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Abstract  
 

Computer system I/O has evolved with processor and memory technologies in terms of reducing latency, 
increasing bandwidth and other factors.   As requirements increase for I/O, such as networking, storage, 
and video, descriptor-based DMA transactions have become more important in high performance systems 
to move data between I/O adapters and system memory buffers.  DMA transactions are done with 
hardware engines below the software protocol abstraction layers in all systems other than rudimentary 
embedded controllers.  CPUs can switch to other tasks by offloading hardware DMA transfers to the I/O 
adapters.  Each I/O interface has one or more separately instantiated descriptor-based DMA engines 
optimized for a given I/O port.  I/O transactions are optimized by accelerator functions to reduce latency, 
improve throughput and reduce CPU overhead.  This chapter surveys the current state of high-
performance I/O architecture advances and explores benefits and limitations.  With the proliferation of 
CPU multi-cores within a system, multi-GB/s ports, and on-die integration of system functions, changes 
beyond the techniques surveyed may be needed for optimal I/O architecture performance. 
 

 
Keywords: input/output, processors, controllers, memory, DMA, latency, throughput, power 
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I. INTRODUCTION 
I/O is becoming a peer to processor core (or simply core) and memory in terms of latency, bandwidth, 
and power requirements.  Historically, when a core was simpler and more directly I/O focused, it was 
acceptable to “bit-bang” I/O port operations using port I/O or memory-mapped I/O models [1].  However, 
with complex user interfaces and programs using multiple processes, the benefit of offloading data 
movement to an I/O adapter became more apparent.  Since I/O devices are much slower than the 
core/memory bandwidth, it makes sense to move data at a pace governed by the external device.   

Typically, I/O data transfer is initiated using a descriptor containing the physical address and size of 
the data to be moved.  This descriptor is then posted (i.e., sent) to the I/O adapter, which then processes 
the direct memory access (DMA) read/write operations as fast as the core/memory bandwidth allows.  
The descriptor-based DMA approach makes sense when the I/O bandwidth requirements are much lower 
than the core/memory bandwidth.  However, with the advent of multi-core processors and Simultaneous 
Multi-Threading (SMTs), the I/O device capability can be scaled as the number of cores scale per Central 
Processing Unit (CPU).  A CPU can consist of multiple cores and other related functions, but is unified 
on a single silicon die.  Figure 1 shows how CPU scaling and the integration of the memory controller 
have exceeded I/O bandwidth gains during the period from 2004 to 2010 [2].  As can be seen, I/O 
bandwidth has improved at a much lower rate than CPU and memory performance capabilities.  I/O also 
needs quality of service to provide low latency for network interfaces and graphics accelerators, and high 
bandwidth support for storage interfaces.  

 

 
 

Figure 1: I/O Performance increase comparison (adapted from [2]). 
 

The movement of data between CPUs and I/O devices is performed using variety methods, each often 
optimized based on the traffic type.  For example, I/O devices such as storage disk drives typically move 
large blocks of data (> 4 Kilobyte) for throughput efficiency but result in poor latency performance.  In 
contrast, low latency is crucial in a scenario, such as a cluster of inter-networked systems, where 
messages may be small (on the order of 64 bytes).  Therefore, this paper provides a survey on existing 
methods and advances in utilizing the I/O performance available in current systems.  Based on our 
measurements and analysis, we also show how I/O is impacted by latency and throughput constraints.  
Finally, we suggest an option to consider based on these measurements to improve I/O performance.   

The paper is organized as follows:  Section II provides a general background on I/O operation and 
how the DMA transactions typically occur between I/O adapters and higher-level software layers.  This is 
followed by a detailed measurement and analysis of typical current high-performance I/O devices in 
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Section III.  Section IV provides a survey on how various current systems perform I/O transactions.  
Finally, Section V suggests areas for improvement and optimization opportunities. 

 
II. BACKGROUND AND GENERAL DISCUSSION 
Current I/O devices, such as Network Interface Controllers (NICs), storage drives, and Universal Serial 
Bus (USB), are orders of magnitude lower in bandwidth than the core-memory complex.  For example, a 
modern 64-bit core running at 3.6 GHz compared to a 1.5 Mbps USB1.1 mouse has 153,600 times higher 
bandwidth.  CPUs with multiples cores and SMT make this ratio even higher.  Therefore, it makes sense 
to offload the cores by allowing the I/O adapters some control over how input/output data is 
pushed/pulled to/from memory.  This allows a core to switch to other tasks while the slower I/O adapters 
operate as efficiently as they are capable.  

Figure 2 shows a diagram of the internal system components of a current high-performance system 
based on the Intel 5520 chipset [3].  The 8-core system contains two quad-core processors, each with 8 
MB L3 cache, memory interface and QuickPath Interconnect (QPI) coherent memory interface.  The 
speed of each core (3.2 GHz) is not directly applicable to the discussion as we will see that I/O transaction 
efficiency is governed more directly by the I/O device controllers.  The two dotted arrows between the 
I/O adapter and a CPU indicate the path and bandwidth available for the I/O adapter to read data to be 
transmitted from system memory and write received data to system memory.   

The I/O Hub (IOH) interfaces between the QPI interface and multiple Peripheral Component 
Interconnect express (PCIe) interfaces.  This flexible design allows 1 to 4 CPUs to be configured using 1 
to 2 IOHs for a variety of I/O expansion capabilities.  In addition, each IOH has Basic Input/Output 
System (BIOS) controlled registers to define the PCIe lane configuration allowing the system to have 
either multiple low bandwidth PCIe interfaces or fewer high bandwidth PCIe interfaces, such as graphics 
engines.  In previous generations of Intel and AMD systems, the IOH was termed “Northbridge” and 
included a memory controller allowing the processor silicon to be dedicated to core and cache functions.  
Advances in silicon die technology have allowed the memory controller to be integrated on the same 
silicon die with the cores and cache for improved memory performance.  This performance improvement 
is mainly due to the removal of the old “Northbridge” and the related protocol overhead.  

In 2012, Intel launched products that integrate the IOH onto the same CPU.  This integration reduces 
system power and form factor size, but not other factors such as latency and throughput.  Our 
measurements show that it is the PCIe interface capabilities that define the latency between the system 
components and not whether or not the IOH is integrated.  For this reason, our measurement analysis 
discussed in Section III is based on the more recent platform shown in Figure 2. 

High performance I/O adapters connect directly to the IOH, while more basic I/O adapters are 
interfaced with the I/O Controller Hub (ICH).  The ICH, which was often termed “Southbridge” in 
previous system generations, supports the interface hardware to BIOS boot flash memory, direct attached 
storage, USB, and system management modules that include temperature, voltage, and current sensors.  
Our focus is on I/O devices connected to the IOH interface and not ICH-connected devices. 

An NIC is used as the baseline I/O device since it offers a wide variety of I/O performance factors to 
study.  For storage, throughput is more important than latency, and several techniques can be incorporated 
into NICs to enhance storage over the network.  For clusters and high-performance computing, latency is 
often a critical component, thus different techniques can be applied.  Table 1 lists the performance focus 
and reference section. 
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Table 1: NIC performance accelerator examples 
 
Performance focus Techniques to improve performance Chapter reference 
Throughput CPU DMA IV.A.2 
Throughput Interrupt moderation IV.B.2 
Throughput RSS, LRO, LSO IV.C.1 
Latency LLI IV.B.2 
Latency Infiniband IV.D.3 
Latency User-based I/O IV.B.1 

 
Note that although power minimization is always a concern, it is common practice to disable power-

saving states to maintain a low (and predictable) I/O latency.  This baseline NIC for I/O transactions can 
be extended to other high-performance devices, such as disk storage controllers and graphics adapters.  
These devices all share the descriptor-based DMA transactions that will be discussed in detail in the rest 
of this section. 
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Figure 2: High-performance I/O system block diagram (adapted from [3]) 
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Figure 3: Typical Ethernet transmit flow. 
  
