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Iterative algorithms are simple yet efficient in solving large-scale optimization prob-

lems in practice. With a surge in the amount of data in past decades, these meth-

ods have become increasingly important in many application areas including ma-

trix/tensor recovery, deep learning, data mining, and reinforcement learning. To

optimize or improve iterative algorithms, it is crucial to understand how to charac-

terize their performance. Existing works in the literature offer bounds (including

global) on the convergence rate of such algorithms. In most cases, a general global

convergence analysis tends to produce conservative convergence rate estimates.

In contrast, exact rate analysis predicts accurately the behavior of iterative algo-

rithms in practice. In this dissertation, the goal is to develop a unified framework,

with theoretical foundations, to aid the derivation of sharp convergence results for

iterative algorithms in machine learning and signal processing (MLSP) problems.



By viewing iterative methods as fixed-point iterations, the existing powerful tools

in fixed-point theory are utilized to study their asymptotic convergence. Via the

linear approximation of the fixed-point operator around the solution, the proposed

approach provides the following key results in convergence analysis: sufficient con-

ditions for local linear convergence, the exact linear rate of convergence, and the

number of iterations required to reach certain accuracy. A collection of fundamen-

tal MLSP problems are examined to demonstrate the applicability of the proposed

framework. In certain problems, such as matrix completion, the novel insight into

the local convergence behavior furthers our understanding of the problem and es-

tablishes intriguing connections with existing convergence results in the literature.

Finally, the dissertation discusses practical methods to obtain the optimal rate of

convergence and acceleration techniques that exploit the closed-form expressions
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Chapter 1: Introduction

1.1 Iterative Algorithms in Machine Learning and Signal Processing

In the era of big data, machine learning and signal processing problems have

become increasingly complex. They are often characterized by non-convex ge-

ometry, structural constraints, and extremely high dimensions. Representative

examples include, but not limited to, sparse recovery [34, 58, 148], matrix comple-

tion [33,42,44], and phase retrieval [32, 183].

• Sparse recovery: Sparse recovery is a classical problem in signal process-

ing in which we wish to acquire and reconstruct a signal efficiently from

a series of sampling measurements. In particular, given an n-dimensional

signal x that admits sparse/compressible representation either in original

domain or in some transform domains (e.g., Fourier transform, cosine trans-

form, wavelet transform), we observe a compressive measurement y of x via

an m × n sensing matrix Φ: y ≈ Φx. Here, the number of measurements

taken is much smaller than the length of the input signal, i.e., m ≪ n.

With the introduction of compressed sensing theory [36, 58], the sparsity of

x can be exploited to recover x from far fewer samples than required by

the Nyquist–Shannon sampling theorem. This is particularly important in

systems where measurements are costly such as high-resolution radars [235],
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Figure 1.1: A typical setting of sparse recovery. The goal is to recover the sparse
signal from a very few number of sampling measurements.

hyper-spectral imaging [98], ECG signal processing [1], and magnetic reso-

nance imaging [163]. Figure 1.1 demonstrates a typical setup of the sparse

recovery problem. The sparse recovery problem is often formulated as an

L0-norm constrained least squares [20]:

min
x∈Rn

∥Φx− y∥22 s.t. ∥x∥0 ≤ s, (1.1)

where s is the desired sparsity of the solution. In this formulation, the

constraint set is the closed non-convex set of all n-dimensional sparse vectors

with at most s non-zero elements, denoted by Ω≤s.
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• Matrix completion: The matrix completion problem arises in many ap-

plications such as collaborative filtering [176, 188, 189, 200], system identi-

fication [136, 137, 156], and dimension reduction [31, 228]. Taking a movie

recommendation system as an example, we are interested in an m×n rating

matrix M that encodes the preference of m users for n movies (see Fig. 1.2).

While such matrix can have thousands to millions of users (rows) and movies

(columns), only a handful of the entries of M are available as users typically

rate infrequently. To provide good recommendations, it is crucial for the

system to make accurate estimates of the unknown entries of M that indi-

cate how each user likes each movie. Additionally, it is reasonable to assume

that only a few factors contribute to each user preference (e.g., genre, cast,

producer, duration, country, and year). Therefore, the data matrix of all

user-ratings may be approximately low-rank. Suppose M is a rank-r that

admits a low-rank factorization M = X∗(Y ∗)⊤, where X∗ ∈ Rm×r and

Y ∗ ∈ Rn×r. The problem of recovering the unknown entries of M can be

cast as solving a non-convex optimization

min
X∈Rm×r,Y ∈Rn×r

1

2

∥∥PΩ

(
XY ⊤−M

)∥∥2
F
, (1.2)

where PΩ : Rm×n → Rm×n is the projection onto the set of matrices sup-
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Figure 1.2: A low-rank rating matrix that can be factorized based on latent features
from users and movies. The goal of matrix completion is to recover the remaining
unobserved ratings in question marks.

ported in Ω, i.e.,

[PΩ(Z)]ij =


Zij if (i, j) ∈ Ω,

0 otherwise.

• Phase retrieval: Phase retrieval is the problem of reconstructing a signal

from its Fourier magnitude. This problem arises in many areas of engineer-

ing and applied sciences, including X-ray crystallography [152], blind channel

estimation [11], optics [222], and speech recognition [170]. In such problems,

only measurements of the Fourier magnitude of the underlying signal are
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available, while the Fourier phase measurements are missing. Since simply

performing an inverse Fourier transform on magnitude measurements with-

out the phase does not recover the original signal successfully (see Fig. 1.3),

it is important to come up with algorithms that retrieve the phase from the

given magnitude measurements. Formally, phase retrieval can be formulated

as1 the problem of finding a signal x ∈ RN given its Fourier magnitude-square

measurements yi =
∣∣f⊤

i x
∣∣2, for i = 1, . . . , N , where fi is the conjugate of the

i-th column of the N -point DFT matrix, with elements ej2πin/N . In particu-

lar, we wish to solve the following least-squares problem:

min
x∈RN

N∑
i=1

(
yi −

∣∣f⊤
i x
∣∣2)2.

In these modern applications, it is crucial to design methods that are numeri-

cally efficient, robust against noise, and comes with theoretical guarantees. While

second-order methods (e.g., Newton’s method) and those dealing with matrix vari-

ables (e.g. semidefinite programming) enjoy fast and robust convergence with typ-

ically fairly few iterations to reach the desired accuracy, they are computationally

prohibitive when the size of the problem increases quickly. On the other hand,

lightweight iterative algorithms such as gradient descent and alternating projec-

tions have gained a revived interest in large-scale problems thanks to the fact that

they are simple to implement as well as require low computational complexity per

iteration and small memory storage. Due to the non-convexity in the objective

1Here, we focus on the discretized one-dimensional (1D) setting.
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Figure 1.3: An illustration of how the Fourier phase affects image recovery with
Fourier transform (reproduction of Fig. 2 in [183]).

functions or the constraints, these problems were initially approached via con-

vex relaxation techniques that are backed by rigorous convergence guarantees for

first-order optimization methods [27, 30, 33]. However, researchers soon realized

that in practice, the performance of this approach is worse than directly solving

the original non-convex problems using first-order methods. Henceforth, there has

recently been a shift in focus towards provable and scalable non-convex optimiza-

tion with representative examples including projected gradient descent, alternating

minimizing, and alternating projections.
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1.1.1 Iterative Hard Thresholding for Sparse Recovery

The iterative hard thresholding (IHT) algorithm for solving (1.1), which is essen-

tially non-convex projected gradient descent, is based on the following update [20]:

x(k+1) = PΩ≤s

(
x(k) − ηΦ⊤(Φx(k) − y)

)
, (1.3)

where PΩ≤s
: Rn → Rn is the orthogonal projection onto Ω≤s. As in [20], PΩ≤s

is

defined as a non-linear operator that only retains the s coefficients with the largest

magnitude:

[PΩ≤s
(z)]i =


0 if |zi| < τ,

zi if |zi| ≥ τ,

where τ is set to the smallest magnitude of the s entries in z with largest absolute

values. If less than s values are non-zero, we define τ to be the smallest absolute

value of the non-zero coefficient.

1.1.2 Factorization-Based Gradient Descent for Matrix Completion

Starting from some guess (X(0),Y (0)), the gradient descent algorithm simply up-

dates the values of (X,Y ) by taking steps proportional to the negative of the



8

gradients with respect to each variable:

X(k+1) = X(k) − ηPΩ

(
X(k)Y (k)⊤−M

)
Y (k),

Y (k+1) = Y (k) − ηPΩ

(
X(k)Y (k)⊤−M

)⊤
X(k), (1.4)

where η > 0 is the step size.

1.1.3 Alternating Projections for Phase Retrieval

One early approach to phase retrieval is alternating projections, first introduced

by Gerchberg and Saxton [78] in 1972. Since the solution must satisfy both the

Fourier magnitude constraints and the time domain constraints (e.g., real-valued

signals), it can be viewed as the intersection between a convex set (for the time

domain constraints) and a non-convex set (for the Fourier magnitude constraints).

Thus, the authors proposed to iteratively impose the two set of constraints using

projections:

1. Compute the DFT of x(k): z(k+1) = Fx(k) and impose the Fourier magnitude

constraints ẑ(k+1)(i) = z(k+1)(i)

|z(k+1)(i)|
√
yi.

2. Compute the inverse DFT of ẑ(k+1): x̂(k+1) = F−1ẑ(k+1) and impose the

time-domain constraints, e.g., x(k+1) = Re(x̂(k+1)).

More concisely, each iteration of this method can be rewritten as

x(k+1) = PT

(
F−1PF (Fx(k))

)
, (1.5)
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where PT and PF are the projections onto the time-domain constraints and the

Fourier magnitude constraints, respectively.

1.2 Iterative Algorithms as Fixed-Point Iterations

This dissertation studies the convergence of iterative algorithms as fixed-point it-

erations, drawing the connection to fixed-point theory for the analysis and design

of efficient methods in machine learning and signal processing. More specifically,

we represent each update in algorithms like gradient descent and alternating pro-

jections as a fixed-point equation of form

x(k+1) = F(x(k)), (1.6)

and the convergence of the sequence x(k) can be characterized by the contraction

properties and the fixed-points of the operator F .

• Projected gradient descent: The IHT update in (1.3) can be viewed as a

fixed-point iteration where F(x) = PΩ≤s

(
x−ηΦ⊤(Φx−y)

)
is a non-smooth

non-convex function due to the projection PΩ≤s
. More generally, we note that

many gradient projection based methods can be analyzed under the frame-

work of fixed-point theory, including the singular value projection algorithm

for matrix completion [104], the projected gradient descent for unit-modulus

least squares in beamforming [206], and the Landweber iteration for solving

ill-posed linear inverse problems [48]. In minimizing a differentiable function
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f over the constraint set C, the projected gradient descent update is given

by

x(k+1) = PC
(
x(k) − η∇f(x(k))

)
,

where η > 0 is the step size.

• Gradient descent and its variants: The gradient descent update in (1.4)

can be viewed as a fixed-point iteration where

F(Z) =

X − ηPΩ(XY ⊤−M )Y

Y − ηPΩ(XY ⊤−M )⊤X

 , for Z =

X
Y

 ,

is a smooth non-convex function with respect to Z. This view also applied to

other contexts such as theWirtinger flow algorithm for phase retrieval [32]. In

convex optimization, the fixed-point view of gradient descent and its variants

has been studied by Jung [113].

• Alternating projections: The alternating projection update in (1.5) can

be viewed as a fixed-point iteration where F(x) = PT

(
F−1PF (Fx)

)
is a

smooth non-convex function due to the projection PF . Similarly, the same

perspective can be applied to alternating projections of form

x(k+1) = PC1
(
. . .PCm(x

(k))
)
,

where C1, . . . , Cm are the constraint sets and PC1 , . . . ,PCm are the correspond-
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ing projections onto them. Such update arises naturally in other problems

such as matrix completion [46], color plane interpolation [84], and source

localization [238].

By the fixed-point theorem [121], if the Jacobian of F is bounded uniformly,

in some natural matrix norm, by ρ ∈ (0, 1), the sequence x(k) generated by (1.6)

converges linearly to a fixed-point x∗ of F at rate ρk ≤ ρ:

∥∥x(l+1) − x∗∥∥ ≤ ρk
∥∥x(l) − x∗∥∥ for l = k, k + 1, . . .

Furthermore, as the iterates converge, ρk approaches ρ(JF(x
∗)), the spectral ra-

dius of the Jacobian matrix at the fixed point. It is interesting here to emphasize

that such fixed-point results are powerful tools to study the convergence of itera-

tive algorithms in MLSP, especially the asymptotic convergence with exact linear

rate. However, little research for convergence of iterative algorithms in the MLSP

literature has been done in this direction. To further motivate our interpretation

of iterative algorithms as fixed-point iterations, let us briefly review the existing

convergence results for iterative algorithms.

1.3 Asymptotic Convergence of Iterative Algorithms

From a theoretical point of view, convergence properties of iterative algorithms

have long been studied. These properties involve two key aspects: the quality of

convergent points and the speed of convergence. On the one hand, the quality
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of convergent points provides useful insights into when the algorithm converges,

whether it converges to a global/local optimum or a stationary/critical point, and

how (far) the objective function at the convergent point compares to the optimal

objective value. On the other hand, the speed of convergence concerns the order of

convergence, the rate of convergence, and the number of iterations required to ob-

tain sufficiently small errors. In this dissertation, the focus is on the second aspect

that measures the efficiency of iterative algorithms, in particular, the asymptotic

rate of convergence. To better understand the concept of convergence rate, con-

sider gradient descent as one representative of iterative algorithms. In order to

minimize a differentiable function f : Rn → R, the algorithm, starting from some

initial guess x(0), performs the following iterative update

x(k+1) = x(k) − η∇f(x(k)), (1.7)

where η > 0 is the step size (a.k.a, the learning rate). Assume {x(k)}∞k=0 converges

to x∗. Then, the convergence of {x(k)}∞k=0 to x∗ is said to be at rate µ if there

exists a bounding sequence {ϵk}∞k=0 such that
∥∥x(k) − x∗

∥∥
2
≤ ϵk for all k and

limk→∞ ϵk+1/ϵk = µ. The asymptotic rate of convergence of gradient descent to x∗,

denoted by ρ, is defined by the worst-case rate of convergence among all possible

sequences {x(k)}∞k=0 that are generated by (1.7) and converge to x∗, i.e., ρ =

sup{x(k)}∞k=0
µ. Depending on the value of ρ in the interval [0, 1], the convergence

is said to be sublinear (ρ = 1), linear (0 < ρ < 1) or superlinear (ρ = 0). It is

straightforward that the lower the value of ρ is, the faster the speed of convergence
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is; and typically fewer iterations are necessary to obtain a close approximation of

the solution. Thus, analytical estimation of the convergence rate plays a pivotal

role in convergence analysis.

In analyzing the convergence of iterative methods, it is common to study the

convergence to a global solution of the problem. Via assumptions on the strong

convexity and the smoothness of the problem, this approach primarily focuses on

the quality of convergent points (global versus local) and the order of convergence.

It provides a universal upper bound on the error reduction at each k-th iteration,

which holds for both the asymptotic (k → ∞) and non-asymptotic (small k) con-

vergence regime [12, 16, 24, 103, 160]. The disadvantage of this analysis, however,

is that it often underestimate the asymptotic rate due to the conservative nature

of the employed bounding techniques. A lesser-known approach to convergence

rate analysis is to establish the exact asymptotic rate of convergence by exploiting

the local structure of the problem. By focusing on the local behavior of iterative

algorithms near the solution, this approach offers sharper results on the conver-

gence rate, particularly in the case of non-quadratic objectives. Dating back to

the 1960s, there are two major methods for asymptotic convergence rate analy-

sis. The first method was proposed by Polyak in [167], based on his earlier study

into nonlinear difference equations [166]. The key ideas in this approach are the

extension of the mean value theorem to vector-valued functions and the stability

of difference equations. The second method for asymptotic convergence rate anal-

ysis was developed by Daniel [51] in 1967, while studying gradient descent with

exact line search, i.e., choosing η that minimizes the objective at each iteration.
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Utilizing the Kantorovich inequality [114], the author proved a similar result on

convergence characteristics that are close to those inherent for quadratics are ex-

ploited through the Hessian ∇2f(x∗). The same technique was then extended to

study the asymptotic convergence of projected gradient descent for constrained

optimization [71,132,139].

Apart from the asymptotic convergence rate, one would also be interested in

the region of convergence and the number of iterations needed to reach certain

accuracy. Both of the existing methods, nonetheless, do not provide further result

on these aspects of convergence. Moreover, to the best of our knowledge, there

has been no extension of Polyak’s method to the case of projected gradient descent

(with fixed step size scheme), and vice versa, there has been no extension of Daniel’s

method beyond the exact line search scheme.

1.4 Focus Areas

1.4.1 Asymptotic Convergence Analysis

Motivated by the fixed-point view of iterative algorithms, this dissertation aims to

develop a unified framework to study their asymptotic convergence, namely, the

convergence rate, the region of convergence, and the number of required iterations.

Differently from Polyak’s approach to the stability of non-linear difference equation

in [166], we approximate the fixed-point function (locally) by the following first-
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order difference equation

δ(k+1) = T (δ(k)) + q(δ(k)), (1.8)

where δ(k) = x(k) − x∗ is the residual at the k-th iteration, T is a linear op-

erator that acts as a contraction mapping on δ, and q : Rn → Rn satisfies

lim∥δ∥→0 ∥q(δ)∥2 / ∥δ∥
2
2 < ∞. By carefully examining the stability of the system

dynamic (1.8), the fundamental requirements to achieve the local linear conver-

gence rate can be identified. The methodology applies to both gradient descent

and projected gradient descent with fixed step sizes, as well as iterative algorithms

whose updates can be represented as fixed-point iterations, e.g., alternating projec-

tions. This author hopes that the proposed framework will be used by researchers

in the area of MLSP as a general recipe to quickly derive sharp convergence re-

sults for their specific problems. A collection of fundamental statistical estimation

problems will also be examined to demonstrate the applicability of the proposed

framework. In some of the applications, the novel insight into the local convergence

reveals interesting connections to existing results in relevant areas such as global

convergence analysis, random matrix theory, perturbation theory, and differential

geometry.
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1.4.2 Acceleration Techniques

Another contribution of this dissertation is that the insight into asymptotic conver-

gence analysis can be used to develop variants that enjoy faster convergence while

remain the same computational complexity per iteration. The simplest approach

is to select the optimal step size based on the closed-form expression of the local

convergence rate obtained by the proposed framework. Such selection can be used

as a benchmark against practical schemes with adaptive step size like backtracking

line search. In a more elaborated approach, acceleration techniques such as the

Heavy-Ball method and Nesterov’s accelerated gradient have been introduced in

optimization literature as well as have been using widely in practice. However,

with the fixed-point view of iterative algorithms, these techniques arise naturally

via exploiting leveraging the well-known results in fixed-point theory [181, 221].

Moreover, based on the convergence analysis of the plain algorithm, one can eas-

ily design the accelerated variant with optimal parameters (e.g., momentum step

size).

The chapters of this dissertation follow our published work or work under

review. For the ease of the readers, the chapters are self-contained, following

closely the corresponding publication/manuscript. An overview of the dissertation

is shown in Fig. 1.4. The rest of this document is organized as follows. Chapter 2

introduces a closed-form bound on the convergence of iterative methods via fixed

point analysis. This serves as a mathematical tool for the subsequence analysis of

convergence, establishing the expressions of the convergence rate, region of conver-
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gence, and the number of required iterations to reach certain accuracy. Chapter 3

presents a unified framework to study the local linear convergence of projected

gradient descent in the general context of constrained least squares. Then, the

application of the proposed framework is demonstrated for the following problems:

minimizing a quadratic over a sphere (Chapter 4), unit-modulus constrained least

squares (Chapter 5), and low-rank matrix completion (Chapter 7). Focusing on

the latter problem, we present a handful of analytical results on the rank-r projec-

tion operator (Chapter 6), the extreme eigenvalues of random matrices, and their

connections to the asymptotic convergence of iterative hard thresholding for ma-

trix completion. We also demonstrate some acceleration techniques for IHT that

can used to exploit the asymptotic convergence results and obtain the optimal

convergence in practice (Chapters 8 and 9). Another method for matrix comple-

tion, gradient descent for the factorization-based formulation, is also analyzed in

Chapter 10 under the view of fixed-point iterations. Chapter 11 concludes the

technical part of the dissertation with the study of an adaptive step size schedule

for momentum methods in deconvolution applications. Finally, Chapter 12 sum-

marizes the contribution of the dissertation and discusses potential directions for

future work.
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Chapter 2: A Closed-Form Bound on the Asymptotic Linear

Convergence of Iterative Methods via Fixed Point Analysis1

In many iterative optimization methods, fixed-point theory enables the analysis of

the convergence rate via the contraction factor associated with the linear approxi-

mation of the fixed-point operator. While this factor characterizes the asymptotic

linear rate of convergence, it does not explain the non-linear behavior of these

algorithms in the non-asymptotic regime. In this chapter, we take into account

the effect of the first-order approximation error and present a closed-form bound

on the convergence in terms of the number of iterations required for the distance

between the iterate and the limit point to reach an arbitrarily small fraction of the

initial distance. Our bound includes two terms: one corresponds to the number

of iterations required for the linearized version of the fixed-point operator and the

other corresponds to the overhead associated with the approximation error. With

a focus on the convergence in the scalar case, the tightness of the proposed bound

is proven for positively quadratic first-order difference equations.

1This work has been published as: Trung Vu and Raviv Raich. “A Closed-Form Bound on the

Asymptotic Linear Convergence of Iterative Methods via Fixed Point Analysis.” Optimization

Letters, vol. 1, pp. 1-14, 2022.
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2.1 Introduction

Many iterative optimization methods, such as gradient descent and alternating

projections, can be interpreted as fixed-point iterations [113, 166, 181, 221]. Such

methods consist of the construction of a series {x(k)}∞k=0 ⊂ Rn generated by

x(k+1) = F(x(k)), (2.1)

where the fixed-point operator F is an endomorphism on Rn. By the fixed-point

theorem [9,25,121], if the Jacobian of F is bounded uniformly, in the matrix norm

∥·∥2 induced by the Euclidean norm for vectors ∥·∥, by ρ ∈ (0, 1), the sequence

{x(k)}∞k=0 generated by (2.1) converges locally to a fixed-point x∗ of F at a linear

rate ρ, i.e.,
∥∥x(k+1) − x∗

∥∥ ≤ ρ
∥∥x(k) − x∗

∥∥ for all integer k.2 Assume that F is

differentiable at x∗ and admits the first-order expansion [178]

F(x(k)) = F(x∗) + T (x(k) − x∗) + q(x(k) − x∗),

where T : Rn → Rn is the derivative of F at x∗ and q : Rn → Rn is the resid-

ual satisfying lim supδ→0 ∥q(δ)∥ / ∥δ∥ = 0. Then, denoting the error at the k-th

iteration as δ(k) = x(k) − x∗, the fixed-point iteration (2.1) can be viewed as a

non-linear but approximately linear difference equation

δ(k+1) = T (δ(k)) + q(δ(k)). (2.2)

2∥·∥ denotes the Euclidean norm.
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The stability of non-linear difference equations of form (2.2) has been studied by

Polyak [166] in 1964, extending the result from the continuous domain [14]. In

particular, the author showed that if the spectral radius of T , denoted by ρ(T ), is

strictly less than 1, then for arbitrarily small ζ > 0, there exists a constant C(ζ)

such that
∥∥δ(k)

∥∥ ≤ C(ζ)
∥∥δ(0)

∥∥ (ρ(T ) + ζ)k with sufficiently small
∥∥δ(0)

∥∥. While

this result characterizes the asymptotic linear convergence of (2.2), it does not

specify the exact conditions on how small
∥∥δ(0)

∥∥ is as well as how large the factor

C(ζ) is.

This chapter develops a more elaborate approach to analyze the convergence

of (2.2) that offers, in addition to the asymptotic linear rate ρ(T ), both the region

of convergence (i.e., a set S such that for any δ(0) ∈ S we have limk→∞
∥∥δ(k)

∥∥ = 0)

and a tight closed-form bound on H(ϵ) defined as the smallest integer guaranteeing∥∥δ(k)
∥∥ ≤ ϵ

∥∥δ(0)
∥∥ for 0 < ϵ < 1 and all k ≥ H(ϵ). We begin with the scalar version

of (2.2) in which the residual term q(δ) is replaced with an exact quadratic function

of δ and then extend the result to the original vector case. In the first step, we

study the convergence of the sequence {ak}∞k=0 ⊂ R, generated by the following

quadratic first-order difference equation

ak+1 = ρak + qa2k, (2.3)

where a0 > 0, 0 < ρ < 1, and q ≥ 0 are real scalars. In the second step, we consider

the sequence {ak}∞k=0 obtained by (2.3) with ρ = ρ(T ) and q = supδ∈Rn
∥q(δ)∥
∥δ∥2 as an

upper bound for the sequence {
∥∥δ(k)

∥∥}∞k=0. In this chapter, we focus on the former
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step while the latter step is obtained using a more straightforward derivation.

In analyzing the convergence of {ak}∞k=0, we focus on tightly characterizing

K(ϵ) (for 0 < ϵ < 1), which is defined as the smallest integer such that ak ≤ ϵa0

for all k ≥ K(ϵ). The value of K(ϵ) serves as an upper bound on H(ϵ). When

q = 0, (2.3) becomes a linear first-order difference equation and {ak}∞k=0 converges

uniformly to 0 at a linear rate ρ. In particular, ak+1 = ρak implies ak = a0ρ
k for

any non-negative integer k. Then, for q = 0, an exact expression of K(ϵ) can be

obtained in closed-form as

K(ϵ) =
⌈ log(1/ϵ)
log(1/ρ)

⌉
. (2.4)

When q > 0, the sequence {ak}∞k=0 either converges, diverges or remains constant

depending on the initial value a0:

1. If a0 > (1− ρ)/q, then {ak}∞k=0 diverges.

2. If a0 = (1− ρ)/q, then ak = (1− ρ)/q for all k ∈ N.

3. If a0 < (1− ρ)/q, then {ak}∞k=0 converges to 0 monotonically.

We are interested in the convergence of the sequence {ak}∞k=0 for a0 < (1 − ρ)/q.

In the asymptotic regime (ak small), the convergence is almost linear since the

first-order term ρak dominates the second-order term qa2k. In the early stage (ak

large), on the other hand, the convergence is non-linear due to the strong effect of

qa2k. In addition, when ρ → 0, one would expect {ak}∞k=0 enjoys a fast quadratic

convergence as qa2k dominates ρak. On the other end of the spectrum, when ρ →
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Figure 2.1: (Left) Contour plot of the bound on asymptotic gap betweenK2(ϵ) and
K(ϵ), given in (2.8). (Right) Log-scale plot of K(ϵ) and its bounds as functions of
1/ϵ, with ρ = 0.9 and τ = 0.89. Three zoomed plots are added to the original plot
for better visualization.

1, we observe that the convergence is even slower than linear, making it more

challenging to estimate K(ϵ).

2.2 Asymptotic Convergence in the Scalar Case

In this section, we provide a tight upper bound on K(ϵ) in terms of a0, ρ, q, and

ϵ. Our bound suggests the sequence {ak}∞k=0 converges to 0 at an asymptotically

linear rate ρ with an overhead cost that depends on only two quantities: ρ and

a0q/(1− ρ). Our main result is stated as follows.

Theorem 2.1. Consider the sequence {ak}∞k=0 defined in (2.3) with a0 > 0, 0 <

ρ < 1, and q > 0. Assume that a0 < (1− ρ)/q and denote τ = a0q/(1− ρ) (where

0 < τ < 1). Then, for any 0 < ϵ < 1, the smallest integer, denoted by K(ϵ), such
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that ak ≤ ϵa0 for all k ≥ K(ϵ), can be bounded as follows

K(ϵ) ≤ log(1/ϵ)

log(1/ρ)
+ c(ρ, τ) ≜ K2(ϵ), (2.5)

where

c(ρ, τ) =
1

ρ log(1/ρ)
∆E1

(
log

1

ρ+ τ(1− ρ)
, log

1

ρ

)
+ b(ρ, τ), (2.6)

∆E1(x, y) = E1(x)− E1(y), E1(x) =
∫∞
x

e−t

t
dt is the exponential integral [2], and

b(ρ, τ) =
1

2ρ
log

(
log(1/ρ)

log
(
1/(ρ+ τ(1− ρ))

))+ 1. (2.7)

Moreover, the gap K2(ϵ)−K(ϵ) is upper-bounded asymptotically as follows3

lim
ϵ→0

(
K2(ϵ)−K(ϵ)

)
≤

∆E1

(
2 log 1

ρ+τ(1−ρ)
, 2 log 1

ρ

)
− ρ∆E1

(
log 1

ρ+τ(1−ρ)
, log 1

ρ

)
2ρ2 log(1/ρ)

+ b(ρ, τ). (2.8)

The proof of Theorem 2.1 is given in Appendix 2.5. The upper bound K2(ϵ), given

in (2.5), is the sum of two terms: (i) the first term is similar to (2.4), representing

the asymptotic linear convergence of {ak}∞k=0; (ii) the second term, c(ρ, τ), is inde-

pendent of ϵ, representing the overhead in the number of iterations caused by the

non-linear term qa2k. This overhead term is understood as the additional number

of iterations beyond the number of iterations for the linear model. As one would

3A tighter version of the upper bound K2(ϵ) is given in Appendix 2.5, cf., (2.19) and (2.21).
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expect, when a0 → (1 − ρ)/q, we have τ → 1 and c(ρ, τ) approaches infinity. On

the other hand, when τ → 0, the gap from the number of iterations required by the

linear model c(ρ, τ) approaches 1. The right hand side (RHS) of (2.8) is an upper

bound on the asymptotic gap between our proposed upper bound on K(ϵ) and the

actual value of K(ϵ) and hence represents the tightness of our bound. The value of

the bound as a function of ρ and τ is shown in Fig. 2.1 (left). It is notable that the

asymptotic gap is guaranteed to be no more than 10 iterations for a large portion

of the (ρ, τ)-space. It is particularly small in the lower right part of the figure. For

example, for ρ ≥ 0.9 and τ ≤ 0.9, the gap is no more than 4 iterations. Figure 2.1

(right) demonstrates different bounds on K(ϵ) (blue dotted line) including K2(ϵ)

(green solid line). We refer the readers to Appendix 2.5 for the details of other

bounds in the figure. We observe that the upper bound K2(ϵ) approaches K(ϵ)

as ϵ → 0, with the asymptotic gap of less than 2 iterations. On the other hand,

K2(ϵ) reaches c(ρ, τ) ≈ 25 as ϵ → 1, suggesting that the proposed bound K2(ϵ)

requires no more than 25 iterations beyond the number of iterations required by

the linear model to achieve ak ≤ ϵa0.

2.3 Extension to the Vector Case

We now consider an extension of Theorem 2.1 to the convergence analysis in the

vector case given by (2.2). More elaborate applications of the proposed analysis in

convergence analysis of iterative optimization methods can be found in [213–215,

218].
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Theorem 2.2. Consider the difference equation

δ(k+1) = Tδ(k) + q(δ(k)), (2.9)

where T ∈ Rn×n admits an eigendecomposition T = QΛQ−1, Q ∈ Rn×n is an

invertible matrix with the condition number κ(Q) = ∥Q∥2 ∥Q−1∥2, and Λ is an

n × n diagonal matrix whose entries are strictly less than 1 in magnitude. In

addition, assume that there exists a finite constant q > 0 satisfying ∥q(δ)∥ ≤ q ∥δ∥2

for any δ ∈ Rn. Then, for any 0 < ϵ < 1, we have
∥∥δ(k)

∥∥ ≤ ϵ
∥∥δ(0)

∥∥ provided that

∥∥δ(0)
∥∥ <

1− ρ(T )

qκ(Q)2
and k ≥ log(1/ϵ) + log(κ(Q))

log(1/ρ(T ))
+ c
(
ρ(T ),

qκ(Q) ∥Q∥2
∥∥Q−1δ(0)

∥∥
1− ρ(T )

)
(2.10)

where c(ρ, τ) is given in (2.6). Moreover, if T is symmetric, then (2.10) becomes

∥∥δ(0)
∥∥ <

1− ρ(T )

q
and k ≥ log(1/ϵ)

log(1/ρ(T ))
+ c
(
ρ(T ),

q
∥∥δ(0)

∥∥
1− ρ(T )

)
. (2.11)

Note that the RHS of the inequalities involving k in both (2.10) and (2.11) serve

as upper bounds to H(ϵ) defined in the introduction. Moreover, the sets of all

δ(0) that satisfy the inequality involving δ(0) in both (2.10) and (2.11) offer valid

regions of convergence. Similar to the scalar case, we observe in the number of

required iterations one term corresponding to the asymptotic linear convergence

and another term corresponding to the non-linear convergence at the early stage.

When T is asymmetric, there is an additional cost of diagonalizing T , associated
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with κ(Q) in (2.10). The proof of Theorem 2.2 is given in Appendix 2.6.

2.4 Conclusion

With a focus on fixed-point iterations, we analyzed the convergence of the sequence

generated by a quadratic first-order difference equation. We presented a bound on

the minimum number of iterations required for the distance between the iterate

and the limit point to reach an arbitrarily small fraction of the initial distance. Our

bound includes two terms: one corresponds to the number of iterations required

for the linearized difference equation and the other corresponds to the overhead

associated with the residual term. The bound for the vector case is derived based

on a tight bound obtained for the scalar quadratic difference equation. A charac-

terization of the tightness of the bound for the scalar quadratic difference equation

was introduced.

2.5 Proof of Theorem 2.1

First, we establish a sandwich inequality on K(ϵ) in the following lemma:

Lemma 2.1. For any 0 < ϵ < 1, let K(ϵ) be the smallest integer such that for all

k ≥ K(ϵ), we have ak ≤ ϵa0. Then,

K(ϵ) ≜ F
(
log(1/ϵ)

)
≤ K(ϵ) ≤ F

(
log(1/ϵ)

)
+ b(ρ, τ) ≜ K(ϵ), (2.12)
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where b(ρ, τ) is defined in (2.7) and

F (x) =

∫ x

0

f(t)dt with f(x) =
1

− log
(
ρ+ τ(1− ρ)e−x

) . (2.13)

The lemma provides an upper bound on K(ϵ). Moreover, it is a tight bound in

the sense that the gap between lower bound K(ϵ) and the upper bound K(ϵ) is

independent of ϵ. In other words, the ratio K(ϵ)/K(ϵ) approaches 1 as ϵ → 0.

Next, we proceed to obtain a tight closed-form upper bound on K(ϵ) by upper-

bounding F (log(1/ϵ)).

Lemma 2.2. Consider the function F (·) given in (2.13). For 0 < ϵ < 1, we have

F
(
log(1/ϵ)

)
≤ log(1/ϵ)

log(1/ρ)
+

∆E1

(
log 1

ρ+τ(1−ρ)
, log 1

ρ+ϵτ(1−ρ)

)
ρ log(1/ρ)

≜ F 1

(
log(1/ϵ)

)
(2.14)

≤ log(1/ϵ)

log(1/ρ)
+

∆E1

(
log 1

ρ+τ(1−ρ)
, log 1

ρ

)
ρ log(1/ρ)

≜ F 2

(
log(1/ϵ)

)
(2.15)

and

F
(
log(1/ϵ)

)
≥ F 1

(
log(1/ϵ)

)
− A(ϵ) ≜ F 1

(
log(1/ϵ)

)
, (2.16)
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where

A(ϵ) ≜
∆E1

(
2 log 1

ρ+τ(1−ρ)
, 2 log 1

ρ+τ(1−ρ)ϵ

)
− ρ∆E1

(
log 1

ρ+τ(1−ρ)
, log 1

ρ+τ(1−ρ)ϵ

)
2ρ2 log(1/ρ)

.

(2.17)

Lemma 2.2 offers two upper bounds on F (log(1/ϵ)) and one lower bound. The

first bound F 1(log(1/ϵ)) approximates well the behavior of F (log(1/ϵ)) for both

small and large values of log(1/ϵ). The second bound F 2(log(1/ϵ)) provides a

linear bound on F (log(1/ϵ)) in terms of log(1/ϵ). Moreover, the gap between

F (log(1/ϵ)) and F 1(log(1/ϵ)), given by A(ϵ), can be upper bound by A(0) since

A(·) is monotonically decreasing for ϵ ∈ [0, 1). While F (·) asymptotically increases

like log(1/ϵ)/ log(1/ρ), the gap approaches a constant independent of ϵ. Replacing

F (log(1/ϵ)) on the RHS of (2.12) by either of the upper bounds in Lemma 2.2, we

obtain two corresponding bounds on K(ϵ):

K1(ϵ) ≜ F 1

(
log(1/ϵ)

)
+ b(ρ, τ) ≤ F 2

(
log(1/ϵ)

)
+ b(ρ, τ) ≜ K2(ϵ), (2.18)

where we note that K2(ϵ) has the same expression as in (2.5). Moreover, the

tightness of these two upper bounds can be shown as follows. First, using the first

inequality in (2.12) and then the lower bound on F (log(1/ϵ)) in (2.16), the gap
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between K1(ϵ) and K(ϵ) can be bounded by

K1(ϵ)−K(ϵ) ≤ K1(ϵ)− F
(
log(1/ϵ)

)
≤ K1(ϵ)−

(
F 1

(
log(1/ϵ)

)
− A(ϵ)

)
=
(
F 1

((
log(1/ϵ)

)
+ b(ρ, τ)

)
−
(
F 1

(
log(1/ϵ)

)
− A(ϵ)

)
= A(ϵ) + b(ρ, τ)

≤ A(0) + b(ρ, τ), (2.19)

where the last inequality stems from the monotonicity of A(·) in [0, 1). Note that

the bound in (2.19) holds uniformly independent of ϵ, implying K1(ϵ) is a tight

bound on K(ϵ). Second, using (2.18), the gap between K2(ϵ) and K(ϵ) can be

represented as

K2(ϵ)−K(ϵ) =
(
K2(ϵ)−K1(ϵ)

)
+
(
K1(ϵ)−K(ϵ)

)
=
(
F 2

(
log(1/ϵ)

)
− F 1

(
log(1/ϵ)

))
+
(
K1(ϵ)−K(ϵ)

)
≤
(
F 2

(
log(1/ϵ)

)
− F 1

(
log(1/ϵ)

))
+
(
A(0) + b(ρ, τ)

)
, (2.20)

where the last inequality stems from (2.19). Furthermore, using the definition of

F 1(log(1/ϵ)) and F 2(log(1/ϵ)) in (2.14) and (2.15), respectively, we have

lim
ϵ→0

(F 2(log(1/ϵ))− F 1(log(1/ϵ))) = 0.
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Thus, taking the limit ϵ → 0 on both sides of (2.20), we obtain

lim
ϵ→0

(
K2(ϵ)−K(ϵ)

)
≤ A(0) + b(ρ, τ). (2.21)

We note that K2(ϵ) is a simple bound that is linear in terms of log(1/ϵ) and ap-

proaches the upper bound K1(ϵ) in the asymptotic regime (ϵ → 0). Evaluating

A(0) from (2.17) and substituting it back into (2.21) yields (2.8), which completes

our proof of Theorem 2.1. Figure 2.1 (right) depicts the aforementioned bounds

on K(ϵ). It can be seen from the plot that all the four bounds match the asymp-

totic rate of increment in K(ϵ) (for large values of 1/ϵ). The three bounds K(ϵ)

(red), K(ϵ) (yellow), and K1(ϵ) (purple) closely follow K(ϵ) (blue), indicating that

the integral function F (·) effectively estimates the minimum number of iterations

required to achieve ak ≤ ϵa0 in this setting. The upper bound K2(ϵ) (green) forms

a tangent to K1(ϵ) at 1/ϵ → ∞ (i.e., ϵ → 0).

2.5.1 Proof of Lemma 2.1

Let dk = log(a0/ak) for each k ∈ N. Substituting ak = a0e
−dk into (2.3), we obtain

the surrogate sequence {dk}∞k=0:

dk+1 = dk − log
(
ρ+ τ(1− ρ)e−dk

)
, (2.22)

where d0 = 0 and τ = a0q/(1 − ρ) ∈ (0, 1). Since {ak}∞k=0 is monotonically

decreasing to 0 and dk is monotonically decreasing as a function of ak, {dk}∞k=0 is a
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monotonically increasing sequence. Our key steps in this proof are first to tightly

bound the index K ∈ N using F (dK)

F (dK) ≤ K ≤ F (dK) +
1

2ρ
log

(
log ρ

log
(
ρ+ τ(1− ρ)

)) (2.23)

and then to obtain (2.12) from (2.23) using the monotonicity of the sequence

{dk}∞k=0 and of the function F (·). We proceed with the details of each of the steps

in the following.

Step 1: We prove (2.23) by showing the lower bound on K first and then showing

the upper bound on K. Using (2.13), we can rewrite (2.22) as dk+1 = dk+1/f(dk).

Rearranging this equation yields

f(dk)(dk+1 − dk) = 1. (2.24)

Since f(x) is monotonically decreasing, we obtain the lower bound on K in (2.23)

by

F (dK) =

∫ dK

0

f(x)dx =
K−1∑
k=0

∫ dk+1

dk

f(x)dx

≤
K−1∑
k=0

∫ dk+1

dk

f(dk)dx =
K−1∑
k=0

f(dk)(dk+1 − dk) = K, (2.25)

where the last equality stems from (2.24). For the upper bound on K in (2.23),
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we use the convexity of f(·) to lower-bound F (dK) as follows

F (dK) =
K−1∑
k=0

∫ dk+1

dk

f(x)dx ≥
K−1∑
k=0

∫ dk+1

dk

(
f(dk) + f ′(dk)(x− dk)

)
dx

=
K−1∑
k=0

(
f(dk)(dk+1 − dk) +

1

2
f ′(dk)(dk+1 − dk)

2
)
. (2.26)

Using (2.24) and substituting f ′(x) = −
(
f(x)

)2 τ(1−ρ)e−x

ρ+τ(1−ρ)e−x into the RHS of (2.26),

we obtain

F (dK) ≥ K − 1

2

K−1∑
k=0

τ(1− ρ)e−dk

ρ+ τ(1− ρ)e−dk
. (2.27)

Note that (2.27) already offers an upper on K in terms of F (dK). To obtain the

upper bound on K in (2.23) from (2.27), it suffices to show that

K−1∑
k=0

τ(1− ρ)e−dk

ρ+ τ(1− ρ)e−dk
≤ 1

ρ
log

(
log ρ

log
(
ρ+ τ(1− ρ)

)). (2.28)

In the following, we prove (2.28) by introducing the functions

g(x) =
τ(1− ρ)e−x

ρ+ τ(1− ρ)e−x

1

− log
(
ρ+ τ(1− ρ)e−x

) (2.29)

and

G(x) =

∫ x

0

g(t)dt = log
( log(ρ+ τ(1− ρ)e−x)

log(ρ+ τ(1− ρ))

)
. (2.30)
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Note that g(·) is monotonically decreasing (a product of two decreasing functions)

while G(·) is monotonically increasing (an integral of a non-negative function) on

[0,∞). We have

G(dK) =

∫ dK

0

g(x)dx =
K−1∑
k=0

∫ dk+1

dk

g(x)dx ≥
K−1∑
k=0

∫ dk+1

dk

g(dk+1)dx

=
K−1∑
k=0

g(dk+1)(dk+1 − dk) =
K−1∑
k=0

g(dk+1)

g(dk)
g(dk)(dk+1 − dk). (2.31)

Lemma 2.3. For any k ∈ N, we have g(dk+1)/g(dk) ≥ ρ.

Proof. For k ∈ N, let tk = ρ + τ(1 − ρ)e−dk ∈ (ρ, 1). From (2.22), we have tk =

e−(dk+1−dk) and tk+1 = ρ+τ(1−ρ)e−dk+1 = ρ+τ(1−ρ)e−dke−(dk+1−dk) = ρ+(tk−ρ)tk.

Substituting dk for x in g(x) from (2.29) and replacing ρ + τ(1 − ρ)e−dk with tk

yield g(dk) =
τ(1−ρ)e−dk

tk

1
− log(tk)

. Repeating the same process to obtain g(dk+1) and

taking the ratio between g(dk+1) and g(dk), we obtain

g(dk+1)

g(dk)
= e−(dk+1−dk)

tk
tk+1

log(tk)

log(tk+1)
. (2.32)

Substituting e−(dk+1−dk) = tk and tk+1 = ρ+ (tk − ρ)tk into (2.32) yields

g(dk+1)

g(dk)
=

t2k log(tk)

(ρ+ (tk − ρ)tk) log(ρ+ (tk − ρ)tk)
. (2.33)

We now continue to bound the ratio g(dk+1)/g(dk) by bounding the RHS. Since

tk−ρ ≥ 0 and tk < 1, we have tk−ρ > (tk−ρ)tk and hence tk/(ρ+ (tk − ρ)tk) > 1.

Thus, in order to prove g(dk+1)

g(dk)
≥ ρ from the fact that the RHS of (2.33) is greater
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or equal to ρ, it remains to show that

tk log(tk)

log
(
ρ+ (tk − ρ)tk

) ≥ ρ. (2.34)

By the concavity of log(·), it holds that log( ρ
tk
1+ tk−ρ

tk
t) ≥ ρ

tk
log(1)+ tk−ρ

tk
log(tk) =

(1 − ρ
tk
) log(tk). Adding log(tk) to both sides of the last inequality yields log(ρ +

(tk − ρ)tk) ≥ (2 − ρ
tk
) log(tk). Now using the fact that (

√
ρ/tk −

√
tk/ρ)

2 ≥ 0,

we have 2 − ρ/tk ≤ tk/ρ. By this inequality and the negativity of log(tk), we

have log(ρ + (tk − ρ)tk) ≥ tk
ρ
log(tk). Multiplying both sides by the negative

ratio ρ/ log(ρ+ (tk − ρ)tk) and adjusting the direction of the inequality yields the

inequality in (2.34), which completes our proof of the lemma.

Back to our proof of Theorem 2.1, applying Lemma 2.3 to (2.31) and substi-

tuting dk+1 − dk = − log(ρ + τ(1− ρ)e−dk) from (2.22) and g(dk) from (2.29), we

have

G(dK) ≥
K−1∑
k=0

ρg(dk)(dk+1 − dk) = ρ
K−1∑
k=0

τ(1− ρ)e−dk

ρ+ τ(1− ρ)e−dk
. (2.35)

Using the monotonicity of G(·), we upper-bound G(dK) by

G(dK) ≤ G(∞) = log
( log ρ

log(ρ+ τ(1− ρ))

)
. (2.36)

Thus, the RHS of (2.35) is upper bounded by the RHS of (2.36). Dividing the

result by ρ, we obtain (2.28). This completes our proof of the upper bound on K

in (2.23) and thereby the first step of the proof.
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Step 2: We proved both the lower bound and the upper bound on K in (2.23).

Next, we proceed to show (2.12) using (2.23). By the definition of K(ϵ), aK(ϵ) ≤

ϵa0 < aK(ϵ)−1. Since dk = log(a0/ak), for k ∈ N, we have dK(ϵ)−1 ≤ log(1/ϵ) ≤

dK(ϵ). On the one hand, using the monotonicity of F (·) and substituting K = K(ϵ)

into the lower bound on K in (2.23) yields

F
(
log(1/ϵ)

)
≤ F (dK(ϵ)) ≤ K(ϵ). (2.37)

On the other hand, substituting K = K(ϵ) − 1 into the upper bound on K in

(2.23), we obtain

K(ϵ)− 1 ≤ F (dK(ϵ)−1) +
1

2ρ
log

(
log ρ

log
(
ρ+ τ(1− ρ)

)). (2.38)

Since F (·) is monotonically increasing and dK(ϵ)−1 ≤ log(1/ϵ), we have F (dK(ϵ)−1) ≤

F (log(1/ϵ)). Therefore, upper-bounding F (dK(ϵ)−1) on the RHS of (2.38) by

F (log(1/ϵ)) yields

K(ϵ) ≤ F
(
log(1/ϵ)

)
+

1

2ρ
log

(
log ρ

log
(
ρ+ τ(1− ρ)

))+ 1. (2.39)

The inequality (2.12) follows on combining (2.37) and (2.39).
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2.5.2 Proof of Lemma 2.2

Let ν = τ(1− ρ)/ρ. We represent f(x) in the interval (0, log(1/ϵ)) as

f(x) =
1

− log
(
ρ+ τ(1− ρ)e−x

)
=

1

log(1/ρ)
+

1

log(1/ρ)

log(1 + νe−x)

log(1/ρ)− log(1 + νe−x)
.

Then, taking the integral from 0 to log(1/ϵ) yields

F
(
log(1/ϵ)

)
=

1

log(1/ρ)

(
log(1/ϵ) +

∫ log(1/ϵ)

0

log(1 + νe−t)

log(1/ρ)− log(1 + νe−t)
dt

)
.

(2.40)

Using α(1 − α/2) = α − α2/2 ≤ log(1 + α) ≤ α, for α = νe−t ≥ 0, on the

numerator within the integral in (2.40) and changing the integration variable t to

z = log(1/ρ)− log(1 + νe−t), we obtain both an upper bound and a lower bound

on the integral on the RHS of (2.40)

1

ρ

∫ z

z

e−z − 1
2ρ
e−z(e−z − ρ)

z
dz ≤

∫ log(1/ϵ)

0

log(1 + νe−t)

log(1/ρ)− log(1 + νe−t)
dt

≤ 1

ρ

∫ z

z

e−z

z
dz, (2.41)

where z = − log(ρ+τ(1−ρ)) and z = − log(ρ+ϵτ(1−ρ)). Replacing the integral in

(2.40) by the upper bound and lower bound from (2.41), using the definition of the

exponential integral, and simplifying, we obtain the upper-bound on F (log(1/ϵ))

given by F 1(log(1/ϵ)) in (2.14) and similarly the lower bound on F (log(1/ϵ))



38

given by F 1(log(1/ϵ)) in (2.16). Finally, we prove the second upper bound in

(2.15) as follows. Since E1(·) is monotonically decreasing and 1
ρ+ϵτ(1−ρ)

≤ 1
ρ
, we

have E1(log
1

ρ+ϵτ(1−ρ)
) ≥ E1(log

1
ρ
), which implies ∆E1(log

1
ρ+τ(1−ρ)

, log 1
ρ+ϵτ(1−ρ)

) ≤

∆E1(log
1

ρ+τ(1−ρ)
, log 1

ρ
). Combining this with the definition of F 1(log(1/ϵ)) and

F 2(log(1/ϵ)) in (2.14) and (2.15), respectively, we conclude that F 1(log(1/ϵ)) ≤

F 2(log(1/ϵ)), thereby completes the proof of the lemma.

2.6 Proof of Theorem 2.2

Let δ̃(k) = Q−1δ(k) be the transformed error vector. Substituting T (δ(k)) =

QΛQ−1(δ(k)) into (2.2) and then left-multiplying both sides by Q−1, we obtain

δ̃(k+1) = Λδ̃(k) + q̃(δ̃(k)), (2.42)

where q̃(δ̃(k)) = Q−1q(Qδ̃(k)) satisfies
∥∥∥q̃(δ̃(k))

∥∥∥ ≤ q ∥Q−1∥2 ∥Q∥22
∥∥∥δ̃(k)

∥∥∥2. Taking
the norm of both sides of (2.42) and using the triangle inequality yield

∥∥∥δ̃(k+1)
∥∥∥ ≤

∥∥∥Λδ̃(k)
∥∥∥+ ∥∥∥q̃(δ̃(k))

∥∥∥
≤ ∥Λ∥2

∥∥∥δ̃(k)
∥∥∥+ q

∥∥Q−1
∥∥
2
∥Q∥22

∥∥∥δ̃(k)
∥∥∥2

Since ∥Λ∥2 = ρ(T ), the last inequality can be rewritten compactly as

∥∥∥δ̃(k+1)
∥∥∥ ≤ ρ

∥∥∥δ̃(k)
∥∥∥+ q̃

∥∥∥δ̃(k)
∥∥∥2 , (2.43)
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where ρ = ρ(T ) and q̃ = q ∥Q−1∥2 ∥Q∥22.

To analyze the convergence of {
∥∥∥δ̃(k)

∥∥∥}∞k=0, let us consider a surrogate sequence

{ak}∞k=0 ⊂ R defined by ak+1 = ρak + q̃a2k with a0 =
∥∥∥δ̃(0)

∥∥∥. We show that {ak}∞k=0

upper-bounds {
∥∥∥δ̃(k)

∥∥∥}∞k=0, i.e.,

∥∥∥δ̃(k)
∥∥∥ ≤ ak ∀k ∈ N. (2.44)

The base case when k = 0 holds trivially as a0 =
∥∥∥δ̃(0)

∥∥∥. In the induction step,

given
∥∥∥δ̃(k)

∥∥∥ ≤ ak for some integer k ≥ 0, we have

∥∥∥δ̃(k+1)
∥∥∥ ≤ ρ

∥∥∥δ̃(k)
∥∥∥+ q̃

∥∥∥δ̃(k)
∥∥∥2 ≤ ρak + q̃a2k = ak+1.

By the principle of induction, (2.44) holds for all k ∈ N. Assume for now that

a0 =
∥∥∥δ̃(0)

∥∥∥ < (1− ρ)/q̃, then applying Theorem 2.1 yields ak ≤ ϵ̃a0 for any ϵ̃ > 0

and integer k ≥ log(1/ϵ̃)/log(1/ρ) + c(ρ, τ). Using (2.44) and setting ϵ̃ = ϵ/κ(Q),

we further have
∥∥∥δ̃(k)

∥∥∥ ≤ ak ≤ ϵ̃a0 = ϵ
∥∥∥δ̃(0)

∥∥∥ /κ(Q) for all

k ≥ log(1/ϵ) + log(κ(Q))

log(1/ρ)
+ c
(
ρ,

q̃
∥∥∥δ̃(0)

∥∥∥
1− ρ

)
. (2.45)

Now, it remains to prove (i) the accuracy on the transformed error vector
∥∥∥δ̃(k)

∥∥∥ ≤

ϵ̃
∥∥∥δ̃(0)

∥∥∥ is sufficient for the accuracy on the original error vector
∥∥δ(k)

∥∥ ≤ ϵ
∥∥δ(0)

∥∥;
and (ii) the initial condition

∥∥δ(0)
∥∥ < (1 − ρ)/(qκ(Q)2) is sufficient for

∥∥∥δ̃(0)
∥∥∥ <
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(1− ρ)/q̃. In order to prove (i), using
∥∥∥δ̃(k)

∥∥∥ ≤ ϵ
∥∥∥δ̃(0)

∥∥∥ /κ(Q), we have

∥∥δ(k)
∥∥ =

∥∥∥Qδ̃(k)
∥∥∥ ≤ ∥Q∥2

∥∥∥δ̃(k)
∥∥∥

≤ ∥Q∥2
ϵ

∥Q∥2 ∥Q−1∥2

∥∥∥δ̃(0)
∥∥∥ =

ϵ

∥Q−1∥2

∥∥∥δ̃(0)
∥∥∥ ≤ ϵ

∥∥δ(0)
∥∥ ,

where the last inequality stems from
∥∥∥δ̃(0)

∥∥∥ =
∥∥Q−1δ(0)

∥∥ ≤ ∥Q−1∥2
∥∥δ(0)

∥∥. To

prove (ii), we use similar derivation as follows

∥∥∥δ̃(0)
∥∥∥ ≤

∥∥Q−1
∥∥
2

∥∥δ(0)
∥∥ <

∥∥Q−1
∥∥
2

1− ρ

qκ(Q)2
=

1− ρ

q̃
.

Finally, the case that T is symmetric can be proven by the fact that Q is orthog-

onal, i.e., Q−1 = QT and κ(Q) = 1. Substituting this back into (2.10) and using

the orthogonal invariance property of norm, we obtain the simplified version in

(2.11). This completes our proof of Theorem 2.2.



41

Chapter 3: On Local Linear Convergence of Projected Gradient

Descent for Constrained Least Squares1

Many recent problems in signal processing and machine learning such as com-

pressed sensing, image restoration, matrix/tensor recovery, and non-negative ma-

trix factorization can be cast as constrained optimization. Projected gradient

descent is a simple yet efficient method for solving such constrained optimization

problems. Local convergence analysis furthers our understanding of its asymp-

totic behavior near the solution, offering sharper bounds on the convergence rate

compared to global convergence analysis. However, local guarantees often appear

scattered in problem-specific areas of machine learning and signal processing. This

chapter presents a unified framework for the local convergence analysis of projected

gradient descent in the context of constrained least squares. The proposed analysis

offers insights into pivotal local convergence properties such as the conditions for

linear convergence, the region of convergence, the exact asymptotic rate of conver-

gence, and the bound on the number of iterations needed to reach a certain level of

accuracy. To demonstrate the applicability of the proposed approach, we present a

recipe for the convergence analysis of projected gradient descent and demonstrate

1This work has been published as: Trung Vu and Raviv Raich. “On Local Linear Convergence

of Projected Gradient Descent for Constrained Least Squares.” IEEE Transactions on Signal

Processing, vol. 70, pp. 4061-4076, 2022.
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it via a beginning-to-end application of the recipe on four fundamental problems,

namely, linear equality-constrained least squares, sparse recovery, least squares

with the unit norm constraint, and matrix completion.

3.1 Introduction

Constrained least squares can be formulated as the following optimization problem:

min
x∈Rn

1

2
∥Ax− b∥2 s.t. x ∈ C, (3.1)

where C ∈ Rn is a non-empty closed set, A ∈ Rm×n, and b ∈ Rm is the observation

from which we wish to recover the solution x∗ efficiently. With the surge in the

amount of data over the past decades, modern learning problems have become

increasingly complex and optimization in the presence of constraints is frequently

used to capture accurately their inherent structure. Examples in the area of ma-

chine learning and signal processing include, but are not limited to, compressed

sensing [20, 21, 66], image restoration [72, 100, 150], seismic inversion [41, 149, 169],

and phase-only beamforming [206, 236]. Since the set of real n1 × n2 matrices is

isomorphic to Rn1n2 , application of (3.1) is also found in problems such as low-rank

matrix recovery [43,104,116] and non-negative matrix factorization [83,133,154].

Projected gradient descent (PGD) is one of the most popular methods for solv-

ing constrained optimization, thanks to its simplicity and efficiency. In theory,

convergence properties of this method are natural extensions of the classical re-
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sults for unconstrained optimization [12,16,103,140]. When the constraint set C is

convex, PGD is also known as the projected Landweber iteration [48] and is shown

to converge sublinearly to the global solution of (3.1). Moreover, when the least-

squares objective is strongly convex, the algorithm enjoys fast linear convergence.

For non-convex settings, with the recent introduction of restricted (strong) convex-

ity, global convergence has been guaranteed for certain structural constraints such

as sparsity constraint [36], low-rank constraint [199], and L2-norm constraint [13].

For a more comprehensive review of convergence analysis for PGD in the literature,

we refer the reader to Appendix 3.6.6.

From a different perspective, problem (3.1) can be viewed as a manifold opti-

mization problem in which the intrinsic structure of manifolds can be exploited.

Dating back to the 1970s, Luenberger [139] studied a variant of gradient projec-

tion method using the concept of geodesic descent. Under the assumption that C

is a differentiable manifold in Euclidean space, the author provided sufficient con-

ditions for global convergence and established a sharp bound on the asymptotic

convergence rate near a strict local minimum. Later on, this result was extended

to a broader class of Riemannian manifolds and has been widely known as the

Riemannian steepest descent method [71, 132, 139, 207]. The asymptotic conver-

gence rate of Riemannian steepest descent (with exact line search) is given by the

Kantorovich ratio (β − α)2/(β + α)2, where α and β are the smallest and largest

eigenvalues of the second derivative of the Lagrangian restricted to the subspace

tangent to the constraint manifold at the solution. Remarkably, such local con-

vergence bounds are tighter than those obtained from the aforementioned global
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convergence analysis in the optimization literature since the former exploits the

local structure of the problem. The global convergence bounds, on the other hand,

take into account the worst-case behavior of the algorithm that might occur far

away from the solution of interest. In certain situations, global convergence anal-

ysis suggests sublinear convergence while local convergence analysis offers linear

convergence thanks to the benign structure near the solution [164]. One key el-

ement in the asymptotic convergence analysis of Riemannian steepest descent is

Kantorovich inequality [197]. However, this technique depends on the optimal

choice of step size in the exact line search scheme and is not straightforwardly

generalized to other variants of gradient projection. To the best of our knowledge,

there has been no direct extension of the analysis for Riemannian steepest descent

method to plain PGD with a fixed step size.

Our Contribution. In this chapter, we develop a unified framework for a

local convergence analysis of the PGD algorithm. We leverage our earlier prelimi-

nary work, in which we developed a convergence rate only analysis for the specific

problems of low-rank matrix completion [46] and minimization of a quadratic with

spherical constraints [218]. For the former, we developed two acceleration ap-

proaches that leverage on the rate analysis [213, 214]. The key approach used in

these works is to represent each algorithm as a fixed point iteration and to ap-

proximate the fixed point operator as locally linear. This idea extends to other

algorithms (i.e., non PGD) that can be represented using a fixed point iteration

(e.g., see our work on analyzing GD for symmetric matrix completion [215]). For

each problem, problem-specific properties have been utilized to facilitate the anal-
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ysis. Here, our goal is to develop a unified framework for convergence rate analysis

of PGD for constrained least-squares. Our framework relies on three key steps:

(i) the introduction of Lipschitz-continuous differentiability to provide tight error

bounds on the linear approximation of the projection operator near the solution,

(ii) the establishment of an asymptotically-linear recursion on the error iterations,

and (iii) the derivation of the linear rate and the region of convergence (ROC)

of the error sequence by leveraging our work on the convergence of nonlinear dif-

ference equations [216]. Our approach shifts the burden of the analysis to the

characterization of the projection operator (for an example of such characteriza-

tion of the projection onto the rank-r manifold, see [211]-Theorem 1). In the

context of PGD for the general constrained least squares, the proposed framework

is the first to offer a closed-form expression of the exact asymptotic rate of local

linear convergence, the ROC, and a bound on the number of iterations needed to

reach a certain level of accuracy.2 To illustrate the utility of the approach, we

apply our framework to four well-known problems in machine learning and signal

processing, namely, linear equality-constrained least squares, sparse recovery, least

squares with spherical constraint, and matrix completion. We show that the ob-

tained asymptotic rate of convergence matches existing results in the literature.

For problems in which the exact convergence rate of PGD has not been studied, we

2We note that the classic work of Polyak [166] can be considered as a replacement for our

analysis in the third step. While such result is more general in the context of nonlinear different

equations, we do not find a straightforward extension to obtain the ROC and the guarantees on

the number of required iterations in our context of convergence analysis.
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verify the asymptotic rate obtained by our analysis against the rate of convergence

obtained in numerical experiments. We believe that this framework can be used

as a general recipe to develop quick yet sharp local convergence results for PGD

in other applications in the field as well as to complement conservative analysis of

global convergence.

Organization. The rest of this chapter is organized as follows. Section 3.2

provides a brief background of PGD for constrained least squares, including prop-

erties of the orthogonal projection, stationary points of the problem, and the PGD

algorithm along with its fixed points. Next, we present our unified framework for

the local convergence analysis of PGD in Section 3.3, followed by the proof of the

main theorem. Then, Section 3.4 demonstrates the application of the proposed

recipe to four well-known problems in machine learning and signal processing. Fi-

nally, we summarize our results and discuss some of the possible extensions in

Section 3.5.

3.2 Preliminaries

This section presents key concepts and background results that will be used as the

basic premise of our subsequent convergence analysis.
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3.2.1 Notation

Throughout this chapter, we use the notation ∥·∥ to denote the Euclidean norm

for vectors. For matrices, ∥·∥F and ∥·∥2 denote the Frobenius norm and the spec-

tral norm, respectively. Boldfaced symbols are reserved for vectors and matrices.

Additionally, the t × t identity matrix is denoted by It and the ith vector in the

natural basis of Rn is denoted by ei. We use ⊗ to denote the Kronecker prod-

uct between two matrices. The vectorization of a matrix X ∈ Rm×n, denoted

by vec(X), is the concatenation of the columns of a matrix one on top of an-

other in their original order, i.e., for X = [x1, . . . ,xn], vec(X) = [x⊤
1 , . . . ,x

⊤
n]

⊤.

Given a vector x ∈ Rn, diag(x) denotes the a square diagonal matrix such that

[diag(x)]ii = xi. For a scalar r > 0, denote the open ball of center x and radius

r by B(x, r) = {y | ∥y − x∥ < r}. Correspondingly, the closed ball of center x

and radius r is denoted by B[x, r] = {y | ∥y−x∥ ≤ r}. The lexicographical order

between two vectors x and y of the same length is defined by x < y if xi < yi

for the first i (i goes from 1) where xi and yi differ. The lexicographical order

between two matrices X and Y of the same size is define by the lexicographical

order between vec(X) and vec(Y ).

Given A ∈ Rm×n, the ith largest eigenvalue and the ith largest singular value

of A are denoted by λi(A) and σi(A), respectively. The spectral radius of A is

defined as ρ(A) = maxi|λi(A)| and is less than or equal to the spectral norm,

i.e., ρ(A) ≤ ∥A∥2. Gelfand’s formula [77] states that ρ(A) = limk→∞∥Ak∥1/k2 .

If A is square and invertible, the condition number of A is defined as κ(A) =
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σ1(A)/σn(A).

3.2.2 Nonlinear Orthogonal Projections

Given a non-empty set C ⊂ Rn, let us define the distance from a point x ∈ Rn to

C as

d(x, C) = inf
y∈C

{∥y − x∥}. (3.2)

The set of all projections of x onto C is defined by

ΠC(x) = {y ∈ C | ∥y − x∥ = d(x, C)}. (3.3)

It is well-known [210] that if C is closed, then for any x ∈ Rn, ΠC(x) is non-

empty3. An orthogonal projection onto C is defined as PC : Rn → C such that

PC(x) is chosen as an element of ΠC(x) based on a prescribed scheme (e.g., based

on lexicographic order). There exists a non-empty subset of Rn such that ΠC is

uniquely defined, given by

singletonΠC = {x ∈ Rn | ΠC(x) is singleton}. (3.4)

We can now consider the differentiability of PC over singletonΠC as follows.

Definition 3.1 (Point-wise differentiability). The projection PC is said to be dif-

3In addition, if C is convex, then ΠC(x) is singleton.



49

ferentiable at x ∈ singletonΠC if there exists ∇PC(x) ∈ Rn×n such that

lim sup
δ→0

sup
y∈ΠC(x+δ)

∥y − PC(x)−∇PC(x)δ∥
∥δ∥

= 0.

The operator ∇PC(x) is said to be the derivative of PC at x.

Definition 3.2 (Point-wise Lipschitz-continuous differentiability). The projection

PC is said to be Lipschitz-continuously differentiable at x ∈ singletonΠC if PC is

differentiable at x and there exist 0 < c1(x) ≤ ∞ and 0 ≤ c2(x) < ∞ such that

for any δ ∈ B(0, c1(x)), we have

sup
y∈ΠC(x+δ)

∥y − PC(x)−∇PC(x)δ∥ ≤ c2(x)∥δ∥2. (3.5)

It is noted that the supremum in (4) implies

∥PC(x+ δ)− PC(x)−∇PC(x)δ∥ ≤ c2(x)∥δ∥2

holds for any choice of PC(x+ δ) in ΠC(x+ δ). Note that while PC(x) is uniquely

defined for x ∈ singletonΠC, PC(x+δ) is not since x+δ may not be in singletonΠC.

Example 3.1. Let C = {x ∈ Rn | ∥x∥ = 1} be the unit sphere of dimension

n− 1. For any x ̸= 0, the projection onto C is uniquely given by PC(x) = x/∥x∥.

For x = 0, we have ΠC(0) = C and PC(0) can be chosen as any point on the unit

sphere. In Appendix 3.6.7, we prove that PC is Lipschitz-continuously differentiable

at any x ∈ singletonΠC = Rn \ {0}. In particular, for any x ̸= 0 and δ ∈ Rn, we
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have

sup
y∈ΠC(x+δ)

∥∥∥∥y − x

∥x∥
−
(
In −

xx⊤

∥x∥2
) δ

∥x∥

∥∥∥∥ ≤ 2

∥x∥2
∥δ∥2. (3.6)

For δ ̸= −x, ΠC(x + δ) = {(x + δ)/ ∥x+ δ∥} is singleton and the supremum is

evaluated at only one point y = (x + δ)/ ∥x+ δ∥. For δ = −x, ΠC(x + δ) =

ΠC(0) = C is not singleton and the supremum is taken over the entire sphere

independent of x. In either case regardless the value of δ, comparing (3.6) with

(3.5), we recognize the projection onto the unit sphere is Lipschitz-continuously

differentiable at x ∈ singletonΠC with

∇PC(x) =
1

∥x∥

(
In −

xx⊤

∥x∥2
)
,

c1(x) = ∞, c2(x) =
2

∥x∥2
.

In 1984, Foote [67] showed that if C is a Ck (k ≥ 2) submanifold of Rn, then C

has a neighborhood E such that E ⊆ singletonΠC and the projection PC restricted

to E is a Ck−1 mapping. Later on, Dudek and Holly [59] proved the derivative

∇PC is a linear map to the tangent bundle of C and more importantly, for any

x∗ ∈ C, ∇PC(x
∗) is the (linear) orthogonal projection onto the tangent space to

C at x∗. Recently, a local version of this result has been proposed by Lewis and

Malick [129]:

Proposition 3.1. (Rephrased from Lemma 4 in [129]) Assume C is a Ck (k ≥ 2)

manifold around a point x∗ ∈ C. Denote the tangent space to C at x∗ by Tx∗(C).
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Algorithm 3.1 Projected Gradient Descent (PGD)

Input: f , C, η, x(0)

Output: {x(k)}∞k=0

1: for k = 0, 1, . . . do
2: z

(k)
η = x(k) − ηA⊤(Ax(k) − b

)
3: x(k+1) = PC

(
z
(k)
η

)
Then, the set of projections ΠC is (locally) singleton around x∗. Moreover, PC is

a Ck−1 mapping around x∗ and

∇PC(x
∗) = PTx∗ (C), (3.7)

where PTx∗ (C) is the orthogonal projection onto Tx∗(C).

Further works on the uniqueness and regularity of PC can also be found in [4, 6,

127, 173]. We note that the assumption C is a C2 manifold around x∗ requires

the existence of a neighborhood of x∗ in which PC is uniformly differentiable. Our

result in this chapter, while strongly motivated by the aforementioned results, only

requires C to be differentiable at two points (see Theorem 3.1).

