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Periodic System Analysis
with Application to Wind Turbines

0. Introduction

Linear system equations with periodic coefficients have
been of interest in the design of helicopter blades in the past,
and are attracting increasing attention in present wind turbine
research. Most of the work which has dealt with this subject has
considered the system input to be deterministic. In many cases,
however, the forcing function is of a random nature. The consid-
eration of random inputs is important because it provides a more
realistic model of wind properties, the major forcing function for
wind turbine response. To fill this apparent gap and provide the
basis for a better understanding of the effect of random inputs on
linear systems with periodic coefficients, this work undertakes
the study of such systems with a statistically stationary forcing
function. The stationarity assumption is made because in practice
it has been shown to be a useful model for the randomness in the
wind.

The thesis is divided into three chapters. Chapter I presents
the Floquet Theory, which is the main tool far transforming systems
with periodic coefficients into systems with constant system
dynamics matrices. Based on this theory an algorithm is developed
to achieve this transformation. Chapter II provides discussions on
modeling wind as a stationary process and on deriving the stationary
processes from white noise. This derivation is used to modify the
system with stationary input to an augumented system with white noise
input. An algorithm is then developed to relate the input-output
stochastic properties of the augmented system assuming it has a
constant system matrix. Chapter III presents two models which are
analyzed using the algorithms. One is a fifth order system consis-
ting of a single rigid, rotating blade with a flapping degree of
freedom. The second is a nineteenth order model of a 2.5 Mw wind
turbine. Results and conclusions are also given in this chapter.



Appendix A presents the computer program for the algorithm
which is coded in FORTRAN 77 and is implemented on the Oregon
State University computer system (CDC CYBER 170, Model 720). A
second order example is also presented, and a step by step
solution is given. Appendix B contains the numerical values of
matrices and parameters of the models discussed in Chapter III.



I. Equivalence Transformations and Floquet Theory

Engineering problems modeled by linear, time-varying differen-
tial equations are difficult to solve, in general. However, in
cases where the coefficients are periodic, equivalence transforma-
tions can be used to transfer these systems into other linear
systems which are easier to study. One such transformation can be
deduced from Floquet theory. This theory provides the tool for
transferring systems with time varying, periodic coefficients into
systems with constant system dynamics matrices.

Section 1 of this chapter discusses equivalence transformations
and their properties. Section 2 presents Floquet theory and the
equivalence transformation it provides. In Section 3 an algorithm
is developed, based on Floquet theory, to carry out the transforma-
tion numerically. The first approach in the development of this
algorithm was the direct use of the results of Floquet theory. This
approach failed due to integration truncation errors when stiff
equations were encountered. Modifications were then made, which
helped the algorithm to perform more favorably.

For an extensive treatment of the subject the interested reader
is referred to V. A. Yakubovich and V. M. Starzhinskii's Linear
Differential Equations with Periodic Coefficients [1].

I-1. Equivalence Transformations:

A Tinear system with time varying coefficients of the form:

x = A(t)x + B(t)u (I.1)

is said to be algebraically equivalent to the following linear time
varying system:



where

and

The state transformation matrix, P(t), is called an equivalence
transformation [2, 3, 4].

At this point the following definitions are given before pro-
ceeding to discuss the equivalence transformations in more detail.

Definition I-1- Two linear systems of the form of Egqn. I.1 are said

to be zero-state equivalent if they have the same impulse response
(5, 6].

Definition I-2- Two linear systems of the form of Eqn. I.1 are said

to be zero-input equivalent if and only if for any initial state in
one system there exists an initial state in the other system so that
the outputs of the systems are identical [7].

With regard to these definitions it is apparent that systems
which are algebraically equivalent are also zero-state equivalent
and zero-input equivalent. The reverse however, is not true, i.e.,
two linear time-varying systems which are zero-state equivalent and
zero-input equivalent are not necessarily algebraically equivalent.
Because of zero-state equivalency, the impulse responses of two
algebraically equivalent systems are the same. This implies that
the input-output relations are invariant under equivalence trans-
formations. Wiberg [8] shows by means of two theorems that the
controllability and the observability properties of time-varying



systems are also preserved when these systems undergo equivalence
transformations. Wiberg also presents other theorems which help
to reduce time varying systems into simpler forms by means of equi-
valence transformations with additional assumptions on the con-
trollability and observability matrices. It is worth noting that
the similarity transformation, which is a powerful tool in studying
linear time invariant systems, is also an equivalence transformation.
One shouid be careful of the fact that equivalence transforma-
tions do not preserve the stability properties of time-varying
systems in general. However, if a norm of the transformation
matrix, P(t) and the same norm of its inverse P'](t) are bounded
(not necessarily with the same bounds) for all time, the trans-
formation preserves the stability properties of the system and is
called a Lyapunov transformation. Two systems related with a
Lyapunov transformation are said to be topologically equivalent
[9].
Note that a similarity transformation is a Lyapunov trans-
formation as well. Hence, in the case of time-invariant linear
systems all equivalence transformations are Lyapunov transformations.

[-2. Theory of Floquet

Floquet theory provides the basis to find an equivalence trans-
formation which transforms linear time-varying systems with
periodic coefficients into systems with a constant system dynamics
matrix (hereafter simply called the system matrix).

To find this transformation, consider the general form of an
nth ordér, linear, time-varying system with periodic coefficients
in its state space representation:

x(t) = A(t)x(t) + B(t)u(t) (1.5)
y(t) = C(t)x(t) + D(t)u(t)

Where A, B, C and D are time dependent matrices which are continuous
and defined over the time domain (-, «).



In addition A(t) is periodic with period T
i.e. A(t+T) = A(t) for all t.

The periodicity of B, C and D does not have any effect on the
derivation of the desired transformation. In this work however,

these matrices will also be assumed to be constant or periodic with

the period T.
In the following, we discuss some properties of linear time-
varying systems with periodic coefficients.

Theorem I-1: If a fundamental matrix of the system of the Egn.
[.5 is F(t), then F(t+T) is also a fundamental matrix.

Proof: To show this, first note that:

