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Periodic System Analysis
with Application to Wind Turbines

0. Introduction

Linear system equations with periodic coefficients have

been of interest in the design of helicopter blades in the past,

and are attracting increasing attention in present wind turbine

research. Most of the work which has dealt with this subject has

considered the system input to be deterministic. In many cases,

however, the forcing function is of a random nature. The consid-

eration of random inputs is important because it provides a more

realistic model of wind properties, the major forcing function for

wind turbine response. To fill this apparent gap and provide the

basis for a better understanding of the effect of random inputs on

linear systems with periodic coefficients, this work undertakes

the study of such systems with a statistically stationary forcing

function. The stationarity assumption is made because in practice

it has been shown to be a useful model for the randomness in the

wind.

The thesis is divided into three chapters. Chapter I presents

the Floquet Theory, which is the main tool for transforming systems

with periodic coefficients into systems with constant system

dynamics matrices. Based on this theory an algorithm is developed

to achieve this transformation. Chapter II provides discussions on

modeling wind as a stationary process and on deriving the stationary

processes from white noise. This derivation is used to modify the

system with stationary input to an augumented system with white noise

input. An algorithm is then developed to relate the input-output

stochastic properties of the augmented system assuming it has a

constant system matrix. Chapter III presents two models which are

analyzed using the algorithms. One is a fifth order system consis-

ting of a single rigid, rotating blade with a flapping degree of

freedom. The second is a nineteenth order model of a 2.5 Mw wind

turbine. Results and conclusions are also given in this chapter.
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Appendix A presents the computer program for the algorithm

which is coded in FORTRAN 77 and is implemented on the Oregon

State University computer system (CDC CYBER 170, Model 720). A

second order example is also presented, and a step by step

solution is given. Appendix B contains the numerical values of

matrices and parameters of the models discussed in Chapter III.
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I. Equivalence Transformations and Floquet Theory

Engineering problems modeled by linear, time-varying differen-

tial equations are difficult to solve, in general. However, in

cases where the coefficients are periodic, equivalence transforma-

tions can be used to transfer these systems into other linear

systems which are easier to study. One such transformation can be

deduced from Floquet theory. This theory provides the tool for

transferring systems with time varying, periodic coefficients into

systems with constant system dynamics matrices.

Section 1 of this chapter discusses equivalence transformations

and their properties. Section 2 presents Floquet theory and the

equivalence transformation it provides. In Section 3 an algorithm

is developed, based on Floquet theory, to carry out the transforma-

tion numerically. The first approach in the development of this

algorithm was the direct use of the results of Floquet theory. This

approach failed due to integration truncation errors when stiff

equations were encountered. Modifications were then made, which

helped the algorithm to perform more favorably.

For an extensive treatment of the subject the interested reader

is referred to V. A. Yakubovich and V. M. Starzhinskii's Linear

Differential Equations with Periodic Coefficients [1].

I-1. Equivalence Transformations:

A linear system with time varying coefficients of the form:

x = A(t)x + B(t)u

y = C(t)x + D(t)u

is said to be algebraically equivalent to the following linear time

varying system:

X' = A1(t)x1 + B'(t)u

y = C'(t)x' + D'(t)u



where

x' = P(t)x

with P(t) a nonsingular differentiable matrix.

and

A1(t) = (P(t)A(t) + P(t))P-1(t)

B'(t) = P(t)B(t)

C'(t) = C(t)P-1(t)

DIM = D(t)

(I.4)

The state transformation matrix, P(t), is called an equivalence

transformation [2, 3, 4].

At this point the following definitions are given before pro-

ceeding to discuss the equivalence transformations in more detail.

Definition I-1- Two linear systems of the form of Eqn. I.1 are said

to be zero-state equivalent if they have the same impulse response

[5, 6].

Definition 1-2- Two linear systems of the form of Eqn. I.1 are said

to be zero-input equivalent if and only if for any initial state in

one system there exists an initial state in the other system so that

the outputs of the systems are identical [7].

With regard to these definitions it is apparent that systems

which are algebraically equivalent are also zero-state equivalent

and zero-input equivalent. The reverse however, is not true, i.e.,

two linear time-varying systems which are zero-state equivalent and

zero-input equivalent are not necessarily algebraically equivalent.

Because of zero-state equivalency, the impulse responses of two

algebraically equivalent systems are the same. This implies that

the input-output relations are invariant under equivalence trans-

formations. Wiberg [8] shows by means of two theorems that the

controllability and the observability properties of time-varying
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systems are also preserved when these systems undergo equivalence

transformations. Wiberg also presents other theorems which help

to reduce time varying systems into simpler forms by means of equi-

valence transformations with additional assumptions on the con-

trollability and observability matrices. It is worth noting that

the similarity transformation, which is a powerful tool in studying

linear time invariant systems, is also an equivalence transformation.

One should be careful of the fact that equivalence transforma-

tions do not preserve the stability properties of time-varying

systems in general. However, if a norm of the transformation

matrix, P(t) and the same norm of its inverse P
-1

(t) are bounded

(not necessarily with the same bounds) for all time, the trans-

formation preserves the stability properties of the system and is

called a Lyapunov transformation. Two systems related with a

Lyapunov transformation are said to be topologically equivalent

[9]

Note that a similarity transformation is a Lyapunov trans-

formation as well. Hence, in the case of time - invariant linear

systems all equivalence transformations are Lyapunov transformations.

1-2. Theory of Floquet

Floquet theory provides the basis to find an equivalence trans-

formation which transforms linear time-varying systems with

periodic coefficients into systems with a constant system dynamics

matrix (hereafter simply called the system matrix).

To find this transformation, consider the general form of an

nth order, linear, time-varying system with periodic coefficients

in its state space representation:

x(t) = A(t)x(t) + B(t)u(t)

Y(t) = C(t)x(t) + D(t)u(t)

Where A, B, C and D are time dependent matrices which are continuous

and defined over the time domain (-0., .0).
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In addition A(t) is periodic with period T

i.e. A(t+T) = A(t) for all t.

The periodicity of B, C and D does not have any effect on the

derivation of the desired transformation. In this work however,

these matrices will also be assumed to be constant or periodic with

the period T.

In the following, we discuss some properties of linear time-

varying systems with periodic coefficients.

Theorem I-1: If a fundamental matrix of the system of the Eqn.

1.5 is F(t), then F(t+T) is also a fundamental matrix.

Proof: To show this, first note that:

= A(t)F(t)

and

A(t+T) = A(t)

Now

F(t+T) = A(t+T)F(t+T) = A(t)F(t+T)
QED

Because F(t) and F(t+T) are fundamental matrices, both are non-

singular and each can form a basis for the solution space. Thus,

there exists a constant nonsingular matrix Q such that [10]

F(t+T) = F(t)Q (I.6)

Q is sometimes called the monodromy matrix of the fundamental matrix

F(t

Furthermore, a constant matrix A can be found [11] so that

Q_eAT
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which implies

F(t+T) = F(t)eAT (I.8)

It should be noted that the fundamental matrix F(t) is not

unique. However, from Theorem I-1 it can be deduced that determining

F(t) over one period is sufficient to know its behavior for all time.

The nonuniqueness of F(t) results in nonuniqueness of Q and conse-

quently that of A. But because different Q's derived from different

F(t)'s are similar, they have the same eigenvalues. These eigen-

values, aj, j= 1,2,3,...n, are called the characteristic multipliers

associated with the periodic matrix A(t). This definition is

justified by noting that there exists a solution such that:

x(t+T) = aj x(t) (I.9)

To show this, consider Eqn. 1.6, and assume Q is a diagonal matrix.

For each column of F(.) denoted by Fj(-), we have

F.(t+T) = a. F.(t)
J J

(1.10)

Because each column of F() is a solution vector, there exists a

solution x such that

x(t+T) = aj x(t) (I.11)

The eigenvalues of A, denoted by aj, are called the character-

istic exponents of the periodic matrix A(t).

Note that . and are related as follows:aj

aj = :IT in(aj)

Now, define the matrix P(t) so that

P(t) = e
A

F
-1

(t)

(I.12)

(I.13)
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At this point we can state the Floquet theorem [12]:

Theorem 1-2: For the system

X = A(t)x, A(t+T) = A(t) (I.14)

any fundamental matrix F(t) is of the form P
-1

(t)e
At

where P -1(t)

is a periodic function.

Proof: By definition

thus

P
-1

(t) = F(t)e
-At

F(t) = P-1(t)eAt

Now, to show P
-1

(t) is periodic, proceed as follows:

P
-1

(t+T) = F(t+T)e
(t+T)

= F(t)e
AT(e -ATe -At)

= P
-1

(t)

QED

Remark I-1: P(t) is also periodic since

P(t+T) = eA-(t+T) F-1(t+T)

eA(t+T) e-AT F-1(t)

= P(t) (I.15)

Remark 1-2: Note that proving P(t) and P-1(t) are periodic, and

F(t) and A are nonsingular, shows that.P(t) and P-1(t) are nonsingular.
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Theorem 1-3: If the matrix P is defined as in 1.13, the following

system is algebraically equivalent to the system of Eqn. 1.5.

= -A-7(M + P(t)B(t)u(t)

y(t) = C(t)P- 1(t)x(t) + D(t)u(t)

Where A is a constant matrix as defined in Eqn. 1.6.

Proof: See [13].

Remark 1-3: Because P(t) and P-1(t) are bounded, the systems of

Eqn. 1.5 and Eqn. 1.16 are also topologically equivalent.

Remark 1-4: The following relation exists between P(t) and A [14]:

P(t) = AP(t) - P(t)A(t) (I.17)

For the inverse of P, we can write a similar equation

-1(t)
-1

P (t) = A(t)P- - P (t)A

(I.16)

(I.18)

We will now discuss the system stability. From remark 1-3 we

know that the Floquet transformation of Theorem 1-2 is a Lyapunov

transformation. Chen [15] shows that under this class of trans-

formations, the stability properties of the systems are preserved.

Thus, if the system of Eqn. 1.16 is bounded-input, bounded-output

stable or if it is stable in sense of Lyapunov, then the system of

Eqn. 1.5 has the same stability properties. This fact facilitates

the stability study of linear systems with periodic coefficients.

By studying the stability of the transformed system, which has a

constant system matrix, enough information is obtained about the

behavior of the periodic coefficient system. For a practical

example of such a study see Peters and Hohenemser [16].



1.3. Algorithm Development

To carry out the Floquet transformation numerically, a

fundamental matrix, F is needed. It can be obtained by numerical

integration as follows:

F(t) = A(t)F(t)

with initial conditions

F(0) = I

(I.19)

(I.20)
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where the matrix I is the identity matrix. This assumption of initial

conditions is not important for the transformation because F(t)

is not unique, which results in nonuniqueness of the transformation

matrix P(t). The specification of initial conditions simply serves

to specify one fundamental matrix with the required properties.

With the above assumption, Eqn. 1.18 becomes:

F(T) = eAT (1.21)

The next step is to find the eigen-system of F(T), assuming distinct

eigenvalues. This gives the modal matrix M, and a diagonal matrix,

L., with the eigenvalues, ai, on the diagonal.

Using the similarity transformation yields

M-
1
F(T)M = L

*
Now, given L, there exists a diagonal matrix A such that

and

L = eA
T

Me
A T

M
-1

=
TT

(1.22)

(1.23)

(1.24)
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Consequently by integrating Eqn. 1.19 from time zero, for one

period, T, we can find A .

Since a. are the eigenvalues of F(T) and -i. are the eigenvalues

of A we have

ln(a.)

T (1.25)

The eigenvalues a. and are complex numbers in general. Thus

the logarithm is not unique. The following procedures are used to

find -i.. Assume

and

b.

aJ . = cJ . + ib. = (c.
2
+ b.

2
)

ei tan

a) (1.26)

(1.27)

where i = andand c, b, c, and 1.3 are real numbers. Substituting

Eqns. 1.26 and 1.27 in Eqn. 1.25 yields

= ln(c.
J

2
+ b.

J

2
)/2T

6. = [tan-1(b.J /c.J )]/T

(1.28)

(1.29)

Now, is unique but li. is not, which causes the matrix A be

nonunique. The principal branch value will be chosen so that

-7 < tan
-1

b.J /c.
J

< + 7

*
At this point, a transformation P (t) is found which transforms the

system of Eqn. 1.5 into a system with A as its system matrix.

From Eqn. 1.13

P(t) = eW t F
-1

(t) (1.30)
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Introducing the transformation P
*
(t) = M

-1
P(t), and using Eqn. 1.24

in Eqn. 1.30 yields

or

*
mi)*(t) = MeA tm- 1F".1(t)

*p*(t) eA tm-lp-1(t)

The following theorem can now be stated.

