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The method of recession analysis proposed by Brutsaert and Nieber [1977] remains

one of the few analytical tools for estimating aquifer hydraulic parameters at the field-

scale and greater. In the method, also referred to as "recession slope analysis", the

receding limb of the hydrograph is examined as dQ/dt =J(Q), where Q is discharge

andfis an arbitrary function. The parameters of the observed functionf are related to

analytical solutions to the I -D Boussinesq equation for unconfined flow in a

homogeneous, horizontal aquifer. Conveniently, these solutions can all be expressed

in the general form dQ/dt = aQb, where a is a function of the aquifer dimensions and

hydraulic properties and b is a constant. The four central chapters that follow

investigate aspects of the theory and implementation of recession slope analysis. The

first chapter is an application of the method for calculating the field-scale saturated

hydraulic conductivity k of a mildly-sloping tile-drained field. It is also shown how

the method of recession slope analysis can be applied to water table recession data.

Furthermore, an alternative method for calculating k from the same data is presented

that does not require estimating dQ/dt. This is of practical interest because of the

substantial noise generated when taking time derivatives of real data. The second

chapter reveals how the standard approach to calculating dQ/dt from real data can

lead to artifacts in plots of log(dQ/dt) versus log(Q) which can in turn lead to

incorrect interpretations of the recession slope curves. In response, an alternative

technique for estimating dQ/dt is proposed. In the third chapter, analytical solutions

to the Boussinesq equation are derived for a horizontal aquifer in which the saturated

hydraulic conductivity k is allowed to vary as a power law of height above bedrock.



This is of interest as many soils exhibit decreasing k with depth. In addition, the effect

of the power-law k profile on the recession parameters a and b is discussed. The final

chapter is a partial assessment of the Brutsaert and Nieber method for sloping aquifers,

both for the homogeneous case and for when k varies as power law with height. It is

found that the existing analytical solutions to the 1-D Boussinesq equation for a

sloping aquifer, each based on their own simplifying assumptions, are inappropriate

for a Brutsaert and Nieber-type analysis. However, an examination of numerical

solutions to the non-linear Boussinesq equation revealed "empirical" relationships

between aquifer parameters and recession slope curves that permit the derivation of

approximate analytical solutions for the late part of the recession period when the

curves converge to the form dQldt = a
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=aQb (2)

On the Use of Recession Slope Analysis and the Boussinesq Equation

for Interpreting Hydrographs and Characterizing Aquifers

Chapter 1 - Introduction

The analysis of the recession limb of hydrographs for forecasting drought

flows and investigating the ground water flow regime in basins has over a century-

long history [see reviews in Hall, 1968; Tallaksen, 1995]. The part of this history that

still remains very relevant today are the attempts to link features of the recession curve

to the physical properties of a basin's aquifer.

Brutsaert and Nieber [1977] made a provocative contribution when they

proposed examining the slope of the drought flow hydro graph, or dQldt, against the

discharge Q, such that

- f(Q) (1)

wheref denotes an arbitrary function, and comparing plotted data against analytical

solutions for aquifer discharge. In particular, they focused on the Boussinesq equation

for 1 dimensional flow in a rectangular, horizontal, homogeneous, and unconfined

aquifer where lateral flow in the unsaturated zone is neglected (note the many

simplifications made).

What makes this method of analysis particularly alluring is that three well-

known analytical solutions to the Boussinesq equation can be expressed in the form
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where b is a dimensionless constant and a is a function of the geometric and hydraulic

properties of the "Boussinesq" aquifer. Moreover, streamfiow recession data

frequently exhibit the form of the power law in (2). Graphed in log-log space, (2) has

the additional attractive feature of appearing as a straight line. In theory, from (2) one

can estimate basin-scale effective values for the aquifer parameters, such as the

saturated hydraulic conductivity k for example.

However, there are many reasons why one might question the appropriateness

of using the 1-dimensional Boussinesq aquifer as a model for basin discharge. To

begin, a natural basin is certainly not one-dimensional, rectangular and homogeneous.

Nor is the flow likely to be truly horizontal and only in the saturated zone.

Furthermore, there may be other contributions and/or losses to streamfiow than from

merely an unconfined groundwater source. Despite these apparent problems, the use

of the 1-dimensional Boussinesq equation in the Brutsaert and Nieber fashion

continues to be applied (see, for example, Chapter 5, Introduction). The series of

papers that follow investigate some of the apparent limitations of the Boussinesq

aquifer and some practical issues concerning the Brutsaert and Nieber approach.