3.2.3 Stationary Points of (3.1)

We defined the (Lipschitz-continuous) differentiability of the projection PC at a

point in C. We are now in position to define stationary points of (3.1) as those

where the gradient of the objective function on the constraint set vanishes [3]:

Definition 3.3. x∗ ∈ C is a stationary point of (3.1) if PC is differentiable at
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x∗ and

∇PC(x
∗)A⊤(Ax∗ − b

)
= 0. (3.8)

Assume in addition that PC is Lipschitz-continuously differentiable at x∗ with con-

stants c1(x
∗) and c2(x

∗). Then x∗ is called a Lipschitz stationary point of

(3.1) with constants c1(x
∗) and c2(x

∗).

Similar to unconstrained optimization, stationary points in Definition 3.3 can be

local minimizers, local maximizers, or saddle points of the constrained problem

(3.1).

3.2.4 Projected Gradient Descent

Algorithm 3.1 describes the projected gradient descent algorithm for solving (3.1).

Starting at some x(0) ∈ C, the algorithm iteratively updates the current value by

(i) taking a step in the opposite direction of the gradient and (ii) projecting the

result back onto C, i.e.,

x(k+1) = PC

(
x(k) − ηA⊤(Ax(k) − b

))
, (3.9)

where η > 0 is a fixed step size.
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Definition 3.4. x∗ is a fixed point of Algorithm 3.1 with step size η > 0 if

x∗ = PC(x
∗ − ηA⊤(Ax∗ − b)). (3.10)

Lemma 3.1. If x∗ is a fixed point of Algorithm 3.1 with some step size η > 0 and

PC is differentiable at x∗, then x∗ is a stationary point of (3.1).

The proof of Lemma 3.1 is given in Appendix 3.6.1.

3.3 Local Convergence Analysis

In this section, we present the key contribution of this work, namely, a local conver-

gence analysis of projected gradient descent for constrained least squares. Specif-

ically, our goal is to establish the following results: (i) a closed-form expression

of the exact asymptotic rate of convergence, (ii) a bound on the number of itera-

tions needed to reach a certain level of accuracy, and (iii) a region of convergence.

Figure 3.1 illustrates the key idea in our analysis. In order to establish the local

linear convergence of Algorithm 3.1 to its fixed point x∗, we require the Lipschitz-

continuous differentiability of PC at x∗ and at z∗
η = x∗ − ηA⊤(Ax∗ − b). These

properties enables us to approximate each projected gradient descent update by a

linear operator on the error vector (i.e., the difference between x(k) and x∗). Then,

under the additional assumption that this linear operator is a contraction map-

ping and the initialization x(0) is sufficiently close to x∗, we show that the gradient

step and the projection step remain inside the Lipschitz-continuous differentiability
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( )

( )
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Figure 3.1: Illustration of convergence of projected gradient descent to a fixed
point x∗. In order to guarantee linear convergence, Theorem 3.1 requires PC to be
Lipschitz-continuously differentiable at both x(k) and z

(k)
η = x(k)−ηA⊤(Ax(k)−b).

Moreover, the condition ∥x(0) − x∗∥ < min{c1(x∗)/κ(Q), c1(z
∗
η)/(κ(Q)uη)} from

(3.13) ensures that x(k) remains inside B(x∗, c1(x
∗)) (blue dashed ellipse) and

z
(k)
η = remains inside B(z∗

η , c1(z
∗
η)) (orange dashed ellipse).
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regions of x∗ (i.e., B(x∗, c1(x
∗))) and z∗

η (i.e., B(z∗
η , c1(z

∗
η)), respectively).

3.3.1 Main Results

In this following, we state our main result in Theorem 3.1, followed by further

insights into the convergence results.

Theorem 3.1. Suppose x∗ is a fixed point of Algorithm 3.1 with step size η > 0

such that the following conditions hold:

1. PC is Lipschitz-continuously differentiable at both the fixed point x∗ and at the

gradient step taken from the fixed point

z∗
η = x∗ − ηA⊤(Ax∗ − b

)
, (3.11)

with the corresponding matrices ∇PC(x
∗), ∇PC(z

∗
η), and constants c1(x

∗), c2(x
∗),

c1(z
∗
η), and c2(z

∗
η).

2. The matrix

H = ∇PC(z
∗
η)(In − ηA⊤A)∇PC(x

∗) (3.12)

admits an eigendecomposition H = QΛQ−1, where Q ∈ Rn×n is an invertible

matrix and Λ is a diagonal matrix whose diagonal entries are strictly less than

1 in magnitude, i.e., ρ(H) = ∥Λ∥2 < 1.
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3. The initial iterate x(0) satisfies

∥x(0) − x∗∥ < min
{c1(x∗)

κ(Q)
,
c1(z

∗
η)

κ(Q)uη

,
1− ρ(H)

q

}
, (3.13)

where

uη = ∥In − ηA⊤A∥2 (3.14)

and

q = κ2(Q)uη

(
c2(z

∗
η)uη + ∥∇PC(z

∗
η)∥2c2(x∗)

)
. (3.15)

Let {x(k)}∞k=0 be the vector sequence generated by the PGD update in (3.9). Then,

for any 0 < ϵ < 1, we have ∥x(k) − x∗∥ ≤ ϵ∥x(0) − x∗∥ for all

k ≥ log(1/ϵ) + log(κ(Q))

log(1/ρ(H))
+ c3, (3.16)

where c3 > 0, given explicitly in Lemma 3.4, is independent of ϵ. Algorithm 3.1

is said to converge locally to x∗ at an asymptotic linear rate ρ(H) with the

region of linear convergence given by (3.13).

Theorem 3.1 states the sufficient conditions for asymptotic linear convergence of

Algorithm 3.1. In addition, the theorem establishes the asymptotic rate as the

spectral radius of the matrix H and bounds the number of iterations needed to

reach ϵ-accuracy. The proof of Theorem 3.1 is given in Subsection 3.3.2. It is note-



57

worthy that in the RHS of (3.16), the first term corresponds to linear convergence

in the asymptotic regime and the second term corresponds to nonlinear conver-

gence behavior at the early stage. We will revisit this point when we introduce

Lemma 3.4.

Remark 3.1. When H is symmetric, its eigendecomposition exists and can be

represented as

H = QΛQ⊤,

where Q is an orthogonal matrix with κ(Q) = 1.

Next, we study a special case of Theorem 3.1 in which

∇PC(z
∗
η) = ∇PC(x

∗) = PTx∗ (C) = Ux∗U⊤
x∗, (3.17)

where Ux∗ ∈ Rn×d (d ≤ n) is the matrix whose columns provide an orthonormal

basis for the tangent space to C at x∗. A typical example in which (3.17) holds is

when (i) C is a C2 d-dimensional submanifold around x∗; and (ii) z∗
η = x∗. The first

condition (i) stems from Proposition 3.1 in order to guarantee ∇PC(x
∗) = PTx∗ (C).

The second condition (ii) is equivalent to A⊤(Ax−b) = 0, which means x∗ is also

a stationary point of the unconstrained problem. Conveniently, this coincidence

eliminates the task of characterizing the projection PC and its derivative ∇PC at

a point outside C, which can be a challenging task in many problems.
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Corollary 3.1. Consider the same setting as in Theorem 3.1 with the additional

assumption that (3.17) holds. If (AUx∗)⊤AUx∗ has full rank and

0 < η <
2

∥AUx∗∥22
, (3.18)

then Algorithm 3.1 with fixed step size η converges locally to x∗ at an asymptotic

linear rate

ρ(H) = max{|1− ηλ1|, |1− ηλd|}, (3.19)

where λ1 and λd are the largest and smallest eigenvalues of (AUx∗)⊤AUx∗, respec-

tively. The region of linear convergence is given by

∥x(0) − x∗∥ < min
{
c1(x

∗),
c1(z

∗
η)

uη

,
1− ρ(H)

uηc2(x∗) + u2
ηc2(z

∗
η)

}
, (3.20)

where uη is given by (3.14).

The proof of Corollary 3.1 is given in Appendix 3.6.2.

Remark 3.2. Recall that uη defined in (3.14) is also the asymptotic linear rate of

gradient descent for the unconstrained least squares [167], i.e.,

uη = max{|1− ηλ1(A
⊤A)|, |1− ηλn(A

⊤A)|}.

Since Ux∗ is a semi-orthogonal matrix, the eigenvalues of U⊤
x∗A⊤AUx∗ interlace

with those of A⊤A [101], which in turns implies λn(A
⊤A) ≤ λd ≤ λ1 ≤ λ1(A

⊤A).
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Thus, one can show that for η < 2/∥A∥22,

ρ(H) ≤ uη ≤ 1, (3.21)

with the equality uη = 1 holding if and only if A⊤A is singular. Interestingly, (3.21)

implies the presence of the constraint in this case helps accelerate the convergence

of gradient descent to x∗.

3.3.2 Proof of Theorem 3.1

This section presents the proof of Theorem 3.1. Our key ideas are: (1) using the

Lipschitz-continuous differentiability of PC at x∗ and at z∗
η to establish a recursive

relation on the error vector δ(k) = x(k) − x∗, (2) performing a change of basis

δ̃(k) = Q−1δ(k) to establish an asymptotically-linear quadratic system dynamic

that upper-bounds the norm of the transformed error vector, (3) applying the re-

sult on the convergence of an asymptotically-linear quadratic difference equation

in [216] to obtain the number of iterations required for ∥δ̃(k)∥ ≤ ϵ̃∥δ̃(0)∥, and (4)

converting the convergence result on the transformed error ∥δ̃(k)∥ to the conver-

gence result on the original error ∥δ(k)∥. In the following, we provide the complete

proof, with some details deferred to the appendix.

Step 1: Let us define the error vector of Algorithm 3.1 as δ(k) = x(k) − x∗, for

k ∈ N. Using this definition of the error vector, we can replace x(k) = x∗ + δ(k)
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and x(k+1) = x∗ + δ(k+1) into (3.9) to obtain an equivalent update on the error

vector

δ(k+1) = PC

(
x∗ + δ(k) − ηA⊤(A(x∗ + δ(k))− b

))
− x∗. (3.22)

Based on the definition of z∗
η in (3.11) and the fact that x∗ is a fixed point of the

algorithm (see (3.10)), i.e., x∗ = PC(z
∗
η), we can rewrite (3.22) as

δ(k+1) = PC

(
z∗
η + (I − ηA⊤A)δ(k)

)
− PC(z

∗
η). (3.23)

We are now in position to analyze the error update as a fixed-point iteration:

δ(k+1) = f(δ(k)), where f(δ) = PC(z
∗
η + (I − ηA⊤A)δ) − PC(z

∗
η). The following

lemma provides a recursive equation on the error vector that is in the form of an

asymptotically-linear quadratic system dynamic:

Lemma 3.2. Recall H = ∇PC(z
∗
η)(In − ηA⊤A)∇PC(x

∗). If the error vector at

the k-th iteration satisfies

∥δ(k)∥ < min
{
c1(x

∗),
c1(z

∗
η)

uη

}
, (3.24)

then the error vector at the k + 1-th iteration satisfies

δ(k+1) = Hδ(k) + q2(δ
(k)), (3.25)
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where q2 : Rn → Rn is the residual such that

∥q2(δ
(k))∥ ≤

(
∥∇PC(z

∗
η)∥2uηc2(x

∗) + c2(z
∗
η)u

2
η

)
∥δ(k)∥2. (3.26)

The proof of Lemma 2 is given in Appendix 3.6.3. Given the nonlinear difference

equation of form (3.25), we proceed with characterizing the convergence of the

error sequence {δ(k)}∞k=0.

Remark 3.3. Dating back to 1964, Polyak [166] studied the convergence of non-

linear difference equations of form

a(k+1) = T (a(k)) + q(a(k)), for k ∈ N, (3.27)

where a(0) ∈ Rn, T : Rn → Rn is a linear operator, and q : Rn → Rn satisfies

limt→0 sup∥a∥≤t ∥q(a)∥ / ∥a∥ = 0. The author showed that if the operator T sat-

isfies ∥T k∥2 ≤ c(ζ)(ρ + ζ)k, for some ρ < 1 and arbitrarily small ζ > 0, then

{a(k)}∞k=0 approaches zero with sufficiently small ∥a(0)∥:

∥a(k)∥ ≤ C(ζ)∥a(0)∥(ρ+ ζ)k. (3.28)

Here c(ζ) and C(ζ) are unknown constants that could grow to infinity as ζ → 0.

Applying this result to (3.25) with a(k) = δ(k) and T = H, one can show that

the error vector of Algorithm 3.1 converges to 0 with the asymptotic linear rate

ρ(H), provided that ρ(H) < 1 and ∥δ(0)∥ is sufficiently small. However, we note

that the proof of (3.28) in [166] is adapted from a more general result on the
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stability of differential equations in [14]. This technique can not provide the precise

control of the ROC and the number of iterations required to reach a certain accuracy

(i.e., how small ∥a(0)∥ is as well as how large the factor C(ζ) is) needed for our

convergence analysis of PGD. Alternatively, we utilize our previous result in [216]

that eliminates the dependence on ζ in the expression of the linear rate, at the

cost of an additional assumption on the diagonalizability of H.4 Additionally,

our approach offers explicit expressions of the ROC and the number of required

iterations (as in (3.13) and (3.16), respectively).

Step 2: Our approach for analyzing the convergence of the nonlinear difference

equation (24) is to leverage the eigendecomposition H = QΛQ−1 and consider

the transformed error vector as follows.

Lemma 3.3. Let δ̃(k) = Q−1δ(k) be the transformed error vector. If (3.13) holds

and the spectral radius of H is strictly less than 1, i.e., ρ(H) < 1, then, for all

k ∈ N, we have

δ̃(k+1) = Λδ̃(k) + q3(δ̃
(k)), (3.29)

where the residual q3(δ̃
(k)) = Q−1q2(Qδ̃(k)) satisfies ∥q3(δ̃

(k))∥ ≤ (q/∥Q−1∥2)∥δ̃(k)∥2

for q given in (3.15).

The proof of Lemma 3.3 is given in Appendix 3.6.4. Taking the norms of both

4In particular, the bound in (3.16) suggests ∥a(k)∥ ≤ C∥a(0)∥ρk, for constant C = ρκ(Q)ec3 ,

which is tighter than (3.28).
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sides of (3.29) and applying the triangle inequality, we obtain

∥δ̃(k+1)∥ ≤ ρ(H)∥δ̃(k)∥+ q

∥Q−1∥2
∥δ̃(k)∥2. (3.30)

This inequality, holding for all k ∈ N, is the key to the convergence of the trans-

formed error sequence in the next step.

Step 3: If we replace the inequality symbol in (3.30) by the equality symbol,

then we obtain an asymptotically-linear quadratic difference equation whose con-

vergence is studied in [216]. Indeed, the following lemma states that the norm of

the transformed error vector is governed by this asymptotically-linear quadratic

system dynamic:

Lemma 3.4. Assume the same setting as Lemma 3.3. Then, for any desired

accuracy 0 < ϵ̃ < 1, we have ∥δ̃(k)∥ ≤ ϵ̃∥δ̃(0)∥ for all

k ≥ log(1/ϵ̃)

log(1/ρ(H))
+ c3(ρ(H), τ), (3.31)

where τ = q∥δ̃(0)∥/∥Q−1∥2/(1− ρ(H)) ∈ (0, 1) and

c3(ρ, τ) =
E1

(
log 1

ρ+τ(1−ρ)

)
− E1

(
log 1

ρ

)
ρ log(1/ρ)

+
1

2ρ
log

(
log(1/ρ)

log
(
1/(ρ+ τ(1− ρ))

))+ 1, (3.32)

for E1(t) =
∫∞
t

e−z

z
dz being the exponential integral [2].

The proof of Lemma 3.4 is given in Appendix 3.6.5.
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Step 4: Finally, we show the convergence of ∥δ(k)∥ based on the convergence of

∥δ̃(k)∥. From (3.31), substituting ϵ̃ = ϵ/κ(Q) and identifying c3 as c3(ρ(H), τ),

we obtain (3.16). Thus, it remains to prove that the accuracy on the transformed

error vector ∥δ̃(k)∥ ≤ ϵ̃∥δ̃(0)∥ is sufficient for the accuracy on the original error

vector ∥δ(k)∥ ≤ ϵ∥δ(0)∥. Indeed, given

∥δ̃(k)∥ ≤ ϵ̃∥δ̃(0)∥ =
ϵ

∥Q∥2∥Q−1∥2
∥δ̃(0)∥,

we have

∥δ(k)∥ = ∥Qδ̃(k)∥ ≤ ∥Q∥2∥δ̃(k)∥

≤ ∥Q∥2
ϵ

∥Q∥2∥Q−1∥2
∥δ̃(0)∥

=
ϵ

∥Q−1∥2
∥δ̃(0)∥ ≤ ϵ∥δ(0)∥,

where the last inequality stems from ∥δ̃(0)∥ = ∥Q−1δ(0)∥ ≤ ∥Q−1∥2∥δ(0)∥. This

completes our proof of Theorem 3.1.

3.4 Applications

In this section, we demonstrate the application of our proposed framework to a

collection of well-known problems in machine learning and signal processing. The

constraint sets in these problems vary from as simple as an affine subspace (A) and

a sphere (C) to more complex algebraic varieties such as the s-sparse vector set (B)



65

and the low-rank matrix set (D). We consider both problems with known conver-

gence rate results and problems for which the rate is unavailable. The former allows

us to verify the correctness of our analysis against the known rate results, while

for the latter numerical experiments are used to verify the rate. Additionally, we

illustrate how ROC can be obtained for each problem. Due to space limitation, we

restrict the illustration of our framework to the four aforementioned applications.

While we believe that additional applications can be considered (see the potential

applications of our framework in Section V), such applications may require a more

elaborate development. Our goal in this section is to offer a recipe for analyzing

the convergence of PGD for different applications using the proposed framework.

Table 3.1 describes the steps we follow to obtain the asymptotic linear rate and the

region of linear convergence in each application. Table 3.2 summarizes our local

convergence results on the four problems presented in this section. The detailed

analysis is given below.

3.4.1 Linear Equality-Constrained Least Squares

As a sanity check, we start with a simple example of the so-called linear equality-

constrained least squares (LECLS)

min
x∈Rn

1

2
∥Ax− b∥2 s.t. Cx = d, (3.33)
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Table 3.1: General recipe for local convergence analysis.

Step 1: Identify A, b, C, and PC.
Step 2: Establish the conditions for x∗ ∈ C to be a Lipschitz stationary

point of (3.1). In particular, (i) PC is Lipschitz-continuously differ-
entiable at every x∗ with ∇PC(x

∗), c1(x
∗), and c2(x

∗); and (ii) the
stationarity equation (3.8) holds.

Step 3: Establish the conditions for η > 0 such that (i) x∗ is a fixed point
of Algorithm 3.1 with step size η, i.e., x∗ = PC(z

∗
η), for z∗

η = x∗ −
ηA⊤(Ax∗ − b); and (ii) PC is Lipschitz-continuously differentiable at
z∗
η with ∇PC(z

∗
η), c1(z

∗
η), and c2(z

∗
η).

Step 4: Determine the asymptotic linear rate ρ as the spectral radius of H
given by (3.12). (If ∇PC(z

∗
η) = ∇PC(x

∗), (3.19) can be used instead.)
Step 5: Establish the conditions for ρ < 1, which guarantees local linear con-

vergence. Thereby, combine these conditions with the previous con-
ditions obtained from Steps 2 and 3.

Step 6: If H is diagonalizable, determine the region of linear convergence
given by (3.13). (If ∇PC(z

∗
η) = ∇PC(x

∗), (3.20) can be used instead.)

where A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, and d ∈ Rp. In addition, we assume that

p < n and C has linearly independent rows. The LECLS problem finds application

in a wide range of areas such as linear-phase system identification [96], antenna

array processing [53], and adaptive array processing [69]. While this problem

can be solved efficiently using the method of Lagrange multipliers [177] or the

method of weighting [209], we limit our interest to using PGD to solve (3.33) to

demonstrate the applicability of our analysis. In the literature, this algorithm is

referred to as the projected Landweber iteration [17, 60, 110, 143]. While these

works provide bounds on the linear convergence of PGD for different variants of

linear equality-constrained problems, we have not found any closed-form expression

of the asymptotic rate of linear convergence.
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Table 3.2: Summary of local convergence analysis for four problems: lin-
ear equality-constrained least squares (Sec. 3.4.1), sparse recovery (Sec. 3.4.2),
least squares with a unit norm constraint (Sec. 3.4.3), and matrix comple-
tion (Sec. 3.4.4). In the second row, v∗ = A⊤(Ax∗ − b). In the third row,
K = (AUx∗)⊤AUx∗ . We refer the reader to each of the corresponding sections for
further details.

Problem formulation Condition(s) for linear convergence Asymptotic rate of convergence ρ Region of convergence

min 1
2
∥Ax− b∥2

s.t. Cx = d

{
K = (AV ⊥

C )⊤AV ⊥
C has full rank

0 < η < 2/∥AV ⊥
C ∥22

max{|1− ηλ1(K)|, |1− ηλn−p(K)|} ∥x− x∗∥ < ∞

min 1
2
∥Ax− b∥2

s.t. ∥x∥0 ≤ s

{
K = (ASx∗)⊤ASx∗ has full rank

0 < η < min{ 2
∥ASx∗∥22

,
|x∗

[s]
|

∥v∗∥∞}
max{|1− ηλ1(K)| , |1− ηλs(K)|} ∥x− x∗∥ < min{

|x∗
[s]

|
√
2
,

|x∗
[s]

|−η∥v∗∥∞
√
2∥In−ηA⊤A∥2

}

min 1
2
∥Ax− b∥2

s.t. ∥x∥ = 1

{
0 < η < ∞ if γ ≤ −λ1(K)

0 < η < 2
γ+λ1(K)

o.t.w.
1

1−ηγ
max{|1− ηλ1(K)|, |1− ηλn−1(K)|} ∥x− x∗∥ ≤ 1−ρ

2(t2+t)
, t = ∥In−ηA⊤A∥2

1−ηγ

min 1
2
∥PΩ(X −M)∥2F

s.t. rank(X) ≤ r

{
K = Q⊤

⊥SΩS
⊤
ΩQ⊥ has full rank

0 < η < 2
∥Q⊤

⊥SΩS
⊤
ΩQ⊥∥2

max{|1− ηλ1(K)|, |1− ηλr(m+n−r)(K)|} ∥X −X∗∥F ≤ (1−ρ)σr(X∗)

8(1+
√
2)

Step 1: In this example, A and b are given explicitly in (3.33). The constraint

set C is the closed convex affine subspace

C = {x ∈ Rn | Cx = d}.

The orthogonal projection onto this subspace is given in a closed-form expression

as PC(x) = x−C⊤(CC⊤)−1(Cx− d), for all x ∈ Rn [151]. Since C has full row

rank, it admits a compact singular value decomposition (SVD) C = UCΣCV
⊤
C ,

where ΣC ∈ Rp×p is a diagonal matrix with positive diagonal entries, UC ∈ Rp×p

and VC ∈ Rn×p satisfy U⊤
CUC = V ⊤

C VC = Ip. Denote V ⊥
C ∈ Rn×(n−p) the or-

thogonal complement of VC , i.e., V
⊥
C (V ⊥

C )⊤ = In − VCV
⊤
C and (V ⊥

C )⊤V ⊥
C = In−p.
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Substituting the SVD of C back into the aforementioned expression of PC yields

PC(x) = V ⊥
C (V ⊥

C )⊤x+ d̃, (3.34)

where d̃ = VCΣ
−1
C U⊤

Cd = C†d.

Step 2: From (3.34), we obtain the difference between the two projections of

x + δ and x onto C, for any x, δ ∈ Rn, as PC(x + δ) − PC(x) = V ⊥
C (V ⊥

C )⊤δ.

Using Definition 3.1 with the note that ΠC(x+ δ) is always singleton, we have PC

is Lipschitz-continuously differentiable at every x ∈ R with

∇PC(x) = V ⊥
C (V ⊥

C )⊤, c1(x) = ∞, c2(x) = 0. (3.35)

Due to the independence from x, we also have PC is Lipschitz-continuously differ-

entiable at every x∗ ∈ C with

∇PC(x
∗) = V ⊥

C (V ⊥
C )⊤, c1(x

∗) = ∞, c2(x
∗) = 0.

Next, substituting∇PC(x
∗) = V ⊥

C (V ⊥
C )⊤ into the stationarity equation (3.8) yields

V ⊥
C (V ⊥

C )⊤A⊤(Ax∗ − b
)
= 0. Since V ⊥

C ∈ Rn×(n−p) has full-rank, we can omit the

left most V ⊥
C and obtain the condition for x∗ ∈ C to be a Lipschitz stationary

point of (3.33) as

(AV ⊥
C )⊤(Ax∗ − b) = 0, (3.36)
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which means Ax∗ − b is in the left null space of AV ⊥
C .5

Step 3: Evaluating the projection in (3.34) at z∗
η = x∗−ηA⊤(Ax∗−b) and using

the stationarity condition (3.36) to eliminate the term ηV ⊥
C (V ⊥

C )⊤A⊤(Ax∗ − b),

we have PC(z
∗
η) = x∗ for any η > 0. Thus, the condition in this step for x∗ to be a

fixed point of Algorithm 3.1 is η > 0. In addition, substituting x = z∗
η into (3.35),

we obtain PC is Lipschitz-continuously differentiable at z∗
η with

∇PC(z
∗
η) = V ⊥

C (V ⊥
C )⊤, c1(z

∗
η) = ∞, c2(z

∗
η) = 0.

Step 4: Since ∇PC(z
∗
η) = ∇PC(x

∗) = V ⊥
C (V ⊥

C )⊤, using (3.19), we obtain the

asymptotic linear rate as

ρ = max{|1− ηλ1|, |1− ηλn−p|}, (3.37)

where λ1 and λn−p are the largest and smallest eigenvalues of (AV ⊥
C )⊤AV ⊥

C , re-

spectively.

Step 5: From (3.37), we have ρ < 1 if and only if (AV ⊥
C )⊤AV ⊥

C has full rank

and 0 < η < 2/∥AV ⊥
C ∥22. It is noted that the latter condition is sufficient for the

condition η > 0 in Step 3.

Step 6: Since c1(x
∗) = c1(z

∗
η) = ∞ and c2(x

∗) = c2(z
∗
η) = 0, the region of con-

vergence given by (3.20) is the entire space Rn, which implies global convergence.

Remark 3.4. The explicit expression of the convergence rate in (3.37) offers a

5Here, it is interesting to note that any stationary point of (3.33) is a global minimizer since

(3.33) is a convex optimization problem.
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simple method to select the optimal step size:

ηopt = argmin
0<η<2/∥AV ⊥

C ∥22

max{|1− ηλ1|, |1− ηλn−p|}

=
2

λ1 + λn−p

. (3.38)

Using η = ηopt, we obtain the optimal rate of convergence

ρopt = 1− 2

κ((AV ⊥
C )⊤AV ⊥

C ) + 1
. (3.39)

As a comparison, the optimal convergence rate of gradient descent for the uncon-

strained problem is given by [167]

uopt = 1− 2

κ(A⊤A) + 1
.

Recall from Remark 3.2 that ρopt ≤ uopt due to the interlacing of eigenvalues of

(AV ⊥
C )⊤AV ⊥

C and A⊤A.

3.4.2 Sparse Recovery

In compressed sensing, one would like to reconstruct a sparse signal by finding

solutions to under-determined linear systems Ax = b, where A ∈ Rm×n and

b ∈ Rm (for m < n). This problem can be formulated as an L0-norm constrained
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least squares:

min
x∈Rn

1

2
∥Ax− b∥2 s.t. ∥x∥0 ≤ s. (3.40)

In the literature, the PGD algorithm for solving (3.40) is often known as iterative

hard thresholding (IHT), with myriad applications in medical imaging [56], MIMO

communication [75, 195], antenna arrays [196], and scene recognition [234]. The

convergence of a special case of IHT in which ∥A∥2 < 1 and η = 1 has been well-

studied in [20,21], under the restricted isometry property (RIP) assumption on A.

In the following, we demonstrate the application of our framework to establishing

a local convergence analysis of IHT with a range of different step sizes, without

requiring the RIP of A.

Step 1: In this example, A and b are given explicitly in (3.40), and the constraint

set C is the closed non-convex set of s-sparse vectors

C = {x ∈ Rn | ∥x∥0 ≤ s},

with the projection PC : Rn → Rn given by [20]

[PC(x)]i =


0 if |xi| < |x[s]|

xi if |xi| ≥ |x[s]|
for i = 1, . . . , n, (3.41)

where xi and x[s] denote the ith coordinate and the sth largest (in magnitude)

element of a vector x ∈ Rn, respectively. In the case x has multiple elements with
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the same magnitude as x[s], e.g., x[s] = x[s+1] > 0, we sort these entries based on

the (descending) lexicographical order so that (3.41) is well-defined (see [20]-p. 10).

Step 2: In contrast to the previous example, the projection here is nonlinear and

non-unique since the set C is a real algebraic variety but not smooth in those points

in Rn of sparsity strictly less than s. The smooth part of C is the subset

C=s = {x ∈ Rn | ∥x∥0 = s}

of vectors with exactly s non-zero elements. In Appendix 3.6.8, we show that any

x∗ ∈ Φ=s and x ∈ B(x∗, |x∗
[s]|/

√
2) share the same index set of s-largest elements

(in magnitude), denoted by Ωs(x
∗).6 Let the indices in Ωs(x

∗) be i1 ≤ . . . ≤ is

and Sx∗ = [ei1 , . . . , eis ] ∈ Rn×s. Then, we have (Sx∗)⊤Sx∗ = Is and

PC(x) = Sx∗S⊤
x∗x, ∀x ∈ B(x∗, |x∗

[s]|/
√
2). (3.42)

By Definition 3.1, we obtain PC is Lipschitz-continuously differentiable at any

x∗ ∈ Φ=s with

∇PC(x
∗) = Sx∗S⊤

x∗ , c1(x
∗) =

1√
2
|x∗

[s]|, c2(x
∗) = 0.

6It is interesting to note that |x∗
[s]|/

√
2 is the largest possible radius. A counter-example is

also constructed in Appendix 3.6.8.
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Similar to the previous example, the stationarity equation for x∗ ∈ C=s is given by

(ASx∗)⊤(Ax∗ − b) = 0. (3.43)

Thus, we obtain the conditions for x∗ ∈ C to be a Lipschitz stationary point of

(3.40) are x∗ ∈ C=s and the vector v∗ = A⊤(Ax∗ − b) satisfies v∗i = 0 for all

i ∈ Ωs(x
∗).

Step 3: First, following a similar approach to that in [20], we show that the

condition in this step for x∗ to be a fixed point of Algorithm 3.1 is

0 < η <
|x∗

[s]|
∥v∗∥∞

. (3.44)

Since v∗i = 0 for all i ∈ Ωs(x
∗), we have z∗

η = x∗ − ηv∗ satisfies (z∗
η)i = x∗

i for all

i ∈ Ωs(x
∗). Moreover, for any indices i ∈ Ωs(x

∗) and j ∈ {1, . . . , n} \ Ωs(x
∗), we

have

|(z∗η)j| = |x∗
j − ηv∗j | = η|v∗j |

<
|x∗

[s]|
∥v∗∥∞

|v∗j | ≤ |x∗
[s]| ≤ |x∗

i | = |(z∗η)i|,

where the second inequality stems from |v∗j | ≤ ∥v∗∥∞. Therefore, Ωs(x
∗) contains

the s-largest (in magnitude) elements of z∗
η , and hence, x∗ = PC(z

∗
η).

Second, we consider the Lipschitz-continuous differentiability of PC at z
∗
η . Given

η in (3.44), by the same argument as in Appendix 3.6.8, one can show that

every point in B(z∗
η , (|(z∗η)[s]| − |(z∗η)[s+1]|)/

√
2) shares the same index set of s-
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largest elements (in magnitude) with z∗
η , which is Ωs(x

∗). Here, we note that

|(z∗η)[s]|−|(z∗η)[s+1]| = |x∗
[s]|−η∥v∗∥∞. Thus, we obtain PC is Lipschitz-continuously

differentiable at z∗
η with

∇PC(z
∗
η) = Sx∗S⊤

x∗ ,

c1(z
∗
η) =

1√
2

(
|x∗

[s]| − η∥v∗∥∞
)
, c2(z

∗
η) = 0.

Step 4: Since ∇PC(z
∗
η) = ∇PC(x

∗) = Sx∗S⊤
x∗ , using (3.19), we obtain the asymp-

totic linear rate as

ρ = max{|1− ηλ1| , |1− ηλs|}. (3.45)

where λ1 and λs are the largest and smallest eigenvalues of (ASx∗)⊤ASx∗ , respec-

tively.

Step 5: From (3.45), ρ < 1 if and only if (ASx∗)⊤ASx∗ has full rank and

0 < η <
2

∥ASx∗∥22
. (3.46)

Combining (3.44) and (3.46) yields the condition on the step size

0 < η < min

{
2

∥ASx∗∥22
,
|x∗

[s]|
∥v∗∥∞

}
. (3.47)

Here, we note that the condition (ASx∗)⊤ASx∗ has full rank is related to the

restricted isometry property (RIP) assumption on A: (1 − δs) ∥x∥2 ≤ ∥Ax∥2 ≤
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(1 + δs) ∥x∥2, for δs ∈ (0, 1) and any s-sparse vector x ∈ Rn [36]. In the reduced-

form, we can rewrite the RIP assumption as

0 < (1− δs) ∥y∥2 ≤ ∥ASy∥2 ≤ (1 + δs) ∥y∥2 , (3.48)

for any y ∈ Rs and any selection matrix S ∈ Rn×s obtained by randomly choosing

s columns from the n × n identity matrix. Substituting S = Sx∗ into (3.48), we

obtain (ASx∗)⊤ASx∗ has full rank.

Step 6: Recall that c2(x
∗) = c2(z

∗
η) = 0. From (3.20), the region of convergence

is given by

∥x− x∗∥ < min

{ |x∗
[s]|√
2
,

|x∗
[s]| − η∥v∗∥∞√

2∥In − ηA⊤A∥2

}
. (3.49)

Remark 3.5. Similar to (3.38) and (3.39), the optimal step size and the optimal

convergence rate are given by

ηopt =
2

λ1((ASx∗)⊤ASx∗) + λs((ASx∗)⊤ASx∗)
,

ρopt = 1− 2

κ((ASx∗)⊤ASx∗) + 1
. (3.50)

We consider the following numerical experiment to verify the analytical rate in

(3.45). We start by generating A, x∗, and b as follows. First, we sample an

200 × 300 sensing matrix A with i.i.d Gaussian distributed entries N (0, 1/200).7

7Note that such random matrix is shown to satisfy the RIP constraint [36].
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Figure 3.2: (Log-scale) plot of the distance between the current iterate and the local
minimizer of the sparse recovery problem, as a function of the number of iterations.
Each solid line corresponds to PGD with a different fixed step size. Each dashed
line represents the respective exponential bound ρk up to a constant, where the
theoretical rate ρ is given by (3.45). In the experiment, we selectm = 200, n = 300,
and s = 10. The optimal step size ηopt = 0.97273 is computed by (3.50), with the
corresponding optimal rate ρopt = 0.3613.
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Next, we create a 10-sparse solution x∗ by randomly selecting 10 coordinates and

assigning non-zero values to them based on i.i.d normal distribution N (0, 1). Fi-

nally, we set b = Ax∗. We apply PGD with different step sizes (listed in Fig. 3.2)

including ρopt in (3.50) and record the value of
∥∥x(k) − x∗

∥∥ as a function of k. In

Fig. 3.2, the aforementioned curves are presented along with their analytic bounds

given by ρk (up to a constant). The match in the slope between the analytic rate

curve and the empirical rate curve verifies the analytic rate predicts accurately the

asymptotic rate obtained empirically.

Remark 3.6. In Appendix 3.6.8, we further show that any stationary point x∗

must be a local minimum of (3.40). Moreover, the condition (ASx∗)⊤ASx∗ has

full rank in Step 5 implies x∗ is a strict local minimum of (3.40). Finally, it is in-

teresting to note that in [20], the authors assume ∥A∥2 < 1 and select η = 1. With

these assumptions, the rate in (3.45) simplifies to ρ = 1 − λs((ASx∗)⊤ASx∗) =∥∥Is − (ASx∗)⊤ASx∗
∥∥
2
, which is consistent with Eqn. (3.9) in [20].

3.4.3 Least Squares with the Unit Norm Constraint

A common constraint that arises in regularization methods for ill-posed problems

is the spherical constraint [87, 149, 202]. In particular, we consider the following

optimization problem

min
x∈Rn

1

2
∥Ax− b∥2 s.t. ∥x∥ = 1, (3.51)
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where A ∈ Rm×n and b ∈ Rm.

Step 1: In this example, A and b are given explicitly in (3.51), and the constraint

set C is the closed non-convex sphere

C = {x ∈ Rn | ∥x∥ = 1},

with the projection PC : Rn → Rn given by

PC(x) =


x

∥x∥ if x ̸= 0,

e1 if x = 0.

(3.52)

Step 2: In Example 3.1, we showed that the projection onto the unit sphere is

Lipschitz-continuously differentiable at any x ̸= 0. Since 0 ̸∈ C, we have PC is

Lipschitz-continuously differentiable at every x∗ ∈ C with

∇PC(x
∗) = In − x∗(x∗)⊤, c1(x

∗) = ∞, c2(x
∗) = 2.

In addition, substituting ∇PC(x
∗) = In − x∗(x∗)⊤ into the stationarity equation

(3.8) yields
(
In − x∗(x∗)⊤

)
A⊤(Ax∗ − b) = 0. Equivalently, we have

A⊤(Ax∗ − b) = γx∗, (3.53)

where γ = (x∗)⊤A⊤(Ax∗ − b) is the Lagrange multiplier at x∗ (see Lemma 1

in [218]). Thus, we obtain the condition for x∗ ∈ C to be a Lipschitz stationary
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point of (3.51) is x∗ and A⊤(Ax∗ − b) are collinear.

Step 3: First, the necessary condition for PC to be Lipschitz-continuously dif-

ferentiable at z∗
η is z∗

η ∈ singletonΠC, i.e., z
∗
η ̸= 0. From (3.53), we have z∗

η =

x∗− ηA⊤(Ax∗− b) = (1− ηγ)x∗. Hence, z∗
η ̸= 0 is equivalent to 1− ηγ ̸= 0. Now

the projection PC at z∗
η ̸= 0 is given by

PC(z
∗
η) =

(1− ηγ)x∗

∥(1− ηγ)x∗∥
=

1− ηγ

|1− ηγ|
x∗,

which implies x∗ = PC(z
∗
η) if and only if 1 − ηγ > 0. Thus, we obtain the

condition for η > 0 such that x∗ is a fixed point of Algorithm 3.1 and PC is

Lipschitz-continuously differentiable at z∗
η is 1− ηγ > 0, which is equivalent to


η ∈ (0,∞) if γ ≤ 0,

η ∈ (0, 1
γ
) if γ > 0.

(3.54)

Second, it follows from (3.6) that PC is Lipschitz-continuously differentiable at

z∗
η with

∇PC(z
∗
η) =

1

∥z∗
η∥

(
In −

z∗
η(z

∗
η)

⊤

∥z∗
η∥2

)
=

In − x∗(x∗)⊤

1− ηγ
,

c1(z
∗
η) = ∞, c2(z

∗
η) =

2

∥z∗
η∥2

=
2

(1− ηγ)2
.

Step 4: Denote P⊥
x∗ = In − x∗(x∗)⊤. From (3.12), the asymptotic linear rate is
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given by

ρ = ρ

(
1

1− ηγ
P⊥

x∗(In − ηA⊤A)P⊥
x∗

)
=

1

1− ηγ
∥P⊥

x∗(In − ηA⊤A)P⊥
x∗∥2.

Let P⊥
x∗ = Ux∗U⊤

x∗, where Ux∗ ∈ Rn×(n−1) is a semi-orthogonal matrix whose

columns provide a basis for the null space of x∗. Then, following the same deriva-

tion as in the proof of Corollary 3.1, we obtain

ρ =
1

1− ηγ
max{|1− ηλ1|, |1− ηλn−1|}, (3.55)

where λ1 and λn−1 are the largest and smallest eigenvalues of (AUx∗)⊤AUx∗ ,

respectively.

Step 5: Since |1− ηλ| /(1 − ηγ) < 1 is equivalent to ηγ − 1 < 1 − ηλ < 1 − ηγ,

we have ρ < 1 if and only if

γ < λn−1 (3.56)

and

η
(
γ + λ1

)
< 2. (3.57)
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Similar to (3.54), the inequality in (3.57) can be rewritten as


η ∈ (0,∞) if γ ≤ −λ1,

η ∈ (0, 2
γ+λ1

) if γ > −λ1.

Finally, we note that conditions (3.56) and (3.57) together imply the condition

1− ηγ > 0 in Step 3 since 2ηγ < η(γ + λn−1) ≤ η(γ + λ1) < 2.

Step 6: To determine the region of linear convergence, we first recall that c1(x
∗) =

c1(z
∗
η) = ∞. Second, we have

∥∇PC(z
∗
η)∥2 =

∥∥∥∥In − x∗(x∗)⊤

1− ηγ

∥∥∥∥
2

=
1

1− ηγ
.

Third, since H = P⊥
x∗(In − ηA⊤A)P⊥

x∗/(1 − ηγ) is symmetric, one can choose Q

in the eigendecomposition H = QΛQ−1 to be orthogonal, with κ(Q) = 1. Thus,

from (3.13), we obtain the region of linear convergence as

∥x− x∗∥ ≤ 1− ρ

2(t2 + t)
, (3.58)

where t = ∥In − ηA⊤A∥2/(1− ηγ).

Remark 3.7. The local linear rate in (3.55) matches the rate provided by Theo-

rem 1 in [218]. Compared to the setting in [218], here we consider a special case

of the quadratic that is convex (and hence, λd ≥ 0). By minimizing the rate in

(3.55) over η, we also obtain the same optimal rate of linear convergence given by
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Lemma 5 in [218]:

ρopt =
λ1 − λn−1

λ1 + λn−1 − 2γ
with ηopt =

2

λ1 + λn−1

.

Interestingly, condition (3.56) implies x∗ is a strict local minimum of (3.51) (see

Lemma 2 in [218]). Since ρ < 1 is one of the conditions in Theorem 3.1, our

analysis requires x∗ to be a strict local minimum of (3.51) in order to obtain linear

convergence. Finally, our framework provides the region of linear convergence in

(3.58), which is not given in [218].

3.4.4 Matrix Completion

3.4.4.1 Background

The last application is an application of our framework to the matrix case. In

matrix completion [33], given a rank-r matrix M ∈ Rm×n (for 1 ≤ r ≤ min{m,n})

with a set of its observed entries indexed by Ω, of cardinality 0 < s < mn, we wish

to recover the unknown entries of M in the complement set Ω̄ by solving the

following optimization:

min
X∈Rm×n

1

2
∥PΩ(X −M )∥2F s.t. rank(X) ≤ r, (3.59)
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where PΩ : Rm×n → Rm×n is the orthogonal projection onto the set of m × n

matrices supported in Ω, i.e.,

[PΩ(X)]ij =


Xij if (i, j) ∈ Ω,

0 if (i, j) ̸∈ Ω.

It is noted that while M is unknown, the projection PΩ(M ) is unambiguously

determined by the observed entries in M . In the literature, the PGD algorithm

for solving (3.59) is also known as the Singular Value Projection (SVP) algorithm

for matrix completion [43,55,104,105], with the update

X(k+1) = PM≤r

(
X(k) − ηPΩ(X

(k) −M)
)
.

Here, M≤r is the set of matrices of rank at most r, i.e.,

M≤r = {X ∈ Rm×n | rank(X) ≤ r}.

In addition, the orthogonal projection PM≤r
: Rm×n → M≤r is defined by Eckart–Young–Mirsky

theorem [61] as follows. Let SVD(X) be the set of all triples (Σ,U ,V ) such that

X = UΣV ⊤ and
Σ = diag(σ1(X), . . . , σn(X)),

U ∈ Rm×n,V ∈ Rn×n : U⊤U = V ⊤V = In.
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Denote ui(X) and vi(X) the ith columns of U and V , respectively. Then, the

set of all projections of X onto M≤r is given by

ΠM≤r
(X) =

{ r∑
i=1

σi(X)ui(X)vi(X)⊤ | (Σ,U ,V ) ∈ SVD(X)
}
. (3.60)

The set ΠM≤r
(X) is singleton if and only if σr(X) = 0 or σr(X) > σr+1(X).

In the case ΠM≤r
(X) has multiple elements, we define PM≤r

(X) as the greatest

element in ΠM≤r
(X) based on the lexicographical order. We re-emphasize that

our subsequent analysis holds independently of this choice.

In differential geometry, it is well-known that M≤r is a closed set of Rm×n but

non-smooth in those points of rank strictly less than r [126]. Similar to sparse

recovery, the smooth part of M≤r is the set of matrices of fixed rank r:

M=r = {X ∈ Rm×n | rank(X) = r}.

At any X∗ ∈ M=r, it is shown [211] that derivative of PM≤r
is a linear mapping

from Rm×n to Rm×n satisfying

∇PM≤r
(X∗)(∆) = ∆− PU⊥∆PV⊥ , (3.61)

where PU⊥ and PV⊥ are the projections onto the left and right null spaces of X∗,

respectively. More importantly, for any ∆ ∈ Rm×n, Theorem 3 in [211] asserts
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that

sup
Y ∈ΠM≤r

(X∗+∆)

∥Y −X∗ −∇PM≤r
(X∗)(∆)∥F ≤ 4(1 +

√
2)

σr(X∗)
∥∆∥2F . (3.62)

3.4.4.2 Vectorized version of matrix completion

To apply our proposed framework to matrix completion, we consider a vector-

ized version of (3.59) as follows. Slightly extending the notation, we denote

C = {vec(X) | X ∈ M≤r} and vec(Ω) = {(j − 1)m + i | (i, j) ∈ Ω} with s

distinct elements 1 ≤ i1 < . . . < is ≤ mn. Let SΩ = [ei1 , . . . , eis ] ∈ Rmn×s be the

selection matrix satisfying


S⊤

ΩSΩ = Is,

vec
(
PΩ(X)

)
= SΩS

⊤
Ω vec(X).

Then, problem (3.59) can be represented as

min
x∈Rmn

1

2
∥SΩS

⊤
Ωx− SΩS

⊤
Ω vec(M)∥2 s.t. x ∈ C.

Step 1: In this vectorized version of matrix completion, we have A = SΩS
⊤
Ω,

b = SΩS
⊤
Ω vec(M), and C is a closed non-convex set. For any vector x ∈ Rmn, let

X = vec−1(x) with PM≤r
(X) =

∑r
i=1 σi(X)ui(X)vi(X)⊤, for some (Σ,U ,V ) ∈

SVD(X). The projection PC is given by PC(x) = vec(
∑r

i=1 σi(X)ui(X)vi(X)⊤).

Using the fact that vec(uv⊤) = v ⊗ u, for any vectors u and v of compatible
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dimensions, PC can then be represented as

PC(x) =
r∑

i=1

σi(X)
(
vi(X)⊗ ui(X)

)
. (3.63)

Step 2: In the following, we show that PC is Lipschitz-continuously differentiable

at any point in the set

C=r = {vec(X) | X ∈ M=r}.

In particular, for any x∗ ∈ C=r, we prove that PC is Lipschitz-continuously differ-

entiable at x∗ with

∇PC(x
∗) = P⊥

U⊥V⊥
, c1(x

∗) = ∞, c2(x
∗) =

4(1 +
√
2)

σr(X∗)
,

where X∗ = vec−1(x∗). Indeed, the constants c1(x
∗) and c2(x

∗) are obtained from

the matrix inequality form (3.62). Regarding ∇PC(x
∗), let PU⊥ and PV⊥ be the

projections onto the left and right null spaces ofX∗, respectively. Denote PU⊥V⊥ =

PV⊥ ⊗PU⊥ and P⊥
U⊥V⊥

= Imn−PU⊥V⊥ . Since vec(ABC) = (C⊤⊗A) vec(B), for

any matrices A, B, and C of compatible dimensions, (3.61) can be vectorized to

obtain ∇PC(x
∗)(δ) = (Imn − PV⊥ ⊗ PU⊥)δ = P⊥

U⊥V⊥
δ for any δ ∈ Rmn.

Next, the stationarity condition (3.8) can be represented using ∇PC(x
∗)(δ) =

P⊥
U⊥V⊥

δ as P⊥
U⊥V⊥

SΩS
⊤
Ω

(
SΩS

⊤
Ωx

∗−SΩS
⊤
Ω vec(M )

)
= 0. DenoteQ⊥ ∈ Rmn×r(m+n−r)

the matrix satisfying Q⊤
⊥Q⊥ = Ir(m+n−r) and Q⊥Q

⊤
⊥ = P⊥

U⊥V⊥
. Then, we obtain
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the conditions for x∗ to be a Lipschitz stationary point of (3.59) are x∗ ∈ C=r and

Q⊤
⊥SΩS

⊤
Ω

(
x∗ − vec(M )

)
= 0. (3.64)

Step 3: The stationarity condition (3.64) leads to two cases. The first case is

when Q⊤
⊥SΩ has full (row-)rank and hence,

S⊤
Ω

(
x∗ − vec(M)

)
= 0. (3.65)

In matrix form, (3.65) can be rewritten as PΩ(X
∗) = PΩ(M), which implies X∗

is a global minimizer of (3.59). Interestingly, this case enjoys the special setting

considered in Corollary 3.1 as

z∗
η = x∗ − ηSΩS

⊤
Ω

(
x∗ − vec(M )

)
= x∗, (3.66)

for any η > 0. In the second case, if Q⊤
⊥SΩ has rank strictly less than r(m + n −

r), then S⊤
Ω

(
x∗ − vec(M )

)
may not be 0 (e.g., a non-zero right singular vector

of Q⊤
⊥SΩ). This implies z∗

η ̸= x∗ and one needs to characterize the Lipschitz-

continuous differentiability of the projection PC onto the set of low-rank matrices

at z∗
η that may not have exact rank r. While the derivative of PC at a matrix with

rank greater than r has been studied in [64,211], it requires complete development

of the error bound on the first-order expansion of this operator to obtain the

constants c1(z
∗
η) and c2(z

∗
η). For the purpose of demonstration, we restrict our

subsequent analysis to the first case whenQ⊤
⊥SΩ has full (row-)rank. Since z∗

η = x∗
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in this case, PC is Lipschitz-continuously differentiable at z∗
η with

∇PC(z
∗
η) = P⊥

U⊥V⊥
, c1(z

∗
η) = ∞, c2(z

∗
η) =

4(1 +
√
2)

σr(X∗)
.

Step 4: Since ∇PC(z
∗
η) = ∇PC(x

∗) = P⊥
U⊥V⊥

, using (3.19), we obtain the asymp-

totic linear rate as

ρ = max{|1− ηλ1|, |1− ηλr(m+n−r)|}, (3.67)

where λ1 and λr(m+n−r) are the largest and smallest eigenvalues of Q⊤
⊥SΩS

⊤
ΩQ⊥,

respectively.

Step 5: From (3.67), we have ρ < 1 if and only if Q⊤
⊥SΩS

⊤
ΩQ⊥ has full rank and

0 < η <
2

∥Q⊤
⊥SΩS⊤

ΩQ⊥∥2
.

Here, we would like to point out the condition Q⊤
⊥SΩS

⊤
ΩQ⊥ has full rank implies

s ≥ r(m + n − r), which can be interpreted as a requirement for the number of

observations being no less than the degree of freedom in matrix completion. The

invertibility of Q⊤
⊥SΩS

⊤
ΩQ⊥ is also equivalent to the injectivity of the sampling

operator restricted to the tangent space T to M≤r at X
∗, denoted by AΩT in [33]-

Section 4.2. It is interesting to note that under the standard assumptions on

uniform sampling and incoherence property, Candès and Recht [33] showed that

AΩT is injective with high probability.

Step 6: Recall that c1(x
∗) = c1(z

∗
η) = ∞. Since ∇PC(z

∗
η) = ∇PC(x

∗) = P⊥
U⊥V⊥

,
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using (3.20), the region of linear convergence is given by

∥x− x∗∥ ≤ (1− ρ)σr(X
∗)

8(1 +
√
2)

. (3.68)

Remark 3.8. Similar to (3.38) and (3.39), the optimal step size and the optimal

convergence rate are given by

ηopt =
2

λ1(Q⊤
⊥SΩS⊤

ΩQ⊥) + λr(m+n−r)(Q⊤
⊥SΩS⊤

ΩQ⊥)
,

ρopt = 1− 2

κ(Q⊤
⊥SΩS⊤

ΩQ⊥) + 1
. (3.69)

We consider the following numerical experiment to verify the analytical rate in

(3.67). The data is generated randomly as follows. First, we sample two matrices

A and B with i.i.d normally distributed entries, of dimensions 50× 3 and 40× 3,

respectively. Next, we obtain the rank-3 matrix of dimension 50×40 as the product

X∗ = AB⊤. Third, we select 800 observations uniformly at random among the

2000 positions in X∗. We apply PGD with different step sizes (listed in Fig. 3.3)

including ηopt in (3.69) and record the value of
∥∥X(k) −X∗

∥∥
F
as a function of k.

It can be seen from Fig. 3.3 that the theoretical rate matches well the empirical

rate, reassuring the correctness of our analysis in the previous section.

Remark 3.9. The rate in (3.67) has not been proposed in the literature. However,

in the special case of using unit step size, it matches the rate established for the

IHTSVD algorithm in [46]. In their work, the authors provide the result relative to

the matrix (SΩ̄)
⊤PU⊥V⊥SΩ̄ instead of Q⊤

⊥SΩS
⊤
ΩQ⊥, where SΩ̄ ∈ Rmn×(mn−s) is the
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Figure 3.3: (Log-scale) plot of the distance between the current iterate and the
local minimizer of the matrix completion problem, as a function of the number
of iterations. Each solid line corresponds to PGD with a different fixed step size.
Each dashed line represents the respective exponential bound ρk up to a constant,
where the theoretical rate ρ is given by (3.67). In the experiment, we select m =
50, n = 40, r = 3, and s = 800. The optimal step size ηopt = 2.2833 is given by
(3.69), with the corresponding optimal rate ρopt = 0.9265.
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selection matrix that is complement to SΩ. It can be shown that the two matrices

share the same set of eigenvalues while may only differ by the eigenvalues at 1.

Since IHTSVD uses η = 1, these unit eigenvalues do not affect the maximization

in (3.67). Compared to the local convergence result in [46], our application in this

subsection not only considers PGD with different step sizes but also includes the

region of linear convergence in (3.68).

3.5 Conclusion and Future Work

We presented a unified framework to analyze the local convergence of projected

gradient descent for constrained least squares. Our analysis provides the asymp-

totic rate of convergence in a closed-form expression, the number of iterations

required to reach certain accuracy, and the local region of convergence. Notably,

our technique relies on the Lipschitz-continuous differentiability of the projection

operator at two key points: x∗ and z∗
η . Finally, we demonstrated the application of

our proposed framework to local convergence analysis of PGD in four well-known

problems: linear equality-constrained least squares, sparse recovery, least squares

with a unit norm constraint, and matrix completion.

While the work here focuses on the specific setting of linear converges of the

PGD algorithm, we believe it can be expanded in several directions. First, our

framework can be utilized to analyze the following cases: (i) adaptive step size

schemes (e.g., the backtracking line search rule), (ii) accelerated methods (e.g.,

the Nesterov’s accelerated gradient and the Heavy Ball method), (iii) general ob-
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jective functions other than least squares, and (iv) other algorithms for manifold

optimization such as Riemannian gradient descent. Another interesting research

direction is to sharpen the theoretical bound on the ROC in order to better explain

the actual region in which the algorithm converges to the desired solution. Finally,

the proposed framework can be used to further study the performance of PGD for

a variety of constrained least squares problems arising in the area of phase-only

beamforming [206], online power system optimization [94], spectral compressed

sensing [28], and linear dimensionality reduction [50].

3.6 Appendix

3.6.1 Proof of Lemma 3.1

Our goal in the proof of Lemma 3.1 is to show that if the fixed point condition x∗ =

PC(x
∗−ηA⊤(Ax∗−b)) holds, then the stationarity condition ∇PC(x

∗)A⊤(Ax∗−

b
)
= 0 holds. Note that if A⊤(Ax∗−b) = 0, then the stationarity condition holds

trivially. Hence, we focus on the proof for A⊤(Ax∗ − b) ̸= 0. We first show that

for any 0 ≤ α < 1, x∗ = PC(x
∗ − ηA⊤(Ax∗ − b)) is a sufficient condition for

ΠC
(
x∗ − αηA⊤(Ax∗ − b)

)
= {x∗}. (3.70)

Then, using (3.70) and the differentiability of PC at x
∗, we prove∇PC(x

∗)A⊤(Ax∗−

b
)
= 0. We proceed with the detailed proof.

First, let v∗ = A⊤(Ax∗ − b) and z∗
αη = x∗ − αηv∗. On the one hand, for any
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0 ≤ α < 1 and y ∈ ΠC(z
∗
αη), we have

∥y − z∗
η∥ = ∥(y − z∗

αη) + (z∗
αη − z∗

η)∥

≤ ∥y − z∗
αη∥+ ∥z∗

αη − z∗
η∥

= d(z∗
αη, C) + ∥z∗

αη − z∗
η∥

≤ ∥x∗ − z∗
αη∥+ ∥z∗

αη − z∗
η∥, (3.71)

where the first inequality uses the triangle inequality that holds when y − z∗
αη =

β(z∗
αη−z∗

η), for some β ≥ 0. Using the fact that z∗
η = x∗−ηv∗ and z∗

αη = x∗−αηv∗,

we obtain

∥x∗ − z∗
αη∥+ ∥z∗

αη − z∗
η∥ = ∥αηv∗∥+ ∥(1− α)ηv∗∥

= ∥αηv∗ + (1− α)ηv∗∥

= ∥ηv∗∥

= ∥x∗ − z∗
η∥. (3.72)

From (3.71) and (3.72), we have

∥y − z∗
η∥ ≤ ∥x∗ − z∗

η∥, (3.73)
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with the equality holding if and only if


y − z∗

αη = β(z∗
αη − z∗

η),

∥y − z∗
αη∥ = ∥x∗ − z∗

αη∥.
(3.74)

Using the fact that z∗
η = x∗− ηv∗ and z∗

αη = x∗−αηv∗, (3.74) holds if and only if

β =
α

1− α
and y = x∗. (3.75)

On the other hand, since x∗ = PC(z
∗
η) and y ∈ C, we have

∥y − z∗
η∥ ≥ ∥x∗ − z∗

η∥. (3.76)

From (3.73) and (3.76), we conclude that ∥y − z∗
η∥ = ∥x∗ − z∗

η∥. Moreover,

from (3.75), the equality holds if and only if y = x∗. Since this holds for any

y ∈ ΠC(z
∗
αη), we conclude that ΠC(z

∗
αη) = {x∗} for all 0 ≤ α < 1.

Next, using the differentiability of the projection PC at x∗ from Definition 3.1,

we have

lim
α→0

sup
y∈ΠC(x∗−αηv∗)

∥y − PC(x
∗)−∇PC(x

∗)(αηv∗)∥
∥αηv∗∥

= 0.

Substituting ΠC(x
∗ − αηv∗) = ΠC(z

∗
αη) = {x∗} and PC(x

∗) = x∗ into the last
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equation, we obtain

0 = lim
α→0

∥x∗ − x∗ − αη∇PC(x
∗)v∗∥

∥αηv∗∥

= lim
α→0

αη ∥∇PC(x
∗)v∗∥

αη ∥v∗∥

=
∥∇PC(x

∗)v∗∥
∥v∗∥

,

which only holds if ∇PC(x
∗)v∗ = 0. This completes our proof of the lemma.

3.6.2 Proof of Corollary 3.1

In the following, under the assumption ∇PC(z
∗
η) = ∇PC(x

∗) = Ux∗U⊤
x∗, we show

that (i) the asymptotic convergence rate ρ(H) is given by (3.19), (ii) the sufficient

conditions for ρ(H) < 1 are (AUx∗)⊤AUx∗ is full rank and (3.18) holds, and (iii)

the region of linear convergence can be simplified from (3.13) to (3.20).

First, we prove (3.19) by simplifying the expression of H in (3.17) and the fact

that U⊤
x∗Ux∗ = Id as follows. Substituting ∇PC(x

∗) and ∇PC(z
∗
η) by Ux∗U⊤

x∗ into

(3.12) yields

H = Ux∗U⊤
x∗(In − ηA⊤A)Ux∗U⊤

x∗

= Ux∗(Id − ηU⊤
x∗A⊤AUx∗)U⊤

x∗,

where the second equality stems from U⊤
x∗Ux∗ = Id. Since H is symmetric, its
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spectral radius equals to its spectral norm:

ρ(H) = ∥Ux∗(Id − ηU⊤
x∗A⊤AUx∗)U⊤

x∗∥2.

Using the fact that the spectral norm is invariant under left-multiplication by

matrices with orthonormal columns and right-multiplication by matrices with or-

thonormal rows (see [151] - Exercise 5.6.9), we further have

ρ(H) = ∥Id − ηU⊤
x∗A⊤AUx∗∥2. (3.77)

Let U⊤
x∗A⊤AUx∗ = ÛΛ̂Û⊤ be an eigendecomposition, where Û ∈ Rd×d is an

orthogonal matrix and Λ̂ = diag(λ1(U
⊤
x∗A⊤AUx∗), . . . , λd(U

⊤
x∗A⊤AUx∗)). Since

Û⊤Û = Id, (3.77) can be represented as

ρ(H) =
∥∥∥Û(Id − ηΛ̂)Û⊤

∥∥∥
2
=
∥∥∥Id − ηΛ̂

∥∥∥
2
.

Now using the fact that the spectral norm of a diagonal matrix is the maximum

of the absolute values of its diagonal entries, we obtain

ρ(H) = max
1≤i≤d

|1− ηλi(U
⊤
x∗A⊤AUx∗)|

= max{|1− ηλ1|, |1− ηλd|}.

Second, we establish the sufficient conditions for ρ(H) < 1 by bounding each



97

term inside the maximum in (3.19) as follows. Since λd ≥ 0, we have

−1 < 1− ηλ1 ≤ 1− ηλd ≤ 1, for i = 1, . . . , d,

if 0 < η < 2/λ1. It is also noted from the definition of the spectral norm that

∥AUx∗∥22 = λ1. Therefore, ρ(H) ≤ 1 provided that (3.18) holds. The equality

ρ(H) = 1 holds if and only if λd = 0, i.e., (AUx∗)⊤AUx∗ is singular. In other

words, when (AUx∗)⊤AUx∗ is full rank and (3.18) holds, the linear convergence is

guaranteed as ρ(H) < 1.

Finally, the region of linear convergence in (3.20) is determined based on sim-

plifying (3.13) as follows. First, using Remark 3.1, we obtain κ(Q) = 1. Second,

from (3.17), we have ∥∇PC(z
∗
η)∥2 = ∥PTx∗ (C)∥2 = 1. Third, substituting κ(Q) = 1

and ∥∇PC(z
∗
η)∥2 = 1 into (3.13) yields (3.20). This completes our proof of the

corollary.

3.6.3 Proof of Lemma 3.2

Our goal is to show the error vector δ(k) satisfies the asymptotically-linear quadratic

system dynamic in (3.25) and to bound the norm of the residual q2 by (3.26).

First, our key idea in proving (3.25) is the Lipschitz-continuous differentiability

of PC at x∗ and at z∗
η . Specifically, for any k such that δ(k) admits a perturbation
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(I − ηA⊤A)δ(k) that satisfies

∥(I − ηA⊤A)δ(k)∥ < c1(z
∗
η), (3.78)

applying the Lipschitz-continuous differentiability of PC at z∗
η to (3.23) yields

δ(k+1) = ∇PC(z
∗
η)(I − ηA⊤A)δ(k) + q1(δ

(k)), (3.79)

where the residual q1 : Rn → Rn satisfies

∥q1(δ
(k))∥ ≤ c2(z

∗
η)∥(I − ηA⊤A)δ(k)∥2

≤ c2(z
∗
η)u

2
η∥δ(k)∥2. (3.80)

On the other hand, using the fact that x∗ = PC(x
∗), x(k) = PC(x

(k)), and the

Lipschitz-continuous differentiability of PC at x∗ with the perturbation δ(k) ∈

B(0, c1(x∗)), we obtain

δ(k) = x(k) − x∗

= PC(x
∗ + δ(k))− PC(x

∗)

= ∇PC(x
∗)δ(k) + qx∗(δ(k)), (3.81)

where the residual qx∗ : Rn → Rn satisfies ∥qx∗(δ(k))∥ ≤ c2(x
∗)∥δ(k)∥2. We proceed

with the proof of (3.25) by combining the results from (3.79) and (3.81) as follows.

Since ∥(I−ηA⊤A)δ(k)∥ ≤ ∥I−ηA⊤A∥2∥δ(k)∥ = uη∥δ(k)∥, the sufficient condition
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for (3.78) is ∥δ(k)∥ < c1(z
∗
η)/uη. Thus, ∥δ(k)∥ < min{c1(x∗), c1(z

∗
η)/uη} is sufficient

for both (3.79) and (3.81). Substituting (3.81) into the RHS of (3.79), we obtain

(3.25) with q2(δ
(k)) = ∇PC(z

∗
η)(I − ηA⊤A)qx∗(δ(k)) + q1(δ

(k)). Next, to bound

the norm of the residual q2, we apply the triangle inequality as follows

∥q2(δ
(k))∥ ≤ ∥∇PC(z

∗
η)(I − ηA⊤A)qx∗(δ(k))∥+ ∥q1(δ

(k))∥. (3.82)

On the one hand, the first term on the RHS of (3.82) can be bounded by

∥∇PC(z
∗
η)(I − ηA⊤A)qx∗(δ(k))∥ ≤ ∥∇PC(z

∗
η)∥2∥I − ηA⊤A∥2∥qx∗(δ(k))∥

≤ ∥∇PC(z
∗
η)∥2uηc2(x

∗)∥δ(k)∥2. (3.83)

On the other hand, the second term on the RHS of (3.82) can be bounded by

(3.80). Combining the two bounds, we obtain (3.26).

3.6.4 Proof of Lemma 3.3

In this section, our goal is to show the recursion on the transformed error vector

(3.29) holds at any k ∈ N provided that the initial error vector lies within the

region of linear convergence described by (3.13). In the first step, we prove that if

the current transformed error vector lies within the region of linear convergence

∥δ̃(k)∥ < min
{c1(x∗)

∥Q∥2
,
c1(z

∗
η)

∥Q∥2uη

,
1− ρ(H)

q/∥Q−1∥2

}
. (3.84)
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then δ̃(k+1) = Λδ̃(k) + q3(δ̃
(k)) and moreover, the next transformed error vector

also lies within the region of linear convergence

∥δ̃(k+1)∥ < min
{c1(x∗)

∥Q∥2
,
c1(z

∗
η)

∥Q∥2uη

,
1− ρ(H)

q/∥Q−1∥2

}
. (3.85)

Therefore, by the principle of induction, the initial condition on the transformed

error vector, i.e., (3.84) holds at k = 0, is the sufficient condition for (3.29) to

hold at any k ∈ N. In the second step, we show that (3.84) holds at k = 0 if the

initial condition on the error vector (3.13) holds and hence, completes the proof of

lemma. We proceed with our detailed proof below.

First, let us assume that (3.84) holds. We have

∥δ(k)∥ = ∥Qδ̃(k)∥ ≤ ∥Q∥2∥δ̃(k)∥

< ∥Q∥2min
{c1(x∗)

∥Q∥2
,
c1(z

∗
η)

∥Q∥2uη

,
1− ρ(H)

q/∥Q−1∥2

}
≤ min

{
c1(x

∗),
c1(z

∗
η)

uη

}
, (3.86)

Thus, by Lemma 3.2, we have δ(k+1) = Hδ(k)+q2(δ
(k). SubstitutingH = QΛQ−1

and multiplying both sides with Q−1 yields Q−1δ(k+1) = ΛQ−1δ(k) +Q−1q2(δ
(k)).

Replacing Q−1δ(k) by δ̃(k) and δ(k) by Qδ̃(k) in the last equation, we obtain (3.29),
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i.e., δ̃(k+1) = Λδ̃(k)+q3(δ̃
(k)). Here, the second term q3 can be bounded as follows

∥q3

(
δ̃(k)
)
∥ = ∥Q−1q2(Qδ̃(k))∥ ≤ ∥Q−1∥2∥q2(Qδ̃(k))∥

≤ ∥Q−1∥2
(
c2(x

∗) + ∥∇PC(z
∗
η)∥2c2(z∗

η)
)
∥Qδ̃(k)∥2

≤ ∥Q−1∥2
(
c2(x

∗) + ∥∇PC(z
∗
η)∥2c2(z∗

η)
)
∥Q∥22∥δ̃(k)∥2

=
q

∥Q−1∥2
∥δ̃(k)∥2. (3.87)

Now, taking the norms of both sides of (3.29) and applying the triangle inequality

yield

∥δ̃(k+1)∥ ≤ ∥Λδ̃(k)∥+ ∥q3

(
δ̃(k)
)
∥

≤ ρ(H)∥δ̃(k)∥+ q

∥Q−1∥2
∥δ̃(k)∥2

< ρ(H)∥δ̃(k)∥+
(
1− ρ(H)

)
∥δ̃(k)∥

= ∥δ̃(k)∥, (3.88)

where the second inequality stems from ∥δ̃(k)∥ < (1 − ρ(H))/(q/∥Q−1∥2). From

(3.84) and (3.88), we conclude that (3.85) holds. By the principle of induction, we

have (3.84) holds for all k ∈ N provided that it holds at k = 0, i.e.,

∥δ̃(0)∥ < min
{c1(x∗)

∥Q∥2
,
c1(z

∗
η)

∥Q∥2uη

,
1− ρ(H)

q/∥Q−1∥2

}
. (3.89)

Second, we prove that (3.13) is sufficient for (3.89). Using the definition δ̃(k) =
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Q−1δ(k), we have

∥δ̃(k)∥ = ∥Q−1δ(k)∥ ≤ ∥Q−1∥2∥δ(k)∥. (3.90)

Upper-bounding ∥δ(k)∥ by the LHS of (3.13) and substituting back into (3.90) yield

∥δ̃(k)∥ < ∥Q−1∥2min
{c1(x∗)

κ(Q)
,
c1(z

∗
η)

κ(Q)uη

,
1− ρ(H)

q

}
.