(I. 31 )

Theorem 1-4: The transformation P (t) as defined in Eqn. 1.31,

transforms the system of Eqn. 1.5 into a system with A as its

system matrix, when F(T) has a complete set of eigenvectors.

Proof: Can be easily carried out by direct substitution.

The transformation matrix P
*
(t) can be computed at any instant

in time since F(t) can be found through numerical integration of Eqn.

1.19. Thus its inverse can be calculated, and the matrix A is

computed from the eigenvalues of F(T).

This algorithm was implemented on the Oregon State University

computer system and worked successfully for some problems. However,

failure occurred in certain cases; specifically when the system

matrix was constant with eigenvalues of widely differing magnitudes,

and a rather long period was assumed. In this case, numerical

truncation errors were very important because the faster modes decayed

to small values which were insignificant compared to the slower modes,

and the monodromy matrix became ill conditioned. The same problem

also occurs in cases where the system matrix is stiff and truly time

varying.

To reduce this effect, modifications can be introduced in the

above procedure. First, determine the average system matrix

T

A
° T

= A(t)dt (1.32)



and define

A(t) = A. + SA(t)

and F(t) = F °(t) + SF(t)

where F °(t) = eA°t

Then Eqn. 1.19 can be written in the form

.0(t) + SF(t) = (A0 + 6A)(Fo(t) + SF(t))

Since F °(t) = A0F0(t), Fo(0) = I

thus (SF(t) = A(t)SF(t) + dA(t)F0(t),

SF(0) = 0

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)
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These equations are solved separately. To solve Eqn. 1.36 the

similarity transformation Fo = MoTo is used, where Mo is the modal

matrix of Ao. Assuming a diagonal matrix Lo for eigenvalues of Ao,

yields:

= LoTo(t), Fo(o) = 1,10-1 (1.38)

which results in

1.39:

F °(t) = Moe
Lot

M0
-1

(1.39)

Eqn. 1.37 can be solved numerically after substituting Eqn.

(SF = A(t) SF(t) + SA(t)Moe"tM0-1, (5F(0) = 0 (1.40)
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To find the transformation P (t), note from Eqn. 1.21 that

F(T) = F0(T) + SF(T) = e-4T (I.41)

Now the eigensystem of F(T), the modal matrix, M and the eigenvalue

matrix, L can be found. From this point on the steps are taken as

in the first version of the algorithm, namely:

-T
*

= ln(L) (1.42)

and

P*(t) = E[Fo(t) + SF(t)]Me-Atri (1.43)

This procedure performed more favorably and was adopted to

carry out the desired transformation of the system.

Theorem 1.5: The transformation matrix P (t) as given in Eqn. 1.43
*

transforms the system of Eqn. 1.5 into a system with A as its

system matrix, assuming a complete set of eigenvectors for the

monodromy matrix.

Proof: Use direct substitution.

To show the effect of the modification consider the following

system (for complete analysis of the system see the Appendix A):

x=
- 6 +cosirt 5

5 - 6 +cosTrt.

y = [1 l]x

x +

0

w

1

(1.44)

It is possible to find an analytical solution for this system. By

doing so one finds that the constant system matrix has eigen-

values of (-11, -1) and the transformation matrix at the end of the



period is

P (T) =

L.5 .5

5

(1.45)

15

This system can be analyzed by the two algorithms already discussed.

When the results of Floquet theory are directly used, the eigenvalues

of the constant system matrix are found to be (-12.5780, -1.0000) and

the transformation matrix at the end of the period is

50000 .50006'

P*(T) = (1.46)

-.49998 49998j

The modified algorithm however finds the constant system matrix to

have eigenvalues of (-10.8600, -1.0000) and the transformation matrix

50000 .50000

P (T) = (1.47)

-.50000 50000

Thus the improvement in accuracy of the modified algorithm is

demonstrated.
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II. Power Spectral Density for Periodic Systems

Representing natural physical phenomena by random processes

is a common practice in the scientific approach to modeling. In

consequence, system models involving differential equations with

random inputs have been under extensive study (for example see

references [17, 18]). Many of these studies have involved linear

systems with constant coefficients. However, the analysis of

systems with time varying coefficients is somewhat more involved.

In this chapter, systems with time-varying, periodic coefficients

and white noise input are considered. These two assumptions will

prove helpful in obtaining statistical information about the output.

It should be noted that the assumption of white noise input is not

overly restrictive since many random processes can be derived from

white noise through a linear filter [19].

Section 1 of this chapter gives some background about random

processes. Section 2 introduces an algorithm to calculate the

average power spectral density of the output of a system with

periodic coefficients and white noise input. Section 3 gives a brief

discussion on how the average power spectral density can be obtained

from time series data.

II-1. Mathematical Background

Some of the necessary background discussions and definitions

for developing the algorithm are given here and closely follow those

given by Papoulis [20] and Crandal [21].

Definition II-1: The autocorrelation function, Rxx(ti,t2) of a

complex random process x is defined as

Rxx(ti
,t2) = E[x(ti)xt(t2)]

where E is the ensemble average; and xt() is the conjugate trans-

pose of x(-). Note that
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R
xx

(t
1
,t

2 x
) = R

t

x
(t

2'
t

1
)

The cross correlation function of two complex random process is

also defined in the same manner:

Rxy(ti,t2) = E[x(yyt (t2)]

Definition 11-2: The double Fourier transform of the correlation

functions is defined through a double integral

00

F
xx

(f f
2

) = jr jr R
xx (t t

2
)e
-if

I
t
1 e

-if
2
t
2 dt

2
dt

1
(II.4)

CO

It is trivial to show that

F
xx

(f f
2

) = F
xx

t
(f

2'
f
1
).

The condition for existance of F(f1,f2) is that the correlation

be integrable over [-00,03], which requires:

co co

Jr Jr 1Rxx(t1 ,t2)1dtidt2 <

-00

Singularities can exist in the form of

(S(f1-a), 8(f2-b), or gf1-f2-a+b)

where a and b are real constants, and (S() is the Dirac delta

function.

In the case of a stationary process, the correlation function

depends only on the time difference T, where T = tl-t2. Thus the

time argument is suppressed

R
xx

(T) = R
xx

(t+T
'

t)
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The Fourier tranform of R
XX

(T) is called the power spectral density

and is denoted by Sxx(), where

S
xx

(f) R
xx

(T)e-If7dT (II.8)

In this case, the double Fourier transform is singular and given by

F
xx

(f f
2

) = 2ffS
xx

(f
1
)6(f

1
-f

2
)

In order to simplify the representation of non-stationary random

processes, an average autocorrelation function is introduced. When

the correlation function is periodic, then

R(ti,t2) = R(t1 +T,t2+T) (II.10)

where T is the period.

Definition 11-3: The average autocorrelation function, R(T) of the

periodic autocorrelation R(t+T,t) is defined as

T(T) = T f R(t+T,t)dt (II.11)

The Fourier transform of this function is then called the average

power spectral density (APSD). In the next section, the average

power spectral density for periodic systems is formulated.

11-2. Average Power Spectral Density of Periodic Systems

The state-space representation of the problem under consider-

ation is of the form

X = A(t)x + B(t)w

y = C(t)x
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where A, B and C are periodic with period T and w is the white noise

input with power spectral density Q.

Wong [22] shows that x can be represented in the form

x(t) = cP(t,t0)x(to) + cp(t,$)B(s)dW(s) (II.13)

to

where the transition matrix satisfies

7.-t-q)(t,t0) = A(t)d)(t,t.), q)(tto) = I

and W is the Brownian motion process which is defined formally by

dW/dt = w. The output of the system can be expressed as

y = C(t)q5(t,to)x(to) + C(t) cp(t,$)B(s)dW(s) (II.15)

to

To solve for the statistics of y, the equivalence transformation,
*
P (t) developed in the previous chapter is used. Thus, the system

of Eqn. 11.12 can be transformed into

-* * *
x =Ax +PBw

y
*

= CP
_1*

x
*

*
where A is constant and diagonal and

with

y
*

= C(t)P
*-1 *

(t,to)x
*
(to)

tr

+ CP
*_1

(t) j (13, (t,$)P (s)B(s)dW(s)

to

(P.*(t,$) = eA*(t-s)

It is now shown that the statistics of the system outputs under
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an equivalence transformation are invariant. First note that

(1)*(t,to) = P*(t)q(t,top*-1(t.) (II.19)

The validity of Eqn. 11.19 can be easily seen by substituting

into Eqn. 11.14 Rewriting Eqn. 11.17 in terms of x(to) and moving
*_1

P (t) into the integral yields

y = C P
*_1

(t)(1)

*
(t,t.)P (t.)x(t.)

tr

J
P*-1(t)(1)*(t,$)P*(s)B(s)dW(s)

to

By use of Eqn. 11.19

(II.20)

1y
*

= Ccp(t,t0)x(t.) + C ) ch(t,$)B(s)dWs = y (11.21)

to

Thus the output of the linear periodic system undergoing an equivalence

transformation is invariant which implies that the statistics of

outputs are also invariant.

The next step is to solve the covariance equation [23] to

find the state covariance matrix, V, given by

V = A
*
V + vA*t + P

*
BQ(P

*
B)

t

We seek a periodic solution in Fourier series form

V(t) = Vme
imfot

m

(11.22)

(11.23)

where f. = 27/T the fundamental frequency of the system. Thus we

expand the last term in Eqn. 11.22 in its Fourier series expansion



P*BQ(P*B)
t

= G eimfot

m m

substituting Eqns. 11.23 and 11.24 in Eqn. 11.22

imf. Vm = A*V
m

+ V
m
A
*t

+ G
m (11.25)

Now by expressing matrices V and G in terms of their components,

isV
jk,m

and G
jk,m and noting that A * is diagonal with eigenvalues a.*

we can find each component of the matrix Vm

Gik,m
V
jk,m a3* a

k

*t
(11.26)

At this point the autocorrelation function of the state, x, can be

determined. Bryson [23] gives Rxx by the following equations.

R
1
*
x*

(t+T,t) = (T)V(t) t)

> o

R
*x*

(t,t+T) = V(t)(13, (T)
x

Superscript 1 and 2 are for distinction of forward or backward

correlation in time, respectively. The transition matrix (1)() of

the system is given by

co(t) = e
A t

(11.27)

Using the Fourier expansion of V(t), Eqns. 11.26 can be rewritten,

so that

*

R1 =
7 eA T V e

imf
°
t

x*x* L_ m
m

(11.28a)



*

Rx*x* = E Vm e
imf

°
t

e
A T'

m
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(II.28b)

Having R
x*x* gives the output autocorrelation matrix R

YY
since

y = C P
*-1

x
*

We express the product CP
*-1

in the Fourier series expansion

Therefore

u*-1(t) Hm eimfot

m

m

H eimfot x*

and the autocorrelation of y using Eqn. 11.30 is

(11.29)

(II.30)

ikfot(t+T)
t imf tR

YY '

(t+T =
k

e x*(t+T).x*(t)e-° Ht]

k,m

Hke
k,m

ikfo(t+T) R e- imf °t
H
t

x*x*

using Eqns. II.28a, b, for Rx*x*, yields similar expressions for

Ryy as follows:

*

R
1

H
k

=
e[A +ikf I]T

° V Ht. e
if (m+k-j)t

° (II.32a)
yy M J

j,k,m

R2 = Hk (I1.32b)Vm e[A*t -ijfonT Ht ,ifo(k-j+m)t
YY J

j,k,m
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where I is the identity matrix, and T > o. Now, averaging over one

period, the average, autocorrelation function as defined in the last

section can be written as

Ryy(T) = H
k

e[A
*

ifokI]T
V. Ht.

j,k
J-k j

*t2 - ifojI]TR
Y

(-T) = )" H
k

V
j-k

ernL' H.
t

Y
j,k

Now, note that the average power spectral density is the Fourier

transform of the average autocorrelation function, and can easily

shown to be

Syy(f) = Hk[A* + I(kf. - f)i]-
1

Gj_k[ A
*t

- )i]
-1

N .f

j,k

(11.34)

Eqn. 11.34 thus gives a direct method for computing the average

power spectral density. This method was coded in FORTRAN and

implemented on the Oregon State University computer system. The

program listing is given in Appendix A.