and

I
——
‘—'.
+
—
o ——
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I
~~~
‘—'.
o ——

Now

.

F(t+T) = A(t+T)F(t+T) = A(t)F(t+T)

QED

Because F(t) and F(t+T) are fundamental matrices, both are non-
singular and each can form a basis for the solution space. Thus,
there exists a constant nonsingular matrix Q such that [10]

F(t+T) = F(t)Q : (I.6)

Q is sometimes called the monodromy matrix of the fundamental matrix

F(t).
Furthermore, a constant matrix A can be found [11] so that

AT

Q=e (1.7)



which implies

F(t+T) = F(t)eP (1.8)

It should be noted that the fundamental matrix F(t) is not
unique. However, from Theorem I-1 it can be deduced that determining
F(t) over one period is sufficient to know its behavior for all time.
The nonuniqueness of F(t) results in nonuniqueness of Q and conse-
quently that of A. But because different Q's derived from different
F(t)'s are similar, they have the same eigenvalues. These eigen-
values, aj, Jj =1,2,3,...n, are called the characteristic multipliers
associated with the periodic matrix A(t). This definition is

justified by noting that there exists a solution such that:
X(t4T) = aj x(t) ' (I.9)

To show this, consider Eqn. 1.6, and assume Q is a diagonal matrix.
For each column of F(-) denoted by Fj(-), we have

Fi(tHT) = a5 Fi(t) (1.10)

Because each column of F(-) is a solution vector, there exists a
solution x such that

x(t+T) = a; x(t) (I.11)

The eigenvalues of A, denoted by Ej, are called the character-
istic exponents of the periodic matrix A(t).
Note that aj and Ej are related as follows:

3. =1 2
aj = 7 1n(aj) (1.12)

Now, define the matrix P(t) so that

P(t) = ePt FT(t) (1.13)



At this point we can state the Floquet theorem [12]:

Theorem 1-2: For the system

x = A(t)x, A(t+T) = A(t) (1.14)

any fundamental matrix F(t) is of the form P'](t)eAt where P'](t)
is a periodic function.

Proof: By definition

thus

Pl (t+T) = F(t+T)e A (ET)
- F(t)eAT(e-ATe_At)
= p7l(t)
QED
Remark I-1: P(t) is also periodic since
P(t+T) = eA(t+T) F_](t+T)
- eA(t+T) e—AT F'](t)
= P(t) (I1.15)

Remark I-2: Note that proving P(t) and P'](t) are periodic, and
F(t) and A are nonsingular, shows that P(t) and P'](t) are nonsingular.



Theorem I-3: If the matrix P is defined as in I.13, the following
system is algebraically equivalent to the system of Egn. I.5.

X = BX(t) + P(t)B(t)u(t)
(I.16)

y(t) = ()P (L)R(t) + D(t)u(t)
Where A is a constant matrix as defined in Egn. I.6.
Proof: See [13].

Remark I-3: -Because P(t) and P'](t) are bounded, the systems of
Eqn. I.5 and Egn. 1.16 are also topologically equivalent.

Remark I-4: The following relation exists between P(t) and A [14]:
P(t) = AP(t) - P(t)A(t) (1.17)

For the inverse of P, we can write a similar equation

pl(t) = A(t)P 1 (t) - PTT(0)A (1.18)

We will now discuss the system stability. From remark I-3 we
know that the Floquet transformation of Theorem I-2 is a Lyapunov
transformation. Chen [15] shows that under this class of trans-
formations, the stability properties of the systems are preserved.
Thus, if the system of Egn. I.16 is bounded-input, bounded-output
stable or if it is stable in sense of Lyapunov, then the system of
Egn. 1.5 has the same stability properties. This fact facilitates
the stability study of linear systems with periodic coefficients.
By studying the stability of the transformed systém, which has a
constant system matrix, enough information is obtained about the
behavior of the periodic coefficient system. For a practical
example of such a study see Peters and Hohenemser [16].
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I1.3. Algorithm Development

To carry out the Floquet transformation numerically, a
fundamental matrix, F is needed. It can be obtained by numerical
integration as follows:

F(t) = A(t)F(t) (1.19)

F(0) = I (I.20)

where the matrix I is the identity matrix. This assumption of initial
conditions is not important for the transformation because F(t)

is not unique, which results in nonuniqueness of the transformation
matrix P(t). The specification of initial conditions simply serves
to specify one fundamental matrix with the required properties.

With the above assumption, Eqn. I.18 becomes:

F(T) = &M (1.21)

The next step is to find the eigen-system of F(T), assuming distinct
eigenvalues. This gives the modal matrix M, and a diagonal matrix,
L, with the eigenvalues, aj, on the diagonal.

Using the similarity transformation yields

M TF(TIM = L (1.22)

L=e (I.23)

and % _
AT -] — AT (1.24)
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Consequently by integrating Eqn. I.19 from time zero, for one
period, T, we can find A .

*Since aj are the eigenvalues of F(T) and'Ej are the eigenvalues
of A we have

3= — (1.25)

The eigenvalues aj and E& are complex numbers in general. Thus

the logorithm is not unique. The following procedures are used to

find 33. Assume

. b
2) e] tan (?J‘) (1.26)

[«
H

. 2
. .+ ., = .+ .
j ¢y tiby = ey + by

and

a. . .
J J J

H
(g}
+
—_
o

(I.27)

where i = thi'and c, b, ¢, and b are real numbers. Substituting
Eqns. 1.26 and 1.27 in Eqn. I1.25 yields

(1.28)

- 2 2
. S+ b.
cJ 1n(cJ bJ )/2T

b,

-1
; [tan (bj/cj)]/T (1.29)

— — %
Now, Cj is unique but bj is not, which causes the matrix A to be

nonunique. The principal branch value will be chosen so that

1

-7 < "' b./c. < +
m < tan J/ j m

*
At this point, a transformation P (t) is found which transforms the
—_*
system of Eqn. [.5 into a system with A as its system matrix.
From Eqn. I.13

pt) =P b F (1) (1.30)
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-1

Introducing the transformation P*(t) = M 'P(t), and using Eqn. I.24

in Egn. 1.30 yields

or P (t) = & Ml T(e) (1.31)
The following theorem can now be stated.

Theorem I-4: The transformation P*(t) as defined in Eqn. I.31,

%
transforms the system of Eqn. I.5 into a system with A as its
system matrix, when F(T) has a complete set of eigenvectors.

Proof: Can be easily carried out by direct substitution.

The transformation matrix P*(t) can be computed at any instant
in time since F(t) can be found through numerical integration of Egn.
1.19. Thus its inverse can be calculated, and the matrix ﬁ* is
computed from the eigenvalues of F(T).

This algorithm was implemented on the Oregon State University
computer system and worked successfully for some problems. However,
failure occurred in certain cases; specifically when the system
matrix was constant with eigenvalues of widely differing magnitudes,
and a rather long period was assumed. In this case, numerical
truncation errors were very important because the faster modes decayed
