelengths of the wavelets in the field and laboratory jumps could

riot be made.
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THE COMPUTER SIMULATION MODEL

Many of the properties of undular hydraulic jumps and the ripples

they produced can be investigated by means of a model which simulates

the water flow and the resulting patterns of sediment transport. The

undular hydraulic jump itself may be described by a set of equations

called the Boussinesq equations. In nondimensional form these equa-

tions are the continuity equation

+ [(n + flU'] 0 (2)
T X

and the momentum equation

+ --' + u'
aU'. 1 U' 2\

aX aT
p + O(cp, p j (3)

where r is the difference in water level from the reference height h

(Figure 5), U' is the dimensionless mean horizontal particle velocity,

is a small parameter equal to the wave amplitude divided by the depth

h, and p h2/L2 where h0 is a vertical scale and 2 is a horizontal

length scale to be determined later. The complete derivation of these

equations can be found in Appendix I. The continuity equation (2)

basically keeps track of the total quantity of water, insuring that no

water will be created nor destroyed in the flow. The momentum equation

(3) balances the forces acting on the flow.

The solutions of equation (2) and (3) together with the necessary

boundary conditions yield the patterns of flow within the undular
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left, the particle speed is left to right and the

resulting mean flow in the subcritical region is

from right to left.



hydraulic jump. The necessary numerical work is discussed in Appendix

II (Peregrine, 1966). In order to actually solve the equations with

the specified initial conditions, we must specify several parameters.

For equations as non-linear as equation (3) we must choose the mesh

sizes (x and t) by trial and error. To achieve stable results the

mesh ratio t/x is reduced until the results are independent of the

mesh sizes. The initial conditions are chosen to give a reasonable

surface profile that is not too abrupt for the model to handle. Test-

ing has shown that an initial amplitude n0 = 0.1 is a good choice.

The only remaining parameters in equation (3) are and i. An examina-

tion of the experimental data to be presented later (Figure 9) reveals

that the ratio of wave amplitude to water depth is about 0.4; this

fixes = 0.4. Our basic problem with finding a value for i is that

our one-dimensional model has no imposed horizontal or vertical length

scales. This leaves L and thus ii as free parameters in the model. The

only restriction imposed on ii is that it must be less than one. One

of the goals of the comparison between the numerical model and undular

hydraulic jumps generated in a laboratory flume is to determine how 2.

and ii are to be selected.

The second half of the model describes the backwash ripples by

considering the continuity equation for sand. The one-dimensional con-

tinuity equation is

C_ 3CUT

x
(4)
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where C is the concentration of sand and is a function of time only.

The quantity Cu1. on the right side of equation (4) is the volume flux

of sand; it is represented by q5. The right side of equation (4) is

the divergence of the volume flux. The divergence of the volume flux

is equal to the difference in volume flux through the two vertical

sides of the unit volume. This difference is simply equal to the time

rate of change of the sediment interface height in the unit volume

(5)

where z is the interface height and is related to the concentration of

sand in a unit volume.

There are, of course, many equations that have been proposed to

predict sediment transport rates for given water flows. One of the

easier to employ, especially in the present application, is that of

Chang et al. (1967) which has the form

Ws=KTT[TTC] (6)

where is the weight flux of sediment, KT is an empirical constant,

UT is the total mean horizontal water velocity, is the stress

exerted on the bottom by the water flow, and Tc is the critical stress

required to initiate sediment motion. of equation (6) is the weight

flux of sand transport; the volume flux q5 is given by

Ws KT
= - ç UT (7)
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where p5 is the density of the sand grains.

Next we must relate the bottom shear stress of the flow to the

velocity. The well accepted method is to use the 'drag law11 relation-

ship

2

T=CfP UT (8)

where Cf is an empirical drag coefficient and p is the density of

water. Cf can be obtained from a Moody diagram [for example, from

Hansen (1969, Figure 11.2) where Cf = f/8]. In the models developed

here, we used Cf 0.005 which is a reasonable value for the jumps

observed on the beaches.