At this point we find the relationship between Fyy(f1,f2), the

double Fourier transform of R
YY

, and the average power spectrum

YY
(f). For this purpose we rewrite Eqn. II.32a noting

t1 - t2 = T, t1 = t T, t2 = t

and Eqn. II.32b noting

t2 - t1 = T, t1 = t, t2 = t I

Thus,



or

Rlyy (tl't2) = Hj e[A* +
1

t
2

)

j,k,m

eif°(m j k)t2 V Ht
m k

R
2

(t
l'

t
2

) = L j
HV

m
e
[A - ikfoIEt

2
- t

1
)

yy

j,k,m

e
ifo(m + j - k)t2 wt

"k

yy
R

1

(t
l'

t
2

) = Hi e[A
+ ijf0I]ti

j,k,m

e[ -A ifo(m-k)lit2 V Ht
m k .

*
2 - kfol t2

R
y

(t t ) = Z H. V eEAy l' 2 J m
j,k,m

e
[-A + ifo(m + j)I]t1

Ht
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(11.35a)

(11.35b)

(11.36a)

(11.36b)

Now, F
yy

(f
1
,f

2
) is the double Fourier transform of and d can

be found by using R1
YY Y

and R
2

Y'
which gives

F
yy

(f f
2

) = H
j
[-A

*
+i(jf.-fi)I]

-1
SE (f.(j+m-k)-fi+f2)]VmHk

j,k,m

+-I-1.V

m
[-A +i(fo(m+j)-f

1
)1]

-1
(5[ (f.(m+j-k)-fil-f2)]Hk

(11.37)
This equation can be rearranged to get a more compact form
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F
yy

(f f
2

) = )7 H. [- -i(jfo-fi)I]VmH +

j,k,m

(11.38)

H.
J

V
m
[-A

*
+i(kfo-f2)0]Hk 6[ (fo(m+j-k)-fl+f2]

The coefficient of the delta function when f
1

= f
2

reduces to the

average power spectral density given by equation 11.34. Thus, the

average power spectral density can be interpreted as describing the

statistics of the "stationary part" of the system output.

11-3. Time Series and Average Power Spectral Density

In practice, information about a random variable x is given

by its time series, x(to), x(t1) x(tn_i) where t
o'

t

t
n-1

are the n sampling points in time. An approximation for the

power spectral density, the periodogram, is defined [24] using the

time series as

n-1

U(f) 27n
x(t

j
)x(t

k
)exp[-i(t

j
-t

k
)f]

j,k=o

This equation can be rearranged assuming a constant sampling

interval T to give

n-1 n-1

U(f) 2'irrn
x(t.+I(T)x(tj )exp[ -ifkT]

k= -(n -1) j=o

(11.39)

(II.40)

The ensemble average of both sides of Eqn. 11.40 is now taken so

that

n-1 n-1

E[U(f)] z E R
xx j

(t.+kT,t)exp[-ifkT] (II.41)

k=-(n-1) j=o



where

= E[x(ti)x(t2)]
Rxx(tl't2)

Now, if the autocorrelation function Rxx is periodic and the total

data time interval is an integer multiple, N, of the period, it

follows that

m

j=43

n

N-1 Ti
-1

j j
R(t+T,t)

n
= z . R(tm+tk+T' tm+tk )

m=o k=o

N-1 ff
-1

N n R(tm+tk+T, tm,tk)

m=o k=o

N-1

= 1 1T(T) = R(T)

m=o

Inserting this result in Eqn. 11.41, yields

n-1

E[U(f)] = 41. -R-(kT)exp[-ifkT]

k=-(n-1)
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(11.42)

(11.43)

In the limit as and T->.0, the right side of Eqn. 11.43 becomes the

average power spectral density defined previously. Thus, the

ensemble average of the periodogram converges to the average power

spectral density as the data record becomes long. This result paves

the way for the use of all the standard techniques for smoothing the

periodogram [25] to give a better estimate of the average power

spectral density.
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III. Examples of Periodic Systems

The recent growing interest in wind turbines in the energy

field has motivated the development of advanced structural models

for these systems. The more complicated models usually contain

periodic time dependent coefficients. This time dependency and

the fact that the input of the system is the wind, a random

process in nature, causes the practical use of these models to be

difficult.

In Sections 1 and 2 of this chapter, two systems are considered.

The first system is a rotating, rigid blade with one flapping degree

of freedom. This model is represented by a second order differ-

ential equation. The wind input is modeled by three first order

constant coefficient differential equations. The state space

representation of the overall system is, therefore, of fifth order.

The second model is a mathematical representation of a 2.5 MW,

three-bladed wind turbine. This model considers five degrees of

freedom, and the state space form is of order nineteen.

In Section 3, the results and conclusions are discussed and

some suggestions for future study are made.

III-1. Rotating Rigid Wind Turbine Blade with Flapping

In this section, the equation of motion is developed for a

single, rigid wind turbine blade, hinged to a massless hub, and

restrained by means of a rotational spring. Figure 1 shows the

geometry under consideration. The blade is rotating with constant

rate of rotation, fo, about the y axis of the xyz inertial reference

frame. The flapping motion is about the x' axis of the x'y'z'



z

z'

z"

Rigid Blade

yll

Fig. 1 - Rigid Wind Turbine Blade with Constant Rotation

Rate and Small Flapping Angle.
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rotating reference frame. The x'y'z' reference frame rotates about

y axis with y' and y coincident. The flapping angle, 6, is

restrained by a spring with constant stiffness k. The reference

frame xlly"z" is fixed to the blade, with x' and x" coincident.

To obtain the equation of motion, the kinetic and potential

energy are written in the blade fixed x"y"z" coordinate frame.

Thus, the angular velocity and moment of inertia after appropriate

transformation are given by

6

o cos

sin

I 0 0

I" = 0 I 0 (III.1)

0 0 0

The kinetic energy, T, is given by

T = 1/2 wllT I" w"

or substituting for w" and I" from Eqn. III.1

T = 1/2 (I 62 + If02 cos20)

The spring poteneial energy, V, is given by

V = 1/2 k e
2

where k is the rotational spring stiffness. Note that the gravita-

tional potential energy of the rotating mass of the blade is

neglected.

At this point, Lagrange's equation is used to obtain the

equation of motion. Lagrange's equation is given by

d (DT) DT DV n

dt 'Dq' Dq Dq

where q and Q are the generalized coordinate and generalized force



respectively. The coordinate in this case is e.

Substituting for T and V from Eqns. 11.2 and 111.3 into

Eqn. 111.4 results in

I + (k + I fo2) e = Qe

30

(III.5)

where the angle e is assumed small and second order terms are

neglected.

The generalized force Qe is a moment acting on the blade about

the x' axis. This moment is due to atmospheric turbulence. The

following discussion for finding Qe follows the work by Holley,

et al. [26]

Assuming a cubic aerodynamic force distribution, the force on

the rigid blade is given approximately by

fy f r(R2 r2) (V re)dr
R 40

where

fy is the net blade force in y direction

r is the position along the blade

R is the length of the blade

C is a constant aerodynamic parameter

and V is the turbulent velocity of the wind in the vicinity of the

rotor disc and is approximated by

V(rop,t) = Vy(t) + Vy,x(t) r sin 1p + Vy,z(t) r cos ip (III.7)

The term V
Y

is the uniform turbulent velocity and the terms

V
y,x

and V
y,z are the velocity gradients across the rotor disc.

All three of these terms are random. The generalized force Qe



in terms of f is given by integrating the relation

so that

dQe = rdfy

R
3C jr 2 2 2

Qe = r (R r )(V re)dr
R
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Carrying out the integration and substituting for V from Eqn. 111.7

gives

n CR
(hr V + 2R V sin fot

2CR2
cos fot) - sr'8 I 16 y 5 y,x

Using this expression for Qe in Eqn. 111.5 yields

2
C , ,k _2

°

2

° T ki T = =-316 vy Vy,
x

sin fot +

52R Vy,z cos fot)

Holley, et al, also give a procedure to approximate the random

processes V
y'

V
y,x

, V
y,z

by linear differential equations with

white noise input. These relations are given by

11y = -a
1
Vy + blwl

y,x
= -a

2
V
y,x

+ b
2
w
2

./

y,z
= -a

3
V
y,z

+ b
3
w
3

for the values of ai and bi, see Appendix B.

To obtain the state space form of the system model, the

following state variables are defined:

x
1

=0 x
3

= V
y

x
2

= e x4 = Vy,x

x5 = Vy,z

(III.10)

(III.11)
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Now, from Eqn. 111.9 and Eqn. III.10, the following matrix form

results:

=

100

-(T+f°

k 2 2CR2

)

0

1

37CR 2CR
2
sinfot

Nona

2CR
2
cosfot

0

16I

-al

5I

0

5I

0

0 0 0 -a
2

0

0 0 0 0 -a
3

=1

0 0 0

0 0 0 wl

(III.12)
+ b

1

0 0 2/
0 b

2
0 w

3

0 0 b
3

For the output, we define

y= 0 0 0 0] = 0 (III.13)

Thus, the model has periodic coefficients in the second row of the

system dynamics matrix.
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To test the algorithm, another set of state variables is

chosen to give a model with constant coefficients. To do this,

define the state variables

x
1

=8 x
3

= V
y

x
2

= e x4 = cos fotV + sin fo t V
y,z Ya (III.14)

x
5

= -sin fotV + cos fotV
y,z y,x

which will result in the following constant coefficient state

space form

=

0

k+Ie

1

2CR2 3C 7R 2R
2
C

0

0 x

I

0

5I

0

16I

-a
1

5I

0

0 0 -a
2

fo

0 0 0 -f0 -a
2

0 0 0

0 0 0
w

b
1

0 0

b
2

o 0 b
3

w2

w3

(III.15)

and y = [1 0 0 0 0]x (111.15)

where wi, ,4, and w3 are white noise excitations with the same

power spectral densities as w1, w2, and w3. The numerical values
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of the parameters and matrices are given in Appendix B.

These two models were both analyzed using the algorithm

developed in the previous chapters. The output power spectral

densities for both models are the same (as expected) and shown

in Fig. 2. The results show that the algorithm performs

satisfactorily. .

111-2. A Five Degree of Freedom Wind Turbine Model

Thresher, et al [27] use a five degree of freedom model to

study a 2.5 MW wind turbine system called the MOD-G, Fig. 3.

In their model, the tower is a single cantilever beam element.

The three blades are rigid and fixed to the hub. The hub is

assumed to be connected with a flexible shaft to a synchronous

generator which turns at a constant speed.

Five degrees of freedom are assumed; two displacements at

the top of the tower, U and V in the x and y directions,

respectively, and two rotations cp and x the pitch and yaw for

the axis of rotation of the hub. This axis is assumed to be

rigidly connected to the top of the tower. The fifth degree of

freedom is the fluctuation 11) in the rate of rotation of the rotor.

The steady component of this rotation is f0. When the model

is represented in state space form and the input random processes

are derived from white noise, a nineteenth order model results.

The nineteen state variables consist of the five positions and

five velocities and the nine additional states given by Thresher,

et al, for approximating the wind input from white noise.
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Fig. 2 - Average Power Spectral Density of Flapping Response

of a Single Wind Turbine Blade.
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In their report, Thresher, et al, chose the state variables

in a manner to give a constant coefficient model. In this work,

however, the states are chosen so that the coefficient matrix

has periodic terms. For a discussion of the state variables and

the coefficient matrices, see Appendix B.

The power spectral density found by Thresher, et al, is

shown in Fig. 4 where, for some frequencies, the APSD, calculated

using the algorithm developed here, is shown. It should be noted

that considerably more computation is required to handle the

periodic coefficients; thus, only a few points were computed to

verify the accuracy of the algorithm.

111-3. Conclusions

The algorithm developed in this thesis is a useful tool to

find the average power spectral density for systems which can be

represented by periodic coefficients in the state space form. The

algorithm is also capable of finding the power spectral density

for constant coefficient systems.

The numerical modification in the use of Floquet theory

results in a more accurate computation of the equivalence trans-

formation. It was shown that the equivalence transformation does

not affect the statistics of the output of the system. The

average power spectral density was defined and shown to be the

same as the coefficient of the Fourier transform of the auto-

correlation function when both frequencies are the same. Thus,

the average power spectral density represents the stationary part
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Fig. 4 - Average Power Spectral Density of Thrust Response

of a 2.5 MW Wind Turbine System.



39

of the output statistics and, in the case of stationary systems, is

the same as power spectral density. When the system is non-

stationary, the average power spectrum provides useful information

about the statistical frequency content of the response, and it can

also be estimated experimentally using the standard procedures of

time series analysis.

111-4. Suggestions for Future Work

The continuation of this work to find the probability of level

crossings and the occurence of maxima will provide a useful tool

in designing systems with periodic coefficients for improved

fatigue performance.

