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First, a nonlinear finite element model of the double-stayed bridge subjected
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responses of this bridge subjected to three different earthquakes are studied and the

effects of variations in some of the system parameters and dimensions are examined.
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earthquake hazard. The scheme introduced is an Algebraic-Riccati-Equation-based

(ARE-based) decentralized lloo control strategy. Under this scheme, controllers

at only four discrete points on the deck of the structure are used. With these
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and discussed.



Aseismic Performance of a Cable-Stayed Structure

with Decentralized Hc, Control

by

Guan Bee Ch'ng

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed May 1, 1996
Commencement June 1996



©Copyright by Guan Bee Ch'ng

May 1, 1996

All rights reserved



Doctor of Philosophy thesis of Guan Bee Ch'ng presented on May 1, 1996

APPROVED:

Major Professor, representing Civil Engineering

Chair of the/ epartment of Civil Engineering

Dean of th raduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Guan Bee Ch'ng, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGMENT

At the outset, the author wishes to express his sincere gratitude to his the-

sis advisor, Dr. Alan G. Hernried, Professor of Civil Engineering for his invaluable

guidance and expertise in every aspect. Appreciation is also given to other mem-

bers of the committee, Dr. Thomas H. Miller, Dr. Solomon C. S. Yim, Dr. Molly

H. Shor, and Dr. Donald C. Solmon, for their interest and participation as Graduate

Committee.

The thesis investigation was supported financially by National Science Foun-

dation under Grant Number CMS-9301464. This support is gratefully acknowl-

edged. Financial contribution during the author's graduate study, provided by the

Department of Civil Engineering at Oregon State University in the form of teaching

assistantship is also greatly appreciated.

Lastly, the author would like to express his deepest and heartfelt gratitude

to his family, especially his father Mr. Chin Chong Ch'ng for his constant moral

support, encouragement and blessings, and his missus for her love and patience.



TABLE OF CONTENTS
Page

1 INTRODUCTION 1

1.1 An Overview 1

1.2 Literature Reviews 3

1.3 Outline of this Dissertation 5

2 STRUCTURAL MODELING AND COMPUTATIONAL METHODS AND
APPROACHES 6

2.1 Ideal Physical Model of a Double-stayed Structure 6

2.2 The Finite Element Method (FEM) 7

2.3 The Non-Linear Static Equilibrium Approach 11

2.4 Linear Dynamics with Multiple-Support Excitations 16

2.5 The ARE-based Ho, Control Scheme 21

3 EARTHQUAKE DATA RECORDS WITH ENGINEERING SIGNIFI-
CANCE FOR SIMULATIONS 29

4 UNCONTROLLED BEHAVIOUR OF THE DOUBLE-STAYED STRUC-
TURE 39

4.1 Uncontrolled Static Parametric Study 39

4.1.1 Influence of pretension of upper cable 1 (and 4) 40
4.1.2 Influence of pretension of upper cable 2 (and 3) 40
4.1.3 Influence of pretension of lower cable 1 (and 4) 43
4.1.4 Influence of pretension of lower cable 2 (and 3) 45
4.1.5 Influence of presence of lower cables 45



TABLE OF CONTENTS (Continued)
Page

4.1.6 Influence of moment of inertia of deck 52
4.1.7 Influence of moment of inertia of pylon 56
4.1.8 Influence of span length 59
4.1.9 Influence of nonlinearity 61

4.2 Uncontrolled Dynamic Parametric Study 61

4.2.1 Influence of mass density of deck and pylon 63
4.2.2 Influence of span length 63
4.2.3 Influence of non-uniform excitations 64

4.2.4 Influence of vertical excitations 64
4.2.5 Influence of different analyses 64

5 CONTROLLED PERFORMANCE OF THE DOUBLE-STAYED STRUC-
TURE 71

6 DISCUSSIONS AND CONCLUSIONS 79

BIBLIOGRAPHY 82



LIST OF FIGURES
Figure Page

2.1 Ideal Physical Model of a Floating Double-Stayed Structure showing
Cable Numbers, x9 y9 Coordinate System, Physical Dimensions,
and Locations of Sensors and Control Actuators 6

2.2 Finite Element Model of the Ideal Physical Model of the Floating
Double-Stayed Guideway showing Node and Element Numbers, and
their connectivities. 8

2.3 Positive Sign Convention in Local Coordinates, xi yl for a typical
Finite Element 9

2.4 Equivalent Ee9 versus Tension in the Cable with Varying Horizontal
Projected Length II, E {50, 200,500,1000, 2000} in ft. 13

2.5 Equivalent .E,9 versus Horizontal Projected Length with Varying
Tension in the Cable 7', E {500,1500,2500,4000, 7000} in kips 14

2.6 Stability Functions S1 (solid line), S2 (dashed line), S3 (dotted line),
and S4 (dash-dotted line). 16

2.7 Flow Chart for the Nonlinear Static Equilibrium Approach 17

2.8 A standard control block diagram 22

2.9 The Schematic Block Diagram of Decentralized Control 28

3.1 1971 San Fernando S16E (horizontal) component 31

3.2 1971 San Fernando vertical component 31

3.3 Fourier Transform of 1971 San Fernando S16E component 32

3.4 Fourier Transform of 1971 San Fernando vertical component 32

3.5 1985 Mexico 335° (horizontal) component 34

3.6 1985 Mexico vertical component 34

3.7 Fourier Transform of 1985 Mexico 335° component 35

3.8 Fourier. Transform of 1985 Mexico vertical component 35

3.9 1992 Petrolia 0° (horizontal) component 37



LIST OF FIGURES (Continued)
Figure Page

3.10 1992 Petrolia vertical component 37

3.11 Fourier Transform of 1992 Petrolia 0° component 38

3.12 Fourier Transform of 1992 Petrolia vertical component 38

4.1 Influence of pretension of upper cable 1 (and 4). 41

4.2 Influence of pretension of upper cable 2 (and 3). 42

4.3 Influence of pretension of lower cable 1 (and 4). 44

4.4 Influence of pretension of lower cable 2 (and 3). 46

4.5 Influence of cable pretensions on maximum moments of deck with
varying pretensions of lower cable 1. 47

4.6 Influence of cable pretensions on maximum moments of pylon with
varying pretensions of lower cable 1. 48

4.7 Influence of cable pretensions on maximum deflections of deck with
varying pretensions of lower cable 1. 49

4.8 Influence of cable pretensions on maximum deflections of pylon with
varying pretensions of lower cable 1. 50

4.9 Influence of cable pretensions on maximum relative deflections be-
tween deck and pylon with varying pretensions of lower cable 1. . . . 51

4.10 Influence of moment of inertia of deck on maximum moments of deck
with varying moments of inertia of pylon. 53

4.11 Influence of moment of inertia of deck on maximum moments of pylon
with varying moments of inertia of pylon. 53

4.12 Influence of moment of inertia of deck on maximum deflection of deck
with varying moments of inertia of pylon. 54

4.13 Influence of moment of inertia of deck on maximum deflection of pylon
with varying moments of inertia of pylon. 54

4.14 Influence of moment of inertia of deck on maximum relative deflection
between deck and pylon with varying moments of inertia of pylon. . 56



LIST OF FIGURES (Continued)
Figure Page

4.15 Influence of moment of inertia of pylon on maximum moments of deck
with varying moments of inertia of deck. 57

4.16 Influence of moment of inertia of pylon on maximum moments of
pylon with varying moments of inertia of deck. 57

4.17 Influence of moment of inertia of pylon on maximum deflection of
deck with varying moments of inertia of deck. 58

4.18 Influence of moment of inertia of pylon on maximum deflection of
pylon with varying moments of inertia of deck. 58

4.19 Influence of moment of inertia of pylon on maximum relative deflec-
tion between deck and pylon with varying moments of inertia of deck. 59

4.20 Influence of the structure span length. 60

4.21 Influence of the mass density of deck on maximum deflections of deck
subjected to nonuniform Pacoima earthquake. 65

4.22 Influence of the mass density of deck on maximum deflections of pylon
subjected to nonuniform Pacoima earthquake. 66

4.23 Influence of the mass density of pylon on maximum deflections of
deck subjected to nonuniform Pacoima earthquake. 66

4.24 Influence of the mass density of pylon on maximum deflections of
pylon subjected to nonuniform Pacoima earthquake. 67

4.25 Influence of the span length on maximum deflections of deck (solid
line) and pylon (dashed line) subjected to nonuniform Pacoima earth-
quake. 67

4.26 Comparison of uncontrolled vertical displacement time history of deck
(node 7) subjected to non-uniform (solid line) and uniform (dash-
dotted line) Pacoima earthquake support excitations. 68

4.27 Comparison of uncontrolled moment time history of deck (member 6
at node 6) subjected to non-uniform (solid line) and uniform (dash-
dotted line) Pacoima earthquake support excitations. 68



LIST OF FIGURES (Continued)
Figure Page

4.28 Comparison of uncontrolled vertical displacement time history of deck
(node 7) subjected to uniform with vertical (solid line) and uniform
without vertical (dash-dotted line) Pacoima earthquake support ex-
citations. 69

4.29 Comparison of uncontrolled moment time history of deck (member
6 at node 6) subjected to uniform with vertical (solid line) and uni-
form without vertical (dash-dotted line) Pacoima earthquake support
excitations. 69

4.30 Comparison of uncontrolled vertical displacement time history of deck
(node 7) subjected to nonuniform Pacoima earthquake support exci-
tations using NL-L analysis (solid line) and L-L analysis (dash-dotted
line). 70

4.31 Comparison of uncontrolled moment time history of deck (member
6 at node 6) subjected to nonuniform Pacoima earthquake support
excitations using NL-L analysis (solid line) and L-L analysis (dash-
dotted line). 70

5.1 First three mode shapes of structure. 72

5.2 Uncontrolled Vertical Displacement History at the third quarter span
(Node 7) due to 1971 San Fernando Earthquake 73

5.3 Controlled Vertical Displacement History at the third quarter span
(Node 7) due to 1971 San Fernando Earthquake 74

5.4 Fourier Transform of Uncontrolled Vertical Displacement History at
the third quarter span (Node 7 1971 San Fernando Earthquake). . . 74