Finally, replacing κ(Q) by the product ∥Q∥2∥Q−1∥2 and simplifying yield (3.89).

This completes our proof of the lemma.

3.6.5 Proof of Lemma 3.4

In this section, we show the convergence of {∥δ̃(k)∥}∞k=0 using Theorem 1 in [216].

Our idea is to consider a surrogate sequence {ak}∞k=0 that upper-bounds {∥δ̃(k)∥}∞k=0:
a0 = ∥δ̃(0)∥,

ak+1 = ρ(H)ak +
q

∥Q−1∥2a
2
k.

First, we prove by induction that

∥δ̃(k)∥ ≤ ak ∀k ∈ N. (3.91)
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The base case when k = 0 holds trivially as a0 = ∥δ̃(0)∥. In the induction step,

given ∥δ̃(k)∥ ≤ ak for some integer k ≥ 0, we have

∥δ̃(k+1)∥ ≤ ρ(H)∥δ̃(k)∥+ q

∥Q−1∥2
∥δ̃(k)∥2

≤ ρak +
q

∥Q−1∥2
a2k

= ak+1.

By the principle of induction, (3.91) holds for all k ∈ N. Next, applying Theorem 1

in [216], under the condition a0 = ∥δ̃(0)∥ < (1−ρ(H))/(q/∥Q−1∥2), yields ak ≤ ϵ̃a0

for any integer k satisfies (3.31). From (3.91), we further have ∥δ̃(k)∥ ≤ ak ≤ ϵ̃a0 =

ϵ̃∥δ̃(0)∥. This completes our proof of the lemma.

3.6.6 Related Work

In this section, we review existing approaches to convergence analysis of itera-

tive first-order methods in optimization including projected gradient descent. We

present several aspects of convergence, namely, convergence to a global versus a

local optimum and speed of convergence. Finally, we clarify our contribution in

this work with regard to previous works in the literature.



104

3.6.6.1 Convergence of Iterative First-Order Methods

Convergence properties of iterative algorithms such as PGD often involve two

key aspects: the quality of convergent points and the speed of convergence. On

the one hand, the quality of convergent points provides useful insights into when

the algorithm converges, whether it converges to a stationary point or a set of

stationary points of the problem, and how big is the gap between the objective

function at the convergent point and the optimal objective value. On the other

hand, the speed of convergence concerns the order of convergence, the rate of

convergence, and the number of iterations required to obtain sufficiently small

errors. Let {x(k)}∞k=0 be the sequence of updates generated by a certain iterative

first-order method (e.g., PGD). In order to prove the convergence of the algorithm,

it is common [16, 24, 140, 160, 167] to consider the convergence of the following

quantities to 0 as k → ∞: (i) the norm of the generalized gradient (∥ 1
η
(x(k+1) −

x(k))∥), (ii) the gap between current objective function and the optimal value

(|f(x(k))−f ∗|), and (iii) the distance to a convergent point (∥x(k)−x∗∥). Here, we

note that f ∗ and x∗ are the limiting points of the objective function f(x(k)) and the

parameter x(k) as the number of iterations k goes to infinity, respectively. In (i), the

convergence of the generalized gradient norm to 0 implies the stationarity condition

of the constrained problem is satisfied. It follows that the algorithm converges to a

set of stationary points of the problem. In (ii), the convergence on the function side

is often obtained via the monotonicity of the objective-value sequence {f(x(k))}∞k=0

(e.g., decreasing to a limiting value f ∗). This in turn implies the sequence {x(k)}∞k=0
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converges to a set of local optima that yields the same objective function value f ∗.8

In (iii), the convergence of ∥x(k) −x∗∥ implies convergence to a unique point that

is often an isolated local optimum point of the problem. Typically, convergence on

the domain side is used in linear convergence proofs for strongly convex settings.

3.6.6.2 Convergence to a Global Optimum

In general, a stationary point can be a saddle point, a local/global minimum, or

local/global maximum of the problem. When both the objective function and the

constraint set are convex, it is well-known that all stationary points are also global

optima of the problem. Convergence analysis of iterative algorithm (e.g., PGD)

in convex optimization therefore focus on providing a universal upper bound on

the distance to the global solutions. Analysis on the domain side (iii) is usually

used in the presence of strong convexity that guarantees the uniqueness of the

global optimum [140]-Section 8.6. Without the strong convexity, one may resort

to analysis on the function side (ii) in order to prove convergence to a set of

global optima [12]-Section 10.4.3. When convexity is not guaranteed, due to a

non-convex objective and/or a non-convex constraint set, convergence analysis

has recourse to a set of stationary points by bounding the generalized gradient

norm through iterations (i) [16]-Section 2.3.2. Notwithstanding, recent advances

8An example for such scenario is minimizing a convex but not strongly convex function f(x) =

∥x∥1 subject to x ∈ Rn and ∥x∥22 = 1. The 2n vectors {ei}ni=1 and {−ei}ni=1 are local minimizers

that obtain the same objective function value. It is worthwhile mentioning that they are also the

global solutions of the foregoing problem.
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in structured non-convex optimization have shed light on convergence guarantees to

global solutions of the problem. By exploiting the special structure of some classes

of non-convex problems and using appropriate initialization, PGD can be shown to

converge to a unique global optimum despite the non-convexity of these problems.

Examples of such powerful results include sparse recovery with restricted isometry

properties [21], matrix completion with incoherence properties [144], empirical risk

minimization with restricted strong convexity and smoothness properties [116], and

spherically constrained quadratic minimization with hidden convexity [13].

3.6.6.3 Convergence to a Local Optimum

In general non-convex settings, domain-side convergence analysis is restricted to

the local region around the convergence point x∗. Such points can be a saddle

point, a local minimum, or a local maximum of the problem. The ROC associated

with x∗ is the neighborhood in which the algorithm (e.g., PGD) is guaranteed to

converge to x∗ when initialized inside this region. To a certain extent, the ROC in

the aforementioned global convergence analysis is the entire feasible space. How-

ever, while global convergence analysis does not require the initialization to be

close to the global solution, it often ignores the local structure near the solution

needed for establishing sharp bounds on the speed of convergence. In particular,

bounding techniques employed in global convergence analysis hold universally, in-

cluding worst-case scenarios. Thus, in many problem-specific settings where the

solution lies in a benign neighborhood, the global analysis could lead to conser-
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vative convergence rate bounds. As an illustration, in minimizing a smooth and

strongly convex function f , gradient descent with a fixed step size achieves the

rate of convergence at most (κ − 1)/(κ + 1) [168], where κ is the (global) con-

dition number of f . Recall that the condition number of a differentiable convex

function is the ratio of its smoothness L to strong convexity µ [160]. For any

quadratic function, this global bound is also an exact and attainable estimate

thanks to the fact that the objective curvature is unchanged everywhere. For

non-quadratic objectives, on the other hand, this global bound may be loose as

κ takes into account the worst-case scenario, in which the objective function is

most ill-conditioned. The asymptotic behavior of gradient descent near the so-

lution indeed relies on the condition number of the local Hessian κ(x∗) of the

objective function, defining as λmax(∇2f(x∗))/λmin(∇2f(x∗)). Generally, we have

µ ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x∗)) ≤ L, for any x in the domain of f , which

implies κ(x∗) ≤ κ. This local condition number κ(x∗) can be significantly smaller

than the global condition number κ and hence, a local convergence analysis can

yield a tighter bound that reflects the actual convergence speed of the algorithm near

the solution. Similar situation also occurs for constrained least squares in which

the Hessian restricted to the constrained set can depend on the local structure of

the set.
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3.6.6.4 Speed of Convergence

To illustrate the concept of convergence speed, let us consider the convergence on

the domain side, i.e., the distance
∥∥x(k) − x∗

∥∥. Let µ be a number between 0 and

1. The convergence of {x(k)}∞k=0 to x∗ is said to be at rate µ ≜ µ({x(k)}∞k=0) if

µ = inf{ϵk}∞k=0
limk→∞ ϵk+1/ϵk, for any monotonically decreasing sequence {ϵk}∞k=0

satisfying
∥∥x(k) − x∗

∥∥ ≤ ϵk for all index k. The asymptotic rate of convergence of

gradient descent to x∗, denoted by ρ, is defined by the worst-case rate of conver-

gence among all possible sequences {x(k)}∞k=0 that are generated by the algorithm

and converge to x∗, i.e., ρ = sup{x(k)}∞k=0
µ({x(k)}∞k=0). Depending on the value of

ρ in the interval [0, 1], the convergence is said to be sublinear when ρ = 1, linear

when 0 < ρ < 1, or superlinear when ρ = 0. The lower the value of ρ is, the faster

the speed of convergence is and the fewer the number of iterations needed is to

obtain a close approximation of the solution. Thus, analytical estimation of the

convergence rate plays a pivotal role in convergence analysis. We would like to

note two distinct methods for linear convergence rate analysis dating back to the

1960s. The first approach was proposed by Polyak [167], based on his earlier study

into nonlinear difference equations [166]. The author analyzed the asymptotic con-

vergence of gradient descent for minimizing some objective function f . Assuming

x∗ is a non-singular local minimum of f , Polyak showed that for any δ > 0, there

exists ϵ > 0 such that if
∥∥x(0) − x∗

∥∥ < ϵ then the sequence {x(k)}∞k=0 generated by
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gradient descent satisfies

∥∥x(k) − x∗∥∥ ≤
∥∥x(0) − x∗∥∥ (ρ+ δ)k, (3.92)

where ρ = max{|1− ηλmax| , |1− ηλmin|} and λmax and λmin are the largest and

smallest eigenvalues of ∇2f(x∗), respectively. Here we emphasize that f does

not need to be smooth and strongly convex everywhere but only so around x∗.

By setting ηopt = 2/(λmax + λmin), the optimal rate of convergence is given by

ρopt = (κ∗−1)/(κ∗+1), where κ∗ = λmax/λmin is the condition number of the local

Hessian ∇2f(x∗). When f is a strongly convex quadratic, the local result coincides

with the aforementioned global result in [168] (κ∗ = κ). The expression of ρ in

(3.92) is called the asymptotic convergence rate of gradient descent with fixed

step size η.9 The second approach was developed by Daniel [51] in 1967, while

studying gradient descent with exact line search, i.e., choosing η that minimizes

the objective at each iteration. Utilizing the Kantorovich inequality [114], the

author proved that if x(0) is sufficiently close to x∗, there exist a constant ϵ and a

sequence {qk}∞k=0 such that

∥∥x(k) − x∗∥∥ ≤ ϵ

k∏
i=0

qi, lim
k→∞

qk = (κ∗ − 1)/(κ∗ + 1).

9It is worthwhile to mention that using a similar technique, Nesterov [160] proved that the

asymptotic rate is at most ρ̂ = (κ∗ + 1)/(κ∗ + 3). While this bound also exploits the local

information of the optimization problem, we note that it is not as tight as the bound in (3.92).
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Note that here the characteristics of convergence are also exploited through the

Hessian ∇2f(x∗). This result was then extended to study the asymptotic conver-

gence of projected gradient descent for constrained optimization [71,132,139].

3.6.7 Proof of Example 3.1

Our goal in this proof is to establish the Lipschitz differentiability of the projection

operator onto the unit sphere C = {x ∈ Rn | ∥x∥ = 1}. We start by establishing

the Lipschitz differentiability at a point on C and then extend it to any nonzero

point in Rn. For the Lipschitz differentiability on C, we introduce the following

lemma:

Lemma 3.5. For any x∗ ∈ C, we have

sup
y∈ΠC(x∗+δ)

∥y − x∗ −
(
I − x∗(x∗)⊤

)
δ∥ ≤ 2∥δ∥2. (3.93)

Proof. We consider two cases:

Case 1: If x∗ + δ = 0, then ΠC(0) = C and ∥δ∥ = ∥x∗∥ = 1. For any y ∈ C,

substituting δ = −x∗ and then using the fact that I − x∗(x∗)⊤ is the projection

onto the null space of x∗, we have

y − x∗ −
(
I − x∗(x∗)⊤

)
δ = y − x∗ +

(
I − x∗(x∗)⊤

)
x∗

= y − x∗.
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Next, taking the norm and using the triangle inequality yield

∥y − x∗ −
(
I − x∗(x∗)⊤

)
δ∥ = ∥y − x∗∥

≤ ∥y∥+ ∥x∗∥ = 2∥δ∥2,

where the last step stems from ∥y∥ = ∥x∗∥ = ∥δ∥ = 1. Thus, (3.93) holds in this

case.

Case 2: If x∗+δ ̸= 0, then ΠC(x
∗+δ) is singleton containing the unique projection

PC(x
∗ + δ) =

x∗ + δ

∥x∗ + δ∥
.

Hence, (3.93) is equivalent to

∥∥∥∥ x∗ + δ

∥x∗ + δ∥
− x∗ −

(
I − x∗(x∗)⊤

)
δ

∥∥∥∥ ≤ 2∥δ∥2. (3.94)

We prove (3.94) by (i) showing that for any scalars u > 0 and (1 − u)2 ≤ v ≤

(1 + u)2:

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2) ≥ 0, (3.95)

and (ii) showing that (3.95) is equivalent to (3.94) with u = ∥x∗ + δ∥ > 0 and

v = ∥δ∥2 ≥ 0.

(i) To prove (3.95), let us consider the following cases:
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1. If 0 < u ≤ 2/17, then for v ≤ (1 + u)2, we have

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2)

≥ (17u− 2)(1 + u)4 − 2u(1− u)2(1 + u)2 + (1− u)4(u+ 2)

= 16u2(u+ 2)(u2 + 2u+ 2) ≥ 0.

2. If 2/17 < u ≤ 1/2, then for (1− u)2 ≤ v ≤ (1 + u)2, the following holds

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2)

≥ (17u− 2)(1− u)4 − 2u(1− u)2(1 + u)2 + (1− u)4(u+ 2)

= 8u(1− u)2(2− u)(1− 2u) ≥ 0.

3. If u > 1/2, using the quadratic vertex at v = u(1 − u)2/(17u − 2) as the

minimum point, we obtain

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2) ≥ 4(1− u)4(4u2 + 8u− 1)

17u− 2
≥ 0.

(ii) Now for u = ∥x∗ + δ∥ > 0 and v = ∥δ∥2 ≥ 0, we have (x∗)⊤δ = (u2 − v− 1)/2
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and

(3.94) ⇔
∥∥∥∥ x∗ + δ

∥x∗ + δ∥
− x∗ −

(
I − x∗(x∗)⊤

)
δ

∥∥∥∥ ≤ 2∥δ∥2

⇔ ∥x∗ + δ − ∥x∗ + δ∥(x∗ + δ − x∗(x∗)⊤δ)∥2 ≤ 4∥x∗ + δ∥2∥δ∥4

⇔ ∥(1− u)(x∗ + δ) + u((x∗)⊤δ)x∗∥22 ≤ 4u2v2

⇔ (1− u)2u2 + u2
(u2 − v − 1

2

)2
+ 2u(1− u)

u2 − v − 1

2

u2 − v + 1

2
≤ 4u2v2

⇔ (3.95).

Finally, by the triangle inequality, we have

|∥x∗ + δ∥ − ∥x∗∥| ≤ ∥δ∥ ≤ ∥−x∗∥+ ∥x∗ + δ∥,

which in turn verifies (1 − u)2 ≤ v ≤ (1 + u)2. This completes our proof of the

lemma.

Next, to extend the result in Lemma 3.5 to any x ∈ R \ {0}, we substitute

x∗ = x/∥x∥ and δ = δ/∥x∥ into (3.93) and obtain

sup
y∈ΠC(

x
∥x∥+

δ
∥x∥ )

∥∥∥∥y − x

∥x∥
−
(
In −

xx⊤

∥x∥2
) δ

∥x∥

∥∥∥∥ ≤ 2
∥δ∥2

∥x∥2
. (3.96)

Since the projection onto the unit sphere is scale-invariant,

ΠC

( x

∥x∥
+

δ

∥x∥

)
= ΠC(x+ δ). (3.97)
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Substituting (3.97) into (3.96) yields (3.6). Thus, by Definition 3.2, for any x ̸= 0

we obtain

∇PC(x) =
1

∥x∥

(
In −

xx⊤

∥x∥2
)
, c1(x) = ∞, c2(x) =

2

∥x∥2
.

3.6.8 Details of Application 3.4.2 - Sparse Recovery

3.6.8.1 Proof of (3.42)

In this subsection, we first show that any x∗ ∈ Φ=s and x ∈ B(x∗, |x∗
[s]|/

√
2) share

the same index set of s-largest elements (in magnitude), i.e., Ωs(x
∗). Then, we

construct a counter-example to demonstrate that |x∗
[s]|/

√
2 is the largest possible

radius so that (3.42) holds.

First, we show that for any i ∈ Ωs(x
∗) and j ∈ {1, . . . , n} \ Ωs(x

∗), |xj| < |xi|

as follows. In particular, we have

|xj − x∗
j |+ |xi − x∗

i | ≤
√

2((xj − x∗
[j])

2 + (xi − x∗
i )

2)

≤
√
2∥x− x∗∥2 < |x∗

[s]|,

where the last inequality stems from the fact that ∥x − x∗∥ < |x∗
[s]|/

√
2. Now,
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since x∗
j = 0 for all j ∈ {1, . . . , n} \ Ωs(x

∗), we have

|xj| = |xj − x∗
j |

< |x∗
[s]| − |xi − x∗

i |

≤ |x∗
i | − |xi − x∗

i |

≤ |x∗
i + (xi − x∗

i )| = |xi|, (3.98)

Therefore, every x ∈ B(x∗, |x∗
[s]|/

√
2) shares the same index set of s-largest (in

magnitude) elements with x∗, i.e., Ωs(x) = Ωs(x
∗), which implies (3.42).

We now construct the counter-example as a point x such that Ωs(x) ̸= Ωs(x
∗)

and x is not in B(x∗, |x∗
[s]|/

√
2) but arbitrarily close to its boundary. Without

loss of generality, assume that |x∗
1| ≥ . . . ≥ |x∗

s| > |x∗
s+1| = . . . = |x∗

n| = 0. For

arbitrarily small ϵ > 0, define x as

xi =


x∗
s/2 if i = s,

x∗
s/2 + ϵ if i = s+ 1,

xi otherwise.

Then, since xs+1 < xs, x does not shares the same index set of s-largest (in

magnitude) elements with x∗. On the other hand, as ϵ → 0, we have

∥x− x∗∥ =

√√√√ n∑
i=1

(xi − x∗
i )

2 =

√(
−x∗

s

2

)2
+
(x∗

s

2
+ ϵ
)2

→ 1√
2
|x∗

[s]|.
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This means x ̸∈ B(x∗, |x∗
[s]|/

√
2) but it can approach the boundary of the ball as

ϵ decreases to 0.

3.6.8.2 Proof of Remark 3.6

In the following, we show any stationary point x∗ of (3.40) is also a local minimum

by proving that the objective function does not decrease if we add any perturbation

to x∗ on C. Let us consider any perturbation δ such that δ ∈ B(0, c1(x∗)) and

x = x∗+δ ∈ C. Since x ∈ B(x∗, c1(x
∗)), using (3.98), we have |x[1]| ≥ . . . |x[s]| > 0.

On the other hand, since x has no more than s non-zero entries, it must hold that

|x[s+1]| = . . . = |x[n]| = 0. Therefore, x = Sx∗S⊤
x∗x, which implies δ = Sx∗S⊤

x∗δ.

Now we represent the change in the objective function as

1

2
∥A(x∗ + δ)− b∥2 − 1

2
∥Ax∗ − b∥2 = 1

2
δ⊤A⊤Aδ + δ⊤A⊤(Ax∗ − b)

=
1

2
δ⊤Sx∗S⊤

x∗A⊤ASx∗S⊤
x∗δ + δ⊤Sx∗S⊤

x∗A⊤(Ax∗ − b)

=
1

2
δ⊤Sx∗(S⊤

x∗A⊤ASx∗)S⊤
x∗δ ≥ 0, (3.99)

where the last equality uses the stationarity condition in (3.43). From (3.99), we

conclude x∗ is a local minimum of (3.40).
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Chapter 4: On Convergence of Projected Gradient Descent for

Minimizing a Large-Scale Quadratic over the Unit Sphere1

Unit sphere-constrained quadratic optimization has been studied extensively over

the past decades. While state-of-art algorithms for solving this problem often rely

on relaxation or approximation techniques, there has been little research into scal-

able first-order methods that tackle the problem in its original form. These first-

order methods are often more well-suited for the big data setting. In this chapter,

we provide a novel analysis of the simple projected gradient descent method for

minimizing a quadratic over a sphere. When the gradient step size is sufficiently

small, we show that convergence is locally linear and provide a closed-form ex-

pression for the rate. Moreover, a careful selection of the step size can stimulate

convergence to the global solution while preventing convergence to local minima.

1This work has been published as: Trung Vu, Raviv Raich, and Xiao Fu. “On Convergence of

Projected Gradient Descent for Minimizing a Large-Scale Quadratic over the Unit Sphere.” In

Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP),

pp. 1-6., IEEE, 2019.
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4.1 Introduction

This chapter studies the problem of minimizing a quadratic with a norm constraint:

min
x∈Rn

1

2
xTAx− bTx subject to ∥x∥ ≤ 1, (4.1)

where A ∈ Rn×n, b ∈ Rn and ∥·∥ is the Euclidean norm.2 This optimization prob-

lem arises frequently in many machine learning and signal processing applications

including contour grouping [73], graph partitioning [88] and seismic inversion [149].

If the global solution x⋆ of (4.1) lies in the interior of the unit sphere, i.e.,

∥x⋆∥ < 1, then x⋆ is also the solution of the unconstrained problem. Thus, it is

more challenging to consider the case when ∥x⋆∥ = 1. To that end, we restrict our

interest to the following problem of minimizing a quadratic over a sphere:

min
x∈Rn

1

2
xTAx− bTx subject to ∥x∥2 = 1, (4.2)

In this formulation, we assume that A is symmetric, but not necessarily positive

semidefinite. Hence, the objective function is potentially non-convex. Additionally,

the norm constraint is non-convex. Both (4.1) and (4.2) are instances of quadratic

constrained quadratic program with only one constraint (QCQP-1) and they have

been extensively studied in the literature. State-of-art methods for solving this type

of QCQP-1 problems in polynomial time include semidefinite relaxation (SDR)

2Generally, we can always assume A to be symmetric. Otherwise, one can define an equivalent

objective function using Â = 1
2 (A+AT ).
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[142] and Lagrangian relaxation [165]. However, the problem size for these methods

often grows quadratically, making them inapplicable to large-scale problems.

From a different standpoint, problems (4.1) and (4.2) also arise in linear al-

gebra and optimization as the trust-region subproblem. There have been a few

extensions to large-scale settings. In [80], Golub and von Matt leveraged the the-

ory of Gauss quadrature and proposed a method to approximately solve (4.1) by

tridiagonalizing A using the Lanczos process. In another approach, Sorensen [187]

recast the trust-region subproblem in terms of a parameterized eigenvalue prob-

lem and developed an implicitly restarted Lanczos method. Related schemes can

also be found in [175,179]. In 2001, Hager introduced sequential subspace method

(SSM) [86, 87], carrying out the minimization over a sequence of subspaces that

are adjusted after each sequential quadratic programming (SQP) iterate. Similar

to the aforementioned methods, SSM relies on Lanczos process to compute the

smallest eigenvalue and the corresponding eigenvector of A.

In this chapter, we focus on scalable first-order methods for solving (4.2) di-

rectly. We leverage the use of simple gradient projection and establish convergence

results in the non-convex setting of the spherically constrained quadratic minimiza-

tion problem, where most convergence guarantees in convex optimization start to

break. Our analysis provides a novel insight into behaviors of the algorithm in the

neighborhoods of the local optima. Understanding these convergence properties

enables us to (i) accommodate acceleration near the optimum—e.g., by using opti-

mal step size selection or momentum methods—and (ii) identify ways of enabling

convergence to global solution. Finally, we present numerical results that illustrate
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the theory developed in the chapter.

4.2 Solution Properties

Consider the Lagrange function

L(x, γ) = 1

2
xTAx− bTx− 1

2
γ(∥x∥2 − 1)

where γ is the Lagrange multiplier. The first-order Lagrangian conditions for

optimality can be specified as


∇xL(x, γ) = Ax− b− γx = 0,

∇γL(x, γ) = ∥x∥2 − 1 = 0.

For notational simplicity, we denote the residual by r = Ax − b and the unit

sphere by Sn−1 = {x ∈ Rn : ∥x∥ = 1}. Formally, these conditions are given in the

following lemma.

Lemma 4.1 (Stationary conditions). The vector x∗ is a stationary point of prob-

lem (4.2) if and only if x∗ ∈ Sn−1 and there exists a constant γ(x∗) such that

r∗ = Ax∗ − b = γ(x∗) · x∗.

For the rest of this chapter, we use the shorthand notation γ to refer γ(x∗).

Lemma 4.1 also implies γ = rT
∗ x∗. Denote P⊥

x∗ = I − x∗x
T
∗ . Let λn = 0 be

the zero eigenvalue corresponding to the eigenvector x∗ of the matrix P⊥
x∗AP⊥

x∗

and λ1 ≥ λ2 ≥ . . . ≥ λn−1 be the remaining n − 1 eigenvalues. Noticeably, the
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(a) A =

[
2 0
0 1

]
, b =

[
3
0

]
(b) A =

[
4 0
0 1

]
, b =

[
2
0

]

(c) A =

[
−2 0
0 1

]
, b =

[
−1
0

]
(d) A =

[
1 0
0 1

]
, b =

[
0
0

]
Figure 4.1: Examples of minimizing a quadratic over a sphere. Stationary points
are given in red stars. In 2D scenario, they can be either local minima or local
maxima (a-c). Furthermore, it is possible that a local optimum lies in a continuum
of optima (d).
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eigenvalues of P⊥
x∗AP⊥

x∗ can be bounded by

λmin(A) ≤ λn−1 ≤ . . . ≤ λ1 ≤ λmax(A),

where λmin(A) and λmax(A) are the smallest and largest eigenvalues of A, re-

spectively. Moreover, the relationship among those eigenvalues and the Lagrange

multiplier provides necessary and sufficient conditions for determining the type of

a stationary point.

Lemma 4.2. A stationary point x∗ of problem (4.2) is a strict local minimum if

and only if γ(x∗) < λn−1(x∗). Furthermore, x⋆ is a global minimizer of problem

(4.2) if and only if γ(x⋆) ≤ λmin(A).

Example 4.1. Figure 4.1 demonstrates various cases where there are different

numbers of stationary points. As an exemplification, let us examine the derivation

of the problem in Fig. 4.1(b):

min
x1,x2

1

2
(4x2

1 + x2
2)− 2x1 s.t. x2

1 + x2
2 = 1.

For each stationary point x∗, the matrix P⊥
x∗AP⊥

x∗ has one zero eigenvalue cor-

responding to the eigenvector x∗, and the other non-zero eigenvalue λ1 = λn−1

(since n = 2) lies between λmin(A) = 1 and λmax(A) = 4. Omitting the detailed

calculation, we list the four stationary points of this problem as follows: (i) a

global maximum at [x1, x2] = [−1, 0] with γ = 6, λ1 = 1; (ii) a local maximum

at [x1, x2] = [1, 0] with γ = 2, λ1 = 1; and (iii) 2 local (also global) minima at
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[x1, x2] = [2
3
,±

√
5
3
] with γ = 1, λ1 =

8
3
.

4.3 The Projected Gradient Algorithm

The projected gradient descent approach (see Algorithm 4.1) starts at an initial

point x(0), then performs the update

x(t+1) = fα(x
(t)) = PSn−1

(
x(t) − α(Ax(t) − b)

)
, (4.3)

where α > 0 is the step size and PSn−1(·) : Rn → Rn is the spherical projection

uniquely given by

PSn−1(x) =


x

∥x∥ if x ̸= 0,

e if x = 0,

with e ∈ Sn−1 such that e and Ae − b are not collinear. The definition of pro-

jection at 0 is just for numerical issues when the algorithm encounters the origin

at some iteration. In practice, we can choose e to be one of the natural basis,

i.e., [1, 0, . . . , 0]. Next, let us consider some important properties associated with

Algorithm 4.1.

Definition 4.1. A fixed point of fα is defined as any vector x̄ ∈ Rn such that

fα(x̄) = PSn−1

(
x̄− α(Ax̄− b)

)
= x̄.
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Lemma 4.3. The vector x̄ is a fixed point of fα if and only if x̄ ∈ Sn−1 and there

exists a constant γ < 1
α
such that r̄ = Ax̄− b = γx̄.

Proof. Since x̄ is a fixed point of fα, we have

x̄ = fα(x̄) = PSn−1

(
x̄− α(Ax̄− b)

)
.

Consequently, x̄ ∈ Sn−1. Furthermore, if x̄−α(Ax̄−b) = 0, then x̄ = PSn−1(0) =

e. But this contradicts with the non-collinearity of e and Ae−b. Thus, it must be

the case that x̄− α(Ax̄− b) ̸= 0, and hence x̄ = x̄−αr̄
∥x̄−αr̄∥ . There exists a constant

γ such that r̄ = γx̄. Substituting back into the fixed-point equation yields

x̄ =
(1− αγ)x̄

|1− αγ| ∥x̄∥
=

1− αγ

|1− αγ|
x̄

∥x̄∥
= sign(1− αγ) · x̄.

Therefore, the sign of 1− αγ must be 1 or 1− αγ > 0.

From Lemma 4.2 and 4.3, we can establish the necessary and sufficient conditions

for a fixed point of fα to be a stationary point as follows.

Corollary 4.1. The vector x∗ is a stationary point of problem (4.2) if and only if

there exists α > 0 such that x∗ is a fixed point of fα.

Example 4.2. Continued from Example 4.1, we illustrate fixed points with differ-

ent step sizes in Fig. 4.2. When α is small enough, all stationary points can be

fixed points. As α increases, only stationary points with the multiplier γ < 1/α

remains to be fixed points of fα. Interestingly, while any convergence point of Al-

gorithm 4.1 with step size α is a fixed point of the iterated function fα, the vice
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Algorithm 4.1 Projected Gradient Descent (PGD)

1: Initialize x(0) ∈ Sn−1

2: for t = 0, 1, . . . do
3: z(t+1) = x(t) − α(Ax(t) − b)
4: x(t+1) = PSn−1(z(t+1))

(a) 0 < α < 1/6 (b) 1/6 < α < 1/2 (c) 1/2 < α < 1 (d) α > 1

Figure 4.2: Stationary points (red stars) versus fixed points (blue circles) with
different step size α in optimizing the quadratic objective 1

2
(4x2

1 + x2
2) − 2x1 over

the unit circle. Dashed lines are the contour levels of the objective value.

versa is not true: the global maximum at [x1, x2] = [−1, 0] is a fixed point of fα,

for α < 1/6, but as can be seen in the next section, it is not a convergence point

of the algorithm.

4.4 Convergence Analysis

In this section, we present our result on the local uniform convergence of Algo-

rithm 4.1 with a certain choice of step size to a strict local optimum. The con-

vergence is shown to be linear and the asymptotic rate is given in a closed-form

expression. The challenges come the non-convexity of the norm constraint and

(potentially) the negative curvature of the objective function. Let us begin with

the analysis of the projection operator.
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Lemma 4.4 (Taylor series expansion of the projection). Let x ∈ Rn be a nonzero

vector and δ be a small perturbation such that ∥δ∥ ≪ ∥x∥. Then,

PSn−1(x+ δ) = PSn−1(x) +
1

∥x∥

(
I − xxT

∥x∥2
)
δ +O

(
∥δ∥2

)
.

Now, considering the convergence of Algorithm 4.1 in the region near a strict local

minimum x∗ where r∗ = Ax∗ − b = γx∗. Denote δ(t) = x(t) − x∗ and reorganize

the update equation (4.3) as

δ(t+1) = PSn−1

(
x∗ − α(Ax∗ − b) + (I − αA)δ(t)

)
− x∗

= PSn−1

(
(1− αγ)x∗ + (I − αA)δ(t)

)
− PSn−1

(
(1− αγ)x∗

)
.

Substituting x = (1− αγ)x∗ and δ = (I − αA)δ(t) into Lemma 4.4 yields

δ(t+1) =
1

∥(1− αγ)x∗∥
(
I − (1− αγ)x∗(1− αγ)xT

∗

∥(1− αγ)x∗∥2
)
(I − αA)δ(t) +O

(
∥δ(t)∥2

)
.

Assume the step size is chosen such that αγ < 1, and recall that P⊥
x∗ = I − x∗x

T
∗

for ∥x∗∥ = 1. The recursion can be rewritten as

δ(t+1) =
1

1− αγ
P⊥

x∗(I − αA)δ(t) +O
(
∥δ(t)∥2

)
. (4.4)

The stability of a general nonlinear difference equation of the form xk+1 = Txk +

o(
∥∥xk
∥∥) has been well-studied in [15, 166]. In particular, let ρα be the spectral

radius of (1−αγ)−1P⊥
x∗(I−αA), i.e., the largest absolute value of its eigenvalues.



127

If ρα < 1, then the series {δ(t)} approaches zeros with sufficiently small δ(0), where

∥δ(t)∥ ≤ K∥δ(0)∥
(
ρα + o(1)

)t
.

Therefore, to prove the local convergence of the PGD algorithm, it is sufficient to

show that ρα < 1. We present our main result on the local uniform convergence

to a strict local minimum as follows.

Definition 4.2. Algorithm 4.1 with a fixed step size α is said to converges locally

uniformly to x∗ if and only if there exists a constant ϵ such that for any x(0)

satisfying
∥∥x(0) − x∗

∥∥ ≤ ϵ, we have
∥∥x(t) − x∗

∥∥ ≤ ϵ, for all t = 0, 1, . . . and

limt→∞
∥∥x(t) − x∗

∥∥ = 0.

Theorem 4.1. The vector x∗ is a strict local minimum of problem (4.2) such that

γ < λn−1 if and only if there exists α > 0 such that Algorithm 4.1 with step size α

converges locally uniformly to x∗. Furthermore, for any step size α > 0 such that

α(λ1 + γ) < 2, the sequence {x(t)} satisfies

∥x(t) − x∗∥ ≤ K∥x(0) − x∗∥
(
ρα + o(1)

)t
,

for some constant K > 0 and ρα = max1≤i≤n−1
|1−αλi|
1−αγ

.

The proof of Theorem 4.1 is given in the appendix. The theorem reveals PGD

converges to a local minimum at an asymptotic linear rate ρα. Note that in our

problem, A is not necessarily PSD, meaning λi could be negative. To facilitate

acceleration, one can speed up the convergence by optimizing over the step size α.
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Lemma 4.5. The optimal rate of local convergence and the optimal step size for

Algorithm 4.1 are given by 3


ρ∗ =

λ1−λn−1

λ1+λn−1−2γ
, α∗ =

2
λ1+λn−1

if λ1 + λn−1 > 0

ρ∗ =
λn−1

γ
, α∗ = ∞ otherwise.

Example 4.3. Continued from Example 4.2, Theorem 4.1 states that the PGD al-

gorithm only converges locally uniformly to the two local minima at [2/3,±
√
(5)/3]

with λ1 = 8
3
. Notice that these points are fixed points of fα for α < 1. Since

λ1 = λn−1, the optimal rate is ρ∗ = 0 with step size α∗ = 3
8
. In this case, the

convergence is quadratic due to the residual term in (4.4).

Global convergence of the PGD algorithm. Theorem 4.1 also implies that

for any step size α satisfying ρα > 1, the algorithm tends to move away from

the local minimum x∗. This intuition leads us to the following strategy for step

size selection: choosing α large enough such that g(α,x∗) ≥ 2, where g(α,x∗) ≜

α(λ1(x∗) + γ(x∗)), for all strict local minimum x∗ except the global minimum x⋆.

Remark 4.1. Assume that there exists sufficiently large α satisfying g(α,x⋆) < 2

for any global minimum x⋆ and g(α,x∗) ≥ 2 for any strict local minimum x∗.

Then Algorithm 4.1 with step size α converges to one of the optimal solutions x⋆

at an asymptotic geometric rate of ρα(x⋆).

3The proofs of Lemma 4.2 and Lemma 4.5 are given in the Appendix at the end of this chapter.
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Figure 4.3: (a) Local convergence of the projected gradient method with different
step sizes for solving a unit-constrained least squares. (b-c) Empirical evidence of
the convergence to global optimum where x(0) is initialized near a local optimum
and α is chosen according to Remark 4.1. Dashed lines are added as an illustration
for the theoretical bounds for the convergence rate of fixed step size methods (up
to a constant).

4.5 Numerical Results

Motivating applications of problem (4.1) are the well-known trust-region subprob-

lem in nonlinear optimization [49], the variational problem in structural limit anal-

ysis [74], and the optimizing precoder method in transmitter based CDMA opti-

mization [97]. For the purpose of demonstrating the theoretical analysis, we will

focus on numerical results for local convergence of Algorithm 4.1 with different step

sizes, and empirical evidence for our conjecture about the global convergence with

an appropriate step size. In our experiment, we first generate a random symmetric

matrix A of size n = 1000 such that the smallest eigenvalue is far away from the

other eigenvalues. Then, we choose one multiplier for the global solution γ(x⋆) <

λmin(A) and one multiplier for the local solution γ(x∗) > λmin(A). Next, the coef-

ficient vector b is chosen such that bT (A− γ(x⋆)I)
−2b = bT (A− γ(x∗)I)

−2b = 1.

Finally, we compute x⋆ = (A− γ(x⋆)I)
−1b and x∗ = (A− γ(x∗)I)

−1b.
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For local convergence, starting at an initial point x(0) close to the local mini-

mum x∗, we examine four PGD algorithms with different step sizes:

(i) Commonly used step size: α = 1/L, where L is the spectral radius of A. This

step size selection is often used in many classic proofs of convergence in convex

optimization, where an L-smooth objective function can be guaranteed to mono-

tonically decrease through PGD iterations.

(ii) Optimal step size: α = α∗ as in Lemma 4.5. We choose A and x∗ such that

λ1 + λn−1 > 0, hence α∗ = 2/(λ1 + λn−1).

(iii) Projected backtracking line search: rewriting the PGD update as generalized

gradient step x(t+1) = x(t)−αtGαt(x
(t)), where Gα(x) =

1
α

(
x−PSn−1

(
x−α(Ax−

b)
))

. Denote the quadratic objective by q(x). Starting with α = 1, we shrink

α = βα, for 0 < β < 1, while

q
(
x− αGα(x)

)
> q(x)− α(Ax− b)TGα(x) +

α

2
∥Gα(x)∥2 .

In our case, this backtracking condition can be simplified to

Gα(x)
TAGα(x) >

1

α
∥Gα(x)∥2 .

(iv) Exact line search: finding the step size that maximizes the decrease in objec-

tive function

αmin = min
α>0

q
(
PSn−1(x− α(Ax− b))

)
.

As can be seen from Fig. 4.3(a), the convergence of PGD with step size α =

1/L (blue) is the slowest among the considered methods, followed by the one
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with optimal step size α = 2/(λ1 + λn−1) (red). Note that they both match

the asymptotic rate predicted in theory. The adaptive schemes, namely projected

backtracking (yellow) and exact line search (magenta) perform slightly better than

the optimal fixed step size scheme.

For global convergence, we purposely initialize the algorithm at the same x(0)

that is close to the local minimum x∗, and run the PGD algorithm with step size

α = 1
2

(
2

λ1(x⋆)+γ(x⋆)
+ 2

λ1(x∗)+γ(x∗)

)
. It is easy to verify that α satisfies the condition

in Remark 4.1: g(α,x∗) < 2 < g(α,x⋆). Figure 4.3 demonstrates the convergence

of the algorithm to the global minimizer x⋆, in terms of the distance to the solution

(b) and the decrease in the objective value (c). In the first 5000 iterations, the

algorithm tries to escape from the local minimum. Then it experiences a period

of fluctuation before getting attracted by the global minimum. Notice that when

it reaches the neighborhood of x⋆, (monotonic) linear convergence is observed. 4

4.6 Conclusion and Future Work

We analyzed the projected gradient descent approach to minimizing a quadratic

over a sphere. We showed that the algorithm always converges linearly to a strict lo-

cal minimum in its neighborhood. Further, we provided the closed-form expression

for convergence rate and identified ways of achieving optimal rate of convergence

near the optimum. Our analysis can be extended in the following directions: (i)

4This result is provided merely as an illustration of a typical run, not to be considered as an

empirical proof. In our experiments, we re-ran simulations multiple times with various problem

sizes and always observed convergence.



132

minimizing a quadratic over an ellipsoid; (ii) acceleration of gradient projection

using momentum; and (iii) analysis of convergence to a continuum of optima.

4.7 Appendix

4.7.1 Proof of Lemma 2

Recall our optimization problem:

min
x∈Rn

1

2
xTAx− bTx subject to ∥x∥2 = 1,

The proof of the global minimizers is given by Lemmas 2.4 and 2.8 in [186]. Below

we provide the proof of the sufficient condition for strict local minima of problem

(4.2). This is a consequence of the second-order sufficient condition for optimality

in constrained optimization (see Chapter 3 - [16]). Notice that in our case, the

Hessian of the Lagrange function is ∇2
xxL(x, γ) = A − γI and the Jacobian of

the constraint xTx− 1 = 0 is J(x) = x. Let x∗ be a stationary point of problem

(4.2). Then x∗ is a strict local minimum if

yT (A− γI)y > 0 ∀ y s.t. y ⊥ x∗ (i.e. yTx∗ = 0). (4.5)
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Since P⊥
x∗y = y for all y ⊥ x, we have

yT (A− γI)y = yTP⊥
x∗(A− γI)P⊥

x∗y

= yTP⊥
x∗AP⊥

x∗y − γyTP⊥
x∗P

⊥
x∗y

= yT (P⊥
x∗AP⊥

x∗ − γI)y.

Thus, condition (4.5) is equivalent to yT (P⊥
x∗AP⊥

x∗ − γI)y > 0, or

γ <
yTP⊥

x∗AP⊥
x∗y

∥y∥2
∀ y s.t. y ⊥ x∗. (4.6)

On the other hand, by the definition of λn−1, we have

λn−1 = min
y⊥x∗

yTP⊥
x∗AP⊥

x∗y

∥y∥2
= min

y⊥x∗

yTAy

∥y∥2
= min

y⊥x∗
∥y∥=1

yTAy. (4.7)

Combining (4.5), (4.6) and (4.7), we conclude γ < λn−1 implies x∗ is a strict local

minimum of problem (4.2).

It is noteworthy that the necessary condition for local minima of problem (4.2),

following a similar argument, is given by γ ≤ λn−1. However, it is possible that a

strict local minimum associates with γ = λn−1. For example, consider the 2D-case

A =

2 1

1 2

 , x∗ =

1/√2

1/
√
2

 , b =

√2
√
2

 , γ = λn−1 = 1.

It can be seen that the curvature of the objective function almost coincides with



134

that of the unit sphere at x∗ in the above example. The following lemma states

the necessary condition for strict local minima of problem (4.2):

Lemma 4.6. If x∗ is a strict local minimum of problem (4.2), then either of the

following condition holds

• γ < λn−1

• xT
∗Ax∗ > uTAu = γ = λn−1 and xT

∗Au = 0 for u = argmin
y⊥x∗
∥y∥=1

yTAy.

Proof. By definition of strict local minima, for any x ∈ Sn−1 such that 0 <

∥x− x∗∥ < ϵ with sufficiently small ϵ > 0, we have

0 < f(x)− f(x∗)

=
(1
2
xTAx− bTx

)
−
(1
2
xT
∗Ax∗ − bTx∗

)
=
(1
2
xTAx− (Ax∗ − γx∗)

Tx
)
−
(1
2
xT
∗Ax∗ − (Ax∗ − γx∗)

Tx∗

)
(since Ax∗ − b = γx∗)

=
1

2

(
xTAx− 2xTAx∗ + xT

∗Ax∗ − γ(2xT
∗ x∗ − 2xTx∗)

)
=

1

2

(
(x− x∗)

TA(x− x∗)− γ ∥x− x∗∥2
)

(since ∥x∥ = ∥x∗∥ = 1)

Denote δ = x− x∗ = δx + δ⊥, where δx is collinear to x∗ and δ⊥ is orthogonal to

x∗. The last inequality becomes

γ <
δTAδ

∥δ∥2
=

δT
xAδx + 2δT

xAδ⊥ + δ⊥Aδ⊥

∥δ∥2
. (4.8)
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Using the fact that ∥δ∥2 = ∥δx∥2 + ∥δ⊥∥2 and

1 = ∥x∥2 = ∥x∗ + δ∥2 = ∥x∗∥2 + ∥δ∥2 + 2xT
∗ δ = 1 + ∥δx∥2 + ∥δ⊥∥2 + 2xT

∗ δx

we obtain δx = −∥δx∥x∗ and ∥δ⊥∥ =
√

2 ∥δx∥ − ∥δx∥2. Substituting back into

(4.8) yields

γ <
∥δx∥2 xT

∗Ax∗ − 2 ∥δx∥
√
2 ∥δx∥ − ∥δx∥2xT

∗Au+ (2 ∥δx∥ − ∥δx∥2)uTAu

2 ∥δx∥

=
1

2

(
∥δx∥xT

∗Ax∗ − 2

√
2 ∥δx∥ − ∥δx∥2xT

∗Au− ∥δx∥uTAu
)
+ uTAu, (4.9)

where u is the unit-length vector that is collinear to δ⊥. Now since ∥δx∥ can be

chosen arbitrarily small and u can be chosen in any direction that is orthogonal to

x∗, taking ∥δx∥ → 0 in (4.9) yields uTAu ≥ γ for any unit-length vector u ⊥ x∗.

Thus, from (4.7), we conclude that λn−1 ≥ γ. Furthermore, if λn−1 = uTAu = γ,

then it holds that

∥δx∥xT
∗Ax∗ − 2

√
2 ∥δx∥ − ∥δx∥2xT

∗Au− ∥δx∥uTAu > 0 for all ∥δx∥ .

(4.10)

Notice that if xT
∗Au > 0, we can always choose sufficiently small ∥δx∥ so that

the second term (O(∥δx∥1/2)) on the LHS of (4.10) dominates the other terms

(O(∥δx∥)), which in turn forces the LHS to be negative. Otherwise, if xT
∗Au < 0,

we can replace u by−u and follows the same argument to expose the contradiction.

Therefore, it must hold that xT
∗Au = 0 in the case uTAu = γ. In addition,
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substituting these quantities back into (4.10) yields xT
∗Ax∗ > uTAu.

4.7.2 Proof of Lemma 4

This lemma stems from the fact that the first-order derivative of the function

f(x) = x
∥x∥ is given by

∇f(x) =
1

∥x∥
I − 1

∥x∥3
xxT .

4.7.3 Proof of Theorem 4.1

The proof of Theorem 4.1 is given as follows.

[⇒] First, if Algorithm 4.1 converges locally uniformly to x∗, our goal is to prove

γ < λn−1. By contradiction, assume that γ > λn−1
5. Then choosing x(0) =

x∗ + ϵun−1, where un−1 is the eigenvector corresponding to λn−1, leads to

δ(1) =
|1− αλn−1|
1− αγ

δ(0) =
1− αλn−1

1− αγ
δ(0)

⇒
∥∥x(1) − x∗

∥∥ =
∥∥δ(1)

∥∥ =

∣∣∣∣1− αλn−1

1− αγ

∣∣∣∣ ∥ϵun−1∥ =
1− αλn−1

1− αγ
ϵ > ϵ.

This contradicts with the assumption that the sequence {x(t)} lies inside the ϵ-

vicinity of x∗.

[⇐] Conversely, we will show that if x∗ is a strict local minimum, then for any

5The case γ = λn−1 leads to convergence to a continuum which we leave as a future work.
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α > 0 such that α(λ1 + γ) < 2, Algorithm 4.1 with step size α converges locally

uniformly to x∗. By the same argument in [166], to prove the local stability of

equation (4.4), it is sufficient to consider the linear equation without the quadratic

residual

δ(t+1) =
1

1− αγ
P⊥

x∗(I − αA)δ(t).

The above equation implies δ(t) = P⊥
x∗δ

(t) for t = 1, 2, . . .. Thus, we have

δ(t+1) =
P⊥

x∗(I − αA)P⊥
x∗

1− αγ
δ(t) =

P⊥
x∗ − αP⊥

x∗AP⊥
x∗

1− αγ
δ(t)

=
(I − αP⊥

x∗AP⊥
x∗)P

⊥
x∗

1− αγ
δ(t) =

I − αP⊥
x∗AP⊥

x∗

1− αγ
δ(t).

Now consider the matrix P⊥
x∗AP⊥

x∗ . There exists an eigenvalue decomposition

P⊥
x∗AP⊥

x∗ = UΛUT where U = [u1,u2, . . . ,un−1,x∗] is an orthogonal matrix and

Λ = diag(λ1, λ2, . . . , λn−1, 0). Let y
(t) = UTδ(t). Then

y(t+1) = UTδ(t+1) =
I − αΛ

1− αγ
y(t) =

(
I − αΛ

1− αγ

)t

y(1). (4.11)

In addition, since the last column of U is x∗, we can compute the last element of

y(1) by

y(1)n = xT
∗ δ

(1) = xT
∗ (I − x∗x

T
∗ )δ

(0) = 0. (4.12)
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From (4.11) and (4.12), we obtain

∥∥y(t+1)
∥∥ ≤ max

1≤i≤n−1

∣∣∣∣1− αλi

1− αγ

∣∣∣∣t · ∥∥y(1)
∥∥ .

Since x∗ is a strict local minimum, it follows from Lemma 4.2 that γ < λn−1 ≤ λ1.

Combining with the condition αλ1 + αγ < 2, we obtain αγ < 1. In order to show

convergence, it remains to prove the inequality

max
1≤i≤n−1

|1− αλi|
1− αγ

< 1 ⇔ |1− αλi| < 1− αγ, ∀ 1 ≤ i ≤ n− 1.

Indeed, this inequality stems from the fact that αλ1 + αγ < 2 and γ < λn−1 ≤

. . . ≤ λ1.

4.7.4 Proof of Lemma 5

We have

α∗ = argmin
α>0

α(λ1+γ)<2

max
1≤i≤n−1

|1− αλi|
1− αγ

. (4.13)

For γ < λ, the function 1−αλ
1−αγ

is monotonically decreasing. Denote f(α) =

max1≤i≤n−1
|1−αλi|
1−αγ

. Consider the following three cases:
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• If 1− αλn−1 ≥ 1− αλ1 ≥ 0, then (4.13) becomes

min
α

f(α) = min
αλ1≤1

1− αλn−1

1− αγ
=


f( 1

λ1
) = λ1−λn−1

λ1−γ
if λ1 > 0

f(∞) = λn−1

γ
otherwise

• If 1− αλ1 ≤ 1− αλn−1 ≤ 0, then (4.13) becomes

min
α

f(α) = min
αλn−1≥1

αλ1 − 1

1− αγ
= f

( 1

λn−1

)
=

λ1 − λn−1

λn−1 − γ
.

• If 1− αλ1 ≤ 0 and 1− αλn−1 ≥ 0, then (4.13) becomes

min
α

f(α) = min
α(λ1+λn−1)≤2

{
αλ1 − 1

1− αγ
,
1− αλn−1

1− αγ

}

=


f( 2

λ1+λn−1
) = λ1−λn−1

λ1+λn−1−2γ
if α(λ1 + λn−1) < 2

f(∞) = λn−1

γ
otherwise

In summary, we have

• If λ1 + λn−1 ≤ 0, then

min
α

f(α) = min
{
f
( 1
λ1

)
, f(∞)

}
= f(∞).

• If λ1 + λn−1 > 0, then

min
α

f(α) = min
{
f
( 1
λ1

)
, f
( 1

λn−1

)
, f
( 2

λ1 + λn−1

)}
= f

( 2

λ1 + λn−1

)
.
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Chapter 5: On Local Linear Convergence of Projected Gradient

Descent for Unit-Modulus Least Squares1

The unit-modulus least squares (UMLS) problem has a wide spectrum of appli-

cations in signal processing, e.g., phase-only beamforming, phase retrieval, radar

code design, and sensor network localization. Scalable first-order methods such as

projected gradient descent (PGD) have recently been studied as a simple yet effi-

cient approach to solving the UMLS problem. Existing results on the convergence

of PGD for UMLS often focus on global convergence to stationary points. As a

non-convex problem, only a sublinear convergence rate has been established. How-

ever, these results do not explain the fast convergence of PGD frequently observed

in practice. This chapter presents a novel analysis of convergence of PGD for

UMLS, justifying the linear convergence behavior of the algorithm near the solu-

tion. By exploiting the local structure of the objective function and the constraint

set, we establish an exact expression of the convergence rate and characterize the

conditions for linear convergence. Simulations show that our theoretical analysis

corroborates numerical examples. Furthermore, variants of PGD with adaptive

step sizes are proposed based on the new insight revealed in our convergence anal-

ysis. The variants show substantial acceleration in practice.

1This work is currently under review and available at https://arxiv.org/abs/2206.10832.
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5.1 Introduction

Unit-modulus least squares (UMLS) is formulated as the following optimization

problem:

min
w∈CN

1

2
∥Φw − h∥2

s.t. |wi|2 = 1 for i = 1, . . . , N, (5.1)

where Φ ∈ CM×N and h ∈ CM . This problem arises in numerous machine learning

and signal processing applications including, but not limited to, phase-only beam-

forming [138,206], phase retrieval [35,220], radar code design [184,203], and sensor

network localization [70]. For instance, in phase-only beamforming applications,

the goal is to design a weight vector w associated with N antennas so that it re-

tains the power of each antenna and enhances reception of the signals from certain

directions while mitigating interference located at other directions. For a uniform

linear antenna array, Φ can be the steering vector matrix with a Vandermonde

structure.

It is well-known that UMLS is a non-convex NP-hard problem [237]. One

traditional approach to this problem is semi-definite relaxation (SDR). In [141],

Luo et. al. recast (5.1) as a quadratically constrained quadratic programming

(QCQP) problem and then lifted it to an N2-dimensional problem with a rank-1

constraint. By dropping the non-convex rank constraint, the resulting problem

is convex and can be solved via interior point methods. The major disadvantage
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of SDR is the high computational complexity (O(N7) flops and O(N2) memory),

which is not suitable for large-scale problems in modern applications. Another

approach that has recently been proposed by Tranter et. al. [206] is non-convex

projected gradient descent (PGD). Since the projection onto the unit-modulus

manifold is simple and low-cost, PGD was shown to be efficient in large-scale

settings. Notably, the authors in [206] showed that, despite the lack of convexity,

the algorithm converges globally to a set of stationary points of (5.1) and the rate

of convergence is at least sublinear.

Motivated by Tranter’s result, this chapter studies an in-depth convergence

analysis of PGD for UMLS. First, we observe in practice that the algorithm fre-

quently exhibits linear convergence near a local minimum of the problem. This

is significantly faster than the sublinear convergence proven in [206]. Second, we

believe the bound technique in [206] is rather conservative since it focuses on global

characterization yet ignores the local structure of the problem around the solution.

In particular, while UMLS is not a globally convex problem, it can still possess a

benign geometry around a local minimum. In such scenario, one can expect that

PGD will converge linearly to the local minimum similar to gradient descent for

unconstrained minimization of a smooth and strongly convex function [160]. With

this intuition, our goal here is to provide an analytical framework to uncover the

fast linear convergence behavior of PGD near a local minimum of the UMLS prob-

lem.2 By exploiting the local structure of the problem near local minima, we are

2Part of this work appeared in an earlier conference version [218], where we study the local

convergence of PGD for minimizing a quadratic over the unit sphere. When N = 1, the UMLS
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able to identify the sufficient conditions for local linear convergence of PGD with a

fixed step size and obtain an exact expression of the convergence rate. In addition,

we establish the region of convergence in which initializing the algorithm is guar-

anteed to converge to the desired local minimum. The theoretical rate predicts

accurately the empirical convergence rate in our numerical simulation. Finally, in

practical applications where prior knowledge of the solution is not available, we

propose two adaptive-step-size variants of PGD that requires the same iteration

complexity while offering faster linear convergence compared to the optimal fixed

step size in theory.

The rest of the chapter is organized as follows. Section 5.2 presents the real-

valued formulation of UMLS that is considered in this chapter and the PGD al-

gorithm for solving this problem. Section 5.3 summarizes existing results on the

convergence of PGD for UMLS in the literature, highlighting the fundamental sim-

ilarity between the UMLS problem and the spherically constrained problem. Our

convergence analysis is presented in Section 5.4, including solution properties, al-

gorithm properties, and linear convergence properties. In Section 5.5, we propose

two variants of PGD for UMLS that use adaptive step size schemes to effectively

obtain fast linear convergence without the prior knowledge of the solution. Finally,

in Section 5.6, we perform numerical experiments to verify our theoretical analysis.

problem and the spherically constrained LS problem coincide. For N > 1, UMLS introduces a

more complex constraint set in the form of the cross product of multiple spherical constrains.
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5.2 Problem Statement

In this section, we introduce fundamental concepts in formulating the UMLS prob-

lem as a standard constrained least-squares optimization and the PGD algorithm

for solving it.

5.2.1 Notation

Throughout the chapter, we use the notations ∥·∥F and ∥·∥2 to denote the Frobe-

nius norm and the spectral norm of a matrix, respectively. Additionally, ∥·∥ is used

on a vector to denote the Euclidean norm. Boldfaced symbols are reserved for vec-

tors and matrices. The t × t identity matrix is denoted by It. The t-dimensional

vector of all zeros and the t-dimensional vector of all ones are denoted by 0t and 1t,

respectively. The notations ⊗ denotes the Kronecker product between two matri-

ces and vec(·) denotes the vectorization of a matrix by stacking its columns on top

of one another. For a complex number z, ℜ and ℑ denote the real and imaginary

parts of z, respectively. Given an n-dimensional vector x, xi denotes the ith ele-

ment of x and diag(x) denotes the n× n diagonal matrix with the corresponding

diagonal entries x1, . . . , xn. Given a matrix X ∈ Rm×n, the ith largest eigenvalue

and the ith largest singular value of X are denoted by λi(X) and σi(X), respec-

tively. The spectral radius of X is defined as ρ(X) = maxi |λi(X)| and is less

than or equal to the spectral norm, i.e., ρ(X) ≤ ∥X∥2 [151]. If X is square and

invertible, the condition number of X is defined as κ(X) = σ1(X)/σn(X). Fi-

nally, we use X ≻ 0 to indicate the matrix X is positive definite (PD) and X ⪰ 0
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to indicate the matrix X is positive semi-definite (PSD).

5.2.2 Real-valued Formulation of UMLS

For the convenience of analysis, we consider the following real-valued parametriza-

tion of (5.1):

min
x∈R2N

1

2
∥Ax− b∥2

s.t. x2
2i−1 + x2

2i = 1 for i = 1, . . . , N, (5.2)

where A ∈ R2M×2N is partitioned into 2× 2 blocks of form

Ãij =

ℜ(Φij) −ℑ(Φij)

ℑ(Φij) ℜ(Φij)

 , (5.3)

for i = 1, . . . ,M and j = 1, . . . , N . In addition, x = [ℜ(w1),ℑ(w1), . . . ,ℜ(wN),ℑ(wN)]
⊤

and b = [ℜ(h1),ℑ(h1), . . . ,ℜ(hM),ℑ(hM)]⊤ are real-valued vectors. Next, we in-

troduce the concepts of the 2-selection operator that selects the ith coordinate pair

of a 2N -dimensional vector. Since the unit-modulus constraint involves every pair

of coordinates of x, this operator allows us to simplify the representation of our

result in the rest of the chapter:

Definition 5.1. For each i = 1, . . . , N , the ith 2-selection operator is defined
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by Si : R2N → R2 such that

Si(x) =

x2i−1

x2i

 ,

where x = [x1, x2, . . . , x2N ]
⊤.

It is noteworthy that the 2-selection operators is linear. Using this operator, we

can represent any vector x ∈ R2N as

x =
N∑
i=1

ei ⊗ Si(x), (5.4)

where ei is the ith vector in the natural basis of RN . Then, we define the constraint

set of the UMLS problem (5.6) based on the 2-selection operator.

Definition 5.2. The unit-modulus set is defined by

C = {x ∈ R2N : ∥Si(x)∥2 = 1,∀i = 1, . . . , N}. (5.5)

Using Definition 5.2, one can rewrite the optimization problem (5.2) as follows

min
x∈C

1

2
∥Ax− b∥2 . (5.6)

For convenience, we denote the objective f(x) = 1
2
∥Ax− b∥2.
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5.2.3 Projected Gradient Descent for UMLS

To define the projection onto the unit-modulus set C, let us introduce the distance

function from a point x ∈ R2N to C as

d(x, C) = inf
y∈C

{∥y − x∥}. (5.7)

The set of all projections of x onto C is then given by

ΠC(x) = {y ∈ C | ∥y − x∥ = d(x, C)}. (5.8)

It is well-known [210] that if C is closed, then for any x ∈ Rn, ΠC(x) is non-empty.

Additionally, since the unit-modulus set C is non-convex, ΠC(x) can have more than

one element. An orthogonal projection onto C is defined as PC : R2N → C such

that PC(x) is chosen as an element of ΠC(x) based on a prescribed scheme (e.g.,

based on lexicographic order). In particular, we define the orthogonal projection

PC(x) as projecting each coordinate pair of x ∈ R2N onto the unit 1-sphere

Si

(
PC(x)

)
=


Si(x)

∥Si(x)∥ if Si(x) ̸= 02,

[1, 0]⊤≜ s if Si(x) = 02,

(5.9)

for i = 1, . . . , N . Here we recall that Si is defined in Definition 5.1. It is noted

that when Si(x) = 02, the set of projections of 02 onto the unit 1-sphere is non-

singleton, i.e., the entire unit 1-sphere. In such case, we choose a certain element s
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Algorithm 5.1 Projected Gradient Descent (PGD)

Require: x(0) ∈ R2N

Ensure: {x(k)}k=0

1: for k = 0, 1, . . . do
2: x(k+1) = PC

(
x(k) − ηA⊤(Ax(k) − b)

)
3: ▷ where PC is defined in (5.9)

in this set (e.g., [1, 0]⊤) as the value of Si

(
PC(x)

)
. We emphasize that this choice

of the projection does not affect our subsequent analysis of local convergence.

Starting from some initial point x(0), the PGD algorithm for solving (5.6)

performs the following iterative update (see Algorithm 5.1):

x(k+1) = PC
(
x(k) − ηA⊤(Ax(k) − b)

)
, (5.10)

where η > 0 is a fixed step size. In the literature, PGD is also known as the

gradient projection (GP) algorithm (e.g., [206]).

5.3 Preliminaries

This section presents a brief overview of existing results on convergence analysis of

PGD for UMLS and the related problem of least squares with unit-norm constraint.

5.3.1 Existing Convergence Results on PGD for UMLS

The sublinear convergence of PGD to a set of stationary points of UMLS was

studied in [206]. First, Tranter et. al. showed that any limiting point x∗ of the
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sequence {x(k)}∞k=0 generated by Algorithm 5.1 is also a stationary point of (5.6).

Second, they proved that for PGD with a fixed step size 0 < η < 1/ ∥A∥22, the

convergence of {x(k)}∞k=0 to a set of stationary points of (5.6) is sublinear. In

particular, the authors provided a sublinear bound on the distance between two

consecutive iterates as follows3

min
0≤l≤k−1

∥∥x(l+1) − x(l)
∥∥ ≤

√
2η
(
f(x(0))− f(x∗)

)
(1− η ∥A∥22)k

. (5.11)

However, it is noted that the sublinear bound given by (5.11) is based on the

worst-case analysis. In practice, we observe the algorithm enjoys fast linear con-

vergence to a local minimum x∗ of (5.6). Figure 5.1 illustrates the striking dif-

ference between the bound on
∥∥x(k+1) − x(k)

∥∥ given by the RHS of (5.11) (sub-

linear in blue dashed line) and the corresponding empirical value obtained by

running the PGD algorithm (linear in blue solid line). The additional bound on∥∥x(k+1) − x(k)
∥∥ (red dashed line) is derived from the bound on

∥∥x(k) − x∗
∥∥ given

later in (5.21) and the application of the triangle inequality:
∥∥x(k+1) − x(k)

∥∥ ≤∥∥x(k+1) − x∗
∥∥ + ∥∥x(k) − x∗

∥∥. We observe the red dashed line and the blue solid

line are parallel to each other, while the blue dashed line deviates quickly from

the other two lines as k increases. In the next section, we study this unexplained

convergence phenomenon of PGD for UMLS. We will provide exact formulations

3We note that in [206], the authors actually derived the convergence bound on a surrogate

function Q(·) that quantifies the stationarity condition of (5.6). From Eqn. (23b) in [206], we have

the value of Q(·) at iteration k equals to 1
η2

∥∥x(k+1) − x(k)
∥∥2. In the literature, such convergence

metric is related to the generalized gradient norm, (e.g., [12]-Section 2.3.2).
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Figure 5.1: Plot of
∥∥x(k+1) − x(k)

∥∥ (blue solid) generated by PGD for UMLS with

a fixed step size η = 0.9/ ∥A∥22. The blue dashed line represents the sublinear
bound given by (5.11). The red dashed line is based on our linear upper bound
proposed in this work. Further details of the data generated for this figure are
given later in our simulation in Section 5.6.

of the region of convergence and the linear convergence rate. The selection of the

fixed step size η < 1/ ∥A∥22 is conservative as it may not be the optimal choice

to attain a quick convergence speed. We will demonstrate in our simulation that

larger step sizes enable faster convergence of PGD for UMLS.
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5.3.2 Least Squares with Unit-Norm Constraint

A closely-related problem to UMLS is the unit-norm least squares (UNLS)

min
x∈RN

1

2
∥Ax− b∥2

s.t. ∥x∥2 = 1, (5.12)

where A ∈ RM×N and b ∈ RN . While UMLS requires each of the N coordinate

pairs of the solution lies on the unit 1-sphere, UNLS requires the solution itself

lies on the N −1-sphere. Unlike the case of unit-modulus constraint, minimizing a

quadratic form over the unit sphere is not NP-hard and is solvable as an eigenvalue

problem [87, 187]. The convergence of PGD for UNLS has recently been studied

in [13, 218]. Table 5.1 summarizes the existing convergence result on UNLS and

the new convergence result on UMLS we derive in this chapter, highlighting the

connection between the two works.

5.4 Convergence Analysis

This section presents the convergence analysis of PGD for UMLS. We begin with

the properties of the solution of the problem and the PGD algorithm. Next, we

present the main result on the convergence of PGD for UMLS. Finally, we provide

the detailed proof at the end of the section.

4This is a more intuitive but not the most general constraint on the step size. The original

version of this condition on the step size is given in Theorem 5.1.
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5.4.1 Solution Properties

The Lagrange function corresponding to (5.6) is given by

L(x,γ) =
1

2
∥Ax− b∥2 − 1

2

N∑
i=1

γi(x
2
2i−1 + x2

2i − 1),

where γ ∈ RN is the Lagrange multiplier. The derivatives of L with respect to x

can be computed as


∇xL(x,γ) = A⊤(Ax− b)− (diag(γ)⊗ I2)x,

∇2
xL(x,γ) = A⊤A− diag(γ)⊗ I2.

(5.13)

It can be shown that any feasible point x ∈ C is also a regular point of the

constraint set. Specifically, we first represent the constraints as h : R2N → RN

such that h(x) = 0N , where hi(x) = ∥Si(x)∥2 − 1 for i = 1, . . . , N . Then, the

Jacobian of all the constraints at x, defined as Jij = ∂hi(x)/∂xj, is given by

J(x) =


e⊤
1 ⊗ S⊤

1 (x)

. . .

e⊤
N ⊗ S⊤

N(x)

 ∈ RN×2N .

Since J(x) is full row rank for any x ∈ C, we have x is a regular point of the

constraint set (see Chapter 11 in [140]). The following lemma establishes the first-

order necessary conditions for local optima of UMLS problems.

Lemma 5.1. The first-order necessary conditions for x∗ ∈ R2N to be a local



154

minimum of (5.6) are x∗ ∈ C and there exists a Lagrange multiplier γ ≜ γ(x∗) ∈

RN such that

A⊤(Ax∗ − b) = (diag(γ)⊗ I2)x
∗. (5.14)

Any point satisfying the foregoing first-order necessary conditions is called a sta-

tionary point of (5.6).

By setting ∇xL(x,γ) in (5.13) to 0, the proof of Lemma 5.1 follows the same

derivation in [140]-Chapter 11.3. Next, we examine the second-order conditions

for local optima of problem (5.6) via the basis of the tangent plane to C at x∗.

The following lemma provides further insight into these conditions.

Lemma 5.2. Let x∗ be a stationary point of problem (5.6) with the corresponding

Lagrange multiplier γ. A basis of the tangent space to C at x∗ is given by the

semi-orthogonal matrix Z ∈ R2N×N such that

Z =
N∑
i=1

eie
⊤
i ⊗ vi, (5.15)

where vi = [−x∗
2i, x

∗
2i−1]

⊤. Denote the reduced Riemannian Hessian associated

with x∗ by

H = Z⊤A⊤AZ − diag(γ). (5.16)

The second-order necessary condition for x∗ to be a local minimum of (5.6) is
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H ⪰ 0N . The second-order sufficient condition for x∗ to be a strict local minimum

of (5.6) is H ≻ 0N .

The proof of Lemma 5.2 is given in Appendix 5.8.1.

Remark 5.1. The concept of Riemannian Hessian has been well-studied in differ-

ential geometry (e.g., [124]). From (5.16), one can see that the first term takes

into account the curvature of the objective function restricted to the unit-modulus

manifold C. On the other hand, the second term characterizes the curvature of the

manifold C. While this is an elementary result in differential geometry, we include

the proof detail in Appendix 5.8.2 for self-containedness.

5.4.2 Algorithm Properties

The PGD algorithm can be viewed as a fixed-point iteration and hence, can be an-

alyzed via the existing tools from fixed-point theory. We first define the convergent

point of the PGD update (5.10) as follows.

Definition 5.3. The point x ∈ C is a fixed point of Algorithm 5.1 with step size

η > 0 if it satisfies

x = PC
(
x− ηA⊤(Ax− b)

)
. (5.17)

If the constraint set C is convex, any fixed point of Algorithm 5.1 is also an optimal

solution of the constrained least squares problem [16]. Since the unit-modulus
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constraint set is non-convex, we show that any fixed point of Algorithm 5.1 is a

stationary point of (5.6) as follows.