The value of the empirical KT in equation (7) is obtained from

curves provided by Chang et al. (1967). The critical threshold stress

is provided by the curves summarized in Miller et al. (1977) based

on many sets of data. Equations (7) and (8) are combined to give an

equation relating the volume flux of sand to the fluid velocity

KT
q5 U [Cf Q UT Tc] (10)

Equation (10) is then substituted into equation (5) giving

-2
p5g x

[3 Cf P UT Tc] (11)

Equation (11) shows that the erosion or deposition of the sediment in-

2 UT
terface with time depends on the quantity UT

<
. Therefore, the

phase relation between the velocity and the sediment interface is no



19

longer straightforward and numerical methods should be used to investi-

gate the relationships.

Figure 6 shows an example of the results of the computer model.

In this example, the sand was assumed to be quartz (p5 = 2.65 g/cm3)

with a mean diameter of 0.05 cm; a value which corresponds to the

beaches in the study. This gives KT = 0.4 from Chang et al. (1967),

and
Tc

2.25 dynes/dm2 from Miller et al. (1977). The model was run

with 11= 0.8.

Figure 6 shows a detailed time-history of the development of the

undular hydraulic jump and formation of ripples in the sand. The

times T for the stages of development are dimensionless times; the

characteristic time required to convert to dimensional units will be

found shortly.

Several things may be noticed about the computer model results in

Figure 6. At large times many small wavelets have formed a large dis-

tance from the face of the jump; friction and surface tension would

tend to damp these small wavelets out in practice. In the field ob-

servations the amplitude of the wavelets and the resulting backwash

ripples decreased away from the face of the jump (see Figure 2). This

same result may be noticed in the computer model. The affects of

friction and surface tension would serve to reinforce this tendency

and make the model even more realistic. Finally it should be noted

that the model runs for longer than an undular hydraulic jump would

physically be expected to last. For a typical field measurement of
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Figure 6: The results of the computer model with i = 0.8,

= 1.0, T = 0.5 and the total horizontal length is

240 nondimensional units. Shown are the water surface

profile, ri , the horizontal velocity, U, and the

profile of the backwash ripples, Z (highly vertically

exaggerated). All are given in nondimensional terms.
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= 60 cm and h0 assumed to be 5 cm,,T = 200 is the maximum time one

would expect the jump to last.

An expanded view of the undular hydraulic jump and the resulting

backwash ripples is shown in Figure 7 and a variable phase shift be-

tween the surface profile and bed profile is apparent. As mentioned

before this variable phase shift is due to the fact that changes in the

2 3uT
bed profile depend on the quantity UT ; this quantity is propor-

tioned to in Figure 7. From Figure 7 and Equation 10 ft can be

seen that q5 is in phase with U1.. As expected is not in phase with

2
either UT or . However, the difference in phase between and

2 oUT
U1. or are small compared with the phase shift between and

x

z. Equation 5 states that and must be in phase. From this we

conclude that the major portion of the observed phase shift between z

and r is due to the time dependent nature of the flow. These results

are not expected to be observable in the field. Even if both the

hydraulic jump and the resulting backwash ripples could be measured

together the phase shifts are so small that they would be masked by

measurement error and the shift of the ripple sets due to swash that

flowed over the ripples after the, hydraulic jump died out.
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Figure 7: An expanded view of the undular hydraulic jump showing the

phase lag difference between the surface and bed profiles. Note

that the third and fourth ripples from the face are in phase while

the leading two ripples are out of phase. Also shown are the water

velocities, the sediment transport and the gradients in the transport.

See text for detailed discussion.



DETERMINATION OF THE HORIZONTAL LENGTH SCALE

With the computer model different sets of parameters (such as

model different experimental conditions. Because of this we need to

decide what values of the parameters are appropriate for the computer

model to most closely approximate the field conditions. Given a

measured h0, we need the horizontal length scale 2. for a particular

field observation in order to calculate p for that experiment. Given

the p we then calculate the computer results that most closely ap-

proximate the field condition; we will then use the length scale 2. to

transform the results to dimensional form for direct comparison.