Figure 3 illustrates a typical I/O transmission for an Ethernet NIC (either wired or wireless).  The 

following sequence of operations occurs to transmit an Ethernet packet between two connected systems 
(i.e., kernel sockets have been established and opened): 

(1)  The kernel software constructs the outgoing packet in system memory.  This is required to 
support the protocol stack, such as TCP/IP, with proper headers, sequence numbers, checksums, 
etc.  

(2)  A core sends a doorbell request on the platform interconnect (e.g., PCIe, but this also applies to 
any chip-to-chip interconnect within a platform) to the NIC indicating that there is a pending 
packet transmission.  This is a write operation by a core to the memory space reserved for the I/O 
adapter, which is un-cacheable with implications that other related tasks that are potentially 
executing out-of-order must be serialized until the un-cacheable write completes.  The core then 
assumes the packet will be transmitted, but will not release the memory buffers until confirmed 
by the NIC that the packet has been transmitted. 

(3)  The doorbell request triggers the NIC to initiate a DMA request to read the descriptor containing 
the physical address of the transmit payload.  The descriptor for the payload is not included in the 
doorbell request because there are two separate descriptors for header and payload in an Ethernet 
packet definition, and a larger network message will require more descriptors (e.g., maximum 
payload for Ethernet is 1460 bytes).  A tracking mechanism called a Global Observation Queue 
(GOQ) in the CPU controls memory transaction coherency such that on-die cores or other 
CPUs correctly snoops the (system) bus for memory requests.  The GOQ also helps avoid 
memory contention between I/O devices and the cores within the system. 
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(4)  A memory read request for the descriptor(s) returns with the physical addresses of the header and 
payload.  Then, the NIC initiates a request for the header information (e.g., IP addresses and the 
sequence number) of the packet. 

(5) After the header information becomes available, a request is made to read the transmit payload 
using the address of the payload in the descriptor with almost no additional latency other than the 
NIC state machine. 

(6)  When the payload data returns from the system memory, the NIC state machine constructs an 
Ethernet frame sequence with the correct ordering for the bit-stream. 

(7)  Finally, the bit-stream is passed to a PHYsical (PHY) layer that properly conditions the signaling 
for transmission over the medium (copper, fiber, or radio). 

 
The typical Ethernet receive flow is the reverse of the transmit flow and is shown in Figure 4.  After a 

core prepares a descriptor, the NIC performs a DMA operation to transfer the received packet into the 
system memory.  After the transfer completes, the NIC interrupts the processor and updates the 
descriptor.   

  

 
 

Figure 4: Typical Ethernet receive flow, which is similar to the transmit flow but in reverse. 
 
(1)  The NIC pre-fetches a descriptor associated with the established connection, and matches an 

incoming packet with an available receive descriptor. 
(2)  The receive packet arrives asynchronously to the NIC adapter. 
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(3)  The NIC performs a DMA write to transfer the packet contents into the system memory space 
pointed to by the receive descriptor. 

(4)  After the memory write transaction completes, the NIC interrupts the core indicating a new 
packet has been received for further processing.   

(5)  As part of the interrupt processing routine, the core driver software issues a write to the NIC to 
synchronize the NIC adapter descriptor ring with the core descriptor ring.  This also acts as a 
confirmation that the NIC packet has been successfully moved from the I/O adapter to system 
memory. 

(6)  Finally, the kernel software processes the receive packet in the system memory. 
 
 

III. MEASUREMENTS AND QUANTIFICATIONS 
In order to quantify various I/O design aspects of current servers and workstations and explore potential 
changes, a conventional NIC was placed in an IOH slot of a platform described in Section II.  A PCIe 
protocol analyzer was used to observe the PCIe transactions, which are summarized in Table 2.  Using 
measurements on a real (and current) system offers validity in extrapolations and conclusions that are less 
certain in simulated environments. 
 
Table 2: Quantified metrics of current descriptor-based DMA transactions. 
 

 Factor 
 Latency Bandwidth-per-pin 

Description Latency to transmit a TCP/IP 
message between two systems Gbps per serial link 

Measured value 8.6 µs 2.1 Gbps/link 
Descriptor related 
overhead 18% 17% 

See Section III.A III.B 
 
 

The following subsections discuss the measurements and analysis in more detail.  By observing the 
latency breakdown and bandwidth-per-pin utilization, we can explore requirements and inefficiencies in 
the current model. 
 
III.A Latency 
Latency is a critical aspect in network communication that is easily masked by the impact of distance.  
However, when inter-platform flight-time of messages is small, the impact of latency within a system is 
much more important.  One such example is automated stock market transactions (arbitrage and 
speculation) as demonstrated by Xasax claiming 30 µs latency to the NASDAQ trading floor [4].  
Another example is in High Performance Computing (HPC) nodes where LinPack benchmark (used to 
define the Top500 supercomputers) share partial calculations of linear algebra matrix results among nodes  
[5]. 

Figure 5 shows a typical 10 Gigabit-Ethernet (GbE) latency between a sender (TX) and a receiver 
(RX) in a datacenter environment where the fiber length is on the order of 3 meters.  These results are 
based on PCIe traces of current 10 GbE Intel 82598 NICs (code named Oplin) on PCIe ×8 Gen1 
interfaces [6].  The latency benchmark NetPIPE is used to correlate application latencies to latencies 
measured on the PCIe interface for 64-byte messages.  The 64-byte size was used since it is small enough 



 - 10 -  

to demonstrate the critical path latencies, but also large enough to represent a minimal message size that 
can be cache-line aligned. 

 

 
 

Figure 5: GbE critical path latency between two systems. 
 

End-to-end latency consists of both hardware and software delays, and depends on many aspects not 
directly addressed in this article, such as core and memory clock frequencies, bandwidth, and cache 
structure.  The critical path latency of the software stack is around 1.61 µs and 2.9 µs for send and 
receive, respectively, and is not related to descriptor-based I/O communication since it is only associated 
with how a core handles I/O traffic data that is already in system memory.  Software latency in terms of 
the core cycles required to formulate TCP/IP frames for transmit and processing received TCP/IP frames 
is described in more detail in [7].  On the other hand, hardware latency can be split into three portions.  
First, the TX NIC performs DMA reads (NIC-TX) to pull the data from the system memory to the TX 
NIC buffer, which is around 1.77 µs.  This is followed by a flight latency of 1.98 µs for the wire/fiber and 
the TX/RX NIC state machines (NIC to NIC).  Finally, the RX NIC requires 0.35 µs to perform DMA 
writes (NIC-RX) to push the data from the RX NIC buffer into the system memory and interrupt a core 
for software processing.  The total latency LatencyTotal is 8.6 µs and can be expressed by the following 
equation: 

 
LatencyTotal = TxSW + TxNIC + fiber + RxNIC + RxSW 
 
The latency for the TxNIC portion can be further broken down using PCIe traces as shown in Figure 6.  