Lemma 5.3. The vector x∗ is a fixed point of Algorithm 5.1 with step size η > 0

if and only if x∗ is a stationary point of the non-convex problem (5.6) and the

corresponding Lagrange multiplier γ satisfies


γi < 1/η if Si(x

∗) ̸= s

γi ≤ 1/η if Si(x
∗) = s

∀i = 1, . . . , N, (5.18)

where s is defined in (5.9).

The proof of this lemma is given in Appendix 5.8.3. Lemma 5.3 suggests that

when η is sufficiently small, all stationary points of (5.6) can be fixed points of

Algorithm 5.1. As the step size η increases, only fewer stationary points satisfying

(5.18) can be fixed points of the algorithm. Next, we study the first-order Taylor

expansion of the projection PC about a point in C in the following proposition:

Proposition 5.1. For any x ∈ C and δ ∈ R2N , we have

PC(x+ δ) = x+ZZ⊤δ + q(δ), (5.19)

where Z =
∑N

i=1 eie
⊤
i ⊗ vi, for vi = [−x2i, x2i−1]

⊤, and q : R2N → R2N satisfies

∥q(δ)∥ ≤ 2 ∥δ∥2.

The proof of this proposition is given in Appendix 5.8.4. It is noteworthy from

Proposition 5.1 that the projection PC is differentiable at any x ∈ C. Second, the
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derivative of PC, given by ZZ⊤, coincides with the orthogonal projection onto the

tangent space of C at x [129]. Third, the expansion (5.19) is universal, regardless

of the magnitude of δ.

5.4.3 Main Result

We are now in position to state our main result on the linear convergence of PGD

for UMLS.

Theorem 5.1. Consider a stationary point x∗ ∈ C of the UMLS problem (5.6)

with the corresponding Lagrange multiplier γ ≜ γ(x∗) ∈ RN defined in (5.14) and

the reduced Riemannian Hessian H ≜ H(x∗) ∈ RN×N defined in (5.16). Let

{x(k)}∞k=0 ⊂ R2N be the sequence generated by Algorithm 5.1 with a fixed step size

η > 0. Assume that

(C1) H ≻ 0N (sufficient condition for x∗ being a strict local minimum),

(C2) ηγi ̸= 1 for all i = 1, . . . , N , and

(C3) ρ(Mη) < 1 where

Mη = IN − η
(
IN − η diag(γ)

)−1

H . (5.20)

Then, there exists a finite constant c0(x
∗, η) 5 such that for any x(0) ∈ C satisfying∥∥x(0) − x∗

∥∥ < c0(x
∗, η), the sequence {

∥∥x(k) − x∗
∥∥}∞k=0 converges to 0. Further-

5A closed-form expression of c0(x
∗, η) is given in Lemma 5.9.
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more, if
∥∥x(0) − x∗

∥∥ < ρ(Mη)c0(x
∗, η), it holds for any integer k ≥ 0 that

∥∥x(k) − x∗
∥∥

∥x(0) − x∗∥
<

(
1−

∥∥x(0) − x∗
∥∥

ρ(Mη)c0(x∗, η)

)−1

ρk(Mη). (5.21)

In (5.21), Algorithm 5.1 with fixed step size η is said to converge linearly to x∗

with a rate of ρ(Mη).

Theorem 5.1 suggests that PGD in Algorithm 5.1 initialized near a strict local

minimum as indicated by (C1) with a proper step size η following the require-

ments in (C2) and (C3) converges linearly to the local minimum. The theorem

establishes three key results for the linear convergence of Algorithm 5.1: the region

of convergence, the rate of convergence, and the bound on the error through itera-

tions. Notably, while the previous result in [206] proves the sublinear convergence

to a set of stationary points of (5.6), our result in Theorem 5.1 shows the linear

convergence to a strict local minimum. It is worthwhile mentioning that the linear

convergence of {
∥∥x(k) − x∗

∥∥}∞k=0 given by (5.21) matches with the definition of

R-linear convergence in [112]-Appendix A.6

Note that Theorem 5.1 does not explicitly suggest an upper bound on η that

ensures convergence and it may appear that PGD with arbitrarily large step size η

still converges. However, to ensure convergence, the implicit condition on η in (C3)

6Compared to Q-linear convergence, R-linear convergence concerns the overall rate of decrease

in the error, rather than the decrease over each individual step of the algorithm. A more elaborate

bound on the convergence of non-linear difference equations of form (5.61) is developed in [216],

in terms of the number of iterations to reach certain accuracy. In this work, we use a simpler

result in Lemmas 5.13 and 5.14 to demonstrate the linear convergence.
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must hold. To provide an intuition for the step size requirement in this condition,

let us consider a more restrictive condition that suffices (C3):

Lemma 5.4. Let η > 0 be a step size such that

(C3’) η(λ1(H) + 2γ) < 2, where γ = maxi γi.

Then, Condition (C3) in Theorem 5.1 holds, i.e., ρ(Mη) < 1.

The proof of Lemma 5.4 is given in Appendix 5.8.5. When λ1(H) + 2γ ≤ 0, any

step size η > 0 satisfies (C3’) and hence, satisfies (C3). When λ1(H) + 2γ > 0,

(C3’) suggests an upper bound on η that is sufficient but not necessary for (C3),

i.e., η < 2/(λ1(H)+2γ). As can be seen from Table 5.1, Condition (C3’) is similar

to the convergence condition in the case of unit-norm constraint.

In Theorem 5.1, Condition (C3) suggest a non-linear relationship between the

convergence rate ρ(Mη) and the step size η. In principle, one can find the optimal

step size for local linear convergence by solving the 1-D optimization

η∗ = argmin
η>0

ρ
(
Mη(x

∗)
)

= argmin
η>0

ρ
(
IN − η

(
IN − η diag(γ(x∗))

)−1
H(x∗)

)
.

In the last equation, we spell out the dependence on x∗ to emphasize that the

prior knowledge of the local minimum is critical for determining the optimal step

size. In the next section, we propose two variants of PGD with adaptive step size

schemes that do not require prior knowledge of Mη to select the optimal step size.
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The proposed algorithms enjoy the fast convergence of PGD with a fixed optimal

step size while remaining the same computational complexity per iteration.

5.4.4 Proof of Theorem 5.1

This subsection presents a proof of Theorem 5.1, arranging the key ideas into

lemmas and deferring their proofs to the appendix. Let us begin with the claim

that the strict local minimum x∗ in Theorem 5.1 is also a fixed point of PGD with

the appropriate choice of the step size η.

Lemma 5.5. Consider the same setting as Theorem 5.1. Assume that Conditions

(C1)-(C3) in Theorem 5.1 hold. Then, x∗ is a fixed point of Algorithm 5.1 with

the given step size η and its corresponding Lagrange multiplier γ satisfies γi < 1/η,

for all i = 1, . . . , N .

The proof of Lemma 5.5 is given in Appendix 5.8.6. Next, we establish a recursion

on the error vector, based on the first-order approximation of the projection in

Proposition 5.1.

Lemma 5.6. Consider the same setting as Theorem 5.1. Assume that Conditions

(C1)-(C3) in Theorem 5.1 hold. Let Dη = (IN −η diag(γ))−1 and δ(k) = x(k)−x∗

be the error vector at the kth iteration of Algorithm 5.1. Then, for any integer
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k ≥ 0, we have

δ(k+1) = ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)δ(k) + q
(
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
,

(5.22)

where Z at x∗ and q are defined in Proposition 5.1.

The proof of Lemma 5.6 is given in Appendix 5.8.7. Equation (5.22) can be

viewed as an approximately linear dynamic on the error δ(k). As the error becomes

sufficiently small, the residual term q((Dη ⊗ I2)(I2N − ηA⊤A)δ(k)) is negligible

while the linear term ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)δ(k) dominates. It has been

well-studied in the literature [15,166,215,216,218] that the linear convergence rate

of (5.22) is the spectral radius of the linear operator ZZ⊤(Dη ⊗I2)(I2N −ηA⊤A).

However, following the argument about the structural constraint on the error vector

in [215], we emphasize the fact δ(k) = PC(x
∗ + δ(k)) − PC(x

∗) is the difference

between two points on the unit-modulus manifold and show that the error vector

is dominated by the component on the tangent plane to C at x∗.

Lemma 5.7. Consider the same setting as Theorem 5.1. At the kth iteration of

Algorithm 5.1, we have

δ(k) = ZZ⊤δ(k) + q(δ(k)), (5.23)

where Z at x∗ and q are defined in Proposition 5.1.

The proof of Lemma 5.7 is given in Appendix 5.8.8. Next, combining Lemmas 5.6
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and 5.7, we obtain a recursion on the error vector that implicitly enforces it to lie

on the tangent plane to C at x∗ as follows.

Lemma 5.8. Consider the same setting as Theorem 5.1. Assume that Conditions

(C1)-(C3) in Theorem 5.1 hold. Then by Lemmas 5.6 and 5.7, the error vector at

the kth iteration of Algorithm 5.1 satisfies

δ(k+1) = ZMηZ
⊤δ(k) + q̂(δ(k)), (5.24)

where Z at x∗ is defined in Proposition 5.1, q̂ : R2N → R2N satisfies ∥q̂(δ)∥ ≤

2cη(cη + 1) ∥δ∥2, and cη =
∥∥((IN − η diag(γ))−1 ⊗ I2)(I2N − ηA⊤A)

∥∥
2
.

The proof of Lemma 5.8 is given in Appendix 5.8.9. Finally, we show that the

convergence of the sequence {δ(k)}∞k=0 by recognizing that (i) the spectral radius of

ZMηZ
⊤ is the same as that ofMη and (ii) the recursion (5.24) is an approximately

linear difference equation that is convergent for δ(0) sufficiently close to 02N .

Lemma 5.9. Consider the same setting as Theorem 5.1. Assume that Conditions

(C1)-(C3) in Theorem 5.1 hold. Let us define γ = maxi γi, γ = mini γi and

c0(x
∗, η) =

1− ρ(Mη)

2cη(cη + 1)

1− ηγ

1− ηγ
, (5.25)

where cη is defined in Lemma 5.8. If
∥∥δ(0)

∥∥ < c0(x
∗, η), then the sequence {δ(k)}∞k=0

converges to 02N . Furthermore, let c1(x
∗, η) = ρ(Mη)c0(x

∗, η). Then, for any
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∥∥δ(0)
∥∥ < c1(x

∗, η) and integer k ≥ 0, we have

∥∥δ(k)
∥∥ ≤

(
1−

∥∥δ(0)
∥∥

c1(x∗, η)

)−1(1− ηγ

1− ηγ

)1/2 ∥∥δ(0)
∥∥ ρk(Mη). (5.26)

The proof of Lemma 5.9 is given in Appendix 5.8.10. With this lemma, we complete

our proof of Theorem 5.1.

5.5 Implementation Aspects

This subsection describes two practical variants of PGD with adaptive step size

that can be used when no prior knowledge of the solution is available: PGD with

backtracking line search (Algorithm 5.2) and Nesterov’s accelerated PGD with

adaptive restart (Algorithm 5.3).

5.5.1 Backtracking PGD (Bt-PGD)

In backtracking PGD, the step size is chosen to approximately minimize the ob-

jective function f(x) = 1
2
∥Ax− b∥2 along the ray {x− ηg̃η | η > 0}, where

g̃η =
1

η

(
x− PC

(
x− ηA⊤(Ax− b)

))
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Algorithm 5.2 Backtracking PGD (Bt-PGD)

Require: x(0) ∈ R2N , α ∈ (0, 1], β ∈ (0, 1)
Ensure: {x(k)}k=0

1: η0 = 1
2: for k = 0, 1, 2, . . . do
3: gk = A⊤(Ax(k) − b)
4: ηk = ηk/β
5: repeat
6: ηk = βηk
7: g̃ηk = 1

ηk

(
x(k) − PC(x

(k) − ηkgk)
)

8: until g̃⊤
ηk
A⊤Ag̃ηk ≤ 1

ηk
∥g̃ηk∥

2

9: x(k+1) = x(k) − ηkg̃ηk

10: ηk+1 = ηk/α

is the generalized gradient. To guarantee certain decrease in the objective function,

we use the following backtracking condition [12]

f(x− ηg̃η) ≤ f(x)− ηg̃⊤
η∇f(x) +

η

2
∥g̃η∥2 . (5.27)

Since f(·) is a quadratic, it can be expanded as

f(x− ηg̃η) = f(x)− ηg̃⊤
η∇f(x) + η2g̃⊤

ηk
∇2f g̃ηk . (5.28)

Substituting (5.28) back into the LHS of (5.27) and using the fact that ∇2f =

A⊤A, we obtain the simplified backtracking condition g̃⊤
ηk
A⊤Ag̃ηk ≤ 1

ηk
∥g̃ηk∥

2 as

in Algorithm 5.2-Line 8. It is worthwhile to note that a factor of 1/α is applied

to increase the step size at the end of each iteration to encourage the algorithm to

explore larger step sizes with faster convergence. We emphasize that this strategy
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is different from the well-known backtracking line search method in the literature

(e.g., [24]), in which the step size η is reset to 1 before the backtracking line search

is performed. As a result, the constant α in Algorithm 5.2 should not be interpreted

as the fraction of the decrease in the objective function as in [24]-Algorithm 9.2.

5.5.2 Adaptive Restart Nesterov’s Accelerated PGD (ARNAPGD)

Next, we present an acceleration technique for PGD, named adaptive restart Nes-

terov’s accelerated projected gradient descent (ARNAPGD). In unconstrained op-

timization, it has been well-known that Nesterov’s accelerated gradient (NAG)

[160] can dramatically improve the linear convergence rate of gradient descent

(GD) for minimizing a µ-strongly convex, L-smooth function. As pointed out

in [128]-Proposition 12, GD with a fixed step size α = 1/L has convergence

rate ρ ≤
√

(L− µ)/(L+ µ), while NAG with fixed parameters α = 1/L and

β = (
√
L −√

µ)/(
√
L +

√
µ) has convergence rate ρ ≤

√
1−

√
µ/L. Since NAG

requires a specific choice of parameters that depends on L and µ, Donoghue and

Candes [164] proposed a more practical variant called the Nesterov’s accelerated

gradient with adaptive restart (ARNAG) that recovers the same rate of conver-

gence with no prior knowledge of function parameters. In this work, we modify

ARNAG with gradient scheme to the context of PGD for constrained optimization.

Specifically, each iteration uses backtracking line search for determining the pro-

jected gradient step η and the generalized gradient scheme for determining when

to restart the momentum. The advantage of this acceleration is it has the same



166

Algorithm 5.3 Adaptive restart Nesterov’s accelerated PGD (ARNAPGD) with
gradient scheme

Require: x(0) ∈ R2N , α ∈ (0, 1], β ∈ (0, 1)
Ensure: {x(k)}k=0

1: η0 = 1
2: θ0 = 1
3: y(0) = x(0)

4: for k = 0, 1, 2, . . . do
5: gk = A⊤(Ay(k) − b)
6: ηk = ηk/β
7: repeat
8: ηk = βηk
9: g̃ηk = 1

ηk

(
y(k) − PC(x

(k) − ηkgk)
)

10: until g̃⊤
ηk
A⊤Ag̃ηk ≤ 1

ηk
∥g̃ηk∥

2

11: x(k+1) = y(k) − ηkg̃ηk

12: θk+1 =
2θk

θk+
√

θ2k+4

13: βk+1 = θk(1− θk)/(θ
2
k + θk+1)

14: y(k+1) = x(k+1) + βk+1(x
(k+1) − x(k))

15: ηk+1 = ηk/α
16: if g̃⊤

ηk
(x(k+1) − x(k)) > 0 then

17: θk+1 = 0

computational complexity per iteration as PGD and Bt-PGD7 while achieving sig-

nificantly faster convergence rate. Further details on ARNAPGD are provided in

Algorithm 5.3. In the next section, we compare the performance of PGD with a

fixed optimal step size, Bt-PGD, and ARNAPGD for UMLS.

7The number of matrix-vector products in ARNAPGD is exactly the same as that in Bt-PGD.
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5.6 Numerical Evaluation

This section demonstrates the correctness of our theoretical result on the linear

convergence of PGD for UMLS in Theorem 5.1. We show through numerical simu-

lation that our predicted rate of convergence matches the decrease in the distance

to the solution through iterations. Moreover, we illustrate the effectiveness of the

two variants of PGD with adaptive step sizes proposed in Section 5.5. Finally,

we present a simple 2-D example of the region of convergence to demonstrate our

theoretical bound in (5.25).

5.6.1 PGD with a Fixed Step Size

Data generation. In the following, we create an UMLS setting in which x∗ ∈ C

satisfies 
A⊤(Ax∗ − b) = (diag(γ)⊗ I2)x

∗,

H = Z⊤A⊤AZ − diag(γ) ≻ 0N

as follows. First, we generate two matrices ℜ and ℑ of size M × N , where M =

50 and N = 40, with i.i.d normally distributed (N (0, 1)) entries. The matrix

A is computed from ℜ and ℑ using (5.3) Second, we generate a random vector

v ∈ RN with i.i.d normally distributed (N (0, 0.12)) entries and a random vector

t ∈ {−1, 1}N with uniformly distributed entries. Then, we obtain x∗ and γ by
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Figure 5.2: Convergence of PGD with a fixed step size for UMLS. (a) Plot of the
convergence rate ρ(Mη) as a function of the step size η. The black dashed line is the
line η = 1, emphasizing that the local convergence is guaranteed when ρ(Mη) < 1.
The blue start represents the maximum step size ηmax such that ρ(Mηmax) = 1,
while the blue hexagram represents the optimal step size is η∗ = argminη>0 ρ(Mη).
(b) Plot of the distance between the current update and the local minimum as
a function of the number of iterations for various fixed step sizes. Dashed lines
represent the corresponding upper bounds with exponential decay, i.e., ρk(Mη) up
to a constant.
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setting


γi = ti

∥∥Si(A
⊤v)
∥∥

Si(x
∗) = Si(A

⊤v)/γi

for i = 1, . . . , N.

Next, the matrices Z and H are obtained by (5.15) and (5.16), respectively. If H

is not PD, we re-run the foregoing generation process multiple times untilH ≻ 0N .

This guarantees Condition (C1) in Theorem 5.1 is satisfied. Finally, we compute

b = Ax∗ − v and initialize x(0) near x∗ by adding a random vector with i.i.d

normally distributed (N (0, 0.0012)) entries.

Results. Figure 5.2(a) demonstrates the convergence rate ρ(Mη) (blue solid line)

as a function of the step size η. Recall that Mη = IN −η(IN −η diag(γ))−1H and

hence, ρ(Mη) is a non-linear function of η. It can be seen from the plot that ρ(Mη)

approaches 1 (slow convergence) when η approaches either 0 or ηmax = 2.44. The

optimal step size that yields the fastest convergence for PGD with a fixed step size

is η∗ = argminη>0 ρ(Mη) = 2.4328. Figure 5.2(b) shows the convergence of PGD

with various fixed step sizes. We observe that for η > ηmax (the red and yellow

solid lines), the algorithm diverges from the designed strict local minimum x∗. For

step sizes less than ηmax, our theoretical rate (dashed lines) matches well with the

empirical rate (solid lines). Moreover, PGD with the optimal step size η∗ converges

roughly twice as fast as one with the step size η = 1/ ∥A∥22 proposed in [206],

suggesting that the latter choice, while being commonly used in the literature, is

conservative.
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5.6.2 Adaptive Schemes for Step Size

To illustrate the role of α in exploring larger step sizes with faster convergence

while balancing the cost of backtracking steps, we plot the error through iterations∥∥x(k) − x∗
∥∥ against the number of matrix-vector products, which dominates the

computational complexity per iteration, in Fig. 5.3. The data used in this simula-

tion is the same as in the previous section. While the smaller values of α seems to

yields faster convergence (see Fig. 5.3(a)), they indeed require more backtracking

steps at each iteration (see Fig. 5.3(b)). As a result, the overall computation is

higher for smaller values of α. It can be seen from Fig. 5.3(c) that the best choice

of α is α = β = 0.8. In addition, we observe that the total cost of Bt-PGD is

comparable to that of PGD with the optimal fixed step size. However, Bt-PGD

does not use any prior knowledge about the solution x∗. Finally, Fig. 5.3(d) shows

the fluctuation in the step size η around the optimal step size η∗ = 2.4328. It is

interesting to note that even though η > ηmax at some iterations, the algorithm is

able to converge to the designed local minimum x∗.

Figure 5.4 depicts the fast convergence of ARNAPGD compared to PGD and

Bt-PGD. The data used in this simulation is the same as in the previous section.

Finally, we note that both of the foregoing adaptive schemes do not come with

convergence guarantees in our setting since C is non-convex. Nonetheless, they

do not require prior knowledge of the solution and their effectiveness is depicted

clearly through our numerical results.
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Figure 5.3: Convergence of Bt-PGD with various values of α and a fixing value of
β = 0.8. (a) Plot of the distance from the current update of Bt-PGD to the local
minimum as a function of the number of iterations. A dashed blue line is included
as an illustration of the convergence of PGD with the fixed optimal step size η∗. (b)
Plot of the number of matrix-vector products used by Bt-PGD as a function of the
number of iterations. (c) Plot of the distance from the current update of Bt-PGD
to the local minimum as a function of the number of matrix-vector products. (d)
Plot of the change in the backtracking step size η through the first 20000 iterations
for Bt-PGD with α = β = 0.8. A zoomed plot is included on top of the original
plot for enhanced visualization. After a few thousand iterations, we observe that
the adaptive step size ηk fluctuates around the optimal step size η∗ = 2.4328 (red
dashed line).
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Figure 5.4: Plot of the distance from the current updates of PGD with the fixed
optimal step size η∗, Bt-PGD with α = β = 0.8, and ARNAPGD to the local
minimum x∗ as a function of the number of iterations. It is highlighted that
ARNAPGD outperforms the other two algorithms significantly while remaining
similar computational complexity per iteration.
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5.6.3 Region of Convergence

In this subsection, we demonstrate the region of local convergence for PGD in a

2-D setting. Since N = 1 in this case, the constraint set C is indeed a 2-D circle. As

can be seen from Fig. 5.5, the least-squares objective has an unconstrained global

minimum at x∗
unc = [0.7, 0.2]⊤, with A = diag([5, 1]) and b = [3.5, 0.2]⊤. Using

Lemma 5.1, we can find the four stationary points of the 2-D UMLS problem by

solving the following system of non-linear equations


x2
1 + x2

2 = 1

25x1 − 17.5 = γx1

x2 − 0.2 = γx2.

Moreover, based on the positivity of the reduced Riemannian Hessian h = 25x2
2 +

x2
1−γ (which is a scalar in the 2-D setting), one can apply Lemma 5.2 to determine

the two local maxima (purple hexagrams) and two local minima (green asterisk and

red diamond). Additionally, for each local minima, the rate of convergence is given

by ρη = 1− ηh/(1− ηγ), with the maximum possible step size ηmax = 2/(h+ 2γ).

In Fig. 5.5, we pick η = 0.0755 and compute the theoretical region of convergence

for each local minima using (5.25). On the other hand, the empirical region of

convergence is obtained follows. First, we run PGD with η = 0.0755 and 1000

different initialization uniformly distributed on the unit circle. Second, we check

whether the algorithm stops inside the theoretical region of convergence after 1000

iterations to determine if it converges to the corresponding local minimum. Finally,
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Figure 5.5: An 2-D illustration of the region of convergence given by the constant
c0(x

∗, η) in (5.25). On the circle, the two purple hexagrams denote the local max-
ima, while the green asterisk and the red diamond denote the local minima of the
problem. The red star located inside the circle is the solution to the unconstrained
least squares. For a given fixed step size η, each local minimum is associated with
(i) an estimated region of convergence (dashed circle) given by c0(x

∗, η) and (ii) an
empirical region of convergence (circular arc with matching color) given by running
PGD with the fixed step size η and initialization at a given point on the circle to
verify which local minimum it converges to.
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we color the initialization points by the color of the corresponding local minimum

PGD converges to (either green or red). While Fig. 5.5 verifies that our theoretical

region of convergence falls inside the empirical region of convergence, it also reveals

that our bound is conservative in this example.

5.7 Conclusion and Future Work

We performed a novel analysis of linear convergence of projected gradient descent

for the unit-modulus least-squares problem. Our analysis reveals that near the

solution, the convergence is actually linear instead of sublinear. Moreover, we

identified the sufficient conditions for linear convergence and provided an exact

expression of the linear convergence rate. The theoretical rate predicts accurately

the asymptotic convergence of PGD for UMLS in our numerical simulation. On

the practical side, we propose two variant of PGD with adaptive step sizes that

obtain fast convergence without prior knowledge about the solution.

For future work, we plan to improve our bound on the region of convergence.

This requires further investigation into the bounding techniques used in the proof

of Theorem 5.1. Another potential direction is to develop the analysis for linear

convergence of Bt-PGD and ARNAPGD. While convergence guarantees for back-

tracking line search and Nesterov’s accelerated gradient have been proposed in the

optimization literature [24,160], they often involve the spectral radius that depends

linearly on the step size η. The UMLS problem, on the other hand, involve the

spectral radius ρ(Mη) that depends non-linearly on η. This makes it challenging
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for determining closed-form expressions of the optimal step size in both plain PGD

and accelerated PGD.

5.8 Appendix

5.8.1 Proof of Lemma 5.2

Since the constraint gradients are of form {ei ⊗ Si(x
∗)}Ni=1, the tangent space to

C at x∗ is given by

Tx∗C =
{
y ∈ R2N |

( N∑
i=1

eie
⊤
i ⊗ Si(x

∗)
)⊤
y = 0N

}
.

Denote vi = [−x∗
2i, x

∗
2i−1]

⊤ for i = 1, . . . , N . A basis of Tx∗C is given by {ei⊗vi}Ni=1,

i.e., the columns of Z. Alternatively, Tx∗C can be represented as

Tx∗C =
{
Zz | z ∈ RN

}
. (5.29)

(⇒) From Chapter 11.5 in [140], the second-order necessary condition for a sta-

tionary point x∗ to be a local minimum of (5.6) is y⊤∇2
xL(x

∗,γ)y ≥ 0 for all
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y ∈ Tx∗C. In other words, for any z ∈ RN , we have

0 ≤ (Zz)⊤
(
A⊤A− diag(γ)⊗ I2

)
(Zz)

= z⊤(Z⊤A⊤AZ −Z⊤(diag(γ)⊗ I2)Z
)
z

= z⊤(Z⊤A⊤AZ −Z⊤Z diag(γ)
)
z

= z⊤(Z⊤A⊤AZ − diag(γ)
)
z,

where the second equality stems from Lemma 5.11 and the third equality uses the

semi-orthogonality of Z. Thus, we conclude that H ⪰ 0N .

(⇐) From Chapter 11.5 in [140], the second-order sufficient condition for a sta-

tionary point x∗ to be a local minimum of (5.6) is y⊤∇2
xL(x

∗,γ)y > 0 for all

y ∈ Tx∗C. By the same argument, this is equivalent to H ≻ 0N .

5.8.2 Proof of Remark 5.1

Recall that the objective function is given by f = ∥Ax− b∥2 /2. By definition of

the Riemannian Hessian [124], for any vector fields U, V : C → TC on C, we have

Hessf(U, V ) = ⟨∇Ugradf, V ⟩, (5.30)

where gradf : C → TC is the Riemannian gradient given by

gradf(x) = ZZ⊤∇f(x) = ZZ⊤A⊤(Ax− b), (5.31)
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for x ∈ C and Z is the corresponding basis matrix of the tangent space to C at x

(see Lemma 5.2). In addition, ∇Ugradf is the covariant derivative of the vector

field gradf in the direction of the vector field U . It is fact that the covariant

derivative is the orthogonal projection of the directional derivative onto the tangent

space of the manifold, i.e.,

∇Ugradf(x) = ZZ⊤DUgradf(x)

= ZZ⊤ lim
t→0

gradf(x+ tu)− gradf(x)

t
, (5.32)

where u = U(x). Substituting (5.31) into the numerator on the RHS of (5.32) and

simplifying the expression, we obtain

∇Ugradf(x) = ZZ⊤(A⊤Au−BA⊤(Ax− b)
)
,

where

B =
N∑
i=1

eie
⊤
i ⊗

(
Si(u)

(
Si(x)

)⊤
+ Si(x)

(
Si(u)

)⊤)
.

Now, denoting v = V (x) and evaluating (5.30) at x yields

Hessfx(u,v) = v⊤ZZ⊤(A⊤Au−BA⊤(Ax− b)
)

= v⊤(A⊤Au−BA⊤(Ax− b)
)
, (5.33)
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where the last equality stems from v ∈ TxC and hence, v = ZZ⊤v. In the case

x = x∗ is a stationary point of (5.6) with the Lagrange multiplier γ, one can

substituting (5.14) into (5.33) to obtain

Hessfx(u,v) = v⊤(A⊤Au−B(diag(γ)⊗ I2)x
)
. (5.34)

Notice that x =
∑N

i=1 ei ⊗ Si(x) and
(
Si(u)

)⊤
Si(x) = 0 for all i = 1, . . . , N .

Therefore, the second term on the RHS of (5.34) can be simplified as

B(diag(γ)⊗ I2)x =
N∑
i=1

γiei ⊗ Si(u)

= (diag(γ)⊗ I2)u.

Substituting back into (5.34) and reorganizing terms, we obtain the Riemannian

Hessian as

Hessfx(u,v) = u⊤(A⊤A− (diag(γ)⊗ I2)
)
v. (5.35)

Finally, it follows from (5.29) that there is an one-to-one correspondence between

the tangent space TxC and RN , i.e., u = Zũ and v = Zṽ for ũ, ṽ ∈ RN . Hence,
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we can define a bilinear function H : RN ⊗ RN → R:

H(ũ, ṽ) ≜ Hessfx(u,v)

= (Zũ)⊤
(
A⊤A− (diag(γ)⊗ I2)

)
(Zṽ)

= ũ⊤(Z⊤A⊤AZ − diag(γ))ṽ,

where the last equality stems from Z⊤Z = IN . In other words, Hessfx admits a

compact matrix representation

H = Z⊤A⊤AZ − diag(γ).

5.8.3 Proof of Lemma 5.3

(⇒) Assume x∗ is a fixed point of Algorithm 5.1 with step size η > 0, i.e.,

x∗ = PC(x
∗ − ηr), (5.36)

where r = A⊤(Ax∗ − b). We will show there exists γ ∈ RN such that for all

i = 1, . . . , N ,

Si(r) = γiSi(x
∗) (5.37)
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and 
γi < 1/η if Si(x

∗) ̸= s,

γi ≤ 1/η if Si(x
∗) = s,

(5.38)

where we recall that s = [1, 0]⊤.

For i = 1, . . . , N , applying the 2-selection operator Si(·) to both side of (5.36)

and substituting the RHS by the definition of PC in (5.9) yield

Si(x
∗) =


Si(x

∗−ηr)
∥Si(x∗−ηr)∥ if Si(x

∗ − ηr) ̸= 02,

s if Si(x
∗ − ηr) = 02.

(5.39)

We split (5.39) into two cases based on the value of Si(x
∗). If Si(x

∗) ̸= s, then

(5.39) implies

Si(x
∗) =

Si(x
∗ − ηr)

∥Si(x∗ − ηr)∥
=

Si(x
∗)− ηSi(r)

∥Si(x∗ − ηr)∥
,

which in turns can be reorganized as Si(r) = γiSi(x
∗) for

γi =
1− ∥Si(x

∗)− ηSi(r)∥
η

<
1

η
. (5.40)

If Si(x
∗) = s, we consider two sub-cases:

1. If Si(x
∗−ηr) ̸= 02, then by the same argument as the previous case, we obtain

(5.40).
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2. If Si(x
∗ − ηr) = 02, then using the linearity of Si, we have Si(r) = γiSi(x

∗)

where γi = 1/η.

In all cases, we have (5.37) and (5.38) hold. Finally, we note that the stationarity

condition (5.14) is equivalent to Si(r) = γiSi(x
∗) for all i = 1, . . . , N .

(⇐) Assume x∗ is a stationary point of (5.6) (i.e., (5.37 holds for all i =

1, . . . , N) with the corresponding Lagrange multiplier γ satisfying (5.38) for all

i = 1, . . . , N . We will prove (5.36) by showing that

Si

(
PC(x

∗ − ηr)
)
= Si(x

∗), (5.41)

for any i = 1, . . . , N .

By the definition of PC in (5.9), we have

Si

(
PC(x

∗ − ηr)
)
=


Si(x

∗−ηr)
∥Si(x∗−ηr)∥ if Si(x

∗ − ηr) ̸= 02,

s if Si(x
∗ − ηr) = 02.

(5.42)

Using the linearity of Si(·) and then the stationarity condition in (5.37) yield

Si(x
∗ − ηr) = Si(x

∗)− ηSi(r)

= Si(x
∗)− ηγiSi(x

∗) = (1− ηγi)Si(x
∗). (5.43)

Since x ∈ C, ∥Si(x
∗)∥ = 1. Taking the norm of both sides in (5.43) and using
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(5.38) to remove the absolute value, we obtain

∥Si(x
∗ − ηr)∥ = ∥(1− ηγi)Si(x

∗)∥

= |1− ηγ| ∥Si(x
∗)∥ = 1− ηγ.

Therefore, (5.42) is equivalent to

Si

(
PC(x

∗ − ηr)
)
=


Si(x

∗) if 1− ηγi ̸= 0,

s if 1− ηγi = 0.

(5.44)

• If 1− ηγi ̸= 0, then (5.41) holds trivially.

• If 1− ηγi = 0, then Si(PC(x
∗ − ηr)) = s and γi = 1/η. From (5.38), the latter

only holds if Si(x
∗) = s. Thus, we obtain Si(PC(x

∗ − ηr)) = Si(x
∗) = s.

In both case, we have (5.41) holds for all i = 1, . . . , N . This completes our proof

of the lemma.

5.8.4 Proof of Proposition 5.1

The proof of this lemma is based on the following result for the projection onto

the unit sphere [217]:

Lemma 5.10. (Rephrased from Lemma 5 in [217]) Let x be a point on the unit
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sphere Sn−1. Then, for any δ ∈ Rn, the projection onto Sn−1 satisfies

PSn−1(x+ δ) = x+
(
I − xx⊤)δ + qSn−1(δ), (5.45)

where ∥qSn−1(δ)∥ ≤ 2 ∥δ∥2.

Applying Lemma 5.10 to the unit circle S1 (corresponding to the case n = 2), we

have, for each i = 1, . . . , N ,

Si

(
PC(x+ δ)

)
= PS1

(
Si(x+ δ)

)
= PS1

(
Si(x) + Si(δ)

)
= Si(x) +

(
I2 − Si(x)(Si(x))

⊤)Si(δ) + qS1

(
Si(δ)

)
= Si(x) + viv

⊤
i Si(δ) + qS1

(
Si(δ)

)
,

where vi = [−x2i, x2i−1]
⊤. Using the property of the 2-selection operator in (5.4),

we further have

PC(x+ δ) =
N∑
i=1

ei ⊗ Si

(
PC(x+ δ)

)
=

N∑
i=1

ei ⊗
(
Si(x) + viv

⊤
i Si(δ) + qS1

(
Si(δ)

))
=

N∑
i=1

ei ⊗ Si(x) +
N∑
i=1

(ei ⊗ viv
⊤
i )Si(δ) +

N∑
i=1

ei ⊗ qS1

(
Si(δ)

)
= x+ZZ⊤δ + q(δ), (5.46)
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where q(δ) satisfies Si(q(δ)) = qS1(Si(δ)) and

∥q(δ)∥2 =
N∑
i=1

∥Si(q(δ))∥2 =
N∑
i=1

∥qS1(Si(δ))∥2

≤
N∑
i=1

(
2 ∥Si(δ)∥2

)2 ≤ ( N∑
i=1

2 ∥Si(δ)∥2
)2

= 4
( N∑
i=1

(δ22i−1 + δ22i)
)2

= 4
( 2N∑
j=1

δ2j
)2

= 4 ∥δ∥4 .

This completes our proof of the lemma.

5.8.5 Proof of Lemma 5.4

In this section, we show that when Conditions (C1) and (C2) in Theorem 5.1 hold,

Condition (C3’), i.e.,

η(λ1(H) + 2γi) < 2, (5.47)

for all i = 1, . . . , N , is sufficient for Condition (C3). First, we prove that Dη =

(IN − η diag(γ))−1 is PSD. Second, we show that all the eigenvalues of DηH lie

between 0 and (1 − ηγi)
−1λ1(H) (exclusively). Third, we claim that the spectral

radius of Mη = IN − ηDηH is strictly less than 1.

In the first step, rearranging (5.47), we obtain ηλ1(H)/2 < 1− ηγi. By Condi-

tion (C2), we have λ1(H) > 0. Since η > 0, it follows that 0 < ηλ1(H)/2 < 1−ηγi.

Thus, the diagonal matrix Dη has all positive entries and hence, is a PSD matrix.
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In the second step, we use the inequalities for the eigenvalues of the product of

two PSD matrices in [223] to obtain

λi(Dη)λN(H) ≤ λi(DηH) ≤ λi(Dη)λ1(H), (5.48)

for all i = 1, . . . , N . Since both Dη and H are PSD, we can lower bound the

eigenvalues of DηH by λi(DηH) ≥ λi(Dη)λN(H) > 0. On the other hand,

substituting λi(Dη) = (1−ηγi)
−1 into the upper bound in (5.48) yields λi(DηH) ≤

(1 − ηγi)
−1λ1(H). Finally, using the fact that λi(Mη) = 1 − ηλi(DηH) and

0 < λi(DηH) ≤ (1− ηγi)
−1λ1(H), for all i = 1, . . . , N , we obtain

1− η

1− ηγi
λ1(H) ≤ λi(Mη) < 1.

Now, rearranging (5.47) to obtain 1− η
1−ηγi

λ1(H) > −1, we have all the eigenvalues

ofMη lie between−1 and 1 (exclusively). Since the spectral radius is the maximum

of the absolute values of these eigenvalues, we conclude that ρ(Mη) < 1. This

completes our proof in this section.

5.8.6 Proof of Lemma 5.5

In the first part of this proof, we show that γi < 1/η for all i = 1, . . . , N . From

Condition (C2), we have Dη = (IN − η diag(γ))−1 is invertible and hence, the

expression of Mη in (5.20) is well-defined. In addition, from Condition (C1), H
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has a unique PD square root H1/2, with the inverse H−1/2. Thus, we have

H1/2MηH
−1/2 = H1/2

(
IN − η

(
IN − η diag(γ)

)−1

H

)
H−1/2

= IN − ηH1/2DηH
1/2 ≜ M̃η.

This shows that Mη and M̃η are similar matrices with the same set of eigenvalues.

Combining this with Condition (C3), we obtain ρ(Mη) = ρ(M̃η) < 1. Since M̃η

is symmetric, it then holds that

M̃η = IN − ηH1/2DηH
−1/2 ≺ IN ,

which in turn yields H1/2DηH
1/2 ≻ 0N . By the definition of PD matrices, for

any vector u ∈ RN , it holds that u⊤H1/2DηH
1/2u > 0. Alternatively, we can

write v⊤Dηv > 0, where v = H1/2u. Notice that the mapping between u and v

is bijection, which means v⊤Dηv > 0 also holds for any v ∈ RN . Consequently,

Dη = diag([(1− ηγ1)
−1, . . . , (1− ηγN)

−1]) must be a PD matrix. Equivalently, we

have γi < 1/η for all i = 1, . . . , N .

For the second part of the proof, we note that γi < 1/η, for all i = 1, . . . , N ,

are sufficient conditions for the Lagrange multiplier condition (5.18) in Lemma 5.3.

Since a strict local minimum is also a stationary point of (5.6), x∗ must be a fixed

point of Algorithm 5.1 with the given step size η. This completes our proof of the

lemma.
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5.8.7 Proof of Lemma 5.6

Using the PGD update in (5.10) and rewriting x(k) = x∗ + δ(k)), we derive a

recursion on the error vector as follows

δ(k+1) = x(k+1) − x∗

= PC

(
x(k) − ηA⊤(Ax(k) − b

))
− x∗

= PC

(
(x∗ + δ(k))− ηA⊤(A(x∗ + δ(k))− b

))
− x∗

= PC

((
x∗ − ηA⊤(Ax∗ − b)

)
+ (I2N − ηA⊤A)δ(k)

)
− x∗. (5.49)

Since x∗ is a stationary point of (5.6), we have A⊤(Ax∗ − b) = (diag(γ)⊗ I2)x
∗.

Then, the first term inside the projection PC on the RHS of (5.49) can be repre-

sented as

x∗ − ηA⊤(Ax∗ − b) =
(
I2N − η diag(γ)⊗ I2

)
x∗

=
((

IN − η diag(γ)
)
⊗ I2

)
x∗

= (D−1
η ⊗ I2)x

∗ = (Dη ⊗ I2)
−1x∗.

where we recall that Dη = (IN − η diag(γ))−1 ≻ 0N by Lemma 5.5. Thus, we

rewrite (5.49) as

δ(k+1) = PC

(
(Dη ⊗ I2)

−1x∗ + (I2N − ηA⊤A)δ(k)
)
− x∗.



189

Now let y = x∗+(Dη⊗I2)(I2N−ηA⊤A)δ(k) and using the modulus scale-invariant

property of the projection PC((Dη ⊗ I2)
−1y) = PC(y), for Dη ≻ 0N , we further

obtain

δ(k+1) = PC

(
x∗ + (Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
− x∗. (5.50)

Finally, applying Proposition 5.1 with the perturbation δ = (Dη ⊗ I2)(I2N −

ηA⊤A)δ(k) at x = x∗ ∈ C, we have

PC

(
x∗ + (Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
= x∗ +ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)δ(k) + q

(
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
.

Substituting this back into (5.50) yields (5.22). This completes the proof of the

lemma.

5.8.8 Proof of Lemma 5.7

Since x(k) lies in C, we can represent the error vector as

δ(k) = x(k) − x∗

= PC(x
(k))− x∗

= PC(x
∗ + δ(k))− x∗. (5.51)



190

Using Proposition 5.1, we have

PC(x
∗ + δ(k)) = x∗ +ZZ⊤δ(k) + q(δ(k)).

Substituting this back into the RHS of (5.51) yields

δ(k) = ZZ⊤δ(k) + q(δ(k)).

This completes our proof of the lemma.

5.8.9 Proof of Lemma 5.8

Substituting (5.23) back into the first term on the RHS of (5.22), we have

δ(k+1) = ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)ZZ⊤δ(k)

+ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)q(δ(k))

+ q
(
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
. (5.52)

From Lemma 5.11 and the fact that Z⊤Z = IN , we can represent (5.52) as

δ(k+1) = ZDηZ
⊤(I2N − ηA⊤A)ZZ⊤δ(k) + q̂(δ(k))

= ZDη(IN − ηZ⊤A⊤AZ)Z⊤δ(k) + q̂(δ(k)), (5.53)

where q̂(δ) = ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)q(δ) + q
(
(Dη ⊗ I2)(I2N − ηA⊤A)δ

)
.
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Recall that H = Z⊤A⊤AZ − diag(γ). Thus, (5.53) is equivalent to

δ(k+1) = ZDη(IN − η diag(γ)−H)Z⊤δ(k) + q̂(δ(k))

= Z(IN − ηDηH)Z⊤δ(k) + q̂(δ(k)).

By the definition of Mη in (5.20), the last equation is the same as (5.24).

To bound the norm of q̂(δ(k)), we use the triangle inequality and the product

norm inequality as follows

∥q̂(δ)∥ ≤
∥∥ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)q(δ)

∥∥+ ∥∥q((Dη ⊗ I2)(I2N − ηA⊤A)δ
)∥∥

≤
∥∥ZZ⊤∥∥

2

∥∥(Dη ⊗ I2)(I2N − ηA⊤A)
∥∥
2
∥q(δ)∥+

∥∥q((Dη ⊗ I2)(I2N − ηA⊤A)δ
)∥∥ .

Since ∥q(δ)∥ ≤ 2 ∥δ∥ (see Proposition 5.1) and cη =
∥∥(Dη ⊗ I2)(I2N − ηA⊤A)

∥∥
2
,

we further obtain

∥q̂(δ)∥ ≤
∥∥ZZ⊤∥∥

2
· cη · 2 ∥δ∥2 + 2

∥∥(Dη ⊗ I2)(I2N − ηA⊤A)δ
∥∥2

≤ 2cη
∥∥ZZ⊤∥∥

2
∥δ∥2 + 2c2η ∥δ∥

2

≤ 2cη ∥δ∥2 + 2c2η ∥δ∥
2 ,

where the last inequality stems from
∥∥ZZ⊤

∥∥
2
≤ 1 since ZZ⊤ is an orthogonal

projection matrix. This completes our proof of the lemma.
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5.8.10 Proof of Lemma 5.9

The proof in this section relies on Lemmas 5.8, 5.13, and 5.12. Let δ̃(k) = (D
−1/2
η ⊗

I2)δ
(k). Left-multiplying both sides of (5.24) with (D

−1/2
η ⊗ I2), we have

δ̃(k+1) = (D−1/2
η ⊗ I2)ZMηZ

⊤δ(k) + (D−1/2
η ⊗ I2)q̂(δ

(k))

= (D−1/2
η ⊗ I2)ZMηZ

⊤(D1/2
η ⊗ I2)δ̃

(k) + (D−1/2
η ⊗ I2)q̂

(
(D1/2

η ⊗ I2)δ̃
(k)
)
.

(5.54)

Using Lemma 5.11 and substituting Mη = IN − ηD−1
η H into the RHS of (5.54)

yield

δ̃(k+1) = ZD−1/2
η (IN − ηD−1

η H)D1/2
η Z⊤δ̃(k) + q̃(δ̃(k))

= Z(IN − ηD−1/2
η HD−1/2

η )Z⊤δ̃(k) + q̃(δ̃(k)), (5.55)

where q̃(δ̃(k)) = (D
−1/2
η ⊗ I2)q̂((D

1/2
η ⊗ I2)δ̃

(k)) satisfies

∥∥∥q̃(δ̃(k))
∥∥∥ ≤

∥∥D−1/2
η ⊗ I2

∥∥
2

∥∥∥q̂((D1/2
η ⊗ I2)δ̃

(k))
∥∥∥

=
∥∥D−1/2

η

∥∥
2

∥∥∥q̂((D1/2
η ⊗ I2)δ̃

(k)
)∥∥∥

≤
∥∥D−1/2

η

∥∥
2
· 2cη(cη + 1)

∥∥∥(D1/2
η ⊗ I2)δ̃

(k)
∥∥∥2

≤ 2cη(cη + 1)
∥∥D−1/2

η

∥∥
2

∥∥D1/2
η ⊗ I2

∥∥2
2

∥∥∥δ̃(k)
∥∥∥2

≤ 2cη(cη + 1)
∥∥D−1/2

η

∥∥
2

∥∥D1/2
η

∥∥2
2

∥∥∥δ̃(k)
∥∥∥2

= 2cη(cη + 1)(1− ηγ)1/2(1− ηγ)−1
∥∥∥δ̃(k)

∥∥∥2 ,
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where the last equality stems from ∥D−1/2
η ∥2 = (1 − ηγ)1/2 and ∥D1/2

η ∥2 = (1 −

ηγ)−1/2. Let q = 2cη(cη + 1)(1− ηγ)1/2(1− ηγ)−1. Taking the norm of both sides

of (5.55) and then using the triangle inequality on the RHS, we obtain

∥∥∥δ̃(k+1)
∥∥∥ =

∥∥∥Z(IN − ηD−1/2
η HD−1/2

η )Z⊤δ̃(k) + q̃(δ̃(k))
∥∥∥

≤
∥∥∥Z(IN − ηD−1/2

η HD−1/2
η )Z⊤δ̃(k)

∥∥∥+ ∥∥∥q̃(δ̃(k))
∥∥∥ .

Since Z(IN − ηD
−1/2
η HD

−1/2
η )Z⊤ is symmetric, its spectral norm equals to its

spectral radius. The last inequality can be rewritten as

∥∥∥δ̃(k+1)
∥∥∥ ≤ ρ

(
Z(IN − ηD−1/2

η HD−1/2
η )Z⊤) ∥∥∥δ̃(k)

∥∥∥+ q
∥∥∥δ̃(k)

∥∥∥2 . (5.56)

Moreover, it can be seen from (5.55) that

Z(IN − ηD−1/2
η HD−1/2

η )Z⊤= (D−1/2
η ⊗ I2)ZMηZ

⊤(D−1/2
η ⊗ I2

)−1
,

which in turns implies the two matrices Z(IN − ηD
−1/2
η HD

−1/2
η )Z⊤ and ZMηZ

⊤

are similar and have the same spectral radius. In particular, we have

ρ
(
Z(IN − ηD−1/2

η HD−1/2
η )Z⊤) = ρ(ZMηZ

⊤)

= ρ(Mη),
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where the second equality stems from Lemma 5.12. Thus, (5.56) can be represented

as

∥∥∥δ̃(k+1)
∥∥∥ ≤ ρ(Mη)

∥∥∥δ̃(k)
∥∥∥+ q

∥∥∥δ̃(k)
∥∥∥2 .

Applying Lemma 5.14 with bk = ∥δ̃(k)∥, ρ = ρ(Mη), and

c =
ρ(Mη)

(
1− ρ(Mη)

)
q

= (1− ηγ)1/2c1(x
∗, η),

it holds that if ∥δ̃(0)∥ < c, then

∥∥∥δ̃(k)
∥∥∥ ≤

(
1−

∥∥∥δ̃(0)
∥∥∥

c

)−1 ∥∥∥δ̃(0)
∥∥∥ ρk(Mη). (5.57)

Recall that δ(k) = (D
1/2
η ⊗ I2)δ̃

(k). On the one hand, the LHS of (5.57) can be

lower-bounded by (1− ηγ)1/2
∥∥δ(k)

∥∥ since

∥∥δ(k)
∥∥ =

∥∥∥(D1/2
η ⊗ I2)δ̃

(k)
∥∥∥ ≤

∥∥D1/2
η ⊗ I2

∥∥
2

∥∥∥δ̃(k)
∥∥∥

=
∥∥D1/2

η

∥∥
2

∥∥∥δ̃(k)
∥∥∥ = (1− ηγ)−1/2

∥∥∥δ̃(k)
∥∥∥ .

On the other hand, the RHS of (5.57) can be upper-bounded as follows. Since

∥∥∥δ̃(0)
∥∥∥ =

∥∥(D−1/2
η ⊗ I2)δ

(0)
∥∥ ≤

∥∥D−1/2
η ⊗ I2

∥∥
2

∥∥δ(0)
∥∥

=
∥∥D−1/2

η

∥∥
2

∥∥δ(0)
∥∥ = (1− ηγ)1/2

∥∥δ(0)
∥∥ , (5.58)
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we have

(
1− ∥δ̃(0)∥

c

)−1

∥δ̃(0)∥ρk(Mη) ≤
(
1−

(1− ηγ)1/2∥δ(0)∥
c

)−1

(1− ηγ)1/2∥δ(0)∥ρk(Mη)

=

(
1− ∥δ(0)∥

c1(x∗, η)

)−1

(1− ηγ)1/2∥δ(0)∥ρk(Mη).

(5.59)

From the lower bound (1− ηγ)1/2
∥∥δ(k)

∥∥ and the upper bound in (5.59), we obtain

(5.26). Finally, the region of convergence ∥δ(0)∥ < c1(x
∗, η) is sufficient to guaran-

tee that ∥δ̃(0)∥ < c = (1− ηγ)1/2c1(x
∗, η) due to (5.58). This completes our proof

of the lemma.

5.8.11 Auxiliary Lemmas

Lemma 5.11. Given a matrix Z ∈ R2N×N as in (5.15). Then for any diagonal

matrix D ∈ RN×N , we have (D ⊗ I2)Z = ZD.

Proof. Recall from (5.46) that Z =
∑N

i=1 eie
⊤
i ⊗ vi, where vi = [−x2i, x2i−1]

⊤. By
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representing D =
∑N

i=1Diieie
⊤
i , we have

(D ⊗ I2)Z =
(( N∑

i=1

Diieie
⊤
i

)
⊗ I2

)
·
( N∑
j=1

eje
⊤
j ⊗ vj

)
=

N∑
i=1

N∑
j=1

((
Diieie

⊤
i

)
·
(
eje

⊤
j

))
⊗ (I2 · vj)

=
N∑
i=1

N∑
j=1

Dii

(
(e⊤

i ej) · eie
⊤
j

)
⊗ vj

=
N∑
i=1

Dii(eie
⊤
i )⊗ vi

=
N∑
i=1

N∑
j=1

((
eie

⊤
i

)
·
(
Djjeje

⊤
j

))
⊗ (vi · 1)

=
( N∑

i=1

eie
⊤
i ⊗ vi

)
·
(( N∑

i=1

Djjeje
⊤
j

)
⊗ 1
)

=
( N∑

i=1

eie
⊤
i ⊗ vi

)
·
( N∑
i=1

Djjeje
⊤
j

)
= ZD,

where it is noted that

e⊤
i ej =


1 if i = j,

0 if i ̸= j.

Lemma 5.12. For any eigenvalue λ of ZMηZ
⊤, either λ = 0 or λ is an eigenvalue
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of Mη. Consequently, we have

ρ(ZMηZ
⊤) = ρ(Mη).

Proof. Let (λ,u) be a pair of eigenvalue and eigenvector of ZMηZ
⊤. Then, we

have

ZMηZ
⊤u = λu. (5.60)

Left-multiplying both sides of (5.60) by Z⊤ and using the semi-orthogonality of Z,

we obtain

Mη(Z
⊤u) = λ(Z⊤u).

This means either Z⊤u = 0N or Z⊤u is an eigenvector of Mη. In the former case,

we have λ = 0. In the latter case, we have λ is an eigenvalue of Mη. Finally, since

the spectral radius is the maximum absolute value of all eigenvalues, it is trivial

that ρ(ZMηZ
⊤) = ρ(Mη).

Lemma 5.13. (Rephrased from the supplemental material of [212]) Let {ak}∞k=0 ⊂

R+ be the sequence defined by

ak+1 = ρak + qa2k for k = 0, 1, . . . , (5.61)

where 0 < ρ < 1 and q ≥ 0. Then {ak}∞k=0 converges monotonically to 0 if and
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only if a0 <
1−ρ
q
. A simple linear convergence bound can be derived for a0 < ρ1−ρ

q

in the form of

ak ≤
(
1− a0q

ρ(1− ρ)

)−1

a0ρ
k. (5.62)

Proof. For each k ∈ N, let us define dk = ak/(a0ρ
k). Substituting ak = a0dkρ

k into

(5.61) and defining τ = a0q/(1− ρ), we obtain


d0 = 1,

dk+1 = dk + τ(1− ρ)ρk−1d2k for k = 0, 1, . . . .

Since τ(1− ρ)ρk−1d2k > 0, the sequence {dk}∞k=0 is strictly increasing and positive.

Thus, using di > di+1 > 0, for any i = 0, 1, . . . , k − 1, we have

1

di
− 1

di+1

=
di+1 − di
di+1di

<
di+1 − di

d2i
= τ(1− ρ)ρi−1.

Summing over i = 0, 1, . . . , k − 1, we obtain

1− 1

dk
<

k−1∑
i=0

τ(1− ρ)ρi−1 =
τ

ρ
(1− ρk) <

τ

ρ
. (5.63)

Substituting dk = ak/(a0ρ
k) and τ = a0q/(1−ρ) into (5.63) and rearranging terms

yield the desired bound on ak in (5.62).
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Lemma 5.14. Let {bk}∞k=0 ⊂ R+ be the sequence defined by

bk+1 ≤ ρbk + qb2k for k = 0, 1, . . . , (5.64)

where 0 < ρ < 1 and q ≥ 0. If b0 < 1−ρ
q
, then {bk}∞k=0 converges to 0. If

b0 < c ≜ ρ1−ρ
q
, then for any integer k ≥ 0, we have

bk ≤
(
1− b0

c

)−1

b0ρ
k.

Proof. Let us define a surrogate sequence {ak}∞k=0 that upper-bounds {bk}∞k=0 as

follows 
a0 = b0,

ak+1 = ρak + qa2k.

First, we prove by induction that

bk ≤ ak ∀k ∈ N. (5.65)

The base case when k = 0 holds trivially as b0 = a0. In the induction step, given

bk ≤ ak for an integer k ≥ 0, we have

bk+1 ≤ ρbk + qb2k ≤ ρak + a2k = ak+1.

By the principle of induction, (5.65) holds for all k ∈ N. Now, by Lemma 5.13, we
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have

bk ≤ ak ≤
(
1− a0q

ρ(1− ρ)

)−1

a0ρ
k

=

(
1− b0q

ρ(1− ρ)

)−1

b0ρ
k.

This completes our proof of the lemma.
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Chapter 6: Perturbation Expansions and Error Bounds for the

Truncated Singular Value Decomposition1

Truncated singular value decomposition is a reduced version of the singular value

decomposition in which only a few largest singular values are retained. This chap-

ter presents a novel perturbation analysis for the truncated singular value de-

composition for real matrices. First, we describe perturbation expansions for the

singular value truncation of order r. We extend perturbation results for the singu-

lar subspace decomposition to derive the first-order perturbation expansion of the

truncated operator about a matrix with rank greater than or equal to r. Observ-

ing that the first-order expansion can be greatly simplified when the matrix has

exact rank r, we further show that the singular value truncation admits a simple

second-order perturbation expansion about a rank-r matrix. Second, we introduce

the first-known error bound on the linear approximation of the truncated singular

value decomposition of a perturbed rank-r matrix. Our bound only depends on

the least singular value of the unperturbed matrix and the norm of the perturba-

tion matrix. Intriguingly, while the singular subspaces are known to be extremely

sensitive to additive noises, the newly established error bound holds universally

1This work has been published as: Trung Vu, Evgenia Chunikhina, and Raviv Raich. “Per-

turbation expansions and error bounds for the truncated singular value decomposition.” Linear

Algebra and its Applications, vol. 627, pp. 94-139, 2021.
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for perturbations with arbitrary magnitude. Finally, we demonstrate an applica-

tion of our results to the analysis of the mean squared error associated with the

TSVD-based matrix denoising solution.

6.1 Introduction

The singular value decomposition (SVD) is an invaluable tool for matrix analysis

and the truncated singular value decomposition (TSVD) offers a formal approach

for a rank-restricted optimal approximation of matrices by replacing the smallest

singular values by zeros in the SVD of a matrix. TSVD has numerous applications

in science, engineering, and math with examples including linear system identifica-

tion [146,147], collaborative filtering [33,104], low-rank matrix denoising [182,231],

data compression [225], and numerical partial differential equations [131]. In addi-

tion, TSVD is well-known for solving classical discrete ill-posed problems [89, 90].

This chapter is concerned with the effects of errors on the truncated singular value

decomposition of a matrix.

Perturbation theory for the SVD studies the effect of variation in matrix entries

on the singular values and the singular vectors of a matrix. Using perturbation

bounds or perturbation expansions, one can characterize the difference between

the SVD-related quantities associated with the perturbed matrix and those of the

original matrix. The first perturbation bound on singular values was given by

Weyl [226] in 1912, stating that no singular value can be changed by more than

the spectral norm of the perturbation. Later, Mirsky [153] showed that Weyl’s
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inequality also holds for any unitarily-invariant norm. Perturbation bounds for

singular vectors are often established in the context of singular subspace decom-

position. In 1970, Davis and Kahan [52] introduced a fundamental bound on the

distance between the subspaces spanned by a group of eigenvectors and their per-

turbed versions based the ratio between the perturbation level and the eigengap.

This result is also referred as the so-called sinΘ theorem for symmetric matrices

in the literature. Shortly afterwards, Wedin [224] generalized part of this result to

cover non-symmetric matrices using the singular value decomposition, bounding

changes in the left and right singular subspaces in terms of the singular value gap

and the perturbation magnitude. In a recent work, Cai and Zhang [29] further es-

tablished separate matching upper and lower bounds for the left and right singular

subspaces. When the structure of the error is concerned, one may draw interest

in perturbation expansions to approximate the perturbed quantity as a function

of the perturbation matrix. As the perturbation decreases towards zero, the ap-

proximation is more accurate since the higher-order terms in the expansion become

successively smaller. In 1973, Stewart [190] showed that there exists explicit expres-

sion of the perturbed subspaces in the bases of the unperturbed subspaces, which

can be leveraged to obtain error bounds for certain characteristic subspaces asso-

ciated with the SVD. This breakthrough result has started a long line of research

on perturbation expansions and error bounds for the SVD, including the work of

Stewart [191], Sun [198], Li et al. [130], Vaccaro [208], Xu [230], Liu et al. [135],

and more recently, Gratton et al. [82]. Specifically, in [191], Stewart utilized the

bounding technique in [190] and obtained a second-order perturbation expansion
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for the square of the smallest singular value of a matrix. In a different approach

based on the theory of implicit functions, Sun [198] provided the first analytical

expression for the second-order perturbation expansion of simple non-zero singular

values of a matrix. One of the first significant results on perturbation expansion

of singular subspaces was introduced by Li and Vaccaro in 1991. In [130], the two

authors analyzed a variety of subspace-based algorithms in array signal processing

and developed the first-order perturbation expansion for the signal and orthogonal

subspaces of the rank-deficient data matrix. Later on, Vaccaro [208] extended this

result to the second-order perturbation expansion of these subspaces. A more fine-

grained analysis of the perturbation expansion for the individual singular vectors

rather than the singular subspaces was given by Liu et al. [135], uncovering the

fact that the signal subspace has an impact on the first-order approximation of

the individual singular vectors, but not on the first-order approximation of the

signal subspace spanned by these vectors. We note that the aforementioned re-

sults on perturbation analysis of singular subspaces make an assumption that the

unperturbed matrix is rank-deficient, i.e., all singular values corresponding to one

of the singular subspaces are zero. In 2002, Xu [230] relaxed this constraint by

only requiring those singular values to be equally small. Recently, Gratton and

Tshimanga [82] were able to eliminate this constraint completely, presenting the

second-order perturbation expansion for singular subspaces with no restriction on

their corresponding singular values.2 It is notable that the last result is devel-

oped directly from those by Stewart in [190]. A more comprehensive description

2The only constraint is the singular-value separation between the two subspaces.
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of the aforementioned results is given in Section 3. Interested readers can also

find in-depth surveys on matrix perturbation theory in [192, 193] and references

therein.

The aforementioned results on perturbation analysis of the SVD is the fulcrum

for the perturbation analysis of the TSVD. While the former characterizes the ef-

fect of perturbation on the singular values/singular subspaces of a matrix, the later

studies the combined effect (from both singular values and singular subspaces) on

the resulting reduced-rank matrix. Analyzing such an effect helps understand the

local behavior of algorithms that utilize the low-rank optimal approximation of

matrices, such as SVD-based channel estimation methods in multi-input multi-

output (MIMO) systems [109,134,162] and iterative hard-thresholding algorithms

for low-rank matrix completion [104, 213, 214]. In a recent work, Gratton and

Tshimanga [82] presented a second-order expansion for the singular subspace de-

composition and make use of the result to deduce the second-order sensitivity of the

TSVD solution to least-squares problems. However, since their application focuses

on the expansion of the truncated pseudo-inverse rather than the TSVD itself, no

specific result in perturbation expansion of the TSVD is mentioned. In a different

approach to analyzing the TSVD operator, Feppon and Lermusiaux [64] studied

the embedded geometry of the fixed-rank matrix manifold and characterized the

projection onto it as a smooth (C∞) map. Based on this geometric interpretation,

the authors provided an explicit expression for the directional derivative of the

TSVD of order r at a certain matrix with rank greater than or equal to r.3 On

3Despite the fact that Theorem 25 in [64] reads “greater than r”, both the proof of the theorem
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the one hand, the result directly suggests the first-order perturbation expansion

of the TSVD. On the other hand, the differential geometry-based approach, while

offering a clear path for calculating the derivatives, does not offer a direct recipe

for obtaining the error bound on the first-order approximation or the higher order

terms in the expansion. At the time of writing this chapter, we are not aware of

any explicit expression of the second-order derivative of the TSVD.

In this chapter, we present a novel perturbation analysis of the truncated singu-

lar value decomposition. First, by utilizing the perturbation expansion for singular

subspaces in [82], we derive the first-order perturbation expansion of the TSVD.

Our result matches the result on the directional derivative of the TSVD in [64].

Furthermore, we extend our analysis to study the second-order perturbation expan-

sion and show that when the matrix has exact rank r, the TSVD of order r admits

a simple expression for its second-order expansion. To the best of our knowledge,

this is the first explicit result for the second-order perturbation expansion of the

TSVD. Third, we establish an error bound on the first-order approximation of

the TSVD about a rank-r matrix. Our bound holds universally for any level (or

magnitude) of the perturbation. Finally, we demonstrate how the proposed per-

turbation expansions and error bounds can be applied to study the mean squared

error associated with the TSVD-based matrix denoising solution.

and the direct communication with the authors (on September 17, 2020) suggest the result should

also include the case of rank-r matrices.
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6.2 Notation and Definitions

Throughout the chapter, we use ∥·∥F and ∥·∥2 to denote the Frobenius norm and

the spectral norm of a matrix, respectively. Occasionally, ∥·∥2 is used on a vector

to denote the Euclidean norm. Boldfaced symbols are reserved for vectors and

matrices. In addition, the s × t all-zero matrix is denoted by 0s×t and the s × s

identity matrix is denoted by Is. We also use es
i to denote the i-th vector in the

natural basis of Rs. When understood clearly from the context, the dimensions

of vectors/matrices in the aforementioned notation may be omitted. As a slight

abuse of notation, we define the big O notation for matrices as follows.

Definition 6.1. Let ∆ be some matrix and F (∆) be a matrix-valued function

of ∆. Then, for any positive number k, F (∆) = O(∥∆∥kF ) if there exists some

constant 0 ≤ c < ∞ such that

lim
ϵ→0+

sup
∥∆∥F=ϵ

∥F (∆)∥F
∥∆∥kF

= c.

We emphasize the difference between the commonly used big O notation in the

literature and the O notation used in this chapter. While the former requires c

to be strictly greater than 0, our notation includes the case c = 0 to imply both

situations that F (∆) approaches 0 at a rate either equal or faster than ∥∆∥kF .

Similarly, when used for a vector, we replace the Frobenius norm by the Euclidean

norm in Definition 6.1 to denote the corresponding quantity.

In the rest of the chapter, unless otherwise specified, the symbol X is used to

denote an arbitrary matrix in Rm×n. Here, without loss of generality, we assume
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that m ≥ n. The SVD of X is written as X = UΣV T where Σ is a m × n

rectangular diagonal matrix with main diagonal entries are the singular values

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. For completeness, we denote the “ghost” singular values

σn+1 = . . . = σm = 0 in the case m > n. Additionally, U ∈ Rm×m and V ∈ Rn×n

are orthogonal matrices such that UUT = UTU = Im and V V T = V TV = In.

We note that the left and right singular vectors of X are the columns of U and V ,

i.e., U = [u1,u2, . . . ,um] and V = [v1,v2, . . . ,vn]. Thus, X can also be rewritten

as the sum of rank-1 matrices: X =
∑n

i=1 σiuiv
T
i . Next, we define the singular

subspace decomposition as follows.

Definition 6.2. Given 1 ≤ r < n, the singular subspace decomposition of X ∈

Rm×n is given by:

X =

[
U1 U2

]Σ1 0

0 Σ2


V T

1

V T
2

 = U1Σ1V
T
1 +U2Σ2V

T
2 , (6.1)

where

Σ1 = diag(σ1, . . . , σr) ∈ Rr×r, Σ2 =

diag(σr+1, . . . , σn)

0

 ∈ R(m−r)×(n−r),

with the singular values in descending order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, and

U1 =

[
u1 . . . ur

]
∈ Rm×r, U2 =

[
ur+1 . . . um

]
∈ Rm×(m−r),

V1 =

[
v1 . . . vr

]
∈ Rn×r, V2 =

[
vr+1 . . . vn

]
∈ Rn×(n−r).
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It is clear from Definition 6.2 that

U =

[
U1 U2

]
, Σ =

Σ1 0

0 Σ2

 , V =

[
V1 V2

]
.

Here the columns of U1 and U2 (or V1 and V2) provide the bases for the column-

space (or row-space) of X and its orthogonal complement, respectively.

Definition 6.3. The orthonormal projectors onto the subspaces of X are defined

as:

PU1 = U1U
T
1 =

r∑
i=1

uiu
T
i , PU2 = U2U

T
2 = Im − PU1 =

m∑
i=r+1

uiu
T
i ,

PV1 = V1V
T
1 =

r∑
i=1

viv
T
i , PV2 = V2V

T
2 = In − PV1 =

n∑
i=r+1

viv
T
i .

Generally, matrices U1, U2, V1, and V2 are not unique. In particular, for sim-

ple non-zero singular values, the corresponding left and right singular vectors are

unique up to a simultaneous sign change. For repeated and positive singular values,

the corresponding left and right singular vectors are unique up to a simultaneous

right multiplication with the same orthogonal matrix. Finally, for zero singular

values, the singular vectors can be any orthonormal bases of the left and right null

spaces of X. On the other hand, the singular subspaces spanned by the columns

of U1, U2, V1, V2, and their corresponding projectors are unique provided that

σr > σr+1 [89]. We are now in position to define the singular value truncation.

Definition 6.4. The r-truncated singular value decomposition of X (r-TSVD) is
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defined as

Pr(X) =
r∑

i=1

σiuiv
T
i = U1Σ1V

T
1 . (6.2)

By Eckart-Young theorem [61], Pr(X) is the best least squares approximation

of X by a rank-r matrix, with respect to unitarily-invariant norms. Therefore,

this operator is also known as the projection of X onto the non-convex set of

rank-r matrices. Pr(X) is unique if either σr > σr+1 or σr = 0. In the special

case when X has exact rank r, we have σr > σr+1 = . . . = σn = 0 and the

projectors onto the subspaces of X, namely, PU1 ,PU2 ,PV1 , and PV2 are unique.

However, the matrices U2 and V2 can take any orthonormal basis in Rm−r and

Rn−r, respectively, as their columns. Finally, for a rank-r matrix, we define the

pseudo inverse of X as X† = U1Σ
−1
1 V T

1 . It is worth mentioning that ∥X∥2 = σ1

while
∥∥X†

∥∥
2
= 1/σr in this case.