The results of the computer model with arbitrary p are shown in

Figure 8, the nondimensional mean wavelength (/z) versus .
We

chose to use the mean wavelength in order to include the effects of a

variation of X with distance away from the face of the jump, and in

order to keep the same range of measurement in as the experimental re-

sults we consistently measured the first six wavelengths for the cal-

culation of the mean. We found that the undular hydraulic jump grows

more slowly with decreasing p and we had to be careful to wait until

the jump reached the same "maturity" in each case before calculating

a A/2. . Figure 8 shows a strong linear dependence and we chose this

dependence between /2. and p for our calculations.

Solve the following empirical equation for £

h2
- = m + b (12)

2.
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between the parameters of the computer model and

measured quantities in the field.



where in = -18.8 is the slope and b = 23.2 the intercept of the linear

regression in Figure 8. The result is

1

+ - 4mbh2) (13)

This result gives us as a function of the dimensional wavelength and

depth scale for any particular experimental condition. Note that we

have now specified and used one equation to solve for only one un-

known i.

No vertical length scale is imposed by the conditions of the jump

because in principal a given hydraulic jump may form with any super-

critical depth h. Therefore, we must seek the vertical scale in the

undular hydraulic jump itself. We chose to use the average vertical

rise in water depth from the supercritical to the subcritical region

of the hydraulic jump. This h0 is shown in Figure 5. Using Equation

13 and h0 we may find ii for a particular set of experimental condi-

tions and, therefore, calculate the model results most appropriate for

that particular experiment. We then use the result of Equation 13 to

scale the model. In particular, we can use this technique to investi-

gate the time history of the backwash ripples reported in the field

section of this work.

If we choose as an example a X of 60 cm from Table I and assume a

vertical scale of 5 cm; from Equation 13 we find that 2. = 5.8 cm and,

therefore, p = 0.75. The results presented in Figure 6 have a i-i = .8

and so by simply multiplying the horizontal scale by 5.8 cm we have a



dimensional time history of the backwash ripples measured in the field.

The characteristic time for this example is 0.08 sec. If the nondomen-

sional time T is multiplied by this factor, the result is the dimen-

sional time t. Of course, the vertical axis must be multiplied by h0

to dimensionalize the vertical scale. However, the backwash ripple in

Figure 7 have been vertically exaggerated for clarity and so are un-

realistically high. The horizontal scale is the measured parameter in

any event. It should be noted, however, that at best these are only

approximate calculations. For instance, calculation of . for the ex-

perimental results show an approximately 20 percent error if this 9. is

used to scale the first wavelength of the computer model. Considering

the theoretical and practical assumptions used in these calculations

that error is probably as small as we could expect.

As a further check on the computer model results, consider Figure

10. This is a plot of the dimensionless wavelength against the dimen-

sionless distance from the face of the jump. Since both the wavelength

and the horizontal distance are scaled with 2. we may compare Figure 10

to the field measurements in Figure 5. The slopes of the two plots are

virtually teh same. The field measurements fall off with a slope of

-.116 and the computer model results in Figure 10 fall off with a slope

of -.111. The good agreement, while not conclusive, is encouraging

and supports the validity of the model.
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LABORATORY EXPERIMENTS

Due to the difficulty of making careful observations and measure-

ments on the undular hydraulic jumps occurring on the beaches, it was

decided to undertake a series of laboratory experiments in which jumps

are generated in a flume. The purpose of these observations is to pro-

vide data from real undular jumps which can be compared with the com-

puter simulation model and used to calibrate the computer model's

scale.

The experiments were performed in a 0.5 m wide by 7.3 m long flume

at Oregon State University. The flume was tilted to a slope of 0.005,

and water at a flow rate of 0.35 ± 0.05 cfs was introduced at the high

end. The downstream depth was controlled by a gate at the exit end of

the flume; by small variations of this downstream depth the position

of the jump could be controlled. The upstream conditions were depen-

dent upon the flow-rate and the flume slope. The formation of an un-

dular hydraulic jump required that the Froude number [equation (1)]

be greater than unity but less than approximately two. After the un-

dular jump reached stability the surface heights of the undulations

were measured with a vernier measuring rod with an accuracy of + 0.15

cm. The mean horizontal velocities were measured with a pitot tube

and water manometer with an accuracy of + 5.0 cm/sec.