to small values which were insignificant compared to the slower modes,
and the monodromy matrix became i1l conditioned. The same problem
also occurs in cases where the system matrix is stiff and truly time
varying. ‘

To reduce this effect, modifications can be introduced in the
above procedure. First, determine the average system matrix

A, =%f A(t)dt (1.32)
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and define

A(t) = A, + 6A(t) (1.33)
and F(t) = Fo(t) + 8F(t) (1.34)
where  Fo(t) = et

Then Egn. I.19 can be written in the form

Fo(t) + 8F(t) = (Ao + 6A)(Fo(t) + SF(t)) (1.35)
Since Fo(t) = AcFo(t), Fo(0) = I (1.36)
thus SF(t) = A(t)SF(t) + SA(t)Fo(t),
(1.37)
SF(0) = 0

These equations are solved separately. To solve Egn. [.36 the
similarity transformation F, = MoF, is used, where M, is the modal
matrix of A,. Assuming a diagonal matrix L, for eigenvalues of A,,

yields:

Fo = LoFo(t), Fol0) = Mo~ (1.38)
which results in

Fo(t) = Moemot, ™! (1.39)

Eqn. I.37 can be solved numerically after substituting Egn.
1.39:

LotM°-1

SF = A(t) SF(t) + SA(t)M.e , §F(0) = 0 (1.40)
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To find the transformation P*(t), note from Egn. I.21 that
F(T) = Fo(T) + 6F(T) = &N (1.47)
Now the eigensystem of F(T), the modal matrix, M and the eigenvalue

matrix, L can be found. From this point on the steps are taken as

in the first version of the algorithm, namely:
% ‘I

A=+ 1n(L) (1.42)

and
P*(t) = [[Fo(t) + sF(t)IMe ™ 77! (1.43)

This procedure performed more favorably and was adopted to
carry out the desired transformation of the system.

*
Theorem I.5: The transformation matrix P (t) as given in Eqn. I1.43
%
transforms the system of Eqn. I.5 into a system with A as its

system matrix, assuming a complete set of eigenvectors for the
monodromy matrix.

Proof: Use direct substitution.

To show the effect of the modification consider the following
system (for complete analysis of the system see the Appendix A):

-6+costt 5 0
X = X + W (1.44)
5 -6+cosmt. 1
y=[1 1]

It is possible to find an analytical solution for this system. By
doing so one finds that the constant system matrix has eigen-
values of (-11, -1) and the transformation matrix at the end of the
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period is

P(T) = (I1.45)

This system can be analyzed by the two algorithms already discussed.
When the results of Floquet theory are directly used, the eigenvalues
of the constant system matrix are found to be (-12.5780, -1.0000) and
the transformation matrix at the end of the period is
-50000  -50000
P(T) = ] (1.46)
-+49998  -49998)

The modified algorithm however finds the constant system matrix to
have eigenvalues of (-10.8600, -1.0000) and the transformation matrix
-50000 .50000
P(T) = (1.47)
=+50000 -50000

Thus the improvement in accuracy of the modified algorithm is
demonstrated.
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II. Power Spectral Density for Periodic Systems

Representing natural physical phenomena by random processes
is a common practice in the scientific approach to modeling. In
consequence, system models involving differential equations with
random inputs have been under extensive study (for example see
references [17, 18]). Many of these studies have involved linear
systems with constant coefficients. However, the analysis of
systems with time varying coefficients is somewhat more involved.

In this chapter, systems with time-varying, periodic coefficients
and white noise input are considered. These two assumptions will
prove helpful in obtaining statistical information about the output.
It should be noted that the assumption of white noise input is not
overly restrictive since many random processes can be derived from
white noise through a Tinear filter [19].

Sectfon 1 of this chapter gives some background about random
processes. Section 2 introduces an a]gorithm to calculate the
average power spectral density of the output of a system with
periodic coefficients and white noise input. Section 3 gives a brief
discussion on how the average power spectral density can be obtained
from time series data. '

II-1. Mathematical Background

Some of the necessary background discussions and definitions
for developing the algorithm are given here and closely follow those
given by Papoulis [20] and Crandal [21].

Definition II-1: The autocorrelation function, Rxx(t1’t2) of a
complex random process x is defined as

Rex(t1otp) = EDx(t)x (1)1 oy

where E is the ensemble average; and xT(') is the conjugate trans-

pose of x(*). Note that
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The cross correlation function of two complex random process is
also defined in the same manner:

Ry (t15t5) = ELx(t)y (t,)] (11.3)

Definition II-2: The double Fourier transform of the correlation
functions is defined through a double integral

o« o

- -ifqty -ifot
Fox(F1T2) —[ [ Rex(tystp)e” 171 711282 dt dt,  (I1.4)

It is trivial to show that
Fo (Frafy) = FT(F,,61) (11.5)
xx* 122 Xx 2217 :

The condition for existance of F(f],fz) is that the correlation
be integrable over [-«,~], which requires:

[ f IRXX(t],tZ) dt,dt, < = (11.6)

Singularities can exist in the form of

d(f]-a), é(fz-b), orié(f]-fz-a+b)
where a and b are real constants, and §(:) is the Dirac delta
function.
In the case of a stationary process, the correlation function
depends only on the time difference 1, where T = t]-tz. Thus the
time argument is suppressed

RXX(T) = Rxx(t+T,t). (I1.7)



18

The Fourier tranform of RXX(T) is called the power spectral density
and is denoted by SXX(-), where

o]

s, () =J[ RXX(T)e_ideT (11.8)

-00

In this case, the double Fourier transform is singular and given by

Fax(f1oT2) = 2nS  (£1)8(f,-f,) (11.9)

In order to simplify the representation of non-stationary random
processes, an average autocorrelation function is introduced. When
the correlation function is periodic, then

R(t],tz) = R(t]+T,t2+T) (I1I.10)

where T is the period.

Definition II-3: The average autocorrelation function, R{t) of the
periodic autocorrelation R(t+t,t) is defined as
T

R(7) =%f R(t+t,t)dt (IT.11)

o]

The Fourier transform of this function is then called the average
power spectral density (APSD). In the next section, the average
power spectral density for periodic systems is formulated.

II-2. Average Power Spectral Density of Periodic Systems -

The state-space representation of the problem under consider-
ation is of the form

A(t)x + B(t)w

% .
]

(II.12)
y = C(t)x
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where A, B and C are periodic with period T and w is the white noise
input with power spectral density Q.