6.3 Preliminaries

Two elemental bounds for singular values were given by Weyl [226] in 1912 and

Mirsky [153] in 1960:

Proposition 6.1. Let ∆ ∈ Rm×n be a perturbation of arbitrary magnitude. Denote

X̃ = X +∆ with singular values σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃n ≥ 0. Then,

• Weyl’s inequality: |σ̃i − σi| ≤ ∥∆∥2, for i = 1, . . . , n,

• Mirsky’s inequality:
√∑n

i=1(σ̃i − σi)2 ≤ ∥∆∥F .



211

Proposition 6.1 asserts that the changes in the singular values can be bounded using

only the norm of the perturbation. By leveraging the specific values of the entries of

the perturbation matrix, the behavior of singular values under perturbations can

be described more precisely through perturbation expansions. In [191], Stewart

showed that if σn is non-zero and distinct from other singular values of X, then

its corresponding perturbed singular value can be expressed by

σ̃n = σn + uT
n∆vn +O(∥∆∥2). (6.3)

It is later known that the result in (6.3) also holds for any simple non-zero singular

values [193]. In another approach, Sun [198] derived a second-order perturbation

expansion for simple non-zero singular values. For a simple zero singular value,

Stewart [191] claimed that deriving a perturbation expansion is non-trivial and

proposed a second-order approximation for σ̃2
n instead. Most recently, a general-

ization of (6.3) to a set of singular values that is well separated from the rest is

proved in [194].

While the singular values of a matrix are proven to be quite stable under per-

turbations, the singular vectors, especially those correspond to a cluster of singular

values, are extremely sensitive. It is therefore natural to bound the perturbation

error based on the subspace spanned by the singular vectors. Consider the sin-

gular subspace decomposition in Definition 6.2. We define the singular gap as

the smallest distance between a singular value in Σ1 and a singular value in Σ2.

When the spectral norm of the perturbation is smaller than this gap, Wedin’s
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sinΘ theorem [224] provides an upper bound on the distances between the left

and right singular subspaces and their corresponding perturbed counterparts in

terms of the singular gap and the Frobenius norm of the perturbation. Further-

more, Stewart [190] showed that there exist explicit expressions of the perturbed

subspaces in the bases of the unperturbed subspaces, which can be leveraged to

obtain error bounds for certain characteristic subspaces associated with the SVD.

Let us rephrase this result in the following proposition.

Proposition 6.2. (Rephrased from Theorem 2.1 in [82], which is based on Theo-

rem 6.4 in [190]) In addition to the setting in Definition 6.2, assume that σr > σr+1.

For a perturbation ∆ ∈ Rm×n, denote the singular subspace decomposition of

X̃ = X +∆ by

X̃ = ŨΣ̃Ṽ T =

[
Ũ1 Ũ2

]Σ̃1 0

0 Σ̃2


Ṽ T

1

Ṽ T
2

 .

Let us partition UT∆V conformally with U and V in the form

UT∆V =

UT
1 ∆V1 UT

1 ∆V2

UT
2 ∆V1 UT

2 ∆V2

 =

E11 E12

E21 E22

 = E. (6.4)

If

∥∆∥2 <
σr − σr+1

2
, (6.5)
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then there must exist unique matrices Q ∈ R(m−r)×r, P ∈ R(n−r)×r whose norms

are in the order of ∥∆∥F such that

Q(Σ1 +E11) + (Σ2 +E22)P = −E21 −QE12P , (6.6a)

(Σ1 +E11)P
T +QT (Σ2 +E22) = E12 +QTE21P

T . (6.6b)

Moreover, using

Û1 = (U1 −U2Q)(Ir +QTQ)−1/2, (6.7a)

Û2 = (U2 +U1Q
T )(Im−r +QQT )−1/2, (6.7b)

V̂1 = (V1 + V2P )(Ir + P TP )−1/2, (6.7c)

V̂2 = (V2 − V1P
T )(In−r + PP T )−1/2, (6.7d)

we can define semi-orthogonal matrices Û1, Û2, V̂1, and V̂2 satisfying ÛT
1 Û2 = 0

and V̂ T
1 V̂2 = 0, which provide bases to the same unique subspaces of Ũ1, Ũ2, Ṽ1,

and Ṽ2, respectively, i.e., PÛ1
= PŨ1

, PÛ2
= PŨ2

, PV̂1
= PṼ1

, and PV̂2
= PṼ2

.

It is important to note that Û1, Û2, V̂1, and V̂2 may differ from Ũ1, Ũ2, Ṽ1,

and Ṽ2, respectively. However, their corresponding subspaces are identical. This

result will be useful later when replacing PŨ1
and PṼ1

in the following version

of the r-TSVD Pr(X̃) = PŨ1
X̃PṼ1

with PÛ1
and PV̂1

. The substitution allows

us to write an explicit expression of the r-TSVD using ∆ and terms that are in

order of ∥∆∥F such as Q and P . Equation (6.6) also enables the perturbation

expansion of the SVD through the coefficient matrices Q and P . In 1991, Li and
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Vaccaro [130] considered a special case of rank-r matrices (Σ2 = 0) and introduced

the first-order perturbation expansion for Q and P as a method to analyze the

performance of subspace-based algorithms in array signal processing. Later on,

Vaccaro [208] extended their approach to study the second-order perturbation

expansion for the singular subspace decomposition. A more general result in this

approach was proposed by Xu [230] in 2002, through relaxing the constraintΣ2 = 0

to ΣT
2Σ2 = ϵ2I, for small ϵ ≥ 0. It was not until recently the second-order analysis

with no restriction on Σ2 was provided by Gratton [82]. We summarize this result

on second-order perturbation expansion for Q and P as follows.

Proposition 6.3. Given the setting in Proposition 6.2. Then

vec(Q) = Φ−1
0 µ1 +Φ−1

0 µ2 −Φ−1
0 Φ1Φ

−1
0 µ1 +O(∥∆∥3F ), (6.8)

where

Φ0 = Σ2
1 ⊗ Im−r − Ir ⊗ (Σ2Σ

T
2 ),

Φ1 = (Σ1E
T
11 +E11Σ1)⊗ Im−r − Ir ⊗ (Σ2E

T
22 +E22Σ

T
2 ),

µ1 = − vec(Σ2E
T
12 +E21Σ1), µ2 = − vec(E22E

T
12 +E21E

T
11),

and

vec(P ) = Ψ−1τ1 +Ψ−1
0 τ2 −Ψ−1

0 Ψ1Ψ
−1
0 τ1 +O(∥∆∥3F ), (6.9)
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where

Ψ0 = Σ2
1 ⊗ Im−r − Ir ⊗ (ΣT

2Σ2),

Ψ1 = (Σ1E11 +ET
11Σ1)⊗ Im−r − Ir ⊗ (ΣT

2E22 +ET
22Σ2),

τ1 = − vec(ΣT
2E21 +ET

12Σ1), τ2 = − vec(ET
22E21 +ET

12E11).

Corollary 6.1. Suppose in Proposition 6.2, X has rank r, i.e., Σ2 = 0. Then

Q = −E21Σ
−1
1 −E22E

T
12Σ

−2
1 +E21Σ

−1
1 E11Σ

−1
1 +O(∥∆∥3F ),

P = ET
12Σ

−1
1 +ET

22E21Σ
−2
1 −ET

12Σ
−1
1 ET

11Σ
−1
1 +O(∥∆∥3F ).

Finally, we devote the rest of this section to discuss condition (6.5) in Propo-

sition 6.2. As mentioned earlier, the singular subspaces corresponding to Ũ1, Ũ2,

Ṽ1, and Ṽ2 are unique if and only if σ̃r > σ̃r+1. By Weyl’s inequality (see Propo-

sition 6.1), we have |σ̃r+1 − σr+1| ≤ ∥∆∥2. Since ∥∆∥2 < (σr − σr+1)/2 and

|σ̃r+1 − σr+1| ≥ σ̃r+1 − σr+1, one can further upper bound the r + 1-th perturbed

singular value by

σ̃r+1 < σr+1 +
σr − σr+1

2
=

σr + σr+1

2
. (6.10)

Following a similar argument, |σ̃r − σr| ≤ ∥∆∥2 leads to

σ̃r > σr −
σr − σr+1

2
=

σr + σr+1

2
. (6.11)
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It follows from (6.10) and (6.11) that the gap between σ̃r and σ̃r+1 is strictly greater

than 0:

σ̃r+1 <
σr + σr+1

2
< σ̃r. (6.12)

As mentioned in [82], condition (6.5) is more restrictive, but simpler, than the

original condition specified in [190]. Based on the aforementioned preliminaries,

we are ready to present our results.

6.4 Perturbation Expansions for the r-TSVD

This section presents perturbation expansion results for the r-TSVD operator.

In order to guarantee the uniqueness of the expansions, we assume throughout

the section that the r-th and r + 1-th singular values are well-separated and the

perturbation ∆ has small magnitude relative to X.

Let us begin with a non-trivial result on the first-order perturbation expansion

of the r-TSVD. The result is consistent with Theorem 25 from [64], in which Feppon

and Lermusiaux utilized differential geometry to derive a closed-form expression for

the directional derivative of the r-TSVD. Using tools from perturbation analysis,

we are able to obtain the same result on the first-order perturbation expansion of

Pr. The additional benefit of the technique used here, as can be seen later, is that

it can be leveraged to further derive the second-order perturbation expansion and

the bound on the approximation error of the first-order expansion about a rank-r
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matrix.

Theorem 6.1. Assume σr > σr+1. Then, for some perturbation ∆ ∈ Rm×n such

that ∥∆∥2 < σr−σr+1

2
, the first-order perturbation expansion of the r-TSVD about

X is uniquely given by4

Pr(X +∆) = Pr(X) +∆− PU2∆PV2

+
r∑

i=1

n∑
j=r+1

(
σ2
j

σ2
i − σ2

j

(uiu
T
i ∆vjv

T
j + uju

T
j ∆viv

T
i )

+
σiσj

σ2
i − σ2

j

(uiv
T
i ∆

Tujv
T
j + ujv

T
j ∆

Tuiv
T
i )

)
+O(∥∆∥2F ).

(6.13)

The proof of Theorem 6.1 is based on perturbation expansions of the coefficient

matrices Q and P in Proposition 6.3. Interested readers are encouraged to find

out the details in Appendix 6.8.2. As mentioned earlier, the first-order term in

(6.13) is equivalent to the directional derivative given by Theorem 25 in [64]:

∇∆Pr(X) = PU2∆PV1 + PU1∆+

r∑
i=1

m∑
j=r+1

σj

σ2
i − σ2

j

((
σiu

T
j ∆vi + σju

T
i ∆vj

)
ujv

T
i +

(
σju

T
j ∆vi + σiu

T
i ∆vj

)
uiv

T
j

)
.

(6.14)

It is worthwhile to mention that we arrive at the first-order perturbation expansion

in Theorem 6.1 while working independently on the error bounds for TSVD (see

4We recall that throughout this chapter we assume m ≥ n.
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Section 6.5).

Note that the condition ∥∆∥2 < (σr − σr+1)/2 guarantees a non-zero gap

between the r-th and the r + 1-th singular values of the perturbed matrix (see

(6.12)), and hence guarantees Pr(X +∆) on the LHS of (6.13) is unique. At the

same time, each term on the RHS of (6.13) is well-defined due to the uniqueness of

singular subspaces associated with each group of singular values of X. The term

∆−PU2∆PV2 can be viewed as the projection of ∆ onto the tangent space of the

manifold of rank-r matrices [4]. On the other hand, the double summation stems

from the curvature of this manifold when X does not lie on it (with rank greater

than r). To demonstrate the first-order expansion in Theorem 6.1, let us consider

the following examples.

Example 6.1. Consider the matrix X with its SVD as follows:

X =
1

2



4 −4 7

0 0 −9

4 8 1

8 4 −1


(6.15)

=


1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1




·



6 0 0

0 6 0

0 0 3

0 0 0


·

1

3


1 2 2

2 1 −2

−2 2 −1




T

. (6.16)
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In this example, note that σ1 = σ2 > σ3. From Definition 6.4, we have

P2(X) =


1

2



−1 1

1 −1

1 1

1 1




·

6 0

0 6

 ·

1

3


1 2

2 1

−2 2




T

=



1 −1 4

−1 1 −4

3 3 0

3 3 0


.

(6.17)

In addition,

PU2 =
1

2



1 1 0 0

1 1 0 0

0 0 1 −1

0 0 −1 1


, PV2 =

1

9


4 −4 −2

−4 4 2

−2 2 1

 . (6.18)

For the perturbation

∆ =
3

200



3 3 −9

−3 −9 3

7 5 −5

−1 7 −7


, with ∥∆∥F = 0.2985 < δ = 1.5, (6.19)
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(6.18) leads to

PU2∆PV2 =
3

200



2 −2 −1

2 −2 −1

2 −2 −1

−2 2 1


. (6.20)

Now the double summation in (6.13) can be represented as

G(∆) =
1

3
(u1u

T
1∆v3v

T
3 + u3u

T
3∆v1v

T
1 ) +

2

3
(u1v

T
1 ∆

Tu3v
T
3 + u3v

T
3 ∆

Tu1v
T
1 )

+
1

3
(u2u

T
2∆v3v

T
3 + u3u

T
3∆v2v

T
2 ) +

2

3
(u2v

T
2 ∆

Tu3v
T
3 + u3v

T
3 ∆

Tu2v
T
2 ).

While the singular vectors of X are not unique (due to σ1 = σ2), the singular

subspaces of X are unique. Therefore, by representing G(∆) as

G(∆) =
1

3
(u1u

T
1 + u2u

T
2 )∆v3v

T
3 +

1

3
u3u

T
3∆(v1v

T
1 + v2v

T
2 )

+
2

3
(u1v

T
1 + u2v

T
2 )∆

Tu3v
T
3 +

2

3
u3v

T
3 ∆

T (u1v
T
1 + u2v

T
2 ), (6.21)

we observe that G(∆) is well-defined since u1u
T
1 + u2u

T
2 , u3u

T
3 , v1v

T
1 + v2v

T
2 ,
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v3v
T
3 , u1v

T
1 + u2v

T
2 , and u3v

T
3 are all unique quantities, namely,

u1u
T
1 + u2u

T
2 = PU1 =

1

2



1 −1 0 0

−1 1 0 0

0 0 1 1

0 0 1 1


, u3u

T
3 =

1

4



1 1 −1 1

1 1 −1 1

−1 −1 1 −1

1 1 −1 1


,

v1v
T
1 + v2v

T
2 = PV1 =

1

9


5 4 2

4 5 −2

2 −2 8

 , v3v
T
3 = PV2 =

1

9


4 −4 −2

−4 4 2

−2 2 1

 ,

u1v
T
1 + u2v

T
2 =

1

18



3 −3 12

−3 3 −12

9 9 0

9 9 0


, u3v

T
3 =

1

6



2 −2 −1

2 −2 −1

−2 2 1

2 −2 −1


. (6.22)

Substituting the values of the 6 aforementioned terms in (6.22) and the value of ∆

in (6.19) back into (6.21), we obtain

G(∆) =
1

200



−6 3 0

2 −5 −4

−2 5 4

−6 3 0


. (6.23)
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The substitution of (6.17), (6.19), (6.20), and (6.23) into (6.13) yields

P2(X +∆) =



0.9850 −0.9100 3.8800

−1.0650 0.8700 −3.9600

3.0600 3.1300 −0.0400

2.9850 3.0900 −0.1200


+O(∥∆∥2F ). (6.24)

On the other hand, running a simple numerical evaluation by Definition 6.4, we

can compute P2(X +∆) and obtain

P2(X +∆) =



0.9840 −0.9088 3.8792

−1.0632 0.8689 −3.9615

3.0650 3.1284 −0.0403

2.9870 3.0890 −0.1213


.

The approximation error of the first-order perturbation expansion has magnitude

of 0.0043, which is much smaller than the approximation error of the zero-order

expansion, i.e., ∥P2(X +∆)− P2(X)∥F = 0.3016.

Example 6.2. Let us consider a counter-example in which the condition ∥∆∥2 <
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(σr − σr+1)/2 is not satisfied. In particular, by setting

X =



2 0 0

0 2 0

0 0 1

0 0 0


, ∆ =



0.1 0 0

0 −0.5 0

0 0 0.5

0 0 0


,

following similar calculation in Example 6.1 would yield

P2(X +∆) =



2.1 0 0

0 1.5 0

0 0 0

0 0 0


+O(∥∆∥2F ).

On the other hand, the 2-TSVD of X +∆ can either be

P2(X +∆) =



2.1 0 0

0 1.5 0

0 0 0

0 0 0


or P2(X +∆) =



2.1 0 0

0 0 0

0 0 1.5

0 0 0


.

It can be seen that our first-order approximation is no longer accurate if the later

truncation is considered.

One immediate consequence of Theorem 6.1 is when the matrix has exact rank

r, the double summation on the RHS of (6.13) vanishes since σj = 0 for all j > r.
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Thus, we obtain a simple expression for the first-order expansion of Pr(·) about a

rank-r matrix.

Corollary 6.2. Let X ∈ Rm×n be a rank-r matrix. Then, for some perturbation

∆ ∈ Rm×n such that ∥∆∥2 < σr/2, the first-order perturbation expansion of the

r-TSVD about X is uniquely given by

Pr(X +∆) = X +∆− PU2∆PV2 +O(∥∆∥2F ). (6.25)

We observe that while the first-order term depends on the perturbation ∆ and

the two projections PU2 and PV2 , it is independent of the singular values of X.

Motivated by the simple result in Corollary 6.2, we further study the second-order

perturbation expansion of the r-TSVD about a rank-r matrix in the following

theorem.

Theorem 6.2. Let X ∈ Rm×n be a rank-r matrix. Then, for some perturbation

∆ ∈ Rm×n such that ∥∆∥2 < σr/2, the second-order perturbation expansion of the

r-TSVD about X is uniquely given by

Pr(X +∆) = X +∆− PU2∆PV2 +X†∆TPU2∆PV2 + PU2∆PV2∆
TX†

+ PU2∆(X†)
T
∆PV2 +O(∥∆∥3F ). (6.26)

The proof of Theorem 6.2 is given in Appendix 6.8.3. The theorem states that

Pr(X + ∆) admits a simple second-order approximation that only depends on

PU2 , PV2 , and X† in addition to X and ∆ themselves. Notice the dependence
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of the three second-order terms on the RHS of (6.26) on the pseudo inverse of X

indicates the first-order approximation is sensitive to the least singular value of

X. In the next section, we shall prove that the error bound for the first-order

approximation of Pr(X +∆) depends linearly on 1/σr.

Remark 6.1. The differentiability of Pr at a rank-r matrix, as shown in Corol-

lary 2 and Theorem 2, matches with the well-known result in differential geometry

that a projection onto the base of the normal bundle of any smooth manifold is

a smooth map on the tubular neighborhood [123]. In particular, Pr is a classic

smooth (C∞) map in a small open neighborhood containing the manifold of rank-r

matrices.

Remark 6.2. It is known that the r-TSVD is differentiable at any point (ma-

trix) with a non-zero gap between the r-th and r + 1-th singular values and hence,

admits a first-order perturbation expansion about such point. While our result in

Theorem 6.2 only considers a special case of rank-r matrices, we suspect there ex-

ists a second-order perturbation expansion of the r-TSVD about a matrix X with

rank greater than r. However, given the complexity of the first-order expansion, it

certainly requires more elaborate work. We leave this as a future research direction.

6.5 Error Bounds for the r-TSVD

This section introduces upper bounds on the difference between the r-TSVD and

its first-order approximation. While in Section 6.4 the perturbation expansions are

derived under the assumption that ∥∆∥2 < (σr −σr+1)/2, the error bounds in this
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section do not require this constraint and indeed they hold for ∆ with arbitrary

magnitude. It is important to note that, without the constraint on the level of

the perturbation, Pr(X +∆) may not be unique since there is no guarantee that

σ̃r > σ̃r+1. The value of Pr(X+∆) in case σ̃r = σ̃r+1 depends on the choice of the

singular subspace decomposition of X̃ = X+∆ (see Definition 6.2). Nevertheless,

we shall provide error bounds that hold independent of the choice of decomposition.

Let us consider the first-order expansion in (6.25). One trivial bound on the

approximation error can be derived as follows (see details in Appendix 6.8.4):

Lemma 6.1. Let X ∈ Rm×n be a rank-r matrix. For any ∆ ∈ Rm×n and any

valid choice of subspace decomposition of X +∆, we have

∥Pr(X +∆)− (X +∆− PU2∆PV2)∥F ≤ ∥X∥F + 2 ∥∆∥F .

Lemma 6.1 suggests that for large ∆, the approximation error grows at most

linearly in the norm of ∆. However, for small ∆, the aforementioned bound is not

tight since Corollary 6.2 implies the error should be in the order of ∥∆∥2F . In order

to tighten the bound for the small perturbation, we need to develop a different

approach that is more meticulous about intermediate inequalities. We state our

main result regarding the global error bound on the first-order approximation of

the r-TSVD as follows.

Theorem 6.3. Let X ∈ Rm×n be a rank-r matrix. Then, for any ∆ ∈ Rm×n

and any valid choice of subspace decomposition of X + ∆, the first-order Taylor



227

expansion of the r-TSVD about X is given by

Pr(X +∆) = X +∆− PU2∆PV2 +RX(∆), (6.27)

where there exists a universal constant 1 + 1/
√
2 ≤ c ≤ 4(1 +

√
2) such that

∥RX(∆)∥F ≤ c

σr

∥∆∥2F . (6.28)

Furthermore, the following inequality holds

∥RX(∆)∥F ≤ 2(1 +
√
2) ∥∆∥F min

{
2

σr

∥∆∥F , 1

}
. (6.29)

The proof of Theorem 6.3 is given in Appendix 6.8.5. It is noticeable that the

first three terms on the RHS of (6.27) are uniquely given by the rank-r singular

subspace decomposition of X. On the contrary, the LHS may not be unique (e.g.,

when σ̃r = σ̃r+1) and hence, so does the residual RX(∆). However, it is interesting

to note that the theorem makes no assumption on the norm of ∆, as well as the

choice of the r-TSVD of X +∆. The bound on the residual (or the remainder) in

Theorem 6.3 is similar to the Lagrange error bound in univariate first-order Taylor

series. It not only asserts that the approximation error can grow no faster than a

quadratic rate but also determines the constant attached to ∥∆∥2F . Furthermore,

the bound depends only on the σr and ∥∆∥F , as one may expect from the second-

order perturbation expansion of the r-TSVD in Theorem 6.2.

Remark 6.3. We conjecture but are unable to prove that the lower bound on
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c is tight, i.e., c = 1 + 1/
√
2. Partial result in this direction regarding ∆ of

certain structure is also given in the proof of Theorem 6.3. In our numerical

experiment, we ran multiple optimization procedures to maximize the quantity

σr ∥RX(∆)∥F / ∥∆∥2F with respect to ∆ and obtained the same constant 1+1/
√
2.

The bound in (6.29) suggests an interesting behavior of the residualRX(∆). When

the perturbation is small, the error depends quadratically on the magnitude of

the perturbation and inversely proportional to the least singular value of X. In

particular, as σr approaches 0, the first-order approximation becomes less accurate.

On the contrary, for large ∆, the upper bound is linear in the norm of ∆ and

independent of σr. Compared to the bound in Lemma 6.1, we observe that the

dependence on X is eliminated. Asymptotically as ∥∆∥F approaches ∞, the

simple bound in the lemma becomes tighter than the bound in (6.29).

We conclude this section by describing the behavior of the residual term for

small perturbations. While it is challenging to establish a tight bound on ∥RX(∆)∥F

(as a function of ∥∆∥F ) for large ∆, it is possible to project the first-order approx-

imation error for small perturbation based on the knowledge of the second-order

perturbation expansion of the r-TSVD (see Theorem 6.2). We provide the result

in the following theorem, with the proof given in Appendix 6.8.6.

Theorem 6.4. Asymptotically as ∥∆∥F approaches 0, the norm of the residual

term in Theorem 6.3 can be upper-bounded tightly by

lim
ϵ→0+

sup
∥∆∥F=ϵ

∥RX(∆)∥F
∥∆∥2F

=
1

σr

√
3
.
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Remark 6.4. While Theorem 6.1 provides the first-order perturbation expansion

of the r-TSVD about an arbitrary matrix X with σr > σr+1 ≥ 0, extending Theo-

rems 6.3 and 6.4 to that case remains to be one of our future research directions

due to the difficulty of bounding the double summation in (6.13).

6.6 An Application to Performance Analysis in Matrix Denoising

This section presents an application of our result to the performance analysis of

the TSVD for matrix denoising. In many applications such as image denoising [85],

multi-input multi-output (MIMO) channel estimation [134], collaborative filtering

[118], low-rank procedures are often motivated by the following statistical model:

X̃ = X +∆,

where X ∈ Rm×n is the unknown matrix with rank r ≤ min(m,n) and ∆ is a

random matrix whose entries are i.i.d. normally distributed with zero mean and

σ2-variance, i.e., ∆ij ∼ N (0, σ2) for i = 1, . . . ,m and j = 1, . . . , n. To denoise the

data, the TSVD is applied to the noisy matrix X̃ to obtain the following estimator:

X̂ = Pr(X̃).

We would like to assess the mean squared error (MSE) of this estimator using our

perturbation analysis of the TSVD. As a baseline for our analysis, we consider the
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MSE of the noisy matrix X̃:

E
[∥∥∥X̃ −X

∥∥∥2
F

]
= E

[
∥∆∥2F

]
=

m∑
i=1

n∑
j=1

E
[
∆2

ij

]
= σ2mn. (6.30)

Next, we study the MSE of the estimator X̂, i.e., E[
∥∥∥X̂ −X

∥∥∥2
F
]. To the best

of our knowledge, there exists no closed-form expression of this quantity due to

the non-linearity of the truncated singular value operator. In the following, we

provide the first-order approximation, the second-order approximation, and the

upper bound for E[
∥∥∥X̂ −X

∥∥∥2
F
] based on the results presented in this chapter.

1. The first-order approximation:

Let X̂1 = X +∆−PU2∆PV2 be the first-order approximation of X̂. We have

E
[∥∥∥X̂1 −X

∥∥∥2
F

]
= E

[
∥∆− PU2∆PV2∥

2
F

]
= E

[
∥(Imn − PV2 ⊗ PU2) vec(∆)∥22

]
(by Lemma 6.8-2)

= E
[(
vec(∆)

)T
(Imn − PV2 ⊗ PU2)

T (Imn − PV2 ⊗ PU2) vec(∆)
]
.

(6.31)

Using the fact that PU2 and PV2 are projection matrices, Imn − PV2 ⊗ PU2 is

also a projection matrix, and hence, (Imn − PV2 ⊗ PU2)
T (Imn − PV2 ⊗ PU2) =
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Imn − PV2 ⊗ PU2 . Thus, (6.31) can be further simplified as

E
[∥∥∥X̂1 −X

∥∥∥2
F

]
= E

[(
vec(∆)

)T )
(Imn − PV2 ⊗ PU2) vec(∆)

]
= E

[
tr
(
(Imn − PV2 ⊗ PU2) vec(∆)

(
vec(∆)

)T )]
(by the cyclic property of the trace)

= tr
(
(Imn − PV2 ⊗ PU2)E

[
vec(∆)

(
vec(∆)

)T ])
.

Since ∆ij
i.i.d.∼ N (0, σ2), E

[
vec(∆)

(
vec(∆)

)T ]
= σ2Imn. Thus,

E
[∥∥∥X̂1 −X

∥∥∥2
F

]
= σ2 tr(Imn − PV2 ⊗ PU2)

= σ2 tr(Imn)− tr(PV2) tr(PU2)

= σ2r(m+ n− r), (6.32)

where the second equality uses Lemma 6.8-4 and the third equality stems from

the fact that tr(PU2) = tr(U2U
T
2 ) = tr(UT

2 U2) = tr(Im−r) = m − r (and

similarly tr(PV2) = n− r).

2. The second-order approximation:

Let

X̂2 = X+∆−PU2∆PV2+X†∆TPU2∆PV2+PU2∆PV2∆
TX†+PU2∆(X†)

T
∆PV2
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be the second-order approximation of X̂. We have

E
[∥∥∥X̂2 −X

∥∥∥2
F

]
=

E
[∥∥∥∆− PU2∆PV2 +X†∆TPU2∆PV2 + PU2∆PV2∆

TX† + PU2∆(X†)
T
∆PV2

∥∥∥2
F

]
= E

[
∥∆− PU2∆PV2∥

2
F

]
+ E

[∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆
TX† + PU2∆(X†)

T
∆PV2

∥∥∥2
F

]
+ E

[
2 tr
(
(∆− PU2∆PV2)

T (X†∆TPU2∆PV2

+ PU2∆PV2∆
TX† + PU2∆(X†)

T
∆PV2)

)]
. (6.33)

Since ∆ij
i.i.d.∼ N (0, σ2), the expected value of the third-order term on the RHS

of (6.33) is zero, i.e.,

E
[
2 tr
(
(∆− PU2∆PV2)

T (X†∆TPU2∆PV2

+ PU2∆PV2∆
TX† + PU2∆(X†)

T
∆PV2)

)]
= 0.

Therefore,

E
[ ∥∥∥X̂2 −X

∥∥∥2
F

]
= E

[
∥∆− PU2∆PV2∥

2
F

]
+ E

[∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆
TX† + PU2∆(X†)

T
∆PV2

∥∥∥2
F

]
.

Since the first term on the RHS is given by (6.32), we proceed with the calcu-
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lation of the second term on the RHS, i.e.,

E
[∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆

TX† + PU2∆(X†)
T
∆PV2

∥∥∥2
F

]
.

Since X† = PU1X
†PV1 , the three terms inside the norm are orthogonal to each

other, i.e., their inner products are zero. Hence,

∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆
TX† + PU2∆(X†)

T
∆PV2

∥∥∥2
F

=
∥∥X†∆TPU2∆PV2

∥∥2
F
+
∥∥PU2∆PV2∆

TX†∥∥2
F
+
∥∥∥PU2∆(X†)

T
∆PV2

∥∥∥2
F
.

(6.34)

Using the cyclic property of the trace and the idempotence property of PV2 , the

first term on the RHS of (6.34) can be computed as

∥∥X†∆TPU2∆PV2

∥∥2
F
= tr

(
X†∆TPU2∆PV2PV2∆

TPU2∆(X†)T
)

= tr
(
∆TPU2∆PV2∆

TPU2∆(X†)TX†).
Similarly, one can compute the second and the third terms on the RHS of (6.34),
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then taking the expectation to obtain

E
[ ∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆

TX† + PU2∆(X†)
T
∆PV2

∥∥∥2
F

]
= E

[
tr
(
∆TPU2∆PV2∆

TPU2∆(X†)TX†)]
+ E

[
tr
(
∆TX†(X†)T∆PV2∆

TPU2∆PV2

)]
+ E

[
tr
(
∆(X†)

T
∆PV2∆

TX†∆TPU2

)]
. (6.35)

Next, to compute the three terms on the RHS of (6.35), we consider the following

lemma:

Lemma 6.2. Assume the matrices A,B,C, and D in each of the following

statements are of compatible dimensions such that the matrix product is valid.

Then,

(a) E
[
tr(∆TA∆B∆TC∆D)

]
= tr(ATC) tr(BTD) + tr(AC) tr(B) tr(D) +

tr(BD) tr(A) tr(C)),

(b) E
[
tr(∆A∆B∆TC∆TD)

]
= tr(ATBCTD)+tr(DCBA)+tr(AC) tr(B) tr(D).

The proof of Lemma 6.2 follows a similar derivation of the fourth-moment prop-

erties in [161] and hence is omitted. Applying Lemma 6.2 to the RHS of (6.35)
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and using the orthogonality between X† and PU2 ,PV2 , we obtain

E
[ ∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆

TX† + PU2∆(X†)
T
∆PV2

∥∥∥2
F

]
= tr(PU2) tr(PV2) tr((X

†)TX†) + tr(PV2) tr(X
†(X†)T ) tr(PU2)

+ tr((X†)TX†) tr(PV2) tr(PU2)

= 3σ4(m− r)(n− r)
∥∥X†∥∥2

F
, (6.36)

where the last equality stems from tr(PU2) = m − r and tr(PV2) = n − r.

Substituting (6.32) and (6.36) into (6.33) yields

E
[∥∥∥X̂2 −X

∥∥∥2
F

]
= σ2r(m+ n− r) + 3σ4(m− r)(n− r)

∥∥X†∥∥2
F
. (6.37)

3. The upper bound:

From Corollary 6.2, we have

X̂ −X = Pr(X̃)−X = ∆− PU2∆PV2 +RX(∆).

Hence, by the triangle inequality, it holds that

∥∥∥X̂ −X
∥∥∥
F
≤ ∥∆− PU2∆PV2∥F + ∥RX(∆)∥F .



236

Taking the expectation of the squared norm yields

E
[∥∥∥X̂ −X

∥∥∥2
F

]
≤ E

[(
∥∆− PU2∆PV2∥F + ∥RX(∆)∥F

)2]
. (6.38)

Applying Minkowski inequality [93], we can bound the RHS of (6.36) as

E
[(

∥∆− PU2∆PV2∥F + ∥RX(∆)∥F
)2]

≤
(√

E
[
∥∆− PU2∆PV2∥

2
F

]
+

√
E
[
∥RX(∆)∥2F

])2

.

(6.39)

From (6.29), we can bound E
[
∥RX(∆)∥2F

]
by

E
[
∥RX(∆)∥2F

]
≤ E

[(
2(1 +

√
2)min

{ 2

σr

∥∆∥2F , ∥∆∥F
})2]

≤ min

{(
4(1 +

√
2)

σ

σr

)2
E
[
∥∆∥4F

]
,
(
2(1 +

√
2)
)2
E
[
∥∆∥2F

]}
,

(6.40)

where the last inequality is a special case of Jensen’s inequality [93] with the

minimum of two linear functions as a concave function. The fourth-order term

on the RHS of (6.40) can be computed as

E
[
∥∆∥4F

]
= E

[( m∑
i=1

n∑
j=1

∆2
ij

)2]
=
∑
i,j,k,l

E
[
∆2

ij∆
2
kl

]
= σ4

∑
i,j,k,l

(1 + 2δikδjl)

= σ4(m2n2 + 2mn). (6.41)
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Substituting (6.32) and (6.41) back into (6.40), then taking the square root, we

have

√
E
[
∥RX(∆)∥2F

]
≤ min

{
4(1 +

√
2)

σ

σr

√
m2n2 + 2mn, 2(1 +

√
2)
√
mn

}
.

Substituting the bound in the last inequality and the equality in (6.32) into

(6.39), we obtain the upper bound as

E
[ ∥∥∥X̂ −X

∥∥∥2
F

]
≤ σ2

(√
r(m+ n− r)

+ min

{
4(1 +

√
2)

σ

σr

√
m2n2 + 2mn, 2(1 +

√
2)
√
mn

})2

. (6.42)

Due to the nature of the bound given in (6.29), the bound in (6.42) is taken

as the minimum between a component that is linear in the norm of ∆ and a

component that is quadratic in the norm of ∆.

Remark 6.5. Asymptotically as σ → 0, all the ratios of the first-order approxi-

mation (6.32), the second-order approximation (6.37), and the upper bound (6.42)

to the MSE of the noisy matrix (6.30) converge to r(m + n − r)/mn. In general,

this ratio is less than or equal to 1, however, in low-rank scenarios it can be signif-

icantly smaller. This indicates the TSVD estimator is effective in noise reduction

when the noise is small, especially when the matrix X has low rank.

Remark 6.6. The upper bound in (6.42) attains the same value of the baseline
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σ2mn when σ = σ2, where

σ2 =
σr

(√
mn−

√
r(m+ n− r)

)
4(1 +

√
2)
√
m2n2 + 2mn

, (6.43)

guaranteeing the superiority of the upper bound over the baseline in the case σ < σ2.

Remark 6.7. Let us define the ρ-knee point between two increasing functions of

σ, e.g., f(σ) and g(σ), as the point at which f(σ) = ρg(σ) (for ρ > 1). Then,

the ρ-knee point between the upper bound (6.42) and the first-order approximation

(6.32) can be determined by

σ1 =
σr(

√
ρ− 1)

√
r(m+ n− r)

4(1 +
√
2)
√
m2n2 + 2mn

. (6.44)

In addition, the ρ-knee point between the second-order approximation (6.37) and

the first-order approximation (6.32) is given by

σ3 =

√
(ρ− 1)r(m+ n− r)

3(m− r)(n− r) ∥X†∥2F
> σ1. (6.45)

Figure 6.1 demonstrates the aforementioned analysis on the performance of

the TSVD-based estimator for matrix denoising through a numerical experiment.

Data generation. We generate a matrix X with m = 100, n = 80, and r = 3 by

(i) taking the product of two random matrices, whose entries are i.i.d. normally

distributed N (0, 1), of sizes 100×3 and 3×80, respectively; (ii) and dividing each

entry of the obtained matrix by its Frobenius norm such that the resulting matrix

satisfies ∥X∥F = 1. In the experiment, we consider 51 values of σ in the interval
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of [10−6, 100], namely σ ∈ {10−6, 10−5.88, 10−5.76, . . . , 100}. For each value of σ, we

compute the following quantities:

1. the empirical MSE of the TSVD-based estimator E[
∥∥∥X̂ −X

∥∥∥2
F
] by averaging

the quantity ∥Pr(X +∆)−X∥2F over 1000 i.i.d. instances of ∆,

2. the MSE of the noisy matrix given in (6.30),

3. the first-order approximation of the MSE of the TSVD-based estimator given

in (6.32),

4. the second-order approximation of the MSE of the TSVD-based estimator

given in (6.33),

5. the upper bound on the MSE of the TSVD-based estimator given in (6.42).

We display each of the aforementioned quantities as a function of σ in Fig. 6.1.

In addition, we calculate the points corresponding to σ1, σ2 and σ3 using (6.44),

(6.43), and (6.45), respectively, with ρ = 1.1, and include them in Fig. 6.1. Results

and Analysis. It can be observed from the plot that the empirical MSE of the

TSVD-based estimator (solid blue) increases quadratically as a function of σ (in the

log-log scale, it appears as a straight line with slope equal to 2). The first-order

approximation (dash-dotted yellow) and the second-order approximation (dash-

dotted purple) match the empirical average well for σ < σ3 ≈ 10−2. In this range

of σ, all of the three aforementioned quantities are lower than the MSE of the

noisy matrix (solid red). On the other hand, the upper bound (solid green) holds

tightly when σ < σ1 ≈ 10−4, providing an efficient guarantee on the performance
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Figure 6.1: The MSE of the TSVD-based estimator X̂ for matrix denoising as
a function of σ. The solid blue line represents the empirical estimate of MSE of

X̂, i.e., E[
∥∥∥X̂ −X

∥∥∥2
F
]. The solid red line is the MSE of the noisy matrix, i.e.,

E[
∥∥∥X̃ −X

∥∥∥2
F
] = σ2mn. The dash-dotted yellow line and the dash-dotted purple

line represent the first-order and second-order approximations of E[
∥∥∥X̂ −X

∥∥∥2
F
],

i.e., E[
∥∥∥X̂1 −X

∥∥∥2
F
] and E[

∥∥∥X̂2 −X
∥∥∥2
F
], respectively. The solid green line is the

upper bound on E[
∥∥∥X̂ −X

∥∥∥2
F
] given in (6.42). The knee-points σ1 and σ3 repre-

sent the value of σ for which the upper-bound and the second-order approximation
deviate from the first order approximation by more than 10%, obtained by (6.44)
and (6.45) with ρ = 1.1. The point σ2 is the intersection between the upper bound
and the MSE of the noisy matrix, given by (6.43).
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of the TSVD-based estimator for denoising with the presence of small additive

noises. However, as the noise variance increases, the upper bound appears loose,

exceeding the MSE of the noisy matrix when σ > σ2 ≈ 4 × 10−4. The bound

is developed for the worst-case noise scenario, in which the noise is adversarially

selected to yield the largest perturbation error (see the proof of Theorem 6.3 in

Appendix 6.8.5) and not for the random noise case. Consequently, it is far more

conservative, predicting a larger MSE than the actual MSE of the TSVD-based

estimator. Developing bounds for average-case scenario is a potential direction for

future research.

6.7 Conclusion

In this chapter, we derived a first-order perturbation expansion for the singular

value truncation. When the underlying matrix has exact rank-r, we showed that

the first-order approximation can be greatly simplified and further introduced a

simple expression of the second-order perturbation expansion for the r-TSVD.

Next, we proposed an error bound on the first-order approximation of the r-TSVD

about a rank-r matrix. Our bound is universal in the sense that it holds for

perturbation matrices with an arbitrary norm. Two open questions raised by our

analysis are: (i) when the underlying matrix has arbitrary rank, whether there

exists an explicit expression for the second-order perturbation expansion of the

TSVD; (ii) and given the result in Theorem 6.1, whether it is possible to establish

a global error bound on the first-order approximation of the r-TSVD.
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6.8 Appendix

6.8.1 Auxiliary Lemmas

This section summarizes some trivial results that will be used regularly in our

subsequent derivation. The proofs of Lemmas 6.3-6.7 can be found in [151] -

Chapter 5. The proof of Lemma 6.8 can be found in [81] - Chapter 2.

Lemma 6.3. Assume the same setting as in Definition 6.2. The following state-

ments hold:

1. UT
1 U1 = V T

1 V1 = Ir, U
T
2 U2 = Im−r, and V T

2 V2 = In−r,

2. UT
1 U2 = 0r×(m−r) and V T

1 V2 = 0r×(n−r),

3. PU1PU2 = 0 and PV1PV2 = 0.

Furthermore, if X has rank r, then

1. PU2X = 0 and XPV2 = 0,

2. X = PU1X = XPV1,

3. X(X†)T = PU1 and XTX† = PV1.

Lemma 6.4. Assume the same setting as in Definition 6.2. The following state-

ments hold:

1. Pr(X) = U1Σ1V
T
1 = PU1X = XPV1 = PU1XPV1,

2. X − Pr(X) = U2Σ2V
T
2 = PU2X = XPV2 = PU2XPV2.
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Lemma 6.5. For any matrices A and B with compatible dimensions, the following

inequalities hold

∥AB∥2 ≤ ∥AB∥F ≤ min{∥A∥F ∥B∥2 , ∥A∥2 ∥B∥F} ≤ ∥A∥F ∥B∥F .

Lemma 6.6. (Pythagoras theorem for Frobenius norm) For any matrices A and

B such that tr(ATB) = 0, it holds that

∥A+B∥F =

√
∥A∥2F + ∥B∥2F .

The matrices A and B in this case are said to be orthogonal to each other.

Lemma 6.7. Let U be a semi-orthogonal matrix with orthonormal columns and

PU = UUT . Then, for any matrices A and B that have compatible dimensions

with U , the followings hold

1. ∥UA∥2 = ∥A∥2 and ∥UA∥F = ∥A∥F ,

2. ∥BU∥2 = ∥BPU∥2 ≤ ∥B∥2 and ∥BU∥F = ∥BPU∥F ≤ ∥B∥F .

Lemma 6.8. For any matrices A, B, C, and D with compatible dimensions such

that the matrix products are valid, the following holds

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD),

2. vec(ABC) = (CT ⊗A) vec(B),

3. ∥A⊗B∥F = ∥A∥F ∥B∥F ,

4. tr(A⊗B) = tr(A) tr(B).
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6.8.2 Proof of Theorem 6.1

Recall that in this proof, we consider a matrix X having rank greater than or

equal to r. With a slight abuse of notation, let us define RX(∆) as follows:

RX(∆) = Pr(X +∆)−
(
Pr(X) +∆− PU2∆PV2

)
(6.46)

=
(
Pr(X +∆)− (X +∆)

)
+
(
X − Pr(X)

)
+ PU2∆PV2 . (6.47)

Since X̃ = X +∆, applying Lemma 6.4 to (6.47) yields

RX(∆) = −PŨ2
X̃PṼ2

+ PU2XPV2 + PU2∆PV2

= −PŨ2
X̃PṼ2

+ PU2X̃PV2 .

Denote δPU2
= PŨ2

−PU2 and δPV2
= PṼ2

−PU2 . By rewriting PŨ2
= PU2 + δPU2

and PṼ2
= PV2 + δPV2

, we can further simplify the last equation as

RX(∆) = −δPU2
X̃PV2 − PU2X̃δPV2

− δPU2
X̃δPV2

. (6.48)

Lemma 6.9. The perturbations of singular subspaces satisfy

δPU2
= U1Q

TUT
2 +U2QUT

1 +O(∥∆∥2F ), (6.49a)

δPV2
= −V1P

TV T
2 − V2PV T

1 +O(∥∆∥2F ). (6.49b)

The proof of Lemma 6.9 is given at the end of this section. From this lemma, it is
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clear that δPU2
and δPV2

are in the order of ∥∆∥F . Substituting X̃ = X +∆ into

(6.48) and collecting second-order terms yield

RX(∆) = −δPU2
XPV2 − PU2XδPV2

+O(∥∆∥2F ). (6.50)

Substituting (6.49a) into the first term on the RHS of (6.50), we obtain

δPU2
XPV2 =

(
U1Q

TUT
2 +U2QUT

1

)
U2Σ2V

T
2 +O(∥∆∥2F ).

Since UT
2 U2 = I and UT

1 U2 = 0, we further have

δPU2
XPV2 = U1Q

TΣ2V
T
2 +O(∥∆∥2F ). (6.51)

Similarly, the second term on the RHS of (6.50) can be represented as

PU2XδPV2
= −U2Σ2PV T

1 +O(∥∆∥2F ). (6.52)

Substituting (6.51) and (6.52) back into (6.50), we have

RX(∆) = −U1Q
TΣ2V

T
2 +U2Σ2PV T

1 +O(∥∆∥2F ). (6.53)
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Now we can vectorize (6.53) and apply Lemma 6.8 to obtain

vec
(
RX(∆)

)
= (V2Σ

T
2 ⊗U1) vec(−QT ) + (V1 ⊗U2Σ2) vec(P ) +O(∥∆∥2F ).

(6.54)

Let us now consider each term on the RHS of (6.54). From Proposition 6.3, it

follows that

vec(−QT ) = (Im−r ⊗Σ2
1 −Σ2Σ

T
2 ⊗ Ir)

−1 vec(E12Σ
T
2 +Σ1E

T
21) +O(∥∆∥2F ).

(6.55)

Replacing Eij = UT
i ∆Vj, for i, j ∈ {1, 2}, and using Lemma 6.8, (6.55) becomes

vec(−QT ) = (Im−r ⊗Σ2
1 −Σ2Σ

T
2 ⊗ Ir)

−1
(
(Σ2V

T
2 ⊗UT

1 ) vec(∆)

+ (UT
2 ⊗Σ1V

T
1 ) vec(∆T )

)
+O(∥∆∥2F ). (6.56)

Since Σ1 and Σ2 are diagonal, so is (Im−r ⊗ Σ2
1 − Σ2Σ

T
2 ⊗ Ir)

−1. The following

lemma provides an insight into the structure of this inversion.

Lemma 6.10. Let D = (Im−r ⊗Σ2
1 −Σ2Σ

T
2 ⊗ Ir)

−1. Then

D =
r∑

i=1

m−r∑
k=1

dik
(
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
)
,

where dik =
1

σ2
i −σ2

r+k
, for i = 1, . . . , r and k = 1, . . . ,m− r.

The proof of Lemma 6.10 is given at the end of this section. Now using Lemma 6.10
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and left-multiplying both sides of (6.56) by (V2Σ
T
2 ⊗U1), we obtain

(V2Σ
T
2 ⊗U1) vec(−QT )

=
r∑

i=1

m−r∑
k=1

dik(V2Σ
T
2 ⊗U1)

((
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
))

(Σ2V
T
2 ⊗UT

1 ) vec(∆)

+
r∑

i=1

m−r∑
k=1

dik(V2Σ
T
2 ⊗U1)

((
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
))

(UT
2 ⊗Σ1V

T
1 ) vec(∆T )

+O(∥∆∥2F ). (6.57)

Moreover, applying Lemma 6.8-1, we have

(V2Σ
T
2 ⊗U1)

((
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
))

(Σ2V
T
2 ⊗UT

1 )

=
(
V2Σ

T
2 e

m−r
k (em−r

k )TΣ2V
T
2

)
⊗
(
U1e

r
i (e

r
i )

TUT
1

)
= σ2

r+k(vr+kv
T
r+k)⊗ (uiu

T
i ), (6.58)

and similarly,

(V2Σ
T
2 ⊗U1)

((
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
))

(UT
2 ⊗Σ1V

T
1 )

= σiσr+k(vr+ku
T
r+k)⊗ (uiv

T
i ). (6.59)

Substituting (6.58) and (6.59) back into (6.57) and performing a change of variable
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j = r + k, we obtain

(V2Σ
T
2 ⊗U1) vec(−QT ) =

r∑
i=1

m∑
j=r+1

σ2
j

σ2
i − σ2

j

(vjv
T
j )⊗ (uiu

T
i ) vec(∆)

+
r∑

i=1

m∑
j=r+1

σiσj

σ2
i − σ2

j

(vju
T
j )⊗ (uiv

T
i ) vec(∆

T ) +O(∥∆∥2F ). (6.60)

Following a similar derivation, we also have

(V1 ⊗U2Σ2) vec(P ) =
r∑

i=1

m∑
j=r+1

σ2
j

σ2
i − σ2

j

(viv
T
i )⊗ (uju

T
j ) vec(∆)

+
r∑

i=1

m∑
j=r+1

σiσj

σ2
i − σ2

j

(viu
T
i )⊗ (ujv

T
j ) vec(∆

T ) +O(∥∆∥2F ).

(6.61)

Substituting (6.60) and (6.61) back into (6.54) yields

vec
(
RX(∆)

)
=

r∑
i=1

m∑
j=r+1

(
σ2
j

σ2
i − σ2

j

(
(vjv

T
j )⊗ (uiu

T
i ) + (viv

T
i )⊗ (uju

T
j )
)
vec(∆)

+
σiσj

σ2
i − σ2

j

(
(vju

T
j )⊗ (uiv

T
i ) + (viu

T
i )⊗ (ujv

T
j )
)
vec(∆T )

)
+O(∥∆∥2F ).

(6.62)

Truncating the inner summation, with σj = 0 for j > n, and applying Lemma 6.8-2
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to the RHS of (6.62), we obtain

RX(∆) =
r∑

i=1

n∑
j=r+1

(
σ2
j

σ2
i − σ2

j

(uiu
T
i ∆vjv

T
j + uju

T
j ∆viv

T
i )

+
σiσj

σ2
i − σ2

j

(uiv
T
i ∆

Tujv
T
j + ujv

T
j ∆

Tuiv
T
i )

)
+O(∥∆∥2F ).

Our theorem now follows on the definition of RX(∆) in (6.46).

6.8.2.1 Proof of Lemma 6.9

Using the fact from Proposition 6.2 that PŨ2
= PÛ2

, we can re-express the subspace

difference as

δPU2
= PŨ2

− PU2 = PÛ2
− PU2 = Û2Û

T
2 −U2U

T
2 . (6.63)

Substituting (6.7b) into (6.63) yields

δPU2
= (U2 +U1Q

T )(Im−r +QQT )−1(UT
2 +QUT

1 )−U2U
T
2 . (6.64)
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Since Q = O(∥∆∥F ) and (Im−r + QQT )−1 = Im−r − QQT (Im−r + QQT )−1 =

Im−r +O(∥∆∥2F ), (6.64) can be simplified by absorbing second-order terms:

δPU2
= (U2 +U1Q

T )(UT
2 +QUT

1 )−U2U
T
2 +O(∥∆∥2F )

= U1Q
TUT

2 +U2QUT
1 +U1Q

TQUT
1 +O(∥∆∥2F )

= U1Q
TUT

2 +U2QUT
1 +O(∥∆∥2F ).

The equation δPV2
= −V1P

TV T
2 −V2PV T

1 +O(∥∆∥2F ) can be proved by a similar

derivation. Since Q and P are in the order of ∥∆∥F , so do δPU2
and δPV2

.

6.8.2.2 Proof of Lemma 6.10

Recall that

Σ2
1 =


σ2
1 . . . 0

. . .

0 . . . σ2
r

 ∈ Rr×r and Σ2Σ
T
2 =


σ2
r+1 . . . 0

. . .

0 . . . σ2
m

 ∈ R(m−r)×(m−r).

By the definition of the Kronecker product, we have

Im−r ⊗Σ2
1 −Σ2Σ

T
2 ⊗ Ir =


Σ2

1 − σ2
r+1Ir . . . 0r

. . .

0r . . . Σ2
1 − σ2

mIr

 ∈ R(m−r)r×(m−r)r.
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Therefore, we can invert this diagonal matrix by considering each of the r × r

blocks:

D = (Im−r ⊗Σ2
1 −Σ2Σ

T
2 ⊗ Ir)

−1

=


(Σ2

1 − σ2
r+1Ir)

−1 . . . 0r

. . .

0r . . . (Σ2
1 − σ2

mIr)
−1

 .

Now it is easy to verify that, for i = 1, . . . , r and k = 1, . . . ,m − r, the i-th

diagonal entry of the k-th diagonal block, is dik = 1/(σ2
i − σ2

r+k). Furthermore,

since
(
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
)
is a (m− r)r × (m− r)r matrix of all zeros but

the i-th diagonal entry of the k-th diagonal block is 1, we represent D as the sum

of (m− r)r rank-1 matrices:

D =
r∑

i=1

m−r∑
k=1

dik
(
em−r
k (em−r

k )T
)
⊗
(
er
i (e

r
i )

T
)
.

6.8.3 Proof of Theorem 6.2

By the definition of the r-TSVD in (6.2), we have

Pr(X̃) = PŨ1
X̃PṼ1

. (6.65)
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Since we assume X has exact rank r, the perturbed matrix can be represented as

X̃ = X +∆ = U1Σ1V
T
1 +∆. Substituting this back into (6.65) yields

Pr(X +∆) = PŨ1
(U1Σ1V

T
1 +∆)PṼ1

. (6.66)

Similar to the derivation of (6.64), we obtain PŨ1
= (U1−U2Q)(Ir+QTQ)−1(UT

1 −

QTUT
2 ) and PṼ1

= (V1 + V2P )(Ir + P TP )−1(V T
1 + P TV T

2 ). Substituting the

expressions of PŨ1
and PṼ1

back into (6.66), we obtain

Pr(X +∆) = (U1 −U2Q)(Ir +QTQ)−1(UT
1 −QTUT

2 )(U1Σ1V
T
1 +∆)

· (V1 + V2P )(Ir + P TP )−1(V T
1 + P TV T

2 ). (6.67)

By orthogonality, the product of three terms in the middle of the RHS of (6.67)

can be expanded and simplified as

(UT
1 −QTUT

2 )(U1Σ1V
T
1 +∆)(V1 + V2P )

= (Σ1 +E11) + (E12P −QTE21 −QTE22P ).

Therefore, (6.67) is equivalent to

Pr(X +∆) = (U1 −U2Q)(Ir +QTQ)−1(Σ1 +E11)(Ir + P TP )−1(V T
1 + P TV T

2 )

+ (U1 −U2Q)(Ir +QTQ)−1(E12P −QTE21 −QTE22P )

· (Ir + P TP )−1(V T
1 + P TV T

2 ). (6.68)
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Let us first focus on the first term on the RHS of (6.68). Similar to the result after

(6.64), we have (Ir + QTQ)−1 = Ir − (Ir + QTQ)−1QTQ and (Ir + P TP )−1 =

Ir − P TP (Ir + P TP )−1, and hence

(U1 −U2Q)(Ir +QTQ)−1(Σ1 +E11)(Ir + P TP )−1

= (U1 −U2Q)
(
Ir − (Ir +QTQ)−1QTQ

)
(Σ1 +E11)(

Ir − P TP (Ir + P TP )−1
)
(V T

1 + P TV T
2 )

= (U1 −U2Q)(Σ1 +E11)(V
T
1 + P TV T

2 )

− (U1 −U2Q)(Σ1 +E11)P
TP (Ir + P TP )−1(V T

1 + P TV T
2 )

− (U1 −U2Q)(Ir +QTQ)−1QTQ(Σ1 +E11)(Ir + P TP )−1(V T
1 + P TV T

2 ).

(6.69)

Recall that X = U1Σ1V
T
1 and E11 = UT

1 ∆V1. The product (U1 − U2Q)(Σ1 +

E11)(V
T
1 + P TV T

2 ) can be expanded as

(U1 −U2Q)(Σ1 +E11)(V
T
1 + P TV T

2 ) = X +U1E11V
T
1

+U1(Σ1 +E11)P
TV T

2 −U2Q(Σ1 +E11)V
T
1 −U2Q(Σ1 +E11)P

TV T
2 .

(6.70)

In order to make up the first-order terms that involve ∆, we need to decompose

the perturbation into 4 components corresponding to different subspaces as follows.
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Since PU1 + PU2 = Im and PV1 + PV2 = In, we have

∆ = PU1∆PV1 + PU2∆PV1 + PU1∆PV2 + PU2∆PV2 . (6.71)

Reorganizing terms in (6.71) as

PU1∆PV1 = ∆− PU2∆PV2 − PU1∆PV2 − PU2∆PV1 ,

and using the definition of E in (6.4), we further have

U1E11V
T
1 = ∆− PU2∆PV2 −U1E12V

T
2 −U2E21V

T
1 . (6.72)

Thus, substituting (6.72) back into (6.70) and rearranging terms yield

(U1 −U2Q)(Σ1 +E11)(V
T
1 + P TV T

2 )

= X +∆− PU2∆PV2 +U1

(
(Σ1 +E11)P

T −E12

)
V T

2

−U2

(
Q(Σ1 +E11) +E21

)
V T

1 −U2Q(Σ1 +E11)P
TV T

2 .

(6.73)
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Substituting (6.69) and (6.73) back into (6.68), we obtain

Pr(X +∆) = X +∆− PU2∆PV2 +U1

(
(Σ1 +E11)P

T −E12

)
V T

2

−U2

(
Q(Σ1 +E11) +E21

)
V T

1 −U2Q(Σ1 +E11)P
TV T

2

+ (U1 −U2Q)(Ir +QTQ)−1
(
−(Ir +QTQ)(Σ1 +E11)P

TP +QTQ(Σ1 +E11)

+ (E12P −QTE21 −QTE22P )
)
(Ir + P TP )−1(V T

1 + P TV T
2 ). (6.74)

Applying (6.6), we have

U1

(
(Σ1 +E11)P

T −E12

)
V T

2 −U2

(
Q(Σ1 +E11) +E21

)
V T

1

−U2Q(Σ1 +E11)P
TV T

2

= U1Q
T (E21P

T −E22)V
T
2 +U2(E22 −QE12)PV T

1

+U2(E21 +E22P +QE12P )P TV T
2 , (6.75)

and

−(Ir +QTQ)(Σ1 +E11)P
TP +QTQ(Σ1 +E11) + (E12P −QTE21 −QTE22P )

=
(
E12P − (Σ1 +E11)P

TP
)
−
(
QTE21 +QTQ(Σ1 +E11)

)
+QT

(
E22 +Q(Σ1 +E11)P

T
)
P

= (QTE22 −QTE21P
T )P −QT (E22P +QE12P ) +QT

(
E22

+Q(Σ1 +E11)P
T
)
P . (6.76)
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Substituting (6.75) and (6.76) back into (6.74), we obtain

Pr(X +∆) = X +∆− PU2∆PV2 +U1Q
T (E21P

T −E22)V
T
2

+U2(E22 −QE12)PV T
1 +U2(E21 +E22P +QE12P )P TV T

2

+ (U1 −U2Q)(Ir +QTQ)−1 ·
(
(QTE22 −QTE21P

T )P −QT (E22P +QE12P )

+QT
(
E22 +Q(Σ1 +E11)P

T
)
P
)
(Ir + P TP )−1(V T

1 + P TV T
2 ).

(6.77)

SinceQ,P ,E11,E12,E21, andE22 are first-order, and (Ir+QTQ)−1, (Ir+P TP )−1

are zero-order in terms of ∥∆∥F , we can collect all the third-order terms on the

RHS of (6.77) and obtain

Pr(X +∆) = X +∆− PU2∆PV2 −U1Q
TE22V

T
2 +U2E22PV T

1

+U2E21P
TV T

2 +O(∥∆∥3F ). (6.78)

Finally, the matrices Q and P in the second-order terms is eliminated by the

following variant of (6.6):

Q = −
(
E21 +QE21P −E22P −QE11

)
Σ−1

1 ,

P T = Σ−1
1 (E12 +QTE21P

T −QTE22 −E11P
T ).
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The substitution and collection of third-order terms on the RHS of (6.78) yield

Pr(X +∆) = X +∆− PU2∆PV2 +U1Σ
−1
1 ET

21E22V
T
2 +U2E22E

T
12Σ

−1
1 V T

1

+U2E21Σ
−1
1 E12V

T
2 +O(∥∆∥3F )

= X +∆− PU2∆PV2 +U1Σ
−1
1 V T

1 ∆TU2U
T
2 ∆V2V

T
2

+U2U
T
2 ∆V2V

T
2 ∆TU1Σ

−1
1 V T

1 +U2U
T
2 ∆V1Σ

−1
1 UT

1 ∆V2V
T
2 +O(∥∆∥3F )

= X +∆− PU2∆PV2 +X†∆TPU2∆PV2 + PU2∆PV2∆
TX†

+ PU2∆(X†)
T
∆PV2 +O(∥∆∥3F ).

This completes our proof of the theorem.

6.8.4 Proof of Lemma 6.1

By the triangle inequality, we have

∥Pr(X +∆)− (X +∆) + PU2∆PV2∥F ≤ ∥Pr(X +∆)− (X +∆)∥F + ∥PU2∆PV2∥F .

(6.79)

The first term on the RHS of (6.79) can be bounded as follows. Since X̃ = X+∆,

applying the norm absolute homogeneity property yields

∥Pr(X +∆)− (X +∆)∥F =
∥∥∥Pr(X̃)− X̃

∥∥∥
F
=
∥∥∥X̃ − Pr(X̃)

∥∥∥
F
. (6.80)
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From Lemmas 6.4 and 6.7, we obtain

∥∥∥X̃ − Pr(X̃)
∥∥∥
F
=
∥∥∥Ũ2Σ̃2Ṽ

T
2

∥∥∥
F
=
∥∥∥Σ̃2

∥∥∥
F
. (6.81)

Since Σ̃2 is a submatrix of Σ̃ containing n − r small singular values of X̃ in the

diagonal, it holds that

∥∥∥Σ̃2

∥∥∥
F
≤
∥∥∥Σ̃∥∥∥

F
=
∥∥∥X̃∥∥∥

F
. (6.82)

Additionally, using the triangle inequality we can bound
∥∥∥X̃∥∥∥

F
by

∥∥∥X̃∥∥∥
F
= ∥X +∆∥F ≤ ∥X∥F + ∥∆∥F . (6.83)

From (6.80), (6.81), (6.82), and (6.83), we have

∥Pr(X +∆)− (X +∆)∥F ≤ ∥X∥F + ∥∆∥F . (6.84)

On the other hand, it follows from Lemma 6.7 that the second term on the RHS

of (6.79) satisfies

∥PU2∆PV2∥F ≤ ∥∆∥F . (6.85)

Substituting inequalities (6.84) and (6.85) into (6.79) completes the proof of the

lemma.
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6.8.5 Proof of Theorem 6.3

The following proof is developed for the case of a rank-r matrix X. We first derive

the proof of (6.28) and then use this result to prove (6.29).

6.8.5.1 Proof of the bound in (6.28)

Our goal is to prove that the residual in (6.27) is always bounded by

∥RX(∆)∥F ≤ c

σr

∥∆∥2F , for some 1 + 1/
√
2 ≤ c ≤ 4(1 +

√
2).

Let us begin with the upper bound on c by showing that

∥RX(∆)∥F ≤ 4(1 +
√
2)

σr

∥∆∥2F . (6.86)

Rearranging terms in (6.27) and replacing X +∆ by X̃, we have

RX(∆) = Pr(X̃)− X̃ + PU2∆PV2 . (6.87)

Using the singular subspace decomposition in Definition 6.2 with descending order

of singular values σ̃1 ≥ σ̃2 . . . ≥ σ̃n, let us decompose X̃ as follows

X̃ = Ũ1Σ̃1Ṽ
T
1 + Ũ2Σ̃2Ṽ

T
2 . (6.88)
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Since in this theorem we consider perturbations of any magnitude, X̃ can take

any value including the case in which σ̃r = σ̃r+1 and the decomposition (6.88)

may not be unique. Nevertheless, the proof holds for any valid choice of singular

subspace decomposition. From such a choice in (6.88), Pr(X̃) is well-defined as:

Pr(X̃) = Ũ1Σ̃1Ṽ
T
1 . Substituting X̃ = X +∆ into (6.48) and using the fact that

PU2X = 0 and XPV2 = 0, we obtain

RX(∆) = −δPU2
XδPV2

− PU2∆δPV2
− δPU2

∆PV2 − δPU2
∆δPV2

= −δPU2
XδPV2

− PU2∆δPV2
− δPU2

∆PṼ2
. (6.89)

Here, from Lemma 6.3, we can replace X = X(X†)TX in the first term on the

RHS of (6.89) and obtain

RX(∆) = −(δPU2
X)(X†)T (XδPV2

)− PU2∆δPV2
− δPU2

∆PṼ2
. (6.90)

Taking the Frobenius norm and using its absolute homogeneity property, (6.90)

becomes

∥RX(∆)∥F =
∥∥(δPU2

X)(X†)T (XδPV2
) + PU2∆δPV2

+ δPU2
∆PṼ2

∥∥
F
.

By the triangle inequality, the norm of RX(∆) is then bounded by

∥RX(∆)∥F ≤
∥∥(δPU2

X)(X†)T (XδPV2
)
∥∥
F
+
∥∥PU2∆δPV2

∥∥
F
+
∥∥δPU2

∆PṼ2

∥∥
F
.

(6.91)
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Let us proceed to upper-bound ∥RX(∆)∥F by finding the upper bounds for each of

the three terms on the RHS of (6.91) with respect to ∥∆∥2F . Our proof technique

utilizes the following lemmas.

Lemma 6.11. max
{∥∥δPU2

X
∥∥
F
,
∥∥XδPV2

∥∥
F

}
≤ 2 ∥∆∥F .

Lemma 6.12. max
{∥∥PU2δPU2

∆
∥∥
F
,
∥∥∆δPV2

PV2

∥∥
F

}
≤ 2

σr
∥∆∥2F .

The proofs of Lemmas 6.11 and 6.12 are given at the end of this subsection. Let us

proceed with the task of bounding the first term in (6.91). Applying Lemma 6.5

twice and using the fact that
∥∥X†

∥∥
2
= 1/σr, we have

∥∥(δPU2
X)(X†)T (XδPV2

)
∥∥
F
≤ 1

σr

∥∥δPU2
X
∥∥
F

∥∥XδPV2

∥∥
F
. (6.92)

By Lemma 6.11, the terms
∥∥δPU2

X
∥∥
F
and

∥∥XδPV2

∥∥
F
can each be bounded by

2 ∥∆∥F . Applying the upper bounds on the RHS of (6.92), we obtain the following

bound on the first term in (6.91):

∥∥(δPU2
X)(X†)T (XδPV2

)
∥∥
F
≤ 4

σr

∥∆∥2F . (6.93)

Next, we shall bound the second term in (6.91), i.e.,
∥∥PU2∆δPV2

∥∥
F
. From Lemma 6.7,

we have

∥∥PU2∆δPV2

∥∥
F
≤
∥∥∆δPV2

∥∥
F
. (6.94)

Since PV1 + PV2 = In, the matrix on the RHS of (6.94) can be expanded as the
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sum of two orthogonal terms:

∆δPV2
= ∆δPV2

(PV1 + PV2) = ∆δPV2
PV1 +∆δPV2

PV2 .

Notice that PV1 and PV2 are orthogonal. By Lemma 6.6, we have

∥∥∆δPV2

∥∥2
F
=
∥∥∆δPV2

PV1

∥∥2
F
+
∥∥∆δPV2

PV2

∥∥2
F

=
∥∥∆δPV2

XTX†∥∥2
F
+
∥∥∆δPV2

PV2

∥∥2
F

(since PV1 = XTX†)

=
∥∥∆(XδPV2

)TX†∥∥2
F
+
∥∥∆δPV2

PV2

∥∥2
F
. (6.95)

Each term on the RHS of (6.95) can be bounded as follows. Applying Lemma 6.5

twice, we initially bound the first term on the RHS of (6.95) as follows:

∥∥∆(XδPV2
)TX†∥∥

F
≤ 1

σr

∥∆∥F
∥∥XδPV2

∥∥
F
.

By Lemma 6.11, we upper-bound
∥∥XδPV2

∥∥
F
by 2 ∥∆∥F and obtain the bound on

the first term on the RHS of (6.95):

∥∥∆(XδPV2
)TX†∥∥

F
≤ 2

σr

∥∆∥2F . (6.96)

To bound the second term on the RHS of (6.95), we apply Lemma 6.12 and obtain

∥∥∆δPV2
PV2

∥∥2
F
≤ 4

σ2
r

∥∆∥4F . (6.97)
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Substituting the bounds from (6.96) and (6.97) back into the RHS of (6.95), we

have

∥∥∆δPV2

∥∥2
F
≤
( 2

σr

∥∆∥2F
)2

+
4

σ2
r

∥∆∥4F =
8

σ2
r

∥∆∥4F .

Taking the square root of the last result and substituting it back to (6.94) yields

∥∥PU2∆δPV2

∥∥
F
≤ 2

√
2

σr

∥∆∥2F . (6.98)

This offers a bound on the second term on the RHS of (6.91). Similarly, we bound

the third term on the RHS of (6.91) by

∥∥δPU2
∆PṼ2

∥∥
F
≤ 2

√
2

σr

∥∆∥2F . (6.99)

Finally, summing up (6.93), (6.98), and (6.99), and substituting back into (6.91),

we obtain (6.86) and thereby completes the first part of the proof.

For the second part of the proof, we show that c ≥ 1+ 1/
√
2 by constructing a

perturbation ∆ such that the ratio ∥RX(∆)∥F / ∥∆∥2F approaches (1+1/
√
2)/σr.