The experiments were originally intended to have a sand bottom so

that direct observations could be made of the sediment transport pat-

terns leading to the formation of the ripples. However, the velocities
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in the supercritical region are so high that unless a continuous supply

of sand is added to the flume the bottom quickly erodes away. In addi-

tion, the large changes in bottom topography soon destroyed the condi-

tions required for the formation of an undular jump. That is, both the

velocity u and the depth h in the supercritical region changed with time

in such a way as to lower the Froude number and to thus eliminate the

jump. If such experiments are to be performed, they must duplicate

more closely the natural conditions found on the beach where there is a

continuous supply of sand. This could be done either by having an ini-

tially large supply of sand in the flume or by utilizing a recirculat-

ing sand flume; neither option was unfortunately available to us in

these experiments.

The measurements of the hydraulic jump itself also presented prob-

lems. The position of the jump is a delicate balance of a nonlinear up-

stream velocity and a mean downstream velocity. This balance was con-

stantly making small changes in the position of the jump as small per-

turbations changed each velocity. As a result it was difficult to make

measurements of velocities and heights of the undulations with respect

to a fixed point. However, by measuring all values with respect to the

first peak (x = 0 at the first peak) this problem was largely avoided.

The experimental results are shown in Figure 9 for Froude numbers

1.4, 1.6 and 1.9. All show the surface wavelets or undulations typical

of the undular hydraulic jump. The undulations continued for the entire

length of the flume; however, only the first five or six were sufficiently
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well-developed to make accurate measurements. All measurements were

made after the jumps had essentially reached steady-state. For this

reason, the laboratory observations should correspond to large dimen-

sionless times T in the computer models (Figure 6). The velocities re-

corded in Figure 9 are at mid-depth (half way from the water surface to

the bottom) at each position. Due to bottom drag the velocity of course

decreases to zero at the bottom so that there is a continuous vertical

variation in the velocity as well . But as seen in Figure 10, a mea-

sured of the velocity at mid-depth is a reasonable estimate of the

average flow velocity.

If the laboratory results (Figure 9) and the computer simulation

results (Figure 6) are compared, it is seen that there is a close

similarity of overall appearance. In the experimental results the

tops of the undulations are progressively higher in the direction of

flow such that the top of the first wavelet tends to be lower than the

second, and so on. This is opposite to the simulation results (Figure

6) where the top of the first wavelet is the highest because it has the

greatest amplitude. This results from the non-inclusion of boundary

drag in the simulation model which is of course present in the labora-

tory results. The effect of the bottom drag is to increase the overall

water depth of the flow downstream from the face of the jump. Thus the

undulations in the laboratory jumps are superimposed upon a progressive

increase in water depth in the direction of flow having the effect of

raising the levels of successive crests of the undulations. The jump
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imation of the mean velocity of the flow.
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at Fr = 1.4 of Figure 9 shows the closest similarity to those observed

on the beaches and to the simulation models (Figure 6) with respect to

the first undulation being the largest and to there being a decrease

in the wavelengths of the undulations away from the front of the jump.

The jumps at Fr 1 .6 and 1.9 do show a small tendency to have decreas-

ing undulation wavelengths away from the jump front, but the changes

are small and approach the uncertainties in the measurements. At these

higher Froude numbers there is little apparent decrease in the ampli-

tudes of the wavelets with distance from the jump front, unlike the

laboratory results at Fr = 1.4 (Figure 9), those observed on beaches,

and the jumps produced by the computer simulation at low Froude num-

bers. According to the laboratory results of Figure 9, there is a

small increase in the wavelengths with increasing Froude number, the

average wavelengths going from 23 to 25 to 27 cm as the Froude number

is increased. Thus, there would appear to be relatively little depen-

dence of the spacings of the resulting ripples on the Froude number.