Wong [22] shows that x can be represented in the form
t
x(t) = (t,te)x(ts) + J 8(t,s)B(s)dW(s) (11.13)
to
where the transition matrix satisfies
=2 o(t,ta) = A(t)o(t,to), ¢(te,te) = I (11.14)
and W is the Brownian motion process which is defined formally by
dW/dt = w. The output of the system can be expressed as

t
y = C(t)o(t,to)x(to) + C(t) f o(t,s)B(s)dW(s) (II.15)
to

To solve for the statistics of y, the equivalence transformation,
*

P (t) developed in the previous chapter is used. Thus, the system
of Eqn. I1.12 can be transformed into

‘% * % *
Ax +PBw

X =
(II.16)
* _'I* *
y =CP " x
where A* is constant and diagonal and
* * * *
yo= )P TNtk (L)
t
- * *
co™ ) [ oS ()8 (s)aus) (11.17)
to
with
8" (t,s) = f(ES) (11.18)

It is now shown that the statistics of the system outputs under
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an equivalence.transformation are invariant. First note that

*

¢ (t.to) = P (t)o(t,ts)P

*-1

(to) (I1.19)

The validity of Eqn. I1.19 can be easily seen by substituting
into Eqn. II.14 Rewriting Eqn. I1.17 in terms of x(t.) and moving
*.
P ](t) into the integral yields
*

yo= P )0 (b, )P (o) x ()

t
4 C .j' P T (£)6" (t,5)P*(s)B(s)dN(s) (11.20)
to ’

By use of Eqn. II.19

t
y* = Cop(t,to)x(to) + C J[ ¢(t,s)B(s)dwS =y (I1.21)
to

Thus the output of the Tlinear periodic system undergoing an equivalence
transformation is invariant which implies that the statistics of
outputs are also invariant.

The next step is to solve the covariance equation [23] to
find the state covariance matrix, V, given by

. * * *
V=AYV +vAT+ P B R)t (I1.22)
We seek a periodic solution in Fourier series form

v(t) = }: vme"“f°t (11.23)
- .

where f, = 2m/T the fundamental frequency of the system. Thus we
expand the Tast term in Eqn. I1.22 in its Fourier series expansion
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. .
P"Bq(P"B)T = Z g oMot (11.24)

m
substituting Eqns. II.23 and I1.24 in Eqn. I1.22

imfo V_ = A" *t 25}
mfe Vo = Vm + va + Gm (I1.25)

Now by expressing matrices V and G in terms of their components,

1 * . . . *
Vik,m and Gik,m and noting that A" is diagonal with eigenvalues aj
we can find each component of the matrix Vi

v - ij,m
Jjk,m 3 _ *
imf, aj ak

*F (II.26)

At this point the autocorrelation function of the state, x, can be
determined. Bryson [23] gives Rxx by the following equations.

1

Rysyre  (T+T,t) = o(1)V(t) (II.26a)
T>0
Rowy  (Eot+T) = V(1)o" (1) (11.26b)

Superscript 1 and 2 are for distinction of forward or backward
correlation in time, respectively. The transition matrix ¢(-) of
the system is given by

o(t) = &Mt | (11.27)

Using the Fourier expansion of V(t), Eqns. II.26 can be rewritten,
so that

Rl = § ATy oimfot (11.28a)
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: *
R, s = A (II.28b)
m

Having Rx*x* gives the output autocorrelation matrix Ryy since

*_
We express the product CP 1 in the Fourier series expansion

. .
P (1) = Ej H giMfot (11.29)
m.
Therefore
y = E: H oMot (11.30)
m

and the autocorrelation of y using Egn. II.30 is

— ikfot(t'*'T) . 'f' ‘imfot 'f'
Ry (£+7,t) = 2: E[H, e x*(t+) x*" (t)e H
,m

Z Hk e'ikfo(t'*'T) R

k,m

gr €@ oty (I1.31)

using Eqgns. II.28a, b, for R yields similar expressions for

R as follows:

x*x*?

Yy
*

1 Ej [A +ikf, 1]t + ifo(m+k-j)t : R

Ryy = Hk e Vm Hj e (II.32a)
J,k,m
2 (A -i3F0100 (o ifo(k-3+m)t

- BEVACER LT o\K=J*m - (I1.32b
Ry }E' HY e H e (1 )

Jok,m
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where I is the identity matrix, and T > 0. Now, averaging over one
period, the average, autocorrelation function as defined in the last
section can be written as

*
51 - Z‘ [A + if.kIlt +
Ryy () ' H e Vi B (II.33a)

Jsk
¥t cp s
52 .y }i: [A " - ifil]t .+
Ryy(-1) 'k He Vi e H (I1.33b)
J

Now, note that the average power spectral density is the Fourier
transform of the average autocorrelation function, and can easily
shown to be

S,y (f) = Y IR+ 1(kf, - £ 65 A - 1(3%,- £ )17 K]

ik ‘
(I1.34)

Eqn. II.34 thus gives a direct method for computing the average
power spectral density. This method was coded in FORTRAN and
implemented on the Oregon State University computer system. The
program 1isting is given in Appendix A.

At this point we find the relationship between Fyy(f1,f2), the
double Fourier transform of R, and the average power spectrum

Yy

§&y(f). For this purpose we rewrite Eqn. II.32a noting

'l—t2=T, t-|=t+T,t2=t
and Eqn. II.32b noting

t2 - t1 =T, t1 =t, t2 =t+ 7

Thus,
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*
1 _ E: [A” + i§foI](t, - t,)
R - .
yy (tstp) Hy e 172
J.k,m
eifelm + 3 - Kk)t, v HE (11.35a)
2 . [A" - ikfoI(t, - t.)
- -1 o , -
Rey(t1aty) = ) HV e 2" Y
J.k,m
eife(m+ 3 - Kkity Y (11.35b)
or
1 (A" + ijf.1]t
= . 1JTo
Ryy(t1’t2) E:. HJ e 1
J,k,m
*
el-A + ifo(m-k)1]t, vt (11.36a)
2 | A" - Kf.I t
Ryy(t1,t2) = E: Hj V. e ot 2
J.k,m
* 3 .
el-A + ifo(m + §)ITt, HF (11.36b)
- . . ,
Now, yy(f]’fZ) is : the double Fourier transform of Ryy and can

be found ing R
e foun §y using vy

and R§Y’ which gives

oy (Fofp) = ) LA™ (3Fof) ) TITL (Fo (Gomek)=Fp ) ]

yy'fre
J,k,m

+ HN LA+ (Fo(mtd)=F1) 117 16[ (Fo(mti—k)-F,+F, ) IHT

ij o '| ° ] 2 k

(I1.37)

This equation can be rearranged to get a more compact form
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* . +
(f'l 9f2) = Z HJ[_A -T(Jfo'f])I]VmHk +
Jsk,m

vy
(11.38)
* . + .
Hy Vo [-A +i(kFo-f)) D) IHL 60 (Fo(mj-k)-F +f,]

The coefficient of the delta function when f] = f2 reduces to the
average power spectral density given by equation II.34. Thus, the
average power spectral density can be interpreted as describing the
statistics of the "stationary part" of the system output.

II-3. Time Series and Average Power Spectral Density

In practice, information about a random variable x is given
by its time series, x(to), x(t]) - x(tn_]) where ty t], ces
tn-] are the n sampling points in time. An approximation for the
power spectral density, the periodogram, is defined [24] using the
- time series as
. n-1
UE) =g Y X(tg)x(t expl-1(t;-t, )] (11.39)

Jj,k=0

This equation can be rearranged assuming a constant sampling
interval 1 to give
n-1 n-1
U(F) = o E: x(t#ke)x(ty)exp[-ifke]  (I1.40)
k=-(n-1) Jj=o -

The ensemble average of both sides of Eqn. II.40 is now taken so
that
n-1 n-1
E[U(F)] = o Rxx(tj+kr,tj)exp[-1fkr] (I1.41)



26

where
Rex(t1stp) = ELx(tq)x(t,)]

Now, if the autocorrelation function RXX is periodic and the total
data time interval is an integer multiple, N, of the period, it
follows that

-1

N
D)
n

m=

n-1
R( t +T, t

1
m

&

n
N-1 N
=1 Z N Z- R(t +t +T, t ,t, )
N n m "k " "m*°k
m=0 k=0
N-1
=% Z R(t) = R(7) (11.42)
m=0
Inserting this result in Eqn. II1.41, yields