Consider perturbations of form

∆ = (σ − σr − ϵ)urv
T
r + σur+1v

T
r+1, for 0 < ϵ < σ < σr. (6.100)

Since urv
T
r and ur+1v

T
r+1 are orthogonal, we can compute the norm of ∆ using
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Lemma 6.6:

∥∆∥2F = (σ − σr − ϵ)2
∥∥urv

T
r

∥∥2
F
+ σ2

∥∥ur+1v
T
r+1

∥∥2
F

= (σ − σr − ϵ)2 + σ2, (6.101)

where the second equality uses urv
T
r = ur ⊗vT

r and Lemma 6.8-3. Using the SVD

of X and the definition of ∆ in (6.100), we have

X +∆ =
r∑

i=1

σiuiv
T
i + (σ − σr − ϵ)urv

T
r + σur+1v

T
r+1

=
r−1∑
i=1

σiuiv
T
i + (σ − ϵ)urv

T
r + σur+1v

T
r+1. (6.102)

After perturbation, the r-th singular value of X is changed from σr to σ−ϵ and the

r + 1-th changes from 0 to σ, thereby making the singular value corresponding to

ur+1v
T
r+1 larger than the singular value associated with urv

T
r . Thus, the r-TSVD

of X +∆ is given by

Pr(X +∆) =
r−1∑
i=1

σiuiv
T
i + σur+1v

T
r+1. (6.103)

On the other hand, since PU2 =
∑m

i=r+1 uiu
T
i and PV2 =

∑n
i=r+1 viv

T
i , we have

PU2∆PV2 =
( m∑
i=r+1

uiu
T
i

)(
(σ − σr − ϵ)urv

T
r + σur+1v

T
r+1

)( n∑
i=r+1

viv
T
i

)
= σur+1v

T
r+1, (6.104)
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where the second equality stems from the fact that

uT
i uj = vT

i vj =


1 if i = j,

0 if i ̸= j.

Substituting (6.102), (6.103), and (6.104) into (6.87), we obtain

RX(∆) =

( r−1∑
i=1

σiuiv
T
i + σur+1v

T
r+1

)

−
( r−1∑

i=1

σiuiv
T
i + (σ − ϵ)urv

T
r + σur+1v

T
r+1

)
+ σur+1v

T
r+1

= −(σ − ϵ)urv
T
r + σur+1v

T
r+1.

Similar to (6.101), one can compute the norm of the residual by

∥RX(∆)∥F =
√
(σ − ϵ)2 + σ2. (6.105)

From (6.101) and (6.105), we have

∥RX(∆)∥F
∥∆∥2F

=

√
(σ − ϵ)2 + σ2

(σr + ϵ− σ)2 + σ2
.
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Now maximizing over σ while taking ϵ to 0 gives us a lower bound on c:

c

σr

= sup
∆∈Rm×n

∥RX(∆)∥F
∥∆∥2F

≥ max
0<σ<σr

lim
ϵ→0+

√
(σ − ϵ)2 + σ2

(σr + ϵ− σ)2 + σ2

= max
0<σ<σr

σ
√
2

(σr − σ)2 + σ2
. (6.106)

The maximization can be obtained at σ = σr/
√
2. Therefore, substituting back

into (6.106) yields c ≥ 1 + 1/
√
2. This completes our proof of the first half of

Theorem 6.3. We recall from Remark 6.3 that we conjecture the structure of ∆

given in (6.100) yields the maximizer of ∥RX(∆)∥F / ∥∆∥2F .

Proof of Lemma 6.11 Let us rewrite δPU2
X = PŨ2

X−PU2X. Since PU2X =

0, we obtain

δPU2
X = PŨ2

X (6.107)

= PŨ2
(X̃ −∆) (since X̃ = X +∆)

= Ũ2Ũ
T
2 X̃ − PŨ2

∆.

Substituting X̃ = Ũ1Σ̃1Ṽ
T
1 + Ũ2Σ̃2Ṽ

T
2 yields

δPU2
X = Ũ2Ũ

T
2

(
Ũ1Σ̃1Ṽ

T
1 + Ũ2Σ̃2Ṽ

T
2

)
− PŨ2

∆

= Ũ2Σ̃2Ṽ
T
2 − PŨ2

∆,
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where in the last equality we use the fact that ŨT
2 Ũ1 = 0 and ŨT

2 Ũ2 = Im.

Therefore,

∥∥δPU2
X
∥∥
F
=
∥∥∥Ũ2Σ̃2Ṽ

T
2 − PŨ2

∆
∥∥∥
F
. (6.108)

By the triangle inequality and the absolute homogeneity, (6.108) implies

∥∥δPU2
X
∥∥
F
≤
∥∥∥Ũ2Σ̃2Ṽ

T
2

∥∥∥
F
+
∥∥PŨ2

∆
∥∥
F
. (6.109)

We shall bound each term on the RHS of (6.109) as follows. First, using Lemma 6.7,

we can remove the semi-orthogonal matrices from within the Frobenius norm with-

out changing the value of the norm:

∥∥∥Ũ2Σ̃2Ṽ
T
2

∥∥∥
F
=
∥∥∥Σ̃2Ṽ

T
2

∥∥∥
F
=
∥∥∥Σ̃2

∥∥∥
F
.

Since Σ2 = 0, we further obtain

∥∥∥Ũ2Σ̃2Ṽ
T
2

∥∥∥
F
=
∥∥∥Σ̃2 −Σ2

∥∥∥
F
. (6.110)

In addition, recall that Σ̃2 and Σ2 are sub-matrices of Σ̃ and Σ, respectively.

Thus,

∥∥∥Σ̃2 −Σ2

∥∥∥
F
≤
∥∥∥Σ̃−Σ

∥∥∥
F
. (6.111)



268

Moreover, by Mirsky’s inequality in Proposition 6.1, we have

∥∥∥Σ̃−Σ
∥∥∥
F
=

√√√√ n∑
i=1

(σ̃i − σi)2 ≤ ∥∆∥F . (6.112)

From (6.110), (6.111), and (6.112), it follows that

∥∥∥Ũ2Σ̃2Ṽ
T
2

∥∥∥
F
≤ ∥∆∥F . (6.113)

Next, the second term on the RHS of (6.109), by Lemma 6.7, is bounded by

∥∥PŨ2
∆
∥∥
F
≤ ∥∆∥F . (6.114)

Summing up (6.113) and (6.114), and combining the resulting inequality with

(6.109), we conclude that

∥∥δPU2
X
∥∥
F
≤ 2 ∥∆∥F .

The proof of
∥∥XδPV2

∥∥
F
≤ 2 ∥∆∥F follows a similar derivation.

Proof of Lemma 6.12 In this subsection, we shall show that
∥∥PU2δPU2

∆
∥∥
F
≤

2
σr

∥∆∥2F . The proof of
∥∥∆δPV2

PV2

∥∥
F
≤ 2

σr
∥∆∥2F can be derived similarly. Since
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Definition 6.3 implies δPU2
= PŨ2

− PU2 = PU1 − PŨ1
, we have

PU2δPU2
∆ = PU2(PU1 − PŨ1

)∆

= −PU2PŨ1
∆, (6.115)

where the second equality is due to PU2PU1 = 0 (see Lemma 6.3). It is now

sufficient to bound the norm of PU2PŨ1
∆ by 2

σr
∥∆∥2F . Let us consider two cases:

• If ∥∆∥2 ≥ σr/2, then applying Lemma 6.7-2 twice yields

∥∥PU2PŨ1
∆
∥∥
F
≤ ∥∆∥F . (6.116)

Since ∥∆∥F ≥ ∥∆∥2 ≥ σr/2, multiplying both sides by 2
σr

∥∆∥F yields

∥∆∥F ≤ 2

σr

∥∆∥2F . (6.117)

From (6.116) and (6.117), we obtain
∥∥PU2PŨ1

∆
∥∥
F
≤ 2

σr
∥∆∥2F .

• If ∥∆∥2 < σr/2, we need to use a different approach as follows. First, from

Lemma 6.5, we have

∥∥PU2PŨ1
∆
∥∥
F
≤
∥∥PU2PŨ1

∥∥
2
∥∆∥F . (6.118)

Let us examine the product PU2PŨ1
. Let X̃1 = Ũ1Σ̃1Ṽ

T
1 and X̃2 = X̃−X̃1.
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From Weyl’s inequality [226], we have

|σ̃i − σi| ≤ ∥∆∥2 <
σr

2
for i = 1, . . . , n.

Thus, for any 1 ≤ i ≤ r, it holds that

σ̃i > σi −
σr

2
≥ σr −

σr

2
=

σr

2
> 0. (6.119)

Therefore, Σ̃1 = diag(σ̃1, . . . , σ̃r) is invertible. We can now denote the pseudo

inverse of X̃1 by X̃†
1 = Ũ1Σ̃

−1
1 Ṽ T

1 . We have

PU2PŨ1
= PU2X̃1(X̃

†
1)

T (since PŨ1
= X̃1(X̃

†
1)

T )

= PU2(X̃ − X̃2)(X̃
†
1)

T

= PU2X̃(X̃†
1)

T (since X̃2(X̃
†
1)

T = 0)

= PU2(X +∆)(X̃†
1)

T

= PU2∆(X̃†
1)

T . (since PU2X = 0) (6.120)

On the other hand, applying Lemmas 6.7 and 6.5, and the fact that
∥∥X†

∥∥
2
=

1/σr, we obtain

∥∥∥PU2∆(X̃†
1)

T
∥∥∥
F
≤ 1

σ̃r

∥∆∥F . (6.121)
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From (6.119), we can bound σ̃r by:

σ̃r > σr −
σr

2
=

σr

2
. (6.122)

From (6.120), (6.121), and (6.122), we obtain

∥∥PU2PŨ1

∥∥
F
=
∥∥∥PU2∆(X̃†

1)
T
∥∥∥
F
≤ 1

σ̃r

∥∆∥F <
2

σr

∥∆∥F . (6.123)

Finally, substituting (6.123) back into (6.118) immediately yields
∥∥PU2PŨ1

∆
∥∥
F
<

2
σr

∥∆∥2F .

Since in both cases
∥∥PU2PŨ1

∆
∥∥
F

≤ 2
σr

∥∆∥2F , we conclude from (6.115) that∥∥PU2δPU2
∆
∥∥
F
≤ 2

σr
∥∆∥2F for any ∆.

6.8.5.2 Proof of the bound in (6.29)

Taking Frobenius norm on both sides of equation (6.89) and using its absolute

homogeneity property, we obtain:

∥RX(∆)∥F =
∥∥δPU2

XδPV2
+ PU2∆δPV2

+ δPU2
∆PṼ2

∥∥
F
. (6.124)

Applying the triangle inequality to the RHS of (6.124), we have

∥RX(∆)∥F ≤
∥∥δPU2

XδPV2

∥∥
F
+
∥∥PU2∆δPV2

∥∥
F
+
∥∥δPU2

∆PṼ2

∥∥
F
. (6.125)
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To bound the RHS of (6.125), we proceed by bounding each of the terms on the

RHS. The first term on the RHS of (6.125) can be bounded as follows. From

(6.107), we have δPU2
XδPV2

= PŨ2
XδPV2

. Using Lemmas 6.7 and 6.11, it follows

that

∥∥δPU2
XδPV2

∥∥
F
=
∥∥PŨ2

XδPV2

∥∥
F

≤
∥∥XδPV2

∥∥
F

≤ 2 ∥∆∥F . (6.126)

Next, the second term on the RHS of (6.125) can be rewritten as the sum of two

orthogonal components

PU2∆δPV2
= PU2∆δPV2

PV1 + PU2∆δPV2
PV2 .

By Lemma 6.6, we have

∥∥PU2∆δPV2

∥∥
F
=
√∥∥PU2∆δPV2

PV1

∥∥2
F
+
∥∥PU2∆δPV2

PV2

∥∥2
F
. (6.127)

On the one hand, we consider the first term on the RHS of (6.127). Since

δPV2
PV1 = (PṼ2

− PV2)PV1

= PṼ2
PV1 , (by Lemma 6.3)
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we obtain

∥∥PU2∆δPV2
PV1

∥∥
F
=
∥∥PU2∆PṼ2

PV1

∥∥
F
. (6.128)

Applying Lemma 6.7 to the RHS of (6.128) in order to eliminate the three projec-

tion matrices, we obtain

∥∥PU2∆δPV2
PV1

∥∥
F
≤ ∥∆∥F . (6.129)

Similarly, we have

∥∥PU2∆δPV2
PV2

∥∥
F
≤ ∥∆∥F . (6.130)

Substituting (6.129), and (6.130) back into (6.127), we have

∥∥PU2∆δPV2

∥∥
F
≤

√
2 ∥∆∥F . (6.131)

Similarly, we also obtain

∥∥δPU2
∆PṼ2

∥∥
F
≤

√
2 ∥∆∥F . (6.132)

Substituting (6.126), (6.131), and (6.132) back into (6.125), we obtain

∥RX(∆)∥F ≤ 2(1 +
√
2) ∥∆∥F . (6.133)
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The proof of (6.29) is concluded by taking the minimum between the bounds in

(6.133) and (6.28).

6.8.6 Proof of Theorem 6.4

Let us denote

R2X(∆) = X†∆TPU2∆PV2 + PU2∆PV2∆
TX† + PU2∆(X†)

T
∆PV2 .

It is straightforward to verify from (6.26) that RX(∆) = R2X(∆) + O(∥∆∥3F ).

Thus,

lim
ϵ→0+

sup
∥∆∥F=ϵ

∥RX(∆)−R2X(∆)∥F
∥∆∥2F

= 0. (6.134)

Lemma 6.13. Let f and g be some bounded real-valued functions defined on the

set C. Then it holds that

∣∣∣∣sup
x∈C

f(x)− sup
x∈C

g(x)

∣∣∣∣ ≤ sup
x∈C

|f(x)− g(x)| .

Applying Lemma 6.13 to (6.134), we obtain

∣∣∣∣∣ sup
∥∆∥F=ϵ

∥RX(∆)∥F
∥∆∥2F

− sup
∥∆∥F=ϵ

∥R2X(∆)∥F
∥∆∥2F

∣∣∣∣∣ ≤ sup
∥∆∥F=ϵ

∣∣∣∣∣∥RX(∆)∥F − ∥R2X(∆)∥F
∥∆∥2F

∣∣∣∣∣ .
(6.135)
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On the other hand, by the triangle inequality, we have

|∥RX(∆)∥F − ∥R2X(∆)∥F | ≤ ∥RX(∆)−R2X(∆)∥F . (6.136)

From (6.135) and (6.136), it holds that

∣∣∣∣∣ sup
∥∆∥F=ϵ

∥RX(∆)∥F
∥∆∥2F

− sup
∥∆∥F=ϵ

∥R2X(∆)∥F
∥∆∥2F

∣∣∣∣∣ ≤ sup
∥∆∥F=ϵ

∣∣∣∣∣∥RX(∆)−R2X(∆)∥F
∥∆∥2F

∣∣∣∣∣ .
(6.137)

Thus, taking both sides of (6.137) to the limit ϵ → 0 and rearranging terms yield

lim
ϵ→0+

sup
∥∆∥F=ϵ

∥RX(∆)∥F
∥∆∥2F

= lim
ϵ→0+

sup
∥∆∥F=ϵ

∥R2X(∆)∥F
∥∆∥2F

.

It now is sufficient to show that

lim
ϵ→0+

sup
∥∆∥F=ϵ

∥R2X(∆)∥F
∥∆∥2F

=
1

σr

√
3
. (6.138)

Indeed, due to the orthogonality among the addends, we have

∥R2X(∆)∥2F =
∥∥∥X†∆TPU2∆PV2 + PU2∆PV2∆

TX† + PU2∆(X†)
T
∆PV2

∥∥∥2
F

=
∥∥X†∆TPU2∆PV2

∥∥2
F
+
∥∥PU2∆PV2∆

TX†∥∥2
F
+
∥∥∥PU2∆(X†)

T
∆PV2

∥∥∥2
F
.

(6.139)
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Using the definition of E in (6.4), (6.139) can be represented as

∥R2X(∆)∥2F =
∥∥U1Σ

−1
1 ET

21E22V
T
2

∥∥2
F
+
∥∥U2E22E

T
12Σ

−1
1 V T

1

∥∥2
F
+
∥∥U2E21Σ

−1
1 E12V

T
2

∥∥2
F

=
∥∥Σ−1

1 ET
21E22

∥∥2
F
+
∥∥E22E

T
12Σ

−1
1

∥∥2
F
+
∥∥E21Σ

−1
1 E12

∥∥2
F
, (6.140)

where the second equality stems from Lemma 6.7. Using Lemma 6.5 and the fact

that
∥∥Σ−1

1

∥∥
2
= 1/σr, we can bound the RHS of (6.140) by

∥R2X(∆)∥2F ≤ 1

σ2
r

(
∥E21∥2F ∥E22∥2F + ∥E22∥2F ∥E12∥2F + ∥E12∥2F ∥E21∥2F

)
.

(6.141)

Lemma 6.14 (Chebyshev’s sum inequality [93]). For any a, b, c ∈ R, we have

3(ab+ bc+ ca) ≤ (a+ b+ c)2.

Applying Lemma 6.14 to (6.141) with a = ∥E21∥2F , b = ∥E22∥2F and c = ∥E12∥2F ,

we obtain

∥R2X(∆)∥2F ≤ 1

σ2
r

(
∥E21∥2F + ∥E22∥2F + ∥E12∥2F

)2
3

≤
(
∥E11∥2F + ∥E12∥2F + ∥E21∥2F + ∥E22∥2F

)2
3σ2

r

=
∥E∥4F
3σ2

r

=
∥∆∥4F
3σ2

r

,

(6.142)

where the last equation stems from ∥E∥F =
∥∥UT∆V

∥∥
F
= ∥∆∥F . From (6.142),
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taking the square root and then taking the supremum yield

sup
∥∆∥F=ϵ

∥R2X(∆)∥F ≤ ∥∆∥2F
σr

√
3
. (6.143)

To show that (6.143) implies (6.138), we describe a particular choice of ∆ such

that the inequality holds. Let us choose

∆(ϵ) ≜
ϵ√
3

(
urv

T
r+1 + ur+1v

T
r + ur+1v

T
r+1

)
,

where ur,ur+1,vr, and vr+1 are the corresponding left and right singular vectors

of X. Similar to (6.101), one can verify that ∥∆(ϵ)∥F = ϵ. In addition, from

Proposition 6.2, we have

E12 = UT
1 ∆(ϵ)V2 =

ϵ√
3
er
r(e

n−r
1 )T , E21 = UT

2 ∆(ϵ)V1 =
ϵ√
3
em−r
1 (er

r)
T ,

E22 = UT
2 ∆(ϵ)V2 =

ϵ√
3
em−r
1 (en−r

1 )T . (6.144)

Substituting (6.144) back into (6.140) yields

∥∥R2X

(
∆(ϵ)

)∥∥2
F

=

∥∥∥∥ϵ23 Σ−1
1 er

r(e
m−r
1 )Tem−r

1 (en−r
1 )T

∥∥∥∥2
F

+

∥∥∥∥ϵ23 em−r
1 (en−r

1 )Ten−r
1 (er

r)
TΣ−1

1

∥∥∥∥2
F

+

∥∥∥∥ϵ23 em−r
1 eT

r Σ
−1
1 er(e

n−r
1 )T

∥∥∥∥2
F

=
ϵ4

9

(
1

σ2
r

+
1

σ2
r

+
1

σ2
r

)
=

∥∆∥4F
3σ2

r

. (since ∥∆(ϵ)∥F = ϵ)
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Therefore, the equality in (6.143) holds when ∆ = ∆(ϵ), for any ϵ > 0. This

completes our proof of the theorem.

6.8.6.1 Proof of Lemma 6.13

Since f(x)− g(x) ≤ |f(x)− g(x)|, we have f(x) ≤ |f(x)− g(x)|+ g(x). Taking

the supremum yields

sup
x∈C

f(x) ≤ sup
x∈C

{
|f(x)− g(x)|+ g(x)

}
≤ sup

x∈C
|f(x)− g(x)|+ sup

x∈C
g(x).

Thus, we have

sup
x∈C

f(x)− sup
x∈C

g(x) ≤ sup
x∈C

|f(x)− g(x)| . (6.145)

Changing the roles of f and g, we also obtain

sup
x∈C

g(x)− sup
x∈C

f(x) ≤ sup
x∈C

|f(x)− g(x)| . (6.146)

Our inequality follows on combining (6.145) and (6.146).
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Chapter 7: On Local Convergence of Iterative Hard Thresholding

for Matrix Completion1

Iterative hard thresholding (IHT) has gained in popularity over the past decades

in large-scale optimization. However, convergence property of this method has

only been explored recently in non-convex settings. In matrix completion, existing

works often focus on the guarantee of global convergence of IHT via standard as-

sumptions such as incoherence property and uniform sampling. While such analysis

provides a global upper bound on the linear convergence rate, it does not describe

the actual performance of IHT in practice. In this chapter, we provide a novel in-

sight into the local convergence of a specific variant of IHT for matrix completion.

We uncover the exact linear rate of IHT in a closed-form expression and identify

the region of convergence in which the algorithm is guaranteed to converge. Fur-

thermore, we utilize random matrix theory to study the linear rate of convergence

of IHTSVD for large-scale matrix completion. We find that asymptotically, the

rate can be expressed in closed form in terms of the relative rank and the sampling

rate. Finally, we present various numerical results to verify the aforementioned

theoretical analysis.

1This work is currently under review and available at https://arxiv.org/abs/2112.14733.
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7.1 Introduction

Matrix completion is a fundamental problem that arises in many areas of signal

processing and machine learning such as collaborative filtering [176,188,189,200],

system identification [136,137,156] and dimension reduction [31,228]. The problem

can be explained as follows. Let M ∈ Rn1×n2 be the underlying matrix with rank

r and Ω be the set of locations corresponding to the observed entries of M , i.e.,

(i, j) ∈ Ω if Mij is observed. The goal is to recover the unknown entries of M ,

belonging to the complement set Ω.

To understand the feasibility of matrix completion, let us describe M as

M =
r∑

i=1

σiuiv
T
i ,

where σi is the i-th largest singular value of M , ui and vi are the corresponding

left and right singular vectors. Since each set of the left and right singular vectors

are orthonormal, the degrees of freedom of matrix completion is given by

r +
r∑

i=1

(n1 − i) +
r∑

j=1

(n2 − j) = (n1 + n2 − r)r,

which is significantly less than the total number of entries in M when r is small.

This implies possibility of recovering the entire matrix even when only a few en-

tries are observed. However, not every matrix with more than (n1 + n2 − r)r

observed entries can be completed. For instance, if an entire column (or row) of

a rank-one matrix is missing, then the matrix cannot be recovered. Similarly, if a
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low-rank matrix contains too many zero entries, then the observed entries might

end up being all zero, thereby not providing any clue about the missing entries.

The aforementioned argument motivates the two standard assumptions in matrix

completion: the incoherence condition and the random sampling model. Under

these assumptions, Candès and Recht [33] showed that matrix completion can be

solved exactly for most settings of the low-rank matrix M and the sampling set

Ω. This breakthrough has started a long line of research on efficient methods for

solving matrix completion.

In the same work, Candès and Recht [33] proposed a convex relaxation approach

to matrix completion, replacing the original linearly constrained rank minimiza-

tion problem by a linearly constrained nuclear norm minimization problem. Their

result leads to a well-known class of proximal-type algorithms for nuclear norm

minimization [27,107,145,205] with rigorous mathematical guarantees and exten-

sions of classic acceleration techniques. Nonetheless, convex-relaxed methods are

generally considered slow compared to their non-convex counterparts in practice.

While interior-point methods for solving the nuclear norm minimization problem

is computationally expensive and even infeasible for large matrices, proximal-type

algorithms suffer from slow convergence due to the conservative nature of the soft-

thresholding operator [117,213].

Another approach to matrix completion is known as iterative hard threshold-

ing. To address the computational concern from the use of convex relaxation, IHT

methods have been proposed to directly solve the non-convex rank minimization

problem [79, 104]. Each IHT iteration takes one step in the opposite direction of
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the gradient and another step projecting the result onto the set of rank-r ma-

trices. Since the process resembles hard-thresholding singular values, we refer to

the class of algorithms using this technique as iterative hard thresholding. When

the solution is low-rank, hard-thresholding algorithms is more efficient than their

soft-thresholding counterparts in both computational complexity per iteration and

convergence speed. Variants of plain IHT with faster convergence have also been

developed, including normalized IHT [201], conjugate gradient IHT [18], Nesterov’s

accelerated gradient IHT [213], Heavy-Ball IHT [214], just to name a few. The

drawback of IHT methods, however, is the lack of mathematical guarantees on

their convergence behavior. As pointed out in [104], the restricted isometry prop-

erty (RIP), which is widely-used in establishing the global convergence in matrix

sensing, does not hold for matrix completion. Therefore, the global convergence

of IHT methods for matrix completion is still an open question. Until recently,

the only guarantee on the global convergence of a IHT method, to the best of our

knowledge, is provided in [105]. In their work, the authors considered a variant of

the singular value projection (SVP) algorithm with resampling scheme and proved

the fast linear convergence of the proposed algorithm with a sample complexity

that depends on the condition number and desired accuracy. Notwithstanding,

this result imposes some limitations at conceptual, practical and theoretical lev-

els due to the requirement of resampling [199]. In a different perspective, local

convergence of IHT methods has also been studied by Chunikhina et. al. [46]. In

particular, by considering a special case of the SVP algorithm with unit step size,

called iterative hard-thresholded singular value decomposition (IHTSVD), the au-
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thors showed that IHTSVD converges linearly to the solution M as long as the

algorithm is initialized close enough toM . Consequently, this analysis explains the

superior performance of IHT methods over proximal-type methods in practice.2 A

similar approach can be found in the unpublished work of Lai and Varghese [120].

However, we remark that while the later work proves the existence of an upper

bound on the linear convergence rate of IHTSVD, the former provides an exact

expression of the rate that depends directly on the structure of M and Ω.

The most popular approach to matrix completion is non-convex factorization.

This approach stems from the Burer-Monteiro factorization [26], whereby the low-

rank matrix is viewed as a product of two low-rank components. The resulting

least squares problem is unconstrained albeit non-convex. Recent progress in this

approach has shown that any local minimum of the re-parameterized problem is

also a global minimum [76,199]. Thus, basic optimization procedures such as gradi-

ent descent [43,144,199] and alternating minimization [40,91,92,106] can provably

find the global solution at a linear convergence rate. The exact linear convergence

rate of gradient descent for matrix completion has recently been studied by Vu and

Raich [215]. In Table 7.1, we summarize the aforementioned approaches to matrix

completion and the corresponding algorithms existing in the literature.

This chapter is developed based on the work of Chunikhina et. al. [46] on the

local convergence of the IHTSVD algorithm for matrix completion. Our main con-

tribution is three-fold. First, we propose a novel analysis of the local convergence

2Convergence guarantees on proximal-type methods for matrix completion are often sub-

linear [27,205].
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of IHTSVD for matrix completion. The proposed analysis establishes the region of

convergence that is proportional to the least non-zero singular value of M . More-

over, we show that the convergence is asymptotically linear and the exact rate

can be described in a closed-form expression of the projections onto the (left and

right) null spaces of M and the sampling pattern Ω. Second, based on the exact

linear rate, we utilize random matrix theory to study the asymptotic behavior of

IHTSVD in large-scale matrix completion. As the size of M grows to infinity, we

uncover the linear rate of IHTSVD converges to a deterministic constant that can

be expressed in closed form in terms of the relative rank and the sampling rate. Fi-

nally, we present extensive results to verify our proposed exact rate of convergence

as well as the asymptotic rate of IHTSVD in large-scale settings.

7.2 Preliminaries

7.2.1 Notation

Throughout the chapter, we use the notations ∥·∥F , ∥·∥2, and ∥·∥2,∞ to denote the

Frobenius norm, the spectral norm and the l2/l∞ norm (i.e., the largest l2 norm of

the rows) of a matrix, respectively. Occasionally, ∥·∥2 is used on a vector to denote

the Euclidean norm. The notation [n] refers to the set {1, 2, . . . , n}. Boldfaced

symbols are reserved for vectors and matrices. In addition, let In denote the n×n

identity matrix. ⊗ denotes the Kronecker product between two matrices.

For a matrix X ∈ Rn1×n2 , Xij refers to the (i, j) element of X. We denote
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σmax(X) and σmin(X) as the largest and smallest singular values ofX, respectively,

and denote κ(X) = σmax(X)/σmin(X) as the condition number of X. vec(X)

denotes the vectorization of X by stacking its columns on top of one another.

Let F (X) be a matrix-valued function of X. Then, for some k > 0, we use

F (X) = O(∥X∥kF ) to imply

lim
δ→0

sup
∥X∥F=δ

∥F (X)∥F
∥X∥kF

< ∞.

7.2.2 Background

Let us use M to denote the underlying n1 × n2 real matrix with rank

1 ≤ r ≤ m = min{n1, n2}. (7.1)

The sampling set Ω is a subset of the Cartesian product [n1]× [n2], with cardinality

of 1 ≤ s < n1n2. Furthermore, the orthogonal projection associated with Ω is given

in the following:

Definition 7.1. The orthogonal projection onto the set of matrices supported in

Ω is defined as a linear operator PΩ : Rn1×n2 → Rn1×n2 satisfying

[PΩ(X)]ij =


Xij if (i, j) ∈ Ω,

0 if (i, j) ∈ Ω,

where Ω denotes the complement set of Ω.
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If we consider vector spaces instead of matrix spaces, the orthogonal projection

PΩ can also be viewed as a selection matrix corresponding to Ω:

Definition 7.2. The selection matrix SΩ ∈ Rn1n2×s comprises a subset of s

columns of the identity matrix of dimension n1n2 such that


S⊤

ΩSΩ = Is,

vec
(
PΩ(X)

)
= SΩS

⊤
Ω vec(X).

Corresponding to the complement set Ω, we also define similar notations for PΩ :

Rn1×n2 → Rn1×n2 and SΩ̄ ∈ Rn1n2×(n1n2−s).

Next, using the notation of PΩ, we can formulate the matrix completion prob-

lem as follows:

min
X∈Rn1×n2

1

2
∥PΩ(X −M)∥2F s.t. rank(X) ≤ r. (7.2)

One natural approach to the optimization problem (7.2) is projected gradient de-

scent. Starting at someX(0), we iteratively update the current matrix by (i) taking

a step in the opposite direction of the gradient and (ii) projecting the result back

onto the set of matrices with rank less than or equal to r. It follows that

X(k+1) = Pr

(
X(k) − ηPΩ(X

(k) −M)
)
, (7.3)

where η is the step size and Pr is the rank-r projection (formally defined later

in Definition 7.3). Due to the singular value truncating nature of the projection
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Pr, PGD is often referred as the iterative hard thresholding (IHT) method for

matrix completion [79]. In [104], IHT with step size η = n1n2/s is also named

as the Singular Value Projection (SVP) algorithm for matrix completion. In the

literature, PGD with step size η = n1n2/s is also known as the Singular Value

Projection (SVP) algorithm for matrix completion [104]. It is interesting to note

that under certain assumptions, [105] showed that the algorithm enjoys a fast

global linear convergence with this choice of step size. On the other hand, setting

the step size η = 1 yields the following update

X(k+1) = Pr

(
X(k) − PΩ(X

(k) −M )
)

= Pr

(
PΩ(X

(k)) + PΩ(M)
)
. (7.4)

Note that PΩ̄(X
(k)) + PΩ(M ) is a linear orthogonal projection of X(k) onto the

set of matrices with the same support as M in Ω. This motivates the IHTSVD

algorithm [46] that alternates between two projection steps: the set of low-rank

matrices and the projection onto the set of matrices with the same support as M

in Ω (see Algorithm 7.1). This chapter, developed based on [46], focuses on local

convergence properties of IHTSVD. Compared to the existing global convergence

analysis for matrix completion, our setting does not require certain assumptions

such as the incoherence of M , the uniform randomness of Ω, and the low sample

complexity, e.g., s = O(r5n log n) in [105]. We also note that the proposed analysis

can be extended to other variants of PGD with different step sizes.

Finally, we present a formal definition of the rank-r projection. Consider matrix
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X ∈ Rn1×n2 with the singular value decomposition

X =
m∑
i=1

σi(X)ui(X)v⊤
i (X),

where σ1(X) ≥ . . . ≥ σm(X) ≥ 0 are the singular values ofX and {u1(X), . . . ,um(X)},

{v1(X), . . . ,vm(X)} are the sets of left and right singular vectors of X, respec-

tively.

Definition 7.3. The rank-r projection of X is defined as

Pr(X) =
r∑

i=1

σi(X)ui(X)v⊤
i (X).

The rank-r projection of X is unique if and only if σr(X) > σr+1(X) or σr(X) = 0

[61]. Since Pr(X) zeroes out all the small singular value of X, it is often referred

as the singular value hard-thresholding operator. Since M is a rank-r matrix, we

have

M = Pr(M) =
r∑

i=1

σiuiv
⊤
i = UrΣrV

⊤
r ,

where Σr = diag(σ1, . . . , σr) contains the singular values ofM andUr = [u1, . . . , ur] ∈

Rn1×r, Vr = [v1, . . . , vr] ∈ Rn2×r are comprised of the first r left and right singu-

lar vectors of M , respectively.3 Denote U⊥ = [ur+1, . . . , un1 ] ∈ Rn1×(n1−r) and

V⊥ = [vr+1, . . . , vn2 ] ∈ Rn2×(n2−r). The projections onto the left and right null

3In the rest of this chapter, we omit the parameter in the notation of the singular values and

the singular vectors of M for simplicity.
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spaces of M are uniquely defined as

PU⊥ = U⊥U
⊤
⊥ = In1 −

r∑
i=1

uiu
⊤
i ,

PV⊥ = V⊥V
⊤
⊥ = In2 −

r∑
i=1

viv
⊤
i .

7.2.3 Related Work

Traditional approaches to matrix completion often make assumptions on the in-

coherence of the underlying matrix M and the randomness of the sampling set.

First, the incoherence condition for matrix completion, introduced by Candès and

Recht [33], is stated as:

Assumption 7.1 (Incoherence). The matrix M = UrΣrV
⊤
r is µ-incoherent, i.e.,

∥Ur∥2,∞ ≤
√

µr

n1

and ∥Vr∥2,∞ ≤
√

µr

n2

.

Intuitively, an incoherent matrix has well-spread singular vectors and is less likely

in the null space of the sampling operator. A common setting that generates

incoherent matrices is the random orthogonal model:

Definition 7.4 (Random orthogonal model). The Haar measure provides a uni-

form and translation-invariant distribution over the group of n × n orthogonal

matrices O(n). M is said to follow a random orthogonal model if Ur and Vr are

sub-matrices of Haar-distributed matrices in O(n1) and O(n2), respectively.



291

Second, in order to avoid adversarial patterns in the sampling set, it is also common

to assume that each entry in Ω is selected randomly:

Assumption 7.2 (Uniform sampling). The sampling set Ω is obtained by selecting

s elements uniformly at random from the Cartesian product [n1]× [n2].

We note that a similar but not equivalent assumption on the sampling set is the

Bernoulli model in which each entry of M is observed independently with proba-

bility s/n1n2 [199]. Under these two standard assumptions, Candès and Recht [33]

showed that symmetric matrix completion of size n can be solved exactly provided

that the number of observations is sufficiently large, i.e., s = O(n1.2r log n). Later

on, global convergence guarantees for various matrix-completion algorithms have

been actively developed, with improved bounds on the sample complexity. Exam-

ples of these works include [92,105,144,174,199]. It is worthwhile mentioning that

ideally, one would like to recover the low-rank matrix from a minimum number

of observations, which is in the order the degrees of freedom of the problem, i.e.,

O(nr).

In this chapter, we study the convergence of IHT for matrix completion from a

different perspective. Without any assumptions about the incoherence of M and

the randomness of the sampling set Ω, we identify a deterministic condition on the

structure of M and Ω such that the local linear convergence of IHTSVD can be

guaranteed. Compared to the aforementioned bounds on the global convergence

rate, our result is exact and tighter thanks to the exploitation of the local structure

of the problem. Our technique utilizes the recently developed error bound for
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the first-order Taylor expansion of the rank-r projection, proposed by Vu et. al.

in [211]. The result is rephrased below.

Proposition 7.1 (Rephrased from [211]). For any ∆ ∈ Rn1×n2, we have

Pr(M +∆) = M +∆− PU⊥∆PV⊥ +R(∆), (7.5)

where the residual R : Rn1×n2 → Rn1×n2 satisfies:

∥R(∆)∥F ≤ c1
σr

∥∆∥2F ,

for some universal constant 1 + 1/
√
2 ≤ c1 ≤ 4(1 +

√
2).

The rest of the chapter is organized as follows. In Section 7.3, we provide

the local convergence analysis of IHTSVD for matrix completion and the proof of

the main result. Next, Section 7.4 presents a brief summary of related results in

random matrix theory, followed by our novel result on the asymptotic behavior

of the convergence rate in large-scale settings. The numerical results to verify

the analysis in Sections 7.3 and 7.4 are given in Section 7.5. Finally, we put the

detailed proofs of all the main theorems and lemmas in the appendix.

7.3 Local Convergence of IHTSVD

This section presents our analysis of local convergence of IHTSVD. First, we lever-

age the results in perturbation analysis to identify the Taylor series expansion of
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Algorithm 7.1 IHTSVD

Require: PΩ(M), r,K
Ensure: X(K)

1: Initialize X(0)

2: for k = 0, 1, . . . , K − 1 do
3: Y (k) = Pr

(
X(k)

)
4: X(k+1) = PΩ

(
Y (k)

)
+ PΩ(M)

the rank-r projection. Next, the approximation allows us to derive the nonlinear

difference equation that describes the change in the distance to the local optimum

through IHT iterations. Closed-form expressions of the asymptotic convergence

rate and the region of convergence are also given as a result of our analysis.

7.3.1 Main Result

Our local convergence result is stated as follows:

Theorem 7.1. Let {X(k)} be the sequence of matrices generated by Algorithm 7.1,

i.e., for k = 0, 1, . . .:

X(k+1) = PΩ

(
Pr(X

(k))
)
+ PΩ(M ) (7.6)

and assume that λmin(H) > 0 and X(0) satisfies:

∥∥X(0) −M
∥∥
F
<

λmin(H)

c1
σr, (7.7)
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where

H = S⊤
Ω̄(PV⊥ ⊗ PU⊥)SΩ̄ ∈ R(n1n2−s)×(n1n2−s). (7.8)

Then,
∥∥X(k) −M

∥∥
F
converge asymptotically at a linear rate of

ρ = 1− λmin(H). (7.9)

Specifically, for any ϵ > 0,
∥∥X(k) −M

∥∥
F
≤ ϵ

∥∥X(0) −M
∥∥
F
for all k such that

k ≥ N(ϵ) =

⌈
log(1/ϵ) + c2

log(1/(1− λmin(H)))

⌉
. (7.10)

where c2 > 0 is a constant depending only on X(0) and M .

Theorem 7.1 provides a closed-form expression of the linear convergence rate of

IHTSVD for matrix completion. As can be seen in (7.10), the speed of convergence

depends strongly on how close the smallest eigenvalue of H is to zero: as λmin(H)

approaches 0, the number of iterations needed to reach a relative accuracy of ϵ,

i.e., N(ϵ), grows to infinity. In fact, when λmin(H) = 0, the condition in (7.7)

cannot be satisfied and hence, there is no linear convergence guarantee provided

by our theorem in this case. On the other hand, from (7.8), one can verify that

all eigenvalues of H lie between 0 and 1 since the norm of either a projection

matrix or a selection matrix is less than or equal to 1. This combined with the

aforementioned condition that λmin(H) > 0 ensures the linear convergence rate ρ

in (7.9) belongs to [0, 1).
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Remark 7.1. Theorem 7.1 does not guarantee linear convergence when λmin(H) =

0. Interestingly, one such situation is when H is rank-deficient. Let us represent

H = S⊤
Ω̄(V⊥ ⊗U⊥)(V⊥ ⊗U⊥)

⊤SΩ̄ = WW⊤,

where W = S⊤
Ω̄
(V⊥ ⊗U⊥) ∈ R(n1n2−s)×(n1−r)(n2−r). If W is a tall matrix, i.e.,

s < (n1 + n2 − r)r, (7.11)

then it follows that H is rank-deficient and λmin(H) = 0. We note that in this case

the number of sampled entries is less than the degrees of freedom of the problem.

Remark 7.2. When s ≥ (n1+n2− r)r, it is possible that λmin(H) = 0 for certain

(adversarial) sampling patterns. For example, consider a 3× 2 rank-1 matrix

M =


1 0

0 0

0 0

 =


1

0

0

 ·
[
1 0

]⊤
.

One choice of the matrices U⊥ and V⊥ is

U⊥ =


0 0

1 0

0 1

 and V⊥ =

0
1

 .

If we observe s = 4 entries of the first two rows of M , the selection matrix SΩ̄ is
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given by

S⊤
Ω̄ =

0 0 1 0 0 0

0 0 0 0 0 1

 .

Then, we have

H = S⊤
Ω̄(V⊥ ⊗U⊥)(V⊥ ⊗U⊥)

⊤SΩ̄ =

0 0

0 1


and λmin(H) = 0. While Theorem 7.1 does not guarantee linear convergence of

IHTSVD, one may realize that it is impossible to recover the last row of M in this

case.

Existing convergence analyses of algorithms for low-rank matrix completion

often rely on standard assumptions, such as the incoherence of the underlying

matrix M and the uniform randomness of the sampling pattern Ω [33]. Under

these assumptions and a sample complexity bound on the number of observed en-

tries s, linear convergence to a global solution can be guaranteed (see [106] for

alternating minimization and [55] for IHT), with an upper bound on the rate of

convergence ρ < 1/2. Our analysis, on the other hand, do not use the aforemen-

tioned assumptions but introduces a quantity that is fundamental to the problem

in terms of optimization. By exploiting the local structure of the problem, we

characterize the exact linear rate of local convergence of IHT. Similar to standard

assumptions in prior works, the closed-form expression we obtained can be used to
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determine sufficient conditions that ensure linear convergence. However, since our

expression is exact, one can identify conditions that are potentially less stringent

than existing conditions. For further details, we refer the interested readers to the

Appendix 7.7.1.

7.3.2 Proof of Theorem 7.1

This section provides an overview of the proof of Theorem 7.1. We starts by formu-

lating the recursion on the error matrix from the update (7.6) and the linearization

of the rank-r projection:

Lemma 7.1. Let us define the error matrix and its economy vectorized version,

respectively, as

E(k) = X(k) −M and e(k) = S⊤
Ω̄ vec(E(k)).

Then, we have

E(k+1) = PΩ

(
E(k) − PU⊥E

(k)PV⊥ +R(E(k))
)
, (7.12)

e(k+1) =
(
I − S⊤

Ω̄(PV⊥ ⊗ PU⊥)SΩ̄

)
e(k) + r

(
e(k)
)
, (7.13)

where R(·) is the residual defined in Proposition 7.1 and

r(e) = S⊤
Ω̄ vec

(
R
( −1
vec(SΩ̄e)

))
for e ∈ Rn1n2−s.



298

Here we recall that vec−1(·) is the inverse vectorization operator such that (vec−1 ◦ vec)

is identity.

Note that E(k) belongs to the set of matrices supported in Ω and hence,
∥∥E(k)

∥∥
F
=∥∥e(k)

∥∥
2
. Next, using the definition of the operator norm, one can obtain the

following bound on the norm of the error matrix:

Lemma 7.2. The Frobenius norm of the error matrix satisfies

∥∥E(k+1)
∥∥
F
≤
(
1− λmin(H)

) ∥∥E(k)
∥∥
F
+

c1
σr

∥∥E(k)
∥∥2
F
. (7.14)

The nonlinear difference equation (7.14) has been well-studied in the stability

theory of difference equation [15,166,216]. In fact, our theorem follows on applying

Theorem 1 in [216] to (7.14), with a0 =
∥∥E(0)

∥∥
F
, α = 1−λmin(H), and β = c1/σr.

The proofs of Lemmas 7.1 and 7.2 are given in Appendix 7.7.3.

7.3.3 IHT with Step Sizes Different than 1

Recall that IHTSVD is a special case of IHT with a unit step size. Thanks to

the alternating-projection view in (7.4), the error E(k) = X(k) −M is guaranteed

to be in the set of matrices supported in Ω, i.e., PΩ(E
(k)) = E(k). Hence, the

error analysis reduces from the space Rn1×n2 for E(k) to the space Rn1n2−s for

e(k) = S⊤
Ω̄
vec(E(k)). While this appeal no longer holds for step sizes different than

1, one can one can follow a similar track to obtain an exact rate analysis in the

general case.
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Indeed, the linear convergence of IHT with a fixed step size η > 0 has recently

studied in [217]. In particular, Vu et. al. proved that for 0 < η < 2/∥K∥2, where

K = Q⊤
⊥SΩS

⊤
ΩQ⊥ ∈ Rr(n1+n2−r)×r(n1+n2−r) and Q⊥ ∈ Rn1n2×r(n1+n2−r) satisfies

Q⊤
⊥Q⊥ = Ir(n1+n2−r) and Q⊥Q

⊤
⊥= In1n2 −PV⊥ ⊗PU⊥ , the local linear convergence

rate of IHT with a fixed step size η is given by

ρη = max{|1− ηλ1(K)|, |1− ηλr(m+n−r)(K)|}. (7.15)

By comparing the two matrices K = Q⊤
⊥SΩS

⊤
ΩQ⊥ ∈ Rr(n1+n2−r)×r(n1+n2−r) and

H = S⊤
Ω̄
(PV⊥ ⊗ PU⊥)SΩ̄ ∈ R(n1n2−s)×(n1n2−s), we recognize that they share the

same set of eigenvalues in the interval [0, 1) while may only differ by the eigenvalues

at 1. Thus, substituting η = 1 into (7.15) yields the same expression of the rate in

(7.9).

It is also interesting to note that the optimal step size and the optimal conver-

gence rate are given by [217]

ηopt =
2

λ1(Q⊤
⊥SΩS⊤

ΩQ⊥) + λr(m+n−r)(Q⊤
⊥SΩS⊤

ΩQ⊥)
,

ρopt = 1− 2

κ(Q⊤
⊥SΩS⊤

ΩQ⊥) + 1
. (7.16)

While this results in faster convergence compared to IHTSVD, we focus on the

latter in this work for simplicity and convenience of the analysis in the asymptotic

matrix completion setting in Section 7.4. Further discussion on IHT with different

step sizes is also given in Appendix 7.7.2.
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7.4 Convergence of IHTSVD for Large-Scale Matrix Completion

In this section, we study the convergence of IHTSVD for large-scale matrix com-

pletion, a setting of practical interest in the rise of big data. Using recent results in

random matrix theory, we show that, as its dimensions grow to infinity, the spec-

tral distribution of H converges almost surely to a deterministic distribution with

a bounded support. Consequently, we propose a large-scale asymptotic estimate

of the linear convergence rate of IHTSVD that is a closed-form expression of the

relative rank and the sampling rate.

7.4.1 Overview

We are interested in the asymptotic setting in which the size ofM grows to infinity,

i.e., m = min{n1, n2} → ∞. Let us assume that the ratio n1/n2 remains to be a

non-zero constant as m → ∞. In addition, we introduce two concepts that are the

normalization of the degrees of freedom and the number of measurements:

Definition 7.5 (Relative rank). The rank r increases as m → ∞ such that the

relative rank remains to be a constant

ρr = 1−
√(

1− r

n1

)(
1− r

n2

)
∈ (0, 1]. (7.17)

Definition 7.6 (Sampling rate). The number of observations increases as m → ∞
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such that the sampling rate remains to be a constant

ρs =
s

n1n2

∈ (0, 1]. (7.18)

When ρs < 1− (1− ρr)
2, we recover the case in Remark 7.1 where the number of

measurements is less than the degrees of freedom. As far as the local linear rate

of IHTSVD is concerned, we only consider the case ρs ≥ 1− (1− ρr)
2.

Remark 7.3. When r = m, we have ρr = 1. Moreover, when n1 = n2 = m,

the relative rank is exactly the ratio r/m. As can be seen below, the proposed

definition of the relative rank incorporates both dimensions of M to enable the

compact representation of ρ in terms of ρr and ρs.

We are in position to state our result on the asymptotic behavior of the linear rate

ρ in large-scale matrix completion:

Theorem 7.2 (Informal). For ρs > 1− (1− ρr)
2, the linear convergence rate ρ of

IHTSVD approaches

ρ∞ = 1−
(√

(1− ρr)2ρs −
√

ρr(2− ρr)(1− ρs)
)2
, (7.19)

as m → ∞.

Note that ρ∞ is independent of the structure of the solution matrix M and the

sampling set Ω. Moreover, it depends only on the relative rank and the sampling

rate. Figure 7.1 depicts the contour plot of ρ∞ as a function of ρr and ρs. It
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Figure 7.1: Contour plot of ρ∞ as a 2-D function of ρr and ρs given by (7.19). The
isoline at which ρ∞ = 1 is represented by the dashed line. The white region below
this isoline corresponds to the under-determined setting ρs < 1− (1− ρr).

can be seen that for a fixed value of ρr, the asymptotic rate decreases towards

0 as the number of observed entries increases. This matches with the intuition

that more information leads to faster convergence. Conversely, for a fixed value

of ρs, the algorithm converges slower as the rank of the matrix increases, due to

the increasing uncertainty (i.e., more degrees of freedom) in the set Ω̄. On the

boundary where ρs = 1− (1− ρr)
2, there is no linear convergence predicted by our

theory since ρ∞ = 1. In this case, we recall that the number of observed entries

equals the degrees of freedom of the problem.
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Our technique relies on recent results in random matrix theory to exploit the

special structure of H . First, when n1/n2 remains constant, it holds that n =

n1n2 → ∞ as m → ∞. Then, H can be viewed as an element of a sequence of

matrices

Hn = W n
pq(W

n
pq)

⊤, (7.20)

where W n
pq ∈ Rpn1n2×qn1n2 is a truncation of the orthogonal matrix W n = V n2 ⊗

Un1 , for Un1 and V n2
⊥ orthogonal matrices of dimensions n1 × n1 and n2 × n2,

respectively, and

p =
n1n2 − s

n1n2

= 1− ρs,

q =
(n1 − r)(n2 − r)

n1n2

= (1− ρr)
2.

As n grows to infinity, we are interested in finding the limit (or even the limiting

distribution) of the smallest eigenvalue of Hn, which is a random truncation of the

Kronecker product of two large dimensional semi-orthogonal matrices.

7.4.2 Truncations of Large Dimensional Orthogonal Matrices

Random matrix theory studies the asymptotic behavior of eigenvalues of matrices

with entries drawn randomly from various matrix ensembles such as Gaussian

orthogonal ensemble (GOE), Wishart ensemble, MANOVA ensemble [62]. The

closest random matrix ensemble to our matrix ensemble {Hn} is the MANOVA



304

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

Figure 7.2: Scaled histogram and the limiting ESD of Hn = W n
pq(W

n
pq)

⊤, where
W n

pq is the pn × qn upper-left corner of an n × n orthogonal matrix Wn, for
n = 10000, p = 0.16, and q = 0.36. In (a), Wn is the orthogonal factor in the QR
factorization of a 10000×10000 random matrix with i.i.d standard normal entries.
In (b), Wn = Q1 ⊗ Q2, where Q1 and Q2 are the orthogonal factors in the QR
factorization of two independent 100 × 100 random matrices with i.i.d standard
normal entries. The histograms with 50 bins (blue) are scaled by a factor of 1/pnw,
where w is the bin width. The limiting ESD (red) is generated by (7.22). It can be
seen that the histogram in (a) match the limiting ESD better than the histogram
in (b).
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ensemble in which truncations of large dimensional Haar orthogonal matrices are

considered. Here we recall that the Haar measure provides a uniform distribution

over the set of all n×n orthogonal matrices O(n). Indeed, it is a unique translation-

invariant probability measure on O(n). If we assume that the matrix M follows

a random orthogonal model [33], then U⊥ and V⊥ are essentially sub-matrices

of Haar orthogonal matrices in O(n1) and O(n2), respectively, and {Hn} is a

truncation of the Kronecker product of two Haar orthogonal matrices.

There has been certain theoretical work on truncations of Haar invariant ma-

trices in the literature. In 1980, Wachter [219] established the limiting distribution

of the eigenvalues in the MANOVA ensemble. Later on, the density function of

the eigenvalues of such matrix has been shown to be the same as that of a Ja-

cobi matrix [37, 47, 68]. Shortly afterward, Johnstone proved the Tracy-Widom

behavior of the largest eigenvalue in [111]. More recently, Farrell and Nadakuditi

relaxed the constraint on the uniform (Haar) distribution of the orthogonal matrix

considered the Kronecker products of Haar-distributed orthogonal matrices, which

is similar to our matrix completion setting in this chapter. The authors showed

that the limiting density of their truncations remains the same as the original case

without Kronecker products. Further results on the eigenvalues distribution of

truncations of Haar orthogonal matrices were also given in [57, 108, 239]. To the

best of our knowledge, no result has been shown for the limiting behavior of the

smallest eigenvalue of random MANOVA matrices.

In our context, we leverage the recent result in [171], which assumes the ran-

domness on the truncation rather than the orthogonal matrix. This variant, while
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differs from the classic MANOVA ensemble in random matrix theory, is well-suited

to the setting of matrix completion. Let us begin with the following definition of

the empirical spectral distribution:

Definition 7.7. Let Hn be an n × n real symmetric matrix with eigenvalues

λ1, . . . , λn. The empirical spectral distribution (ESD) of Hn, denoted by

µHn, is the probability measure which puts equal mass at each of the eigenvalues of

Hn:

µHn ≜
1

n

n∑
i=1

δλi
,

where δλ is the Dirac mass at λ.

Next, we define the concepts of a sequence of row sub-sampled matrices and the

concentration property:

Definition 7.8. For each n ∈ N+, consider the n×qn matrix W n
q = [wn

1 , . . . ,w
n
n]

⊤,

where wn
i ∈ Rqn and q is a constant in (0, 1). Let Pn be a pn-permutation of [n]

selected uniformly at random, for p is a constant in (0, 1), and W n
pq ∈ Rpn×qn be the

random matrix obtained by selecting the corresponding set of pn rows from W n
q .

Then, the sequence {W n
q }n∈N+ is called a sequence of q-tall matrices, and the

sequence {W n
pq}n∈N+ is called a sequence of row sub-sampled matrices of

{W n
q }n∈N+.

Definition 7.9. Given the setting in Definition 7.8, for each j ∈ Pn, denote
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P j
n = Pn \ {j}. In addition, for z ∈ C, define

Rj(z) =
(∑
i∈P j

n

wn
i (w

n
i )

⊤− zIqn

)−1

.

Then, the sequence {W n
q }n∈N+ is concentrated if and only if for any j ∈ Pn and

z ∈ C, we have

(wn
j )

⊤Rj(z)w
n
j − Ej|P j

n

[
(wn

j )
⊤Rj(z)w

n
j

] p→ 0. (7.21)

In the following, we consider examples of sequences of matrices that are concen-

trated, as well as an example of the sequence of incoherent matrices that are not

concentrated.

Example 7.1. Random settings:

1. The sequence of q-tall matrices {An
q }n∈N+, where the entries of An

q are i.i.d

N (0, 1/n), is concentrated.

2. The sequence {Bn
q ⊗Cn

q }n∈N+, where {Bn
q }n∈N+ and {Cn

q }n∈N+ are two se-

quences of q-tall matrices whose entries are i.i.d N (0, 1/n), is also concen-

trated.

We provide the detailed explanation of this example in Appendix 7.7.4.

Example 7.2. Deterministic settings:

1. The sequence of q-tall matrices {Dn
q }n∈N+, where the entries of Dn

q are all

1, is concentrated.
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2. The sequence of 1/2-tall matrices {En
q }n∈N+ where

En
q =

0.6
√

2
n
Hn/2

0.8
√

2
n
Hn/2

 ,

for Hn/2 being a Hadamard matrix of order n/2 [95], is not concentrated. On

the other hand, one can verify that En
q is µ-incoherent, for

µ =
∥∥∥0.8√2/nHn/2

∥∥∥2
F

n

n/2
= 1.28.

Thus, the concentration assumption considered in this chapter is stronger

than the widely-used incoherence assumption.

With these definitions in place, we now state the result on the limiting ESD

of a truncation of orthogonal matrices. To fit our matrix completion setting in

this chapter, we rephrase the result in [171] to the case of row sub-sampled semi-

orthogonal matrices (as opposed to column sub-sampled semi-orthogonal matrices

in the aforementioned paper).

Proposition 7.2 (Rephrased from [171]). Let {W n
q }n∈N+ be a sequence of q-tall

matrices that is concentrated. In addition, assume that W n
q is semi-orthogonal for

all n ∈ N+, i.e., (W n
q )

⊤W n
q = Iqn. Let {W n

pq}n∈N+ be a sequence of row sub-

sampled matrices of {W n
q }n∈N+. Then, as n → ∞, the ESD of Hn = W n

pq(W
n
pq)

⊤
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converges almost surely to the deterministic distribution µpq such that

dµpq =
(
1− q

p

)
+
δ(x)dx+

(p+ q − 1

p

)
+
δ(x− 1)dx

+

√
(λ+ − x)(x− λ−)

2πpx(1− x)
I[λ− ≤ x ≤ λ+]dx, (7.22)

where δ is the Dirac delta function and

λ± =
(√

q(1− p)±
√

p(1− q)
)2
.

The proposition asserts that the limiting ESD of Hn exists and depends only on

the row ratio p and the column ratio q, provided that {W n
q }n∈N+ is concentrated.

We note that the distribution µpq is exactly the same as the limiting distribution

of the MANOVA ensemble. Indeed one can show that the MANOVA ensemble as

a special case of the concentrated sequence:

Lemma 7.3. Let W n be a Haar-distributed orthogonal matrix in O(n) and W n
q

be the semi-orthogonal matrices obtained from any qn (for q ∈ (0, 1)) columns of

W n. Then the sequence {W n
q }n∈N+ is concentrated.

Furthermore, the Kronecker product of two Haar-distributed orthogonal matrices

also possesses the concentration property:

Lemma 7.4. Let Un1 and V n2 be Haar-distributed orthogonal matrices in O(n1)

and O(n2), respectively. Define Un1
q1

and V n2
q2

as the semi-orthogonal matrices ob-

tained from any q1 and q2 (for q1, q2 ∈ (0, 1)) columns of Un1 and V n2, respectively.

Then the sequence {W n
q = Un1

q1
⊗ V n2

q2
}n∈N+ (with q = q1q2) is concentrated.
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Lemmas 7.3 and 7.4 are immediate consequences of Lemma 3.1 in [63], so we omit

the proof of these lemmas here.

7.4.3 Proposed Estimation of ρ

In order to apply Proposition 7.2 to our matrix completion setting, we recall that

W n
pq can be viewed as the n-th element of a sequence of row sub-sampled matrices

of {W n
q }n∈N+ , whereW n

q = V n2
⊥ ⊗Un1

⊥ . If the sequence {W n
q }n∈N+ is concentrated,

then (7.22) holds for p = 1 − ρs and q = (1 − ρr)
2. Therefore, one might expect

that the smallest eigenvalue of Hn = W n
pq(W

n
pq)

⊤ converges to

λ− =
(√

q(1− p)−
√

p(1− q)
)2
.

Thus, by Theorem 7.1, the convergence rate ρ converges to 1− λ−. The following

theorem is an immediate application of Proposition 7.2 to our large-scale matrix

completion setting:

Theorem 7.3. As m → ∞, assume that M is generated in a way that the Kro-

necker product W n
q = V n2

⊥ ⊗ Un1
⊥ forms a sequence of semi-orthogonal matrices

that is concentrated. Then, provided ρs ≥ 1 − (1 − ρr)
2, the ESD µHn converges

almost surely to the deterministic distribution µρrρs such that

dµρrρs =
((1− ρr)

2 − ρs
1− ρs

)
+
δ(x− 1)dx+

√
(λ+ − x)(x− λ−)

2π(1− ρs)x(1− x)
I[λ− ≤ x ≤ λ+]dx,

(7.23)
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where λ± =
(√

(1− ρr)2ρs ±
√

ρr(2− ρr)(1− ρs)
)2
.

While the theorem claims the convergence of the spectral distribution of H , it

does not imply the convergence of its smallest eigenvalue to λ−. In fact, it is not

trivial to prove this fact. We leave the following as an open question for future

work.

Conjecture 7.1. Assume the same setting as in Theorem 7.3. As m → ∞, the

linear rate ρ defined in (7.9) converges almost surely to p∞ defined in (7.19).

7.5 Numerical Results

In this section, we provide numerical results to verify the exact linear convergence

rate of IHTSVD in (7.9) and to compare this analytical rate with the asymptotic

rate in (7.19) in large-scale settings.

7.5.1 Analytical Rate versus Empirical Rate

In this experiment, we verify the analytical expression of linear convergence rate

of IHTSVD by comparing it with the empirical rate obtained by measuring the

decrease in the norm of the error matrix. Our goal is to demonstrate that they

agree in various settings of ρr and ρs.

Data generation. We first set the dimensions n1 = 50 and n2 = 40. Next, for

each r in {1, 2, . . . , 12}, we generate the rank-r matrix M as follows. We construct

the random orthogonal matricesU and V by (i) generating a n1×n2 randommatrix
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Figure 7.3: Estimation of the empirical rate using the error sequence
{
∥∥X(k) −M

∥∥
F
}k2k=k1

. Due to the numerical error below 10−12, we need to identify
the ‘turning point’ at k0 and then set k1 = ⌊0.4k0⌋ and k2 = ⌊0.9k0⌋.
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Figure 7.4: Comparison between the analytical rate and the empirical rate of
convergence of IHTSVD in various matrix completion settings for n1 = 50, n2 = 40.
(a) Contour plot of the analytical rate as a function of ρr and ρs. (b) Contour
plot of the empirical rate as a function of ρr and ρs. (c) Probability of linear
convergence based on the analytical rate. (d) Probability of linear convergence
based on the empirical rate. The black color corresponds to linear convergence,
while the white color corresponds to no linear convergence. In each plot, the data
is interpolated based on a 12× 21 grid over ρr and ρs, in which the value of each
point is evaluated by 1000 runs. Additionally, a dashed line is included to indicate
the line 1 − ρs = (1 − ρr)

2. It can be seen that there is a perfect match between
the analytical rate and the empirical rate.



314

whose entries are i.i.d normally distributedN (0, 1) and (ii) performing the singular

value decomposition of the resulting matrix. The matrices U and V are comprised

of the corresponding left and right singular vectors. Then, the rank-r matrix M

is generated by taking the product U1Σ1V
⊤
1 , where Σ1 = diag(r, r− 1, . . . , 1) and

U1,V1 are the first r columns of U and V , respectively. Finally, for each s in

the linearly spaced set {0.2n, 0.23n, 0.26n, . . . , 0.8n}, we create the 1000 different

sampling sets, each of them is obtained by generating a random permutation of the

set [n] and then selecting the first s elements of the permutation. Thus, we obtain

a 12×21 grid based on the values of r and s such that (i) grid points corresponding

to the same rank r share the same underlying matrix M ; (ii) each point on the

grid corresponds to 1000 different sampling sets.

Estimating Analytical Rate and Empirical Rate. We calculate the analyti-

cal rate for each aforementioned setting of M and Ω using (7.9). Due to numerical

errors in computing small eigenvalues, we need to set all the resulting rates that

are greater than 1 to 1, indicating there is no linear convergence in such cases. For

the calculation of the empirical rate, we run Algorithm 7.1 in the same setting with

K = 10000 iterations. The initial point X(0) is obtained by adding i.i.d. normally

distributed noise with standard deviation σ = 10−4 to the entries of M . Here we

note that σ is chosen to be small for two reasons: (i) for large matrices, even small σ

for individual entry can add up to a large error on the entire matrix; and (ii) while

the cost of computing λmin (and hence, the region of convergence) is prohibitively

expensive for large matrices, choosing small σ empirically guarantees the initial-

ization is inside the region of convergence. Then, we record the error sequence
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{
∥∥X(k) −M

∥∥
F
}Kk=1 and determine if the algorithm converges linearly to M by

checking whether there exists K̂ ≤ K such that
∥∥∥X(K̂) −M

∥∥∥
F
< ϵ

∥∥X(0) −M
∥∥
F
,

for ϵ = 10−8. If the relative error is above ϵ, we set the empirical rate to 1 to in-

dicate that the algorithm does not converge linearly. However, it is important to

note that this heuristic does not perfectly detect linear convergence since it over-

looks the case in which the linear rate is extremely close to 1 and it requires more

than K = 10000 iterations to reach a relative error below ϵ. As can be seen later,

to compromise this computational limit, we resort to setting the analytical rate

that is greater than 0.998 to 1 when making a comparison between the analytical

rate and the empirical rate4. In case the relative error is less than ϵ, we terminate

the algorithm at the K̂-th iteration (early stop) and perform an estimation on the

error sequence {
∥∥X(k) −M

∥∥
F
}K̂k=1 to obtain the empirical rate.

After obtaining the analytical rate and the empirical rate over the 2-D grid,

we report the result in the contour plots of the rate as a function of ρr and ρs in

Fig. 7.4-(a) and (b). Since our original grid is non-uniform, we perform a scattered

data interpolation, which uses a Delaunay triangulation of the scattered sample

points to perform interpolation [7], to evaluate the rate over a 1001×1001 uniform

grid based on ρr and ρs. Due to the aforementioned limitation of estimating the

empirical rate, we apply a threshold of 0.998 to both of the interpolated data for

the analytical rate and the empirical rate, setting any value above the threshold to

1. In addition, we calculate the probability of linear convergence for the analytical

4Substituting ϵ = 10−8 and N(ϵ) = 10000 into (7.10) and assuming the constant c2 is negli-

gible, we obtain λmin(H) ≈ 1.8× 10−3.
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rate and the empirical rate and visualize the result in Fig. 7.4-(c) and (d). As

mentioned, we use a threshold of 0.998 to determine the linear convergence.

Results. Given the values of the analytical rate and the empirical rate of 1000

matrix completion settings for each point on the 12 × 21 grid, the mean squared

difference between the two rates in our experiment is 2.9659×10−5. Figures 7.4 il-

lustrate the similarity between the analytical rate and the empirical rate evaluated

under various settings of matrix completion. In both Fig. 7.4-(a) and Fig. 7.4-(b),

we observed a matching behavior as in Fig. 7.1: smaller rank and more obser-

vation result in faster linear convergence of IHTSVD. However, the contour lines

in Fig. 7.4 are not as smooth as those with asymptotic behavior in Fig. 7.1 due

to the large variance when n1 and n2 are relatively small. On the other hand, it

can be seen in Fig. 7.4-(c) and Fig. 7.4-(d) that there is a linear-convergence area

(black) above the boundary line at 1− ρs = (1− ρr)
2 and a no-linear-convergence

area (white) below the boundary line. The transition area (gray) near above the

boundary line corresponds to the settings in which some sampling sets result in

λmin(H) = 0 (no linear convergence) while some other sampling sets result in non-

zero λmin(H) (linear convergence). Note that in order to obtain the analytical rate,

we need to compute the smallest eigenvalue of a (n− s)× (n− s) matrix, which is

computationally expensive for large n = n1n2. In particular, when s = O(n), the

cost of computing the analytical rate is O(n2). On the other hand, the empirical

rate offers an alternative but more efficient way to estimate the convergence rate

via running Algorithm 7.1 whose computational complexity per iteration is O(nr).
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7.5.2 Non-asymptotic Rate versus Asymptotic Rate

In this experiment, we compare the asymptotic rate given in Theorem 7.3 with the

convergence rate of IHTSVD for large-scale matrix completion. For convenience,

we refer the later as the non-asymptotic rate. As mentioned in the previous sub-

section, we use the empirical rate instead of the analytical rate to estimate the

non-asymptotic rate due to the computational efficiency.

Data generation. We consider two settings of (n1, n2): n1 = 500, n2 = 400 and

n1 = 1200, n2 = 1000. Similar to the previous experiment, we generate M and

Ω based on a 2-D grid over r and s. While the values of s are still selected from

the set {0.2n, 0.23n, 0.26n, . . . , 0.8n}, the values of r are chosen differently for each

setting of (n1, n2). In particular, for n1 = 500, n2 = 400, we select the values of r

from the linearly spaced set {1, 4, 7, . . . , 118}. For n1 = 1200, n2 = 1000, we select

the values of r from the linearly spaced set {1, 9, 17, . . . , 297}. Therefore, in the

former setting, the grid size is 40 × 21, while in the later setting, the grid size is

38× 21.

Implementation. The calculation of the empirical rate is the same as the previous

experiment. For computational efficiency, we omit the points on the grid that

are below the boundary line, i.e., s < (n1 + n2 − r)r, since it is evident that

there is no linear convergence at such points. No analytical rate is given in this

experiment because calculating the smallest eigenvalue of a (n−s)×(n−s) matrix

is computationally expensive for large n1 and n2. On the other hand, the contour

plot of the asymptotic rate is easy to obtained using (7.19).
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Figure 7.5: Comparison between the empirical rate and the asymptotic rate of
convergence of IHTSVD in various matrix completion settings. (a) Contour plot
of the empirical rate as a function of ρr and ρs for n1 = 500, n2 = 400. (b) Contour
plot of the empirical rate as a function of ρr and ρs for n1 = 1200, n2 = 1000. (c)
Contour plot of the asymptotic rate as a function of ρr in range [0.05, 0.25] and ρs in
range [0.2, 0.8]. (d) Probability of linear convergence based on the empirical rate in
(a). (e) Probability of linear convergence based on the empirical rate in (b). (The
black color corresponds to linear convergence, while the white color corresponds
to no linear convergence) (f) Contour plot of the asymptotic rate as a function of
ρr in range [0, 1] and ρs in range [0, 1]. The red solid rectangular corresponds to
the zoom-in region in (c). In each plot, the data is interpolated based on a 2-D
grid over ρr and ρs, in which the value of each point is evaluated by 100 runs.
Additionally, a dashed line is included to indicate the line 1− ρs = (1− ρr)

2.
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Results. Fig. 7.5 compares the non-asymptotic rate and the asymptotic rate

in various settings of ρr and ρs. As n1 and n2 increase, we observe that the

contour lines of the non-asymptotic rate become smoother and approach those of

the asymptotic rate. Compared with Fig. 7.4, it can also be seen that the isoline

of the same value shifts down towards the boundary line as n1 and n2 increases.

7.6 Conclusion and Future Work

In this chapter, we established a closed-form expression of the linear convergence

rate of an iterative hard thresholding method for solving matrix completion. We

also identified the local region around the solution that guarantees the convergence

of the algorithm. Furthermore, in large-scale setting, we leveraged the result from

random matrix theory to offer a simple estimation of the asymptotic convergence

rate in practice. Under certain assumption, we showed that the convergence rate

of IHTSVD converges almost surely to our proposed estimate.