5.5 Fourier Transform of Controlled Vertical Displacement History at the
third quarter span (Node 7 1971 San Fernando Earthquake). 75

5.6 Uncontrolled Vertical Displacement History at the third quarter span
(Node 7) due to 1985 Mexico Earthquake 75

5.7 Controlled Vertical Displacement History at the third quarter span
(Node 7) due to 1985 Mexico Earthquake 76



LIST OF FIGURES (Continued)
Figure Page

5.8 Uncontrolled Vertical Displacement History at the third quarter span
(Node 7) due to 1992 Petrolia Earthquake. 76

5.9 Controlled Vertical Displacement History at the third quarter span
(Node 7) due to 1992 Petrolia Earthquake. 77

5.10 Fourier Transform of Uncontrolled Vertical Displacement History at
the third quarter span (Node 7 - 1992 Petrolia Earthquake) 77

5.11 Fourier Transform of Controlled Vertical Displacement History at the
third quarter span (Node 7 1992 Petrolia Earthquake) 78



LIST OF TABLES
Table Page

2.1 Material and Sectional Properties 7

3.1 Characteristics of 1971 San Fernando Earthquake 30

3.2 Characteristics of 1985 Mexico Earthquake 33

3.3 Characteristics of 1992 Petrolia Earthquake 36

4.1 Influence of Lower Cables (Comparison between Systems with and
without presence of lower cables) 55

4.2 Influence of Non linearity (Comparison between Linear and Nonlinear
Behavior) 62

5.1 First Five Natural Frequencies, Periods, and Cyclic Frequencies of
the uncontrolled system 73



ASEISMIC PERFORMANCE OF A CABLE-STAYED STRUCTURE
WITH DECENTRALIZED 1103 CONTROL

1. INTRODUCTION

1.1. An Overview

Like other natural hazards, earthquakes are a major concern to human be-

ings. A strong earthquake can have devastating impacts on both mankind and the

economy. During the first three quarters of this century, a source [51] reports that

earthquakes have claimed an average of over ten thousand lives each year and total

damage losses of more than ten billion dollars. In recent decades, damaging earth-

quakes such as Mexico City (1985), Loma Prieta (1989), Northridge (1994), and

Hyogoken-Nanbu (1995), have contributed more to the fatalities and destruction

due to earthquakes.

Long bridges are in general vulnerable to earthquakes. Among the many

types of long-span bridge structures, cable supported bridges are often selected over

typical, conventional designs because they are economical and aesthetically pleasing.

Cable supported bridges can be broadly classified into suspension and cable-stayed

bridges. In recent decades, the trend has been towards the design and construction of

cable-stayed bridges rather than suspension-type bridges. The cable-stayed bridges

are stiffer than the suspension bridges with the same span. The larger deflections of

the suspension bridges compared to that of the cable-stayed bridges are primarily

due to the flexibility of the main suspension cable.
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Since first proposed by Yao [96] in 1972, the idea of using active control

systems to reduce the dynamic response of civil engineering structures has received

increasing consideration. This concept of active feedback control has been used for

decades in the aerospace industry. Recently, it has successfully been applied to large

scale civil engineering structures ( [4], [5], [7], [8], [9], [10], [14], [96], etc. ). Practical

application includes the installation of a 400-ton tuned mass damper on the Citicorp

Building in New York City to control the building's first mode. A similarly designed

tuned mass damper was also introduced on the Canadian National Tower in Toronto,

and on the John Hancock Building in Boston.

The idea of applying active control to a cable-stayed bridge has been dis-

cussed for more than a decade ( [89], [90], [35] ). The tendon control mechanism

first introduced was difficult to realize or implement, due to the fact that the con-

trol actuators installed on the cables had to carry the self-weight of the structure.

Recently, a double-stayed bridge configuration was proposed [35]. The advantage

of this newly proposed configuration over the conventional ones is that the use of

pretension stay cables above and below the guideway may provide more structural

resistance to the uncontrolled vertical deflections of the guideway. Secondly, in the

case of active tendon control, the actuator can be placed on either lower or upper

cables, or both. This increases the flexibility of active control designs. Finally, both

upper and lower cables can be pretensioned for the static dead load. For these

reasons, this so-called double-stayed configuration is examined in this research.

This dissertation extends the above work to include the study of the struc-

tural behaviour of this double-stayed bridge under multi-support strong earthquake

motions. Previous studies ( [34], [1], [35], etc. ) have constructed partial differential

equations and have used the finite element method to model this type of structure.

In this study, a finite element model is developed. The scope of this thesis includes
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a static parametric study, dynamic parametric study, and an examination of the

uncontrolled and controlled responses of the structure subjected to three different

strong earthquakes. For the static parametric study, a nonlinear static equilibrium

finite element method is used. This parametric study is conducted to observe the

static structural behaviour of the system and to analyze the sensitivity of the re-

sponse to parameter variations. For the dynamic parametric study, a nonlinear

static, linear dynamic approach is used. Also examined in this study is the mitiga-

tion of seismic hazards using four decentralized controllers which are installed on the

lower cables of the structure. To evaluate the aseismic performance of this controlled

bridge, an advanced state-space decentralized Hoo control scheme appropriate for

this structure is considered.

1.2. Literature Reviews

Some unfortunate engineering failures of cable-supported structures have

been reported due to overloadings from wind and earthquake excitations [18]. The

need for more understanding of these cable-supported structures has resulted in

many publications regarding their dynamic analysis. For cable-stayed bridges, work

has primarily been focused on the seismic behaviour ( [1], [29], [53], [54], [50], [48],

[49] ), and on different energy method analyses [34].

Due to the uncertain nature of dynamic loadings such as wind and earth-

quakes, these loadings are in general much more difficult to predict and design for

than static loadings. To protect structures against these dynamic loadings, tech-

niques for controlling and reducing the response has become a focus of attention

for many researchers. In recent decades, new theoretical developments as well as

possible application of active feedback control strategies to structures have grown
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into an intensive research area. Categorized and outlined below are the studies done

on active structural control in the past two decades [14].

New and improved control methods have been proposed. An improved con-

trol scheme was based on the Riccati equation ( [58], [94] ).

Applications of different proposed methods to structural control problems

( [4], [5], [7], [8], [45] ) using optimal control theory ( [12] [56], [58], [93], [44], [91],

[7], [21], [5], [87], etc. ), using adaptive control ( [20], [63], [64] ), and using Hoo

robust control [70] have been investigated. Extensions were also made to include

nonlinear problems ( [9], [10] )

Most theoretical and experimental control efforts on civil engineering struc-

tures were directed at buildings ( [21], [23], [24], [56], [59], [62], [65], [85], [86], [88],

[91], [92], [93], [94], [95], [60], etc. ), and conventional highway bridges ( [2], [4],

[5], [8], [9], [10], [32], etc. ). Only a few applications have been for cable-supported

structures like cable-stayed bridges ( [89], [90] ), and special structures like floating

structures [69].

The control mechanisms used were generally active tuned mass dampers
( [14], [94], [65], [93], [91], [92], [21], etc. ), and active tendon control ( [5], [8],

[23], [24], [59], [60], [88], [89], [90], [91], [92], [93], [94] ). New control mechanisms

like liquid dampers [86] can also be found in the literature. Besides the above-

mentioned developments in structural control application, there are also studies on

the optimal placement of the control mechanisms [3], on the optimal placement of

the sensors [79], and on the investigation of the effects of uncertainties in the build-

ing parameters (e.g., stiffness, damping, etc.) on the efficiency of the optimal control

[95].

Based on the overview of the previous work outlined above, little has been

done on the mitigation of the dynamic response of cable-stayed bridges, and on the
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investigation of the 1-i.3 control scheme. No efforts have been devoted to possible

use of a decentralized control scheme.

1.3. Outline of this Dissertation

There are many cable configurations for cable-stayed bridges, and these con-

figurations can be classified into a few categories or types [18]. Chapter 2 describes

the configuration and physical dimensions of the bridge under study. The idealized

physical model of this double-stayed guideway, and methods and approaches used

to obtain the described mathematical model and response are overviewed. These

methods include the finite element method (FEM), a non-linear static equilibrium

approach, multiple-support excitation dynamics, and the decentralized I/co control

scheme.

Chapter 3 presents three earthquake records that are categorized as strong

motions. They are used in the subsequent simulation studies.

The uncontrolled response of this double-stayed bridge due to a moving load

has been investigated ( [35], [22] ). Chapter 4 presents some parametric studies on

the uncontrolled response of this structure subjected to strong earthquake excita-

tions.

Chapter 5 reports the controlled response of this structure subjected to

earthquake-induced support motions utilizing four decentralized Ho9 controllers.

Chapter 6 concludes the study. The effectiveness of the proposed control

scheme is discussed.
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2. STRUCTURAL MODELING AND COMPUTATIONAL
METHODS AND APPROACHES

2.1. Ideal Physical Model of a Double-stayed Structure

Cable-stayed bridges have various cable arrangements which can be broadly

classified into four basic categories [18]. They are radiating, harp, fan, and star

Control Actuator

b a

C

C

xg

FIGURE 2.1. Ideal Physical Model of a Floating Double-Stayed Structure showing
Cable Numbers, x9 yg Coordinate System, Physical Dimensions, and Locations of
Sensors and Control Actuators. (a = L/8, b = L /4, c = 3L/16, L = 400 ft, Length
of Guideway)

arrangements. No doubt, other variations and combinations are possible. Besides

cable configurations, there are many different types of pylon-to-deck connections or

supporting conditions [13]. The model studied in this research represents a floating
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type with radiating cable configuration. A floating type connection refers to zero

moment and zero shear transfers between the pylon and the deck. Figure 2.1 shows

the ideal physical model of this double-stayed guideway. Also shown are the x9 yg

coordinate system, the cable numbering system, physical dimensions, and locations

of sensors and control actuators. In this model, the structure is assumed to be

simply supported, with a deck span of 400 ft, and the pylon is assumed to be fixed

to the pier. The material and sectional properties of components of this model are

listed in Table 2.1.