In the time series analysis aspect of this work, some experi-

mental data should be tested against the numerical results. Also,

the derivation of more accurate approximations for the average

power spectral density seems in order.
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Appendix A

Computer Program

The computer programs were developed based on the algorithms

given in Chapter I and II. Two programs were written, PROGRAM

FOURIER and PROGRAM POWSPEC.

PROGRAM FOURIER

This program finds the Floquet transformation and all the

Fourier Coefficients described in Chapter II. This program uses

the following routines:

SUBROUTINE SIMAT: This routine performs integration of a matrix

differential equation. By using IMSL routine DVERK and subroutine

FCN, SIMAT is called by FOURIER

SUBROUTINE FCN: This routine provides the differential equation

to be integrated. It is called by SIMAT.

SUBROUTINE EXPAS: Calculate EXP(A*T) where A is diagonal matrix rep-

resented by a vector, and T is a scaler variable. This routine is

called by FOURIER, SIMAT and FCN.

SUBROUTINE RPRINT: This routine prints NXN real matrices, eleven

columns at a time.

SUBROUTINE CPRINI: This routine prints NXN complex matrices, eleven

columns at a time, with real parts above imaginary parts.

User should provide the following routines:

SUBROUTINE SYSMAT: This routine should provide the time varying

elements of matrix A.
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SUBROUTINE BMATRIX: This routine should provide the time varying

elements of matrix B.

SUBROUTINE CMATRIX: This routine should provide the time varying

elements of matrix C.

INPUT OF PROGRAM FOURIER:

First card: Name of data file (see below). This name should

contain less than seven letters.

Second card: User's choice of output, 0, 1 and 2

0 = no printout

1 = partial printout

2 = complete printout

Third card: Number of harmonics desired in Fourier expansion.

This number should be less than five.

Fourth card: Accepted termination error for integration routine

SIMAT.

Fifth card: The program chooses the number of time segments in one

period. Zero on this card would mean the number is

satisfactory. Otherwise the desired choice is put on

this card. The program calculates this number by

choosing the maximum of

2M, M = number of Fourier harmonics

or (T*F)/71-1-1, T = period

F = The largest imaginary part of

the eigenvalues of the average

of matrix AC (Averaged part of A)



44

DATA FILE: This file should be presented to the program with its

name given on first card:

Structure of DATA FILE:

First Line should contain:

N = order of system

NSNPT = No. of inputs

NOTPT = No. of outputs

OMGA = fundamental frequency

ITV = control variable: 0 if there is a time dependent element

in A, B and C matrices

1 otherwise

From the second line on the matrices AC, 4), BC, CC (AC, BC and CC are

averaged, A, B, and C respectively) should be given line by line.

OUTPUT OF PROGRAM FOURIER

All the input information is printed on file DEDUGF. The fundamental

matrix, matric P* and its inverse are printed out at each time

segment. All the Fourier coefficients are printed on the same file.

All the necessary information for program POWSPEC is output on

file CONECTN.

PROGRAM POWSPEC

This program calculates the Average Power Spectral Density (APSD)

and plots the results. COMPLOT package should be provided. The

following subroutines are called by this program.

SUBROUTINE CAL: This routine calculates the APSD for a given

frequency.
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SUBROUTINE PLOTS: This routine plots the calculated APSD's versus

the respective frequencies.

INPUT OF PROGRAM POWSPEC

This program is to be used interactively. See the example and

the program for inputs. File CONECTN generated by PROGRAM FOURIER

should be provided.

OUTPUT OF PROGRAM POWSPEC

All ASPD's and their respected frequencies are written on fill

DEBUGP. The plot of the ASPD is provided if the user is using a

Tektronics 4014 terminal.

In the following pages a second order example is solved and

the programs are listed.
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PROCEDURE FILE TO CALL AND EXECUTE PROGRAM 'FOURIER:

USER,,.

CHARGE,,.

TITLE. iIOSEN

SETTL.100.

ATTACH,IMSL/UN,4IBRAR(.
LIBRARY,IMSL.

GET,LGO=FORIERB,SYSB=SYS2TB,DAT2T.
LOAD,LGO,SYSB.
EXECUTE.

REUIND,DEBUGF.

SAVE,DEBUGF=BEBUO2.
SAVE,CONECTN.

INFORMATION PROVIDED BY CARDS FOR PROGRAM FOURIER:

'DAT21.'

2

4

.001

8

INFORMATION PROVIDED FO PROGRAM FOURIER ON DATA-FILE rDAT2T':



INTERACTIVE EXECUTION OF PROGRAM 'POWSPEC' :

POWNEWB
THE INPUT CONSIDERED FOR POWER SPECTRAL DENSITY; JIN ? 1

THE OUTPUT CONSIDERED FOR POWER SPECTRAL DESITY;IOUT ? 1

LOWER LIMIT FOR FOURIER FREQUENCEY; LOMGAF ? .001
HIGHER LIMIT FOR FOURIER FREQUENCEY; HOMGAF 2 1000
NUMBER FREQUENCIES BETWEEN LOMGAF & HOMGAF; NOMGAF ? 50

1.00

.10

.01

.10E-02

.10E-03

****YOUR DEBUGGING OUTPUT-FILE IS 'DEBUGP'****

POWER SPECTRAL DENSITY VS. FREQUENCY

4

.01 .10 1.00 10.00 100.00 1000.00

Fig. A-1 APSD For Second Order System.

FREQUECY

47
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CONTENTS OF FILE 'DEBUGF' :

N= 2
NINPT= 1
NOTPT= 1
NK= 8
OMGA= 3.142
ERR= .00100

NH= 4

MATRIX AC; CNSTANT PART OF SYSTEM mATRxs

COLUMNS 1 TO 2

6.0000
5.0000

5.0000
6.0000

COMPLEX FORM OF EIGENVECTORS OF MATRIX ACs

COLUMNS 1 TO 2

1.0000
0.

1.0000
C.

1.0000
0.

1.0000
0.

EIGENVALUES OF AC:
1.0000 0.

11.000 0.
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REAL FORME OF EIGENVECTORS OF AC

COLUMNS 1 TO 2

/.4000
1.0000

1.0000
-1.0000

INVERSE OF MATRIX OF EIGENVALUES OF AC

COLUMNS 1 TO 2

.50000

. 50000
.50000

-.50000

MATRIX SI AT TIME (K41PERIOO/NX) ; K= 1

COLUMNS 1 TO 2

.52773

. 44 76
up 44766
.52773

MAT AIX SI AT TIME (K4IPERIOO/NK) K= 2

COLUMNS 1 TO 2

. 41974 .41412
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. 41412 .41974

MATRIX SI AT TIME (K4TERIOWNK) ; K= 3

COLUMNS 1 TO 2

. 29594

. 29566
.29566
.29594

MATRIX SI AT TIME (KATERIOD/NKT ; K= 4

COLUMNS 1 TO 2

.18395

. 18393
. 18393
.18395

MATRIX SI AT TIME (K*PERIOWNK) ; K= 5

COLUMNS 1 TO 2

. 11438

.11438
. 11438
.11438

MAT FIX SI AT TIME (K*PERICUNK) ; K= 6

COLUMNS 1 TO 2
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. 81150E...01

.81150E01
.31150E01
.81150E01

MATRIX SI AT TIME (K.PERIOD/NK) K= 7

COLUMNS 1 TO 2

. 69375E-01

. 69375E01
.69375E01
. 69375E01

MATRIX SI AT TIME (KTERIOUNK) K= 8

COLUMNS 1 TO 2

. 67667E01

. 67667E01
. 67667E -01
.67667E01

EIGENVALUES OF SI(TF);
.13533 G.
.36908E -09 O.

CONSTAN DIAGONAL SYSTEM MATRIX AFTER TRANSFORMATION t

- 1.0000
10.860

a.
0.

COMPLEX FORM OF EIGENVECTORS OF MATRIX SI AT TIME TFt

COLUMNS 1 TO 2

1.0000 1.0000



0. 0.

1.0000
0.

1.0000
0.

REAL FORM OF EIGENVECTORS OF MATRIX SI AT TIME TF

COLUMNS 1 TO 2

1. 0 0 0 0
1. 0 0 0 0

-1.0000
1.0000

INVERSE OF MATRIX P AT TIME K*PERIOO/NK: K= 1

COLUMNS 1 TO 2

1.2524
1.2524

MATRIX PI

1..2093
1.2093

COLUMNS 1 TO 2

.39923
.41345

.39923

.41345
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INVERSE OF MATRIX P AT TIME K4PERIOO/NK; K= 2

COLUMNS 1 TO 2

1.3748
1.3748

MATRIX PI

- 1.2818
1.2818

COLUMNS 1 TO 2

.36369
- .39007

.36369

.39007

INVERSE OF MATRIX P AT TIME K4PERIOO/NK: K= 3

COLUMNS 1 TO 2

1.2524
1.2524

MATRIX Pt

.94219
.94219

COLUMNS 1 TO 2

.39923
- .53068

.39923

.53068
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INVERSE OF MATRIX P AT TIME K4PERIOO/NKI K= 4

COLUMNS 1 TO 2

1.0000
1.0000

MATRIX Pi

.57364
.57364 .

COLUMNS 1 TO 2

.50000
.87163

.50000

.87163

INVERSE OF MATRIX P AT TIME K4TERIOD/NK: K= 5

COLUMNS 1 TO 2

. 79845

. 79845

MATRIX Pt

..69026
.69026

COLUMNS 1 TO 2

. 62621
.72437

.62621

.72437
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INVERSE OF MATRIX P AT TIME K4PERIOO/NK; K= 6

COLUMNS 1 TO 2

. 72738

. 72738

MATRIX Pt

.66208

.66208

COLUMNS 1 TO 2

.68740
.75520

.68740

.75520

INVERSE OF MATRIX P AT TIME K4PERIOD/NK; K= 7

COLUMNS 1 TO 2

. 79845

.79845

MATRIX Pt

..80337
.80337

COLUMNS 1 TO 2

. 62621 .62621
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.62238 .62238

INVERSE OF MATRIX P AT TIME C/PERIOO/NK; K= 8

COLUMNS 1 TO 2

1.0000
1.0000

MATRIX Ps

1.0000
1.0000

COLUMNS 1 TO 2

.50000
.50000

.50000

.50000

CONSTATN PART OF MATRIX 9:

COLUMNS 1 TO 1

0.
1.0000

MATRIX (II

COLUMNS 1 TO 1
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1.0000

PRODUCT OF P*9*Q*(TRASPOSE OF (P*B))

P*8*(1*(TRANS. OF (P*9))) FOR K= 1

COLUMNS 1 TO 2

. 15938

. 16506
.16506
.17094

P*9*(1*(TRANS. OF (P*3))) FOR K= 2

COLUMNS 1 TO 2

. /3227
14186

.14186

.15215

P*B*C1*(TRANS. OF (P*9))) FOR K= 3

COLUMNS 1 TO 2

. 15938

. 21186 .

.21186

.28162

P*8*Q*(TRANS. OF (P*8))) FOR K= 4
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COLUMNS 1 TO 2

. 25000

. 43582
.43582
.75975

12418*Q4(TRANS. OF (P*0))) FOR K= 5

COLUMNS 1 TO 2

. 39214

. 45361
.45361
.52471

P*8*Q4(TRANS. OF (P*8))) FOR K= 6

COLUMNS 1 TO 2

. 47252

. 51913
.51913
.57033

P*840*(TRANS. OF (P*8))) FOR K= 7

COLUMNS 1 TO 2

. 39214

. 38974
.38974
.38735

P*B4W*(TRANS. OF (P*8))) FOR K= 8
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COLUMNS 1 TO 2

.25000

.25000
.25000
.25000

CONSTANT PART OF MATRIX Cl

COLUMNS 1 TO 2

1.4000 1.0000

PRODUCT OF C*(INV. OF P)

(C4(INV. OF P)) FOR K 1

COLUMNS 1 TO 2

2.5048 .15632E -12

(C*(INV. OF P)) FOR K 2

COLUMNS 1 TO 2

2.7496 .24372E...11

(C*(INV. OF P)) FOR K 3
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COLUMNS 1 TO 2

2.5048 .24485E10

(C*(INV. OF P)) FOR K 4

COLUMNS 1 TO 2

2.0000 .23116E -09

(C*(INV. OF P)) FOR K 5

COLUMNS 1 TO 2

1.5969 .27933E -08

(C*(INV. OF P)) FOR K 6

COLUMNS 1 TO 2

1.4548 .15822E -07

(C4(INV. OF P)) FOR K 7

COLUMNS 1 TO 2



1.5969 .31864E06

(C*(INV. OF P)) FOR K 8

COLUMNS 1 TO 2

2.0000 .36097E05
FOURIER COEFFICIENTS OF P*B*Q*(TRANSP SE OFP*9))

FORFREQUENCY NO. 0

COLUMNS 1 TO 2

.27598
0.