In future work, we would like to extend our local convergence analysis to other

IHT methods with different step size, e.g., SVP [104] and accelerated IHT [213,214].

Moreover, it would be interesting to study the non-asymptotic behavior of the

convergence rate in large-scale settings. Finally, we believe the technique presented

in this chapter can be applied to study the local convergence of other non-convex

methods such as alternating minimization [106] and gradient descent [199].
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7.7 Appendix

7.7.1 Comparison to prior results

In our main theorem, the rate of convergence depends on

H = S⊤
Ω̄(PV⊥ ⊗ PU⊥)SΩ̄ ∈ R(n1n2−s)×(n1n2−s),

where SΩ̄ ∈ Rn1n2×(n1n2−s) is the selection matrix corresponding to the complement

set Ω̄. PU⊥ and PV⊥ are the projections onto the left and right null spaces of M .

Viewing H as a function of M and Ω, let us consider the set

S = {(X,Ω) | H(X,Ω) is full rank }.

In the following, we show that our proposed set S contains the set of

incoherent matrices and uniform sampling patterns. In other words, if M

is incoherent and Ω is a uniform sampling, then (M ,Ω) ∈ S w.h.p. First, we

highlight the fact that the invertibility of H is related to the injectivity of the

sampling operator restricted to TM (M≤r) - the tangent space T to M≤r = {X ∈

Rn1×n2 | rank(X) ≤ r} at M . In particular, recall that this operator is of the

form AΩT = PΩPT , where PΩ : Rm×n → Rm×n is the orthogonal projector onto

the indices in Ω and PT : Rm×n → Rm×n is the orthogonal projection onto T
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(see [33]-Eqn. 3.5)

PT (X) = PUX +XPV − PUXPV = X − PU⊥XPV⊥ ,

for all X ∈ Rm×n. Using vectorization, one can show that

vec(PΩ(X)) = SΩS
⊤
Ω vec(X) = (In1n2 − SΩ̄S

⊤
Ω̄) vec(X)

and

vec(PT (X)) = (In1n2 − PV⊥ ⊗ PU⊥) vec(X)

= Q⊥Q
⊤
⊥vec(X),

where Q⊥ ∈ Rn1n2×r(n1+n2−r) is the basis of TM (M≤r), i.e., Q⊥Q
⊤
⊥= In1n2−PV⊥⊗

PU⊥ . Therefore, the eigenvalues of the operator A∗
ΩTAΩT = PTPΩPT : Rn1n2 →

Rn1n2 restricted to TM (M≤r) are the same as those of the r(n1 + n2 − r)× r(n1 +

n2 − r) matrix

Ĥ = Q⊤
⊥(In1n2 − SΩ̄S

⊤
Ω̄)Q⊥ = Ir(n1+n2−r) −Q⊤

⊥SΩ̄S
⊤
Ω̄Q⊥.

Now representing H = S⊤
Ω̄
(Ir(n1+n2−r) − Q⊥Q

⊤
⊥)SΩ̄ = In1n2−s − S⊤

Ω̄
Q⊥Q

⊤
⊥SΩ̄, it

can be showed that H and Ĥ share the same set of eigenvalues except those at 1.

Equivalently, the injectivity of AΩT restricted to TM (M≤r) implies the invertibility

of H . Second, we recall the so-called result from Candes and Recht that the
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operator AΩT is most likely injective when restricted to TM (M≤r). Specifically,

Eqn. (4.11) in [33] states that if Ω is sampled according to the Bernoulli model

with probability p ≈ s/n1n2 and the solution M is a rank-r matrix satisfying

µ-coherent property, then for all Y ∈ Rn1×n2 :

(1− τ)p ∥PT (Y )∥F ≤∥(PTPΩPT )(Y )∥F

≤ (1 + τ)p ∥PT (Y )∥F , w.h.p.,

where τ is an arbitrarily small constant such that CR

√
µnr logn

s
≤ τ < 1, 5 for

n = max(n1, n2). Finally, translating this into our context, we can show that

under the same assumptions (uniform sampling and incoherence property) and

w.h.p., the matrix H is full rank with the property

∥Hx∥ ≥ (1− τ)p ∥x∥ , ∀x ∈ Rn1n2−s.

This implies λmin(H) ≥ (1 − τ)p > 0. We conclude that if M is incoherence

and Ω is a uniform sampling, then (X,Ω) ∈ S w.h.p. Beyond these traditional

assumptions, the definition of S allows us to identify other cases that can guarantee

linear convergence (e.g., in deterministic settings of Ω and various structures of X

that does not satisfy incoherence property).

5In [33], CR is some absolute constant that is independent of the problem parameters and the

authors pick τ = 1/2.
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7.7.2 Convergence of IHT with the Optimal Step Size for Large-

Scale Matrix Completion

It is noteworthy that the exact expression of the convergence rate provides more

insights into the asymptotic behavior of PGD that can be independent of the

local structure of the problem. As it is studied in Section IV of the original chap-

ter, our result extends outside the fixed (low) rank regime considered in existing

works and offer a way to evaluate the behavior of IHTSVD under more challeng-

ing conditions. In particular, when U and V are selected at random (e.g., from

the Haar ensemble) with r ∼ O(min{n1, n2}) and s ∼ O(n1n2), we show that the

convergence rate approaches a limit which is independent of the actual matrix X

and only depends on its dimensions (n1, n2), its rank r, and the sampling rate s:

ρ∞η → max
{
|1− η

(√
(1− ρr)2ρs +

√
ρr(2− ρr)(1− ρs)

)2
|,

|1− η
(√

(1− ρr)2ρs −
√

ρr(2− ρr)(1− ρs)
)2
|
}
. (7.24)

When η = 1, we have (7.24) becomes

ρ∞1 = 1−
(√

(1− ρr)2ρs −
√

ρr(2− ρr)(1− ρs)
)2
. (7.25)
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(a) ρ∞ (b) ρ∞ - zoomed-in

(c) ρ∞opt (d) ρ∞opt - zoomed-in

Figure 7.6: Contour plots of ρ∞1 and ρ∞opt as 2-D functions of ρr and ρs given by
(7.25) and (7.26), respectively. (a) and (c): the entire feasible range ρr ∈ (0, 1]
and ρs ∈ (0, 1]; (b) and (d): zoomed-in version of (a) and (c) near the bottom-
left corner, respectively. The isoline at which ρ∞1 = ρ∞opt = 1 is represented by the
dashed line, corresponding to the case ρs = 1− (1− ρr)

2. The yellow region below
this isoline corresponds to the under-determined setting ρs < 1 − (1 − ρr)

2. The
common setting considered in the literature (e.g., [55, 104, 105] is the zoomed-in
region where ρr ≪ ρs ≪ 1. On the other hand, our local convergence analysis
covers the entire region in which the rank ratio and the sampling rate are not
necessarily small.
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Figure 7.7: Convergence of IHT with step size η = n1n2/s under the setting
ρs = .2 and ρr = 0.0001. With the matrix dimension being 10000, the difference
between η = n1n2/s and the optimal step size ηopt given in (7.26) is as small as
0.003. The blue solid line represents the error through IHT iterations. The red
and yellow dashed lines represent the exponential decrease at rates ρ∞opt = 0.056
given in (7.26) and 0.5 given in [55], respectively. It can be seen that our estimate
of the rate is tighter than the 0.5 global upper-bound in this asymptotic regime.
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In addition, the optimal step size selected using this strategy and the corresponding

optimal rate are given by

η∞opt =
1

(1− ρr)2ρs + ρr(2− ρr)(1− ρs)
,

ρ∞opt =
2
√

(1− ρr)2ρsρr(2− ρr)(1− ρs)

(1− ρr)2ρs + ρr(2− ρr)(1− ρs)
. (7.26)

Figure 7.6 demonstrates the rate of convergence in various setting of ρr and ρs.

Note that if we evaluate this step-size choice under the regime suggested in [104,

105], i.e., limmin{n1,n2}→∞ ρs = 0 and limm→∞ ρr/ρ
2
s = 0, then

ηopt =
1

ρs + 2ρr + o(ρs)
=

1

ρs

(
1 + o(ρs)

)
,

ρopt = 2

√
2ρr
ρs

(
1 + o(ρs)

)
. (7.27)

Comparing this with the step size 1/ρs selected in [55, 105], this provides the in-

sight that the step size used in the approach of [105] not only guarantees linear

convergence but also is optimal and cannot be improved upon. Notwithstanding,

our local convergence analysis offers more precise estimate of the convergence rate

compared to the 1/2 upper bound in prior works. In particular, in the aforemen-

tioned regime (ρr ≪ ρs), our estimate of the rate ρopt approaches 0, which is much

faster than the upper bound 1/2 (see Fig. 7.7).



327

0.05 0.1 0.15 0.2 0.25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-5

-4

-3

-2

-1

0

(a) n1 = 500, n2 = 400
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Figure 7.8: The coefficient of variation (on a log10 scale) of the empirical rate
shown in Fig. 7.5-(a) and (b), respectively. In each plot, the black dashed line
corresponds to the boundary line 1 − ρs = (1 − ρr)

2 and the black region on
the bottom-right corner corresponds to the settings where no linear convergence
is observed (i.e., the empirical rate is set to 1). The darker color in the right
plot demonstrates the increasing concentration of the empirical rate as a random
variable when the dimensions grow larger. It is also interesting to note that the
variability in relation to the mean decreases as it approaches the boundary line
(i.e., from the top-left corner to the bottom-right corner).
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7.7.3 Proof of Theorem 7.1

7.7.3.1 Proof of Lemma 7.1

By the definition of the error matrix, we have

E(k+1) = X(k+1) −M

=
(
PΩ̄

(
Pr(X

(k))
)
+ PΩ(M)

)
−
(
PΩ(M ) + PΩ̄(M)

)
= PΩ̄

(
Pr(M +E(k))−M

)
. (7.28)

From Proposition 7.1, we can reorganize (7.5) to obtain

Pr(M +E(k))−M = E(k) − PU⊥E
(k)PV⊥ +R(E(k)).

Substituting the last equation back into (7.28) yields the recursion on the error

matrix as in (7.12).

Next, let us denote e(k) = S⊤
Ω̄
vec(E(k)), for k = 1, 2, . . .. Vectorizing equation

(7.12) and left-multiplying both sides with SΩ̄ yield

e(k+1) = S⊤
Ω̄ vec

(
PΩ̄

(
E(k) − PU⊥E

(k)PV⊥ +R(E(k))
))

.
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Using the property of selection matrices in Definition 7.2, we further have

e(k+1) = S⊤
Ω̄SΩ̄S

⊤
Ω̄ vec

(
E(k) − PU⊥E

(k)PV⊥ +R(E(k))
)

= S⊤
Ω̄ vec

(
E(k) − PU⊥E

(k)PV⊥ +R(E(k))
)
.

Since vec(PU⊥E
(k)PV⊥) = (PV⊥ ⊗ PU⊥) vec(E

(k)), the last equation can be repre-

sented as

e(k+1) = S⊤
Ω̄ vec(E(k))− S⊤

Ω̄(PV⊥ ⊗ PU⊥) vec(E
(k)) + S⊤

Ω̄ vec
(
R(E(k))

)
. (7.29)

On the other hand, (7.12) implies, for any k ≥ 1, E(k) = PΩ̄(E
(k)) and

vec(E(k)) = vec
(
PΩ̄(E

(k))
)
= SΩ̄S

⊤
Ω̄ vec(E(k)) = SΩ̄e

(k).

Substituting the last equation into the RHS of (7.29) yields (7.13).

7.7.3.2 Proof of Lemma 7.2

Applying the triangle inequality to the RHS of (7.13) yields

∥∥e(k+1)
∥∥
2
≤
∥∥(I −H)e(k)

∥∥
2
+
∥∥r(e(k))

∥∥
2
, (7.30)
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where we recall H = S⊤
Ω̄
(PV⊥ ⊗ PU⊥)SΩ̄. By the definition of the operator norm,

we have

∥∥(I −H)e(k)
∥∥
2
≤ ∥I −H∥2

∥∥e(k)
∥∥
2

= max
i

{
|1− λi(H)|

}
·
∥∥e(k)

∥∥
2

=
(
1− λmin(H)

) ∥∥e(k)
∥∥
2
, (7.31)

where the last equality stems from the fact that all eigenvalues of H lie between

0 and 1. From (7.30) and (7.31), we obtain

∥∥e(k+1)
∥∥
2
≤
(
1− λmin(H)

) ∥∥e(k)
∥∥
2
+
∥∥r(e(k))

∥∥
2
. (7.32)

The conclusion of lemma follows from the fact that

∥∥e(k)
∥∥
2
=
∥∥PΩ̄

(
E(k)

)∥∥
F
=
∥∥E(k)

∥∥
F

and

∥∥r(e(k))
∥∥
2
≤
∥∥R(E(k))

∥∥
F
≤ c1

σr

∥∥E(k)
∥∥2
F
.



331

7.7.4 Details of Example 7.1

7.7.4.1 The first case

Using the same argument as in Lemma 5.3 in [232], we can replace the complex

matrix in (7.21) by a real PSD matrix and prove the following lemma:

Lemma 7.5. Let a = [a1, . . . , aqn]
⊤ is a random vector with i.i.d entries, where

ai ∼ N (0, 1/n). Then for any sequence of qn × qn PSD matrices Mqn with uni-

formly bounded spectral norms ∥Mqn∥2, we have

(
a⊤Mqna− 1

n
tr(Mqn)

) p→ 0 as n → ∞.

Proof. To simplify our notation, let us denote the (i, j)-th entry of Mqn by Mij

and δij is the indicator of the event i = j. Since ai are i.i.d normally distributed,

we have

E[ai] = 0, E[aiaj] = δij
1

n
, E[aiajakal] = (δijδkl + δikδjl + δilδjk)

1

n2
, (7.33)

for any indices 1 ≤ i, j, k, l ≤ n. In order to prove
(
a⊤Mqna− 1

n
tr(Mqn)

) p→ 0, it

is sufficient to show that
E[a⊤Mqna] =

1
n
tr(Mqn),

Var(a⊤Mqna) → 0 as n → ∞.
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First, by the linearity of expectation, we have

E[a⊤Mqna] = E
[∑

i,j

Mijaiaj

]
=
∑
i,j

MijE[aiaj]

=
∑
i,j

Mijδij
1

n
=

1

n

qn∑
i=1

Mii =
1

n
tr(Mqn). (7.34)

Second, by rewriting the variance of the summation
∑

i,j Mijaiaj in terms of the

sum of covariances, we obtain

Var(a⊤Mqna) = Var
(∑

i,j

Mijaiaj

)
=
∑
i,j,k,l

Cov(Mijaiaj,Mklakal). (7.35)

Using the formula

Cov(X, Y ) = E[XY ]− E[X]E[Y ], (7.36)

and the linearity of expectation, (7.35) can be represented as

Var(a⊤Mqna) =
∑
i,j,k,l

MijMkl

(
E[aiajakal]− E[aiaj]E[akal]

)
=
∑
i,j,k,l

MijMkl

(
δikδjl + δilδjk

) 1
n2

=
2

n2

∑
i,j

M2
ij =

2

n2
∥Mqn∥2F . (7.37)

Since Mqn is PSD and has bounded spectral norm, all of its eigenvalues are



333

bounded by 0 ≤ λi(Mqn) ≤ C, for some constant C, and hence,

∥Mqn∥2F =

qn∑
i=1

λ2
i (Mqn) ≤ qnC2.

Thus, substituting back into (7.37) yields

Var(a⊤Mqna) ≤
2

n2
qnC2 → 0 as n → ∞.

This completes our proof of the lemma.

7.7.4.2 The second case

Similarly, we consider the following lemma:

Lemma 7.6. Let b = [b1, . . . , bqn] and c = [c1, . . . , cqn] are random vectors with

i.i.d entries, where bi, cj ∼ N (0, 1/n). Denote m = n2, k = q2 and a = b ⊗ c.

Then for any sequence of km × km PSD matrices Mkm with uniformly bounded

spectral norms ∥Mkm∥2, we have

(
a⊤Mkma− 1

m
tr(Mkm)

) p→ 0 as n → ∞.

Proof. DenoteM[ij] is the (i, j)-th qn×qn block ofMkm. Then it is straightforward
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to verify that

a⊤Mkma =
∑
i,j

bi(c
⊤M[ij]c)bj.

In order to prove
(
a⊤Mkma− 1

m
tr(Mkm)

) p→ 0, it is sufficient to show that


E[a⊤Mkma] =

1
m
tr(Mkm),

Var(a⊤Mkma) → 0 as n → ∞.

First, we use the linearity of expectation to obtain

E[a⊤Mkma] = E
[∑

i,j

bi(c
⊤M[ij]c)bj

]
=
∑
i,j

E[bibj]E[c⊤M[ij]c].

From (7.34) and Lemma 7.5, the last equation is equivalent to

E[a⊤Mkma] =
∑
i,j

δij
1

n
· 1
n
tr(M[ij]) =

1

m
tr(Mkm).

Second, we have

Var(a⊤Mkma) = Var
(∑

i,j

bi(c
⊤M[ij]c)bj

)
=
∑
i,j,k,l

Cov
(
bi(c

⊤M[ij]c)bj, bk(c
⊤M[kl]c)bl

)
. (7.38)
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From (7.36), each covariance on the RHS of (7.38) can be represented as

Cov
(
bi(c

⊤M[ij]c)bj, bk(c
⊤M[kl]c)bl

)
= E[bibjbkbl] · E[c⊤M[ij]c · c⊤M[kl]c]

− E[bibj] · E[bkbl] · E[c⊤M[ij]c] · E[c⊤M[kl]c].

(7.39)

Lemma 7.7. Let P and Q be matrices in Rqn×qn. Then

E[c⊤Pc · c⊤Qc] =
tr(P ) tr(Q) + tr(PQ⊤) + tr(PQ)

n2
.

The proof of Lemma 7.7 is straightforward from (7.33) and is omitted in this

chapter. From Lemma 7.7 and (7.33), we can simplify (7.39) as

Cov
(
bi(c

⊤M[ij]c)bj, bk(c
⊤M[kl]c)bl

)
=

1

n4

(
tr(M[ij]M[kl]) + tr(M[ij]M

⊤
[kl])

+ tr2(M[ij]) + tr(M 2
[ij]) + tr(M[ij]M

⊤
[ij])

+ tr(M[ij]) tr(M
⊤
[ij]) + tr(M 2

[ij])
)
.

Substituting the last equation back into (7.38) yields

Var(a⊤Mkma) =
2

n4

(∑
i,j

tr2(M[ij]) +
∑
i,j

tr(M[ii]M[jj])

+
∑
i,j

tr(M⊤
[ij]M[jj]) +

∑
i,j

tr(M 2
[ij])
)
. (7.40)

Next, we bound each term on the RHS of (7.40). To that end, we utilize the
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following lemma:

Lemma 7.8. For any matrices A,B ∈ Rn×n, it holds that

1. ∥A∥F ≤
√
n ∥A∥2,

2. tr2(A) ≤ n ∥A∥2F ,

3. tr(A⊤B) ≤ ∥A∥F ∥B∥F ≤ n ∥A∥2 ∥B∥2,

4. tr(A2) ≤ ∥A∥2F = tr(A⊤A).

The proof of Lemma 7.8 can be found in [151] - Chapter 5. Applying Lemma 7.8

with the blocks of size qn× qn, we obtain

∑
i,j

tr2(M[ij]) ≤
∑
i,j

qn
∥∥M[ij]

∥∥2
F
= qn ∥M∥2F

≤ (qn)3 ∥M∥2 ≤ C(qn)3,

∑
i,j

tr(M[ii]M[jj]) ≤
∑
i,j

qn
∥∥M[ii]

∥∥
2

∥∥M[jj]

∥∥
2

≤
∑
i,j

qn ∥M∥2 ∥M∥2 = C2(qn)3,

∑
i,j

tr(M⊤
[ij]M[jj]) =

∑
i,j

∥∥M[ij]

∥∥2
F
= ∥M∥2F ≤ C(qn)2,
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∑
i,j

tr(M 2
[ij]) ≤

∑
i,j

∥∥M[ij]

∥∥2
F
= ∥M∥2F ≤ C(qn)2.

Therefore, (7.40) can be bounded as

Var(a⊤Mkma) ≤
2

n4
(C(qn)3 + C2(qn)3 + 2C(qn)2).

The conclusion of the lemma follows by the fact that the RHS of the last equation

which approaches 0 as n → ∞.
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Chapter 8: Accelerating Iterative Hard Thresholding for Low-Rank

Matrix Completion via Adaptive Restart1

This chapter introduces the use of adaptive restart to accelerate iterative hard

thresholding (IHT) for low-rank matrix completion. First, we analyze the local

convergence of accelerated IHT in the non-convex setting of matrix completion

problem (MCP). We prove the linear convergence rate of the accelerated algo-

rithm inside the region near the solution. Our analysis poses a major challenge

to parameter selection for accelerated IHT when no prior knowledge of the “local

Hessian condition number” is given. To address this issue, we propose a simple

adaptive restart algorithm for MCP to recover the optimal rate of convergence

at the solution, as motivated in [164]. Our numerical result verifies the theoreti-

cal analysis as well as demonstrates the outstanding performance of the proposed

algorithm.

1This work has been published as: Trung Vu and Raviv Raich. “Accelerating Iterative Hard

Thresholding for Low-Rank Matrix Completion via Adaptive Restart.” In Proceedings of IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2917-2921.

IEEE, 2019.
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8.1 Introduction

Low-rank matrix completion is a fundamental problem that arises in many areas of

signal processing and machine learning such as collaborative filtering [176], system

identification [137] and dimension reduction [31]. The problem can be explained

as follows. Let M ∈ Rm×n be the underlying matrix with low rank r and a subset

its entries S = {(i, j) | Mij is observed}. We aim to recover the unknown entries

of M , belonging to the complement set Sc. Alternatively, one would solve the

following optimization problem:

min
X∈Rm×n

rank(X) s.t. Xij = Mij, ∀(i, j) ∈ S. (8.1)

In one of the pioneer works, Candès and Recht [33] introduced a convex relaxation

to the original non-convex matrix completion problem and presented conditions

under which the solutions of the two problems coincide. Moreover, they provided

an expression for the number of known entries required to recover the original ma-

trix. This breakthrough leads to the class of proximal-type algorithms for nuclear

norm minimization [27, 107, 145, 205] with rigorous mathematical guarantees and

extensions of classic acceleration techniques. The disadvantage of convex-relaxed

methods, nonetheless, is either high computational complexity (for interior-point

methods) or slow convergence rate (often sublinear for proximal-type methods).

To address those issues, iterative hard thresholding has been proposed to directly

solve the non-convex rank minimization problem [79,104,125]. Each IHT iteration

takes one step in the direction of the gradient and one step projecting onto the
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set of rank-r matrices. Since the process is akin to hard-thresholding singular val-

ues, we refer to the methods using it as iterative hard thresholding algorithms, as

opposed to their aforementioned soft thresholding counterparts. When the solu-

tion is low-rank, IHT is extremely efficient in both computational complexity and

empirical convergence (linear rate). Notwithstanding, mathematical guarantees

of non-convex IHT algorithms for MCP are generally restricted to local conver-

gence [46,120].

Despite the similarity between IHT and projected gradient methods, there have

been but a few efforts in accelerating IHT and characterizing the performance

thereby. In a very recent work, Khanna and Kyrillidis [116] introduces the use

of acceleration to plain IHT yet in the context of rank minimization with affine

constraints (ARMP). The authors provided convergence guarantees based on re-

stricted strong convexity and smoothness properties of the loss function. However,

as pointed out in [33], the results and techniques for ARMP cannot apply to

MCP for which the restricted properties does not hold. Additionally, they left an

open question on the optimal momentum step sizes that guarantee better perfor-

mance over plain IHT. While determining an optimal tuning is NP-hard [204], our

experiment indeed shows that a careless choice of step sizes might worsen the per-

formance of plain IHT in a matrix completion setting. Thus, we believe answering

this question is the key to the practicality of accelerated IHT in both ARMP and

MCP.

In this chapter, we consider IHT for solving low-rank matrix completion and

connect the classic theory of accelerated gradient methods with recent analyses of
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the local convergence of plain IHT in [46]. The contribution of our work is three-

fold: (i) we propose a variant of Nesterov’s Accelerated Gradient in a MCP-IHT

setting and analyze the local convergence thereof, (ii) we identify the choice of

momentum step sizes that guarantees the optimal acceleration, (iii) we propose an

adaptive restart algorithm that can asymptotically recover the local rate in prac-

tice. The numerical experiment verifies our theoretical analysis and demonstrates

the superior performance of the proposed algorithm compared to common existing

methods for low-rank matrix completion.

8.2 Preliminaries

We begin with a review of some preliminaries on iterative hard thresholding meth-

ods for low-rank matrix completion.

Definition 8.1. Let M ∈ Rm×n(m ≥ n) be a rank-r matrix and M = UΣV T be

its singular value decomposition (SVD), where Σ is a diagonal m× n matrix with

diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0

and U, V are m×m and n×n unitary matrices, respectively. We partition U,Σ, V
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as follows:

U =

[
U1 U2

]
,Σ =

Σ1 0

0 Σ2

 , V =

[
V1 V2

]

where Σ1 = diag(σ1, . . . , σr), Σ2 = 0; U1, V1 and U2, V2 are semi-unitary matrices

corresponding to the partition of Σ.

Definition 8.2. A row selection matrix S ∈ Rs×m(s ≤ m) is a semi-unitary

matrix obtained by a subset of s rows from the identity matrix Im. Left-multiplying

a matrix X ∈ Rm×n by S returns an s× n matrix corresponding to set of rows in

X.

Definition 8.3. Sampling operator XS maps the matrix entries not in S to 0:

[XS ]ij =


Xij if (i, j) ∈ S,

0 if (i, j) ∈ Sc.

Definition 8.4. Let X ∈ Rm×n be a matrix with arbitrary rank. Define the rank-r

projection of X as:

Pr(X) ∈ argmin
Y ∈Rm×n

∥Y −X∥F s.t. rank(Y ) ≤ r.

The solution of this minimization is obtained by computing the top r singular

values and vectors of X [61]. Moreover, this projection is unique if either σr(X) >

σr+1(X) or σr(X) = 0, where σr(.) denotes the r-th largest singular value. In
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the rest of this chapter, we implicitly refer the solution of problem (8.1) and its

SVD to the notations in Definition 8.1. This also implies our assumption that

rank(M) = r. Furthermore, we denote the cardinality of S by s and the row

selection matrix corresponding to Sc by Sc ∈ R(mn−s)×mn.

8.3 Background

8.3.1 ARMP-IHT versus MCP-IHT

Iterative hard thresholding for low-rank matrices was first proposed in the context

of ARMP. In [104], Jain et. al. considered the following robust formulation of

ARMP:

min
X∈Rm×n

1

2
∥A(X)− b∥22 s.t. rank(X) ≤ r (8.2)

where A : Rm×n → Rs is an affine transformation and b ∈ Rs is the set of indi-

rect observations. Adapting the idea of projected gradient descent, the authors

proposed the Singular Value Projection (SVP) algorithm with the basic update

X(k) = Pr(X
(k−1) − ηkAT (A(X(k−1))− b)).

Under assumptions on Restricted Isometry Property (RIP) of the affine operatorA,

the authors showed that their algorithm converges to the solution at a linear rate.

In an independent work, Goldfarb and Ma [79] proved the geometric convergence
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Algorithm 8.1 Iterative Hard Thresholding

1: X(0) = MS
2: for k = 1, 2, . . . do
3: X(k) = Pr

(
X(k−1) − αk[X

(k−1) −M ]S
)

for a special case of unit step size. Later on, there have been efforts in improving

the performance of ARMP-IHT, namely Normalized IHT [201] and accelerated

IHT [116]. All of these works use the standard RIP assumptions in order to prove

the global convergence.

The matrix completion problem is a special case of ARMP where the affine

operator A is a sampling operator:

min
X∈Rm×n

∥XS −MS∥2F s.t. rank(X) ≤ r. (8.3)

Unfortunately, this operator does not satisfy RIP in general, shattering the global

convergence guarantees established in ARMP. Still, Jain et. al. suggested to ap-

ply SVP for solving MCP (see Algorithm 8.1) and made a conjecture that SVP

converges linearly to the solution matrix M with high probability, provided M is

incoherent [104]. It took some time before the first theoretical guarantee is ob-

tained in [46], considering a special case of SVP, called IHTSVD algorithm. When

the step size αk equals 1, one can simplify the gradient update in Algorithm 8.1

as X(k−1) − αk[X
(k−1) −M ]S = [X(k−1)]Sc +MS . For convenience, we call this op-

erator the observation projection, denoted by PM,S . It simply sets entries of X(k)

that are in S to those corresponding values of M . The IHT iterates now serve

as alternating projections between Pr and PM,S . More importantly, the authors
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provided a quantitative analysis on the local convergence of IHTSVD, based on

the approximation of rank-r projection operator near the solution. Let us restate

their results in Theorem 8.1 and Theorem 8.2. We use our own notations for the

purpose of consistency.

Theorem 8.1. (Rephrased from [46]) Given the matrix M in Definition 8.1. De-

note ϵ = min
σi>σi+1

{σi − σi+1}. Let ∆ ∈ Rm×n be a perturbation matrix such that

∥∆∥F < ϵ
2
. Then the rank-r projection of M +∆ is given by

Pr(M +∆) = M +∆− U2U
T
2 ∆V2V

T
2 +Q(∆)

where Q : Rm×n → Rm×n satisfies ∥Q(∆)∥F = O(∥∆∥2F ).

Theorem 8.2. (Rephrased from [46]) If the matrix Sc(V2⊗U2) has full rank, then

Algorithm 8.1 with a unit step size converges to M locally at a linear rate 1− σ2,

where σ = σmin

(
Sc(V2⊗U2)

)
. In other words, there exists a neighborhood E(M) of

M and a constant C such that if X(0) ∈ E(M), then

∥∥X(k) −M
∥∥
F
≤ C

(
1− σ2

)k ∥∥X(0) −M
∥∥
F
.

8.3.2 Nesterov’s Accelerated Gradient for ARMP-IHT

We consider the plain IHT as a first-order gradient method and apply momentum

techniques to accelerate it. In [160], Nesterov demonstrated a simple modification

to gradient descent that provably improves the convergence rate dramatically. The
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method, known as Nesterov’s Accelerated Gradient (NAG), can be described as

follows

x(k) = y(k−1) − αk∇f(y(k−1))

y(k) = x(k) + βk(x
(k) − x(k−1))

where f : Rn → R is a continuous differentiable, smooth convex function to be

minimized. For optimizing an µ-strongly convex, L-smooth function, it is well-

known that NAG obtains a linear convergence rate at 1−
√
µ/L by setting [160]

αk =
1

L
, βk =

1−
√
µ/L

1 +
√

µ/L
. (8.4)

This scheme is often called optimal since it achieves the lower complexity bound

for first-order methods on minimizing a strongly convex, smooth function derived

by Nemirovski and Yudin [158].

The idea of accelerating IHT has recently been studied in [116,119] for ARMP.

It is similar in spirit to the Accelerated Proximal Gradient algorithm for solving

nuclear norm regularized linear least square problems [205]. While these algorithms

enjoy the convexity of the norm operator and copious theoretical guarantees of

proximal methods, the burden of non-convex projections over the rank constraint

bears heavily on IHT methods. Moreover, as we mentioned, convergence guarantee

for accelerated ARMP-IHT in [116] does not hold for MCP-IHT. To the best of

our knowledge, there is no convergence analysis for accelerated IHT in a matrix
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completion setting to date.

8.4 Accelerating MCP-IHT

In this section, we first describe an accelerated scheme for Algorithm 8.1 and

provide some analysis of the local convergence of the algorithm. It remains a

challenging problem on parameter selection that guarantees better performance of

accelerated over plain IHT. To address this issue, we propose an adaptive restart

technique that allows us to asymptotically recover the optimal rate of convergence

in practice.

8.4.1 An NAG-variant of MCP-IHT

Motivated by the result in Theorem 8.2, we propose an NAG-variant of IHT in

Algorithm 8.2. First, notice the specific choice of gradient step size (αk = 1)

unveils the observation projection PM,S . Interestingly, this choice of αk matches

the setting in (8.4), as the Lipschitz constant of the sampling operator is L = 1.

Second, the order at each iteration guarantees the sequence {Y (k)} is consistent

with the observation S, i.e., Y (k)
S = MS . As a result, the error matrix depends only

on the entries in Sc, disentangling the subsequent analysis of convergence. Finally,

the algorithm terminates when a stopping criteria is met, returning Y (k) as an

estimate of the matrix. We state our main theoretical result for the convergence of
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Algorithm 8.2 NAG-IHT

1: X(0) = Y (0) = MS
2: for k = 1, 2, . . . do
3: X(k) = Pr

(
Y (k−1)

)
4: Y (k) = PM,S

(
X(k) + βk(X

(k) −X(k−1))
)

NAG-IHT in Theorem 8.3.2 Note that the convergence rate is described in a closed-

form, which can be verified through experiments. By contrast, RIP constants in the

standard analysis for ARMP are NP-Hard to compute [204]. Mainly, the optimal

fixed step size for NAG-IHT is identified, guaranteeing the better performance of

accelerated schemes over plain IHT in theory, i.e., 1− σ versus 1− σ2.

Theorem 8.3. If the matrix Sc(V2 ⊗ U2) has full rank, then Algorithm 8.2 with

momentum step size βk =
1−σ
1+σ

converges to M locally at a linear rate 1− σ, where

σ = σmin(Sc(V2 ⊗ U2)). In other words, there exists a neighborhood E(M) of M

and a constant C such that if Y (0) ∈ E(M), then

∥∥Y (k) −M
∥∥
F
≤ C

(
1− σ

)k ∥∥Y (0) −M
∥∥
F
.

Further, this is the optimal rate for any fixed momentum step size in Algorithm 8.2.

2The proofs of Theorem 8.1 and Theorem 8.3 are given in the Appendix at the end of this

chapter.
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Algorithm 8.3 ARNAG-IHT

1: t = 1, X(0) = Y (0) = MS , f0 =
∥∥∥X(0)

S −MS

∥∥∥2
F

2: for k = 1, 2, . . . do
3: X(k) = Pr

(
Y (k−1)

)
4: Y (k) = PM,S

(
X(k) + t−1

t+2
(X(k) −X(k−1))

)
5: fk =

∥∥∥X(k)
S −MS

∥∥∥2
F

6: if fk > fk−1 then t = 1 else t = t+ 1

8.4.2 An Adaptive Restart Scheme for NAG-IHT

Theorem 8.3 provides a theoretical guarantee for NAG-IHT but it implies that

fixed-step-size strategy is impracticable when the value of σ is unknown. In this

section, we propose a simple way to work around this issue. The idea stems from

adaptive restart techniques for accelerated gradient schemes [164]: reset the mo-

mentum back to zero whenever we observe an increase in the function value. This

facile heuristic was shown to asymptotically recover the local rate of convergence

of NAG on minimizing a strongly convex smooth function and is generally used in

sparse signal recovery. To the best of our knowledge, this work is the first to adopt

adaptive restart heuristics to accelerate IHT. We describe our approach, named

ARNAG-IHT, in Algorithm 8.3. It is important to highlight that the momentum

need to grows from one iteration to the next in order to apply restart techniques.

As a result, we use the incremental step size βk =
t−1
t+2

recommended in optimizing

smooth convex functions [160]. The difference comes with conditional restarts (set-

ting t = 1) whenever the square loss increases. Clearly, all three aforementioned

algorithms share the same computational complexity per iteration.



350

8.5 Empirical Result

This section presents a numerical example to demonstrate our analysis for low-

rank matrix completion. First, we generate a solution matrix M ∈ Rm×n of rank

r by taking the product of an m× r matrix and an r×n matrix, each having i.i.d.

normally distributed entries. Next, we sample the observation set S uniformly at

random. We compare ARNAG-IHT with the following methods: SVT [27], SVP-

NewtonD [104], NIHT [201] and IHTSVD [46]. Although the analyses of SVP-

NewtonD and NIHT only apply for ARMP, it is worth examining their empirical

performance on MCP. In our own implementation of these algorithms, we use the

set of parameters as suggested by the authors. For SVT, we set the step size

δ = 1.2mn
s

and the threshold τ = 5
√
mn. For SVP-NewtonD, we set the step

size ηt = mn
1.2s

. NIHT, IHTSVD and ARNAG-IHT are parameter-free. Finally,

we add NAG-IHT with two different fixed step sizes βk = 1−σ
1+σ

and βk = k−1
k+2

for

comparison.

Figure 8.1 illustrates the Frobenius norm of the error matrix as a function of the

number of iterations. The dashed lines correspond to the theoretical convergence

of IHTSVD (purple) at rate 1− σ2 and NAG-IHT with step size βk =
1−σ
1+σ

(green)

at rate 1 − σ. As can be seen from the figure, both of the algorithms match the

performance predicted in theory. SVT exhibits the slowest convergence due to the

conservative nature of proximal-type algorithms. By contrast, all IHT algorithms

enjoy a fast convergence at linear rates. Without acceleration, SVP-NewtonD

and NIHT are clearly faster than IHTSVD. This can be explained by the fact
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that IHTSVD is a special case of SVP when the gradient step size is 1, whereas

SVP-NewtonD and NIHT are improved versions of SVP with adaptive step sizes.

Notwithstanding, ARNAG-IHT outperforms all other algorithms, asymptotically

recovering the convergence rate at 1 − σ. It approaches the “ideal” NAG-IHT

with optimal step size in this experiment. Finally, we can observe the periodic

behavior of momentum by setting the step size βk = k−1
k+2

, as experienced in the

original version of NAG. However, it can be seen in Fig. 8.1 that this setting does

not generally help improve the convergence of plain IHT.

8.6 Conclusion and Future Work

We proposed the use of NAG to boost the performance of IHT for low-rank matrix

completion. We analyzed the local convergence of NAG-IHT and established the

optimal step size to guarantee faster convergence over plain IHT. We further in-

troduced an adaptive restart algorithm that helps recover the optimal linear rate

of convergence in practice. Our numerical evaluation showed evidence that the

proposed scheme dramatically improves the performance of IHT for matrix com-

pletion problem. Still, understanding when and how our approach works in case

the input matrix is noisy and not close to being low-rank is left as an open question

for future work.
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Figure 8.1: The distance to the solution (in log-scale) as a function of the number
of iterations for different algorithms (solid) and their corresponding theoretical
bounds up to a constant (dashed). The parameters are set to m = 50, n = 40, r =
3, and s = 1000. Asterisks indicate algorithms using theoretical step sizes that are
not available in practice.
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8.7 Appendix

8.7.1 Proof of Theorem 8.1

First, we prove the order of singular values is preserved in a neighborhood of the

rank-r matrix M . Using Weyl’s theorem, we have

|σi(M +∆)− σi| ≤ ∥∆∥F , for 1 ≤ i ≤ n.

For any i such that σi > σi+1: since ∥∆∥F < ϵ
2
≤ σi−σi+1

2
, the following inequality

holds

σi+1(M +∆) < σi+1 +
σi − σi+1

2
= σi −

σi − σi+1

2
< σi(M +∆).

Thus, the order of singular values is preserved. Moreover, since σr(M + ∆) −

σr+1(M+∆) > 0, the top r singular value components are unique and consequently

Pr(M +∆) is unique.

Let M =
∑r

i=1 σiuiv
T
i be the rank-r matrix of interest. From matrix perturba-

tion theory [130], we can describe the decomposition of the perturbed matrix

M +∆ =
r∑

i=1

(σi + δi)(ui + δui)(vi + δvi)
T +

n∑
i=r+1

δi(ui + δui)(vi + δvi)
T , (8.5)

where δi, δui, and δvi have norms in the order of O(∥∆∥F ). Since the top-r

singular values of M are preserved under perturbation, we have Pr(M + ∆) =
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∑r
i=1(σi + δi)(ui + δui)(vi + δvi)

T and (8.5) can be reorganized as

Pr(M +∆)−M = ∆−
n∑

i=r+1

δi(ui + δui)(vi + δvi)
T

= ∆−
n∑

i=r+1

uiδiv
T
i +O(∥∆∥2F ). (8.6)

Further, substituting M =
∑r

i=1 σiuiv
T
i into (8.5) yields

∆ =
n∑

i=1

(
δiuiv

T
i + σiδuiv

T
i + σiuiδvi

T
)
+O(∥∆∥2F ).

Then using the orthogonality of ui, vi, we can obtain

uT
i ∆vi = δi + σi(u

T
i δui + δvi

Tvi) +O(∥∆∥2F ), (8.7)

uT
i ∆vj = O(∥∆∥2F ). (8.8)

The second term on the RHS can be computed as follows

I =
n∑

i=1

(ui + δui)(ui + δui)
T

⇒ 1 = uT
i ui = 1 + uT

i δui + δui
Tui +O(∥∆∥2F )

⇒ uT
i δui = O(∥∆∥2F ).

Similarly, we also have vTi δvi = O(∥∆∥2F ). Substituting back to (8.7), we get
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δi = uT
i ∆vi +O(∥∆∥2F ). Thus, (8.6) can be rewritten as

Pr(M +∆)−M = ∆−
n∑

i=r+1

uiu
T
i ∆viv

T
i +O(∥∆∥2F )

= ∆− U2U
T
2 ∆V2V

T
2 +O(∥∆∥2F ).

where the last equation stems from (8.8).

8.7.2 Proof of Theorem 8.3

The error matrix can be represented as follows:

E(k) = Y (k) −M = PM,S

(
X(k) + β(X(k) −X(k−1))

)
−M

= [(1 + β)(X(k) −M)− β(X(k−1) −M)]Sc

= (1 + β)[Pr(Y
(k−1))−M ]Sc − β[Pr(Y

(k−2))−M ]Sc .

Using a vectorized version of Theorem 8.1, we can reformulate the above equation

as

e(k) = (1 + β)(Id −H)e(k−1) − β(Id −H)e(k−2) + (1 + β)q(e(k−1))− βq(e(k−2)).

where d = mn − s, e(k) = Sc vec(E
(k)), H = Sc(V2 ⊗ U2)(V2 ⊗ U2)

TST
c and

q(Sc vec(∆)) = Sc vec(Q(∆)). By stacking e(k) and e(k−1) together, the recursion
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can be rewritten as follows e(k)

e(k−1)

 =

(1 + β)(Id −H) −β(Id −H)

Id 0


︸ ︷︷ ︸

T

e(k−1)

e(k−2)



+

(1 + β)q(e(k−1))− βq(e(k−2))

0

 .

Now, using Lemma 10 in [166], we obtain the upper bound

∥∥∥∥∥∥∥
 e(k)

e(k−1)


∥∥∥∥∥∥∥
2

≤
(
ρ(T ) + o(1)

)k−1

∥∥∥∥∥∥∥
e(1)
e(0)


∥∥∥∥∥∥∥
2

,

where ρ(T ) is the spectral radius of T and is equal to the maximum magnitude of

any eigenvalue of T .

We compute ρ(T ) as follows. Since H is a real symmetric in Rd×d, let H =

UΛUT be the eigenvalue decomposition of H, where U is a unitary matrix and Λ

is a diagonal matrix whose entries are the eigenvalues of H:

λ1 ≥ λ2 ≥ . . . ≥ λd = σ2.

Define the permutation π as

π(j) =


2j − 1 if j ≤ d,

2j − 2d otherwise.
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Denote the permutation matrix associated with π by Pπ. Then, T can be shown

to be similar to a block diagonal matrix

T ∼ Pπ

U 0

0 U


T (1 + β)(Id −H) −β(Id −H)

Id 0


U 0

0 U

P T
π

=



T1 0 . . . 0

0 T2 . . . 0

...
. . .

...

0 0 . . . Td


,

where each 2× 2 block Tj is of the form

(1 + β)(1− λj) −β(1− λj)

1 0


for j = 1, . . . ,mn. Thus, the eigenvalues of T are also the eigenvalues of all blocks

Tj. Finding optimal step size β is equivalent to solving the following problem

min
β

max
r

|r| such that r2 − (1 + β)(1− λj)r + β(1− λj) = 0,

for some j ∈ {1, . . . , d}. Since H is a semi-unitary matrix, we have λj ≤ 1 for all

j. Each quadratic equation has three cases:

1. If ∆ = (1− λj)

(
(1− λj)(1 + β)2 − 4β

)
= 0 or β = β∗

j =
1−
√

λj

1+
√

λj
, then there

are two real repeat roots rj1 = rj2 =
√

β(1− λj).
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2. If ∆ > 0 or β < β∗
j , then there are two real distinct roots rj1, rj2. The conver-

gence rate depends on max{|rj1| , |rj2|}, which is greater than
√

|β(1− λj)|.

3. If ∆ < 0 or β > β∗
j , then there are two conjugate complex roots satisfying

|rj2| = |rj2| =
√

β(1− λj).

In any case, we have ρ(T ) = maxj |rj| ≥
√

|β(1− λd)|. The equality holds when

setting β = 1−
√
λd

1+
√
λd
.
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Chapter 9: Local Convergence of the Heavy Ball method in

Iterative Hard Thresholding for Low-Rank Matrix Completion1

We present a momentum-based accelerated iterative hard thresholding (IHT) for

low-rank matrix completion. We analyze the convergence of the proposed Heavy

Ball (HB) accelerated IHT near the solution and provide optimal step size pa-

rameters that guarantee the fastest rate of convergence. Since the optimal step

sizes depend on the unknown structure of the solution matrix, we further propose

a heuristic for parameter selection that is inspired by recent results in random

matrix theory. Our experiment on a simple matrix completion setting verifies our

analysis and illustrates the competitive rate of convergence that can be obtained

with the proposed algorithm.

9.1 Introduction

This chapter studies the problem of low-rank matrix completion. Given an m× n

matrix M with low rank r and a set S ⊂ [m] × [n] of its observed entries, where

[m] = {1, 2, . . . ,m}, the goal is to recover the remaining entries of M . Similar to

1This work has been published as: Trung Vu and Raviv Raich. “Local Convergence of the

Heavy Ball method in Iterative Hard Thresholding for Low-Rank Matrix Completion.” In Pro-

ceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 3417-3421. IEEE, 2019.
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sparse recovery, the matrix completion problem (MCP) is shown to be NP-hard

[45], considering the non-convexity of the problem rooted in the rank constraint.

In 2009, Candès and Recht [33] achieved a major breakthrough in matrix com-

pletion. The authors presented a convex relaxation approach to MCP by replacing

the non-convex rank minimization with a (convex) nuclear norm minimization.

They showed that one can perfectly recover most low-rank matrices provided the

cardinality of S is sufficiently large. Following this work, a plethora of algorithms

have been proposed for low-rank matrix completion via nuclear norm minimiza-

tion. Among which, first-order methods (e.g., proximal-type algorithms) have

grown more attractive due to their simplicity and scalability. However, the conser-

vative nature of the soft thresholding operator associated with such methods often

results in slow convergence.

To improve convergence while maintaining scalability, the original non-convex

formulation of the problem was revisited. Empirical evidence indicated that it-

erative approaches to the non-convex rank minimization are faster to converge

compared to their convex counterparts. Notwithstanding, theoretical convergence

guarantees for such methods are non-trivial and often rely on the Restricted Isom-

etry Property (RIP) of the affine transformations in matrix sensing. Most known

examples in this category include iterative hard thresholding (IHT) [104] and alter-

nating minimization (AMMC) [40]. Unfortunately, RIP does not hold for matrix

completion even though this problem is a special case of matrix sensing. Thus,

recent efforts in understanding algorithms for MCP are limited to probabilistic

convergence guarantees [106, 115] or local convergence analysis [46, 120]. More-



361

over, acceleration techniques have been introduced to improve the performance of

IHT in matrix sensing [116, 119]. Under similar assumptions to matrix RIP, the

authors provided an analysis of momentum behavior and proved the linear conver-

gence of accelerated IHT. Empirically, the authors of [116] demonstrated a faster

convergence of accelerated IHT relative to plain IHT. However, they stated that

the sufficient conditions to guarantee such acceleration remain as an open question.

In this work, we develop an accelerated variant of IHT for solving MCP. While

the aforementioned approaches to accelerating IHT employ Nesterov’s Accelerated

Gradient method, we utilize Heavy Ball method due to its faster local convergence.

In particular, we provide a theoretical analysis on the local convergence of the

proposed algorithm and identify the choice of step sizes that guarantees optimal

acceleration. Since it is computationally expensive to perform line search for the

momentum parameters, we propose a simple heuristic to approximate the optimal

values based on recent results from random matrix theory. Our experiment verifies

the convergence rates obtained in our analysis and illustrates the efficiency of the

proposed algorithm.

9.2 Notation

Without loss of generality, assumem ≥ n. Assume the solution matrixM = UΣV T

is a rank-r matrix with singular values σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0.
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We partition U,Σ, V as follows:

U =

[
U1 U2

]
,Σ =

Σ1 0

0 Σ2

 , V =

[
V1 V2

]

where Σ1 = diag(σ1, . . . , σr), Σ2 = 0, and U1, V1, U2, V2 are semi-unitary matrices

corresponding to the partition of Σ.

Let X ∈ Rm×n be an arbitrary matrix. We define the rank-r projection Pr

as Pr(X) =
∑r

i=1 σi(X)ui(X)vi(X)T , where σi(X), ui(X), and vi(X) are the i-th

singular value, column vector, and row vector, of X, respectively. This projection

produces the best rank-r approximation of X [61] and it is unique if either σr(X) >

σr+1(X) or σr(X) = 0. Further, we denote the cardinality of S by s. The sampling

operator XS is given by

[XS ]ij =


Xij if (i, j) ∈ S,

0 if (i, j) ∈ Sc.

where Sc is the complement of S. Let Ŝc = {i+m(j − 1) | (i, j) ∈ Sc}. We define

Sc ∈ R(mn−s)×mn as the row selection matrix obtained by selecting a subset of rows

corresponding to the elements of Ŝc from the mn×mn identity matrix.
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Algorithm 9.1 Iterative Hard Thresholding

1: X(0) = MS
2: for k = 1, 2, . . . do
3: X(k) = Pr

(
X(k−1) − αk[X

(k−1) −M ]S
)

9.3 Background

Iterative hard thresholding for matrix recovery was first introduced by Jain et. al. [104]

and quickly became a very attractive method for solving this problem, thanks to

its simplicity and efficiency over the proximal-type algorithms [27]. Despite the

successful development in theoretical analyses of IHT for matrix sensing [116,201],

there has been little progress in understanding the convergence of IHT for low-rank

matrix completion. The lack of RIP guarantees for MCP leaves the global conver-

gence of IHT for MCP as an open question. Nonetheless, empirical performance

analysis of the algorithm often shows linear convergence of the approach. Hence,

there have been efforts to establish local convergence guarantees [46,120]. Notably,

the authors of [46] showed that the local rate of convergence of MCP-IHT can be

described in a closed-form. We review the IHT algorithm for matrix completion

in Algorithm 9.1 and restate the local convergence results in Theorem 9.1 and

Theorem 9.2, using our aforementioned notations for consistency.

Theorem 9.1. (Rephrased from [46]) Let ∆ ∈ Rm×n be a perturbation matrix such

that ∥∆∥F < ϵ
2
, where ϵ = min

σi>σi+1

{σi−σi+1}. Then the rank-r projection of M +∆

is given by

Pr(M +∆) = M +∆− U2U
T
2 ∆V2V

T
2 +Q(∆) (9.1)
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where Q : Rm×n → Rm×n satisfies ∥Q(∆)∥F = O(∥∆∥2F ).

Note that (9.1) can be vectorized as vec
(
Pr(M + ∆)

)
= vec(M) +

(
Imn − (V2 ⊗

U2)(V2 ⊗ U2)
T
)
vec(∆) + q(vec(∆)), where q(vec(∆)) = vec(Q(∆)). Denote the

error vector e(k) = Sc vec(X
(k) −M). Then considering Algorithm 9.1 with a unit

step size (αk = 1), one can show a recursion of the error vector as follows

e(k) = (Imn−s −H)e(k−1) + q(e(k−1))

where H = Sc(V2 ⊗ U2)(V2 ⊗ U2)
TST

c . Further, let L = λmax(H) and µ = λmin(H)

be the largest and smallest eigenvalues of H, respectively. Since H is positive semi-

definite and Sc, V2, U2 are semi-unitary matrices, it holds that 0 ≤ µ ≤ L ≤ 1.

Theorem 9.2. (Rephrased from [46]) If µ > 0, then Algorithm 9.1 with a unit

step size converges to M locally at a linear rate 1− µ. In other words, there exists

a neighborhood E(M) of M and a constant C such that if X(0) ∈ E(M), then

∥∥X(k) −M
∥∥
F
≤ C

(
1− µ

)k ∥∥X(0) −M
∥∥
F
.

Interestingly, the convergence rate 1− µ depends only on the solution M and the

set of observed entries S. It is also noteworthy that similar local linear convergence

has been studied later in [120]. However, there is no explicit formulation of the

convergence rate specified by the authors.

To gain intuition into accelerated IHT, let us start with classic results on the

convergence of first-order methods for minimizing convex quadratic functions. In
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Table 9.1, the parameter selection is optimal in the sense that no other choice

of fixed step sizes achieves faster convergence rate (see details in [128]). We list

methods in ascending order of the convergence rate. In fact, Heavy Ball method

not only has the fastest rate but also achieves the lower bound on convergence rate

for any first-order methods for minimizing µ-strongly convex, L-smooth functions

[158]. Extending these results to study the local convergence of those algorithms

for optimizing a non-convex function, one could argue that the objective function

can be well approximated by a quadratic inside the region near the optimum.

Hence, we consider an HB-variant of MCP-IHT and analyze its local convergence

behavior.

9.4 Main results

We begin this section by a brief discussion on parameter selection for plain IHT. In

[104], the authors suggested an empirical choice of αk =
mn

(1+δ)s
, where δ is a constant

determined from experiments. To further investigate the step-size selection, we

examine the local convergence rate for Algorithm 9.1 and obtain the optimal step

size in the following theorem.

Theorem 9.3. If µ > 0, then Algorithm 9.1 with step size αk = 2
L+µ

converges

to M locally at a linear rate 1− 2µ
L+µ

. In other words, there exists a neighborhood

E(M) of M and a constant C such that if X(0) ∈ E(M), then

∥∥X(k) −M
∥∥
F
≤ C

(
1− 2µ

L+ µ

)k ∥∥X(0) −M
∥∥
F
.



367

Algorithm 9.2 HB-IHT

1: X(0) = X(1) = MS
2: for k = 1, 2, . . . do
3: X(k+1) = Pr

(
X(k) − αk[X

(k) −M ]S
)
+ βk(X

(k) −X(k−1))

Although the optimal step size in Theorem 9.3 is similar to the classical result in

Table 9.1, we note that the analysis addresses the issue on the non-convex nature

of the rank-r projection.

9.4.1 HB-IHT

Similar to the classic Heavy Ball method, we propose an accelerated algorithm

that adds a momentum term to the update in plain IHT (see Algorithm 9.2). This

simple modification to plain IHT maintains the computational complexity of the

algorithm with one additional step of calculating the difference matrix. On the

other hand, the local rate of convergence can be improved significantly. Theo-

rem 9.4 characterizes the local convergence of HB-IHT by providing the optimal

parameter selection that guarantees improvement over plain IHT.2

Theorem 9.4. If µ > 0, then Algorithm 9.2 with step sizes αk =
(

2√
L+

√
µ

)2
, βk =(√L−√

µ√
L+

√
µ

)2
converges to M locally at a linear rate 1− 2

√
µ√

L+
√
µ
. In other words, there

exists a neighborhood E(M) of M and a constant C such that if X(0) ∈ E(M), then

∥∥X(k) −M
∥∥
F
≤ C

(
1−

2
√
µ

√
L+

√
µ

)k ∥∥X(0) −M
∥∥
F
.

2The proofs of Theorem 9.1, 9.3 and 9.4 are given in the Appendix at the end of this chapter.
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Further, this is the optimal rate among all fixed α, β.

It is noteworthy that despite the operation of non-convex rank-r projections, we

still end up with the similar result given in Table 9.1, thanks to the approximation

of Pr given in (9.1).

9.4.2 A Practical Guide to Parameter Selection

Step size selection is critical to the performance of HB-IHT in practice. In this

section, we propose a simple heuristic to determine the values of αk and βk in

Algorithm 9.2 with no prior knowledge about L and µ. The idea is to exploit the

special structure of H in order to estimate its extreme eigenvalues. We express

this matrix in form of H = WW T , where

W = Sc(V2 ⊗ U2) = Sc(V ⊗ U)(S2V ⊗ S2U)
T ,

and S2U ∈ R(m−r)×m, S2V ∈ R(n−r)×n are row selection matrices. Note that W is

a submatrix of the Kronecker product V ⊗ U with the row ratio p = 1 − s
mn

and

the column ratio q = (1− r
m
)(1− r

n
). In this representation, the structure of H is

closely related to the MANOVA random matrix ensemble, and more interestingly,

the limiting density of its eigenvalues is identified by Watcher [219], dating back

to the early 1980s. In his study, Watcher showed that as the size of a MANOVA

matrix with parameters (p, q) approaches infinity, its empirical spectral distribution

(ESD) converges to a deterministic probability measure supported on the interval
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[λ−, λ+] ∪ {0, 1}, where λ± =
(√

p(1− q) ±
√

q(1− p)
)2
. Recently, similar result

was also found by Raich and Kim [171] for the truncation of random unitary

matrices. Moreover, Farrell and Nadakuditi [63] extended the results from Haar

(uniformly) distributed unitary matrices to Kronecker product case. The authors

proved that the ESD of randommatrices of the form Π1(U⊗V )Π2(U⊗V )∗Π1, where

Π1,Π2 are orthogonal projections of ranks pn and qn, respectively, also converges

to the same limiting distribution. Considering H to be an instance of this case,

we conjecture that its spectral distribution will be close to the aforementioned. In

particular,

1. if p < q, then H has no zero eigenvalue and the smallest eigenvalue of H is

close to λ− with high probability,

2. if p+ q > 1, then H has unit eigenvalue and the largest eigenvalue of H is 1.

It is worthwhile to note that both conditions usually hold in practice when q is

rather close to 1. Hence, we propose the following estimation of L and µ:

L̂ = 1, µ̂ =
(√

q(1− p)−
√

p(1− q)
)2
. (9.2)

Empirically, we observe this heuristic significantly outperforms plain IHT in terms

of convergence. However, understanding when and how it works would involve

the non-asymptotic theory of random matrices [180]. For instance, characterizing

the variance of extreme eigenvalues, i.e., difference between µ and µ̂, in case of

Kronecker unitary matrices is much more challenging than their Haar-distributed



370

counterparts. Our experiments suggest that they tend to have wider fluctuations.

We leave this analysis for future direction.

9.5 Numerical Evaluation

This section presents an empirical evaluation of several methods for low-rank ma-

trix completion including the proposed approach. First, we generate a low-rank

solution matrix M ∈ Rm×n by taking the product of an m × r matrix and an

r× n matrix, each having i.i.d. normally distributed entries. Next, we sample the

observation set S uniformly at random. In our experiment, we choose m = 50,

n = 40, r = 3, and s = 1000. For comparison, we consider the following methods:

SVT [27], SVP [104], IHTSVD [46] and AMMC [106]. Although the convergence

guarantee of SVP does not hold for MCP in general, it is interesting to compare

its empirical performance with optimal step size given in Theorem 9.3. In our own

implementation of these algorithms, we use the set of parameters as suggested by

the authors. For the proximal-type SVT algorithm, we set the step size δ = 1.2mn
s

and the threshold τ = 5
√
mn. For SVP, we set the step size ηt =

mn
1.2s

. IHTSVD

and AMMC are parameter-free. Finally, we add HB-IHT with the aforementioned

theoretical optimal step sizes and heuristic step sizes for comparison.

Figure 9.1 illustrates the Frobenius norm of the error matrix as a function of

the number of iterations. The dashed lines correspond to the theoretical conver-

gence of IHTSVD (purple) at rate 1 − µ, optimal step size SVP (yellow) at rate

1 − 2µ
L+µ

and optimal step size HB-IHT (green) at rate 1 − 2
√
µ√

L+
√
µ
. These three
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Figure 9.1: The distance to the solution (in log-scale) as a function of the iteration
number for various algorithms (solid) and their corresponding theoretical bounds
up to a constant (dashed). Asterisks indicate algorithms using theoretical step sizes
that are not available in practice. All algorithms share the same computational
complexity per iteration except AMMC.
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algorithms certainly match the performance predicted in theory. SVT exhibits

the slowest convergence as expected from our foregoing discussion. By contrast,

all IHT algorithms enjoy the linear convergence. Without acceleration, SVP with

step size either mn
1.2s

or 2
L+µ

is clearly faster than IHTSVD. Nevertheless, HB-IHT

with estimated step sizes outperforms all plain IHT algorithms, yet still slower

than HB-IHT with theoretically-optimal step sizes. Finally, we compare the per-

formance of HB-IHT with optimal step sizes with AMMC, which is shown to

converge linearly at rate faster than 1/4 in [106]. While our accelerated algorithm

obtains a comparable rate, it requires significantly less computation per iteration

thanks to the recent breakthroughs in k-SVD algorithms [5], i.e., the iteration

complexity for HB-IHT is O(mnr+ poly(1/ϵ)), compared to O(sm2r2 +m3r3) for

AMMC as claimed in [106].

9.6 Conclusion and Future Work

To summarize, we introduced the use of Heavy Ball method to significantly accel-

erate IHT for low-rank matrix completion. We analyzed the local convergence of

HB-IHT and established the optimal step sizes to guarantee better performance

over plain IHT. We further provided evidence that these optimal values can be

approximated by a simple calculation in practice. Our experiment verified the

analysis and demonstrated the efficiency of the proposed algorithm. Study of our

approach in the noisy case is left for an extended version of this work.
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9.7 Appendix

9.7.1 Proof of Theorem 9.3

Vectorizing Theorem 9.1 yields

vec(Pr(M +∆)−M) = (Imn − (V2 ⊗ U2)(V2 ⊗ U2)
T ) vec(∆) + q(vec(∆)) (9.3)

where q(vec(∆)) = vec(Q(∆)). From the IHT update, the error matrix is

E(k) = X(k) −M

= Pr

(
X(k−1) − α[X(k−1) −M ]S

)
−M

= Pr

(
M + E(k−1) − α[E(k−1)]S

)
−M.

From (9.3), we have

e(k) = vec(E(k))

= (Imn −WW T ) vec(E(k−1) − α[E(k−1)]S) + q
(
vec(E(k−1) − α[E(k−1)]S)

)
= (Imn −WW T )(Imn − αSTS)e(k−1) + q

(
(Imn − αSTS)e(k−1)

)
= (Imn −WW T )((1− α)Imn + αST

c Sc)e
(k−1) + C1q(e

(k−1))

=

(
Imn − α

(
(Imn −WW T )(Imn − ST

c Sc) +
1

α
WW T

))
e(k−1) + C1q(e

(k−1)),
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where W = V2 ⊗ U2 ∈ Rmn×(m−r)(n−r) and C1 is some positive constant. Now,

denote

Zα = (Imn −WW T )(Imn − ST
c Sc) +

1

α
WW T .

Using Lemma 10 in [166], we obtain the upper bound

∥∥e(k)∥∥
2
≤
(
ρ(Imn − αZα) + o(1)

)k ∥∥e(0)∥∥
2
,

where ρ(Imn−αZα) is the spectral radius of Imn−αZα and is equal to the maximum

magnitude of any eigenvalue of Imn − αZα. Denote λ1 ≥ λ2 ≥ . . . ≥ λmn ≥ 0 are

eigenvalues of Zα and assume that Zα is diagonalizable. Then, finding optimal

step size α is equivalent to solving the following problem

min
α

max
1≤j≤mn

|1− αλj| . (9.4)

The solution of the optimization problem (9.4) is given by α = 2
λ1+λmn

and the

optimal rate ρ(I − αZα) = λ1−λmn

λ1+λmn
. Now, using the following lemma to simplify

the calculation of λj, we obtain λ1 = L and λmn = µ.

Lemma 9.1. For any λ ∈ Λ(Zα), we have either λ = 1
α
or λ = 1 or λ ∈ Λ(H),

where H = ScWW TST
c .

Proof. For any λ ∈ Λ
(
(Imn − WW T )(Imn − ST

c Sc) +
1
α
WW T

)
, there exists v ∈
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Cmn, v ̸= 0 such that

(
(Imn −WW T )(Imn − ST

c Sc) +
1

α
WW T

)
v = λv. (9.5)

Left-multiplying both sides with (Imn−WW T ) and recall thatW TW = I(m−r)(n−r),

we have

(Imn −WW T )(Imn − ST
c Sc)v = λ(Imn −WW T )v.

Substituting back into (9.5), we get

λ(Imn −WW T )v +
1

α
WW Tv = λv ⇒ (

1

α
− λ)WW Tv = 0.

Hence, we have either λ = 1
α
or WW Tv = 0. In the later case, we can substitute

into (9.5) again to obtain

λv = (Imn −WW T )(Imn − ST
c Sc)v = (Imn − ST

c Sc +WW TST
c Sc)v. (9.6)

Left-multiplying both sides with Sc and recall that ScS
T
c = Imn−s, we have

ScWW TST
c (Scv) = λ(Scv).

If Scv = 0, then plugging into (9.6) yields λ = 1. Otherwise, we have λ ∈

Λ(ScWW TST
c ). This completes our proof of the lemma.
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9.7.2 Proof of Theorem 9.4

The error matrix can be represented as follows

E(k+1) = X(k+1) −M = Pr

(
X(k) − α[X(k) −M ]S

)
+ β(X(k) −X(k−1))−M

=
(
Pr

(
M + E(k) − α[E(k)]S

)
−M

)
+ β

(
E(k) − (E(k−1)

)
.

Similarly to Theorem 10.1, we can vectorize the above equation as

e(k+1) =
(
Imn − αZα

)
e(k) + β(e(k) − e(k−1)) + C1q(e

(k)).

By stacking e(k+1) and e(k) together, the recursion can be rewritten as follows

e(k+1)

e(k)

 =

(1 + β)Imn − αZα −βImn

Imn 0


︸ ︷︷ ︸

T

 e(k)

e(k−1)

+

C1q(e
(k))

0

 .

Now, using Lemma 10 in [166], we obtain the upper bound

∥∥∥∥∥∥∥
e(k+1)

e(k)


∥∥∥∥∥∥∥
2

≤
(
ρ(T ) + o(1)

)k ∥∥∥∥∥∥∥
e(1)
e(0)


∥∥∥∥∥∥∥
2
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where ρ(T ) is the spectral radius of T . Assume that Zα is diagonalizable, then T

is similar to a block diagonal matrix with 2× 2 block Tj of the form 3

1 + β − αλj −β

1 0


for j = 1, . . . ,mn. Thus, the eigenvalues of T are also the eigenvalues of all blocks

Tj. Finding optimal step size β is equivalent to solving the following problem

min
α,β

max |r| such that r2 − (1 + β − αλj)r + β = 0, for some j ∈ {1, . . . ,mn}.

(9.7)

Since ∆ = (1 + β − αλ)2 − 4β, it is easy to verify that

• if ∆ ≤ 0, then |σ1| = |σ2| =
√

|β|,

• if ∆ > 0, then max{|σ1| , |σ2|} >
√
|β|.

The optimization (9.7) becomes

min
α,β

√
β s.t. (1 + β − αλj)

2 − 4β ≤ 0 for all 1 ≤ j ≤ mn

⇔ min
α,β

max
j

∣∣∣1−√αλj

∣∣∣ s.t. β ≥ (1−
√

αλj)
2 for all 1 ≤ j ≤ mn.

(9.8)

3This is shown by performing a change of basis on orthogonal space of H, following by per-

mutations on rows and columns.



378

The solution of the optimization problem (9.8) is given by

α =
( 2√

λ1 +
√
λmn

)2
, β =

(√λ1 −
√
λmn√

λ1 +
√
λmn

)2
.

Finally, we obtain the optimal rate ρ(T ) =
√
λ1−

√
λmn√

λ1+
√
λmn

. Now, using Lemma 9.1, we

obtain λ1 = L and λmn = µ.
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Chapter 10: Exact Linear Convergence Rate Analysis for Low-Rank

Symmetric Matrix Completion via Gradient Descent1

Factorization-based gradient descent is a scalable and efficient algorithm for solv-

ing low-rank matrix completion. Recent progress in structured non-convex op-

timization has offered global convergence guarantees for gradient descent under

certain statistical assumptions on the low-rank matrix and the sampling set. How-

ever, while the theory suggests gradient descent enjoys fast linear convergence to

a global solution of the problem, the universal nature of the bounding technique

prevents it from obtaining an accurate estimate of the rate of convergence. This

chapter performs a local analysis of the exact linear convergence rate of gradient

descent for factorization-based symmetric matrix completion. Without any addi-

tional assumptions on the underlying model, we identify the deterministic condi-

tion for local convergence guarantee for gradient descent, which depends only on

the solution matrix and the sampling set. More crucially, our analysis provides a

closed-form expression of the asymptotic rate of convergence that matches exactly

with the linear convergence observed in practice. To the best of our knowledge,

1This work has been published as: Trung Vu and Raviv Raich. “Exact Linear Convergence

Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent.” In Proceed-

ings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 3240-3244. IEEE, 2021.
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our result is the first one that offers the exact linear convergence rate of gradient

descent for matrix factorization in Euclidean space for matrix completion.

10.1 Introduction

Matrix completion is the problem of recovering a low-rank matrix from a sampling

of its entries. In machine learning and signal processing, it has a wide range of

applications including collaborative filtering [176], system identification [137] and

dimension reduction [31]. In the era of big data, matrix completion has been

proven to be an efficient and powerful framework to handle the enormous amount

of information by exploiting low-rank structure of the data matrix.

Let M ∈ Rn×m be a rank r matrix with 1 ≤ r ≤ min(n,m), and Ω = {(i, j) |

Mij is observed} be an index subset of cardinality s such that s ≤ nm. The goal

is to recover the unknown entries of M . Matrix completion can be formulated

as a linearly constrained rank minimization or a rank-constrained least squares

problem [33]. Two popular approaches to solving matrix completion are convex

relaxation via nuclear norm and non-convex factorization. The former approach,

motivated by the success of compressed sensing, replaces the matrix rank by its

convex surrogate (the nuclear norm). Extensive work on designing convex opti-

mization algorithms with guarantees can be found in [27,33,107,145,205]. While on

the theoretical side, the solutions of the relaxed problem and the original problem

can be shown to coincide with high probability, on the practical side, computational

complexity concerns diminish the applicability of these algorithms. When the size
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of the matrix grows rapidly, storing and optimizing over a matrix variable become

computationally expensive and even infeasible. In addition, it is evident this ap-

proach suffers from slow convergence [117,213]. In the second approach, the origi-

nal rank-constrained optimization is studied. Interestingly, by reparametrizing the

n×mmatrix as the product of two smaller matricesM = XY ⊤, forX ∈ Rn×r and

Y ∈ Rm×r, the resulting equivalent problem is unconstrained and more computa-

tionally efficient to solve [26]. Although this problem is non-convex, recent progress

shows that for such problem any local minimum is also a global minimum [76,199].