A passive PCIe interposer was placed between the platform PCIe slot and the Intel 82598 NIC.  PCIe 
traces were taken from an idle platform and network environment.  These latencies are averaged over 
multiple samples and show some variance, but it is under 3%.  The variance is due to a variety of factors, 



 - 11 -  

such as software timers and PCIe transaction management.  Based on a current 5500 Intel processor 
platform with 1066MB/s Double Data Rate (DDR3) memory, the doorbell write takes 230 ns, the NIC 
descriptor fetch takes 759 ns, and the 64B payload DMA read takes 781 ns.  The core frequency is not 
relevant since the PCIe NIC adapter controls the DMA transactions.  Note that 43% and 44% of the 
transmit HW latency (TxNIC) are used by the descriptor fetch (and decode) and payload read, respectively.  
This is important in the scope of getting a packet from memory to the wire, and assuming the core could 
write the payload directly to the NIC, 1770 ns could be nearly reduced to 230 ns.  This results in about 
18% reduction in total end-to-end latency as shown in Table 2.    

 

 
 

Figure 6: NIC TX latency breakdown. 
 
 
III.B Throughput and Bandwidth Efficiency 
The iperf bandwidth benchmark was used on a dual 10 GbE Intel 82599 Ethernet adapter (codename 
Niantic) [8] on an Intel 5500 server.  The primary difference between the 82598 and the 82599 Intel NIC 
is the increase in PCIe bandwidth.  This does not impact the validity of the previous latency discussion, 
but allows throughput tests up to the theoretical 2×10GbE maximum.  PCIe captures consisted of more 
than 300,000 PCIe ×8 Gen2 packets, or 10 ms of real-time trace, which gives a statistically stable data for 
analysis.   

Figure 7 shows a breakdown of transaction utilization in receiving and transmitting data on a PCIe 
interface for a dual 10 GbE NIC.  The four stacked-bars show extreme cases of TCP/IP receive (RX_) and 
transmit (TX_) traffic for small (_64B_) and large (_64KB_) I/O message sizes.  Since throughput is lower 
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than the link rate for small message sizes, we also show the aggregate throughput (1Gbps, 18Gbps, 
400Mbps, 19Gbps) across both 10GbE ports when using the iperf benchmark.  The traffic is normalized 
to 100% to illustrate the proportion of non-payload related traffic across the PCIe interface.   

 
 

 
Figure 7: Proportions of PCIe transaction bandwidths.  

 
 Receive traffic performance is important for applications such as backup and routing traffic, while 

transmit traffic performance is important in serving files and streaming video.  I/O operation on small 
messages is representative of latency sensitive transactions while large I/O is representative of storage 
types of transactions.  Figure 8 highlights the impact of non-payload related PCIe bandwidth when the 
PCIe frame overhead is factored in to account for the actual bandwidth required for each frame.  This 
figure shows that descriptors and doorbell transactions for small messages represent a significant portion 
of the total PCIe bandwidth utilized in this measurement.  This includes PCIe packet header and Cyclic 
Redundancy Check (CRC) data along with PCIe packet fragmentation.  If descriptor and doorbell 
overhead were to be removed, the bandwidth could be improved by up to 43% as indicated by the 
TX_400Mbps_64 case.  In the case of I/O receive for small payload sizes, the inefficiency due to 
descriptors and doorbells is only 16% since 16-byte descriptors can be pre-fetched in a 64-byte cache-line 
read request.  For large I/O message sizes, the available PCIe bandwidth is efficiently utilized with less 
than 5% of the bandwidth used for descriptors and doorbells.  
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Figure 8: PCIe bandwidth utilized for non-payload vs. payload bandwidth. 
 
IV. SURVEY OF EXISTING METHODS AND TECHNIQUES 
Computer systems utilize a broad range of I/O methods depending on the external usage requirements and 
the internal system requirements.  Since the scope of this article is on the hardware I/O transactions that 
are essentially common regardless of application, the survey is structured based on system complexity for 
the following four categories: (1) simple systems, (2) workstations and servers, (3) datacenters and High-
Performance Computing (HPC) clusters, and (4) system interconnects and networks.  Note that an 
alternative I/O survey organization could be based on different I/O usages (such as networking, storage 
and video applications).  However, this would add an orthogonal dimension to the survey, and thus is not 
considered.  
 
IV.A Simple Systems - Direct I/O access and basic DMA operations 
This subsection discusses I/O for systems that access I/O directly by the CPU without DMA, sometimes 
termed Programmed I/O (PIO) as well as systems that have DMA engines directly associated with CPUs.  
These include embedded systems, systems with Digital Signal Processing (DSP) and graphics 
subsystems.  These systems may either access I/O directly using the CPU instruction set or set up a DMA 
operation that is associated directly with a CPU.  Real-Time Operating Systems (RTOS) is part of this 
classification since the I/O performance characterization is a critical part of system performance.  
 
IV.A.1 Embedded systems  
The simplest method of system I/O, which is usually found in slower systems with a single dedicated 
function, is found in embedded controllers with dedicated memory locations for I/O data.  An example 
would be a clock radio where outputs are LCD segment signals and inputs are buttons with dedicated 
signals that can be polled or interrupt a basic software routine.  Example controllers used for such 
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functions include device families around the Intel 8051, Atmel AVR, ARM, and Microchip PIC, where 
no operating system is used to virtualize hardware. 

This direct access of I/O by a microcontroller can support I/O protocols at very low bandwidths such as 
“bit-banging” mentioned in Section I as implemented with SoftModem [1] 
 
IV.A.2 CPU DMA and DSP systems 

An extension of the direct I/O control is to have a DMA engine configured and controlled by the CPU. 
This is common in Digital Signal Processing (DSP) systems where large amounts of data need to be 
moved between I/O, signal processing function blocks, and memory.  The basic operations consist of: 

1. CPU determines via interrupt or other control a need to move N bytes from location X to location 
Y, often in a global memory-mapped address space. 

2. CPU configures the DMA engine to perform the data transfer. 
3. CPU either polls or waits for DMA interrupt for completion. 

 
An example of such as system is the IBM/TI Cell processor shown in Figure 9, which consists of Power 
Processing Element (PPE) and 8 Synergistic Processing Elements (SPE) or cores [9, 10].  Each SPE has a 
Synergistic Processing Unit (SPU) and a Memory Flow Controller (MFC), which is used to handle the 
SPE DMA transactions. 
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MFC
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MFC
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SPU

MFC
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SPU

MFC

PPE

Bus I/O
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SPE 7

SPU
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SPE 6

SPU

MFC

Memory 
Controller

System 
Memory

 
 

Figure 9: Cell processor.  
 

Each SPE has 256 KB of local on-die memory.  If a SPE requires non-local memory access, it can 
either request the PPE for a kernel/OS service or configure DMA to perform I/O transaction from the 
System Memory to and from the SPE.  To reduce the SPE DMA programming overhead, Ionkov et al. [9] 
proposed using co-routines to manage I/O transactions between SPEs and System Memory.  This removes 
the requirement to program each SPE DMA transaction, but adds a software layer that requires tracking 
co-routine state that impacts the number of co-routines that can be supported and the switch time between 
co-routines.  There is no memory coherency structure, as found in x86 CPUs, reducing inter-core 
communication requirements.  The Cell processor architecture shows how data movement via core-
controlled DMAs is effective for graphics processing in current workloads. 

