
Survey on System I/O Hardware Transactions and Impact on Latency,
Throughput, and Other Factors

Larsen, S., & Lee, B. (2014). Survey on System I/O Hardware Transactions and
Impact on Latency, Throughput, and Other Factors. Advances in Computers, 92,
67-104. doi:10.1016/B978-0-12-420232-0.00002-7

10.1016/B978-0-12-420232-0.00002-7

Elsevier

Accepted Manuscript

http://cdss.library.oregonstate.edu/sa-termsofuse

http://survey.az1.qualtrics.com/SE/?SID=SV_8Io4d9aAYR1VgGx
http://cdss.library.oregonstate.edu/sa-termsofuse

 - 1 -

Survey on System I/O Hardware Transactions and Impact on Latency,

Throughput, and Other Factors

Steen Larsen†‡ and Ben Lee†

†School of Electrical and Engineering Computer Science
Oregon State University

Corvallis, OR 97331
steen.knud.larsen@gmail.com, benl@eecs.orst.edu

‡Intel Corporation
124 NE Shannon St
Hillsboro OR 97124

 - 2 -

I. INTRODUCTION ... 4
II. BACKGROUND AND GENERAL DISCUSSION .. 5
III. MEASUREMENTS AND QUANTIFICATIONS .. 9

III.A Latency .. 9
III.B Throughput and Bandwidth Efficiency ... 11

IV. SURVEY OF EXISTING METHODS AND TECHNIQUES .. 13
IV.A Simple Systems - Direct I/O access and basic DMA operations.. 13

IV.A.1 Embedded systems .. 13
IV.A.2 CPU DMA and DSP systems .. 14
IV.A.3 General CPU controlled DMA engines... 15
IV.A.4 PCIe bandwidth optimization .. 15
IV.A.5 Predictability and Real-Time Operating Systems ... 16
IV.A.6 Other DMA related proposals ... 16

IV.B Generic Workstations and Servers .. 17
IV.B.1 Operating system virtualization protection ... 17
IV.B.2 Interrupts and moderation ... 18

IV.C Datacenters and HPC cluster systems ... 19
IV.C.1 Device I/O Optimizations ... 19
IV.C.2 Descriptor packing .. 19
IV.C.3 TCP/IP Offload Engine (TOE) and other offload engines .. 20
IV.C.4 Coherent Network Interface .. 20
IV.C.5 CPU caching optimizations ... 21
IV.C.6 CPU network interface integration ... 22

IV.D System interconnects and networks .. 23
IV.D.1 CPU socket interconnect ... 24
IV.D.2 Messaging between cores .. 24
IV.D.3 Remote Direct Memory Access: InfiniBand and iWARP .. 25
IV.D.4 SciCortex and other fabrics ... 26

V. POTENTIAL AREA OF PERFORMANCE IMPROVEMENT ... 27
VI. CONCLUSIONS .. 29
Table of Abbreviations ... 29
ACKNOWLEDGEMENT .. 31
REFERENCES .. 31

 - 3 -

Abstract

Computer system I/O has evolved with processor and memory technologies in terms of reducing latency,
increasing bandwidth and other factors. As requirements increase for I/O, such as networking, storage,
and video, descriptor-based DMA transactions have become more important in high performance systems
to move data between I/O adapters and system memory buffers. DMA transactions are done with
hardware engines below the software protocol abstraction layers in all systems other than rudimentary
embedded controllers. CPUs can switch to other tasks by offloading hardware DMA transfers to the I/O
adapters. Each I/O interface has one or more separately instantiated descriptor-based DMA engines
optimized for a given I/O port. I/O transactions are optimized by accelerator functions to reduce latency,
improve throughput and reduce CPU overhead. This chapter surveys the current state of high-
performance I/O architecture advances and explores benefits and limitations. With the proliferation of
CPU multi-cores within a system, multi-GB/s ports, and on-die integration of system functions, changes
beyond the techniques surveyed may be needed for optimal I/O architecture performance.

Keywords: input/output, processors, controllers, memory, DMA, latency, throughput, power

 - 4 -

I. INTRODUCTION
I/O is becoming a peer to processor core (or simply core) and memory in terms of latency, bandwidth,
and power requirements. Historically, when a core was simpler and more directly I/O focused, it was
acceptable to “bit-bang” I/O port operations using port I/O or memory-mapped I/O models [1]. However,
with complex user interfaces and programs using multiple processes, the benefit of offloading data
movement to an I/O adapter became more apparent. Since I/O devices are much slower than the
core/memory bandwidth, it makes sense to move data at a pace governed by the external device.

Typically, I/O data transfer is initiated using a descriptor containing the physical address and size of
the data to be moved. This descriptor is then posted (i.e., sent) to the I/O adapter, which then processes
the direct memory access (DMA) read/write operations as fast as the core/memory bandwidth allows.
The descriptor-based DMA approach makes sense when the I/O bandwidth requirements are much lower
than the core/memory bandwidth. However, with the advent of multi-core processors and Simultaneous
Multi-Threading (SMTs), the I/O device capability can be scaled as the number of cores scale per Central
Processing Unit (CPU). A CPU can consist of multiple cores and other related functions, but is unified
on a single silicon die. Figure 1 shows how CPU scaling and the integration of the memory controller
have exceeded I/O bandwidth gains during the period from 2004 to 2010 [2]. As can be seen, I/O
bandwidth has improved at a much lower rate than CPU and memory performance capabilities. I/O also
needs quality of service to provide low latency for network interfaces and graphics accelerators, and high
bandwidth support for storage interfaces.

Figure 1: I/O Performance increase comparison (adapted from [2]).

The movement of data between CPUs and I/O devices is performed using variety methods, each often
optimized based on the traffic type. For example, I/O devices such as storage disk drives typically move
large blocks of data (> 4 Kilobyte) for throughput efficiency but result in poor latency performance. In
contrast, low latency is crucial in a scenario, such as a cluster of inter-networked systems, where
messages may be small (on the order of 64 bytes). Therefore, this paper provides a survey on existing
methods and advances in utilizing the I/O performance available in current systems. Based on our
measurements and analysis, we also show how I/O is impacted by latency and throughput constraints.
Finally, we suggest an option to consider based on these measurements to improve I/O performance.

The paper is organized as follows: Section II provides a general background on I/O operation and
how the DMA transactions typically occur between I/O adapters and higher-level software layers. This is
followed by a detailed measurement and analysis of typical current high-performance I/O devices in

 - 5 -

Section III. Section IV provides a survey on how various current systems perform I/O transactions.
Finally, Section V suggests areas for improvement and optimization opportunities.

II. BACKGROUND AND GENERAL DISCUSSION
Current I/O devices, such as Network Interface Controllers (NICs), storage drives, and Universal Serial
Bus (USB), are orders of magnitude lower in bandwidth than the core-memory complex. For example, a
modern 64-bit core running at 3.6 GHz compared to a 1.5 Mbps USB1.1 mouse has 153,600 times higher
bandwidth. CPUs with multiples cores and SMT make this ratio even higher. Therefore, it makes sense
to offload the cores by allowing the I/O adapters some control over how input/output data is
pushed/pulled to/from memory. This allows a core to switch to other tasks while the slower I/O adapters
operate as efficiently as they are capable.

Figure 2 shows a diagram of the internal system components of a current high-performance system
based on the Intel 5520 chipset [3]. The 8-core system contains two quad-core processors, each with 8
MB L3 cache, memory interface and QuickPath Interconnect (QPI) coherent memory interface. The
speed of each core (3.2 GHz) is not directly applicable to the discussion as we will see that I/O transaction
efficiency is governed more directly by the I/O device controllers. The two dotted arrows between the
I/O adapter and a CPU indicate the path and bandwidth available for the I/O adapter to read data to be
transmitted from system memory and write received data to system memory.

The I/O Hub (IOH) interfaces between the QPI interface and multiple Peripheral Component
Interconnect express (PCIe) interfaces. This flexible design allows 1 to 4 CPUs to be configured using 1
to 2 IOHs for a variety of I/O expansion capabilities. In addition, each IOH has Basic Input/Output
System (BIOS) controlled registers to define the PCIe lane configuration allowing the system to have
either multiple low bandwidth PCIe interfaces or fewer high bandwidth PCIe interfaces, such as graphics
engines. In previous generations of Intel and AMD systems, the IOH was termed “Northbridge” and
included a memory controller allowing the processor silicon to be dedicated to core and cache functions.
Advances in silicon die technology have allowed the memory controller to be integrated on the same
silicon die with the cores and cache for improved memory performance. This performance improvement
is mainly due to the removal of the old “Northbridge” and the related protocol overhead.

In 2012, Intel launched products that integrate the IOH onto the same CPU. This integration reduces
system power and form factor size, but not other factors such as latency and throughput. Our
measurements show that it is the PCIe interface capabilities that define the latency between the system
components and not whether or not the IOH is integrated. For this reason, our measurement analysis
discussed in Section III is based on the more recent platform shown in Figure 2.