Thus, basic optimization algorithms such as gradient descent [43,144,199] and al-

ternating minimization [40,91,92,106] can provably solve matrix completion under

a specific sampling regime. Alternatively, the original rank-constrained optimiza-

tion problem can be solved without the aforementioned reparameterization via the

truncated singular value decomposition [46,79,104,105,201,213,214].

Among the aforementioned algorithms, let us draw our attention to the gra-

dient descent method due to its outstanding simplicity and scalability. The first

global convergence guarantee is attributed to Sun and Luo [199]. The authors

proved that gradient descent with appropriate regularization can converge to the

global optima of a factorization-based formulation at a linear rate. Later on,

Ma et. al. [144] proposed that even in the absence of explicit regularization, gra-

dient descent recovers the underlying low-rank matrix by implicitly regularizing

its iterates. The aforementioned results, while establishing powerful guarantees on

the convergence behavior of gradient descent, impose several limitations. For some

methods, the linear convergence rate depends on constants that are not in closed-
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form and are hard to verify in numerical experiments even when the underlying

matrix is known. Second, a solution-independent analysis of the convergence rate

typically offers a loose bound when considered for a specific solution. Third, the

global convergence analysis requires certain assumptions on the underlying model

which largely restrict the setting of the matrix completion problem in practice.

Among such assumptions, one would consider the incoherence of the target ma-

trix, the randomness of the sampling set, and the fact that the rank r and the

condition number of M are small constants as n,m → ∞.

To address these issues, we consider the local convergence analysis of gradient

descent for factorization-based matrix completion. In the scope of this chapter, we

restrict our attention to the symmetric case. We identify the condition for linear

convergence of gradient descent that depends only on the solution M and the

sampling set Ω. In addition, we provide a closed-form expression for the asymp-

totic convergence rate that matches well with the convergence of the algorithm in

practice. The proposed analysis does not require an asymptotic setting for matrix

completion, e.g., large matrices of small rank. We believe that our analysis can be

useful in both theoretical and practical aspects of the matrix completion problem.

10.2 Gradient Descent for Matrix Completion

Notations Throughout the chapter, we use the notations ∥·∥F and ∥·∥2 to de-

note the Frobenius norm and the spectral norm of a matrix, respectively. On the

other hand, ∥·∥2 is used on a vector to denote the Euclidean norm. Boldfaced
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symbols are reserved for vectors and matrices. In addition, the t× t identity ma-

trix is denoted by It. ⊗ denotes the Kronecker product between two matrices,

and vec(·) denotes the vectorization of a matrix by stacking its columns on top

of one another. Let X be some matrix and F (X) be a matrix-valued function

of X. Then, for some positive number k, we use F (X) = O(∥X∥kF ) to imply

limδ→0 sup∥X∥F=δ ∥F (X)∥F / ∥X∥kF < ∞.

We begin by introducing the low-rank matrix completion problem. For sim-

plicity, we focus on the symmetric case where M is an n×n positive semi-definite

(PSD) matrix of rank r and the sampling set Ω is symmetric.2 Assume the rank-r

economy version of the eigendecomposition of M is given by

M = UΛU⊤,

where U ∈ Rn×r is a semi-orthogonal matrix and Λ ∈ Rr×r is a diagonal matrix

containing r non-zero eigenvalues of M , i.e., λ1 ≥ . . . ≥ λr > 0. Since M can be

represented as

M = (UΛ1/2)(UΛ1/2)⊤,

we can write M = X∗X∗⊤, such that X∗ = UΛ1/2 ∈ Rn×r. Therefore, the

factorization-based formulation for matrix completion can be described using the

2If the sampling set is not symmetric, one can symmetrize it by adding (j, i), for any (i, j) ∈ Ω,

to Ω since Mji = Mij .
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Algorithm 10.1 (Non-convex) Gradient Descent

Require: X0, PΩ(M), η
Ensure: {Xk}
1: for k = 0, 1, 2, . . . do

2: Xk+1 = Xk − ηPΩ

(
XkXk⊤−M

)
Xk

following non-convex optimization:

min
X∈Rn×r

1

4

∑
(i,j)∈Ω

(
[XX⊤]ij −Mij

)2
. (10.1)

Denote PΩ : Rn×n → Rn×n the projection onto the set of matrices supported in Ω,

i.e.,

[PΩ(Z)]ij =


Zij if (i, j) ∈ Ω,

0 otherwise.

The objective function in (10.1) is rewritten as f(X) = 1
4

∥∥PΩ(XX⊤−M )
∥∥2
F
.

The gradient of f(X) is given by

∇f(X) = PΩ(XX⊤−M )X. (10.2)

Starting from an initial X0 (usually through spectral initialization [144]), the gra-

dient descent algorithm (see Algorithm 10.1) simply updates the value of X by

taking steps proportional to the negative of the gradient ∇f(X).
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10.3 Local Convergence Analysis

This section presents the local convergence result of Algorithm 10.1. While recent

work on the global guarantees of the algorithm has shown the linear behavior

under certain statistical models, we emphasize that no closed-form expression of

the convergence rate was provided. Our result in this chapter, on the other hand,

does not make any assumption about the underlying model for M and Ω, and

provides an exact expression of the asymptotic rate of convergence. Let us first

introduce some critical concepts used in our derivation.

Definition 10.1. Denote Ω̄ = {(i−1)n+ j | (i, j) ∈ Ω}. The row selection matrix

S is an s× n2 matrix obtained from a subset of rows corresponding to the elements

in Ω̄ from the n2 × n2 identity matrix In2.

Definition 10.2. The orthogonal projection onto the null space of M is defined

by PU⊥ = In −UU⊤.

Definition 10.3. Let Tn2 be an n2 × n2 matrix where the (i, j)th block of Tn2 is

the n × n matrix eje
⊤
i for 1 ≤ i, j ≤ n. Then Tn2 can be used to represent the

transpose operator as follows:

vec(E⊤) = Tn2 vec(E) for any E ∈ Rn×n.

We are now in position to state our main result on the asymptotic linear con-

vergence rate of Algorithm 10.1.
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Theorem 10.1. Denote P1 = In2−PU⊥⊗PU⊥, P2 =
1
2

(
In2+Tn2

)
, and P = P1P2.

In addition, let

H = P
(
In2 − η(M ⊕M )(S⊤S)

)
P ,

where M⊕M = M⊗In+In⊗M is the Kronecker sum. Define the spectral radius

of H, ρ(H), as the largest absolute value of the eigenvalues of H. If ρ(H) < 1,

then Algorithm 10.1 produces a sequence of matrices XkXk⊤ converging to M at

an asymptotic linear rate ρ(H). Formally, there exists a neighborhood N (M ) of

M such that for any X0X0⊤ ∈ N (M),

∥∥∥XkXk⊤−M
∥∥∥
F
≤ C

∥∥∥X0X0⊤−M
∥∥∥
F
ρ(H)k, (10.3)

for some numerical constant C > 0.

Remark 10.1. Theorem 10.1 provides a closed-form expression of the asymptotic

linear convergence rate of Algorithm 10.1, which only depends on M , Ω and the

choice of step-size η. We note that the condition for linear convergence, ρ(H) < 1,

is fully determined given M , Ω, and η. It would be interesting to establish a

connection between this condition and the standard statistical model for matrix

completion. For instance, how the incoherence of M and the randomness of Ω

would affect the spectral radius of H? This exploration is left as future work.

In our approach, the following lemma plays a pivotal role in the derivation of
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Theorem 10.1, establishing the recursion on the error matrix XkXk⊤−M :3

Lemma 10.1. Let Ek = XkXk⊤−M . Then

Ek+1 = Ek − η
(
PΩ(E

k)M +MPΩ(E
k)
)
+O(

∥∥Ek
∥∥2
F
).

Furthermore, denote A = In2 − η(M ⊕M )(S⊤S) and ek = vec(Ek), the matrix

recursion can be rewritten compactly as

ek+1 = Aek +O(
∥∥ek
∥∥2
2
). (10.4)

Remark 10.2. Figure 10.1 illustrates the effectiveness of the proposed bound on

the asymptotic rate of convergence given by Theorem 10.1. In Fig. 10.1, the low-

rank solution matrix M is generated by taking the product of a 20×3 matrix X and

its transpose, where X has i.i.d. normally distributed entries. The sampling set Ω

is obtained by randomly selecting the entries of M based on a Bernoulli model with

probability 0.3. Next, we run the economy-SVD on M to compute X∗ = UΛ1/2.

The initialization X0 is obtained by adding i.i.d. normally distributed noise with

standard deviation σ = 10−2 to the entries of X∗. Then we run Algorithm 10.1

with X0, PΩ(M ), and η = 0.5/ ∥M∥2. It is noticeable from Fig. 10.1 that our

theoretical bound ∥e0∥2 ρ(H)k given by the green line predicts successfully the rate

of decrease in
∥∥Ek

∥∥
F
, running parallel to the blue line as soon as

∥∥Ek
∥∥
F
< 10−2.

As far as the approximations are concerned, we compare the changes in the error

3We provide proofs of all the lemmas in the appendix at the end of this chapter.
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modeled by ek+1 = Aek and the error modeled by ek+1 = Hek. While the former

(represented by
∥∥Ake0

∥∥
2
in black) fails to approximate

∥∥Ek
∥∥
F
for
∥∥Ek

∥∥
F
< 10−2,

the later (represented by
∥∥Hke0

∥∥
2
in red) matches

∥∥Ek
∥∥
F
surprisingly well.

In the rest of this section, we shall derive the proof of Theorem 10.1. First,

we present a major challenge met by the traditional approach that uses (10.4)

to characterize the convergence of the error towards zero. Next, we describe our

proposed technique to overcome this difficulty. Finally, we show that our bounding

technique recovers the exact rate of local convergence of Algorithm 10.1.

10.3.1 A Challenge of Establishing the Error Contraction

The stability of the nonlinear difference equation (10.4) is the key to analyze the

convergence of Algorithm 10.1. In essence, linear convergence rate is obtained by

the following lemma:

Lemma 10.2. (Rephrased from the supplemental material of [212]) Let (an)n∈N ⊂

R+ be the sequence defined by

an+1 ≤ ρan + qa2n for n = 0, 1, 2, . . . ,

where 0 < ρ < 1 and q ≥ 0. Then (an) converges to 0 if and only if a0 < 1−ρ
q
. A

simple linear convergence bound can be derived for a0 < ρ1−ρ
q

in the form of

an ≤ a0Kρn, for K =

(
1− a0q

ρ(1− ρ)

)−1

.
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Figure 10.1: Linear convergence of gradient descent for matrix completion. The
decrease in the norm of error matrix Ek through iterations is shown in the blue
dashed line with triangle markers. The black solid line with square markers and
the red dotted line with circle markers represent first-order approximations of
the error using A and H , respectively. Finally, the green dash-dot line is the
theoretical bound (up to a constant) given by ∥e0∥2 ρ(H)k. We use different
markers, i.e., triangle versus circle, to better distinguish the blue line from the
red line, respectively.



390

In order to apply Lemma 10.2 to (10.4), one natural way is to perform the eigen-

decomposition A = QAΛAQ
−1
A , where QA is the square matrix whose columns

are n2 eigenvectors of A, and ΛA is the diagonal matrix whose diagonal elements

are the corresponding eigenvalues of A. Then, left-multiplying both sides of (10.4)

by Q−1
A yields

Q−1
A ek+1 = ΛAQ

−1
A ek +O(

∥∥ek
∥∥2
2
),

where Q−1
A does not affect the O term since its norm is constant. Applying the

triangle inequality4 to the last equation leads to

∥∥Q−1
A ek+1

∥∥
2
=
∥∥ΛAQ

−1
A ek

∥∥
2
+O(

∥∥ek
∥∥2
2
). (10.5)

With the definition of the spectral radius of A using the spectral norm of ΛA, we

have

ρ(A) = ∥ΛA∥2 = sup

{
∥ΛAẽ∥2
∥ẽ∥2

: ẽ ∈ Rn2

, ẽ ̸= 0

}
. (10.6)

Now, using (10.6) and the fact that O(
∥∥ek
∥∥2
2
) = O(

∥∥Q−1
A ek

∥∥2
2
), (10.5) can be

4Given a = b+ c, by triangle inequality, we have ∥a∥ ≤ ∥b∥+ ∥c∥ and ∥a∥ ≥ ∥b∥ − ∥c∥ (since

b = a + (−c) and hence ∥b∥ ≤ ∥a∥ + ∥ − c∥ = ∥a∥ + ∥c∥ or ∥a∥ ≥ ∥b∥ − ∥c∥). Consequently, we

can write |∥a∥ − ∥b∥| ≤ ∥c∥ and hence ∥a∥ = ∥b∥+O(∥c∥).
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upper-bounded by

∥∥Q−1
A ek+1

∥∥
2
≤ ρ(A)

∥∥Q−1
A ek

∥∥
2
+O(

∥∥Q−1
A ek

∥∥2
2
). (10.7)

If ρ(A) < 1, then by Lemma 10.2, the sequence
∥∥Q−1

A ek
∥∥
2
converges to 0 linearly

at rate ρ(A). Unfortunately, one can verify that ρ(A) ≥ 1 by taking any vector

v ∈ Rn2
such that vi = 0 for all i ∈ Ω̄. Since Av = v, 1 must be an eigenvalue of

A.

The failure of the aforementioned bounding technique is it overlooks the fact

that Ek = XkXk⊤ − M . By defining E = {XX⊤ − M | X ∈ Rn×r} and

ẼA = {Q−1
A vec(E) | E ∈ E}, a tighter bound on

∥∥ΛAQ
−1
A ek

∥∥
2
/
∥∥Q−1

A ek
∥∥
2
can be

obtained by

ρE(A, δ) = sup

{
∥ΛAẽ∥2
∥ẽ∥2

: ẽ ∈ ẼA, ẽ ̸= 0, ∥ẽ∥2 ≤ δ

}
, (10.8)

for some constant δ > 0. Taking into account the structure of Ek, one would

expect ρE(A) = limδ→0 ρ
E(A, δ) is a more reliable estimate of the asymptotic rate

of convergence for (10.4). Nonetheless, (10.8) is a non-trivial optimization problem

that has no closed-form solution to the best of our knowledge.

10.3.2 Integrating Structural Constraints

To address the aforementioned issue, we propose to integrate the structural con-

straint on Ek into the recursion (10.4). As we shall show in the next subsection,
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this integration enables the application of Lemma 10.2 to the new recursion in

order to obtain a tight bound on the convergence rate. First, let us characterize

the feasible set of error matrices E as follows:

Lemma 10.3. E ∈ E if and only if the following conditions hold simultaneously:

(C1) Pr(M+E) = M+E, where Pr is the truncated singular value decomposition

of order r [61].

(C2) E⊤= E.

(C3) v⊤(M +E)v ≥ 0 for all v ∈ Rn.

Our strategy is to integrate three conditions in Lemma 10.3 into the linear oper-

ator A so that the resulting recursion will implicitly enforce Ek to remain in E .

Specifically, for condition (C1), we linearize Pr using the first-order perturbation

analysis of the truncated singular value decomposition [211]. For condition (C2),

we leverage the linearity of the transpose operator. Finally, while handling con-

dition (C3) is non-trivial, it turns out that this condition can be ignored. In the

following lemma, we introduce the linear projection that ensures the updated error

Ek remains near E .

Lemma 10.4. Recall that P1 = In2 − PU⊥ ⊗ PU⊥, P2 =
1
2

(
In2 + Tn2

)
. Then, the

following statements hold:

1. P1 corresponds to the orthogonal projection onto the tangent plane of the set

of rank-r matrices at M .
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2. P2 corresponds to the orthogonal projection onto the space of symmetric ma-

trices.

3. P1 and P2 commute, and P = P1P2 = P2P1 is also an orthogonal projection.

4. For any E ∈ E, vec(E) = P vec(E) +O(∥E∥2F ).

By Lemma 10.4-4, we have ek = Pek +O(
∥∥ek
∥∥2
2
) for all k. Using this result with

k + 1 instead of k and replacing ek+1 from (10.4) into the first term on the RHS,

we have

ek+1 = P
(
Aek +O(

∥∥ek
∥∥2
2
)
)
+O(

∥∥ek+1
∥∥2
2
).

Substituting ek = Pek +O(
∥∥ek
∥∥2
2
) and using ek+1 = O(

∥∥ek
∥∥
2
), we obtain

ek+1 = PAPek +O(
∥∥ek
∥∥2
2
). (10.9)

It can be seen from Lemma 10.4-1 and Lemma 10.4-2 that the projection P en-

forces the error vector ek to lie in the space under conditions (C1) and (C2) in

Lemma 10.3. Now replacing the definition H = PAP , (10.9) can be rewritten as

ek+1 = Hek +O(
∥∥ek
∥∥2
2
). (10.10)

Similar to the derivation with A, let H = QHΛHQ−1
H be the eigendecomposition

of H and define ẽk = Q−1
H ek. Then, we have

∥∥ẽk+1
∥∥
2
=
∥∥ΛH ẽk

∥∥
2
+O(

∥∥ẽk
∥∥2
2
). (10.11)
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In addition, denote ẼH = {Q−1
H vec(E) | E ∈ E}, we can define

ρ(H) = sup

{
∥ΛH ẽ∥2
∥ẽ∥2

: ẽ ∈ Rn2

, ẽ ̸= 0

}
and (10.12)

ρE(H , δ) = sup

{
∥ΛH ẽ∥2
∥ẽ∥2

: ẽ ∈ ẼH , ẽ ̸= 0, ∥ẽ∥2 ≤ δ

}
. (10.13)

Since (10.4) and (10.10) are two different systems that describes the same dynamic

for Ek ∈ E , one would expect they share the same asymptotic behavior. In par-

ticular, their linear rates of convergence should agree when the constraint Ek ∈ E

is considered.

Lemma 10.5. Let ρE(H) = limδ→0 ρ
E(H , δ). Then,

ρE(H) = ρE(A).

While using H instead of A preserves the system dynamic over E , it provides

updates of the error that ensure that it remains in E . Consequently, we can ignore

the constraints that are implicitly satisfied in our analysis when using H .

10.3.3 Asymptotic Bound on the Linear Convergence Rate

We have seen in Subsection 10.3.1 that applying Lemma 10.2 to (10.4) fails to

estimate the convergence rate due to the gap between ρE(A) and ρ(A). In this

subsection, we show that integrating the structural constraint helps eliminating the

gap between ρE(H) and ρ(H) (even when condition (C3) is omitted). Therefore,
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applying Lemma 10.2 to (10.11) yields ρ(H) as a tight bound on the convergence

rate. To that end, our goal is to prove the following lemma:

Lemma 10.6. As δ approaches 0, we have ρ(H)−ρE(H , δ) = O(δ). Consequently,

it holds that ρ(H) = ρE(H).

Let us briefly present the key ideas and lemmas we use to prove Lemma 10.6. Our

proof relies on two critical considerations: (i) ρE(H , δ) ≤ ρ(H), (ii) there exists a

maximizer ẽ⋆ of the supremum in (10.12) such that the distance from ẽ⋆ to ẼH is

O(δ2). While (i) is trivial from (10.12) and (10.13), (ii) is proven by introducing

Fδ as a surrogate for the set E as follows:

Lemma 10.7. Denote the eigenvector of H corresponding to the largest (in magni-

tude) eigenvalue by q1. Define G as the n× n matrix satisfying vec(G) = δq1. Let

Fδ be the set of n×n matrices satisfying the following conditions: (i) ∥F ∥F ≤ 2δ;

(ii) F⊤= F ; (iii) ∥PU⊥FPU⊥∥F ≤ 2
λr
δ2; and (iv) v⊤(M+F )v ≥ 0 for all v ∈ Rn.

Then, there exists F ∈ Fδ satisfying

∥F −G∥F = O(δ2).

Lemma 10.8. For any F ∈ Fδ, there exists E ∈ E satisfying

∥E − F ∥F = O(δ2).

From (i) and (ii), it follows that the difference between ρE(H , δ) and ρ(H) is O(δ).

Thus, ρ(H) = ρE(H) when taking the limit of ρE(H , δ) as δ → 0. Our derivation
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of Theorem 10.1 is completed by directly applying Lemma 10.2 to (10.11).

10.4 Conclusion and Future work

We presented a framework for analyzing the convergence of the existing gradient

descent approach for low-rank matrix completion. In our analysis, we restricted

our focus to the symmetric matrix completion case. We proved that the algorithm

converges linearly. Different to other approaches, we made no assumption on

the rank of the matrix or fraction of available entries. Instead, we derived an

expression for the linear convergence rate via the spectral norm of a closed-form

matrix. As future work, using random matrix theory, the closed-form expression

for the convergence rate can be further related to the rank, the number of available

entries, and the matrix dimensions. Additionally, this work can be extended to

the non-symmetric case.

10.5 Appendix

10.5.1 Proof of Lemma 10.1

Recall the gradient descent update in Algorithm 10.1:

Xk+1 = Xk − ηPΩ

(
XkXk⊤−M

)
Xk

= (In − ηPΩ(E
k))Xk. (10.14)
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Substituting (10.14) into the definition of Ek+1, we have

Ek+1 = Xk+1Xk+1⊤−M

=
(
In − ηPΩ(E

k)
)
XkXk⊤(In − ηPΩ(E

k)
)⊤−M .

From the fact that Ek is symmetric and Ω is a symmetric sampling, the last

equation can be further expanded as

Ek+1 = XkXk⊤− ηPΩ(E
k)XkXk⊤

− ηXkXk⊤PΩ(E
k) + η2PΩ(E

k)XkXk⊤PΩ(E
k)−M . (10.15)

Since XkXk⊤= M +Ek, (10.15) is equivalent to

Ek+1 = Ek − η
(
PΩ(E

k)M +MPΩ(E
k)
)
− η
(
PΩ(E

k)Ek +EkPΩ(E
k)
)

+ η2PΩ(E
k)MPΩ(E

k) + η2PΩ(E
k)EkPΩ(E

k). (10.16)

Note that
∥∥PΩ(E

k)
∥∥
F
≤
∥∥Ek

∥∥
F
. Hence, collecting terms that are of second order

and higher, with respect to
∥∥Ek

∥∥
F
, on the RHS of (10.16) yields

Ek+1 = Ek − η
(
PΩ(E

k)M +MPΩ(E
k)
)
+O(

∥∥Ek
∥∥2
F
).

Now by Definition 7.2, it is easy to verify that

SS⊤= In2 and vec
(
PΩ(E

k)
)
= S⊤Sek.
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Using the property vec(ABC) = (C⊤⊗A) vec(B), (5) can be vectorized as follows:

ek+1 = ek − η(M ⊗ In) vec
(
PΩ(E

k)
)
− η(In ⊗M) vec

(
PΩ(E

k)
)
+O(

∥∥ek
∥∥2
2
).

The last equation can be reorganized as

ek+1 =
(
In2 − η(M ⊕M )(S⊤S)

)
ek +O(

∥∥ek
∥∥2
2
).

10.5.2 Proof of Lemma 10.3

(⇒) Suppose E ∈ E . Then for (C1), i.e., E⊤= E, E = XX⊤−M is symmetric

since both XX⊤ and M are symmetric. For (C2), i.e., Pr(M + E) = M + E,

stems from the fact M + E = XX⊤ has rank no greater than r for X ∈ Rn×r.

Finally, for any v ∈ Rn, we have

v⊤(M +E)v = v⊤(XX⊤)v =
∥∥X⊤v

∥∥2
2
≥ 0.

(⇐) From conditions (C1) and (C3), M + E is a PSD matrix. In addition,

Pr(M + E) = M + E implies M + E must have rank no greater r. Since any

PSD matrix A with rank less than or equal to r can be factorized as A = Y Y ⊤

for some Y ∈ Rn×r, we conclude that E ∈ E .
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10.5.3 Proof of Lemma 10.4

First, recall that any matrix Π ∈ Rn2×n2
is an orthogonal projection if and only if

Π2 = Π and Π = Π⊤. Since P⊤
U⊥

= PU⊥ , we have

P⊤
1 =

(
In2 − PU⊥ ⊗ PU⊥

)⊤
= I⊤

n2− P⊤
U⊥

⊗ P⊤
U⊥

= In2 − PU⊥ ⊗ PU⊥ = P1.

In addition, since P 2
U⊥

= PU⊥ , we have

P 2
1 = (In2 − PU⊥ ⊗ PU⊥)(In2 − PU⊥ ⊗ PU⊥)

⊤

= I2
n2 − 2PU⊥ ⊗ PU⊥ + (PU⊥ ⊗ PU⊥)

2

= In2 − 2PU⊥ ⊗ PU⊥ + (P 2
U⊥

⊗ P 2
U⊥

)

= In2 − 2PU⊥ ⊗ PU⊥ + PU⊥ ⊗ PU⊥

= In2 − PU⊥ ⊗ PU⊥ = P1.

Second, using the fact that T 2
n2 = In2 and Tn2 is symmetric, we can derive similar

result:

P⊤
2 =

(
In2 + Tn2

2

)⊤

=
In2 + Tn2

2
= P2,
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and

P 2
2 =

(In2 + Tn2)2

4

=
In2 + 2Tn2 + T 2

n2

4

=
2In2 + 2Tn2

4

=
In2 + Tn2

2
= P2.

Third, we observe that P1 and P2 are the vectorized version of the linear

operators

Π1(E) = E − PU⊥EPU⊥

and

Π2(E) =
1

2
(E +E⊤),

respectively, for any E ∈ Rn×n. Hence, in order to prove that P1 and P2 commute,

it is sufficient to show that operators Π1 and Π2 commute. Indeed, we have

Π2Π1(E) =
1

2

(
(E − PU⊥EPU⊥) + (E − PU⊥EPU⊥)

⊤)
=

1

2
(E +E⊤)− PU⊥

1

2
(E +E⊤)PU⊥

= Π1Π2(E).
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This implies Π1 and Π2 commute. Since P is the product of two commuting

orthogonal projections, it is also an orthogonal projection.

Finally, let us restrict E to belong to E and denote e = vec(E). Using Theo-

rem 3 in [211], we have

Pr(M +E) = M +E − PU⊥EPU⊥ +O(∥E∥2F ). (10.17)

Since Pr(M +E) = M +E, it follows from (10.17) that

PU⊥EPU⊥ = O(∥E∥2F ).

Vectorizing the last equation, we obtain

(PU⊥ ⊗ PU⊥)e = O(∥E∥2F ). (10.18)

On the other hand, since E is symmetric,

e = Tn2e =
(In2 + Tn2

2

)
e. (10.19)

From (10.18) and (10.19), we have

e = (In2 − PU⊥ ⊗ PU⊥)e+O(∥E∥2F )

= (In2 − PU⊥ ⊗ PU⊥)
(In2 + Tn2

2

)
e+O(∥E∥2F ). (10.20)
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Substituting

P = P1P2 = (In2 − PU⊥ ⊗ PU⊥)
(In2 + Tn2

2

)
into (10.20) completes our proof of the lemma.

10.5.4 Proof of Lemma 10.5

Let Ẽ = {vec(E) | E ∈ E}. Recall that for any e ∈ Ẽ ,

e = Pe+O(∥e∥22).

Therefore, by the triangle inequality, we obtain

∥Ae∥2 =
∥∥A(Pe+O(∥e∥22)

)∥∥
≤ ∥APe∥2 +

∥∥AO(∥e∥22)
∥∥
2
.

Since the second term on the RHS of the last inequality is O(∥e∥22), it is also O(δ2)

for any e ∈ Ẽ such that ∥e∥2 ≤ δ. In other words,

∥Ae∥2 ≤ ∥APe∥2 +O(δ2). (10.21)
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Similarly, we also have,

∥Ae∥2 ≥ ∥APe∥2 −
∥∥AO(∥e∥22)

∥∥
2

= ∥APe∥2 −O(δ2). (10.22)

From (10.21) and (10.22), it follows that

∥Ae∥2
∥e∥2

=
∥APe∥2
∥e∥2

+O(δ). (10.23)

Taking the limit of the supremum of (10.23) as δ → 0 yields

ρE(A) = lim
δ→0

sup
e∈Ẽ
e ̸=0

∥e∥2≤δ

∥Ae∥2
∥e∥2

= lim
δ→0

sup
e∈Ẽ
e ̸=0

∥e∥2≤δ

∥APe∥2
∥e∥2

= ρE(AP ). (10.24)

Now following similar argument in Lemma 10.6, we have


ρE(AP ) = ρ(AP ),

ρE(PAP ) = ρ(PAP ).

(10.25)
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Given (10.24) and (10.25), it remains to show that ρ(AP ) = ρ(PAP ). Indeed,

using Gelfand’s formula [77], we have

ρ(AP ) = lim
k→∞

∥∥(AP )k
∥∥1/k
2

and ρ(PAP ) = lim
k→∞

∥∥(PAP )k
∥∥1/k
2

.

By the property of operator norms,

∥∥(AP )k
∥∥
2
=
∥∥A(PAP )k−1

∥∥
2
≤ ∥A∥2

∥∥(PAP )k−1
∥∥
2
.

Thus,

∥∥(AP )k
∥∥1/k
2

≤ ∥A∥1/k2

(∥∥(PAP )k−1
∥∥1/(k−1)

2

)(k−1)/k

.

Taking the limit of both sides of the last inequality as k → ∞ yields ρ(AP ) ≤

ρ(PAP ). Similarly, since

∥∥(PAP )k
∥∥
2
=
∥∥P (AP )k

∥∥
2
≤
∥∥(AP )k

∥∥
2
,

we also obtain ρ(PAP ) ≤ ρ(AP ). This concludes our proof of the lemma.
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10.5.5 Proof of Lemma 10.6

Without loss of generality, assume λ1 is the eigenvalue with largest magnitude,

i.e., |λ1| = ρ(H). By the definition of G, we have ∥G∥F = δ. Since H vec(G) =

λ1 vec(G) and H = QHΛHQ−1
H , it follows that

QHΛHQ−1
H vec(G) = λ1 vec(G). (10.26)

Multiplying both sides of (10.26) by Q−1
H , we obtain

ΛHQ−1
H vec(G) = λ1Q

−1
H vec(G).

Taking the L2-norm and and reorganizing the equation yields

∥∥ΛHQ−1
H vec(G)

∥∥
2∥∥Q−1

H vec(G)
∥∥
2

= |λ1| = ρ(H). (10.27)

Therefore, G leads to a solution of the supremum in (10.12). We now prove that

G is symmetric and (PU⊥ ⊗ PU⊥) vec(G) = 0. First, since P1, P2 and P = P1P2
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are orthogonal projections, we have

P2H = P2PAP

= P2P2P1AP

= P2P1AP

= P1P2AP

= PAP = H .

Thus,

λ1 vec(G) = H vec(G)

= P2H vec(G)

= λ1P2 vec(G). (10.28)

Substituting P2 =
1
2

(
In2 + Tn2

)
into (10.28) yields

vec(G⊤) = Tn2 vec(G) or G = G⊤.

Second, since P1H = H , we obtain

λ1 vec(G) = H vec(G)

= P1H vec(G)

= λ1P1 vec(G). (10.29)
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Substituting P1 = In2 − PU⊥ ⊗ PU⊥ into (10.29) yields

(PU⊥ ⊗ PU⊥) vec(G) = 0 or PU⊥GPU⊥ = 0.

Since ∥E −G∥F ≤ ∥E − F ∥F + ∥F −G∥F (by the triangle inequality), Lem-

mas 10.7 and 6.4 imply the existence of E ∈ E such that ∥E −G∥F = O(δ2).

Denote ẽ = Q−1
H vec(E) ∈ ẼH , we have

ΛH ẽ = λ1ẽ− (λ1In2 −ΛH)ẽ

= λ1ẽ− (λ1In2 −ΛH)Q−1
H vec(E)

= λ1ẽ− (λ1In2 −ΛH)Q−1
H vec(E −G).

where the last equality stems from the fact that λ1Q
−1
H vec(G) = ΛHQ−1

H vec(G).

Next, using the triangle inequality, we obtain

∥ΛH ẽ∥2 ≥ ∥λ1ẽ∥2 −
∥∥(λ1In2 −ΛH)Q−1

H vec(E −G)
∥∥
2

≥ ρ(H) ∥ẽ∥2 − ∥λ1In2 −ΛH∥2
∥∥Q−1

H

∥∥
2
∥vec(E −G)∥2 .

Dividing both sides by ∥ẽ∥2 yields

∥ΛH ẽ∥2
∥ẽ∥2

≥ ρ(H)−
∥λ1In2 −ΛH∥2

∥∥Q−1
H

∥∥
2
∥vec(E −G)∥2

∥ẽ∥2
. (10.30)
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Since ∥E −G∥F = O(δ2), (10.30) can be rewritten as

∥ΛH ẽ∥2
∥ẽ∥2

≥ ρ(H)−O(δ2). (10.31)

On the other hand, for any ẽ ∈ ẼH , we also have

∥ΛH ẽ∥2
∥ẽ∥2

≤ ρE(H , δ) ≤ ρ(H). (10.32)

Combining (10.31) and (10.32) yields ρ(H)− ρE(H , δ) = O(δ).

10.5.6 Proof of Lemma 10.7

Denote PU = UU⊤, for any v ∈ Rn, we can decompose v into two orthogonal

component:

v = vU + v⊥,

where vU = PUv and v⊥ = PU⊥v. Without loss of generality, assume that

∥v∥2 = ∥vU∥22 + ∥v⊥∥22 = 1. Thus, we have

v⊤(M +G)v = (vU + v⊥)
⊤(M +G)(vU + v⊥)

= v⊤
UMvU + v⊤

UGvU + v⊤
UGv⊥ + v⊤

⊥GvU + v⊤
⊥Gv⊥, (10.33)
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where the last equation stems from the fact that M = PUMPU and PUPU⊥ = 0.

Since PU⊥GPU⊥ = 0, we have

v⊤
⊥Gv⊥ = v⊤PU⊥GPU⊥v = 0.

Thus, (10.33) is equivalent to

v⊤(M +G)v = v⊤
UMvU + v⊤

UGvU + 2v⊤
UGv⊥. (10.34)

Now let us lower-bound each term on the RHS of (10.34) as follows. First, by the

Rayleigh quotient, we have

v⊤
UMvU ≥ λr ∥vU∥22 , (10.35)

and

v⊤
UGvU ≥ λmin(G) ∥vU∥22 ≥ −∥G∥F ∥vU∥22 . (10.36)

Next, by Cauchy-Schwarz inequality,

v⊤
UGv⊥ ≥ −∥G∥2 ∥vU∥2 ∥v⊥∥2 ≥ −∥G∥F ∥vU∥2 . (10.37)
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From (10.35), (10.36), and (10.37), we obtain

v⊤(M +G)v ≥ (λr − ∥G∥F ) ∥vU∥22 − 2 ∥G∥F ∥vU∥2 . (10.38)

Note that ∥G∥F = δ and the quadratic g(t) = (λr − δ)t2 − 2δt is minimized at

t∗ =
δ

λr − δ
, g(t∗) = − δ2

λr − δ
.

Combining this with (10.38) yields

v⊤(M +G)v ≥ − 2

λr

δ2,

for sufficiently small δ. Let F = G + 2
λr
δ2In. Now we can easily verify that

∥F −G∥F = O(δ2) and F ∈ F .

10.5.7 Proof of Lemma 6.4

We shall show that the matrix E = Pr(M + F )−M belongs to E and satisfies

∥E − F ∥F = O(δ2). (10.39)

First, since F ∈ Fδ, M + F must be PSD. Thus, Pr(M + F ) is a PSD matrix of

rank no greater than r and it admits a rank-r factorization Pr(M + F ) = ZZ⊤,
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for some Z ∈ Rn×r. Therefore, by the definition of E ,

E = Pr(M + F )−M = ZZ⊤−M ∈ E .

Next, using (10.17), we have

E − F = Pr(M + F )−M − F

= PU⊥FPU⊥ +O(∥F ∥2F ).

Since F ∈ Fδ implies PU⊥FPU⊥ = O(∥F ∥2F ), we conclude that E − F =

O(∥F ∥2F ).
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Chapter 11: Adaptive Step Size Momentum Method For

Deconvolution1

In this chapter, we introduce an adaptive step size schedule that can significantly

improve the convergence rate of momentum method for deconvolution applica-

tions. We provide analysis to show that the proposed method can asymptotically

recover the optimal rate of convergence for first-order gradient methods applied to

minimize smooth convex functions. In a convolution setting, we demonstrate that

our adaptive scheme can be implemented efficiently without adding computational

complexity to traditional gradient schemes.

11.1 Introduction

Deconvolution is the process of reversing the effects of convolution [227]. It is

widely used in the areas of signal processing and image processing [10,19]. In image

processing, this term also refers to recovering the original image by deblurring [8].

Recently there has been an increasing interest in machine learning approaches

for deconvolution including nonnegative matrix factorization [155], sparse coding

[122,185], convolutional dictionary learning [39,233].

1This work has been published as: “Adaptive Step Size Momentum Method For Deconvolu-

tion”, In Proceedings of IEEE Statistical Signal Processing Workshop (SSP), pp. 438-442. IEEE,

2018.
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Deconvolution is usually performed by representing the convolution in the form

of a linear shift-invariant operator and utilize a minimum mean square error as an

optimization criterion. From machine learning perspective, the objective function

can also be extended to other loss functions like Hinge loss or logistic regression cost

function. Deconvolution can be done on either the time domain using circulant

matrices or the frequency domain by computing the Fourier Transform [99]. A

major challenge of this inverse problem is the ill-posed nature of continuous data

that results in ill-conditioned matrices in the optimization [157]. Several techniques

have been proposed to accomplish this using regularization theory. One direct way

is to compute the closed-form solution of the problem. However, this approach is

often inefficient due to the computational complexity of the inverse operator, and

more importantly, it only works for apparently simple objective functions [8]. A

more common method is to use iterative algorithms, in which various optimization

techniques can be exploited to find a close approximation of the solution. With the

increasing number of large-scale problems, this approach have been shown to be

very well suited to deconvolution. Besides, other deconvolution techniques include

recursive filtering [157], wavelets [65], and neural networks [229].

The most widely used among iterative algorithms for deconvolution is gradient

descent. Although this method suffers from the slow convergence rate of first-order

methods, its low cost and simplicity turn out to be very useful in practice. On the

other hand, second-order methods such as Newton-Raphson obtain a rapid conver-

gence rate but require the computation of the Hessian and its inverse, which can

be prohibitively expensive for large scale problems [24]. To compromise, momen-
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tum method has been proposed to accelerate the convergence of gradient descent

while remaining the computational complexity. This slight modification of gradi-

ent descent was shown to achieve a fast convergence rate on minimizing a smooth

convex function [159]. Nevertheless, while multiple approaches are available for

choosing optimal step sizes in gradient descent (e.g., backtracking line search), lit-

tle is known for step size selection in momentum method when prior knowledge of

the function curvature is limited.

To address this issue, we propose an adaptive schedule that uses the gradient

information to compute the step size for momentum method at each iteration ac-

cordingly. In a convolution setting, the special structure of the objective function

allows us to implement the algorithm efficiently without heavy computations of the

Hessian. We provide analysis to show that our method asymptotically recovers the

optimal convergence rate determined by the Hessian at the solution. Compared

to gradient descent methods, the proposed method requires only twice as many

as the number of operations per iteration, while dramatically accelerates the con-

vergence in many cases when the objective function is ill-conditioned in general

but locally well-conditioned at the solution. Lastly, we present a numerical evalu-

ation that verifies the effectiveness of the proposed approach and suggest potential

applications to other domains.
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11.2 Preliminary

Consider the problem of minimizing a twice differentiable, smooth and strongly

convex function f(x) : Rd → R. In particular, lI ⪯ ∇2f(x) ⪯ LI , ∀x. We shall

denote by x∗ the unique solution of this optimization problem and f ∗ = f(x∗).

We further assume that λ1 and λd are the largest and smallest eigenvalues of the

Hessian at x∗, respectively. Thus, we define the global condition number of f as

r = L
l
, and the local condition number of ∇2f ∗ as κ = λ1

λd
. For quadratics, these

two number are the same. However, for non-quadratic functions, κ is smaller than

r. Exploiting the gap between k and r is often an efficient way to accelerate the

convergence of iterative methods.

In gradient descent method, the solution is initialized to x = x(0) and the

following step is used to update x:

x(k+1) = x(k) − α(k)∇f(x(k)). (11.1)

Various algorithms have been proposed to choose the step size α(k) in order to

obtain an optimal convergence rate. One notable result from Nesterov regarding

fixed step size gradient descent methods is given by Theorem 11.1.

Theorem 11.1. (Theorem 2.1.15 in [160]). The gradient descent method with

fixed step size α(k) = 2
L+l

has a global linear convergence rate of R = r−1
r+1

= L−l
L+l

,
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i.e.,

f(x(k+1))− f ∗ ≤ L

2

(
L− l

L+ l

)2k ∥∥x(0) − x∗∥∥2 .
Alternatively, adaptive schedules like exact and inexact line search are generally

preferred in practice. It has recently been shown to converge at the same rate

R for smooth convex functions on the worst-case scenario [54]. However, beyond

the worst-case scenario, we should note that the asymptotic convergence rate is

generally better for non-quadratic functions, where the objective function is lo-

cally well-conditioned, and the asymptotic convergence rate is defined by the local

condition number of the Hessian at the solution: K = κ−1
κ+1

, which is smaller than

R.

Momentum method adds a second term from the previous iterate to the update

equation of gradient descent

x(k+1) = x(k) − α(k)∇f(x(k)) + β(k)(x(k) − x(k−1)). (11.2)

In [166], Polyak showed that this method achieves a faster convergence rate of
√
r−1√
r+1

on a quadratic by setting

α(k) =
( 2√

L+
√
l

)2
, β(k) =

(√L−
√
l√

L+
√
l

)2
. (11.3)

It is noteworthy that analyses of convergence in this case usually involve performing

a change of basis on the domain size y(k) = U⊤(x(k)−x∗), where U comes from the
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eigenvalue decomposition ∇2f ∗ = UΛU⊤. The convergence rate is then defined

by the slowest decreasing component in y(k), denoted by y
(k)
j . Similar to gradient

descent, fixing the momentum step size does not recover the optimal convergence

rate for non-quadratic smooth convex objective function. An in-depth analysis

on different momentum regimes which is based on the behavior of second-order

dynamic systems is discussed in [164]. The authors also suggested a restart strategy

in order to achieve an even faster convergence rate that depends on the condition

number of Hessian at solution, τ =
√
κ−1√
κ+1

. However, the proposed algorithms

are based on Nesterov’s Accelerated Gradient method, a variant of momentum

method, and hence its motivation is rather the restarting mechanism than choosing

the optimal step sizes.

11.3 Problem Formulation

In deconvolution, we are given a training set of {xm,ym}Mm=1 and the objective is

to learn a convolution kernel w to minimize a cost function f(w) =
∑M

m=1 C(xm ∗

w,ym) + Ω(w), where Ω is a regularization term. Assume all training examples

are of the same dimension n and are zero-padded at both ends, we can denote

xm = [xm(1), . . . , xm(n)]
⊤, ym = [ym(1), . . . ,ym(n)]

⊤, and w = [w(1), . . . , w(h)]⊤,

where h is the window size. Let xmt = [xm(t), xm(t−1), . . . , xm(t−h+1)]⊤ be the

tth sliding window segment in the mth signal. If C can be broken down to each
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sliding window, the objective function is rewritten as

f(w) =
M∑

m=1

n∑
t=1

c(w⊤xmt,ym(t)) + Ω(w). (11.4)

We make a further assumption that the cost function c(a, b) is smooth convex

and the regularizer Ω(w) is smooth and strongly convex, and both are twice dif-

ferentiable with respect to a and w, i.e., 0 ⪯ ∂2c
∂a∂a⊤ ⪯ µI and λI ⪯ d2Ω

dwdw⊤ ⪯

γI, for µ, λ, γ > 0. Note that c(a, b) can be a distance metric (e.g., ∥a− b∥2),

a divergence metric (e.g.,
∑

i

(
bi log

bi
ai

+ ai − bi
)
where ai, bi > 0) or a more

general loss (e.g., log(
∑

i e
ai) −

∑
i aibi where bi ∈ {0, 1}). Consider a logis-

tic loss with L2-regularization for example, c(a, b) = log(1 + ea) − ab, where

b ∈ {0, 1}, and Ω(w) = ∥w∥2, the aforementioned assumption is supported by

0 ≤ ∂2c
∂a2

= ∂c
∂a
(1 − ∂c

∂a
) ≤ 1

4
and d2Ω

dwdw⊤ = λI. For simplicity, we provide analysis

for the case where the cost function parameters a, b are scalars. From (11.4), we

obtain

∇2f(w) =
M∑

m=1

n∑
t=1

∂2c

∂(w⊤xmt)2
xmtx

⊤
mt+

d2Ω

dwdw⊤. (11.5)

In this setting, the special structure of the Hessian recalls the autocorrelation

Rx̂m = X⊤
mXm, where the circulant matrix Xm = [x⊤

m1, . . . ,x
⊤
m(n+h−1)] is obtained

from padding zero to xm and x̂m is the time-reversed version of xm. If all signals
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are normalized to zero mean and unit variance, the Hessian can be bounded by

λI ⪯ ∇2f(w) ⪯ µ

M∑
m=1

Rx̂m + γI ∀w. (11.6)

Since the power spectrum of x̂m can be expressed as the Fourier Transform of its

autocorrelation function, the maximum eigenvalue of Rx̂m is also the maximum

power spectrum Sx̂m(0). Thus, (11.6) provides us with a decent estimate of the

function parameters: l = λ and L = µ
∑M

m=1 Sx̂m(0) + λ. In this estimation, the

lower bound depends on the choice of the regularization factor, while the upper

bound depends on the data itself.

11.4 Adaptive Step Size Scheme

Motivated by line search approach in gradient descent, this section presents an

adaptive schedule to choose the optimal value of step size for each momentum itera-

tion. First, we notice that the optimal convergence rate for momentum, and in gen-

eral for first-order methods, depends on the condition number of the Hessian at the

solution. Indeed, asymptotic analyses of convergence often assume the function can

be locally approximated by a quadratic in the region near the optimum, and con-

sider the rate of convergence inside this region. In case of gradient descent, recover-

ing the optimal rate is practically done by backtracking line search. Another inex-

act line search method stems from second-order Taylor expansion of the objective

function f(w−α∇f(w)) ≈ f(w)−α∇f(w)⊤∇f(w)+ 1
2
α2∇f(w)⊤∇2f(w)∇f(w).
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The superscripts are omitted for brevity. The step size at each iteration is then

determined by minimizing this quadratic function with respect to α, yielding

α =
∇f(w)⊤∇f(w)

∇f(w)⊤∇2f(w)∇f(w)
. (11.7)

Since quadratic functions have the same Hessian everywhere, it follows from Sec-

tion 11.2 that the resulting iterates obtain the optimal asymptotic convergence

rate K inside the quadratic region near the solution.

Naturally, we bring this intuition to the updates in momentum method. Let

∆w(k) = w(k) −w(k−1), Dk = [∇f(w(k)),−∆w(k)], and η(k) = [α(k), β(k)]⊤. From

(11.2), we can approximate

f(w(k) −Dkη
(k)) ≈ f(wk)−∇f(w(k))⊤Dkη

(k) +
1

2
η(k)

⊤
D⊤

k∇2f(w(k))Dkη
(k).

Minimizing this quadratic function with respect to η(k) yields

η(k) =

(
D⊤

k∇2f(w(k))Dk

)−1

D⊤
k∇f(w(k)). (11.8)

We can further simplify (11.8) as follows

α
β

 =

 ∇f⊤∇2f∇f −∆w⊤∇2f∇f

−∆w⊤∇2f∇f ∆w⊤∇2f∆w


−1  ∇f⊤∇f

−∆w⊤∇f


Note that the inversion in this equation only involves a 2×2 matrix, and should not
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Algorithm 11.1 Adaptive step size scheme for momentum.

1: Given initial guess w(0) and w(1).
2: repeat for k = 1, 2, . . .
3: ∆w = w(k) −w(k−1) ▷ O(h)
4: ∇f =

∑
m,t

∂c
∂(w⊤xmt)

xmt + λw ▷ O(Mnh)

5: for m = 1, . . . ,M , t = 1, . . . , n do ▷ O(Mnh)
6: pmt = x⊤

mt∇f , qmt = x⊤
mt∆w

7: cmt = ∂2c/∂(w⊤xmt)
2

8: u = ∇f⊤∇f , v = ∆w⊤∇f , t = ∆w⊤∆w ▷ O(h)
9: a =

∑M
m=1

∑n
t=1 cmtp

2
mt + λu ▷ O(Mn)

10: b =
∑M

m=1

∑n
t=1 cmtpmtqmt + λv ▷ O(Mn)

11: d =
∑M

m=1

∑n
t=1 cmtq

2
mt + λt ▷ O(Mn)

12: α(k) = du−bv
ad−b2

, β(k) = bu−av
ad−b2

▷ O(1)

13: Update w(k+1) using (11.2). ▷ O(h)
14: until convergence

be confused with the inversion in Newton-Raphson method. More interestingly,

computing this matrix only requires the same complexity as computing the gradient

thanks to the decomposition of ∇2f into multiple terms of the form xx⊤. We

propose the adaptive step size momentum method in Algorithm 11.1, with L2-

regularization for simplicity.

The resulting iterates obtain a provably asymptotic convergence rate τ =
√
κ−1√
κ−1

.

The detailed proof is not given here due to space limitation. The intuition is

each iteration Algorithm 11.1 decreases the objective function more than that of

fixed step size momentum chosen by (11.3). Therefore, inside the optimal region,

it converges at least as fast as fixed step size chosen by the local parameters.

Although the behavior outside the optimal region is unclear, this adaptive scheme

is often helpful in practice.
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Table 11.1: Computational complexity of fixed step size gradient (GD), adaptive
step size gradient (AGD), fixed step size momentum (MO), adaptive step size
momentum (AMO), and Newton’s method. ϵ is the relative accuracy.

Method # Ops. / Iter. Cvg. rate # Iters. needed
GD O(Mnh) r−1

r+1
r+1
2

log(1/ϵ)

AGD O(Mnh) κ−1
κ+1

κ+1
2

log(1/ϵ)

MO O(Mnh)
√
r−1√
r+1

√
r+1
2

log(1/ϵ)

AMO O(Mnh)
√
κ−1√
κ+1

√
κ+1
2

log(1/ϵ)

Newton O(Mnh3) quadratic O(1)

To simplify the complexity analysis, we assume the calculation of derivatives

of c and Ω is O(1). Table 11.1 shows the computational complexity per iteration

of the proposed approach is the same as other methods, but it requires the least

number of iterations to reach a certain accuracy to the solution. The computation

can even be more efficient if the window size is large enough (h ≈ n), by using the

Fast Fourier Transform to obtain O(Mn log n) complexity per iteration.

11.5 Numerical Example

In this experiment, we consider a convolutive logistic regression model for recog-

nizing a sequence of handwritten digits. Our goal is to illustrate the convergence of

the proposed algorithm and compare it with the theoretical analysis in the previous

section.

Setting. From MNIST database, we generate a dataset of M = 10 composite

images as follows. Each image of size 28×150 is created by sequentially adding four
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Figure 11.1: Top - an image generated by randomly inserting a sequence of 0, 1, 0, 1.
Bottom - the corresponding label series.
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28× 28 digit images to a zero background such that the bottom left corner of the

ith digit is chosen uniformly between positions 28(i−1)+1 and 28i along the width

of the composite image (see Fig. 11.1). We create the feature vector xmt of h = 784

elements by vectorizing the 28×28 window centered at tth position along the width

of the mth image (n = 150). For the purpose of illustration, we only consider

images with two digits 0 and 1. Thus, we aim to learn a classifier w for C = 3

classes 0, 1 and -1 (for non-digit positions). The parameter w thereupon has 2352

elements (= 3 × 28 × 28), making the Hessian exceedingly large and infeasible to

apply Newton’s method. Finally, the label ym(t) is determined by checking whether

the window centered at tth position matches exactly with the digit positions. We

represent the label as a vector of class membership ym(t) = [ymt1, . . . , ymtC ]
⊤.

Recall the multinomial logit-model is given by

pmtc = P (ymtc|xmt,w) = eymtcw⊤
c xmt/(

C∑
j=1

ew
⊤
j xmt)

and the cost c(a, b) = log(
∑C

c=1 e
ac) −

∑C
c=1 acbc. The Hessian can be extended

from (11.5) as

∇2f =
1

Mn

∑
m,n

(Λpmt − pmtp
⊤
mt)⊗ xmtx

⊤
mt,

where pmt = [pmt1, . . . , pmtC ]
⊤ (see [22]). Since we have Λpmt − pmtp

⊤
mt ⪯ 1

2
(IC −

11⊤

C+1
), a rough estimate of the Lipschitz constant is L = 1

2Mn

∑
m Sx̂m(0). The

strong convexity constant l is controlled by the L2-regularization factor λ = 10−2.

Thereupon, we implement four other methods in comparison with our proposed
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Figure 11.2: The log-scale decrease in the distance to the solution on domain value
side through iterations.

method, namely fixed step size gradient descent, adaptive step size gradient de-

scent, fixed step size momentum, and gradient descent with backtracking line

search. For fixed step size schemes, we use the optimal step sizes described in

Theorem 11.1 and Equation (11.3). For backtracking line search, we set the pa-

rameters α = 0.2, β = 0.5. Our adaptive step size schedules require no tuning

parameters.

Results and analysis. Figure 11.2 compares the empirical convergence of

the five methods in terms of the distance to the solution. The dash lines are

added to the plot in order to depict the theoretical convergence rate corresponding
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to the global and local condition numbers given in Table 11.1. Not surprisingly

all the methods match their theoretical convergence rates. The convergence of

adaptive step size momentum deems to be slightly faster than the optimal rate at

the solution (group 4), and clearly outperforms the other four methods. Adaptive

schemes applied to gradient descent also results in a competitive convergence to

backtracking line search, i.e., purple line versus yellow line (group 2). Fixed step

size gradient descent and momentum method converge almost at the rate predicted

by the analysis (group 1 and 3). Obviously, those approaches are slower than

their adaptive versions because they only depend on the global parameters of

the objective function and cannot recover the optimal rate at the solution. For

quadratic objectives, this distinction is occluded by the fact that the Hessian is

constant everywhere.

11.6 Conclusion

To conclude, we proposed an adaptive schedule for choosing step size in momen-

tum method, under deconvolution settings. It can be readily implemented without

adding computational complexity to fixed step size schemes. We showed that our

method outperforms other aforementioned iterative methods in terms of conver-

gence rate. It is promising that the proposed approach can be applied to a wide

range of problems in the domain of digital signal and image processing.
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11.7 Appendix

In this section, we consider a simple quadratic function

f(x) =
1

2

d∑
i=1

λix
2
i =

1

2
x⊤Λx, (11.9)

∇f(x) = Λx, (11.10)

∇2f(x) = Λ. (11.11)

The results can be generalized to asymptotic analysis of other convex functions

based on the following proposition

Proposition 11.1. Let (fk) be the sequence defined by the recursion fk+1 = afk +

bf 2
k , for k = 1, 2, . . .. If a < 1 and f1 <

1−a
b
, then (fk) converges to 0 at asymptotic

rate a.

Proof. Since (fk) is strictly decreasing, it is easy to show that , with a < 1,

• If f1 >
1−a
b
, (fk) diverges.

• If f1 =
1−a
b
, (fk) =

1−a
b
.

• If f1 <
1−a
b
, (fk) converges to 0.

Consider the case when (fk) converges to 0. There must exist k0 such that fk <

a(1−a)
b

, for all k ≥ k0.

Suppose that f1 = α 1−a
b
, where 0 < α < 1. Let us define a sequence (hk) as
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hk =
1

f1ak−1fk. Then for k ≥ k0

hk =
1

f1ak−1
fk <

1

f1ak−1

a(1− a)

b
=

1

αak−2
. (11.12)

The recursion for (hk) is given by


h1 = 1,

hk+1 = hk + α(1− a)ak−2h2
k.

Notice that (hk) is also strictly increasing, and the following inequalities hold

⇒ α(1− a)ak−2 =
hk+1 − hk

h2
k

>
hk+1 − hk

hk+1hk

=
1

hk

− 1

hk+1

⇒
k−1∑
i=k0

α(1− a)ai−2 >
k−1∑
i=k0

(
1

hi

− 1

hi+1

)

⇒ α(1− a)ak0−2

k−1−k0∑
j=0

aj >
1

hk0

− 1

hk

⇒ α(1− a)ak0−21− ak−k0

1− a
>

1

hk0

− 1

hk

⇒ 1

hk

>
1

hk0

− αak0−2(1− ak−k0)

⇒ hk <
1(

1
hk0

− αak0−2
)
+ αak−2

.

From (11.12), the sequence defined by the RHS must converge to a constant

1
1

hk0
−αak0−2 . Consequently, (hk) is upper-bounded by this sequence and also con-

verges. Finally, we obtain limhk = lim a
f1

fk
ak

< ∞, yielding the asymptotic conver-
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gence rate of (fk) to 0 is a.

11.7.1 Fixed Step Size Gradient Descent

From the update x(k+1) = x(k) − α∇f(x(k)) = x(k) − αΛx(k), we have

f(x(k+1)) =
1

2
(x(k) − αΛx(k))⊤Λ(x(k) − αΛx(k))

=
1

2
(x(k))⊤(I − αΛ)Λ(I − αΛ)x(k)

=
1

2
(Λ1/2x(k))⊤(I − αΛ)2(Λ1/2x(k))

≤ 1

2
∥I − αΛ∥2 .

∥∥Λ1/2x(k)
∥∥2 = max

i
(1− αλi)

2.f(x(k)).

By setting α = 2
λ1+λd

, we obtain

f(x(k+1)) ≤

(
λ1 − λd

λ1 + λd

)2

f(x(k)).

11.7.2 Fixed Step Size Momentum Method

From the update x(k+1) = x(k) − α∇f(x(k)) + β(x(k) − x(k−1)), we have

y(k+1) =

x(k+1)

x(k)

 =

(1 + β)I − αΛ −βI

I 0


 x(k)

x(k−1)

 = My(k)



430

and

fk+1 = f(x(k+1)) + f(x(k)) =
1

2
y(k+1)⊤

Λ 0

0 Λ

y(k+1)

=
1

2
y(k)⊤M⊤Λ̂My(k) = . . .

=
1

2
y(1)⊤M k⊤Λ̂M ky(1)

=
1

2
(Λ̂1/2y(1))⊤

(
Λ̂−1/2M k⊤Λ̂M kΛ̂−1/2

)
(Λ̂1/2y(1))

=
1

2
(Λ̂1/2y(1))⊤

(
(Λ̂1/2M kΛ̂−1/2)⊤(Λ̂1/2M kΛ̂−1/2)

)
(Λ̂1/2y(1))

≤ 1

2

∥∥∥Λ̂1/2M kΛ̂−1/2
∥∥∥2 ∥∥∥Λ̂1/2y(1)

∥∥∥2 = ∥∥∥Λ̂1/2MkΛ̂−1/2
∥∥∥2 f1

≤
( ∥∥∥Λ̂1/2

∥∥∥∥∥M k
∥∥∥∥∥Λ̂−1/2

∥∥∥ )f1 = ∥∥M k
∥∥2 λ2

1

λ2
d

f1.

Since limk→∞
∥Mk∥2

ρ(M)k
= 1,2 the spectral radius ρ(M) = maxj{|λj(M)|} determines

the convergence rate of the series (fk). Recall that M =

(1 + β)I − αΛ −βI

I 0

.
We define the permutation π such that

π(j) =


2j − 1 if j ≤ d,

2j − 2d otherwise.

2Gelfand’s formula.
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Then

M ∼ PπMP⊤
π =



M1 0 . . . 0

0 M2 . . . 0

...
. . .

...

0 0 . . . Md


is a block diagonal matrix with eigenvalues are simply those of M1,M2, . . . ,Md.

For any j = 1, . . . , d, the eigenvalues of Mj are the root of the characteristic

polynomial σ2 − (1 + β − αλj)σ + β. Since α =
(

2√
λ1+

√
λd

)2
, β =

(√
λ1−

√
λd√

λ1+
√
λd

)2
, the

two complex roots are given by

σj1,j2 =
1

2

(
1 + β − αλj ±

√
(1 + β − αλj)2 − 4β

)
.

It follows that the magnitudes of all eigenvalues are equal to
√
β. Thus ρ(M ) =

√
β.

11.7.3 Adaptive Step Size Gradient Descent

From (11.9), we have

f(x(k+1)) = f(x(k))− αk∇f(x(k))
⊤∇f(x(k)) +

1

2
α2
k∇f(x(k))

⊤∇2f(x(k))∇f(x(k)).
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Substituting αk =
∇f(x(k))

⊤∇f(x(k))

∇f(x(k))
⊤∇2f(x(k))∇f(x(k))

, we obtain

f(x(k+1)) = f(x(k))− 1

2

(
∇f(x(k))

⊤∇f(x(k))

)2

∇f(x(k))
⊤∇2f(x(k))∇f(x(k))

= f(x(k))− 1

2

(
x(k)⊤Λ2x(k)

)2
x(k)⊤Λ3x(k)

=

(
1−

(
x(k)⊤Λ2x(k)

)2(
x(k)⊤Λ3x(k)

)(
x(k)⊤Λx(k)

))f(x(k))

≤

(
1− 4λ1λd

(λ1 + λd)2

)
f(x(k)) =

(
λ1 − λd

λ1 + λd

)2

f(x(k))

The last inequality uses Kantorovich Inequality

(
y⊤Λ2y

)2(
yΛ3y

)(
y⊤Λy

) ≥ 4λ1λd

(λ1 + λd)2
.

11.7.4 Adaptive Step Size Momentum Method

For asymptotic analysis, we consider the region near the optimum, in which the

objective function can be well-approximated by a quadratic. We know that fixing

α(k) to 2
λ1+λd

yields ∥∥y(k+1)
∥∥ ≤

√
κ− 1√
κ+ 1

∥∥y(k)
∥∥ .
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On the other hand, choosing adaptive step size

α̂
β̂

 =

 ∇f⊤∇2f∇f −∆x⊤∇2f∇f

−∆x⊤∇2f∇f ∆x⊤∇2f∆x


−1  ∇f⊤∇f

−∆x⊤∇f


minimizes the quadratic with respect to α, β. That means the resulting ŷ(k) satis-

fies ∥∥ŷ(k+1)
∥∥ ≤

∥∥y(k+1)
∥∥ ≤

√
κ− 1√
κ+ 1

∥∥y(k)
∥∥ .

Hence, each iteration of adaptive schedule decreases the distance at least as much

as each iteration of fixed step size scheme. The convergence rate therefore is

upper-bounded by the one of fixed step size scheme inside the quadratic region,

i.e.,
√
κ−1√
κ+1

.
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Chapter 12: Conclusion and Future Work

In summary, the contributions of this dissertation are as follows:

• A closed-form bound on the convergence of iterative methods via fixed point

analysis is developed in Chapter 2. This enables the establishment of the con-

vergence rate, region of convergence, and the number of required iterations

to reach certain accuracy.

• A unified framework to study the local linear convergence of projected gradi-

ent descent for constrained least squares is proposed in Chapter 3. The pro-

posed framework relies on three key steps: (i) the introduction of Lipschitz-

continuous differentiability to provide tight error bounds on the linear ap-

proximation of the projection operator near the solution, (ii) the establish-

ment of an asymptotically-linear recursion on the error iterations, and (iii)

the derivation of the linear rate and the region of convergence of the error

sequence.

• Utilizing this unified framework, the convergence rate analysis of projected

gradient descent for minimizing a quadratic over a sphere is developed in

Chapter 4 and then the result to the unit-modulus constrained least squares

problem is generalized in Chapter 5. In each problem, acceleration techniques

is further proposed to improve the performance of the algorithm in practice.
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• Next, the convergence analysis of iterative hard thresholding for matrix com-

pletion is established. Thanks to the aforementioned unified framework, con-

vergence analysis is shifted to the characterization of the rank-r projection

operator. The perturbation expansion and error bound for this projection

are developed in Chapter 6. Then, the exact rate of convergence and its

asymptotic behavior in large-scale matrix completion setting are analyzed in

Chapter 7.

• In Chapters 8 and 9, two acceleration techniques for IHT that can be used

to exploit the asymptotic convergence results and obtain the optimal conver-

gence in practice are demonstrated.

• Chapter 10 analyzed gradient descent for the factorization-based formulation

of matrix completion. Under the view of fixed-point iterations, the first

known closed-form expression of the convergence rate is established.

• Finally, a practical algorithm for selecting momentum step sizes in deconvo-

lution applications is proposed. The proposed method recovers the optimal

rate of convergence for the Heavy-Ball method while remaining the same

computational complexity as traditional gradient schemes.
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12.1 Asymptotic Convergence Rate for Low-Rank Asymmetric Ma-

trix Completion via Factorized-Based Gradient Descent

The asymmetric matrix completion problem is a more general version of symmetric

matrix completion [215]. It can be formulated as

f(X,Y ) =
1

2

∥∥PΩ(XY ⊤−M )
∥∥2
F

The derivatives of f(X) with respect to X and Y are

∇Xf(X,Y ) = PΩ(XY ⊤−M )X

and ∇Y f(X,Y ) = PΩ(XY ⊤−M )⊤Y .

The PGD update is given by

X(k+1)

Y (k+1)

 =

X(k)

Y (k)

− η

PΩ(X
(k)(Y (k))⊤−M)X(k)

PΩ(X
(k)(Y (k))⊤−M )⊤Y (k)

 .

For the non-symmetric case, instead of considering a direct recursion on the error

matrix Ek = Xk(Xk)⊤ − M , we need to construct the recursive equations on

two separate error matrices, i.e., [∆Xk+1,∆Y k+1] = g([∆Xk,∆Y k]). The next

challenge is to find a first-order expansion of the function g that can approximate

it well in the neighborhood of the solution where the error matrices are small.

Finally, one would determine the asymptotic linear convergence rate by analyzing
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of the behavior of the linear operator under structural constraints of the problem

(as we have seen in the symmetric case).

12.2 Minimum-Norm Adversarial Attacks using Gradient Projec-

tions with Spherical Constraints

Given an image a ∈ Rn that belongs to class c. The problem of finding an adver-

sarial instance for a can be formulated as

min
x∈Rn

∥x− a∥ subject to C(x) = t, (12.1)

where C(x) is the output label assigned by the classifier for image x and t ̸= c

is the target class. Since the constraint C(x) = t is often highly non-linear (e.g.,

neural networks), we consider an objective function f : Rn → R such that


f(x) > 0 if C(x) ̸= t,

f(x) ≤ 0 if C(x) = t.

Thus, problem (12.1) can be reformulated as [38]

min
x∈Rn

∥x− a∥ subject to f(x) ≤ 0. (12.2)

The above problem can be solved via iterative expanding radius approach as fol-

lows. Starting from a sufficiently small radius R = R0, the algorithm works in a
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way that it alternates between (i) minimizing the objective function on the sphere

with center a and radius R and (ii) increasing the radius by an appropriate amount.

The iterative process stops when we find x such that f(x) < 0. Thus, our op-

timization problem is essentially reduced to solving a sequence of optimization

problems:

min
x∈Rn

f(x) subject to ∥x− a∥ = Rt, (12.3)

where Rt is the radius at the t-th iteration. In order to solve the subproblem (12.3),

we use the so-called projected gradient descent method (PGD) with fixed step size,

where the projection onto the sphere with center a and radius R is defined as

Pa,R(x) =


a+R x−a

∥x−a∥ if x ̸= a,

Re1 if x = a.

(12.4)

One advantage of this approach is that it allows to trace the trajectory of optimal

solutions as the radius increase. By keeping the iterates close to the optimal tra-

jectory, one may hope that the algorithm will be able to find a good solution at

the end of the path. Given the analysis we performed with spherical constrained

quadratic minimization problems [218], it would be interesting to propose such

efficient algorithm with theoretical guarantees. Since f is highly nonlinear and po-

tentially non-smooth, there are several challenges with the analysis here including

the guarantee on the convergence to stationary points and the strategy to expand

the radius so that the iterates remains close to the optimal trajectory.
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12.3 Other Long-Term Research Directions

Below are some topics that are of interest in this dissertation but require more

time and effort to work on. They can be classified as long-term goals.

1. Derivative of the projection onto manifolds using shape operators:

The gradient of the projection operator can be further computed using recent

results in differential geometry on the shape operator. It would be interesting

to see how it can be applied to our expression of the asymptotic rate.

2. Matrix Completion in different asymptotic regimes: In most of recent

works on the global convergence of algorithms for low-rank matrix comple-

tion, the setting of interest is the asymptotic case when the rank is constant

and the number of observations grows almost linear in the dimension of the

matrix. It would be interesting to make connections between our local con-

vergence result and the existing global convergence result, e.g., the selection

of the step size, the region of convergence, the rate of convergence, how

random matrix theory can be applied in such regime.

3. Convergence of PGD with backtracking and/or exact line search:

It has been well-known that PGD with exact line search obtains the optimal

rate of convergence. Interestingly, this coincides with the optimal fixed step

size in our aforementioned analysis. It is interesting to study why this hap-

pens and how our analysis for the fixed step size scheme can extended to the

schemes with adaptive step size.
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[4] P-A Absil and Jérôme Malick. Projection-like retractions on matrix mani-
folds. SIAM Journal on Optimization, 22(1):135–158, 2012.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even faster SVD decomposi-
tion yet without agonizing pain. Proceedings of Advances in Neural Infor-
mation Processing Systems, 29:974–982, 2016.

[6] Luigi Ambrosio and Carlo Mantegazza. Curvature and distance function
from a manifold. Journal of Geometric Analysis, 8(5):723–748, 1998.

[7] Isaac Amidror. Scattered data interpolation methods for electronic imaging
systems: A survey. Journal of Electronic Imaging, 11(2):157–176, 2002.

[8] Harry C Andrews and Boby Ray Hunt. Digital image restoration. Prentice-
Hall, 1977.

[9] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur appli-
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