Further examples of core-based DMA control are presented in [11, 12] covering typical embedded 
DMA processing, Katz and Gentile [13] provide a similar description of DMA on a Texas Instruments 
Blackfin digital signal processor.  These systems use DMA descriptors to define physical payload status 
and memory locations similar to legacy Ethernet I/O processing described in Section II. 
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IV.A.3 General CPU controlled DMA engines 

An alternative to the simple embedded controller system cases discussed thus far is Intel’s DMA offload 
engine in server CPUs called QuickData Technology, which a method to improve I/O performance for 
storage and Redundant Array of Independent Disks (RAID) [14].  Certain RAID configurations will use 
XOR bit-level calculations to regenerate data on failed disk drives [15].  Often an expensive RAID 
storage controller will execute the XOR functions, but the Intel QuickData Technology allows standard 
disks to be attached in a RAID configuration and support in-flight XOR calculations.  Currently, it is 
implemented in the IOH shown in Figure 2, and with a large and cumbersome 64-byte descriptor.  
Obviously, there is inefficiency in handling asynchronous variable sized data common in networking that 
needs to be setup before any DMA copies can be made between I/O adapter and memory.  As a result, the 
DMA engine is often used for memory-to-memory copies, such as between kernel space and user space.  
In networking, this shows little if any benefit to CPU utilization [16], in part because memory accesses 
can be pipelined and thus hide a software core-controlled memory-to-memory copy.  
 
IV.A.4 PCIe bandwidth optimization 

Yu et al. [17]described how existing DMA transfer speed can be improved by increasing buffer 
efficiencies for large block DMA transfers on a particular PCIe implementation (PEX8311).  Figure 10 
shows the speedup, which is achieved primarily by expanding the PCIe packet frame size.  An analogy 
could be made to the use of jumbo frames on Ethernet that exceed the default 1500 byte maximum 
transfer unit (MTU).  PCIe transactions normally have a maximum frame payload of 256 bytes because 
larger maximum frame payloads would require more silicon on both ends of the PCIe interface.  The 
selection of 256 bytes is an industry norm since often each end of the PCIe interface can be populated by 
silicon from various companies.  The PCIe protocol specifies three headers for each transaction [18]: 
Transaction Layer Protocol (TLP), Data Layer Protocol (DLP) and Link Layer Protocol (LLP), which 
combined add 24 bytes to each PCIe transaction reducing the effective bandwidth. 

Tumeo et al. [19]provide details on optimizing for double buffering, and how this technique can be 
used to optimize latency in a multi-core FPGA with each core having a DMA engine to move data 
between system memory and core memory.  The basic idea is to pipeline multiple DMA transactions such 
that the PCIe interface is optimally utilized.  While this allows DMA transactions to be setup, executed 
and terminated in parallel, it can be detrimental to latency and predictability of latency as discussed in the 
next section.   
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Figure 10: Performance comparison between normal and optimized DMA 
 

IV.A.5 Predictability and Real-Time Operating Systems 

In RTOS, I/O latency prediction is an important factor to guarantee predictable operations.  If an I/O 
transaction cannot be predicted to occur within a certain time interval, the degree of deterministic 
behavior by the operating system cannot be defined.  The smaller variability in latency prediction of an 
I/O transaction results in better overall RTOS performance.  Several papers present models on how to 
accurately predict and bound the DMA latency when controlled by the I/O adapter [20-24].  Worst Case 
Execution Time (WCET) is the most critical parameter to consider.  Current I/O transactions use multiple 
DMA engines in different clock domains throughout the system and each engine may have different I/O 
transaction queuing and quality of service characteristics.  Based on this, the predictability of I/O 
transactions is generally inversely proportional to system complexity.  

A more predicable I/O transaction can involve the core directly accessing the I/O device using 
program I/O (PIO).  However, I/O adapter DMA engines remain common in systems with RTOS since 
standard “bit-banging” by the core results in poor I/O performance.  For example, Salah and El-Badawi 
compared PIO to DMA, where PIO resulted in only 10% throughput compared to DMA throughput 
measurements [20].   
 
IV.A.6 Other DMA related proposals 

The dynamic compression of data for memory accesses discussed in [25] is an option to reduce I/O 
latency and reduce the chip-to-chip bandwidth.  However, there is added logic complexity required to 
compress and decompress payload data.  In addition, the I/O device is often clocked at a much slower rate 
than the memory interface, such as the Intel 82599 NIC internal frequency of 155 MHz [8]. 

One method to overcome the problem with a common clock DMA engine to transfer data between 
memory devices is to use asynchronous DMA.  With asynchronous DMA the transfer occurs as soon as 
the producer has the data to transfer and requires the consumer to be available without a defined clock 
boundary.  The challenges of asynchronous DMA are discussed in [26, 27], where it can yield lower 
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latencies across a DMA interface, which typically requires scheduling by a DMA controller.  Their results 
show that asynchronous DMA is more appropriately targeted for a heterogeneous clock domain, which 
would reduce latency by a few clock cycles in the system shown in Figure 2.  

Table 3 summarizes how simple systems implement I/O transactions, their primary benefits and costs, 
and example implementations.   

 
Table 3: Simple System I/O transactions 
 
Simple systems Key Benefits Key Costs Example 

implementation 
Embedded Systems No DMA – allows direct 

interaction between 
controller and I/O interface 

Core overhead to read and 
write directly to I/O interface 

Clock radio 

CPU DMA and DSP Each core has a dedicated 
DMA engine close to core 
to service data movement 
saving core cycles and 
power 

Per core silicon area and 
power 

Cell processor and 
1980s personal 
computers 

General CPU DMA engine Shared DMA engine 
between cores and CPUs 
saves silicon area and 
power 

DMA transaction complexity 
and increased latency  

Intel QuickData 
technology 

PCIe Bandwidth 
Optimization 

Reducing PCIe protocol 
overhead allows lower I/O 
latency 

Requires larger PCIe buffers 
that consume more silicon 
area and power 

Research proposals 
[17] [19]  

Predictability and RTOS More predictable latency 
bounds and throughput 
minimums by removing 
DMA variability 

Overall lower system 
throughput 

RTOS research to 
optimize Worst Case 
Execution Time 
(WCET) 

Other DMA proposals I/O data compression and 
asynchronous DMA may 
allow lower latencies 

Silicon complexity and 
power 

Research proposals 
[25-27] 

 
 
IV.B Generic Workstations and Servers 
Systems that run standard multi-user and multi-processing operating systems, such as Unix and Windows, 
use more complex I/O structures.  Since application software is usually an abstraction of hardware 
capability to virtualize the I/O ports, the CPU can be utilized very effectively during I/O transactions on 
other tasks.  This has led to the distributed I/O model where each I/O port may have a DMA engine to 
move incoming/outgoing data to/from system memory.  Offloading I/O transactions to a DMA engine is 
very effective since the I/O device is typically a 100 MHz state machine while the CPU operates in multi-
GHz range allowing the I/O to proceed as fast as it can transfer data (network, storage or video).   

Since CPU and memory performance capabilities have increased faster than I/O performance, the 
descriptor-based DMA mechanism described in Section II is used for a variety of devices in the system.  
These include not just add-in cards, but also the on-board NIC, USB, and storage controllers on current 
desktop and workstation systems.  This section discusses the I/O issues of such systems and how they are 
addressed. 
 