High performance I/O adapters connect directly to the IOH, while more basic I/O adapters are
interfaced with the I/O Controller Hub (ICH). The ICH, which was often termed “Southbridge” in
previous system generations, supports the interface hardware to BIOS boot flash memory, direct attached
storage, USB, and system management modules that include temperature, voltage, and current sensors.
Our focus is on I/O devices connected to the IOH interface and not ICH-connected devices.

An NIC is used as the baseline I/O device since it offers a wide variety of I/O performance factors to
study. For storage, throughput is more important than latency, and several techniques can be incorporated
into NICs to enhance storage over the network. For clusters and high-performance computing, latency is
often a critical component, thus different techniques can be applied. Table 1 lists the performance focus
and reference section.

 - 6 -

Table 1: NIC performance accelerator examples

Performance focus Techniques to improve performance Chapter reference
Throughput CPU DMA IV.A.2
Throughput Interrupt moderation IV.B.2
Throughput RSS, LRO, LSO IV.C.1
Latency LLI IV.B.2
Latency Infiniband IV.D.3
Latency User-based I/O IV.B.1

Note that although power minimization is always a concern, it is common practice to disable power-

saving states to maintain a low (and predictable) I/O latency. This baseline NIC for I/O transactions can
be extended to other high-performance devices, such as disk storage controllers and graphics adapters.
These devices all share the descriptor-based DMA transactions that will be discussed in detail in the rest
of this section.

System
Memory
(DDR3)

IO Hub (IOH)

Quick Path Interconnect
(QPI)

Coherent Memory
Interconnect

12.8 GB/s (peak)

Peripheral Component
Interconnect Express

(PCIe)
8GB/s (peak)

DDR3
114GB/s

(peak)

Core 1
256K L2

Core 2
256K L2

Core 3
256K L2

Core 4
256K L2

8MB
LLC

Processor 1 (CPU)
Core 1
256K L2

Core 2
256K L2

Core 3
256K L2

Core 4
256K L2

8MB
LLC

Processor 2 (CPU)

System
Memory
(DDR3)

QPI

QPI

I/O adapter
(NIC/

storage/
graphics)

Other system I/O
interfaces (PCIe slots,

storage, graphics,
management, etc)

Figure 2: High-performance I/O system block diagram (adapted from [3])

 - 7 -

Figure 3: Typical Ethernet transmit flow.

Figure 3 illustrates a typical I/O transmission for an Ethernet NIC (either wired or wireless). The

following sequence of operations occurs to transmit an Ethernet packet between two connected systems
(i.e., kernel sockets have been established and opened):

(1) The kernel software constructs the outgoing packet in system memory. This is required to
support the protocol stack, such as TCP/IP, with proper headers, sequence numbers, checksums,
etc.

(2) A core sends a doorbell request on the platform interconnect (e.g., PCIe, but this also applies to
any chip-to-chip interconnect within a platform) to the NIC indicating that there is a pending
packet transmission. This is a write operation by a core to the memory space reserved for the I/O
adapter, which is un-cacheable with implications that other related tasks that are potentially
executing out-of-order must be serialized until the un-cacheable write completes. The core then
assumes the packet will be transmitted, but will not release the memory buffers until confirmed
by the NIC that the packet has been transmitted.

(3) The doorbell request triggers the NIC to initiate a DMA request to read the descriptor containing
the physical address of the transmit payload. The descriptor for the payload is not included in the
doorbell request because there are two separate descriptors for header and payload in an Ethernet
packet definition, and a larger network message will require more descriptors (e.g., maximum
payload for Ethernet is 1460 bytes). A tracking mechanism called a Global Observation Queue
(GOQ) in the CPU controls memory transaction coherency such that on-die cores or other
CPUs correctly snoops the (system) bus for memory requests. The GOQ also helps avoid
memory contention between I/O devices and the cores within the system.

 - 8 -

(4) A memory read request for the descriptor(s) returns with the physical addresses of the header and
payload. Then, the NIC initiates a request for the header information (e.g., IP addresses and the
sequence number) of the packet.

(5) After the header information becomes available, a request is made to read the transmit payload
using the address of the payload in the descriptor with almost no additional latency other than the
NIC state machine.

(6) When the payload data returns from the system memory, the NIC state machine constructs an
Ethernet frame sequence with the correct ordering for the bit-stream.

(7) Finally, the bit-stream is passed to a PHYsical (PHY) layer that properly conditions the signaling
for transmission over the medium (copper, fiber, or radio).

The typical Ethernet receive flow is the reverse of the transmit flow and is shown in Figure 4. After a

core prepares a descriptor, the NIC performs a DMA operation to transfer the received packet into the
system memory. After the transfer completes, the NIC interrupts the processor and updates the
descriptor.

Figure 4: Typical Ethernet receive flow, which is similar to the transmit flow but in reverse.

(1) The NIC pre-fetches a descriptor associated with the established connection, and matches an

incoming packet with an available receive descriptor.
(2) The receive packet arrives asynchronously to the NIC adapter.

 - 9 -

(3) The NIC performs a DMA write to transfer the packet contents into the system memory space
pointed to by the receive descriptor.

(4) After the memory write transaction completes, the NIC interrupts the core indicating a new
packet has been received for further processing.

(5) As part of the interrupt processing routine, the core driver software issues a write to the NIC to
synchronize the NIC adapter descriptor ring with the core descriptor ring. This also acts as a
confirmation that the NIC packet has been successfully moved from the I/O adapter to system
memory.

(6) Finally, the kernel software processes the receive packet in the system memory.

III. MEASUREMENTS AND QUANTIFICATIONS
In order to quantify various I/O design aspects of current servers and workstations and explore potential
changes, a conventional NIC was placed in an IOH slot of a platform described in Section II. A PCIe
protocol analyzer was used to observe the PCIe transactions, which are summarized in Table 2. Using
measurements on a real (and current) system offers validity in extrapolations and conclusions that are less
certain in simulated environments.

Table 2: Quantified metrics of current descriptor-based DMA transactions.

 Factor
 Latency Bandwidth-per-pin

Description Latency to transmit a TCP/IP
message between two systems Gbps per serial link

Measured value 8.6 µs 2.1 Gbps/link
Descriptor related
overhead 18% 17%

See Section III.A III.B

The following subsections discuss the measurements and analysis in more detail. By observing the
latency breakdown and bandwidth-per-pin utilization, we can explore requirements and inefficiencies in
the current model.

III.A Latency
Latency is a critical aspect in network communication that is easily masked by the impact of distance.
However, when inter-platform flight-time of messages is small, the impact of latency within a system is
much more important. One such example is automated stock market transactions (arbitrage and
speculation) as demonstrated by Xasax claiming 30 µs latency to the NASDAQ trading floor [4].
Another example is in High Performance Computing (HPC) nodes where LinPack benchmark (used to
define the Top500 supercomputers) share partial calculations of linear algebra matrix results among nodes
[5].

Figure 5 shows a typical 10 Gigabit-Ethernet (GbE) latency between a sender (TX) and a receiver
(RX) in a datacenter environment where the fiber length is on the order of 3 meters. These results are
based on PCIe traces of current 10 GbE Intel 82598 NICs (code named Oplin) on PCIe ×8 Gen1
interfaces [6]. The latency benchmark NetPIPE is used to correlate application latencies to latencies
measured on the PCIe interface for 64-byte messages. The 64-byte size was used since it is small enough

 - 10 -

to demonstrate the critical path latencies, but also large enough to represent a minimal message size that
can be cache-line aligned.

Figure 5: GbE critical path latency between two systems.

End-to-end latency consists of both hardware and software delays, and depends on many aspects not
directly addressed in this article, such as core and memory clock frequencies, bandwidth, and cache
structure. The critical path latency of the software stack is around 1.61 µs and 2.9 µs for send and
receive, respectively, and is not related to descriptor-based I/O communication since it is only associated
with how a core handles I/O traffic data that is already in system memory. Software latency in terms of
the core cycles required to formulate TCP/IP frames for transmit and processing received TCP/IP frames
is described in more detail in [7]. On the other hand, hardware latency can be split into three portions.
First, the TX NIC performs DMA reads (NIC-TX) to pull the data from the system memory to the TX
NIC buffer, which is around 1.77 µs. This is followed by a flight latency of 1.98 µs for the wire/fiber and
the TX/RX NIC state machines (NIC to NIC). Finally, the RX NIC requires 0.35 µs to perform DMA
writes (NIC-RX) to push the data from the RX NIC buffer into the system memory and interrupt a core
for software processing. The total latency LatencyTotal is 8.6 µs and can be expressed by the following
equation:

LatencyTotal = TxSW + TxNIC + fiber + RxNIC + RxSW

The latency for the TxNIC portion can be further broken down using PCIe traces as shown in Figure 6.

A passive PCIe interposer was placed between the platform PCIe slot and the Intel 82598 NIC. PCIe
traces were taken from an idle platform and network environment. These latencies are averaged over
multiple samples and show some variance, but it is under 3%. The variance is due to a variety of factors,

 - 11 -

such as software timers and PCIe transaction management. Based on a current 5500 Intel processor
platform with 1066MB/s Double Data Rate (DDR3) memory, the doorbell write takes 230 ns, the NIC
descriptor fetch takes 759 ns, and the 64B payload DMA read takes 781 ns. The core frequency is not
relevant since the PCIe NIC adapter controls the DMA transactions. Note that 43% and 44% of the
transmit HW latency (TxNIC) are used by the descriptor fetch (and decode) and payload read, respectively.
This is important in the scope of getting a packet from memory to the wire, and assuming the core could
write the payload directly to the NIC, 1770 ns could be nearly reduced to 230 ns. This results in about
18% reduction in total end-to-end latency as shown in Table 2.