. 32088
0.

.32088
0.

.38711
0.

FORFREQUENCY NO. 1

COLUMNS 1 TO 2

.43397E07
. 83678E -01

.33009E01
. 88384E01

.33009E01
.88384E01

.85642E01
.92886E01
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FORFREQUENCY NO.

COLUMNS 1 TO 2

- .13099E -01
..96232E07

31033E -0 2
- .21334E -02

2

.31033E.02
..21334E..02

.35908E-01
.33344E...02

FCRFREQUENCY NO. . 3

COLUMNS 1 TO 2

.63310E07 .13445E01
- .13852E -02 - .59312E -02

..13445&01 ..4179.4E01
- .59312E -02 .11657E01

FCRFREQUENCY NO. 4



COLUMNS 1 TO 2

.21807E03
e17200E14

. 15817E01
.21581E14

.15817E01
.21581E14

.45951E01
.28052E14

FORFREQUENCY NO. 5

COLUMNS 1 TO 2

. 63310E07 .13445E01

. 13852E -02 .59312E-02

.13445E01. .41794E01
.59312E -02 .11657E -01

FORFREQUENCY NO.

COLUMNS 1 TO 2

.13099E -01

.96232E07

. 31033E02

.21334E02

. 31033E02

. 21334E02

.35903E01

. 33344E02

63
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FCRFREQUENCY NO. 7

COLUMNS 1 TO 2

.43357E07 - .33009E -01
- .83678E -01 .88384E01

.33009E01 .85642E01

.88384E01 .92886E01

FORFREQUENCY NO. . 8

COLUMNS 1 TO 2

.27598 .32088
- .13737E -13 .15310E13

.32088 .38711
- .15310E -13 - .17528E -13

FOURIER CCEFFICIENTS OF C*(INV. OF F)

FORFREQUENCY NO. 0

COLUMNS 1 TO 2



65

2. 0510
0.

.49340E -06
0.

FORFREQUENCY NO. .

COLUMNS 1 TO 2

-. 452 83E0
32236

.4 7910 0 6

.30386E -07

FORFREQUENCY NO. 2

COLUMNS 1 TO 2

- .25544E -01
.21724E -06

.41.927E 06

.39484E07

FORFREQUENCY NO. . 3

COLUMNS 1 TO

52915E0 6 4, 42327E 06
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.13542E-02 .26431E-07

FORFREQUENCY NO. -

COLUMNS i TO 2

.10796E-03 .41304E-06
-.45974E-14 -.10956E-19



PROGRAM FOURIER
REAL M(19.19).MINV(19,19)
DIMENSION P(19.19.90).TEM(19.19),WK(40)
COMMON/PIN/PINVSI(19119990)
COMMON/EC/ TEMINV(19,19)
COMMON/SYSMT/ AC(19.19).ASR(19).ASI(19).EASR(19).EASI(19)

+sAT(19,19).MOINV.OMGA.IDEPR
COMPLEX Ti.T2.W(19).2(19,19).FC(19.19.014).PC(19.19.018)
CHARACTER LABLE*52.LAOLE2*40.LA8LE3+261LABLE4423.NAME*7
DATA LABLE/+ INVERSE OF MATRIX P AT TIME K*PERIOD/NK;
DATA LAELE2/+ P*13+0*(TRAhS. CF (P4T))1 FOR K=+/
DATA LABLE3/. (C*(INV. OF P)) FOR K--./
DATA LABLE4/t FORFREQUENCY NO. - -1/
DATA ID/19/
IDVICE=6
PRINT*,+ WHAT IS THE NAME OF YOUR DATAFILE (<7 LETTERS)+
READ", NAME
OPEN(5,FILE=NAME)
REWIND 5
PRINT'l+ DO YOU WANT 0) NO OUTPUT+
PRINT*0. 1) PARTIAL OUTPUT'
PRINT'v+ 2) COMPLETE OUTPUT+
READIF,IDEPR
IF(IDEPR.NE.0) THEN
PRINT40.

+

PRINT'.+ ********YOUR OEBUGUNG OUTPUT FILE IS *DEBUGF*********+
PRINT'vt

+ +

OPEN(IOVICE.FILE=+DEBUGF+)
REWIND ICVICE
ENOIF
C *********,.....****************,,,,m********************************



C
C NK=NO. OF TIME SEGMENT<=16
C TFSPERIOD PEIOCIC SYS. UNDER CONSIDERATION
C N*OROER OF SYSTEM
C NINPTS NO. OF INPUTS.
C NOM.: NO. OF CUTPUTS.
C ERRS SEE CORRESPONDING SUBROUTINES
C TOSSTART TIME
C
C ***************41111,0******41444F4044,110***********,41c41.441.***101411************

READ(59") N,NINPT,NOTPT,OMGA,ITV
PRINT4'.

NUMBER OF HARMONICS IN FOURIER SERIES; NH(<5)=.
READ*9NH
PRINT.It

ACCEPTED TERMINATIOM ERROR; ERR=,
READ"' ERR
PRINT',*
TO=0.
PI=ATAN(1.1.4.
TF=2."PII0MGA
READ(594) ((AC(19J),J=10),I=1,N)
DO 10 I=19N

DO 10 J=10
TEM(19J)=AC(I,J)

10 CONTINUE

C
C EIGENVALUES OF AC ARE STORED IN ASR(I) A ASI(I)
C MODAL MATRIX OF AC IS STCREO IN M(I$J)
C INVERS OF MODAL MATRIX OF AC IS STORED IN MINV(I.J)



C ******************************************44.*********4.40*************40
CALL EIGRF(TEM,N,I011,W,Z,ID,WK.IER)
IF(IER.GT.0) THEN
WRITE(IOVICE,1200) IER
GO TO 9999
ENO IF
DO 20 J=19N

STR=0.0
DO 15 I=1,N
SA=CABS(Z(I,J))
IF(SA.GT.STR) THEN
STR=SA
IK=I

ENDIF
15 CONTINUE

T1=Z(IK,J)
00 20 I=1,N
Z(I,J)=Z(I.J)/T1

20 CONTINUE
C **********************************************************************

C

C

C THE SPECTRUM NORM IS USED TO SEE IF ANY EIGINVAUE OF AO IS CCMPLEX
C

C
C .*********************40.444*********************************************
FMAX=0.0
00 30 I=1,N

ASR(I)=REAL(W(I))
ASI(I)=AIMAG(W(I))
IF(AES(ASI(I)).GT,FMAX1 FMAX=A8S(ASI(I))

30 CONTINUE



NK=TF4FMAX/PI+1
NKT=2*NH
IF(NK.LT.NKT) NK=NKT
PRINT'v+ NUMBER OF THE TIME SEGMENTS;NK IS CHOSEN=1.0K
PRINT*9+ ENTER ZERO(0) IF YCU DO NOT WANT TO CHANGE+
PRINT",* OR ENTER YOUR DESIRED NUMBER. YOUR CHOICE
READ',NKT
PRINT's+
IF(NKT.NE.0) NK=NKT
IF(IDEPR.NE.0) THEN
WRITE(IDVICE,1100) N,NINPT,NOTPT,NK,OMGA,ERR
WRITE(IOVICE,+(++0+,9//9++ NH=++,I2g//)+1 NH
CALL RPRINT( +0+,IDVICEg+ MATRIX AC; CNSTANT PART OF SYSTEM MATRI
+Xt+,N,N,AC)
CALL CPPINT(+0+,IDVICE,+ COMPLEX FORM OF EIGENVECTORS OF MATRI
iX ACI+9N,N,Z)
WRITE(IDVICE,1300) (W(I),I=1,N)
ENDIF
J=1

50 IF(ASI(J).NE.0.) THEN
DO 60 K=1,N

TEMINV(K,J)=REAL(Z(KIJ))
60 TEMINV(K1J1)=AIMAG(Z(K9J))

J =J +2

ELSE
DO 70 K=19N

70 TEMINV(KIJ)=REAL(Z(K,J))
J=J+1

ENDIF
IF(J.LE.N) GO TO 50
IF THEN
CALL RPRINT(+0+,IDVICE,+ REAL FORME OF EIGENVECTORS CF AC+



+.N.N.TEMINVI
ENDIF
DO 90 Isi.N

00 90 J =1,N
90 M(I.J)=TEMINV(I.J)

CALL LINV1F(TEMINV,N.ID.TEM.6.WK.IER)
IF (IER.GT.0) THEN
WRITE(IDVICE.1400) IER
GO TO 9999
END IF
IF(IDEPR.NE.0) THEN
CALL RPRINT(+0..IDVICE., INVERSE OF MATRIX OF EIGENVALUES OF ACT

ENDIF
DO 100 I=1.N

DO 100 J=1.N
100 MINV(I.J)=TEM(I.J)
110 CALL SIPAT(TOITFOINK.ERR,I0sIOVICE.ITV.ICH)

IF(ICH.EQ.100) GO TO 9999
C *44.*******************************************************************
C
C
C tPINVSI,IUSED TO STOR *SI, MATRIX(FUNDUMENTAL MATRIX OF THE SYSTEM)
C AT THIS POINT.IT IS PERMANENT STORAGE FOR 19+ CALCULATED LATER
C tASR..*ASI., ARE REAL AND IMAGINARY PARTS OF EIGINVALUES OF +A*1..
C.A4'..IS CONSTANT SYSTEM MATRIX CALCULATED ACCORDING TO THE FLOQUE TEORYs
C +EXP(A)=SI. DIAGNALIZED FORM OF +SI, AT TIME +TF+ IS USED.
C IMSL RCUTINE +EIGRF. IS USED IC FIND EIGENVALUES OF +SI+ AT TINE +IF+.
C
C
C 4.4.41.*************************************44114,4************************
DO 120 I=1.N



DO 120J =1,N
TEM(I.J)=PINVSI(I.J.NK)

120 CONTINUE
CALL EIGRF(TEM.N.I0.104.Z.IO.WK.IER)
IF(IER.GT.0) THEN
WRITE(IOVICE.1500) IER
GO TO 9999
END IF
DO 140 J=11N

STR=0.0
DO 130 I=1.N

SA=CABS(Z(I.J))
IF(SA.GT.STR)THEN
STR=SA
IK=I

ENDIF
130 CONTINUE

T1=Z(IK.J)
DO 140 I=1.N

Z(I.J)=Z(I.J)/T1
140 CONTINUE

IF(IDEPR.NE.0) THEN
WRITE(IDVICE.1600)(W(I),I=1.N)

ENDIF
C ***,404,2****************************************************************
C

C

C THE SPECTRUM NORM IS USED TO SEE IF ANY EIGINVAUE OF SI(TF) IS COMPLEX
C
C
C Av*********************************************************************
DO 160 I=1.N



WR=REAL(W(Il)
WI=AINAG(WII))
T=WWWR+WI*WI
ASR(I)=ALOG(T)/(TF*2.)
ASI(I)=ATAN2(14I04R)/TF

160 CONTINUE
WRITE(IDVICE91700) (ASR(I),ASI(I),I=1,N)
IF(IDEPR.NE.0)THEN
CALL CPRINT(+1+9IDVICEI+ COMPLEX FORM OF EIGENVECTORS OF MATRIX
SI AT TIME TF*+,N,N,Z)
ENDIF
J=1

170 IF(ASI(J).NE.0.) THEN
DO 180 K=19N

M(K,J)=REAL(Z(K,J))
180 M(K,J+1)=AIMAG(Z(K,J))

J=J+2
ELSE
DO 19G K=19N

190 M(K,J)=REAL(Z(K,J))
J=J+1

ENDIF
IF(J.LE.N) GO TO 170
IF(IDEPR.NE.0)THEN
CALL RPRINT(+0+,IDVICE9+ REAL FORM OF EIGEN-VECTORS OF MATRIX
+ SI AT TIME TF+9N,N,M)
ENDIF

C

C
C CALCULATION OF +P+ AND ITS INVERSEt+PINVSI+.
C +P. IS THE MATRIX THAT TRANSFORMS THE PRIODIC COEFFICIET SYSTEM



C INTO A COSTANT COEFFICIENT ONE.
C NOTES AFTER THESE CALCULATIOCtS +PINVSI+ WILL CONTAIN INVERSE OF /Ps..
C
C
C **********************************************************************
DT=ATF...T01/FLOAT1NKI
DO 310 K=1,NK