Deck Pylon Cable

Modulus of Elasticity (ksf) 4,200,000 4,200,000 4,000,000

Cross-sectional Area (ft2) 8.0 28.5 0.6

Moment of Inertia (ft4) 45.0 160.0 n/a

Mass Density (V) 0.018 0.020 0.016

Weight per unit length (NJ) 4.64 18.35 0.30

TABLE 2.1. Material and Sectional Properties

2.2. The Finite Element Method (FEM)

The mathematical representation of the ideal physical model of the double-

stayed guideway is obtained through the finite element method. By this method, the

general analysis procedure is to first idealize or discretize the ideal physical model as

a collection of finite elements connected at nodes, as shown in Figure 2.2. With the

inclusion of axial deformation, each node involves three degrees of freedom (DOF).
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10

FIGURE 2.2. Finite Element Model of the Ideal Physical Model of the Floating
Double-Stayed Guideway showing Node and Element Numbers, and their connec-
tivities.

The positive sign convention for these DOF's in an arbitrarily oriented element is

shown in Figure 2.3. Each element has a stiffness associated with it. There are

two types of elements used to describe this model. They are beam elements for the

pylon and guideway, and cable elements for the cables. A typical local beam element

stiffness matrix is described below.
/

where

kb =

kll 0 0 k14 0 0

0 k22 k23 0 k25 k26

0 k32 k33 0 k35 k36

k41 0 0 k44 0 0

0 k52 k53 0 k55 k56

0 k62 k63 0 k65 k66

AbEb
k11 = k44 = k14 = k4i =

1 2Eb-ib
k22 = k55 = k25 = 452 =

.L e

1

/

(2.1)
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FIGURE 2.3. Positive Sign Convention in Local Coordinates, xi yi for a typical
Finite Element

k23 = k32 = k26 = k62 k35 = k53 = k56 = k65

lz33 = k66
Le

4Ebib

2EbIb
k36 = k63

Le

6E64
L2

e

where Le is the length of the element, Ab is the cross-sectional area, Eb is the

modulus of elasticity, and Ib is the moment of inertia of the beam element. A linear

local cable element stiffness matrix is described below.

A E
c

1

0

0

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(2.2)K.
Le

where Le is the length of the element, A, is the cross-sectional area, Ec is the

modulus of elasticity of the cable.
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Since the orientation of each element in the global coordinate system may

be different, a transformation matrix is used to transform both the forces and dis-

placements from the local xi yl coordinate system to the global x9 y9 coordinate

system. This transformation matrix T is described in Equation 2.3.

T=

/ cos(0) sin(0) 0

\

sin(0) cos(b) 0

0 0 1

0 0 0 cos(b) sin(0) 0

0 0 0 sin(') cos(b) 0
0 0 0 0 0 1

\
0 0 0

0 0 0

0 0 0

/

(2.3)

After the local beam element stiffness matrix (kbe) is formed for each element

using Equation 2.1, the global beam element stiffness matrix (k.gb) can be obtained

by

kgb = TT kb T (2.4)

Similarly, the global cable element stiffness matrix (1c.cg) can be obtained by

k; = TT K T (2.5)

Once the global element stiffness matrices (1c9 and kg) for each element are

obtained, the system or structure stiffness matrix K can be assembled. Next the

boundary conditions and externally applied loadings are imposed. The system ma-

trix K may be partitioned to separate the unknown from the known displacements,

and the unknown from the known forces, as shown in Equation 2.6 below.

(fa) (K Kao).(da)
fe Kaa Koo do

(2.6)
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where fa are the known forces, fo are the unknown forces, d, are the unknown

displacements, and do are the known displacements.

The final step is to solve for the unknown forces and displacements by Equa-

tions 2.7 and 2.8.

fp = Kpada, + Kppdp

da = K,;((fa Kodp)

(2.7)

(2.8)

To obtain the local beam element forces f:' (axial, shear, and bending mo-

ments), the displacements da need to be transformed back to the local level as

follows.

feb = keb T da (2.9)

Similarly, the local cable element forces ,a can be obtained by replacing keb with k

in the above equation.

2.3. The Non-Linear Static Equilibrium Approach

The nonlinear behaviour of the cable-stayed bridge is primarily a result of

geometric nonlinearities. The nonlinear force-deformation relationships are caused

by the sagging of the inclined cable stays, and the axial-bending interactions of the

pylon and deck. The sagging of the cable stays is a function of both the axial load

and the self-weight of the cable.

For cables, the concept of an equivalent modulus of elasticity (Eeq) is em-

ployed to account for the nonlinearity in the inclined cable stays due to sagging

( [29], [41], [40], [48] ). By considering an equivalent straight chord member with an

equivalent modulus of elasticity Eeq (which combines effects of both material and
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geometric nonlinearities), with Eeg assumed to be constant if the change of tension

in cable AT, is not too large during each load increment, implying the axial stiffness

of cable will not change significantly during each load step. The equivalent modulus

of elasticity Eeg is given as

E,= (2.10)
q (tvc1142 AcEc

12T3

where A, is the cross-sectional area of the cable, E, is the modulus of elasticity of

the cable, w, is the weight per unit length of the cable, T, is the cable tension before

the load increment is applied, and He is the horizontal projected length of the cable.

Equation 2.11 shows this local cable element stiffness.

ne

AcEeg

1

0

0

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1
0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(2.11)
Le

where Le is the distance between element nodes.

To investigate the effects of the nonlinearity, two plots, one with equivalent

Eeq versus tension in the cable with varying horizontal projected length, and the

other with equivalent Eeg versus horizontal projected length of the cable with varying

tension in the cable, are generated. They are shown in Figures 2.4 and 2.5. As can be

observed from these two plots, the equivalent modulus of elasticity (Eeg) approaches

the actual modulus of elasticity of the cable (E,) for higher cable tensions and shorter

horizontal projected lengths of the cable stay.

Nonlinearity of the axial-bending interaction due to the effect of large bending

and axial deformations can be considered by employing the concept of stability
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FIGURE 2.4. Equivalent Eeq versus Tension in the Cable with Varying Horizontal
Projected Length H, E {50,200,500,1000,2000} in ft.

functions ( [29], [41] ). The stability functions basically contain the ratio of the

axial load to the critical Euler load. When this ratio is sizeable in compression, the

bending stiffness will be reduced. In applying this concept, the stiffness matrix lce

is modified by multiplying by these stability functions, as shown in Equation 2.12

k, =

0 0 k14S5 0 0

0 k22 S1 k23 S2 0 k25 S1 k26 S2

0 k32 S2 k33 S3 0 k35 S2 k36 S4

kn. S5 0 0 km S5 0 0

0 k52 S1 k53S2 0 k55 S1 k56S2

0 k62 S2 k63 S4 0 k65 S2 k66 S3

(2.12)
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FIGURE 2.5. Equivalent Eeq versus Horizontal Projected Length with Varying
Tension in the Cable T, E {500,1500,2500,4000,7000} in kips.

where the k13s are described in the previous section and the S'i3s are as described

below.

For compressive axial force

Sl

S2

83

54

S5 =

(xsLe)3 sin(xsLe)
12R,

(x,Le)2(1 cos(x,Le))
6R,

(x,Le)[sin(x,Le) xsLe cos(x,Le)]
4R,

(x,Le)[x,L, sin(xsLe)]
2R,

1

1 + EAbR44p3ir



where

xs
P

Ebib

R, = 2 2 cos(x,Le) x Le sin(xsLe)

R, = xsLe(Vtb + Va)[cot(x sLe) + x al, e csc2 (x sLe)]

2(Mab + Mbs)2 + (MabMba)[1 + xsLe cot(x,Le)][2x3L, csc(x,Le)]

For tensile axial force

where

xs
P

Ebib

Rt = 2 2 cosh(x,Le) + x sLe sinh(xsLe)

S1 = 12Ri

S2 = (xsLe)2(cosh(xsLe) 1)

(x sl, sr sinh(xsLe)

6Rt
(x 31, e)[x sLe cosh(x,Le) sinh(xsLe)]

...)3
4Rt

(x,L,)[sinh(x,Le) cesLe]S4 =
2Rt

S5 =
1 EbAbRtm

4P3 Li

1

Rtm = x sLe(Mab + Mla)[coth(x sL e) + x sLecsch2 (xslis)]

2(Mab + Mba)2 + (-11 lab Mbs)(1 + xs L e coth(x,Le)][2x,Lecsch(xsLe)]

15

A plot of these stability functions is shown in Figure 2.6. Note that at x sL e = 0,

all stability functions have a value of unity, which implies that the nonlinear stiff-

ness reduces to the linear stiffness in the absence of tensile and compressive axial

load. The nonlinear static solution is obtained by a successive linear solution
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FIGURE 2.6. Stability Functions S1 (solid line), 52 (dashed line), S3 (dotted line),
and S4 (dash-dotted line). Positive xsLe indicates that the element is in tension,
negative indicates compression.

approach. With this approach, the linear routine is iterated until convergence is

reached. Figure 2.7 outlines this iterative approach.

2.4. Linear Dynamics with Multiple-Support Excitations

For a multi-degree-of-freedom (MDOF) system, the general equation of mo-

tion is expressed by the following matrix second order ordinary differential equation.