IV.B.1 Operating system virtualization protection 
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The mechanism to place a kernel barrier between a user application program and hardware makes sense 
when there are multiple potential processes requesting I/O services; however, there is a penalty in 
performance.  Latency increases because the application software needs to first request kernel services to 
perform I/O transactions.  Throughput may also decrease since buffers need to be prepared and managed 
using system calls, which often include CPU context switches.  

An alternative to always having kernel interaction with system I/O is carefully controlling user-mode 
DMA I/O.  The two proposals discussed in [28, 29] describe how to bring kernel-based system calls for 
moving data into user space so that it can be accessed by user applications.  Significant performance 
improvement can be obtained for small I/O messages by having a user application directly control data 
movement rather than using system calls.  However, there are serious security risks in that any user 
application can access physical memory.  The risk grows when systems are interconnected, potentially 
allowing physical memory access not just from other processes within a system but also processes on 
other systems. 
 
IV.B.2 Interrupts and moderation 

Interrupt methods have advanced over the last several years.  Traditionally, an interrupt signal or 
connection was asserted upon requiring CPU software services.  This requires a core context switch and 
parsing through the available interrupt sources within a system.  Since other interrupt sources could be 
I/O devices on slow interfaces, polling for interrupt would require many core cycles.  In current systems, 
Message Signaled Interrupts (MSI) uses a message on the PCIe interface rather than a separate signal for 
a device interrupt, which saves circuit board resource and allows up to 32 interrupt sources to be defined 
in the message [18].  MSI was extended to MSI-X that allows up to 2048 sources since there can often be 
more than 32 interrupt sources in a system.  As a result, a core being interrupted can directly proceed to 
the needed interrupt vector software. 

Interrupt moderation, which is also referred to as interrupt coalescing or interrupt aggregation, allows 
multiple incoming data (e.g., Ethernet packets) to be processed with a single interrupt.  This results in 
relatively low latency and reduces the number of context switches required for received network traffic.  
Common methods are discussed in [7] where two timers can be used: One absolute timer with a default, 
yet configurable, interval of 125 µs to interrupt after any received data arrival, and another per packet 
timer that can expire based on each received packet arrival.   

Since network traffic can be both latency and throughput sensitive, adaptive interrupt moderation has 
been an ongoing area of research and implementations.  For example Intel’s 82599 NIC allows interrupt 
filtering control based on frame size, protocol, IP address, and other parameters [8].  This Low Latency 
Interrupt (LLI) moderation uses credits based on received packet event control rather than on timer 
control. 

Table 4 summarizes how generic workstations and servers implement I/O transactions, their primary 
benefits and costs, and example implementations 
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Table 4: Generic Workstation and Server I/O transactions 
 
Generic Workstations and 
Servers 

Key Benefits Key Costs Example 
Implementation 

Operating system 
virtualization protection 

Protection from I/O 
generated access to system 
resources 

Latency and CPU 
overhead to authorize user 
access to operating system 
controlled transactions 

Linux and Windows OS 
protection layers 

Interrupts and moderation Reduced CPU overhead to 
manage I/O transactions 

Added latency per I/O 
transaction 

10GbE network 
interface controllers 

 
 
IV.C Datacenters and HPC cluster systems 
Systems that are used in datacenters and High-Performance Computing (HPC) clusters have requirements 
beyond general stand-alone workstations and servers.  Often these systems are composed of high-end 
servers using multiple 10 Gigabit Ethernet (GbE) interconnects, 15,000 RPM disks, multiple Graphic 
Processing Units (GPUs), and Solid-State Drive (SSD) clusters.  This drives the internal system 
requirements to use high performance scalable protocols, such as Serial Attached SCSI (SAS) for storage 
and low latency Ethernet or InfiniBand [30] for internode communications.  Some HPCs will have front-
end CPUs to prepare the I/O in memory for high-speed processing.  An example would be an 
environmental simulation that loads the working set into memory and after simulation outputs a 
completed working set.   

Since Ethernet is ubiquitous and flexible as a network and storage interface, this subsection considers 
some of the high-end capabilities found in datacenters as link speeds increase to 10 GbE and beyond.  We 
first review I/O receive optimizations followed by I/O transmit optimizations, ending with more complex 
bi-directional improvements. 

 
IV.C.1 Device I/O Optimizations  

Received Side Scaling (RSS) is the ability to de-multiplex Ethernet traffic and effectively spread the 
traffic flow across multiple available cores within a system [31].  An example would be a web server 
supporting thousands of simultaneous TCP sessions.  Each session is hashed using a Toeplitz hash table 
to properly direct the receive interrupt and traffic to a core that presumably maintains context for the 
related TCP session.  An additional benefit of RSS is that a given TCP session will often be serviced by a 
persistent core that may well have the connection context in cache.  

Large Receive Offloading (LRO), also called Receive Side Coalescing (RSC) by Intel [8], is a receive 
mechanism to clump sequenced frames together, presenting them to the operating system as a single 
receive frame [32].  This effectively allows creation of a jumbo frame avoiding the higher-level software 
layer to patch the discrete smaller Ethernet frames (typically 1500 bytes) together. 

Large Segment Offload (LSO), also called TCP Segmentation Offload (TSO) or Generic Segmentation 
Offload (GSO), allows an I/O device to be given a pointer to a segment of data much larger than a single 
frame (e.g., 64 KB) and stream the data for transmits [33].  With 64 KB sized messages, LSO can 
improve performance by up to 50%.  
 
IV.C.2 Descriptor packing 

Descriptor coalescing can be used to reduce the overall receive latency.  For example, an Ethernet 
descriptor size is typically 16 bytes and thus multiple descriptors can be read from a single doorbell [34] 
(e.g., four descriptors would be read at once for a cache line size of 64 bytes).  This works well when the 
NIC is prefetching descriptors to DMA packets that will be received in the future.   
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However, a server supporting web or database transactions for thousands of sessions over multiple 
descriptor queues may not allow for transmit descriptor bundling.  This is because organizing the transmit 
descriptors for packing over thousands of sessions may not be productive since transmit messages need to 
be formulated in system memory before the descriptor can be defined.  In contrast, transmit descriptor 
coalescing may be beneficial when large multi-framed messages are being processed.  For example, a 
datacenter where multiple systems are physically co-located may simply choose to enable jumbo-frames, 
which again may cause the transmit descriptor serialization described above leading to longer latencies. 
 
IV.C.3 TCP/IP Offload Engine (TOE) and other offload engines 

Offloading the entire TCP/IP stack onto an I/O adapter can reduce the stack protocol overhead on the 
CPU [35].  Figure 11 shows an example of TCP/IP Offload Engine (TOE).  
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Figure 11: Basic TOE comparison to software-based implementation. 

 
This approach is beneficial for large blocks of I/O, such as storage with average block size greater 

than 4 KB.  The downside of this approach is that HPC and datacenter servers have to also process small 
messages.  For example, virtualizing multiple operating systems within a single system is common due to 
increased capabilities of CPUs and memory.  This leads to a single I/O adapter processing small packets 
over thousands of TCP connections.  The TOE also processes frames at slower frequencies (typically in 
the order of 100 MHz) than a modern CPU with multi-GHz frequencies.  This adds significant amount 
logic complexity and connection context memory requirements to the less flexible TOE I/O adapter [35].   

In general, any higher level software I/O protocol may be implemented in an I/O adapter.  For 
instance, the Intel 82599 does not offload the TCP stack, but does offload IPsec and Fibre Channel over 
Ethernet protocols [8].  Myrinet is another type of TOE engine that provides a commonly used HPC 
interconnect using low cost Ethernet over a non-TCP/IP proprietary fabric [36].  Since a proprietary 
protocol is used, Myrinet-specific routing devices between nodes are required. 
 