n-1
EU(H] =gr ) R(kt)exp[ -ifkr] (11.43)

k==(n-1)

In the 1imit as m and >0, the right side of Eqn. I1I.43 becomes the
average power spectral density defined previously. Thus, the
ensemble average of the periodogram converges to the average power
spectral density as the data record becomes long. This result paves
the way for the use of all the standard techniques for smoothing the
periodogram [25] to give a better estimate of the average power
spectral density.
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ITI. Examples of Periodic Systems

The recent growing interest in wind turbines in the energy
field has motivated the development of advanced structural models
for these systems. The more complicated models usually contain
periodic time dependent coefficients. This time dependency and
the fact that the input of the system is the wind, a random
process in nature, causes the practical use of these models to be
difficult.

. In Sections 1 and 2 of this chapter, two systems are considered.
The first systeﬁ is a rofating, rigid blade with one flapping degree
of freedom. This model is represented by a second order differ-
ential equation. The wind input is modeled by three first order
constant coefficient differential equations. The state space
representation of the overall system is, therefore, of fifth order.
The second model is a mathematical representation of a 2.5 MW,
three-bladed wind turbine. This model considers five degrees of
freedom, and the state space form is of order nineteen.

In Section 3, the results and conclusions are discussed and

some suggestions for future study are made.

ITI-1. Rotating Rigid Wind Turbine Blade with Flapping

In this section, the equation of motion is developed for a
single, rigid wind turbine blade, hinged to a massless hub, and
restrained by means of a rotational spring. Figure 1 shows the
geometry under consideration. The blade is rotating with constant
rate of rotation, fo, about the y axis of the xyz inertial reference

frame. The flapping motion is about the x' axis of the x'y'z'
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ZH

L7 — Rigid Blade

xl , xl'

Fig. 1 - Rigid Wind Turbine Blade with Constant Rotation
Rate and Small Flapping Angle.
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rotating reference frame. The x'y'z' reference frame rotates about
y axis with y' and y coincident. The flapping angle, 6, is
restrained by a spring with constant stiffness k. The reference
frame x"y"z" is fixed to the blade, with x' and x" coincident.

To obtain the equation of motion, the kinetic and potential
energy are written in the blade fixed x"y"z" coordinate frame.

Thus, the angular velocity and moment of inertia after appropriate

transformation are given by

. B h
-9 I 0 O
w" =¢ f, cos B "= 0 I o0 (ITI.1)
fo sin 6 0 0 0
The kinetic energy, T, is given by
T=1/207 1"
or substituting for w" and I" from Eqn. III.1
T =172 (1 8% + 1£,2 cos?e) (111.2)
The spring poteneial energy, V, is given by
_ 2
V=1/2k 8 (IT1.3)

where k is the rotational spring stiffness. Note that the gravita-
tional potential energy of the rotating mass of the blade is

neglected.

At this point, Lagrange's equation is used to obtain the

equation of motion. Lagrange's equation is given by

d oT oT , aV

where q and Q are the generalized coordinate and generalized force
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respectively. The coordinate in this case is 6.

Substituting for T and V from Eqns. I1.2 and III.3 into

Egn. III.4 resu]ts in

o+ (k+1f7)e=q, (111.5)
where the angle 6 is assumed small and second order terms are
neglected.

The generalized force Qe is a moment acting on the blade about
the x' axis. This moment is due to atmospheric turbulence. The
following discussion for finding Qe follows the work by Holley,
et al. [26]

Assuming a cubic aerodynamic force distribufion, the force on
the rigid blade is given approximately by

R
f, - i%—l[ r(RE - r2) (V - r)dr (I11.6)
where

fy is the net blade force in y direction

r is the position along the blade

R is the length of the blade

C is a constant aerodynamic parameter

and V is the turbulent velocity of the wind in the vicinity of the

rotor disc and is approximated by

V(rap,t) = Vo (t) +V, (t) rsinwy+ V. _(t) rcosy (I11.7)

Y Yo X Y,z

The term Vy is the uniform turbulent velocity and the terms
v and V are the velocity gradients across the rotor disc.

YsX Y,z
ATl three of these terms are random. The generalized force Qe
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in terms of f is given by integrating the relation
dQg = rdfy
so that

R
Qy = i—-g—f r2(R% = r2)(V - rB)dr (111.8)

Carrying out the integration and substituting for V from Eqn. III.7

gives
2
_CR ,3m 2R . 2R 2CR" -
Q = 7 (16 Vy t 3 Vy,x sin fot + Tf'vy,z cos fot) - 57 ©
Using this expression for Qe in Egn. III.5 yields
. 2
RC &,k _CR 3w, L 2R ~
6 + S5y 8+(I+f3)8— i (]6vy+ 3 Vy,xs1nfot+
2R
7§'Vy,z cos fot) (I11.9)
Holley, et al, also give a procedure to approximate the random
processes Vy, Vy,x’ Vy,z by Tinear differential eqqations with
white noise input. These relations are given by
Vy = -a]Vy + b]w]
Vy,x = -azvy,X + b2w2 (II1.10)
v,z = —a3vy,Z + b3w3
for the values of a; and bi’ see Appendix B.
To obtain the state space form of the system model, the
following state variables are defined:
X| = 3] Xy = Vy
X, = 6 xg = Vy (I11.11)
=V



32
Now, from Eqn. III.9 and Egn. III.10, the following matrix form

results:
[0 1 0 0 0
K.e2v  2CR® 3zCR 2CR%si 2
L A mCR R7sinfot 2CR7cosfot
I ® 5T 16 1 5 1 51
X = 0 0 -a] 0 0
0 0 0 -a, 0
0 0 0 0 -a
3
L B
[ 0 0 0 ]
0 0 0 Wy
(I11.12)
+ b, 0 0 Wy
0 b, 0 Ws
L0 0 by |
For the output, we define
( 3
X
)
y=[100001¢*3 ) =4 (I111.13)
X
4
X
" 5)

Thus, the model has periodic coefficients in the second row of the

system dynamics matrix.
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To test the algorithm, another set of state variables is
chosen to give a model with constant coefficients. To do this,

define the state variables

Xy = 8 Xq = Vy
Xy = 3] X4 = cOs f°tvy,z + sin f, tvy,x (111.14)
X = -sin fotV + cos fotV
5 y,Z YsX

which will result in the following constant coefficient state

space form
r‘ —
0 1 0 0 0
Cwerff2r® 3w 2R%C .
I 51 16 1 51
X = 0 0 -3, 0 0 X
0 0 0 -a, fo
i 0 0 0 -fo -a, |
(0 o 0]
0 0 0 "
+ b, 0 0 W) (I11.15)
wl
0 b, 0 3
|0 0 by |
and y = [1 000 0]x (I11.16)

where wi, wé, and w3 are white noise excitations with the same

power spectral densities as Wis Wos and W3- The numerical values



of the parameters and matrices are given in Appendix B.

These two models were both analyzed using the algorithm