Mi., + Di, + Kv = P(t) (2.13)
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FIGURE 2.7. Flow Chart for the Nonlinear Static Equilibrium Approach

The formula describes the equilibrium of the effective forces for each degree of free-

dom (DOF). If there are N degrees of freedom, then M is the N by N global system

mass matrix, D is the system damping matrix, K is the system stiffness matrix,

and v, V, i', are the displacement, velocity, and acceleration vectors, while P(t) is

the time dependent externally applied load vector.
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The mass matrix is obtained making use of the finite element concept by a

procedure similar to the analysis of the element stiffness coefficients. For a beam

element with uniformly distributed mass, the consistent mass matrix ( [26], [42] ) is

described by Equation 2.14.

where

bme =

/
0 0 0 0

\
M11

0

0

m4i

0

0

M22 m23

M32 M33

0 0

M52 M53

M62 m63

mil = 77-144 =

m14 = m41 =
6

156pbAbLe

PbAbLe
3

PbAbLe

M22 = M55 =
420

M14

0

0

M44

0

0

M25 m26

M,35 M36

0 0

TT/55 M56

M65 m66 /

M23 = M32 = m56 = M65

4pbAb.g
m33 = m66 = 420

54pbAbLe
m25

=
m52 420

=

M35 = M53 = m26 = m62 =

3PbAbL3,
M36 = M63 = 420

22pbAbL
420

13pbAbL
420

(2.14)

where Ab is the cross-sectional area of the beam element, Eb is the modulus of elas-

ticity, Le is the element length, and pb is the mass density of the beam element

which has units of kips
ec2

f t4
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Like the stiffness matrix, the global element mass matrix ingb is obtained by

ing
TT mb (2.15)

The system damping matrix D can be constructed by specifying modal damp-

ing ratios, and by the following matrix equation.

D = M q5 b OT M (2.16)

where

/
24.1w1 0 0

D= 0 22(1.)2
(2.17)

0

0 0 24.NWN

and cbi are the normalized mode shapes orthonormal with respect to mass and wi are

the natural frequencies of the system, obtained by solving the following generalized

eigenvalue problem.

K Oi = M cki (2.18)

Structures like cable-stayed bridges are usually supported at more than one

point that are separated by long distances. Due to this, and the fact that seismic

waves travel at different speeds through the earth during an earthquake, there will

be a slight delay in the arrival of incoming waves to second and subsequent supports.

As a result, this delay causes differential ground motions from support to support.

It is assumed here that the wave velocity through rock media is 50009, and that

the bridge piers are supported on rock.

The equation of motion for multiple-support excitation can be obtained from

the global system matrices by partitioning those degrees of freedom associated with
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the ground motions from the free degrees of freedom, as shown in Equation 2.19 for

the system mass matrix,

(Mff Mfg)Mi., =
Mg f Mgg

(2.19)

where vtf is the total vector of free displacements (length f), and v.9 is the vector

of ground displacements (length g). Rearranging system matrices M, D, and K to

separate free DOF from the ground DOF, yields the following two second order

matrix equations of motion.

Mff 774 + Dff 7)tf + Kff Vtf = -Mfg 2g D fg 7.59 Kfg Vg (2.20)

Mgf i3tf+Dft +Kfij z) =9 i)f 9 v f +M99 9 +D99 9 +K99 v9 F9 (2.21)

The term on the right hand side of Equation 2.20 is called the effective earthquake

force vector Peff(t), and the term on the right hand side of Equation 2.21 is the

support forces along the ground degrees of freedom. The displacements, velocities,

and accelerations associated with the ground degrees of freedom, Vg, 2,9, and vg,

respectively, must all be known in order to solve the above two equations for vf and

Fg. To further simplify Equation 2.20, the total displacement vector, vti. , can be

decomposed as a sum of both relative and static components, that is,

of = of + of (2.22)

where v; is the pseudostatic displacement vector resulting from a static-support

displacement, and vf is the relative displacement vector.

From the above, for a static case, vf = 0 implies vtf = vsf in Equation 2.22

and using the fact that for the static case all time derivatives are zero, Equation 2.20

reduces to
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of = Kii Kfg Vg (2.23)

where r = Kil Kfg in the above equation is defined as the pseudostatic influ-

ence coefficient matrix. This matrix expresses the responses in all DOF's due to a

unit displacement of each support while fixing all the other DOF's. Substituting

Equation 2.22 into Equation 2.20, and assuming that the D fg + Dffr term is neg-

ligible compared to the inertia term, one obtains the following equation of motion

for multiple-support earthquake excitations

Mff i5f + Dff V/ + Kff vf = (Mff r + Mfg) i3g (2.24)

Note that if the damping matrix D is proportional to the stiffness matrix K, it can

be shown that the D fg + D f fr term vanishes. However, in a practical scenario this

term will not be zero, but its contribution will be relatively small.

2.5. The ARE-based Hc,0 Control Scheme

The 11,, control technique was originally formulated by Zames [97] more

than a decade ago. Traditionally, it was a complex frequency domain (transfer

function) approach. In recent years, Hcx, control using the state-space technique

(time domain) has begun to gain popularity among control system designers ( [27],

[80], etc. ). One major advantage of the state-space technique over the transfer

function approach is that it eases the computational complexity of the transfer

function matrix for the multi-input multi-output (MIMO) system. Presented first

in this section is the standard Hoo control problem in the time domain, which is also

referred to as Algebraic-Riccati-Equation-based (ARE-based) 1100 control, followed

by some discussion of the 11,0 space and norm. Lastly, the decentralized Hoo control

methodology [80] is reviewed.
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The formulation of the standard 11,, control problem for the linear, time-

invariant (LTI) case generally involves a system of the following matrix form

= Ax Gwo, (2.25)

= x 71) ,

(Hx

where x is the state of the system, u is the control input force signal, -y" is the
measured output, z is the output to be regulated or controlled, wo and II) are the

square-integrable external disturbances (earthquake excitations) and sensor noises,

respectively. The block diagram of this setup is shown in Figure 2.8, where the

system to be controlled is boxed with the dashed lines (shaded region). The term

wo
w

A

Controller

FIGURE 2.8. A standard control block diagram
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lico refers to the space of proper and stable transfer functions. Therefore, stating

that the closed-loop transfer function T(s) is in 1-10,0 is equivalent to saying T(s) is

proper and stable. A proper transfer function is a transfer function for which the

degree of the denominator is greater than or equal to the degree of the numerator.

The Ho° norm of a stable and proper transfer-function matrix T(s) is defined as

II T(s) 11,0 = sup IITv112 = sup II Tv 112 = sup I T(jw) (2.26)
114200 11 112 11v112=1 wER

where Tv = z, and II v(t) 112= Vf(v(t))2dt denotes the root-integral-square norm

(L2 norm) in either the time domain or the frequency domain. From the above

Equation 2.26, it is simply defined as the maximum ratio of the L2 norm of the

output z over the L2 norm of the input v. This ratio is also known as the L2 gain
wo

of the system. Letting we = (iv), the objective is to design a feedback or closed-

loop controller that stabilizes the overall closed-loop system (entire Figure 2.8), and

obtains a small Hoc, norm of the transfer-function matrix from the disturbances We

to the regulated output z. From the definition above, obtaining a small Hoo norm

simply means keeping the gain from II We 112 to 11 z 112 small. In other words, the

design goal is to extremize over a space of proper and stable transfer functions, with

the Ho,0 norm representing the objective or cost function.

The decentralized Hco control setup has a more general structure than the

standard .11,3 control case, and is given by the following formulation

= Ax E Gwo
i=1

yi = Cix wi, i E {1, 2, ... , q}

H

z= ul

uq

(2.27)
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where q is the number of decentralized controllers. For convenience, the above

equations 2.27 can be compactly rewritten as

th = Ax Bu Gwo, (2.28)

y = Cx

(11x)z=

where B = B( B1 B2 q I , uT = ui u2 uq , YT = ( y 1 y2 Yq) , CT =
(c1 C2 ... Cq), and wT = w1 w2 ... wq I .

For the decentralized Hoo control technique, a controller for each of the q

control channels is designed. The local measurement yi provides information for the

ith controller to generate the local control input ui. This approach is very efficient in

controlling a large scale system like the double-stayed bridge under study since each

of the four independent controllers uses only the corresponding local measurement

information. Each decentralized controller is designed such that the II3 norm of

the entire system closed-loop transfer function is within a prespecified bound a.

For state-feedback control, it is assumed that all states are available for feed-

back. However, in a practical scenario, some of the states may not be measurable.

In this case, an observer is designed to estimate the states for feedback. An ob-

server is a device in the form of either hardware or software that uses the inputs

and the outputs of the system to produce estimates of its states. In other words,

it is a device that simulates the original system. The structure of the decentral-

ized 1/0 controllers is composed of full-order observers that generate the estimates

i E {1, 2, ... , q}, of the states x for feedback. Full-order here denotes that the

order of each observer is exactly the same as the order of the system. In which

case, the resulting closed-loop system has an order of (q + 1)n. To simulate the dy-
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namics of the original system, these observers should have the following dynamical

structure,

= + + Gwo + Li(yi Ci6)
j=1

(2.29)

where Si are the estimates of the states and Li are the observer gains. Since the

disturbance tv, is not available to the observers, it is replaced by the following

estimates.

= Gi"7,Xia1

° 2
(2.30)

where a is the predetermined Ho() norm bound (found by trial and error). Similarly,

in the ith observer, the jth controller, u3, j i, is replaced by

113i. = BiTX6

Doing so, Equation 2.29 becomes

1= (A + GGTX SX Liyi

and the control estimates used for the feedback are

(2.31)

(2.32)

ui = 13TX6 (2.33)

The above two equations (2.32 and 2.33) represent the decentralized feedback control

law. The term X in the above equations is the positive semi-definite (X > 0)

solution to the following controller Algebraic-Riccati-Equation (ARE)

AT X + XA
12XGGT X XSX HTH = 0

The gains of the observer, Li are obtained from the following equation

Li = wiicT

(2.34)

(2.35)
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where Wi are the diagonal blocks of W,

T

yr VV lq

W = (2.36)

W Wq "
which is the positive definite (W > 0) solution to the following estimator Riccati-like

algebraic equation.