IV.C.4 Coherent Network Interface 

Mukherjee et al. proposed a coherent NIC interface (CNI) [37], which was followed by an 
implementation on the Front-Side Bus (FSB) architecture by Schlansker et al. [38].  A block diagram of 
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the coherent memory implementation is shown in Figure 12, which consists of Transmit Command Queue 
(TCQ), Receive Command Queue (RCQ), and Rx Data Buffer that are all memory-mapped to coherent 
memory address space.  This approach makes the NIC a peer to core memory communication by 
exposing some of the NIC buffers as coherent system memory.  The implementation in coherent memory 
removes the need for DMA transactions since the core directly reads or writes to the NIC pointers and 
buffers.  They implemented a prototype design and tested on a CPU socket using an FPGA.     

The TCQ maintains the transmit descriptor information such that as soon as the CPU software writes 
the location of the transmit packet in system memory, the DMA engine fetches the packet for 
transmission.  This removes the requirement to fetch a descriptor for transmitting a network packet. 

The RCQ is updated as soon as a receive packet is placed in the Rx Data Buffer.  Both regions are in 
coherent memory allowing the CPU software to access the CNI receive packets without the traditional 
DMA operation into system memory.   When the CPU, either through polling or interrupt, is signaled 
with a receive operation, the Rx Data Buffer points to the appropriate memory location for the received 
packet. 

The key detriment to this implementation is the additional coherency traffic since CNI has to perform 
snoops and write-back operations between cores and NIC buffers.  This additional traffic conflicts with 
CPU related traffic between cores on the FSB [39].  
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Figure 12: NIC system memory apertures. 

 
IV.C.5 CPU caching optimizations 

One optimization to I/O DMA is Direct Cache Access (DCA), where an I/O device can write to a 
processor’s Last Level Cache (LLC) by either directly placing data in a cache or hinting to a pre-fetcher 
to pull the data from the system memory to a cache [40].  However, this method still requires a descriptor 
fetch for the I/O device to determine where to place the data in physical memory. 

Work such as Dan et al. explores the idea of having a separate I/O DMA cache structure, allowing 
DMA traffic to be cached separately from non-I/O related data [41].  Similar to DCA, this allows a CPU 
to have access to receive traffic with an on-die cache and to transmit without requiring the system 
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memory transactions.  A criticism of DCA is the risk of cache pollution where the cache becomes a 
dumping site for I/O evicting more critical data.  This risk of pollution can be lowered by having a 
dedicated I/O cache or partitioning the cache structure into I/O cache and general cache.  Nevertheless, a 
dedicated I/O DMA cache would require more CPU silicon resources and benefits would be small for 
systems with small I/O. 
 
IV.C.6 CPU network interface integration 

One approach that is assumed to improve performance is the integration of I/O adapters closer to the 
CPU.  By integrating I/O adapters on the same silicon as the CPU, there are no chip-to-chip requirements 
such as the PCIe frame protocol that can impact latency and throughput.  The design of Sun’s Niagara2 
processor with integrated 10 GbE showed that the internal architecture needs to be carefully considered to 
match the desired network performance [42].    Figures 13 and 14 compare the transmit and receive 
performance of traditional discrete NIC (DNIC) and integrated NIC (INIC) on Sun Niagara2 [42].  Both 
figures show that, as the I/O size increases, INIC results in significantly lower processor utilization 
compared to DNIC since the CPU generally has faster I/O responses.  Figure 13 shows no discernable 
benefit in terms of bandwidth for transmit traffic.  However, Figure 14 shows a slight improvement in 
terms of CPU utilization for large I/O receive traffic.  As a result, simply gluing I/O adapters to 
processors can often be a waste of die area, power, and development time with little performance 
improvement. 
 

 
Figure 13: Discrete vs. Integrated NIC transmit performance. 
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Figure 14: Discrete vs. Integrated NIC receive performance. 
 

Table 5 summarizes how datacenter and HPC cluster systems implement I/O transactions, their 
primary benefits and costs, and example implementations 
 
Table 5: Datacenter and HPC cluster I/O transactions 
 

Datacenters and HPC 
clusters 

Key benefits Key costs Example 
implementation 

Device I/O 
optimizations 

Higher I/O throughput 
by adding offload 
accelerators 

I/O device silicon area 
and power for large I/O 
transactions 

RSS, LRO, LSO on 
Intel and other NIC 
devices 

Descriptor packing Increased throughput 
based on lower PCIe 
interface overhead 

Increased latency Receive descriptor 
prefetching on Intel 
10GbE NIC devices 

TOE and other offloads Offload stack protocol 
processing to I/O device 
saving CPU cycles 

Increased latency, 
silicon area and power  

Broadcom and Chelsio 
10GbE 

Coherent Network 
Interfaces 

Reduced latency and 
higher throughput 

Increased silicon area 
and power with non-
standard I/O interfaces 

Research proposals [37, 
38] 

CPU caching 
optimizations 

Lower latency and 
higher throughput 

Probable cache 
inefficiencies and more 
coherency transactions 

Intel direct cache access 

CPU network interface 
integration 

Lower latency and 
higher throughput 

Architectural risk of 
fixing a CPU with a 
lower volume I/O device 

Oracle/Sun Niagara2 

 

 

IV.D System interconnects and networks 
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Since we are examining how data can be moved optimally within a system, this section considers the 
important role interconnect architectures play in moving data within a larger, more monolithic system (as 
opposed to a cluster of systems) and between systems.  A particular emphasis is given to HPC 
environment since this area bears more importance on latency and bandwidth performance characteristics.  
HPCs prioritize CPU-to-CPU communications rather than moving data into and out of a system, so we 
discuss the system I/O oriented communication aspects. 
 
IV.D.1 CPU socket interconnect 

AMD Hyper-Transport [43] and Intel QPI [14] CPU interconnects are two widely accepted and 
competitive implementations of data movement between multiple CPUs.  These interconnects enable the 
increasing number of cores in a system to interface with each other, memory, and I/O.  Not only are there 
multiple cores, but memory is also distributed using non-uniform memory access (NUMA) architectures.  
For example, Figure 2 shows only two NUMA nodes (current platforms can have many more) for a total 
of 8 cores (where each can operate as two logical cores to the operating system with SMT).  
Communication between cores is usually done using the memory coherency specified by the MESI(F) 
protocol [44].  Both Hyper-Transport and QPI use snoops and coherence directories to determine 
common states of all memory locations.  While they both address similar architecture concerns, there are 
differences that make them incompatible. 

While these interconnects could be used for system I/O transactions, there has not been any 
widespread demand for using them as I/O interface.  Presumably, part of the reason is that a coherent I/O 
interface would need to address the coherency overhead discussed in Section IV.C.4.  
 