More important would be the scale of the experiment; as discussed

earlier, a larger-scale experiment would produce larger wavelets and

backwash ripples even though the Froude numbers of the large- and

small-scale experiments are the same.
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CONCLUSIONS

The goal of this work is to explore the details of sediment trans-

port under an undular jump. The experiments have validated the compu-

ter model. The model shows the development of ripples in the sand and

shows their relatively fast time scales and their close adherence to

the form of the undulations in the water. Interestingly, good qualita-

tive agreement was found even though there was no feedback mechanism

from the sediment to the water. That is, the sand ripples do not seem

to affect the undulations. This is in contrast to dunes and antidunes

whose ripple index is small enough that there is significant feedback

from the sediment to the water (Kennedy, 1963). The time required for

the model to reach approximately steady-state, about ten dimensional

seconds, agrees with experimental and field observations. This time is

about what is available in the upper swash zone before another wave

enters the zone and destroys the jump.

Finally, the most gratifying result from the study is the relative

unimportance of friction in the water. This has been shown by other

workers (Hawaleska et al., 1970). Note that this does not mean friction

is unimportant at the boundary. It does mean that internal viscous and

turbulent dissipation is unimportant in the water itself over the time

and length scales found. This is in accordance with theoretical pre-

dictions (1eyer, 1967). Friction is of course required to couple the

water to the sand.

The use of numerical modeling of high energy environments is both
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possible and necessary. In such a region even laboratory experiments

become difficult and analytic theory beocmes impossible. This study

has shown the utility of modeling to provide details of high energy

boundary regions that would be difficult or impossible to find by other

means. It has also shown the importance of careful interpretation of

modeling results using appropriate experimental data for comparison.

This point should be emphasized. The model itself provides little in-

sight about the flow. Only when the model is critically compared to

experiments do appropriate scales emerge.

The results of this model may be used in many different environ-

ments such as river mouths and spillways. Given a mean wavelength and

a depth scale from field measurements the formation of the resulting

sand ripples may be studied. Measurements of the persistence of the

jump could give an understanding of the amount of sediment transport

in both the subcritical and supercritical regions. It is also obvious

that predictions of sediment transport and flow velocities are not

possible from the measurement of the wavelength unless a depth scale

is known as well. This is unfortunate since many times the wavelength

is all that is measured and the parameters of the flow regime is what

is of interest. The existence of such waveforms does place limits on

the flow parameters since no waves would form if the Froude number is

greater than two or less than one.
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APPENDIX I

Theory of an Undular Hydraulic Jump

As a first step in modeling the sediment profile a forcing func-

tion must be determined. Accepting rather restrictive assumptions,

this has been done by several previous workers. The first derivation

of the appropriate equations was by Boussinesq (1872). A considerably

more recent and concise derivation is given in Whitham (1974). The

derivation will give the Boussinesq Equations of nonlinear fluid flow.

We first start with the Navier-Stokes equations of fluid motion

and apply the following set of assumptions; the fluid density is con-

stant, the flow is irrotational and two-dimensional, the bottom bound-

ary is impermeable, and the fluid is inviscid. The major assumption

here is irrotationality; from this the equally unrealistic inviscid

assumption follows. A moments thought will demonstrate how unrealis-

tic this assumption must be in the flow regime we are considering.

However, in order to make any progress at all we must make this assump-

tion and it is gratifying how well the result compares to experimental

measurements. The first equation we deal with is the equation of con-

tinuity

+ V = 0

where = the material derivative,

p = the fluid density,
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= horizontal particle velocity.

Lower case letters refer to dimensional quantities, upper case letters

will refer to dimensionless quantities and primed velocities will be

particle (or orbital) velocities. Figure 5 in the text diagrams these

definitions.

Applying the assumptions given above to the continuity equation

we have

a!_I +!L'= o
x z

where w' = vertical particle velocity

x = horizontal coordinate

z = vertical coordinate (positive upward)

Vertically integrate through the water column from zero to the surface

at n + h and using the assumption of an impermeable bottom yields

u'dz - u'(h + ri) -+ W'(n + h) = 0 (A2)

The kinematic boundary condition that particles on the surface remain

there gives

w (n + h) = + Ut (n + h (A3)
dt t

.' ax

Apply this to equation (A2) and define a mean horizontal particle

velocity U' as + h

U' u'dz
n +h

LSJ



we find that

j _a_ + h)] = 0at ax
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Nondimensionalize the above equation with the following characteristic

terms

u' = (gh0)72 UI x =

(A4)

t = z(gh02 T
dim

= h0

where the upper case variables are dimensionless variables. The hori-

zontal length scale is 2. The result is

a a
(A5)

This equation is the exact equation of continuity for the mean flow in

an irrotational two-dimensional system where n(x,t) is a deviation from

a reference height h.