WAT AcW W(a2X,B,B,TX, C,TC,)W G,G,T (2.37)

(W WD)C,TC,(W WD) = 0

where A, = A /,BB,TX,, A = diag(A, A,, . , A,), A, = A + c÷2GGT X

S X, Ic = I I I , B, = diag(Bi, B2, . , Bq), X, = diag(X, X, . . . , X), C =
diag(Ci, C2, , Cg), Gc = I,G, and WD = W22) Wqq)

With q the number of decentralized controllers, the (q +1)n order closed-loop

system is described by the following

(

( A BBTX, x G 0 ) (we)
Fexe G ewe (2.38)

L,C A, L,C, () (0 Lc w

z=
( 0 BTX,

H 0 ) (x
Hexe (2.39)

where L, = diag(Li, L2, . , Lq)

Associated with the observer is the notion of observability. Observability is

loosely defined as the ability to estimate the system states from a record of output

measurements. A weaker version of observability is referred to as detectability. A

system is said to be detectable if the unstable modes are observable or equivalently

the unobservable modes are stable. To ensure a stabilizing controller, the pair (A, H)

has to be detectable, the solution X to the ARE (Equation 2.34) has to be positive



27

semi-definite (X > 0), A, Ez- A + cr2GGT X SX has to be Hurwitz (or stable),

A, + SX has to have no jw-axis eigenvalues, and the solution W to the Riccati-like

Algebraic Equation (Equation 2.37) has to be positive definite (W > 0). Satisfying

the above conditions, the decentralized feedback control law (Equations 2.32 and

2.33) stabilizes the system of Equation 2.27, and the closed-loop transfer-function

matrix

from we to z satisfies

T(s) = He(sI Fe)-iGe

II T lico< a

Figure 2.9 shows the decentralized Hco control scheme in block diagram, where

Ad = diag(A, A, . . . , A), Sd = diag(S, S, . . . , S), Gd = diag(G,G, . . . , G), Ad +
-,,,GdGI X, SdX, _-:---.E A,, and the shaded area represents the observer-based con-

trollers.
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FIGURE 2.9. The Schematic Block Diagram of Decentralized lic, Control
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3. EARTHQUAKE DATA RECORDS WITH ENGINEERING
SIGNIFICANCE FOR SIMULATIONS

The earthquake records selected as excitations for the uncontrolled and con-

trolled behaviours of the double-stayed structure are obtained from a set of short-

listed earthquake data reported by Naeim and Anderson [52]. According to that

report, the severity and damage potential of an earthquake ground motion is char-

acterized by the following parameters. These parameters are Richter magnitude

(M), peak ground acceleration (PA), peak ground velocity (PV), peak ground dis-

placement (PD), maximum incremental velocity (IV), maximum incremental dis-

placement (ID), effective peak acceleration (EPA), effective peak velocity (EPV),

and the bracketed duration ([D]). In each of these parameter categories (except

magnitude and bracketed duration), Naeim and Anderson arranged the database

to obtain an ordered 30 earthquake records. This database contained records of

earthquakes occuring between 1933 and 1992. From this information, the only two

earthquakes that are in the top 30 list in every parameter category mentioned above

are the 1971 San Fernando earthquake recorded at the Pacoima Dam station, and

the 1992 Petrolia earthquake recorded at the Cape Mendocino station. In the 0.3g

bracketed duration ([D]0.309) parameter category, the 1985 Mexico City earthquake

recorded at the Infiernillo N-120 station contains the longest duration of 21.7 sec-

onds. This 0.3g bracketed duration refers to the time duration between the first and

the last occurrences of accelerations equal to or greater than 0.3g. Since these three

earthquakes are classified as carrying significant engineering values, they are chosen

for the studies of uncontrolled and controlled behaviour of the double-stayed struc-

ture. The properties and characteristics of each of these earthquakes are tabulated
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in Tables 3.1, 3.2, and 3.3, with the above-mentioned parameters, including such

information as the epicenter distance (D) and the focal depth (H). Strong motion

portions of the time history plots (two components) for each of these earthquakes,

and their frequency contents are also shown in the following pages.

Components Horizontal Vertical

Epicenter Distance, H in mi (km) 8.08 (13) 8.08 (13)

Foci Depth, F in mi (km) 4.97 (8) 4.97 (8)

Richter Magnitude, M 6.6 6.6

Orientation, Deg (°) 164 vert

Peak Acceleration, PA in g 1.15 0.71

Peak Velocity, PV in ft /s (cm's) 3.71 (113.09) 1.85 (56.47)

Peak Displacement, PD in ft (cm) 1.26 (38.28) 0.61 (18.57)

Incremental Velocity, IV in ft /s (cm's) 4.56 (138.88) 2.07 (63.17)

Incremental Displacement, ID in ft (cm) 1.58 (48.05) 1.13 (34.46)

Effective Peak Acceleration, EPA in g 0.84 0.61

Effective Peak Velocity, EPV in ft/s (cm/s) 2.17 (66.23) 0.65 (19.79)

Duration, [D]0.059 (sec) 33.9 32.0

Duration, [D]0.10g (sec) 33.1 n/a
Duration, [D]0.209 (sec) 8.0 n/a
Duration, [D]0.309 (sec) 7.3 n/a

TABLE 3.1. Characteristics of 1971 San Fernando Earthquake
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Components Horizontal Vertical

Epicenter Distance, H in mi (km) 17.40 (28) 17.34 (27.9)

Foci Depth, F in mi (km) 55.92 (90) 55.92 (90)

Richter Magnitude, M 8.1 8.1

Orientation, Deg (°) 335 vert

Peak Acceleration, PA in g 0.38 0.29

Peak Velocity, PV in ftls(cm1s) 0.54 (16.45) 0.36 (10.92)

Peak Displacement, PD in ft (cm) 0.17 (5.23) 0.22 (6.81)

Incremental Velocity, IV in ft/s (cm/s) 0.89 (27.2) 0.55 (16.9)

Incremental Displacement, ID in ft (cm) 0.18 (5.49) 0.35 (10.76)

Effective Peak Acceleration, EPA in g 0.43 0.25

Effective Peak Velocity, EPV in ftls(cm1s) 0.36 (11.03) 0.21 (6.30)

Duration, [D]0.059 (sec) 76.0 61.0

Duration, [D]0.1.09 (sec) 54.1 n/a
Duration, [D]0.209 (sec) 33.2 n/a
Duration, [D]0.309 (sec) 21.7 n/a

TABLE 3.2. Characteristics of 1985 Mexico Earthquake
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Components Horizontal Vertical

Epicenter Distance, H in mi (km) 9.32 (15) 9.32 (15)

Foci Depth, F in mi (km) 3.11 (5) 2.86 (4.6)

Richter Magnitude, M 6.9 6.9

Orientation, Deg ( °) 0 vert

Peak Acceleration, PA in g 1.50 0.75

Peak Velocity, PV in ft /s (cm /s) 4.14 (126.12) 1.98 (60.32)

Peak Displacement, PD in f t (cm) 1.18 (36.07) 2.19 (66.75)

Incremental Velocity, IV in ft/s (cm/s) 3.86 (117.52) 1.52 (46.31)

Incremental Displacement, ID in ft (cm) 2.06 (62.85) 3.53 (107.45)

Effective Peak Acceleration, EPA in g 0.98 0.39

Effective Peak Velocity, EPV in ft/s (cm/s) 1.94 (59.16) 0.55 (16.79)

Duration, [D]0.059 (sec) 37.9 7.9

Duration, [D]0.103 (sec) 33.7 n/a

Duration, [D]0.209 (sec) 17.1

Duration, [D]0.309 (sec) 4.0 n/a

TABLE 3.3. Characteristics of 1992 Petrolia Earthquake
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4. UNCONTROLLED BEHAVIOUR OF THE DOUBLE-STAYED
STRUCTURE

4.1. Uncontrolled Static Parametric Study

This section presents the influences of some important structural properties

of the double-stayed system on the overall static structural behaviour. In particu-

lar, the influences of upper and lower cable pretensions, the presence of the lower

cables, the moments of inertia of the deck and pylon, as well as the influences of the

span length and system nonlinearities are presented. Since the bending moments

are most likely to be the controlling structural strength design factor for this long

span structure (shear is likely to control the design for short, deep beam type struc-

tures), and excessive deflections will usually govern the serviceability requirement,

the structural behaviours observed and presented here are limited to the maximum

bending moments of the deck and pylon, the maximum absolute deflections of the

deck and pylon, and the maximum deflections of the deck normalized by the maxi-

mum deflections of the pylon.

The static loading is a result of the structure's dead-weight. For the analysis,

this distributed self-weight loading is replaced by equivalent nodal loads and equiv-

alent moments at both ends of the span. The equivalent nodal forces are assigned

to each node according to their tributary areas. The nonlinear static equilibrium

finite element analysis approach used to analyze the static responses in the following

subsections is described in Chapter 2. The pretensions in the upper cable 1 (and 4),

in the upper cable 2 (and 3), in the lower cable 1 (and 4), and in the lower cable 2

(and 3), used in the analysis are 800, 600, 600, 450 kips, respectively.
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4.1.1. Influence of pretension of upper cable 1 (and 4)

The pretension in the cables has some influence on the structural behaviour

of the double-stayed bridge. By changing the pretensions of upper cables 1 and 4

while holding all others constant, the following behaviours can be seen. In general,

the maximum moments and the maximum absolute deflections in the deck decrease

as the pretension in upper cable 1 (and 4) increases up to a certain value. Beyond

this value, increases in the maximum moments and the deck deflections are observed.

The maximum moments and maximum absolute deflections of the pylon increase

for all cases considered. These behaviours are plotted in Figures 4.1 (a) (d). As

can be seen in these plots, for design purposes a pretension of 1500 kips and greater

is not recommended since beyond this value the maximum deck moments and the

cable stress increase.

Also, from these illustrations, it is observed that the maximum moments

respond less sensitively to variations in the neighborhood of the pretension of upper

cable 1 (and 4) under study (800 kips). For example, a 10 % change in the pretension

of upper cable 1 (and 4) causes an approximately 7 % change in the maximum

moments in the deck and pylon, as well as in the maximum deflections of the deck.

An even smaller percentage change (4 %) in the maximum deflections of the pylon

is also observed.