TSEG=WFOT
00 220 I=1.N
DO 220 J=19N
TEMINV(I,J)=0.0
00 220 L=1,N

TEMINV1I,A=TEMINV(I,J)+PINVSI(I,L,K)*H1L9J/
220 CONTINUE

CALL EXPAS(TSEG,N,-1)
J=1

240 IF1ABS1EASI(J11.GT.0.0) THEN
00 250 I=10

TEM(I,A=TEMINV(I,J)4EASR(J).-TEMINV(19J+1)4EASI1JS
TEM(19J+1)=TEMINV(I,J)*EASICA+TEMINVII,J+1/*EASR(j)

250 CONTINUE
J=J+2
ELSE
DO 260 I=19N

TEM(IIJ)=TEMINV(I.J)4EASR1J/
260 CONTINUE

J=J+1
END IF
IF(J.LE.N) GO TO 240
IF(IDEPR.EQ.2) THEN
WRITE1LABLEt 49150 /0.(I2)+) K

CALL RPRINT(t1.,IOVICE.LABLE,NO.TEM)



ENDIF
DO 270 I=19N

DO 270 J=1,N
PINVSI(19J,K)=TEM(19J)

270 CONTINUE
C 34,1**************4.4.0414044144144V104.4441144********************************414,41.

C
C
C CALL IMSL ROUTINE +LINV1F+ TO CALCULATE INVERS OF +PINVSI+1+P+.
C
C
C */**************************4044.44**************************************

CALL LINV1F(TEMIN,IDITEMINV90,WK,IER)
IF(IER.GT.01 THEN
WRITE(IDVICE,1800) IER
GO TO 9999
END IF
IF(IDEPR.EQ.2)
CALL RPRINT(+0+tIOVICEvf MATRIX PitioN,NITEMINV)
DO 310 I=1,N

00 310 J=10
P (I,J,K)= TEMINV(I,J)

J10 CONTINUE
C 41.********************************************************41114.4411.********

C
C
C AT THIS POINT THE FOUREIR COEFFICIENTS ARE CALCULATED
C FOR THE PRODUCTS OF P*B*(1*(TRAS.(P*B))
C FIRST CALCULATE THE PRCOUCTS.
C READ +0+ MATRIX IN AT(I,J)
C READ 1.0' MATRIX IN TEM(I,J)
C NOTE: MATROX P WILL CONTAIN THE ABOVE PRODUCT.



C

C
C **********************************************************************
READ(5,') ((AT(I,J),J=1,NINPT),I=1,NINPT)
READ(5,*) ((TEM(I,J),J=1,NINPT),I=1,N)
CALL RPRINT(.1t9IOVICEs. CONSTATN PART OF MATRIX B1 +,N,
+NINPT,TEM)
CALL RPRINT(t1t,IDVICE MATRIX Q$t,NINPT
+,NINPT.AT)
IF (IDEPR.EQ.2)
+WRITE(IDVICE9+(t+1,+,//gt, PRODUCT OF 12.8*(VIITRASPCSE OF
+(P*8))+1119
DO 360 K=1,NK
DO 315 I=10

DO 315 J=1,N
315 TEMINV(I,J)=0.0

T=FLOAT(WFDT
CALL EIMATRIX(TION)
DO 320 I=1,N

DO 320 J=11,N
320 AC(I,J)=TEM(I,J)+TEMINV(I,J)

DO 330 I=1,N
00 330 J=1,NINPT
M(I,J)=0,0
DO 330 L=1,N

330 M(I,J)=P(ItL,K)FAC(L,J)+M(I,J)
DO 340 I=10
DO 340 J=1,NINPT
MINV(I,J)=0.0
DO 340 L=1,NINPT

340 MINV(I,J)=M(I'L)*AT(L,J)+MINV(I,J)
DO 350 I=10



DO 350 J=4,N
TEMINV(I,J)=0.0
DO 350 L=1,NINPT

350 TEMINV(I,J)=TEMINV(I,J)+MINV(I,L)*M(J,L)
IF(IDEPR.E0.2) THEN
WRITEILABLE2(37,38),,(I2).) K
CALL RPRINT(tOttIOVICE,LA9LE2,NO,TEMINVI
ENDIF
DO 360 I=1,N
DO 360 J=104
P(I,J,K)=TEMINV(I,J)

360 COITINUE
C ************************v*****************************44,-************441,
C
C
C CALCULATE THE,PROOUCT OF IC*(IhV. OFP))
C READ tC, MMATIX IN TEM(I,J)
C NOTE PINVSI(I,J,K) WILL CONTAIN (C'(INV. OF P))
C
C
C *****411.4****************4444441,44,1**************************************

READ(59*) t(TEM(I,J),J=1,N),I=1,NOTPT)
CALL RPRINT(.1.9IDVICE9+ CCNSTANT PART OF MATRIX Cit,NOTPT,

419TEM)
IF (I OEPR.EQ.2)
+WRITE(I0VICEItttti+r,/,,tt PROCUCT OF C'tINV. OF P)$t)$)
00 370 I=19N

00 370 J=1,N
370 TEMINV(I,J)=0.0

DO 390 KrA,NK
T=FLOAT(K)*DT
CALL CMATRIX(N,T)



DO 375 I=1.N
DO 375 J=1.N

375 AC(I,J)=TEMI.J)+TEMINV(I.J1
DO 380 I=1.NOTPT
DO 380 J=104
AT(I.J)=0.0

00 380 L=1.144
380 AT(I.J)=AT(I.J)+AC(I,L)*PINVSI(L.J.K)

IF(IDEPR.EQ.2) THEN
WRITEILABLE3(25:26).+II21 .: K

CALL RPRINTI,0t,IDVICE.LABLE39NOTPT.N.AT:
ENDIF
00 390 I=1.N
DO 390 J=10

390 PINVSI(I000=AT(I.J)
C *41141.41.444411.4*********************444*************************************

C

C

C HERE WE CALCULATE THE FOURIER COEFFICIENTS FOR
C (C4(INV. OF P)).
C (1"13) 4L0.(TRANSPOSE OF(P48))
C
C FC(I,J,K) IS USED TO SAVE THE F-COEFF. OF FIRST PRODUCT.
C PC(I.J.K) IS USED TO SAVE THE F-COEFF. OF SECOND PRODUCT.
C NH IS THE NUMBER OF HARMONIC DESIRED FOR FOURIER SERIES.
C

C
C .444111111,41%*****************************4411.444**********404.44********4464-4114,41,

00 400 1 =1 ,N
DO 400 J=1,N
DO 400 K=0,NH
PC:I.J00=CMPLX(0.090.0)



PC(I,J,NH+K)=CMPLX(0.0,0.0)
400 FC(I,J,K)=CMPLX(0.0,0.0)

IF(IDEPR.EQ.1.0R.IDEPR.E0.2)
+WRITE(IDVICE,,(1titttts FOURIER COEFFICIENTS OF P48*0 *(TRANSP
+SE OFF"8))+,1t)
DO 500 L=0,2*NH
DO 480 K=19NK
T2=CMPLX(0.9-2.9_4042I)/FLOAT(NK)
T1=CEXP(T2)/FLOAT(NK)
DO 480 I=19N
DO 480 J=10

480 PC(I,J,L)=PC(I.J,L)+P(I,JOWT1
IF(IDEPR.EQ.1.CR.IDEPR.E4.2) THEN
DO 490 IK=i9N

DO 490 JK=1,N
490 Z(IK,JKI=PC(IK,JK,L)

WRITE(LABLE4(22123),+(12)+) L
CALL CPRINT(+0+,IDVICE,LABLE4,N,N,Z)
ENOIF

500 CONTINUE
IF(IDEPR.EQ.1.0R.IDEPR.E0.2)
+WRITE(IDVICE0( ++0++,f+ FOURIER COEFFICIENTS OF C4(INV. OF F)
trt+)+1

DO 560 L=0,NH
DO 540 Kr-10K
T2=CPPLX(0.,-2.*L*K*PI)/FLCAT(NK)
Ti=CEXP(T2)/FLOATINK)
DO 540 I=1,NOTPT
DO 540 J=1,N

540 FC(I,J,L)=FC(I.J,L)+PINVSI(I,J,K)cTi
IF(IDEFR.E0.1.0R.IDEPR.EQ.2) THEN
DO 550 IK=1,N



DO 550 JK=19N
550 Z(IK9JK)=FC(IK,JK9L)

WRITE(LABLE4(22123),"(I2)") L
CALL CPRINT(.0"tIOVICE,LABLE49KOTPT9N9Z)
ENOIF

560 CONTINUE
OPEN(7,FILE='CONECTN')
REWIND 7
WRITE(794) N,NOTPT,NH,OMGA
WRITE(70) (ASR(I),I=19N)
WRITE(79") (ASI(I),I=19N)
WRITE(79') (((PC(19J9K)9I=19N),J=19N)9K=0,2"NH)
WRITE(70) (((FC(19J9109I=1,NOTPT),J=19N),K=09NH)
CLOSE (71STATUS="KEEP')
PRINT","
PRINT"," ""NECESSARY OUTPUTS FOR PLOTTING PSD ARE IN"
PRINT."'" LOCAL FILE f+CONECTN++. 4F91.********9

PRINT",*
1100 FORMAT(+1.94X9'N=',I29/15X9+NINPT=',I29/95X9'NOTPT=",

"I29/95XONK="9129/95X9+0MGA=t9F6.39/95X9+ERR="9F795)
1200 FORMAT(' IER="9I41" ERROR IN EIGRF/IMSL")
1300 FORMAT(///5X," EIGENVALUES OF ACI+9/92(5)(9G1295))
1400 FORMAT(/' IER="9149* ERROR IN LINV1F/IMSL')
1500 FORMAT(' IER="1I4," ERROR IN EIGRF/It'SL FOR SI(TF)t)
1600 FORMAT(///95X9+EIGENVALUES OF SI(TF)I"9/92(5X9G1295))
1700 FORMAT(///," CONSTAN DIAGONAL SYSTEM MATRIX AFTER TRANSFORMATIOts

ti t9//92(5X9G12.51)
1800 FORMAT(' IER="9I4," ERROR It LINV1F/IMSL FOR Pt)
9999 CLOSE(IOVICE9STATUS='KEEP')

STOP
END



SUBROUTINE SIMAT(TO.TF,NONIERRIID,IDVICE,ITV,ICH)
REAL M(1S,19)0MINV(19.19)
DIMENSION S(19),DS(19).W(19.9),C(24).TEM(19.19),AD(19)
COMMON/PIN/PINVSI(19.19.90)
COMMON/SYSMT/AC(19.19),ASR(19),ASI(19),EASR(19).EASI(19)
+,AT(19,19) ,M,MINV,OMGA,ICEPR
CHARACTER 445 LABLE
EXTERNAL FCN
COMMON /SIFCN/ JN
DATA LABLE/. MATRIX SI AT TIME (K*PERIOD/NK) K=/./
C 4.********************************************************************
C

C
C THIS ROUTINE CALCULATES THE TIME DEPENDANT FUNOUMENTAL MATIXotSI.t.
C NOTE THAT AT THIS POINT ,PINVSIt CONTAINS +SI,.
C +S AND DS ARE USED TEMPORARILY AS COLUMN VECTORS OF +SI, ANC ITS DERIVATIVES
C RESPECTIVELY. TO SOLV CS=A'S ROUTINE CVERK FROM IMSL LIBRARY IS CALLED.
C SUBROUTINE FCN SHOULD BE PROVIDED BY USE. SEE IMSL MANUAL.
C
C

4.4.**************************444040*************************************
WRITE;IDVICE.';+11011111
DT=(TFT0)/FLOAT;NK;
DO 5 J=1.N

DO 5 I=1.N
5 AT(I,J)=0.0

00 30 IC=104
JN=IC
T=TO
00 10 J =1,N

10 S(J)=0.0
IND=1



DO 30 K=1,NK
TEND=K*DT
IF(ITV.EQ.11 THEN
CALL DVERK(NtFCN,T,S,TEND,ERRtIND,C,ID,NtIER)
IF(IER.GT.O.OR.IND.LT.0) THEN

WRITE(IOVICE,110) IER,(C(IK),IK=1,24)
ICH=100
RETURN

END IF
ENDIF
CALL EXPAS(TEND,N,1)
I=1

11 IF(A8S(EASI(I1).GT.0.0) THEN
AO( I)=MINV(I,IC)*EASR(I)+MINV(I+1,IC)*EASI(I)
AD(I+1)=-MINV(I,ICI4EASI(I)+MINV(I+1,IC)*EASR(I)
1=1+2