In Chapter 2, the existing analytical solutions to the Boussinesq equation are

compared to discharge and water table measurements taken in a tile-drained field: an

intermediate setting between a laboratory where the aquifer properties are well-

defined and a natural basin where aquifer properties and initial and boundary

conditions are generally poorly understood. The important issue of the scaling of

hydrological parameters is also addressed. Specifically, k estimated at the field scale

using the Brutsaert and Nieber method is compared to small scale estimates of k of

numerous soil samples tested in the laboratory.

Both Chapters 2 and 3 deal with the practical implementation of the Brutsaert

and Nieber method. In Chapter 2, an alternative technique for parameter estimation is

presented in order to avoid taking the time derivative of discharge data, a calculation

which is often very sensitive to data noise. The specific issue in Chapter 3 is that of

previously perceived patterns in plotted recession data. It is shown that these patterns

are artifacts of the usual manner for estimating the slope of the hydrograph (dQ/dt),
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and are not manifestations of physical phenomena. An alternative manner of

calculating dQldt versus Q is presented that does not produce such artifacts and thus

increases the power of the analysis method.

Chapters 4 and 5 address aquifer inhomogeneity by allowing k to decrease with

depth, a common characteristic of soils. Analytical solutions are derived for the

Boussinesq equation with a power-law k profile and the effects on the recession

parameters a and b in (2) are discussed.

Chapter 5 tackles the general utility of the Brutsaert and Nieber method for

estimating the hydraulic parameters of a non-horizontal aquifer. Short-comings of the

existing analytical solutions to the Boussinesq equation for a sloping aquifer are first

discussed. Next, by examining numerical solutions to the Boussinesq equation for a

sloping aquifer, analytical relationships between properties of the recession slope

curves and properties of the aquifer are sought. These relationships are tested against

data from a hillslope in which k is known to decrease markedly with depth.
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Abstract

Determination of field-scale hydraulic properties is required for many hydrologic

predictions. Four analytical methods for determining the saturated hydraulic

conductivity k on the field scale for a field drained by a network of parallel drains are

considered. These methods, all derived from the Boussinesq equation, relate: 1) time

rate of change of discharge to discharge; 2) relative discharge to time; 3) time rate of

change of water table height to height; and 4) relative water table height to time.

Though all four methods eliminate the need to know precisely the begiiming time of

the recession curve, which is in practice ambiguous, Methods 2) and 4) do not require

taking time derivates of observations, which introduces noise. The mean field-scale k

based on several recession events on two 1 ha fields using all methods was 4 mId.

This is near the median k of 5 mId calculated from 40 soil cores taken at various

depths within the same fields, but five times less than the mean k of the soil cores (20

mId).
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1. Introduction

The use of spatially-distributed ecosystem models to address complex issues

involving water quantity and quality lead naturally to a need for estimates of model

parameters corresponding to the scale of the model elements. For hydraulic

properties of soils this is problematic because almost all field characterization methods

work at spatial scales on the order of 0.1 m3 or less. To acquire values of the

hydraulic properties at the scale of the model requires not only extensive sampling but

a leap of faith regarding what is the effective value of the hydraulic property at the

larger scale. A further complication is that hydrologic processes may be operating that

simply are not measurable at the small scale.

Observation of outflow and water table height in drained farmland affords an

opportunity to estimate saturated hydraulic conductivity, a primary hydraulic

parameter present in many models, for volumes of soil on the order of iO4 m3:

volumes more in correspondence with the scale of land-use units. With measurements

of drain discharge andlor water table height in time following a significant rainfall or

irrigation event, saturated hydraulic conductivity can be estimated with relative ease

with transient analytical solutions given the proper conditions.

Early development of analytical solutions for a falling water table arose from

the interest in determining appropriate drain spacing [Glover, as reported by Dumm,

1954; Luthin, 1959; Luthin and Worstell, 1959; van Schilfgaarde, 1963; Tapp and

Moody, as reported by Dumm, 1964]. These equations solve for drain spacing given

the drop of the water table in time at the midpoint between two parallel drains. Luthin

[1959] and Luthin and Worstell [1959] began with the assumption, based on

observations, that the drain discharge is a linear function of water table height at the

midpoint between the two drains, whereas, the Glover equations, along with the

improvements proposed by Tapp and Moody, and the equation of van Schilfgaarde

[1963], are solutions of a draining unconfined aquifer in which the Dupuit

approximation is invoked. All assume a certain shape to the initial water table profile.