Figure 6: NIC TX latency breakdown.

III.B Throughput and Bandwidth Efficiency
The iperf bandwidth benchmark was used on a dual 10 GbE Intel 82599 Ethernet adapter (codename
Niantic) [8] on an Intel 5500 server. The primary difference between the 82598 and the 82599 Intel NIC
is the increase in PCIe bandwidth. This does not impact the validity of the previous latency discussion,
but allows throughput tests up to the theoretical 2×10GbE maximum. PCIe captures consisted of more
than 300,000 PCIe ×8 Gen2 packets, or 10 ms of real-time trace, which gives a statistically stable data for
analysis.

Figure 7 shows a breakdown of transaction utilization in receiving and transmitting data on a PCIe
interface for a dual 10 GbE NIC. The four stacked-bars show extreme cases of TCP/IP receive (RX_) and
transmit (TX_) traffic for small (_64B_) and large (_64KB_) I/O message sizes. Since throughput is lower

 - 12 -

than the link rate for small message sizes, we also show the aggregate throughput (1Gbps, 18Gbps,
400Mbps, 19Gbps) across both 10GbE ports when using the iperf benchmark. The traffic is normalized
to 100% to illustrate the proportion of non-payload related traffic across the PCIe interface.

Figure 7: Proportions of PCIe transaction bandwidths.

 Receive traffic performance is important for applications such as backup and routing traffic, while

transmit traffic performance is important in serving files and streaming video. I/O operation on small
messages is representative of latency sensitive transactions while large I/O is representative of storage
types of transactions. Figure 8 highlights the impact of non-payload related PCIe bandwidth when the
PCIe frame overhead is factored in to account for the actual bandwidth required for each frame. This
figure shows that descriptors and doorbell transactions for small messages represent a significant portion
of the total PCIe bandwidth utilized in this measurement. This includes PCIe packet header and Cyclic
Redundancy Check (CRC) data along with PCIe packet fragmentation. If descriptor and doorbell
overhead were to be removed, the bandwidth could be improved by up to 43% as indicated by the
TX_400Mbps_64 case. In the case of I/O receive for small payload sizes, the inefficiency due to
descriptors and doorbells is only 16% since 16-byte descriptors can be pre-fetched in a 64-byte cache-line
read request. For large I/O message sizes, the available PCIe bandwidth is efficiently utilized with less
than 5% of the bandwidth used for descriptors and doorbells.

 - 13 -

Figure 8: PCIe bandwidth utilized for non-payload vs. payload bandwidth.

IV. SURVEY OF EXISTING METHODS AND TECHNIQUES
Computer systems utilize a broad range of I/O methods depending on the external usage requirements and
the internal system requirements. Since the scope of this article is on the hardware I/O transactions that
are essentially common regardless of application, the survey is structured based on system complexity for
the following four categories: (1) simple systems, (2) workstations and servers, (3) datacenters and High-
Performance Computing (HPC) clusters, and (4) system interconnects and networks. Note that an
alternative I/O survey organization could be based on different I/O usages (such as networking, storage
and video applications). However, this would add an orthogonal dimension to the survey, and thus is not
considered.

IV.A Simple Systems - Direct I/O access and basic DMA operations
This subsection discusses I/O for systems that access I/O directly by the CPU without DMA, sometimes
termed Programmed I/O (PIO) as well as systems that have DMA engines directly associated with CPUs.
These include embedded systems, systems with Digital Signal Processing (DSP) and graphics
subsystems. These systems may either access I/O directly using the CPU instruction set or set up a DMA
operation that is associated directly with a CPU. Real-Time Operating Systems (RTOS) is part of this
classification since the I/O performance characterization is a critical part of system performance.

IV.A.1 Embedded systems
The simplest method of system I/O, which is usually found in slower systems with a single dedicated
function, is found in embedded controllers with dedicated memory locations for I/O data. An example
would be a clock radio where outputs are LCD segment signals and inputs are buttons with dedicated
signals that can be polled or interrupt a basic software routine. Example controllers used for such

 - 14 -

functions include device families around the Intel 8051, Atmel AVR, ARM, and Microchip PIC, where
no operating system is used to virtualize hardware.

This direct access of I/O by a microcontroller can support I/O protocols at very low bandwidths such as
“bit-banging” mentioned in Section I as implemented with SoftModem [1]

IV.A.2 CPU DMA and DSP systems

An extension of the direct I/O control is to have a DMA engine configured and controlled by the CPU.
This is common in Digital Signal Processing (DSP) systems where large amounts of data need to be
moved between I/O, signal processing function blocks, and memory. The basic operations consist of:

1. CPU determines via interrupt or other control a need to move N bytes from location X to location
Y, often in a global memory-mapped address space.

2. CPU configures the DMA engine to perform the data transfer.
3. CPU either polls or waits for DMA interrupt for completion.

An example of such as system is the IBM/TI Cell processor shown in Figure 9, which consists of Power
Processing Element (PPE) and 8 Synergistic Processing Elements (SPE) or cores [9, 10]. Each SPE has a
Synergistic Processing Unit (SPU) and a Memory Flow Controller (MFC), which is used to handle the
SPE DMA transactions.

SPE 0

SPU

MFC

SPE 1

SPU

MFC

SPE 3

SPU

MFC

SPE 2

SPU

MFC

PPE

Bus I/O

SPE 4

SPU

MFC

SPE 5

SPU

MFC

SPE 7

SPU

MFC

SPE 6

SPU

MFC

Memory
Controller

System
Memory

Figure 9: Cell processor.

Each SPE has 256 KB of local on-die memory. If a SPE requires non-local memory access, it can
either request the PPE for a kernel/OS service or configure DMA to perform I/O transaction from the
System Memory to and from the SPE. To reduce the SPE DMA programming overhead, Ionkov et al. [9]
proposed using co-routines to manage I/O transactions between SPEs and System Memory. This removes
the requirement to program each SPE DMA transaction, but adds a software layer that requires tracking
co-routine state that impacts the number of co-routines that can be supported and the switch time between
co-routines. There is no memory coherency structure, as found in x86 CPUs, reducing inter-core
communication requirements. The Cell processor architecture shows how data movement via core-
controlled DMAs is effective for graphics processing in current workloads.

Further examples of core-based DMA control are presented in [11, 12] covering typical embedded
DMA processing, Katz and Gentile [13] provide a similar description of DMA on a Texas Instruments
Blackfin digital signal processor. These systems use DMA descriptors to define physical payload status
and memory locations similar to legacy Ethernet I/O processing described in Section II.

 - 15 -

IV.A.3 General CPU controlled DMA engines

An alternative to the simple embedded controller system cases discussed thus far is Intel’s DMA offload
engine in server CPUs called QuickData Technology, which a method to improve I/O performance for
storage and Redundant Array of Independent Disks (RAID) [14]. Certain RAID configurations will use
XOR bit-level calculations to regenerate data on failed disk drives [15]. Often an expensive RAID
storage controller will execute the XOR functions, but the Intel QuickData Technology allows standard
disks to be attached in a RAID configuration and support in-flight XOR calculations. Currently, it is
implemented in the IOH shown in Figure 2, and with a large and cumbersome 64-byte descriptor.
Obviously, there is inefficiency in handling asynchronous variable sized data common in networking that
needs to be setup before any DMA copies can be made between I/O adapter and memory. As a result, the
DMA engine is often used for memory-to-memory copies, such as between kernel space and user space.
In networking, this shows little if any benefit to CPU utilization [16], in part because memory accesses
can be pipelined and thus hide a software core-controlled memory-to-memory copy.

IV.A.4 PCIe bandwidth optimization

Yu et al. [17]described how existing DMA transfer speed can be improved by increasing buffer
efficiencies for large block DMA transfers on a particular PCIe implementation (PEX8311). Figure 10
shows the speedup, which is achieved primarily by expanding the PCIe packet frame size. An analogy
could be made to the use of jumbo frames on Ethernet that exceed the default 1500 byte maximum
transfer unit (MTU). PCIe transactions normally have a maximum frame payload of 256 bytes because
larger maximum frame payloads would require more silicon on both ends of the PCIe interface. The
selection of 256 bytes is an industry norm since often each end of the PCIe interface can be populated by
silicon from various companies. The PCIe protocol specifies three headers for each transaction [18]:
Transaction Layer Protocol (TLP), Data Layer Protocol (DLP) and Link Layer Protocol (LLP), which
combined add 24 bytes to each PCIe transaction reducing the effective bandwidth.

Tumeo et al. [19]provide details on optimizing for double buffering, and how this technique can be
used to optimize latency in a multi-core FPGA with each core having a DMA engine to move data
between system memory and core memory. The basic idea is to pipeline multiple DMA transactions such
that the PCIe interface is optimally utilized. While this allows DMA transactions to be setup, executed
and terminated in parallel, it can be detrimental to latency and predictability of latency as discussed in the
next section.