developed in the previous chapters. The output power spectral
densities for both models are the same (as expected) and shown
in Fig. 2. The results show that the algorithm performs

satisfactorily.

IIT-2. A Five Degree of Freedom Wind Turbine Model

Thresher, et al [27] use a five degree of freedom model to
study a 2.5 MW wind turbine system called the MOD-G, Fig. 3.

In their model, the tower is a single cantilever beam element.
The three blades are rigid and fixed to the hub. The hub is
assumed to be connected with a flexible shaft to a synchronous
generator which turns at a constant speed.

Five degrees of freedom are assumed; two displacements at
the top of the tower, U and V in the x and y directions,
respectively, and two rotations ¢ and y the pitch and yaw for
theraxis of rotation of the hub. This axis is assumed to be

rigidly connected to the top of the tower. The fifth degree of

34

freedom is the fluctuation @ in the rate of rotation of the rotor.

The steady component of this rotation is fs. When the model

is represented in state space form and the input random processes
are derived from white noise, a nineteenth order model results.
The nineteen state variables consist of the five positions and
five velocities and the nine additional states given by Thresher,

et al, for approximating the wind input from white noise.



POWER SPECTRAL DENSITY VS. FREQUENCY
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Fig. 2 - Average Power Spectral Density of Flapping Response
of a Single Wind Turbine Blade.
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Rotor rotation rate

Yaw angle
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Xg Yg

Fig. 3 - Wind Turbine Model with Five Degrees of Freedom
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In their report, Thresher, et al, chose the state variables
in a manner to give a constant coefficient model. In this work,
however, the states are chosen so that the coefficient matrix
has periodic terms. For a discussion of the state variables and
the coefficient matrices, see Appendix B.

The power spectral density found by Thresher, et al, is
shown in Fig. 4 where, for some frequencies, the APSD, calculated
using the algorithm developed here, is shown. It should be noted
that considerably more computation is required to handle the
periodic coefficients; thus, only a few points were computed to

verify the accuracy of the algorithm.

III-3. Conclusions

The algorithm developed in this thesis is a useful tool to

~ find the average power spectral density for systems which can be
represented by periodic coefficients in the state space form. The
algorithm is also capable of finding the power spectral density
for constant coefficient systems.

The numerical modification in the use of Floquet theory
results in a more accurate computation of the equivalence trans-
formation. It was shown that the equivalence transformation does
not affect the statistics of the output of the system. The
average power spectral density was defined and shown to be the
same as the coefficient of the Fourier transform of the auto-
correlation function when both frequencies are the same. Thus,

the average power spectral density represents the stationary part
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Fig. 4 - Average Power Spectral Density of Thrust Response
of a 2.5 MW Wind Turbine System.
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of the output statistics and, in the case of stationary systems, is
the same as power spectral density. When the system is non-
stationary, the average power spectrum provides useful information
about the statistical frequency content of the response, and it can
also be estimated experimentally using the standard procedures of

time series analysis.

IT1I-4. Suggestions for Future Work

The continuation of this work to find the probability of level
crossings and the occurence of maxima will provide a useful tool
in designing systems with periodic coefficients for improved
fatigue performance.

In the time series analysis aspect of this work, some experi-
mental data should be tested against the numerical results. Also,
the derivation of more accurate approximations for the average

power spectral density seems in order.
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Appendix A

Computer Program

The computer programs were developed based on the algorithms
given in Chapter I and II. Two programs were written, PROGRAM
FOURIER and PROGRAM POWSPEC.

PROGRAM FOURIER
This program finds the Floquet transformation and all the
Fourier Coefficients described in Chapter II. This program uses
the following routines:

SUBROUTINE SIMAT: This routine performs integration of a matrix

differential equation. By using IMSL routine DVERK and subroutine
FCN, SIMAT is called by FOURIER

SUBROUTINE FCN: This routine provides the differential equation
to be integrated. It is called by SIMAT.

SUBROUTINE EXPAS: Calculate EXP(A*T) where A is diagonal matrix rep-

resented by a - vector, and T is a scaler variable. This routine is
called by FOURIER, SIMAT and FCN.

SUBROUTINE RPRINT: This routine prints NXN real matrices, eleven

columns at a time.

SUBROUTINE CPRINI: This routine prints NXN complex matrices, eleven
columns at a time, with real parts above imaginary parts.

User should provide the following routines:

SUBROUTINE SYSMAT: This routine should provide the time varying
elements of matrix A. C
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SUBROUTINE BMATRIX: This routine should provide the time varying

elements of matrix B.

SUBROUTINE CMATRIX: This routine should provide the time varying

elements of matrix C.

INPUT OF PROGRAM FOURIER:

First card:

Second card:

Third card:

Fourth card:

Fifth card:

Name of data file (see below). This name should
contain less than seven letters.

User's choice of output, 0, 1 and 2

0 = no printout
1 = partial printout
2 = complete printout

Number of harmonics desired in Fourier expansion.
This number should be less than five.

Accepted termination error for integration routine
SIMAT.

The program chooses the number of time segments in one
period. Zero on this card would mean the number is
satisfactory. Otherwise the desired choice is put on
this card. The program calculates this number by
choosing the maximum of

2M, M = number of Fourier harmonics

or (T*F)/n+1, T = period

-n
1}

The largest imaginary part of -
the eigenvalues of the average
of matrix AC (Averaged part of A)
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DATA FILE: This file should be presented to the program with its
name given on first card:

Structure of DATA FILE:

First Line should contain:

N = order of system

NSNPT = No. of inputs

NOTPT = No. of outputs

OMGA = fundamental frequency

ITV. = control variable: 0 if there is a time dependent element

in A, B and C matrices
1 otherwise

From the second 1ine on the matrices AC, ¢, BC, CC (AC, BC and CC are
averaged, A, B, and C respectively) should be given Tine by line.

OUTPUT OF PROGRAM FOURIER

A1l the input information is printed on file DEDUGF. The fundamental
matrix, matric P* and its inverse are printed out at each time
segment. ATl the Fourier coefficients are printed on the same file.
A1l the necessary information for program POWSPEC is output on

file CONECTN.

PROGRAM POWSPEC

This program calculates the Average Power Spectral Density (APSD)
and plots the results. COMPLOT package should be provided. The
'following subroutines are called by this program.

SUBROUTINE CAL: This routine calculates the APSD for a given
-~ frequency.
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SUBROUTINE PLOTS: This routine plots the calculated APSD's versus
the respective frequencies.

INPUT OF PROGRAM POWSPEC

This program is to be used interactively. See the example and
the program for inputs. File CONECTN generated by PROGRAM FOURIER
should be provided.

OUTPUT OF PROGRAM POWSPEC

A1l ASPD's and their respected frequencies are written on fill
DEBUGP. The plot of the ASPD is provided if the user is using a
Tektronics 4014 terminal.

In the following pages a second order example is solved and
the programs are listed.
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FROCELURE FILE 7O CALL AND EXECUTE PROGR&N FOURIER:

USER, , .

CHARGE, ,.

TITLE. i40SEN
SETTL,100.

ATTACH, THSL/UN=LIBRARY .
LIERARY, IHSL.
GET,LGO=FORIERE,SYSB=5YS2TR, DAT2T.
LGAD,LGO,5YSB.

EXECUTE.

REWIND, DEBUGF.

SAVE, DEBUGF =BEBUG2.
SAVE,CONECT.

INFORMATION PROVIDED BY CARDS FOR FROGRAH FOURIER:

“DAT2T”
2

4

001

3

INFORMATION PROVIDED FO PROGRAW FOURIER ON DATA-FILE “DAT2T :

P P K

— e et KD = N | P2
- "« a « O
— )
o
« .

—
L]



INTERACTIVE EXECUTION OF PROGRAM 'POWSPEC'

POUNEWB
THE INPUT CONSIDERED FOR POWER SPECTRAL DENSITY; JIN= ? 1
THE OUTPUT CONSIDERED FOR POWER SPECTRAL DESITY:IOUT= 7 1
LOWER LIMIT FOR FOURIER FREGQUENCEY; LOMGAF= ? .001
HIGHER LIMIT FOR FOURIER FREQUENCEY; HOMGAF= ? 1000
NUMBER FREQUENCIES BETWEEN LOMGAF & HOMGAF;  NOMGAF= ? 5o

XXXXYOUR DEBUGGING OUTPUT-FILE IS ’DEBUGP’XX%x
POWER SPECTRAL DENSITY VS. FREQUENCY

g | :

< Zz
1.00 f

g

Q

c

-~

BURY -
.
5
Q1 +
t
.10E-02 +
JA0E-03 ¢

.01 .10 1.00 10.00  100.00 1000.00
FREQUECY

Fig. A-1  APSD For Second Order System.
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CONTENTS OF FILE 'DEBUGF'

N= 2

NINPT=
NOTPT=
NK= 8
OMGA= 3,142
ERR= .001C0

1
1

NH= &4

MATRIX AC3 CNSTANT PART OF SYSTEM MATRXS

COLUMNS 1 TO 2

-6.00600 5.0000
5.0000 -6,0000

COMPLEX FORM COF cIGENVECTORS OF MATRIX ACt

COLUMNS 1 TO 2

1.0000 1.0030
G. G.

1.000¢0 -1.06300
Ce 0.

EIGENVALUES OF AG!
-‘ODGGU 0.
°110000 0.
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REAL FORME OF EIGENVECTORS OF AC

COLUMNS 1 TO 2

1.30040 1.0080
100000 -1,3000
INVERSE CF MATRIX OF

COLUMNS 1 TOo 2

500048 «50000
050000 -¢50000

MATRIX SI AT TIME

COLUMNS 1 TO 2

52773 » 447606
e 44766 52773
MAT RIX SI AT TIM:c

COLUMNS 1 TO 2

e 41974 1412

EIGENVALUES OF AC

(K*PERIOD/NK) § K= 1

(K*PERICD/NK) § K= 2



ellb412 41974

MATRIX SI AT TINE

COLUMNS 1 TO0 2

e 29594 «2956b

¢ 29566 29594

MATRIX SI AT TIME

COLUMNS 1 TO 2

18395 18333

18393 18395

MATRIX SI AT TIME

COLUMNS 1 TO 2

11438 011438

e11438 «11438

MATFIX SI AT TIME

COLUMNS 1 TO 2

(K*PERIOD/NK)

{K*PERIOD/NK)

(K*PERICD/NK)

( K¥PERICD/NK)

[
A

]
,

K=

K=

5

&
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081150E‘01 +81150£-01
«81150E-01 +811508E-012

MATRIX SI AT TIME (K¥PERIOD/NK) § K= 7

COLUMNS 1 TO 2

«89375E~-01 «69375E-01
«69375&-01 «693375E-01

MATRIX SI AT TIME (K*PERICD/NK) § K= 8

COLUMNS 1 TO 2

«67667E-01 «67667E-01
«67667E~-01 «67667E-01

ZIGENVALUES OF SI(TF)3
«13533 1Y
.36908E-09 00

CONSTAN DIAGONAL SYSTEM MATRIX AFTER TRANSFORMATION !

'100000 Je
-10.860 g.

COMPLEX FORM OF EIGENVECTORS OF MATRIX SI AT TIME TF3

COLUMNS 1 TO 2

1.000¢C -1.00G0



0. 0.

i1.0000 1.0040
0. g.

REAL FORM OF cIGEN-VECTORS OF MATRIX SI AT TIME TF

COLUMNS 1 TO 2
100000 ‘1.0000

1.G0000 1.0000

INVERSE OF MATRIX P AT TIME K*PERIOO/NKS K= 1

COLUMNS 1 70 2

1.2524 -1.2093
1.2524 1.2093
MATRIX Ps3

COLUMNS 1 TO0 2

039923 39923
‘0413“5 0“13“5



INVERSE OF MATRIX P AT TIME K*PERIOD/NKS K= 2

COLUMNS 1 TO 2

1.3748 -1,2818
1.3748 1.2818
MATRIX P3

COLUMNS 1 T0 2
« 36369 «36369

-o39007 039007

INVERSE OF MATRIX P AT TIME K*PERIOD/NK3 K= 3

COLUMNS 1 TO 2

10252“ ‘09Q219
1.2524 «94219
MATRIX P32

COLUMNS 1 TO 2

¢« 39923 + 39923
'o53068 053068



INVERSE OF MATRIX P AT TIME K*PERIOD/NKS: K= &

COLUMNS 1 TO 2

1.6G00 -+57364
1.0000 573064
MATRIX P

COLUMNS 1 70 2
«500080 «50000

-« 87163 87163

INVERSE OF MATRIX P AT TIME K*PERIOD/NK3 K= 5

COLUMNS 1 TO 2

0798‘45 ‘069026
e 79845 +63026
MATEIX Pt

COLUMNS 1 TO 2

562621 62621
-o 72437 e T2L37



INVERSE OF MATRIX P AT TIME K*PERIOCD/NKS

COLUMNS 1 70 2

072738 ‘066208
e 72738 66208
MATRIX P3

COLUMNS 1 TO 2

68740 «58740
e 75520 + 75520

INVERSE OF MATRIX P AT TIME K*PERIOD/NKS

COLUMNS 1 7O 2

079845 ‘080337
e 79845 +80337
MATRIX Pt

COLUMNS 1t TO 2

e 62621 62621

K=

6

K= 7
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-+ 62238 652238

INVERSE OF MATRIX P AT TIME K*PERIOOD/NKS K=

COLUMNS 1 TO 2

1.0080 -1.00040
1.,08600 1.0000
MATRIX Pt

COLUMNS 1 TO 2

«500G00 +50000

=.50000 »50000

CONSTATN PART OF MATEIX 83

COLUMNS 1 TO ¢

0.

1.6000

MATRIX Q¢

COLUMNS 1 70 1

8

56



1.40600

PRODUCT OF P*3*Q*(TRASPOSE OF
P*B%Q*(TRANS, OF (P*8))) FOR K= 1
COLUMNS 1 TO 2
+15938 «16506
«16506 « 17094
P*8*Q*(TRANS. OF (P*3))) FOR K= 2
COLUMNS 1 TO 2
.13227 14186
.14186 .15215
P*B*Q¥(TRANS. OF (P*8))) FOR K= 3
COLUMNS 1 TO 2
.15938 .21186

«2118¢ . «281 €2

P*B*Q*(TRANS. OF (P*B))) FOR K= &4

(P*8))
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COLUMNS 1 TO 2
« 25000 43582
e 43582 ¢« 759375
P*B8*Q*(TRANS. OF (P*8))) FOR K= 5

COLUMNS 1 TO0 2

e 39214 45361

o 45361 52471
P*B*Q¥(TRANS. OF (P*8))) FOR

COLUMNS 1 TO 2
e 47252 51913
¢ 51913 57033

P*3%Q¥(TRANS,

OF (P*B))) FOR

COLUMNS 1 TO0 2
«39214 «38974
« 38374 « 38735

P+#3*Q*(TRANS.

OF (P*B))) FOR

K= 6

K= 7

K= 8

58



COLUMNS 1 TO 2

«25000 +25000

254500 + 25000

CONSTANT PART OF MATRIX Ct

COLUMNS 1 TO 2

1.8000 1.0000

PRODUCT OF C*(INV. OF P)

(C*(INVe OF P)) FOR K 1

COLUMNS 1 TO 2

(C* {INV, OF P)) FOR K 2

COLUMNS 1 TO 2