The second equation required for a complete description of the

flow is the momentum equation. Applying the appropriate assumptions to

the Navier-Stokes equations of conservaticn of momentum we have in three

diniensi ons

u Vu' + I Vp+ gk = 0 (A6)at

(See G.K. Batchelor's Fluid Dynamics for a complete description of this

equation.) Since the flow is irrotational and two dimensional we may
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= (A7)

Combining equation (A6) and equation (A7) and integrating with respect

to X we have a Bernoulli energy equation

+ [(M) + ()21 ° + gz = M(t) (A8)
at 2 ax p0

where M(t) is an arbitrary function of time. We wish to solve equation

(A8) at the surface Z h + n where the pressure is continuous, equal to

the air pressure and defined to be zero. To do this we must nondimen-

sionalize equation (A8) using the following characteristic terms

x . = hd. + . = h (1 + En)dim im dim o

z . = h z tdjm = £(gh02T (A9)dim o

dim
=

(see Broer, 1964). Where the subscript dim denotes dimensional varia-

bles in this case, c is a small parameter to be determined and the

characteristic of comes from equation (A7). The introduction of c

is consistent with the earlier statement that n is of order h0 be-

cause is less than but of order one. A description of these para-

meters and somewhat different derivation than given here may be found

in Broer (1964). Applying equations (Ag) to (A8) we have
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2 [()2 9. ()2] M(t)
1 CAb)En

h
gh

0

M(t) is arbitrary and we can set M(t) = gh0. Therefore, equation (AbO)

becomes

n
+E[()29. 2]

= 0 (All)

0

Now we wish to form equation (All) in terms of only time and one space

variable. Expand in terms of a Taylor series expansion about 0,

(x,z,t) = (x,t) + (x,t)
2
32(x,t) z3 a(x,t).4-z

3!
z3

+ :-- 34(x,t)

az4
(a12)

The velocity potential form of the continuity equation is Laplace's

equation. Assuming an impermeable bottom at Z = 0

0 (Al3)

From this and Laplace's equation we note that odd derivatives of are

zero. We assume no singularities between the bottom and the surface.

Therefore, in the neighborhood defined by the bottom and the surface the

Taylor series expansion of is

(A14)(x,z,t) = (x,t)
2 2 4! 4
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The terms in equations (Al2) through (Al4) are dimensional. If we non-

dimensionalize equation (A14) by equations (A9)

72 2
= - -- -4 -4- + 0 ( ) (Al 5)

h2
where p and where does not depend on z. Now substitute equation

(Al5) into (All) and keep terms of order and p but dropping terms of

order c times p and p2. Therefore, we have

pZ2
3

+ ()2 = 0 (A16)n + 14 -r X2T 2 aX

However, equations (Al5) and (All) were derived at the surface Z = 1 +

Therefore, we have to the same order as equation (A16)

a2_p
DXT

(Al7)

We are actually interested in an equation for the mean horizontal velo-

cities. Consider the expansion of

= - II + 0()
2

From equation (P1) and the definition of the mean velocity we have

23
= (1 + En) + 0(2)

ax 6
aX3

['11



46

- H' +l/6+ 2 2
O(c ,p ) (Al8)

Now consider equation (A17) once more. Take the partial derivative with

respect to x of equation (A17). Substitute equation (A18) into the left

side of the result, group terms and drop terms of order times and

3-
n U

+ u' (M9)

Substitute equation (A18) into the right hand side of equation (M9)

gives

3n 3U
+ O(2) (A20)+ + cU' 1/3

.i

X2T

We can recognize terms in equation (A20). is the gravity term,

is the time rate of change of mean velocity, U' is the non-
3 u'linear term and

,
is the dispersion term.