 - 16 -

Figure 10: Performance comparison between normal and optimized DMA

IV.A.5 Predictability and Real-Time Operating Systems

In RTOS, I/O latency prediction is an important factor to guarantee predictable operations. If an I/O
transaction cannot be predicted to occur within a certain time interval, the degree of deterministic
behavior by the operating system cannot be defined. The smaller variability in latency prediction of an
I/O transaction results in better overall RTOS performance. Several papers present models on how to
accurately predict and bound the DMA latency when controlled by the I/O adapter [20-24]. Worst Case
Execution Time (WCET) is the most critical parameter to consider. Current I/O transactions use multiple
DMA engines in different clock domains throughout the system and each engine may have different I/O
transaction queuing and quality of service characteristics. Based on this, the predictability of I/O
transactions is generally inversely proportional to system complexity.

A more predicable I/O transaction can involve the core directly accessing the I/O device using
program I/O (PIO). However, I/O adapter DMA engines remain common in systems with RTOS since
standard “bit-banging” by the core results in poor I/O performance. For example, Salah and El-Badawi
compared PIO to DMA, where PIO resulted in only 10% throughput compared to DMA throughput
measurements [20].

IV.A.6 Other DMA related proposals

The dynamic compression of data for memory accesses discussed in [25] is an option to reduce I/O
latency and reduce the chip-to-chip bandwidth. However, there is added logic complexity required to
compress and decompress payload data. In addition, the I/O device is often clocked at a much slower rate
than the memory interface, such as the Intel 82599 NIC internal frequency of 155 MHz [8].

One method to overcome the problem with a common clock DMA engine to transfer data between
memory devices is to use asynchronous DMA. With asynchronous DMA the transfer occurs as soon as
the producer has the data to transfer and requires the consumer to be available without a defined clock
boundary. The challenges of asynchronous DMA are discussed in [26, 27], where it can yield lower

 - 17 -

latencies across a DMA interface, which typically requires scheduling by a DMA controller. Their results
show that asynchronous DMA is more appropriately targeted for a heterogeneous clock domain, which
would reduce latency by a few clock cycles in the system shown in Figure 2.

Table 3 summarizes how simple systems implement I/O transactions, their primary benefits and costs,
and example implementations.

Table 3: Simple System I/O transactions

Simple systems Key Benefits Key Costs Example

implementation
Embedded Systems No DMA – allows direct

interaction between
controller and I/O interface

Core overhead to read and
write directly to I/O interface

Clock radio

CPU DMA and DSP Each core has a dedicated
DMA engine close to core
to service data movement
saving core cycles and
power

Per core silicon area and
power

Cell processor and
1980s personal
computers

General CPU DMA engine Shared DMA engine
between cores and CPUs
saves silicon area and
power

DMA transaction complexity
and increased latency

Intel QuickData
technology

PCIe Bandwidth
Optimization

Reducing PCIe protocol
overhead allows lower I/O
latency

Requires larger PCIe buffers
that consume more silicon
area and power

Research proposals
[17] [19]

Predictability and RTOS More predictable latency
bounds and throughput
minimums by removing
DMA variability

Overall lower system
throughput

RTOS research to
optimize Worst Case
Execution Time
(WCET)

Other DMA proposals I/O data compression and
asynchronous DMA may
allow lower latencies

Silicon complexity and
power

Research proposals
[25-27]

IV.B Generic Workstations and Servers
Systems that run standard multi-user and multi-processing operating systems, such as Unix and Windows,
use more complex I/O structures. Since application software is usually an abstraction of hardware
capability to virtualize the I/O ports, the CPU can be utilized very effectively during I/O transactions on
other tasks. This has led to the distributed I/O model where each I/O port may have a DMA engine to
move incoming/outgoing data to/from system memory. Offloading I/O transactions to a DMA engine is
very effective since the I/O device is typically a 100 MHz state machine while the CPU operates in multi-
GHz range allowing the I/O to proceed as fast as it can transfer data (network, storage or video).

Since CPU and memory performance capabilities have increased faster than I/O performance, the
descriptor-based DMA mechanism described in Section II is used for a variety of devices in the system.
These include not just add-in cards, but also the on-board NIC, USB, and storage controllers on current
desktop and workstation systems. This section discusses the I/O issues of such systems and how they are
addressed.

IV.B.1 Operating system virtualization protection

 - 18 -

The mechanism to place a kernel barrier between a user application program and hardware makes sense
when there are multiple potential processes requesting I/O services; however, there is a penalty in
performance. Latency increases because the application software needs to first request kernel services to
perform I/O transactions. Throughput may also decrease since buffers need to be prepared and managed
using system calls, which often include CPU context switches.

An alternative to always having kernel interaction with system I/O is carefully controlling user-mode
DMA I/O. The two proposals discussed in [28, 29] describe how to bring kernel-based system calls for
moving data into user space so that it can be accessed by user applications. Significant performance
improvement can be obtained for small I/O messages by having a user application directly control data
movement rather than using system calls. However, there are serious security risks in that any user
application can access physical memory. The risk grows when systems are interconnected, potentially
allowing physical memory access not just from other processes within a system but also processes on
other systems.

IV.B.2 Interrupts and moderation

Interrupt methods have advanced over the last several years. Traditionally, an interrupt signal or
connection was asserted upon requiring CPU software services. This requires a core context switch and
parsing through the available interrupt sources within a system. Since other interrupt sources could be
I/O devices on slow interfaces, polling for interrupt would require many core cycles. In current systems,
Message Signaled Interrupts (MSI) uses a message on the PCIe interface rather than a separate signal for
a device interrupt, which saves circuit board resource and allows up to 32 interrupt sources to be defined
in the message [18]. MSI was extended to MSI-X that allows up to 2048 sources since there can often be
more than 32 interrupt sources in a system. As a result, a core being interrupted can directly proceed to
the needed interrupt vector software.

Interrupt moderation, which is also referred to as interrupt coalescing or interrupt aggregation, allows
multiple incoming data (e.g., Ethernet packets) to be processed with a single interrupt. This results in
relatively low latency and reduces the number of context switches required for received network traffic.
Common methods are discussed in [7] where two timers can be used: One absolute timer with a default,
yet configurable, interval of 125 µs to interrupt after any received data arrival, and another per packet
timer that can expire based on each received packet arrival.

Since network traffic can be both latency and throughput sensitive, adaptive interrupt moderation has
been an ongoing area of research and implementations. For example Intel’s 82599 NIC allows interrupt
filtering control based on frame size, protocol, IP address, and other parameters [8]. This Low Latency
Interrupt (LLI) moderation uses credits based on received packet event control rather than on timer
control.

Table 4 summarizes how generic workstations and servers implement I/O transactions, their primary
benefits and costs, and example implementations

 - 19 -

Table 4: Generic Workstation and Server I/O transactions

Generic Workstations and
Servers

Key Benefits Key Costs Example
Implementation

Operating system
virtualization protection

Protection from I/O
generated access to system
resources

Latency and CPU
overhead to authorize user
access to operating system
controlled transactions

Linux and Windows OS
protection layers

Interrupts and moderation Reduced CPU overhead to
manage I/O transactions

Added latency per I/O
transaction

10GbE network
interface controllers

IV.C Datacenters and HPC cluster systems
Systems that are used in datacenters and High-Performance Computing (HPC) clusters have requirements
beyond general stand-alone workstations and servers. Often these systems are composed of high-end
servers using multiple 10 Gigabit Ethernet (GbE) interconnects, 15,000 RPM disks, multiple Graphic
Processing Units (GPUs), and Solid-State Drive (SSD) clusters. This drives the internal system
requirements to use high performance scalable protocols, such as Serial Attached SCSI (SAS) for storage
and low latency Ethernet or InfiniBand [30] for internode communications. Some HPCs will have front-
end CPUs to prepare the I/O in memory for high-speed processing. An example would be an
environmental simulation that loads the working set into memory and after simulation outputs a
completed working set.

Since Ethernet is ubiquitous and flexible as a network and storage interface, this subsection considers
some of the high-end capabilities found in datacenters as link speeds increase to 10 GbE and beyond. We
first review I/O receive optimizations followed by I/O transmit optimizations, ending with more complex
bi-directional improvements.

IV.C.1 Device I/O Optimizations

Received Side Scaling (RSS) is the ability to de-multiplex Ethernet traffic and effectively spread the
traffic flow across multiple available cores within a system [31]. An example would be a web server
supporting thousands of simultaneous TCP sessions. Each session is hashed using a Toeplitz hash table
to properly direct the receive interrupt and traffic to a core that presumably maintains context for the
related TCP session. An additional benefit of RSS is that a given TCP session will often be serviced by a
persistent core that may well have the connection context in cache.

Large Receive Offloading (LRO), also called Receive Side Coalescing (RSC) by Intel [8], is a receive
mechanism to clump sequenced frames together, presenting them to the operating system as a single
receive frame [32]. This effectively allows creation of a jumbo frame avoiding the higher-level software
layer to patch the discrete smaller Ethernet frames (typically 1500 bytes) together.