IV.D.2 Messaging between cores 

Intel has explored I/O messaging with the Single-chip Cloud Computer (SCC) [45].  This defines a new 
non-coherent memory type for I/O where software controls what is written and read from a message 
passing buffer shown in Figure 15.  This allows for efficient movement of data between cores while 
avoiding cache coherency overhead in the form of snoops and data write-backs.  By using the message 
memory type, the coherency issues with write-back and write-through memory are avoided and the core 
interfaces are not impacted with irrelevant inter-core traffic.  In SCC, this is accomplished by reserving 
space in the level 1 (L1) cache as non-coherent memory.  For core A to pass a message to core B, the L1 
cache line has to be first moved to a non-coherent space, after which the message can be moved to a 
message-passing buffer to be moved into core B’s non-coherent L1 cache space.  This becomes 
particularly important as the core count increases to 48, as is the case for SCC, and beyond.  While this is 
similar in architecture to the well-established Message Passing Interface (MPI) standard [46], MPI defines 
only the higher software layer that uses TCP/IP or other interconnect fabrics and does not define any of 
the hardware details.  
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Figure 15: SCC message data types. 

 
IV.D.3 Remote Direct Memory Access: InfiniBand and iWARP 

Remote Direct Memory Access (RDMA) is a method to allow remote access directly into a system 
memory without involving OS overhead.  This reduces latency and increases throughput that is important 
particularly in datacenters and HPC clusters.  In the two systems shown in Figure 16, once a connection 
has been established with proper authentications, a user application can access the remote system’s user 
application space with no requirement for system calls to the OS on either system.  This is basically an 
offload-engine where the I/O adapter grants physical access to system memory.  Protection is ensured by 
the hardware interfaces and the software protocol.   

InfiniBand and Internet Wide Area RDMA Protocol (iWARP) are both implementations of RDMA.  
iWARP implements RDMA over the standard Ethernet protocol, which allows iWARP clusters to utilize 
standard Ethernet routers and interconnect frameworks.  In contrast, InfiniBand uses a re-designed 
network that is not compatible with Ethernet. 

InfiniBand is considered a premier high bandwidth and low latency system interconnect [8].  The 
non-Ethernet protocol allows latencies as low as 1 µs for Mellanox ConnectX, which is the 1999 merger 
of two competing specifications from Future IO and Next Gen IO [47].  It shares many similarities with 
TOE/Myrinet/I2O in that transmit and receive queues are processed without the OS involvement in that 
the session connection is offloaded to the I/O device adapter.  Figure 16 shows how two I/O devices 
communicate across an RDMA fabric with each adapter having a Work Queue Entry (WQE) for each 
communication session.  To provide session reliability, the Completion Queue Entry (CQE) supports 
transaction acknowledgements.  Thus, each RDMA session is basically represented by two queues where 
the WQE queue generates the outgoing work requests and the CQE queue tracks completion of 
outstanding WQE transactions.  These two queues are usually termed a Queue Pair (QP) and are repeated 
for the sessions used by the higher-level application software. 

InfiniBand is a performance reference not only in latency but throughput as well.  In a comparison of 
InfiniBand Double Data Rate (DDR at 8 Gbps) and Quad Data Rate (QDR at 16 Gbps) I/O adapters on 
Intel platforms [48], the inter-node bandwidth requirements start to exceed the available intra-node 
bandwidth.  In particular, DDR inter-system bandwidth exceeded the PCIe Gen1 host interface of 16 
Gbps for traffic of small (less than 1KB) messages. 
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 InfiniBand adds hardware complexity to the I/O adapter to track the connection context, and lacks 
broad popularity due to the high porting cost both in hardware and software when compared to the 
ubiquitous Ethernet protocol.  This can be seen in the Top-500 supercomputer interconnect listings where 
44% are Ethernet-based and only 42% are InfiniBand-based [5].  
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Figure 16: InfiniBand communication stack. 

 
 
IV.D.4 SciCortex and other fabrics 

SciCortex uses a custom fabric using a Kautz graph to connect 5,832 cores on 972 nodes of 6 cores each 
[49].  An important point of this architecture is that relatively low performance cores were used and the 
network hops between cores were optimized.  Based on their HPC benchmark results, bimodal message 
size patterns of 128 bytes and 100 KB were found.  In this case, PIO would be better for small messages 
with a CPU I/O engine support for large messages. 

A popular fabric is the 3-dimension torus in the IBM Blue Gene/P to interconnect 36,864 nodes, each 
with 4 cores [50].  Each node has a DMA engine to communicate with other nodes, which is similar to the 
engine discussed in Section IV.A.3.  The Blue Gene/P DMA engine services the core-to-core 
communications instead of serving general purpose I/O.  

Table 6 summarizes how system interconnects and network I/O transactions can impact I/O 
transactions.  
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Table 6: System interconnect and network I/O transactions 
 

System interconnects 
and networks 

Key benefits Key costs Example 
implementation 

CPU socket interconnect Higher I/O throughput  I/O device complexity 
and memory coherency 
transaction overhead 

Intel QPI and AMD 
Hyper-Transport 

Messaging between 
cores 

Higher I/O throughput 
and lower latency 

Dedicated core silicon 
area and power 

Intel SCC 

RDMA InfiniBand and 
iWARP 

Lower latency and 
reduced CPU overhead 

Increased I/O device 
silicon area and power 

Mellanox Infiniband I/O 
adapters 

SciCortex fabric Network optimized 
communication between 
nodes 

Customized I/O 
interfaces with low 
volume 

SciCortex clusters 

 
 
V. POTENTIAL AREA OF PERFORMANCE IMPROVEMENT  
The prior sections have shown that most I/O implementations rely on DMA engines on the I/O adapters to 
move network, storage and video data within a system.  As CPU and memory performance increases 
faster than I/O requirements, it is important to reconsider the premise that I/O tasks should always be off-
loaded to I/O devices as in the descriptor-based DMA method.  As shown in Section III, the primary 
advantage of not relying on an I/O adapter’s DMA engine and removing descriptor handling is that 
latency can be reduced.  If the DMA engine of the I/O device can be integrated on the CPU, it is possible 
to reduce end-to-end latency by 18% and also reduce the size of the I/O device memory buffer.   

Typical network traffic exhibits a bi-modal packet size with concentrations of small and large 
Ethernet frames [51].   Based on this assumption and projecting that small and large impacts can be 
averaged, our measurements summarized in Figure 7 show the potential benefits of removing descriptor 
related PCIe traffic.  The 17% bandwidth reduction due to removal of descriptor, doorbell, and interrupt 
from the PCIe interface would allow for more payload transfers across the interface.  Therefore, this 
section suggests a CPU-based integrated DMA (iDMA) engine and presents several benefits of this 
design.  

The iDMA can be implemented as a simple micro-controller or enhanced state machine that manages 
the data flow between an arbitrary I/O device and system memory, and would basically act as a 
heterogeneous or SoC core to the larger application generic cores.  Figure 17 shows the placement of 
iDMA within a CPU.  The arrow from the I/O adapter shows the iDMA pulling receive traffic from an 
I/O adapter into system memory.  The arrows from system memory show the iDMA reading memory and 
pushing transmit traffic to the I/O adapter, and vice versa.  Since I/O messages and cache-line memory 
accesses occur at different times and with different sizes, basic buffers are needed to support arbitration 
and fragmentation of off-chip interfaces.  
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Figure17: An option for CPU integrated DMA. 
 

Other less quantifiable improvements of removing descriptor-based DMA transactions include the 
following and are discussed in more detail by Larsen and Lee [52].  Potential performance improvements 
are tabulated in Table 7.  

1. Matched I/O and core/memory bandwidths - In current systems, I/O bandwidth and core and 
memory bandwidths are not matched, and often systems can be found with too little I/O 
capability or inflexible in expanding I/O bandwidth and latency capabilities.  Although there are a 
variety of reasons for the I/O mismatch to core and memory service capabilities, this problem is 
exacerbated by having multiple CPUs with possibly integrated IOHs.  With iDMA, a dual-core 
processor could be matched with a lower bandwidth iDMA engine than a 4- or 8-core processor.  
Similarly, a platform that may need higher processor performance relative to I/O performance 
may need many cores with a lower capacity iDMA engine. 