XT
Equations (A5) and (A20) are sufficient to describe the motion of

any shallow water wave with the effect of a small amount of dispersion

included but with friction neglected. Those two equations are the Bous-

sinesq equations and are a set of coupled non-linear partial differential

equations that require one initial condition and two boundary conditions

for their solutions. These conditions will describe the physical condi-

tions required for an undular hydraulic jump to form.
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Boundary Conditions

The boundary conditions are perhaps the simplest to imagine but

cause the most trouble in the actual solution of the equations. Con-

ceptually we want to form a step function in the water with for

x = - and = 0 for x = and U' = 0 for x = - and x = . The initial

condition at I = 0 is harder to visualize but is in fact easier to

write in continuous form. Initially assume that dispersion may be

neglected. We then have the shallow water wave equations and these

may be solved exactly. Equations (AS) and (A20) without dispersion

are

-'+ Ia + u' 0 (A2l)
T X

+ U' --- = -(1 + ) (A22)

Multiply equation (A22) by f'(n) and add to equation (A21) where f(n)

is a function to be determined. Since

we find that

= fi () Ia
9T

r(n)
= t

Ia
3X ax

3U' 3n(Ia + U'(f'(n) + U') = -(1 + n) f'ni (A23)
aT ax



Assume that

Therefore,

(n + 1)(f'())2 = 1 (A24)

(+ U' )(f(n) + U') -(1 + n) f'(n) [f() + Ut] (A25)
31 ax

From equation (A14) we can determine f(n) or

f' (n) = (n
+ l)h/2 (A26)

Integrate equation (A26) from 0 to n. Note the indeterminate nature of

the coefficient of integration, both 2((1 - 1) and 2((l +

+ 1) are solutions. Following Lamb (1932) we choose the negative sign.

This boundary condition gives

1/2
f (n) = 2((l + n) 1) (A27)

With the following definitions

p = f () + U'

Q = f (n) U'

Vt = (1 + ) f' (n)

we find that equation (A25) becomes

-+ (U' + V') 0 (A28)
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This is a one-dimensional wave equation and P is a constant for a point

moving with velocity U'+ V in the positive direction. If we subtract

equation (A21) from f'() times equation (A22) and follow the same pro-

cedure as for equation (A28), we find the corresponding wave equation

for Q

(U1 v1)
q=

0 (A29)

Q is a constant for a point moving with velocity U1 - V in the negative

direction. Given an initial disturbance after some small time the dis-

turbance will separate into waves traveling in the positive and negative

directions. Following the positve wave

By definition

Q = 0 = f(n) - U1

l/2P = f (n) = 2[(l + - 1] = U' (A30)

Equation (A30) is valid as long as dispersion may be neglected. Since

we are interested in the case where dispersion is important we may use

equation (A30) as an initial condition for our problem. Note that this

initial condition is not for the time equal to zero but for the time

greater than zero when the effects of dispersion begin to be important.

The above derivation comes from Lamb (1932) article 187.
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APPENDIX II

Numerical Method of Solution

The equations describing an undular hydraulic jump are third-order

non-linear partial differential equations. There is no analytic method

available to solve this set of equations and therefore numerical methods

must be used. However, even with numerical methods, some simplifica-

tions must be made to make the problem tractable. As a result, this

work assumes that the Boussinesq equations force the sediment transport

equation but the sediment transport equation has no effect on the jump

equations. Solving the fully coupled set of equations results in such

an unstable scheme as to be impractical.

The method used follows very closely work done by Peregrine (1966).

We will use a predictor-corrector technique to solve equations (5) and

(20) at each time and use the resulting mean velocity to drive the sim-

ple box model formulation of the sediment transport equation.

Equation (A5) is first written in discrete explicit form and solved

for a provisional value of the surface height. In order to do this

initial conditions must be specified at the previous time step. We use

equation (A30) with an assumed surface profile that approximates the

initial shape of the water surface that we expect. A function of the

form

= 1/2 no (1 - tanh (x/a)) (A31)
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U' = 2 ((1 + n)112 1) A32)

where n0 is the initial amplitude of the wave and "a' is the parameter

controlling the slope of the wave face, the larger "a" is the more gen-

tle the slope. The initial mean velocity U' is from equation (A30).