Large Segment Offload (LSO), also called TCP Segmentation Offload (TSO) or Generic Segmentation
Offload (GSO), allows an I/O device to be given a pointer to a segment of data much larger than a single
frame (e.g., 64 KB) and stream the data for transmits [33]. With 64 KB sized messages, LSO can
improve performance by up to 50%.

IV.C.2 Descriptor packing

Descriptor coalescing can be used to reduce the overall receive latency. For example, an Ethernet
descriptor size is typically 16 bytes and thus multiple descriptors can be read from a single doorbell [34]
(e.g., four descriptors would be read at once for a cache line size of 64 bytes). This works well when the
NIC is prefetching descriptors to DMA packets that will be received in the future.

 - 20 -

However, a server supporting web or database transactions for thousands of sessions over multiple
descriptor queues may not allow for transmit descriptor bundling. This is because organizing the transmit
descriptors for packing over thousands of sessions may not be productive since transmit messages need to
be formulated in system memory before the descriptor can be defined. In contrast, transmit descriptor
coalescing may be beneficial when large multi-framed messages are being processed. For example, a
datacenter where multiple systems are physically co-located may simply choose to enable jumbo-frames,
which again may cause the transmit descriptor serialization described above leading to longer latencies.

IV.C.3 TCP/IP Offload Engine (TOE) and other offload engines

Offloading the entire TCP/IP stack onto an I/O adapter can reduce the stack protocol overhead on the
CPU [35]. Figure 11 shows an example of TCP/IP Offload Engine (TOE).

Hardware

Applications

TCP/IP Offload Engine (TOE)

Operating System
TCP

TCP

IP

IP

MAC

PHY

MAC

PHY

Traditional N
IC

TO
E

 A
dapter

Figure 11: Basic TOE comparison to software-based implementation.

This approach is beneficial for large blocks of I/O, such as storage with average block size greater

than 4 KB. The downside of this approach is that HPC and datacenter servers have to also process small
messages. For example, virtualizing multiple operating systems within a single system is common due to
increased capabilities of CPUs and memory. This leads to a single I/O adapter processing small packets
over thousands of TCP connections. The TOE also processes frames at slower frequencies (typically in
the order of 100 MHz) than a modern CPU with multi-GHz frequencies. This adds significant amount
logic complexity and connection context memory requirements to the less flexible TOE I/O adapter [35].

In general, any higher level software I/O protocol may be implemented in an I/O adapter. For
instance, the Intel 82599 does not offload the TCP stack, but does offload IPsec and Fibre Channel over
Ethernet protocols [8]. Myrinet is another type of TOE engine that provides a commonly used HPC
interconnect using low cost Ethernet over a non-TCP/IP proprietary fabric [36]. Since a proprietary
protocol is used, Myrinet-specific routing devices between nodes are required.

IV.C.4 Coherent Network Interface

Mukherjee et al. proposed a coherent NIC interface (CNI) [37], which was followed by an
implementation on the Front-Side Bus (FSB) architecture by Schlansker et al. [38]. A block diagram of

 - 21 -

the coherent memory implementation is shown in Figure 12, which consists of Transmit Command Queue
(TCQ), Receive Command Queue (RCQ), and Rx Data Buffer that are all memory-mapped to coherent
memory address space. This approach makes the NIC a peer to core memory communication by
exposing some of the NIC buffers as coherent system memory. The implementation in coherent memory
removes the need for DMA transactions since the core directly reads or writes to the NIC pointers and
buffers. They implemented a prototype design and tested on a CPU socket using an FPGA.

The TCQ maintains the transmit descriptor information such that as soon as the CPU software writes
the location of the transmit packet in system memory, the DMA engine fetches the packet for
transmission. This removes the requirement to fetch a descriptor for transmitting a network packet.

The RCQ is updated as soon as a receive packet is placed in the Rx Data Buffer. Both regions are in
coherent memory allowing the CPU software to access the CNI receive packets without the traditional
DMA operation into system memory. When the CPU, either through polling or interrupt, is signaled
with a receive operation, the Rx Data Buffer points to the appropriate memory location for the received
packet.

The key detriment to this implementation is the additional coherency traffic since CNI has to perform
snoops and write-back operations between cores and NIC buffers. This additional traffic conflicts with
CPU related traffic between cores on the FSB [39].

Processor

DMA Engine

Front Side Bus (FSB)

System Memory

Control Status
Registers (CSRs)

RCQ address space

TCQ address space
TCQ

RCQ

RX
buffer RX data buffer

address space

Figure 12: NIC system memory apertures.

IV.C.5 CPU caching optimizations

One optimization to I/O DMA is Direct Cache Access (DCA), where an I/O device can write to a
processor’s Last Level Cache (LLC) by either directly placing data in a cache or hinting to a pre-fetcher
to pull the data from the system memory to a cache [40]. However, this method still requires a descriptor
fetch for the I/O device to determine where to place the data in physical memory.

Work such as Dan et al. explores the idea of having a separate I/O DMA cache structure, allowing
DMA traffic to be cached separately from non-I/O related data [41]. Similar to DCA, this allows a CPU
to have access to receive traffic with an on-die cache and to transmit without requiring the system

 - 22 -

memory transactions. A criticism of DCA is the risk of cache pollution where the cache becomes a
dumping site for I/O evicting more critical data. This risk of pollution can be lowered by having a
dedicated I/O cache or partitioning the cache structure into I/O cache and general cache. Nevertheless, a
dedicated I/O DMA cache would require more CPU silicon resources and benefits would be small for
systems with small I/O.

IV.C.6 CPU network interface integration

One approach that is assumed to improve performance is the integration of I/O adapters closer to the
CPU. By integrating I/O adapters on the same silicon as the CPU, there are no chip-to-chip requirements
such as the PCIe frame protocol that can impact latency and throughput. The design of Sun’s Niagara2
processor with integrated 10 GbE showed that the internal architecture needs to be carefully considered to
match the desired network performance [42]. Figures 13 and 14 compare the transmit and receive
performance of traditional discrete NIC (DNIC) and integrated NIC (INIC) on Sun Niagara2 [42]. Both
figures show that, as the I/O size increases, INIC results in significantly lower processor utilization
compared to DNIC since the CPU generally has faster I/O responses. Figure 13 shows no discernable
benefit in terms of bandwidth for transmit traffic. However, Figure 14 shows a slight improvement in
terms of CPU utilization for large I/O receive traffic. As a result, simply gluing I/O adapters to
processors can often be a waste of die area, power, and development time with little performance
improvement.

Figure 13: Discrete vs. Integrated NIC transmit performance.

 - 23 -

Figure 14: Discrete vs. Integrated NIC receive performance.

Table 5 summarizes how datacenter and HPC cluster systems implement I/O transactions, their
primary benefits and costs, and example implementations

Table 5: Datacenter and HPC cluster I/O transactions

Datacenters and HPC
clusters

Key benefits Key costs Example
implementation

Device I/O
optimizations

Higher I/O throughput
by adding offload
accelerators

I/O device silicon area
and power for large I/O
transactions

RSS, LRO, LSO on
Intel and other NIC
devices

Descriptor packing Increased throughput
based on lower PCIe
interface overhead

Increased latency Receive descriptor
prefetching on Intel
10GbE NIC devices

TOE and other offloads Offload stack protocol
processing to I/O device
saving CPU cycles

Increased latency,
silicon area and power

Broadcom and Chelsio
10GbE

Coherent Network
Interfaces

Reduced latency and
higher throughput

Increased silicon area
and power with non-
standard I/O interfaces

Research proposals [37,
38]

CPU caching
optimizations

Lower latency and
higher throughput

Probable cache
inefficiencies and more
coherency transactions

Intel direct cache access

CPU network interface
integration

Lower latency and
higher throughput

Architectural risk of
fixing a CPU with a
lower volume I/O device

Oracle/Sun Niagara2

IV.D System interconnects and networks

 - 24 -

Since we are examining how data can be moved optimally within a system, this section considers the
important role interconnect architectures play in moving data within a larger, more monolithic system (as
opposed to a cluster of systems) and between systems. A particular emphasis is given to HPC
environment since this area bears more importance on latency and bandwidth performance characteristics.
HPCs prioritize CPU-to-CPU communications rather than moving data into and out of a system, so we
discuss the system I/O oriented communication aspects.

IV.D.1 CPU socket interconnect

AMD Hyper-Transport [43] and Intel QPI [14] CPU interconnects are two widely accepted and
competitive implementations of data movement between multiple CPUs. These interconnects enable the
increasing number of cores in a system to interface with each other, memory, and I/O. Not only are there
multiple cores, but memory is also distributed using non-uniform memory access (NUMA) architectures.
For example, Figure 2 shows only two NUMA nodes (current platforms can have many more) for a total
of 8 cores (where each can operate as two logical cores to the operating system with SMT).
Communication between cores is usually done using the memory coherency specified by the MESI(F)
protocol [44]. Both Hyper-Transport and QPI use snoops and coherence directories to determine
common states of all memory locations. While they both address similar architecture concerns, there are
differences that make them incompatible.