ELSE
AD(I)=PINV(I,IC) PEASR(I)
I=I+1

END IF
IF(I.LE.N) GO TO 11
DO 12 I=19N

EASR(I)=0.
DO 12 J=1,N

12 EASR(I)=EASR(I)+M(I,J)*AD(J)
00 20 J=1,N

PINVSI(J,IC,K)=S(J)+EASR(J)
20 CONTINUE

T=TENO
30 CONTINUE

IF(IDEPR.E0.2) THEN
00 50 K=1,NK



WRITE(LABLE(42143).1(I2)41 K
00 40 I=1.N

DO 40 J=1.14
40 TEM(I.J)=PINVSI(I,J,K)
50 CALL RPRINT(t0.,IOVICEILABLE,N1NsTEM)

ENDIF
110 FORMATt+ IER=s,I49t ERRCR IN DVERK/IMSL../9+

'C(I) VECTORt+.(G12.5))
RETURN
ENO
C 41,4*4441111.4************41144,4***44.********4114M41410********4414-41.41.44*44.4**4

SUBROUTINE FGN(N,T,S,OS)
REAL M(19,19).MINV(19.19)
DIMENSION S(N).DS(N).A0(19).A(19.19)
COMMON /SIFCN/ JN
COMMONiSYSMT/AC(19.19),ASR(19).ASI(19).EASR(19).EASI(19)
+9AT(19.19).M.MINV.OMGA.IDEPR

C

C

C THIS RCUTINE IS FOR USE BY IMSL ROUTINE 1.0VERK+. SHOULD APPEAR IN EXTERNAL
C STATMENT OF SUBRCUTINE tSIMATSTHISE ROUTINE PROIDES DRIVATIVES OF
C VECTOR ,St; tOS.. SUBROUTINE ,SYSMATt GIVING +A+ MATRIX OF THE SYSTEM
C SHOULD BE PROVIDED.
C

C
C ******************************************************4144**444.4*******
CALL EXPAS(T.N.1)
I=1

10 IF(ABS(EASI(I)).NE.0.0) THEN
AD(I)=MINV(I.JN)4EASR(I)+MINV(I+1.JN)*EASI(I)
AD(I+1)=...MINV(I.JN) 'EASICI)+MIKV(1+1.JN) *EASR(I)



1=1+2
ELSE

AD(I)=MINVII,JN/*EASF(1)
I=I+1

END IF
IFII.LE.N) GO TO 10
DO 20 I=1,N

EASR(I)=0.
DO 20 J=1,N

20 EASR(I)=EASR(I) +M(I,J)*AD(J)
CALL SYSMAT(T,N)
00 40 I=1,N
DO 40 J=10

40 A(I,J)=AC(I,J)+AT(I,J)
DO 60 I=19N

DS(I)=0.
00 50 J=19N

OS(I)=DS(I)+A(I,J)*S(J)+AT(I,J).EASR(J)
50 CONTINUE
60 CONTINUE

RETURN
ENC
C ****************************************41,************************44411.40.

SUBROUTINE EXPAS(T,N,ISIGN)
REAL M(19,19),MINV(19,19)
COMMON/SYSMT/ AC(19,19),ASR(19),ASI(19),EASR(19),EASI(19)
+1AT(19919),M,MINV,OMGA,IDEPR
COMPLEX W, W1
C 4***********************44,41.41.**************404411,4,44,*******************

C

C

C THIS SUBROUTINE CALCULATES EXP(ISIGNIFA*T) AT TIME T AS USED BY USER WHEN



C 'Sit MATRIX WAS BEIG CALCULATED. FOR EACH NEW TIME THE ROUTINE
C SHOULD BE CALLED.A IS IN DIAGCNAL FORM ASSUMING THRE IS NO JORAN BLOCK.
C

C **********************************************************************
DO 3 I=1.N
IF(ASI(I).NE.O.)THEN
W=CMPLX(ISIGN*T4IASR(I) .ISIGN*T4ASI(I))
W1=CEXP(W)
EASIII)=AIMAG(W1)
EASR(I)=REAL(W1)

ELSE
EASI(I)=0.
EASR(I)=EXPIISIGN*ASRII)41T)

END IF
3 CONTINUE

RETURN
ENO

**********************************************************************
SUBROUTINE RPRINT (IPAGE,IOVICE,LABLE,NR,NC,T)
DIMENSION T(149.19)
CHARACTER IPAGE9LABLE*(4).FMT*14,TITLE*21
DATA FMT.TITLE/111(1X.G12.5)1 ftt COLUMNS TO .1./
WRITE(IDVICEOAA///A/M) IPAGE,LABLE
K=1
IC0=1

10 M=IC04110
IFIMNC)30.30.20

20 M=NC
30 WRITE(TITLE(12113)0(I2),) K

WRITE(TITLE(18,19).1(I2)11 M
WRITECFMT(2:3)..(I2)t) (M(ICO1)p10)



WRITE(IOVICE,+(//Aa)f) TITLE
WRITE(IDVICE,FMT) t(T(I,J),J=K,M),I=1,NR)
IF(M.EO.NC) RETURN
K=M+1
ICO=IC0+1
GO TO 10
END
C iit4c441,4*************************40,4,41.***********************************

SUBROUTINE CPRINT(IPAGE,IDVICE,LABLEINR,NC,T)
COMPLEX T(19919)
CHARACTER IPAGE,LADLE*(*),FMT*149TITLE*21
DATA FMT,TITLE/+((1X9G12.5))+0 COLUMNS TO -...+/

WRITE(IOVICEOAAWA/)+) IFAGE,LABLE
K=1
IC0=1

10 M=ICO*10
IFIMNC)30,30,20

20 M=NC
30 WRITE(TITLE(12113),+(I2)41 K

WRITE(TITLE(18119)9,(I2)19 M
MRITEIFMT(283),+(I2)+) (M(IC01)*10)
WRITE(IDVICE9+(/A//)+) TITLE
DO 40 I=1,NR
MRITE(IOVICE,FMT)(REAL(T(I,J)),J=K9M),(AIMAG(T(I,J))1J=K0)

40 MRITE(IOVICE9+(/).)
MRITE(IDVICE,+(//)+)
IF(M.EQ.NC) RETURN
K=M+1
ICO=IC0+1
GO TO 10
ENO



PROGRAM PCWSPEC
REAL LCMGAF
DIMENSION ASR(19).ASI(19).PS0(400).0MGAF(400).0MGAFT1(400)
flPSOT1(400)
CCMPLEX W(19).FC(19.1C,.0:4).PC(19.19.018).PSDC(400),PS0C1(400)
CHARACTER LAELE*39LAELE1*25
CATA LABLE1/. RESONANT FREOUENCEY"" /

C

**********************************************************************************

C AT THIS POINT CALCULATE THE POWER SPECTRAL CENSITY FOR JIN INPUT AND LOUT OUTPUT
C JIN : THE INPUT DESIRED IN CALCULAYION CF POWER SPECTAL DENSITY(PSD).
C LOUT s THE OUTPUT DESIRED IN CALCULATION OF P(WER SPECTRAL DENSITY.
C LOMGAF: THE !AUER LIMIT OF FOURIER FREQUENCY IN CALCULATING PSO.
C HOMGAPI THE UPPER LIMIT OF FOURIER FREOUENCEY IN CALCULATING PSD.
C NOMGAF: THE NC. OF FREQUENCEYS CONS IDERC IN CALCULATING PSO.
C
C ****************Ar*****************************************************************
OPEN(7.FILE=QCONECTN)
OPEN(8,FILE=.DEBUGP)
REWIND 7
REWIND
READ (7, *) N.NOTPT,NH.CMGA
READ(7.*)(ASR(I),I=1.14)
READ(7.*)(ASI(I),I=1.N)
READ(70t)(((PC(I.J.K),I=1.N).J=1.N).K=0.2.*NH)
READ(7,-4)((iFC(I,J.K),I=1.NOTPT).J=1.N).K=0.NH)
CLOSE(7,STATUS=KEEF)

100 PPINT*I THE INPUT CONSIDERED FOR POWER SPECTRAL DENSITY: JIN=6,
READ*.JIN
PRINT*g THE OUTPUT CCNSIDERED FOR POWER SPECTRAL OESITY:IOUT=,
READ*. IOLT



FRINT*," LCWEF LIMIT FOR FOURIER FREQUENOEY1 LOMGAF=',
READ*, LOMGAF
FFINTct HIGHER LIMIT FOR FOURIER FREDUENCEY; HOMGAF=",
PFAU*, HOMGAF
PRINT4,6 NUPEER FRECUENCIES BETWEEN LOMGAF & HOMGAF; NOMGAF=',
FEAD*, NOMGAF
FPINT4,6
PPINT",' * ** *YOUR DEBUGGING OUTPUT-FILE IS "CEBUGP6144**'
PRINT*,'
wRITE(8,*(6"1",///,5X," JIN=8°,I2," IOUT=",I216).AN,IOUT
iFITE(8,1100) N,NH,CMGAILOMGAF,H0mGAFINOMGAF
DC 120 I=1,N
w(I)=CPPLX(ASR(I),ASI(I))

120 CCNTINUE
ALCGLF=ALCG10(LOMGAF)
DCMGAF=(ALOGiO(HOMCAF)ALOGLF)/FLOAT(NOMGAF1)
DC 130 I=1.NOHGAF

130 CMGAF(I)=(I1)*D0VGAF+ALOGLF
NRF=0
CC 150 IH=NH.NH
DC 150 J=1.N

OHT=ABS(IH*CMGA+ASI(J))
IF(CMT.LE.LCMGAF.OR.OMT.CT.HCMGAF) GO TO 150
NRF=NRF+1
OMGAFT1(NRF)=ALOG10(0MT)
IF(NRF.ED.400) THEN
PRINT*.' NO. CF RESONANT FREOUENCEY MORE THAN 400.
UPDATE DIMENSION STATmENT FCR OMGAFT1(40014
ENDIF

150 CCNTINUE
IF(NRF.GT.0) THEN
CALL CAL(IOUT.JIN.N.NHOMGAINRF.OMGAFT1.W.FC,PC.FSDT1.PSOC1)
ENOIF



CALL CAL(ICUT,JIN,N,NH,OMGA,NOMGAF,OMGAF,W,FC,PC,PSD.PSOC)
IF(NPF.GT.0) THEN
K=1
DC 160 I=1,NRF
DC 160 J=2,NCPGAF
IF(PSD(J).LT.PSOT1(I).ANI.PS0(J1).LT.PSOT1(I).

+AND.CMGAF(J).GT.CMGAFT1(I).AND.OHGAF(J1).LT.OHGAFT1(I))THEN
PSO(J1)=PSDT1(I)
OMGAF(J1)=CMGAFT1(I)
PSOC(J1)=PSOC1(I)
PSDT1(K)=J1
K=K+1

ENDIF
1E0 CCNTINUE

ENDIF
KFSDT1=0
IF(NPF.GT.0) THEN
J=1
KFSDT1=PSDT1(J)
ENDIF
WRITE(8,1200)
DC 170 I=1,NOVGAF

IF(KPSOTi.EC.I) THEN
WRITE(8,1300)PSOC(I),OHGAF(I),LAPLE1
J=J+1
KPSDT1 =FSOT1 (J)
ELSE
WRITE(8,1300) PSDC(I)90MGAF(I)
ENDIF

170 CCNTINUE
CALL PLOTS(PEC,WmGAF,LOMCAF,HOMGAF,OMGAF,JIN,IOUT)
FFINT*,' 00 YOU WISH TO FIND ANOTHER PSO



ENTER YES OR NO.'
PEAO(*''(A)6) LAKE
IF(LAPLE.E0'6YES6)G0 TO 100
CLOSE(8,STATUS=KEEP)

1100 FCRMAT(//6 OMGA=,612.4
+,/, LOMGAF=',G12.4,/,' HOMGAF=6,G12.49/1

NOMGAF=s'I3)
1200 FCRHAT(///'5X1' COMPLEX FORM OF PSO'10X," FREQUENCIES', //)

1300 FCRMAT(2(3X,G12.4),qX,G12.4,A)
STOP
ENO



SUBROUTINE CAL(ICUT9JIN,N.NH,OM,NOMF.OMF.W,FC,PC,PSO,PSOC)
CCMPLEX W(19).WCAUCI.WCA(19),WCC(19).FC(19,1990i4).PC(19,1990:8)