4.1.2. Influence of pretension of upper cable 2 (and 3)

By changing the pretensions of upper cables 2 and 3 while keeping the preten-

sions in the other cables fixed, the maximum positive moments of the deck remain

almost unchanged while the maximum negative moments of the deck experience an

increase. The maximum moments of the pylon also increase. However, the maxi-
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FIGURE 4.2. Influence of pretension of upper cable 2 (and 3). (a) Solid and
dash-dotted lines represent positive and negative maximum moments of deck, re-
spectively. (c) Solid and dash-dotted lines represent maximum deflections of deck
and pylon, respectively.
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mum absolute deflections of the deck decrease until a certain pretension value and

then start to increase beyond that. The relative deflections between the deck and

the pylon also follow the same behaviour, due to the almost unchanged maximum

absolute deflections of the pylon. These behaviours are plotted in Figures 4.2 (a)

(d).

Based on these figures, it is noticed that the maximum forces in the deck and

pylon react less sensitively to variations in the pretension of the upper cable 2 (and

3) under study (600 kips), compared to that from a variation in the pretension in

the upper cable 1 (and 4) presented in the previous section. For example, a 10 %

change in the pretension of upper cable 2 (and 3) corresponds to less than a 1 %

change in the maximum moments of the deck and pylon, and less than a 3 % change

in the maximum deflections of both the deck and pylon.

4.1.3. Influence of pretension of lower cable 1 (and 4)

As the pretension of lower cables 1 and 4 increases, it is observed that the

maximum positive and negative moments in the deck, the maximum moments in

the pylon, the maximum absolute deflections of the deck and the pylon, as well as

the maximum deflections of the deck normalized by the maximum deflections of the

pylon, increase. The increases in both the negative and positive moments of deck

result mainly from the fact that the relatively high stiffness of lower cables 1 and

4 causes 'U' shaped deflection in the deck at stations 1 and 4, and an inverted 'U'

shaped at stations 2 and 3. These behaviours are plotted in Figures 4.3 (a) (d).

Also, from these figures, it can be seen that the maximum forces in the deck

and pylon also respond insensitively to variation of the pretension in the lower cable

1 (and 4) under study (600 kips). For instance, a 10 % variation in the pretension of
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FIGURE 4.3. Influence of pretension of lower cable 1 (and 4). (a) Solid and
dash-dotted lines represent positive and negative maximum moments of deck, re-
spectively. (c) Solid and dash-dotted lines represent maximum deflections of deck
and pylon, respectively.
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the lower cable 1 (and 4) causes less than a 4 % variation in the maximum moments

and maximum deflections in both the deck and the pylon.

4.1.4. Influence of pretension of lower cable 2 (and 3)

As the pretension of lower cables 2 and 3 increases, it is observed that the

maximum positive moment of the deck and maximum moment of the pylon increase

while the maximum negative moment of the deck decreases. This behaviour may be

explained by the fact that the larger stiffness of the lower cable (2 and 3) causes a

downward pull on the deck, thus decreasing the negative moments and at the same

time increasing the positive moments. For design purposes this relatively high value

of pretension is not recommended. Also, it is observed that the maximum absolute

deflections of the deck increase while the maximum absolute deflections of the pylon

are almost unaffected. The maximum deflections of the deck normalized by the

maximum deflection of the pylon show a decrease up to a certain pretension value,

and an increase beyond that point. These behaviours are plotted in Figure 4.4(a)

(d).

It is also observed that the structure responds insensitively to the changes

in the neighborhood of the pretension under study (450 kips). In this case, a 10 %

change in the pretension of the lower cable 2 (and 3) corresponds to less than a 2 %

change in the maximum moments and maximum deflections of both the deck and

the pylon.

4.1.5. Influence of presence of lower cables

The maximum positive moments of the double-stayed structure are higher

than for the system without lower cables for low pretension of upper cable 1 (and
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FIGURE 4.6. Influence of cable pretensions on maximum moments of pylon with
varying pretensions of lower cable 1. Solid, dashed, dotted, and dash-dotted lines
represent pretensions of 0, 300, 600, and 2000 kips in lower cable 1, respectively.
(Horizontal axis represents pretensions of upper cable 2 in kips, and vertical axis
represents the maximum moments of pylon in kip ft). (a), (b), (c), and (d) show
graphs with pretensions of 500, 800, 1000, and 2000 kips in the upper cable 1,
respectively.
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FIGURE 4.7. Influence of cable pretensions on maximum deflections of deck with
varying pretensions of lower cable I. Solid, dashed, dotted, and dash-dotted lines
represent pretensions of 0, 300, 600, and 2000 kips in lower cable 1, respectively.
(Horizontal axis represents pretensions of upper cable 2 in kips, and vertical axis
represents the maximum deflection of deck in kip ft). (a), (b), (c), and (d) show
graphs with pretensions of 500, 800, 1000, and 2000 kips in the upper cable 1,
respectively.
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FIGURE 4.8. Influence of cable pretensions on maximum deflections of pylon with
varying pretensions of lower cable 1. Solid, dashed, dotted, and dash-dotted lines
represent pretensions of 0, 300, 600, and 2000 kips in lower cable 1, respectively.
(Horizontal axis represents pretensions of upper cable 2 in kips, and vertical axis
represents the maximum deflections of pylon in kip ft). (a), (b), (c), and (d)
show graphs with pretensions of 500, 800, 1000, and 2000 kips in the upper cable 1,
respectively.
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FIGURE 4.9. Influence of cable pretensions on maximum relative deflections be-
tween deck and pylon with varying pretensions of lower cable 1. Solid, dashed,
dotted, and dash-dotted lines represent pretensions of 0, 300, 600, and 2000 kips in
lower cable 1, respectively. (Horizontal axis represents pretensions of upper cable 2
in kips, and vertical axis represents the ratio of maximum deflections of deck over
pylon ). (a), (b), (c), and (d) show graphs with pretensions of 500, 800, 1000, and
2000 kips in the upper cable 1, respectively.
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4) and lower for high pretension of upper cable 1 (and 4). However, the maximum

moments and maximum deflections in the pylon are in general higher for the system

with lower cables than for that without lower cables. The maximum deflections

in the deck are higher for low pretensions in the upper cable 1 (and 4) and high

pretensions in lower cable 1 (and 4), and are lower otherwise. This response may

be explained by the fact that low pretension in the upper cable 1 (and 4) causes

some negative deformation in the deck of the system without the lower cables. The

presence of the lower cables creates a further downward pull on the deck resulting in

higher negative deflections. These behaviours can be observed in Figures 4.5 4.9.

As a comparison between the maximum responses of a double-stayed system with

and without lower cables, Table 4.1 shows their response percentage difference. From

this table, it may be concluded that the presence of the lower cables significantly

affects the maximum static behaviour of the system.

4.1.6. Influence of moment of inertia of deck

The increase of the moment of inertia increases the stiffness of the deck. Since

stiffer members carry a proportionally larger load, as the moment of inertia of the

deck increases the maximum positive moments in the deck increase. The negative

moments of the deck increase to a peak and then decrease. Dramatic changes in both

positive and negative moments occur in the range of 5 to approximately 60 ft' (see

Figure 4.10). Within this range, one also observes a dramatic decrease in maximum

moments in the pylon (see Figure 4.11), a dramatic decrease in maximum absolute

deflection of the deck, pylon, and the maximum deflection of the deck normalized

by the maximum deflection of the pylon (Figures 4.12 4.14). Beyond this range
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FIGURE 4.10. Influence of moment of inertia of deck on maximum moments of
deck with varying moments of inertia of pylon. Solid and dashed lines represent
positive and negative moments, respectively. Upper and lower curves of both solid
and dashed lines correspond to 'pylon = 10, and 400ft4, respectively.
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FIGURE 4.11. Influence of moment of inertia of deck on maximum moments of
pylon with varying moments of inertia of pylon. Solid, dashed, and dash-dotted
lines represent 'Pylon = 10,160, and 400 ft4, respectively.
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FIGURE 4.12. Influence of moment of inertia of deck on maximum deflection of
deck with varying moments of inertia of pylon. Solid, and dash-dotted lines represent
1-pylon = 10, and 400ft4, respectively.
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Presence of
Lower Cables

Absence of
Lower Cables

Difference
(%)

Max Deck Vertical Deflection,
ft (m)

0.0614
(0.0187)

0.0193
(0.0059)

+ 218.1

Max Pylon Horizontal Deflection,
ft (m)

0.0095
(0.0029)

0.0034
(0.0010)

+ 179.4

Max Deck (-ve) Moment,
k ft (kN m)

5992.9
(8124.9)

4442.3
(6022.7)

+ 34.9

Max Deck (+ve) Moment,
k ft (kN ni)

4441.0
(6020.9)

2706.1
(3668.8)

-I- 64.1

Max Deck Axial Force,
kips (kN)

1749.2
(7780.4)

1040.8
(4629.5)

+ 68.1

Max Deck Shear,
kips (kN)

322.5
(1434.5)

258.7
(1150.7)

+ 24.7

Axial Force of Upper Cable 1,
kips (kN)

914.8
(4069.0)

800.3
(3559.7)

+ 14.3

Axial Force of Upper Cable 3,
kips (kN)

800.7
(3561.5)

589.4
(2621.7)

+ 35.9

TABLE 4.1. Influence of Lower Cables (Comparison between Systems with and
without presence of lower cables)

(i.e., higher values of moments of inertia of deck), the changes are moderate since

the slopes of these curves are observed to be somewhat flatter.

Based on these figures, it is observed that as the moment of inertia of the

deck under study is varied 10 % about 45 ft', the maximum moments of the deck

and pylon and the maximum deformations of the pylon vary about 1 %. However,

an approximately 7 % change is observed in the maximum deformations of the deck.
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FIGURE 4.14. Influence of moment of inertia of deck on maximum relative deflec-
tion between deck and pylon with varying moments of inertia of pylon. Solid, and
dash-dotted lines represent Ipylon = 10, and 400M, respectively.