While these interconnects could be used for system I/O transactions, there has not been any
widespread demand for using them as I/O interface. Presumably, part of the reason is that a coherent I/O
interface would need to address the coherency overhead discussed in Section IV.C.4.

IV.D.2 Messaging between cores

Intel has explored I/O messaging with the Single-chip Cloud Computer (SCC) [45]. This defines a new
non-coherent memory type for I/O where software controls what is written and read from a message
passing buffer shown in Figure 15. This allows for efficient movement of data between cores while
avoiding cache coherency overhead in the form of snoops and data write-backs. By using the message
memory type, the coherency issues with write-back and write-through memory are avoided and the core
interfaces are not impacted with irrelevant inter-core traffic. In SCC, this is accomplished by reserving
space in the level 1 (L1) cache as non-coherent memory. For core A to pass a message to core B, the L1
cache line has to be first moved to a non-coherent space, after which the message can be moved to a
message-passing buffer to be moved into core B’s non-coherent L1 cache space. This becomes
particularly important as the core count increases to 48, as is the case for SCC, and beyond. While this is
similar in architecture to the well-established Message Passing Interface (MPI) standard [46], MPI defines
only the higher software layer that uses TCP/IP or other interconnect fabrics and does not define any of
the hardware details.

 - 25 -

Coherent memory

Core A L1 cache

Non-coherent memory
space

Message
Passing
Buffer
(16KB)

Coherent memory

Core B L1 cache

Non-coherent memory
space

Figure 15: SCC message data types.

IV.D.3 Remote Direct Memory Access: InfiniBand and iWARP

Remote Direct Memory Access (RDMA) is a method to allow remote access directly into a system
memory without involving OS overhead. This reduces latency and increases throughput that is important
particularly in datacenters and HPC clusters. In the two systems shown in Figure 16, once a connection
has been established with proper authentications, a user application can access the remote system’s user
application space with no requirement for system calls to the OS on either system. This is basically an
offload-engine where the I/O adapter grants physical access to system memory. Protection is ensured by
the hardware interfaces and the software protocol.

InfiniBand and Internet Wide Area RDMA Protocol (iWARP) are both implementations of RDMA.
iWARP implements RDMA over the standard Ethernet protocol, which allows iWARP clusters to utilize
standard Ethernet routers and interconnect frameworks. In contrast, InfiniBand uses a re-designed
network that is not compatible with Ethernet.

InfiniBand is considered a premier high bandwidth and low latency system interconnect [8]. The
non-Ethernet protocol allows latencies as low as 1 µs for Mellanox ConnectX, which is the 1999 merger
of two competing specifications from Future IO and Next Gen IO [47]. It shares many similarities with
TOE/Myrinet/I2O in that transmit and receive queues are processed without the OS involvement in that
the session connection is offloaded to the I/O device adapter. Figure 16 shows how two I/O devices
communicate across an RDMA fabric with each adapter having a Work Queue Entry (WQE) for each
communication session. To provide session reliability, the Completion Queue Entry (CQE) supports
transaction acknowledgements. Thus, each RDMA session is basically represented by two queues where
the WQE queue generates the outgoing work requests and the CQE queue tracks completion of
outstanding WQE transactions. These two queues are usually termed a Queue Pair (QP) and are repeated
for the sessions used by the higher-level application software.

InfiniBand is a performance reference not only in latency but throughput as well. In a comparison of
InfiniBand Double Data Rate (DDR at 8 Gbps) and Quad Data Rate (QDR at 16 Gbps) I/O adapters on
Intel platforms [48], the inter-node bandwidth requirements start to exceed the available intra-node
bandwidth. In particular, DDR inter-system bandwidth exceeded the PCIe Gen1 host interface of 16
Gbps for traffic of small (less than 1KB) messages.

 - 26 -

 InfiniBand adds hardware complexity to the I/O adapter to track the connection context, and lacks
broad popularity due to the high porting cost both in hardware and software when compared to the
ubiquitous Ethernet protocol. This can be seen in the Top-500 supercomputer interconnect listings where
44% are Ethernet-based and only 42% are InfiniBand-based [5].

Transport

Consumer
application

Channel
Adapter

Q
P

WQE CQE

Port

PHY Layer

Link Layer

Network Layer

Transport Layer

Transport

Consumer
application

Q
P

WQE CQE

Port

RDMA fabric

Channel
Adapter

Figure 16: InfiniBand communication stack.

IV.D.4 SciCortex and other fabrics

SciCortex uses a custom fabric using a Kautz graph to connect 5,832 cores on 972 nodes of 6 cores each
[49]. An important point of this architecture is that relatively low performance cores were used and the
network hops between cores were optimized. Based on their HPC benchmark results, bimodal message
size patterns of 128 bytes and 100 KB were found. In this case, PIO would be better for small messages
with a CPU I/O engine support for large messages.

A popular fabric is the 3-dimension torus in the IBM Blue Gene/P to interconnect 36,864 nodes, each
with 4 cores [50]. Each node has a DMA engine to communicate with other nodes, which is similar to the
engine discussed in Section IV.A.3. The Blue Gene/P DMA engine services the core-to-core
communications instead of serving general purpose I/O.

Table 6 summarizes how system interconnects and network I/O transactions can impact I/O
transactions.

 - 27 -

Table 6: System interconnect and network I/O transactions

System interconnects
and networks

Key benefits Key costs Example
implementation

CPU socket interconnect Higher I/O throughput I/O device complexity
and memory coherency
transaction overhead

Intel QPI and AMD
Hyper-Transport

Messaging between
cores

Higher I/O throughput
and lower latency

Dedicated core silicon
area and power

Intel SCC

RDMA InfiniBand and
iWARP

Lower latency and
reduced CPU overhead

Increased I/O device
silicon area and power

Mellanox Infiniband I/O
adapters

SciCortex fabric Network optimized
communication between
nodes

Customized I/O
interfaces with low
volume

SciCortex clusters

V. POTENTIAL AREA OF PERFORMANCE IMPROVEMENT
The prior sections have shown that most I/O implementations rely on DMA engines on the I/O adapters to
move network, storage and video data within a system. As CPU and memory performance increases
faster than I/O requirements, it is important to reconsider the premise that I/O tasks should always be off-
loaded to I/O devices as in the descriptor-based DMA method. As shown in Section III, the primary
advantage of not relying on an I/O adapter’s DMA engine and removing descriptor handling is that
latency can be reduced. If the DMA engine of the I/O device can be integrated on the CPU, it is possible
to reduce end-to-end latency by 18% and also reduce the size of the I/O device memory buffer.

Typical network traffic exhibits a bi-modal packet size with concentrations of small and large
Ethernet frames [51]. Based on this assumption and projecting that small and large impacts can be
averaged, our measurements summarized in Figure 7 show the potential benefits of removing descriptor
related PCIe traffic. The 17% bandwidth reduction due to removal of descriptor, doorbell, and interrupt
from the PCIe interface would allow for more payload transfers across the interface. Therefore, this
section suggests a CPU-based integrated DMA (iDMA) engine and presents several benefits of this
design.

The iDMA can be implemented as a simple micro-controller or enhanced state machine that manages
the data flow between an arbitrary I/O device and system memory, and would basically act as a
heterogeneous or SoC core to the larger application generic cores. Figure 17 shows the placement of
iDMA within a CPU. The arrow from the I/O adapter shows the iDMA pulling receive traffic from an
I/O adapter into system memory. The arrows from system memory show the iDMA reading memory and
pushing transmit traffic to the I/O adapter, and vice versa. Since I/O messages and cache-line memory
accesses occur at different times and with different sizes, basic buffers are needed to support arbitration
and fragmentation of off-chip interfaces.

 - 28 -

Quad-core Processor

iDMA engine

L3 cache

iDMA
controller

Integrated
Memory

Controller

DDR3
Ch3

DDR3
Ch2

DDR3
Ch1

Global Queue tracking

CoreCoreCore Core

IO
transfer
tracking
table

In-bound
buffers

Out-bound
buffers

Intel QuickPath Interconnect (QPI)

Figure17: An option for CPU integrated DMA.

Other less quantifiable improvements of removing descriptor-based DMA transactions include the
following and are discussed in more detail by Larsen and Lee [52]. Potential performance improvements
are tabulated in Table 7.

1. Matched I/O and core/memory bandwidths - In current systems, I/O bandwidth and core and
memory bandwidths are not matched, and often systems can be found with too little I/O
capability or inflexible in expanding I/O bandwidth and latency capabilities. Although there are a
variety of reasons for the I/O mismatch to core and memory service capabilities, this problem is
exacerbated by having multiple CPUs with possibly integrated IOHs. With iDMA, a dual-core
processor could be matched with a lower bandwidth iDMA engine than a 4- or 8-core processor.
Similarly, a platform that may need higher processor performance relative to I/O performance
may need many cores with a lower capacity iDMA engine.

2. Power management efficiency - Mechanisms like RSS can spread I/O traffic across all available
cores, thereby wasting system power that could be localized to a subset of cores when I/O traffic
is low.

3. System-level quality-of-service guarantees - As I/O increases in bandwidth and complexity,
having independent DMA engines contending for memory bandwidth reduces quality control. By
having a central observation and control point for I/O transactions, the system can prioritize and
deliver transactions more appropriately.