These are the initial conditions for the following discrete form of

equation (AS) (after Peregrine (1966))

r,s+1 r,s + (r+ls nr_l,$)
+ (1 +

nr,s+l + rs)
r,s 2LX 2

U' -U'
r,s+1 rls)

= (A33)2X

where r is the space step and s + 1 is the time step to be solved for.

The known time step is denoted by s. Solving for for all r at

s + 1 explicitly gives a value that can be used in the following discrete

form of equation (A20)

U' U' U' U' + U'r,s+l r,s + U'
r+l ,s+l r-1 ,s+l r-1 ,s U'r_l S)

4A X

r+l ,s+l r-1 ,s+l
+

r-1 ,s r-1 ,s
1/3

4L X

U' - 2 U' + U' U' + 2 U' - U'
r r+l ,s-1 r,s+1 r-1 ,s+l r-4-1 ,s r,s r-1 S]
L

(A34)
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Solving this equation for the three unknowns U'rls+l U'rs+l UIr+i,

s+l implicitly gives a tridiagonal matrix. This is the reason for choos-

ing to discretize the equations in this way since we can use a modified

Gauss technique to factor the matrix once and then solve directly for

U'rs+l for all r by back substitution. Solving one explicit equation

and one tridiagonal equation is orders of magnitude faster than setting

up both equations in a single matrix and solving the entire set simul-

taneously. Now that U' at the s+l time step has been found for all r

we use the result to find a final value for n with a discrete form of

equation (A5)

U' - U'r,s+l r,s + (1 + )
r+l,s+l U'r_l,s+l + U'r+ls r-ls)

r,s 4AX

1/2 (U' + U, ) (' rls)
0 (A35)r+l,s+l r,s 2tX

We can solve equation (.435) explicitly for n. Now we have final values

for both the mean velocity U' and the surface height at the s-fl time step

for the entire range r. We can use these values both as initial condi-

tions for the s+2 time step and as forcing functions for a discrete form

of the sediment transport equation. Substitution of U' into the noridimen-
sional form of equation (7) gives the nondimensional volume flux out of
a box of length x and unit width and depth. Note that UT is negative

and so the sediment profile Z is therefore
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Z +U (aU2Zrs+i r,s T+i+i 'r+l,s+l
UTr,s+l

(a U (A36)
Trs+i

KTCfP KTTC
where a and

h0

There are two problems connected with numerical solutions of this

type. They are the question of stability and effects of boundary condi-

tions. Convergence is usually assumed for stable solutions. Neither

problem is subject to simple analytic treatment. The question of

ability of a third order nonlinear equation such as equation (A20) is

simply not analytic. The only choice is to choose various mesh ratios

of solve the set of equations and try to find a point where decreas-

ing the mesh ratio does not change the results significantly. Consider-

ing the high order of the problem one must expect a small mesh ratio.

Peregrine found that a mesh ratio of one was adequate while we found

that one half was necessary for stable results. The difference is per-

haps due to different opinions of what is a significant change between

runs or the larger final time step reached in this case. A small mesh

ratio means more computer time to reach a given time step. The ques-

tion of boundary conditions is also connected to the problem of computer

time.

In fact, the effects of an undular hydraulic jump are damped by
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friction a large distance downstream from the jump. This means that the

boundary conditions are effectively n = 0 at x = - and = 0 at x =

Practically we must truncate our range in the model. In so doing, we are

specifying spurious "computational" boundary conditions that will effect

the problem. A more complete discussion of this problem may be found in

Chen (1973) or Bennett (1976). The effect of this problem is that the

simplest set of boundary conditions has the effect of a rigid wall at

either end of the model. These rigid walls reflect energy back into

the system more or less completely and inevitably this will break down

the model. Even rather complex boundary conditions reflect some portion

of the energy. Boundary conditions that do not reflect energy can be

derived for this model using the method of characteristics and radia-

tion conditions but their complexity have computer time and computer

storage requirements that approach those that would result from using

large ranges and fixed boundaries (Bennett, 1976). However, large

ranges mean large matrices and large run times. So the problem becomes

one of choosing the largest mesh ratio consistent with stability and

the smallest range consistent with avoiding reflections in the time we

are interested in. Unfortunately the only way to make these decisions

is to actually run the program and see what happens.