4.1.7. Influence of moment of inertia of pylon

As the moment of inertia of the pylon increases, the maximum moments

and the maximum absolute deflections in the deck stay almost unaffected as seen

in Figures 4.15 and 4.17. It is observed that the maximum moments of the pylon

increase (Figure 4.16), and the maximum deflections of the pylon (Figure 4.18)

decline. As can be seen in these plots, the moment of inertia of the pylon under the

range of values considered does not play a crucial role in reducing the maximum

absolute deflections and the maximum moments of the deck, thus very high values

are not recommended for design. This behaviour is similarly shown in [54 This is

due to the symmetrical geometry of the structure, and the fact that only the static

load is considered. It may become important under dynamic loadings.
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FIGURE 4.15. Influence of moment of inertia of pylon on maximum moments of
deck with varying moments of inertia of deck. Solid and dashed lines represent
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and dash-dotted lines correspond to 'deck = 5 and 500 ft', respectively.
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FIGURE 4.16. Influence of moment of inertia of pylon on maximum moments of
pylon with varying moments of inertia of deck. Solid, and dash-dotted lines represent
/deck = 5, and 500 M, respectively.
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FIGURE 4.17. Influence of moment of inertia of pylon on maximum deflection of
deck with varying moments of inertia of deck. Solid, dashed, and dash-dotted lines
represent I dk = 5, 45, and 500ft4, respectively.

0.014

0.013

y.)) 0.012

6)= 0.011
0
>,

0.01

0.009.0

g 0.008

0.007

0.0°60
50 100 150 200 250 300 350 400

Moment of Inertia of Pylon

FIGURE 4.18. Influence of moment of inertia of pylon on maximum deflection of
pylon with varying moments of inertia of deck. Solid, dashed, and dash-dotted lines
represent heck = 5,45, and 500ft4, respectively.
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FIGURE 4.19. Influence of moment of inertia of pylon on maximum relative de-
flection between deck and pylon with varying moments of inertia of deck. Solid,
dashed, and dash-dotted lines represent /deck = 5, 45, and 500ft4, respectively.

Based on these figures, it is seen that the maximum moment and the maxi-

mum deformations of the deck are insensitive to changes in the moment of inertia of

the pylon under study (160 ft4). However, a 10 % change in the moment of inertia

of the pylon results in about 12 % change in the maximum moment, and about 4 %

change in the maximum deflection of the pylon.

4.1.8. Influence of span length

An increase of the span length results in higher flexibility in the deck. In

addition, as the total span length of the double-stayed bridge increases, the structure

carries greater loads (uniform distributed loading is constant). One sees an increase

in the maximum moment and the maximum deflection in the deck, a decrease in the
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maximum moment in the pylon, and a very slight increase in the maximum deflection

of the pylon, as illustrated in Figure 4.20. Under the currently studied span length of

400 ft, the maximum deflection of the deck normalized by the maximum deflection

of the pylon is at a ratio of about 6. A 10 % variation in the neighborhood of

this span length causes approximately 20 % change in the maximum moment of the

deck, approximately 5 % change in the maximum moment and deformation of the

pylon, and about 80 % change in the maximum deflection of the deck.

4.1.9. Influence of nonlinearity

A comparison study is also conducted to observe the effects of the nonlinear-

ities due to the sagging of the cables and the axial-bending interaction. A summary

of this comparison is listed in Table 4.2. A difference of about 30 % in maximum

vertical deflection of deck and over 50 % in lower cable tension show that the effect

of the nonlinearity should not be neglected for this structure under the parameters

listed in Table 2.1.

4.2. Uncontrolled Dynamic Parametric Study

The 1971 San Fernando earthquake is used throughout this section for the

purpose of dynamic parametric studies. In this section, influences of some important

properties of the structure are presented. As in the case of static parametric studies,

the behaviours observed are limited to the maximum moment and the maximum

absolute deflections of the deck and the pylon. In most cases, only time-series of

certain nodal vertical deflections and moments of the deck are plotted for the pur-

poses of illustration. Since the maximum responses of the double-stayed structure

under study occur within the first 10 seconds of the Pacoima earthquake, the time
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Nonlinear
Behavior

Linear
Behavior

Difference
(%)

Max Deck Vertical Deflection,
ft (m)

0.0614
(0.0187)

0.0470
(0.0143)

+ 30.64

Max Pylon Horizontal Deflection,
ft (m)

0.0095
(0.0029)

0.0090
(0.0027)

+ 5.56

Max Deck (-ye) Moment,
k ft (kN m)

5992.9
(8124.9)

5225.4
(7084.3)

+ 14.69

Max Deck (+ve) Moment,
k ft (kN m)

4441.0
(6020.9)

3827.3
(5188.9)

+ 16.03

Max Deck Axial Force,
kips (kN)

1749.2
(7780.4)

1557.0
(6925.5)

+ 12.30

Max Deck Shear,
kips (kN)

322.5
(1434.5)

299.1
(1330.4)

+ 7.82

Axial Force of Upper Cable 3,
kips (kN)

800.7
(3561.5)

740.4
(3293.3)

+ 8.14

Axial Force of Lower Cable 4,
kips (kN)

441.5
(1963.8)

279.9
(1245.0)

+ 57.73

TABLE 4.2. Influence of Non linearity (Comparison between Linear and Nonlinear
Behavior)

history plots are only shown for that range. For the subsequent subsections, unless

stated otherwise, a nonlinear static equilibrium approach combined with the linear

dynamic analysis presented in Chapter 2 are carried out. In all cases considered,

the rotational acceleration component of the seismic excitation is excluded.
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4.2.1. Influence of mass density of deck and pylon

Under the dynamics of non-uniform support excitations from the Pacoima

(1971 San Fernando) earthquake, as the mass density of the deck increases, the

maximum absolute deflections of both the deck and the pylon increase with the

increasing mass density of the pylon. These effects can be viewed in Figures 4.21

4.24.

Also based on these illustrations, a 10 % variation in the mass density of

the deck of 0.018 k 4 causes about 6 % variation in the maximum deflection of the

deck, and about 10 % variation in the maximum deflection of the pylon. However,

a 10 % change in the mass density of the pylon results in about 10 % and 13 %

change in the maximum deflections of the deck and the pylon, respectively.

4.2.2. Influence of span length

As the span length of the deck increases, the maximum absolute deflections

of both the deck and the pylon increase. Figure 4.25 shows that there is a moderate

increase in deflections between span lengths of 200 and 450 ft, and beyond that

range, the increase becomes significant. In the previous static parametric study of

the span length, one observes a very slight increase in the maximum deflection of

pylon as the span length increases. This is, however, not the case here. As seen

in Figure 4.25, there is dynamic amplification on the order of more than 20 in the

maximum deflection of the pylon for a structure span length of 800 ft over the

corresponding deflection under static load. In the case of maximum deflection of

the deck, under the same span length of 800 ft, the response doubles over that

under static load.
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4.2.3. Influence of non-uniform excitations

To observe the effects of non-uniform support excitations, the 1971 Pacoima

(San Fernando) earthquake with a wave speed of 5000 ftls is examined. With

this wave speed, and the fact that the distance between the two closest supports

is 200 ft apart, there would be a delay of a fraction of a second. The results are

compared with the responses for the same earthquake but without any wave delay.

These results are plotted and shown in Figures 4.26 4.27. As shown, the maximum

vertical deflection at the third quarter span of the deck (node 7) is greater when

subjected to this out-of-phase motion.

4.2.4. Influence of vertical excitations

To look into the effects of vertical components of this earthquake on the re-

sponse of the structure, a system subjected to uniform horizontal and vertical ground

motions is analyzed and compared with that without the vertical components. The

results are shown in Figures 4.28 4.29. One notices that when the vertical compo-

nents are excluded, both the maximum vertical deflection at the third quarter span

of the deck (node 7) and the maximum moment in a member near midspan (member

6 at node 6) are lower. For this reason, vertical components of all three earthquakes

are included in the subsequent uncontrolled and controlled response studies.

4.2.5. Influence of different analyses

A number of publications have addressed whether nonlinearity should be

included in the static or dynamic analyses. These publications ( [29], [53], [54] )

concluded that the responses obtained by a nonlinear static and nonlinear dynamic
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FIGURE 4.21. Influence of the mass density of deck on maximum deflections of
deck subjected to nonuniform Pacoima earthquake. Solid, dashed, and dotted lines
represent mass densities of pylon of 0.01, 0.02, and 0.05 .11c s2 respectively.

analysis (NL-NL) can be well approximated by using a nonlinear static combined

with a linear dynamic analysis procedure (NL-L). However, whether one can use

linear static and linear dynamic analysis (L-L) depends on the degree of the nonlin-

earity in the system. For some systems, the responses may differ on the order of 10 %

[40]; for others, the differences can be more significant. Significant nonlinearities are

present for the structure under study, as shown in the previous section on the static

parametric study (Table 4.2). To further illustrate the influence of different analyses

methods on the dynamic response, a time history of the vertical deflection of node

7 and the moments in member 6 at node 6 are plotted and shown in Figures 4.30

4.31. As can be seen in Figure 4.30, the maximum vertical deflection of node 7 is

underestimated by a factor of at least 1.5 using L-L analysis.