4. Silicon cost and complexity - Not having independent DMA engines servicing I/O transactions
can reduce silicon cost and complexity.

5. Security – Security can be improved since iDMA would provide more control over which I/O
device reads/writes from/to physical memory.

 - 29 -

Table 7: Potential benefits for non-descriptor DMA.

Factor Description Measured
Value

Descriptor
Related
Overhead

Comments/Justification

Latency
Latency to transmit a
TCP/IP message
between two systems

8.6 µs 18% Descriptors are no longer latency critical

BW-per-pin Gbps per serial link 2.1
Gbps/link 17% Descriptors no longer consume chip-to-

chip bandwidth
BW-right-sizing Not quantifiable N/A N/A Reduced platform silicon area and power

Power
Efficiency

Normalized core power
relative to maximum
power

100% 71% Power reduction due to more efficient
core allocation for I/O

Quality of
Service

Time required to
control connection
priority from software
perspective

600 ns 92%
Round trip latency to queuing control
reduced between PCIe and system
memory

Multiple I/O
Complexity Die cost reduction 100% > 50%

Silicon, power regulation and cooling cost
reduction of multiple I/O controllers into
a single iDMA instance

Security Not quantifiable N/A N/A Not quantifiable

VI. CONCLUSIONS

This survey of I/O methods and existing optimizations illustrates the historical development of I/O
transactions for variety of computing systems. In simple systems, I/O is directly addressed by the
processor either using PIO or DMA engines associated with the cores, which eliminates the need to set up
descriptors to post DMA requests. However, to reduce the CPU management overhead, I/O transaction
distribution using DMA engines on the I/O devices became the optimal system design. This DMA off-
loading approach has continued as I/O transfer optimizations techniques surveyed continue to drive for
I/O performance improvements. Based on our measurements and analysis of latency and throughput
efficiency, there is an argument to re-visit processor-based I/O transactions suggesting quantifiable
latency and bandwidth-per-pin advantages and potential benefits in power, QoS, silicon area, and security
for future datacenter server architecture.

Table of Abbreviations

Abbreviation Explanation
ARM Acorn RISC Machine
BIOS Basic Input Output System – allows access by the operating system to low-level hardware.
BW BandWidth supported by an interface, usually synonymous with throughput capability.
CNI Coherent Network Interface
CPU Central Processing Unit – consisting of potentially multiple cores, each with one or more

hardware threads of execution.
CRC Cyclical Redundancy Check
CQE Completion Queue Entry – used in RDMA to track transaction completions
DCA Direct Cache Access
DDR Double Data Rate – allows a slower clock to transmit twice the data per cycle. Usually based

on both the rising and falling edge of a clock signal.
DDR3 3rd generation memory DDR interface

 - 30 -

DLP Data Layer Protocol in PCIe, which is similar to networking IP layer.
DMA Direct Memory Access – allows read or write transactions with system memory.
DSP Digital Signal Processing
FPGA Field Programmable Gate Array
FSB Front Side Bus – a processor interface protocol that is replaced by Intel QPI and AMD Hyper-

Transport
GbE Gigabit Ethernet
GBps Gigabytes per second
Gbps Gigabits per second, (GBps x 8)
GHz GigaHertz
GPU Graphic Processing Unit
GOQ Global Observation Queue
HPC High Performance Computing – usually implies a high-speed interconnection of high-

performance systems.
HW HardWare
ICH Intel I/O Controller Hub – interfaced to the IOH to support slower system protocols, such as

USB and BIOS memory.
I/O Input/Output
IOH Intel I/O hub – interfaces between QPI and PCIe interfaces.
iWARP Internet Wide Area RDMA Protocol – an RDMA protocol that supports lower level Ethernet

protocol transactions.
KB KiloByte, 1024 bytes. Sometimes reduced to “K” based on context.
L1 cache Level 1 cache
L2 cache Level 2 cache
LLC Last Level cache - Level 3 cache
LCD Liquid Crystal Display
LLI Low Latency Interrupt
LLP Link Layer Protocol – used PCIe
LRO Large Receive Offloading
LSO Large Segment Offload
MB MegaBytes
MESI(F) Modified, Exclusive, Shared, Invalid and optionally Forward – Protocol to maintain memory

coherency between different CPUs in a system.
MFC Memory Flow Controller – used to manage SPU DMA transactions.
MMIO Memory Mapped I/O
MPI Message Passing Interface – a protocol to pass messages between systems often used in HPC.
MTU Maximum Transmission Unit
MSI Message Signaled Interrupt – used in PCIe to interrupt a core.
NIC Network Interface Controller
NUMA Non-Uniform Memory Architecture – allows multiple pools of memory to be shared between

CPUs with a coherency protocol.
PCIe Peripheral Component Interface express – defined at www.pcisig.com. Multiple lanes (1-16) of

serial I/O traffic reaching 16Gbps per lane. Multiple generations of PCIe exist, represented by
Gen1, Gen2, Gen3 and Gen4. PCIe protocol levels have similarities with networking ISO stack.

PHY PHYsical interface defining the cable (fiber/copper) interfacing protocol.
PIO Programmed I/O – often synonymous with MMIO
QDR Quad Data Rate – allows four times the data rate based on a slower clock frequency.
QoS Quality of Service – A metric to define guaranteed minimums of service quality.
QP Queue Pair – transmit queue and receive queue structure in RDMA to allow interfacing between

two or more systems.
QPI QuickPath Interconnect – Intel’s proprietary CPU interface supporting MESI(F) memory

coherence protocol.
RAID Redundant Array of Inexpensive Disks

http://www.pcisig.com/

 - 31 -

RDMA Remote Direct Memory Access – used to access memory between two or more systems.
RSS Receive Side Scaling
RTOS Real Time Operating System
RX Reception from a network to a system
SAS Storage Array System
SCC Single Chip Cloud
SCSI Small Computer System Interface
SMT Surface Mount Technology
SPE Synergistic Processing Element in the Cell processor
SPU Synergistic Processing Unit in Cell SPE.
SSD Solid Stated Disk
SW SoftWare
TCP/IP Transmission Control Protocol and Internet Protocol networking stack.
TLP Transaction Layer Protocol of PCIe stack
TOE TCP/IP Offload Engine
TX Transmission from a system to a network
USB Universal Serial Bus
WQE Work Queue Entry – used in RDMA to track transaction parameters.

ACKNOWLEDGEMENT
This work was supported in part by Ministry of Education Science and Technology (MEST) and the
Korean Federation of Science and Technology Societies (KOFST).

REFERENCES

1. Softmodem description. Available from: http://en.wikipedia.org/wiki/Softmodem.
2. Newman, H. I/O Bottlenecks: Biggest Threat to Data Storage. Available from:

http://www.enterprisestorageforum.com/technology/features/article.php/3856121
3. Intel 5520 chip-set datasheet. 2010; Available from:

http://www.intel.com/assets/pdf/datasheet/321328.pdf.
4. Harris, D. Banks and Outsourcing: Just Say 'Latency'. 2008; Available from:

http://www.hpcwire.com/features/Banks_and_Outsourcing_Just_Say_Latency_HPCwire.html.
5. Top500. 2012; Available from: http://i.top500.org/stats.
6. Intel 82598 10GbE NIC. Available from: http://www.intel.com/assets/pdf/prodbrief/317796.pdf.
7. Larsen, S., et al., Architectural Breakdown of End-to-End Latency in a TCP/IP Network. International

Journal of Parallel Programming, 2009. 37(6): p. 556-571.
8. Intel 82599 10GbE NIC. Available from: http://download.intel.com/design/network/prodbrf/321731.pdf.
9. Ionkov, L., A. Nyrhinen, and A. Mirtchovski, CellFS: Taking the "DMA" out of Cell programming, in

Proceedings of the 2009 IEEE International Symposium on Parallel\&Distributed Processing. 2009, IEEE
Computer Society. p. 1-8.

10. Khunjush, F. and N. Dimopoulos. Extended characterization of DMA transfers on the Cell BE processor.
in IEEE International Symposium on Parallel and Distributed Processing (IPDPS). 2008.

11. Dittia, Z.D., G.M. Parulkar, and J.R. Cox, Jr. The APIC approach to high performance network interface
design: protected DMA and other techniques. in INFOCOM '97. Sixteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE. 1997.

12. Yuan, L., H. Li, and C. Duan. The Design and Implementation of MPI Based on Link DMA. in Embedded
Computing, 2008. SEC '08. Fifth IEEE International Symposium on. 2008.