2.7496 e24372E-11

(C*(INV. OF P)) FOR K 3



COLUMNS

2.5048

(C*(INV,

COLUMNS

2,0600

(C*(INV.

COLUMNS

1.59369

(C*(INV,

COLUMNS

1.4548

(C* (INV.

COLUMNS

1170 2

e 24485E-10

OF P)) FOR K &

1 T0 2

«23116E-09

OF P)) FOR K 5

170 2

«27933E-08

OF P)) FOR K 6

170 2

«15822E-07

OF P)) FOR K 7

1710 2

60



1.5969 +318b4E-06

(C*(INV, OF P)) FOR K 8

COLUMNS 1 TO 2

2.0000 «36097E-05
FOURIER COEFFICIENTS OF P*B*Q*(TRANSP SE OFP+¥#3))

FORFREQUENCY NO, - 0

COLUMNS 1 70 2

27598 » 32088
0 L ] a ] .
32588 38711
Go 0.

FORFREQUENCY NOo. - 1

COLUMNS 1 TOo 2

~o43397E-07 -.33009c-01
«83678E-01 «88384E-01

~+33009E~01 -.85642E-01
«88384E-01 «92886c-01



FORFREQUENCY NOe = 2
COLUNNS 1 TO 2

-¢13099E=-01 ¢« 31033E-02
=e96232E-07 =-.21334E-02

«31033E-02 »35908E=-01
=e21334E-02 ~=433344c-02

FCRFREQUENCY NOeo = 3
COLUMNS 1 70 2

e63310E-G7 =.13445E-01
-¢13852E-G2 =-.59312E-02

=e13445E-01 =oJ417°cE-01
=e¢59312E-02 =-.11657E-01

FCRFREQUENCY NO. = &4
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COLUMNS 1

«21807E-03
-e17200E-14

«15817E-01
-+ 21581E-14

T0 2

015817z-01
-+21581E-14

+45351£-01
-+¢28052E-14

FORFREQUENCY NO. = 5

COLUNNS 1t

«5331G0E-07
¢« 13852E-02

- 13445E-01

«59312E-02

Te 2

-e13445E-01
+59312E=-02

-el4 1734E-01
«11657E-01

FORFREQUENCY NO. - 6

COLUMNS 1

-+13099€-01
¢ 96232E-07

e 31033E=-02
021334£-02

To 2

.31033E-02
. 21334E-02

«35303E~-01
e33344c-02
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FCRFREQUENCY NO. =~ 7

COLUMNS 1 TO0 2

-+ 43397E-07 -.33009E-01
-+83678E-01 =~.88384E-01

-« 33009E-01 -.85642E-01
~+88384E-01 -.92886E-01

FORFREQUENCY NO. - 8

COLUMNS 1 TO 2

«27598 « 32088
“e13737E-13 =.15310E-13

« 32088 «38711
-+15310E-13 =-.17528c-13

FCURIER CCEFFICIZNTS OF C*(INV.

FORFREQUENCY NO. - 0

COLUMNS 1 TO 2

OF F)
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o 00

FORFREQUENCY NOe. - 1

COLUMNS 1 TO 2

-+ 45283E-06 «47910E-06
-¢ 32236 «303865-07

FORFREQUENCY NO. = 2

CCLUMNS 1 TO 2

=+e25544E-01 e449327z-06
«21724E-06 e39484E-07

FORFREQUENCY NO. = 3

COLUMNS 1 TO 2

=¢52915E-U6 «423272-06
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«13542E=-02 2+ 26431E=-07

FORFREQUENCY NO., = &

COLUMNS 1 TO0 2

«10796E-03 +41304E-06
-o 45974E-14 -,10956E-19
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PROGRAM¥ FOURIER

REAL M(19,19) 4 MINV(19,19)

DIMENSIOM P(19419,90) s TEM(19,419) WK (4O)
COMMON/PIN/PINVSI(19,19,90)

COMMON/BC/ TEMINV(19,19)

COMMON/SYSMT/ AC(19,19),ASR(19),ASI(19),EASR(19) ,EASI(19)
+9AT(19419) yMyMINV,OMGA 4 IDEPR

COMPLEX T14T240W(19)42(19419)4FC(19419,014) 4PC(19,19,088)
CHARACTER LABLE¥52.LABLE2*4G.LABLE3*26yLABLEL*23y NAME*7
DATA LABLE/* INVERSE OF MATRIX P AT TIME K*PERIOD/NKS Kz===2/
DATA LABLEZ2/+ P*B*Q*(TRANSe CF (P*B))) FOR Kze==2/

DATA LABLE3/* (C*(INVe OF P)) FOR K==t/

DATA LABLE4/9 FORFREQUENCY NOos ==t/

DATA 1ID/19/

IDVICE=6

PRINT*,4¢ WHAT IS THE NAME OF YOUR DATA-FILE (<7 LETTERS)®*
READ®* 4 NAME

OPEN(SFILE=NAME)

REWIND 5

PRINT*4¢ DO YOU WANT 0) NO OUTPUT®
PRINT*4¢ 1) PARTIAL OUTPUT*
PRINT*,¢ 2) COMPLETE OUTPUTe

READ* s IODEPR

IF(IDEPRNECO) THEN

PRINT®*,*
+ L )

PRINT*,¢ FrevreXx¥YOUR DEBUGUNCG OUTPUT FILE IS 2DEBUGFz¥**¥¥x¥¥xy
PRINT*,4¢

L L

OPEN(IOVICELFILE=+DEBUGF*)

REWIND ICVICE

ENDIF

C I ZE X RS EI RS R RS2 RS2 RS R RS R AT R R R R R R R R I R R Y R P ¥ Y Y Y R YRR Y Y N NN YN YY)

L9



10

NK=NOe. OF TIME StGMENT<=16

TFSPERIOD PEIOCIC SYSe UNDER CGNSIDERATION
NSORDER OF SYSTEM

M NPTt NO. OF INPUTS.

NOTPTt NO. OF CUTPUTS.

ERRS SEE CORRESPCONDING SUBROUTINES
TOSSTART TIME

sNeoNeNoNoNoNoNoNoN ol

IR X RS RS R XL R RS X RS R R R RS S R R R R R R R RS RS PR R R RS R RN RN YR EE B R W R IR

READ{54%) NyNINPToNOTPT 4OMGA,LITV
PRINT*,2 *
PRINT*,¢ NUMBER OF HARPFONICS IM FOURIER SERIESS? NH(<5)=¢
READ¥* ¢ NH
PRINT#*,¢ *
PRINT#*,4¢ ACCEPTED TERMINATICOM ERROR} ERR=+
READ*, ERR
PRINT#*,¢ *
T0=0.
PI=ATAN(1,) %4,
TF=2.%P1/0MGA
READ(S54%) ((AGC(I4J)eJd=14N) yI=14N)
DO 10 I=14N

DO 10 J=1,N

TEM(I9J)=AC(I,0)

CONMNTINUE

A XX R RIS R IR RIS RS R R R IS R R R R R R RS R R S S R R PR Yy R P R N P RS P YR TN Y YRy

EIGENVALUES OF AGC ARE STORED IN ASR(I) A ASI(I)
MODAL MATRIX OF AC IS STCRED IN M(IyJ)
INVERS OF MOOAL MATRIX OF AC IS STORED IN MINV(I,J)

OCOOO0O0

89



15

20

30

R IR T Ty Ty Y Y Y YT YR YT YR TY T P Y R TY T Y YT PRI paprpepegegepespegegeyegepegegegegegogs
CALL EIGRF(TEMoNsID9y1,yWeyZsI0WKeIER)
IF(IER.GT.0) THEN
WRITE(IODVICE,1200) IER
GO TO 9999
END IF
DO 20 J=1,4N
STR=0.0
DO 15 I=1,N
SA=CABS(Z(1I, 1))
IF(SA«GT.STR) THEN
STR=SA
IK=I
ENDIF
CONTINUE
T1=Z2(1IKyJ)
DO 20 I=1,N
Z(I4J)=Z(TI4J) /T8
CONT INUE
AR R AL RIS 2SR R R 2 R Y Ty Y Yy Yy Y R Y Y Y Y Y PR R R T PR ey pgegpegs
C
C
C THE SPECTRUM NORM IS USED TO SEE IF ANY EIGINVAUE OF AD IS CCMPLEX
C
c
LRI ET TR TR AT Y Y R Y Y Y Y Y Y P P P P P SRR g gegegugegegegegugegegn
FMAX=040 '
DO 30 I=14N
ASRCIV=REAL(WII))
ASI(IN=AIMAG(W(I))
IFCABSCASI(I)) GT FMAX) FMAX=ABS(ASI(I))
CONTINUE
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50

60

70

NK=TF*FMAX/PI+1

NKT=2*NH

IF(NKoLTNKT) NK=NKT

PRINT*,¢ NUMBER OF THE TIME SEGMENTSSINK IS CHOSEN=t,NK
PRINT*,¢ ENTER ZERO(O0) IF YCU DO NOT WANT TO CHANGE®
PRINT® ¢ OR ENTER YOUR DESIRED NUMBER. YOUR CHOICE*
READ* 4 NKT '

PRINT®*42 .

IF(IDEPR.NE.O) THEN
WRITE(IDVICEy1100) NoNINPT oNGTPT 4NKyOMGA,LERR
WRITE(IOVICEy* (220 22,/ /02 NH=%*¢,1247/7)%) NH
CALL RPRINT(+0*,IDVICE,* MATRIX ACS CNSTANT PART OF SYSTEM MATRI
tX2*4NyN4AC)
CALL CPRINT(+02,IDVICE,* COMPLEX FORM OF EIGENVECTORS OF MATRI
+X ACte4NyN,s2)
WRITEC(IDVICE+»1300) (W(I)yI=1,4N)
ENDIF
J=1
IF(ASI(J)sNE«Ds) THEN
DO 60 K=14N
TEMINV(KyJ)=REAL(Z(KyJ))
TEMINV(KyJ#1)=AIMAG(Z(K,yJ))
J=J+2
ELSE
DO 70 K=14N
TEMINV(KyJ)=REAL(Z(K,J))
J=Jd+1
ENDIF
IF(J.LE«N) GO TO 50
IF(IDEPRWNELO) THEN
CALL RPRINT(+0*,IDVICE,* REAL FORME OF EIGENVECTORS CF AC+*

0L



90

100
110

+9NeNTEMINV)

ENOIF

DO 90 I=14,N

DO 99 J=1,N
MUIyJ)I=STEMINVI(I,LJ)

CALL LINVIF(TEMINVINoJIDoTEMy69HK,IER)

IF (IER.GT.0) THEN

WRITE(IDVICE,1400) IER

G0 TO 9999

END IF

IF(IDEPR.NELO) THEN

CALL RPRINT(*0+,IDVICEs* INVERSE OF MATRIX OF EIGENVALUES OF AC~*
+teNoNL,TEM)

ENDIF

DO 100 I=1,N

DO 100 J=1,N

MINV(IZJ)=TEM(I,4J)

CALL SIMAT(TO.TF oNyNKyERRyIDL,IDVICEsITV, ICH)

IF(ICH.EQ. 100) GO TO 9999

R I X2 RN S Y Y Y Y Iy Yy Ry Y Y Y Y Y Y TP Y Y Py Ty
C

C

C *PINVSI®IUSED TO STOR *SI* MATRIX(FUNDUMENTAL MATRIX OF THE SYSTEM)

C AT THIS POINTL.IT IS PERMANENT STORAGE FOR *P+ CALCULATED LATER

C *ASR+,+ASI+* ARE REAL AND IMAGINMARY PARTS OF EIGINVALUES OF *A*e,
CeA%e, IS CONSTANT SYSTEM MATRIX CALGCULATED ACCORDING TO THE FLOQUE TEORY?!
C *EXP(A)=SI+ + DIAGNALIZED FORM OF #SI+ AT TIME 