66

0.5

0.45

0 0.4

460.35

.0 0.2

±
0.15

------- - _ -

0d.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Mass Density of Deck

FIGURE 4.22. Influence of the mass density of deck on maximum deflections of
pylon subjected to nonuniform Pacoima earthquake. Solid, dashed, and dotted lines
represent mass densities of pylon of 0.01, 0.02, and 0.05 V, respectively.
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FIGURE 4.26. Comparison of uncontrolled vertical displacement time history of
deck (node 7) subjected to non-uniform (solid line) and uniform (dash-dotted line)
Pacoima earthquake support excitations. (Max Nonuniform = 0.2927, Max Uniform
= 0.2730)
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FIGURE 4.27. Comparison of uncontrolled moment time history of deck (member
6 at node 6) subjected to non-uniform (solid line) and uniform (dash-dotted line)
Pacoima earthquake support excitations. (Max Nonuniform = 1.0449 x 104, Max
Uniform = 1.1625 x 104)
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FIGURE 4.28. Comparison of uncontrolled vertical displacement time history of
deck (node 7) subjected to uniform with vertical (solid line) and uniform without
vertical (dash-dotted line) Pacoima earthquake support excitations. (Max with
vertical = 0.2730, Max without vertical = 0.2567)
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FIGURE 4.29. Comparison of uncontrolled moment time history of deck (member
6 at node 6) subjected to uniform with vertical (solid line) and uniform without
vertical (dash-dotted line) Pacoima earthquake support excitations. (Max with
vertical = 1.1625 x 104, Max without vertical = 0.6068 x 104)
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FIGURE 4.30. Comparison of uncontrolled vertical displacement time history of
deck (node 7) subjected to nonuniform Pacoima earthquake support excitations
using NL-L analysis (solid line) and L-L analysis (dash-dotted line). (Max NL-L =
0.2927, Max L-L = 0.1767)
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FIGURE 4.31. Comparison of uncontrolled moment time history of deck (member
6 at node 6) subjected to nonuniform Pacoima earthquake support excitations us-
ing NL-L analysis (solid line) and L-L analysis (dash-dotted line). (Max NL-L =
1.0449 x 104, Max L-L = 1.1956 x 104)
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5. CONTROLLED PERFORMANCE OF THE DOUBLE-STAYED
STRUCTURE

In this chapter, the dynamic performance of the controlled double-stayed

structure subjected to severe nonuniform seismic excitations is evaluated. The con-

trol scheme involves the ARE-based decentralized 1/0 technique which is presented

in Chapter 2. A comparative study between the controlled and uncontrolled re-

sponses is conducted to show the effectiveness of the control scheme.

The double-stayed system to be controlled is described in Figure 2.1 and the

properties of which are listed in Table 2.1. All the analysis procedures used to obtain

the responses are described in Chapter 2. In the analyses of both the controlled and

uncontrolled responses of the system, the NL-L approach is performed. A nonlinear

static equilibrium method is used to obtain the stiffness of the overall system at

the static deformed state under dead load and cable pretension. To determine

the uncontrolled dynamic responses of the structure, a linear dynamic analysis is

performed. To determine the controlled dynamic responses of the structure, linear

controllers are used. The vertical and horizontal components of three recorded

earthquake ground motion data sets are considered, with a wave speed through rock

of 5000 ftls.

The vibration characteristics of the uncontrolled double-stayed structure are

shown in Figure 5.1 (first three dynamic modes of the system) and Table 5.1 (un-

controlled natural frequencies). As shown, the fundamental mode vibrates at about

2 Hertz. As observed in Figure 5.4, when the structure is subjected to the 1971

San Fernando earthquake that has significant energy near 2 Hertz strong motions
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FIGURE 5.1. First three mode shapes of structure. Solid, long dashed, and short
dashed lines represent the first, second, and third modes, respectively.

of the structure results. The same characteristic is also observed when the structure

is excited by the 1992 Petrolia earthquake (see Figure 5.10).

To illustrate the performance of the decentralized Hoo controllers subjected

to strong earthquake motions, a comparative study between controlled and uncon-

trolled responses is performed using the vertical displacement time history at the

third quarter of the span (node 7) and the corresponding frequency domain insights

(Fourier transform). The results are plotted in Figures 5.2 through 5.11. As illus-

trated in these figures, reductions of 65.73 %, 47.96 %, and 44.82 % in the maximum

responses are observed in the controlled system subjected to the 1971 San Fernando,

the 1985 Mexico, and the 1992 Petrolia earthquakes, respectively. These response

attenuations show the robustness of the control scheme, since the characteristics

of these earthquakes are different in terms of intensity, duration, magnitude, and

dominant frequencies (see Chapter 3). From the Fourier transform of the response

time history of the controlled system, it is also noticed that there is no dominant

frequency, in contrast to the uncontrolled system (see Figures 5.5 and 5.11).
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Modes
Natural

Frequency (rad/s)
Period

(seconds)
Frequency

(Hz)

1 12.4 0.5079 1.9689

2 21.7 0.2890 3.4602

3 23.0 0.2732 3.6610

4 33.0 0.1902 5.2568

5 45.8 0.1371 7.2922

TABLE 5.1. First Five Natural Frequencies, Periods, and Cyclic Frequencies of the
uncontrolled system
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FIGURE 5.2. Uncontrolled Vertical Displacement History at the third quarter span
(Node 7) due to 1971 San Fernando Earthquake. Maximum = 0.2927.
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FIGURE 5.3. Controlled Vertical Displacement History at the third quarter span
(Node 7) due to 1971 San Fernando Earthquake. Maximum = 0.1003.
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FIGURE 5.4. Fourier Transform of Uncontrolled Vertical Displacement History at
the third quarter span (Node 7 1971 San Fernando Earthquake).
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FIGURE 5.5. Fourier Transform of Controlled Vertical Displacement History at the
third quarter span (Node 7 1971 San Fernando Earthquake).
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FIGURE 5.6. Uncontrolled Vertical Displacement History at the third quarter span
(Node 7) due to 1985 Mexico Earthquake. Maximum = 0.1105.
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FIGURE 5.7. Controlled Vertical Displacement History at the third quarter span
(Node 7) due to 1985 Mexico Earthquake. Maximum = 0.0575.
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FIGURE 5.8. Uncontrolled Vertical Displacement History at the third quarter span
(Node 7) due to 1992 Petrolia Earthquake. Maximum = 0.3023.
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FIGURE 5.9. Controlled Vertical Displacement History at the third quarter span
(Node 7) due to 1992 Petrolia Earthquake. Maximum = 0.1668.
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FIGURE 5.10. Fourier Transform of Uncontrolled Vertical Displacement History at
the third quarter span (Node 7 1992 Petrolia Earthquake).
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FIGURE 5.11. Fourier Transform of Controlled Vertical Displacement History at
the third quarter span (Node 7 1992 Petrolia Earthquake).



79

6. DISCUSSIONS AND CONCLUSIONS

This thesis has presented the aseismic performance of a controlled and un-

controlled double-stayed structure. The controlled structure is composed of four

decentralized controllers using the ARE-based Hoo control design technique.

The ideal physical model is obtained by the finite element method. Due to the

geometric nonlinearity of the cable-supported system, a nonlinear static equilibrium

approach is used to obtain the stiffness of the structure at the static equilibrium

deformed state. These nonlinearities originate from the sagging of the cables and the

axial-bending interaction of the members. To examine the static behaviour of this

structure, a series of static parametric studies have been presented. These studies

have shown the effect on the structural behaviour due to variations in the pretensions

of the upper and lower cables, the presence and absence of the lower cables, changes

in the moments of inertia of the deck and pylon, and changes in the structure span

length. The effect of the presence of nolinearities in the system is also investigated.

Based on the results obtained, it may be concluded that the double-stayed system

static behaviour is similar to many other cable-stayed systems. For example, [55]

reports that an increase in deck moment of inertia results in an increase in moments

in the deck and decreases in the moments in the pylon and the maximum deflections

for some cable-stayed bridges with a variety of cable configurations. For the bridge

under consideration, as the moment of inertia of the pylon increases, the moments

and the deflections in the deck are reduced, and the moments in the pylon increased.

The double-stayed structure has shown a similar structural behaviour. From the

sensitivity studies presented, the following conclusions may also be drawn. For the

structure currently under study, it is concluded that the pretensions of both the
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upper and the lower cables are not sensitive to variations in their neighborhood. It

may also be concluded that the presence of the lower cables causes higher maximum

static responses. The maximum static responses of both the deck and pylon are

observed to be insensitive to variations in the neighborhood of the moments of

inertia of the deck. The same conclusion may be reached for changes in the moment

of inertia of the pylon. The effect of variations in the span length of the structure

is also presented and it is concluded that changes in the span length would magnify

the static responses. Finally, the static responses are sensitive to the nonlinearities

of the system.

The dynamic analysis of the structure is performed with a nonlinear static,

linear dynamic (NL-L) approach, which is widely accepted and used by many inves-

tigators. Using this approach, the dynamic behaviours of the uncontrolled system

are investigated, and a series of parametric analyses is carried out. The 1971 Pa-

coima Dam earthquake has been considered for the purpose of this analysis. These

parametric studies have included the effects of the mass densities of the deck and

pylon, the effects of the span length, the effects of the nonuniformity of the exci-

tations, the effects of the vertical components of the excitations, and the effects of

different methods of analyses. Based on the study, the following may be concluded.

First, higher masses for both the deck and the pylon cause higher maximum abso-

lute deflections in both the deck and the pylon. With the mass desities under study,

the maximum deflections of the deck and pylon are somewhat sensitive to changes

in the mass densities of both the deck and pylon. The longer the span length of the

structure, the more flexible the structure becomes. The effect of increasing flexibil-

ity causes larger deformations in both the deck and the pylon. However, a small

change in the span length does not cause a large change in the maximum deflection

of the deck and no change in the maximum deflection of the pylon. Compared to the
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nonuniform excitation case, uniform excitation underestimates the maximum defor-

mation of the deck. For a conservative design, nonuniform ground motion should

be included. The vertical components of an earthquake also affect the displacement

response of the system. This vertical component, very often neglected in structural

analysis, causes higher displacements and forces in the structure. Finally, the NL-L

analysis is encouraged for the analysis of cable-stayed structure with high static

nonlinearity.

To mitigate the earthquake-induced vibrations of the structure, four decen-

tralized Hoo controllers have been placed on the lower cables of the system. This

control scheme is overviewed in detail in Chapter 2. With these controllers, the

structure performs reasonably well even under severe earthquake motions. The

technique effectively and robustly attenuates the displacement response of the struc-

ture. Further improvement in the effectiveness of the decentralized controller can

be achieved through proper and careful design. In other words, an 11,, norm bound

can be properly chosen to maximize the performance. The control system can also

be fined-tuned by optimizing the placement and number of controllers and sensors,

which will lead to increasing controllability (stabilizability) and observability (de-

tectability) of the system.
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