13. Using DMA effectively. Available from:
http://www.embedded.com/columns/technicalinsights/196802092fire-questid=228429

14. Intel QuickPath Interconnect. Available from: http://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect.
15. Wikipedia. RAID. 2013; Available from: http://en.wikipedia.org/wiki/RAID.

http://en.wikipedia.org/wiki/Softmodem
http://www.enterprisestorageforum.com/technology/features/article.php/3856121
http://www.intel.com/assets/pdf/datasheet/321328.pdf
http://www.hpcwire.com/features/Banks_and_Outsourcing_Just_Say_Latency_HPCwire.html
http://i.top500.org/stats
http://www.intel.com/assets/pdf/prodbrief/317796.pdf
http://download.intel.com/design/network/prodbrf/321731.pdf
http://www.embedded.com/columns/technicalinsights/196802092fire-questid=228429
http://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
http://en.wikipedia.org/wiki/RAID

 - 32 -

16. IOAT performance. Available from:
http://www.linuxfoundation.org/collaborate/workgroups/networking/i/oat.

17. Yu, P., et al. A High Speed DMA Transaction Method for PCI Express Devices Testing and Diagnosis. in
IEEE Circuits and Systems International Conference on ICTD. 2009.

18. PCIe Base 3.0 Specification. Available from: http://www.pcisig.com/specifications/pciexpress/base3/.
19. Tumeo, A., et al. Lightweight DMA management mechanisms for multiprocessors on FPGA. in

Application-Specific Systems, Architectures and Processors, 2008. ASAP 2008. International Conference
on. 2008.

20. Salah, K. and K. El-Badawi. Throughput-delay analysis of interrupt driven kernels with DMA enabled and
disabled in high-speed networks. in Journal of High Speed Networks. 2006.

21. Hahn, J., et al., Analysis of Worst Case DMA Response Time in a Fixed-Priority Bus Arbitration Protocol.
Real-Time Syst., 2002. 23(3): p. 209-238.

22. Huang, T.-Y., C.-C. Chou, and P.-Y. Chen, Bounding the Execution Times of DMA I/O Tasks on Hard-
Real-Time Embedded Systems, in Real-Time and Embedded Computing Systems and Applications, J. Chen
and S. Hong, Editors. 2004, Springer Berlin / Heidelberg. p. 499-512.

23. Huang, T.-Y., J.W.-S. Liu, and D. Hull, A Method for Bounding the Effect of DMA I/O Interference on
Program Execution Time, in Proceedings of the 17th IEEE Real-Time Systems Symposium. 1996, IEEE
Computer Society. p. 275.

24. Pitter, C. and M. Schoeberl. Time Predictable CPU and DMA Shared Memory Access. in Field
Programmable Logic and Applications, 2007. FPL 2007. International Conference on. 2007.

25. Rogers, B., et al. Scaling the bandwidth wall: challenges in and avenues for CMP scaling. in ISCA ’09:
Proceedings of the 36th annual international symposium on Computer architecture. 2009.

26. Bardsley, A. and D. Edwards, Synthesising an asynchronous DMA controller with balsa. J. Syst. Archit.,
2000. 46(14): p. 1309-1319.

27. Aghdasi, F. and A. Bhasin. DMA controller design using self-clocked methodology. in AFRICON, 2004.
7th AFRICON Conference in Africa. 2004.

28. Markatos, E. and M. Katevenis. User-level DMA without operating system kernel modification. in Third
International Symposium on HighPerformance Computer Architecture. 1997.

29. Blumrich, M.A., et al. Protected, userlevel DMA for the SHRIMP network interface. in Second
International Symposium on High-Performance Computer Architecture Proceedings. 1996.

30. Infiniband Architecture Specification Version 1.2.1. 2008 2010]; Available from:
http://members.infinibandta.org/kws/spec/.

31. Corporation, M. Introduction to Receive Side Scaling. 2012 [cited June 2012; Available from:
http://msdn.microsoft.com/en-us/library/ff556942.aspx.

32. Hatori, T. and H. Oi, Implementation and Analysis of Large Receive Offload in a Virtualized System.
Proceedings of the Virtualization Performance: Analysis, Characterization, and Tools (VPACT’08), 2008.

33. Regnier, G., et al., TCP onloading for data center servers. Computer, 2004. 37(11): p. 48-58.
34. Ross, M., et al. FX1000: a high performance single chip Gigabit Ethernet NIC. 1997: IEEE.
35. TCP Offload Engine. Available from: http://en.wikipedia.org/wiki/TCP_Offioad_Engine
36. Bhoedjang, R.A.F., T. Ruhl, and H.E. Bal, User-level network interface protocols. Computer, 1998. 31(11):

p. 53-60.
37. Hill, M.D., et al. Coherent network interfaces for fine-grain communication. 1996: IEEE.
38. Schlansker, M., et al. High-performance ethernet-based communications for future multi-core processors.

in Supercomputing, 2007. SC '07. Proceedings of the 2007 ACM/IEEE Conference on. 2007.
39. Chitlur, N., S. Larsen, Editor. 2011.
40. IOAT description. Available from: http://www.intel.com/network/connectivity/vtc_ioat.htm.
41. Dan, T., et al. DMA cache: Using on-chip storage to architecturally separate I/O data from CPU data for

improving I/O performance. in High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on. 2010.

42. Guangdeng, L. and L. Bhuyan. Performance Measurement of an Integrated NIC Architecture with 10GbE.
in High Performance Interconnects, 2009. HOTI 2009. 17th IEEE Symposium on. 2009.

43. HypterTransport IO Link Specification Rev3.10. 2008; Available from:
http://www.hypertransport.org/docs/twgdocs/HTC20051222-00046-0028.pdf.

44. MESI protocol. Available from: http://en.wikipedia.org/wiki/MESI_protocol

http://www.linuxfoundation.org/collaborate/workgroups/networking/i/oat
http://www.pcisig.com/specifications/pciexpress/base3/
http://members.infinibandta.org/kws/spec/
http://msdn.microsoft.com/en-us/library/ff556942.aspx
http://en.wikipedia.org/wiki/TCP_Offioad_Engine
http://www.intel.com/network/connectivity/vtc_ioat.htm
http://www.hypertransport.org/docs/twgdocs/HTC20051222-00046-0028.pdf
http://en.wikipedia.org/wiki/MESI_protocol

 - 33 -

45. Mellor-Crummey, J. Intel Single Chip Cloud Computer. 2010; Available from:
http://www.cs.rice.edu/~johnmc/comp522/lecture-notes/COMP522-2010-Lecture5-SCC.pdf.

46. Message Passing Interface. [cited 2012 July 29 2012]; Available from:
http://en.wikipedia.org/wiki/Message_Passing_Interface.

47. Infiniband overview. Available from: http://en.wikipedia.org/wiki/InfiniBand.
48. Subramoni, H., M. Koop, and D.K. Panda. Designing Next Generation Clusters: Evaluation of InfiniBand

DDR/QDR on Intel Computing Platforms. in High Performance Interconnects, 2009. HOTI 2009. 17th
IEEE Symposium on. 2009.

49. Godiwala, N., J. Leonard, and M. Reilly. A Network Fabric for Scalable Multiprocessor Systems. in High
Performance Interconnects, 2008. HOTI '08. 16th IEEE Symposium on. 2008.

50. Barney, B. Using the Dawn BP/P System. 2012; Available from: https://computing.llnl.gov/tutorials/bgp/.
51. Hurtig, P.J., Wolfgang; Brunstrom, Anna, Recent Trends in TCP Packet-Level Characteristics, in ICNS

2011. 2011.
52. Larsen, S. and B. Lee, Platform IO DMA Transaction Acceleration. International Conference on

Supercomputing (ICS) Workshop on Characterizing Applications for Heterogeneous Exascale Systems
(CACHES), 2011.

http://www.cs.rice.edu/~johnmc/comp522/lecture-notes/COMP522-2010-Lecture5-SCC.pdf
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/InfiniBand

	Survey on System I/O Hardware Transactions and Impact on Latency, Throughput, and Other Factors
	I. INTRODUCTION
	Figure 1: I/O Performance increase comparison (adapted from [2]).
	II. BACKGROUND AND GENERAL DISCUSSION
	III. MEASUREMENTS AND QUANTIFICATIONS
	III.A Latency
	III.B Throughput and Bandwidth Efficiency

	IV. SURVEY OF EXISTING METHODS AND TECHNIQUES
	IV.A Simple Systems - Direct I/O access and basic DMA operations
	IV.A.1 Embedded systems
	IV.A.2 CPU DMA and DSP systems
	IV.A.3 General CPU controlled DMA engines
	IV.A.4 PCIe bandwidth optimization
	IV.A.5 Predictability and Real-Time Operating Systems
	IV.A.6 Other DMA related proposals

	IV.B Generic Workstations and Servers
	IV.B.1 Operating system virtualization protection
	IV.B.2 Interrupts and moderation

	IV.C Datacenters and HPC cluster systems
	IV.C.1 Device I/O Optimizations
	IV.C.2 Descriptor packing
	IV.C.3 TCP/IP Offload Engine (TOE) and other offload engines
	IV.C.4 Coherent Network Interface
	IV.C.5 CPU caching optimizations
	IV.C.6 CPU network interface integration

	IV.D System interconnects and networks
	IV.D.1 CPU socket interconnect
	IV.D.2 Messaging between cores
	IV.D.3 Remote Direct Memory Access: InfiniBand and iWARP
	IV.D.4 SciCortex and other fabrics

	V. POTENTIAL AREA OF PERFORMANCE IMPROVEMENT
	VI. CONCLUSIONS
	Table of Abbreviations
	ACKNOWLEDGEMENT
	REFERENCES