4.,PSOC(400),TL,TK.AI,A0
DIMENSION PSD(400).CMF(400)
AI=CPPLX(0,91.)
4***********************************************4************************4

C THIS ROUTINE CALCULATES THE AVERAGE POWER SPECTRAL DItSITY ACCORDING TO
C THE FCRPULATICN GIVEN IN CHAPTER 3.
C IOUT,JINt THE ELEMENT OF APSO ON ROW IOUT AND CCLUMN
C N: ORDER OF SYSTEM
C NHI NC. CF FCURIER FREQUENCIES
C CM: FUNDLMENTAL FREQUENCY.
C NOME: NC. CF FREQUENCIES FOR WHICH4PS0 IS DESIRED
C CMFz VECTOR CONTAINING THE FREQUENCIES FOR WHICf APSE) IS DESIRED
C W: COMLEX FORM OF THE EIGENVAUES OF THE SYSTEP
C FC: MATRIX OF FCURIEF COEFFICIENTS OF (C*INV(P))
C PC1 MATRIX OF FOURIER COEFFICIENT OF (P41B*0*(TRANS(P48)))
C FSDI REAL PART CF APSD
C FSOC: COMPLEX FORM OF APSC
C
C ROUTINE PLCT IS NEEDED TO PLOT THE REAL PART CF ASPO
C
c****************************444********************************************
DC 650 LF=1.NCMF
FSDC(LF)=CMPLX(0.10.)
CMF1=10.**CMF(LF)
CO 650 IK-=NH.NH
K= ABS(IK)
DO E50 IL=NH.NH

L=ARS(IL)
IF(AES(ILIK).LE.2*NH) THEN tc,

ILK=ABS(ILIK)



TL=CMPLX(0..IL*0M+OMF1)
TK=CMPLX(0.tIK*OM-..0MF1)
DO 50 I=10

50 1,108(I)=1./(CONJG(W(I))+TL)
I=1
IF(IL.LE.0) THEN

100 IF(AIMAG(W(I)).E0.0.) THEN
WCA(I)=WCB(I)*FC(JIN.I.L)
I=1+1

ELSE
A=0408(I)+WCE(I+1))/2.
3=(WCB(I)SCEI(I+1))/2.
WCA(I)=A4FC(JIN.I.L).AI*B*FC(JINI+1.L)
WCA(I+1)=A*FC(JIN.I+1.L)+AI*B*FC(JIN.I.L)
1=1+2

ENOIF
IF(I.LE.N)GC TO 100

ELSE
150 IF(AD'AC(W(I)).E0.0.) THEN

WCA(I1=WCB(I)*CCNJG(FC(JIN.I.L1)
I=I+1

ELSE
A=(WCA(I)+WC8(I+1))/2.
B=(WCn(I)..qiCB(I+1))/2.
WCA(I)=A*CONJG(FC(JIN.I.L))AI*B*CONJG(FC(JIN,I+1,L))
WCA(I+1)=A*CCNJG(FC(JIN.I+1.L))+AI*E*CONJC(FC(J1N.I.L))
1=1+2

ENDIF
IF(I.LE.N)G0 TO 150

ENOIF
IF(IL--IK.LT.0) THEN
J0 206 I=1,N



tCB(I)=CPFLX(0.,00
00 200 J=1,N

200 w0B(I)=WC9(I)+C0NJG(PC(I,J,ILK))*KA(j)
ELSE
00 250 I=1,N

viCri(I)=DPPLX(C.,00
DO 250 J=1,N

250 WC8(I)=WCP(I)+0C(I,J,ILKI*WCA(J)
ENDIF
CO 300 1=1,N .

300 WCC(I)=1./(4(1)+TK)
I=1

350 IF(AIMAG(W(I)).EC.0.) THEN
WDA(I)=WCC(I)*W0S(I)
I=I+1

ELSE
B=IWCC(I)-WCC(I+1))/2.
A=tUCD(I)+WCC(I+111/2.
WCA(I+1)=A*WCE(I41)+AI4B*W0B(I)
WCA(I)=A*WCP(I)-AI*11*WCA(I+1)
1=1+2

ENDIF
IF(I.LE.N)G0 TC 350
IF(IK.LT.0) THEN
00 450 J=1,N

450 ps0C(LF)=FSOC(LF)+CONJG(FC(IOUT,J,K))*WCA(J)
ELSE
DO 500 J=1,N

500 PSOD(LF)=FSDC(LF)+F0(IOUT,J,K)*WCA(J)
ENDIF
PsD(LF)=REAL(PSCC(LF))

ENCIF



6.F.0 CONTINUE
RETURN
END



SUBROUTINE PLCTS(PS000MGAFLOMGAF,HOMGAFIW19JIN.ICUT)
PEAL LOMGAF
DIMENSION PSD(400),W11400)
CHARACTER 1G LABLE(4)
DATA LABLE/sPOWER SPEC*.*TPAL OENSII,'TY VS. FRE*9*QUEKCY ./

C ********************************************************************
C THIS ROUTINE PLOTS A REAL VECTOR ON TEK-7EMINAL 4010
C PSOI THE VECTOR TC EE PLOTTED
C NOMGAF: XAXIS CCMPONENT OF THE VECTOR TO BE PLCTTED( FREQUENCIES)
C LOMGAFt SMALLEST ELEMENT OF W1
C HOMGAFt THE LARGEST ELEMENT OF W1
C NOMGAFt OIMENSICN CF W1
C JIN,IOUTt INTEGERS TO IDENTIFY THE PLOT
C

CALL PLOTYPE(1)
CALL TKTYPE(4010)
W=8.67
H=E.5
XIN=5.
XM=1.0
XMIN=ALOG10(LOMGAF)
XMAX=ALOG10(HCMGAF)
XF=XIN/(XMAXXMIN)
YIN=5.
YP=0.75
CALL TEKPAUS
PRINT*,' JIN=',JIN,* IOUT=*,IDUT
CALL SIZE(W,H)
TMAX=PSD(1)
DC 100 I=2,NCPGAF

10.0 IF(PSD(I).GT.THAX) TMAX=PSO(I1



TMIN=TPAX/100000.
CALL RANGEL(THIN,TMAX,TMINR,TMAXR)
YvIN=ALOG10(TVINF)
YMAX=ALOG10(TMAXR)
YF=YIN/(YMAX-YmIN)
HP=YM+YIN+YE*YMIN4XF*XMIN
V9=XM->F4XPIN+YPILYMIN
CALL FCTATE(96.)
CALL SCALE(XF,YFOR,VE,XPIN,YMIN)
X=XMIN+.2/XF
Y=YMAX4(YM-.1)/YF
CALL SYMeCL(X010.,.1,40,LARLE)
CALL AXISL( LCV6AF,HCMGAF,LCMGAF,TMINR,TMAXF,TMINF91.91.

t0+0,19191.91.,0113)
CALL WINCCW(XMIN,YMIN,XMAX,YMAX)
CALL VECTORS
IF=0
DC 200 I=1,NONGAF
X=W1(I)
Y=ALOG10(PSO(I))
CALL PLCT(Y,Y,IP,O)

200 IP=1
CALL PLOTEND
CALL WINCOW(0.,0.,0.,0.)
FETUFN
ENO



97

Appendix B

Numerical Values

B-1. Numerical Values for 5th Order Systems

The values of parameters used are as follows:

I = 602 lbf s /rad c = 6.9 lbf s/ft

K = 46.10 lbf R = 16.67 ft

f
o
= 7.65 rad/sec V

w
=

For the parameters a. and b. the procedure given in the paper by Holley
et. al.', was used, 1

a = -.073 b = 2.578
1 1

a = .488 b = b = 1.55
1 2 3

power spectral density matrix, Q of the input white rouse is a diagonal
matrix with diagonal elements all equal to .085 and the constant system
equations are:

{x)

{y}

=

0

-823.5

0

0

0

11 0

1

-1.28

0

0

0

0

0

2.578

0

0

0

.113

-.073

0

0

0

0

0

1.55

0

0

1.28

0

-.438

-7.68

0

0

0

0

1.55

01 (x)

0

0

7.68

-.488

{w}

{x}

1 Holley, W. E., Thresher, R. W., Lin, S. R.; Wind Turbulance Inputs
For Horizontal Axis Wind Turbine; Department of Mechanical Engineering,

Oregon State University, 1981.
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The periodic system equations are:

0

-832.505

1

-1.28

0

.113

0

1.28sin

0

1.28cos

(7.680 (7.68t)

0 0 -.073 0 0 {x)

0 0 0 -./"18 0

0 0 0 0 -.488

= [1

0 0 0

0 0 0

2.573 0 0 {w)

0 1.55 0

0 0 1.55

0 0 0] {x)

B-2. Numerical Values for 19th Order Systems

The state variables are defined as follows for periodic coefficient

system:

xl = U = horizontal displacement of the top of the

tower.

x2 = V = lateral displacement of the top of the tower.

x3 = 0 = nacelle yaw angle.

x4 = x = nacelle pitch angle.

x5 = 0 = azimuthal angular position of a rotor blade.

x6= x1
x7 = i2

X8 = i3

x9 = i4

xl0= icy

X11= Vx =
uniform wind velocity, x-direction.

x12' Vy = uniform wind velocity, y-direction.

x13= Vz = uniform wind velocity, z-direction.

x14= Vy,x = velocity gradient across rotor disk.

x15= V Y'z' = velocity gradient across rotor disk.

x16= Yzx =
swirl about mean wind axis.

x17= tax =
in plane shear strain rates

xl8= Yzx =

xl9= czx = iri plane dilation.

Power spectral density of white noise excitations

are Q = .11837 sec.

The power spectral density matrix of the white nois is diagonal with

diagonal elements equal to .11835. The system matrices are given as

follows:



Matrix A

o 0 0 0 0 1.0000 0 0 0 0

0 0 0 0 0 0 1.0000 0 0 0

0 0 0 0 0 0 0 1.0000 0 0

0 0 0 0 0 0 0 0 1.0000 0

0 0 0 0 0 0 0 0 0 1.0000

-9.2064 0 -657.32 -.14303 0 .299E-3 0 -3.6384 -24.998 0

0 -18.750 -.15849 -886.57 0 .793E-2 -.0828 -26.459 3.9691 1.8183

-.676 0 -84.770 -.0202 0 .289E-3 0 -.50749 -3.3886 0

0 -2.0194 .141 -165.77 0 -.705E-3 .741E-3 2.3503 -.35256 -.0163

0 0 0 0 -.80993 0 -.139E-2 0 0 -.0162

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-.299E-3 0 .613E-2 10.759 4.3348 0 0

-.793E-2 .23917 -.237E-2 -.34153 11.833 1.8183 a(t) -.57574

-.239E-3 0 .101E-2 1.5123 .732 0 0

.705E-3 .214E-2 .210E-3 .0303 -1.0511 -.163 (see below) .515

0 .404E-2 0 0 0 -.162 -.101

-.0862 0 3 0 0 0 0 0 0

0 -.0401 0 0 0 0 0 0 0

0 0 -.0862 0 0 0 0 0 0

0 0 0 -.0937 0 0 0 0 0

0 0 0 0 -.0937 0 0 0 0

3 0 0 0 0 -.13147 0 0 0

0 0 0 0 0 0 - 168 0 0

0 0 0 0 0 0 0 x.168 0

0 0 0 0 0 0 0 0 -2.8245



Matrix B

o
o
o

o
o

o
o

o
o
o
0

1.5615
0

0

0

0

0

0

0

.6589E+6

0

0

0

0

0

0

0

0

2.3767
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

.0111

0

0

0

0

0

.4372E+8

0
0

0

0
0

0
0

o

0

0

0

0

0

0

.0111

0

0

0

0

0

0
0

0

0
0

0
0

0

0

0

0

0

0

0

0

.0109
0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0

0

0

.994E-2
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

.994E-2
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.0275

0Matrix

0

0

0

0

0

0

0

0

0

0

2.3767
0

0

0

0

0

0

0

0

C

[ o

0 0 0 0

-.8615 cos(5.498t) - .4253 sin(5.498t)

.2910 cos(5.498t) - .8462 sin(5.498t)

-.1088 cos(5.498t) - .0384 sin(5.498t)

-.0259 cos(5.498t) + .0752 sin(5.498t)
0

0 0 0

-.8615 sin(5.498t) +
.2910 sin(5.458t) +

-.1088 sin(5.498t) +
-.0259 cos(5.498t) -

0

0

.4253 cos(5.498t)

.8462 cos(5.498t)

.0384 cos(5.498t)

.0752 cos(5.498t)