2. Power management efficiency - Mechanisms like RSS can spread I/O traffic across all available 
cores, thereby wasting system power that could be localized to a subset of cores when I/O traffic 
is low.  

3. System-level quality-of-service guarantees - As I/O increases in bandwidth and complexity, 
having independent DMA engines contending for memory bandwidth reduces quality control.  By 
having a central observation and control point for I/O transactions, the system can prioritize and 
deliver transactions more appropriately. 

4. Silicon cost and complexity - Not having independent DMA engines servicing I/O transactions 
can reduce silicon cost and complexity.  

5. Security – Security can be improved since iDMA would provide more control over which I/O 
device reads/writes from/to physical memory. 
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Table 7: Potential benefits for non-descriptor DMA. 

Factor Description Measured 
Value 

Descriptor 
Related 
Overhead 

Comments/Justification 

Latency 
Latency to transmit a 
TCP/IP message 
between two systems 

8.6 µs 18% Descriptors are no longer latency critical 

BW-per-pin Gbps per serial link 2.1 
Gbps/link 17% Descriptors no longer consume chip-to-

chip bandwidth 
BW-right-sizing Not quantifiable N/A N/A Reduced platform silicon area and power 

Power 
Efficiency 

Normalized core power 
relative to maximum 
power 

100% 71% Power reduction due to more efficient 
core allocation for I/O 

Quality of 
Service 

Time required to 
control connection 
priority from software 
perspective 

600 ns 92% 
Round trip latency to queuing control 
reduced between PCIe and system 
memory 

Multiple I/O 
Complexity Die cost reduction 100% > 50% 

Silicon, power regulation and cooling cost 
reduction of multiple I/O controllers into 
a single iDMA instance 

Security Not quantifiable N/A N/A Not quantifiable 
 
 
VI. CONCLUSIONS 
 
This survey of I/O methods and existing optimizations illustrates the historical development of I/O 
transactions for variety of computing systems.  In simple systems, I/O is directly addressed by the 
processor either using PIO or DMA engines associated with the cores, which eliminates the need to set up 
descriptors to post DMA requests.  However, to reduce the CPU management overhead, I/O transaction 
distribution using DMA engines on the I/O devices became the optimal system design.  This DMA off-
loading approach has continued as I/O transfer optimizations techniques surveyed continue to drive for 
I/O performance improvements.  Based on our measurements and analysis of latency and throughput 
efficiency, there is an argument to re-visit processor-based I/O transactions suggesting quantifiable 
latency and bandwidth-per-pin advantages and potential benefits in power, QoS, silicon area, and security 
for future datacenter server architecture.   

 
Table of Abbreviations 
 
Abbreviation Explanation 
ARM Acorn RISC Machine 
BIOS Basic Input Output System – allows access by the operating system to low-level hardware. 
BW BandWidth supported by an interface, usually synonymous with throughput capability. 
CNI Coherent Network Interface 
CPU Central Processing Unit – consisting of potentially multiple cores, each with one or more 

hardware threads of execution. 
CRC Cyclical Redundancy Check 
CQE Completion Queue Entry – used in RDMA to track transaction completions 
DCA Direct Cache Access 
DDR Double Data Rate – allows a slower clock to transmit twice the data per cycle.  Usually based 

on both the rising and falling edge of a clock signal.  
DDR3 3rd generation memory DDR interface 
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DLP Data Layer Protocol in PCIe, which is similar to networking IP layer. 
DMA Direct Memory Access – allows read or write transactions with system memory. 
DSP Digital Signal Processing 
FPGA Field Programmable Gate Array 
FSB Front Side Bus – a processor interface protocol that is replaced by Intel QPI and AMD Hyper-

Transport 
GbE Gigabit Ethernet 
GBps Gigabytes per second  
Gbps Gigabits per second, (GBps x 8) 
GHz GigaHertz 
GPU Graphic Processing Unit 
GOQ Global Observation Queue 
HPC High Performance Computing – usually implies a high-speed interconnection of high-

performance systems. 
HW HardWare 
ICH Intel I/O Controller Hub – interfaced to the IOH to support slower system protocols, such as 

USB and BIOS memory. 
I/O Input/Output 
IOH Intel I/O hub – interfaces between QPI and PCIe interfaces. 
iWARP Internet Wide Area RDMA Protocol – an RDMA protocol that supports lower level Ethernet 

protocol transactions. 
KB KiloByte, 1024 bytes.  Sometimes reduced to “K” based on context. 
L1 cache Level 1 cache  
L2 cache Level 2 cache  
LLC Last Level cache - Level 3 cache 
LCD Liquid Crystal Display 
LLI Low Latency Interrupt 
LLP Link Layer Protocol – used PCIe 
LRO Large Receive Offloading 
LSO Large Segment Offload 
MB MegaBytes 
MESI(F) Modified, Exclusive, Shared, Invalid and optionally Forward – Protocol to maintain memory 

coherency between different CPUs in a system. 
MFC Memory Flow Controller – used to manage SPU DMA transactions. 
MMIO Memory Mapped I/O 
MPI Message Passing Interface – a protocol to pass messages between systems often used in HPC. 
MTU Maximum Transmission Unit 
MSI Message Signaled Interrupt – used in PCIe to interrupt a core. 
NIC Network Interface Controller 
NUMA  Non-Uniform Memory Architecture – allows multiple pools of memory to be shared between 

CPUs with a coherency protocol. 
PCIe Peripheral Component Interface express – defined at www.pcisig.com.  Multiple lanes (1-16) of 

serial I/O traffic reaching 16Gbps per lane.  Multiple generations of PCIe exist, represented by 
Gen1, Gen2, Gen3 and Gen4.  PCIe protocol levels have similarities with networking ISO stack.   

PHY PHYsical interface defining the cable (fiber/copper) interfacing protocol. 
PIO Programmed I/O – often synonymous with MMIO 
QDR Quad Data Rate – allows four times the data rate based on a slower clock frequency.   
QoS Quality of Service – A metric to define guaranteed minimums of service quality. 
QP Queue Pair – transmit queue and receive queue structure in RDMA to allow interfacing between 

two or more systems. 
QPI  QuickPath Interconnect – Intel’s proprietary CPU interface supporting MESI(F) memory 

coherence protocol. 
RAID Redundant Array of Inexpensive Disks 

http://www.pcisig.com/
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RDMA Remote Direct Memory Access – used to access memory between two or more systems. 
RSS Receive Side Scaling 
RTOS Real Time Operating System 
RX Reception from a network to a system 
SAS Storage Array System 
SCC Single Chip Cloud 
SCSI Small Computer System Interface 
SMT Surface Mount Technology 
SPE Synergistic Processing Element in the Cell processor 
SPU Synergistic Processing Unit in Cell SPE. 
SSD Solid Stated Disk 
SW SoftWare 
TCP/IP Transmission Control Protocol and Internet Protocol networking stack. 
TLP Transaction Layer Protocol of PCIe stack 
TOE TCP/IP Offload Engine 
TX  Transmission from a system to a network 
USB Universal Serial Bus 
WQE Work Queue Entry – used in RDMA to track transaction parameters. 
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