Van Schilfgaarde [1963] introduced a correction to the solution to account for the

6
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effect of convergence, following Hooghoudt [1940]. These equations have been used

along with field measurements of water table height and drain discharge to estimate

saturated hydraulic conductivity [e.g., Taisma and Haskew, 1959; e.g., Hoffman and

Schwab, 1964].

Nearly forty years before Hooghoudt [1940] presented his steady-state drain

formula, Boussinesq examined a special case of the transient drainage of an initially

saturated unconfined aquifer. Boussinesq's equation describes the water table height h

in rectangular homogeneous aquifer of depth D and width B that is draining into a

fully-penetrating channel (see Figure 1):

öt ço8x öx
(1)

where t is the time since the start of the recession, k is the saturated hydraulic

conductivity, and ç is the drainable porosity. Here the Dupuit approximation is

invoked and the effect of capillarity is neglected. We will refer to this system as a

Dupuit-Boussinesq aquifer [e.g., Brutsaert and Nieber, 1977]. Polubarinova-Kochina

[1962, pp. 507-508] presented an exact solution to (1) for B = and is therefore valid

in early times before the no-flow boundary at x = B has an appreciable effect:

h(x,t) = 2.365D(Y-2Y4 +3Y7 (4111)Y1° -) (2)

where Y= 0.4873 ,h/2 and i = (x"2)I[2(kDt)"2]. The discharge per unit length q

derived from (2) is

q(t) = 0.332(k)1"2 D312t112 (3)

At late times when the boundary at B is affecting the drop in water table, Boussinesq

[1904] provided an exact solution to (1):



Free groundwater surface h(x,t)

Impermeable layer

Drain
x

B

Figure 1. Schematic representation of an initially saturated unconfined rectangular
aquifer draining into a fully penetrating channel. The curve at ti, t2, and t3, represent
the early, transitional, and late times during drawdown, respectively.

Dçb(x/B)h(x,t)=
1+1.1151 kD

1 çoB

where *x/B) is the initial form of the free surface and is described by an inverse

incomplete beta function [see Polubarinova-Kochina, 1962, pp. 515-517]. Note that

in (4) t = 0 when h(B, t) = D and h(x: x<B, t) <D. The discharge corresponding to (4)

is

(4)

8



q(t)=

The difficulty in applying equations (2) through (5) to estimate aquifer

parameters from water table or discharge observations arises from the necessity to

know the time of origin of the recession event. However, as noted by Brutsaert and

Nieber [1977], when referring to continuous river flow records, ". .it is practically

impossible to determine in any consistent way the beginning of each recession...."

This issue is no less of a problem for drain flow records despite the large difference in

scale.

In response, Brutsaert and Nieber [1977] suggested analyzing the slope of the

hydrograph as a function of discharge Q in order to eliminate the dependency on time.

The rate of change of Q can be expressed as a power function of Q for both (3) and

(5):

dt (6)

where Q = 2qL, and L is the drain length. For the early-time solution (3)

1.133
a1

= kçoD3L2
b1 = 3 (7)

and for the late-time solution (5)

a2 - 4.804k" 2L
b2 =3/2 (8)

B[1+1.115 kD
B21]

0.862kD2

9

(5)
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where A = 2LB. This procedure has been shown to be applicable for determining

baseflow separation and aquifer parameters in basins [Troch, et al., 1993; Brutsaert

and Lopez, 1998; Szilagyi and Parlange, 1998; Szilagyi, et al., 1998]. Parlange et al.

[2001] presented an analytical approximation to (1) which unifies the early and late-

time solutions.

In this paper we present a methodology for applying (4) and (5) which

eliminates the need to know the time of origin. We apply these methods, along with

the procedure proposed by Brutsaert and Nieber [1977], to water table height and

discharge measurements from a drained field to determine the saturated hydraulic

conductivity k of the field. These values of k are compared to values of k determined

in the laboratory from soil cores.

2. Study Area and Relevant Data

The methodology described in the following section was applied to two

adjacent fields in the northern Willamette Basin, Oregon. Field 1 is approximately 1.4

ha and was planted with grass in the fall of 2001, and Field 2 is approximately 1.1 ha

and was planted with grass in the fall of 2000. The soil classification in both fields is

Woodburn silt loam, or fine-silty, mixed, mesic aquultic argixerolls. Woodburn silt

loam is reported as having a depth of roughly 1.6 m, a clay content ranging from

10-30%, and a saturated hydraulic conductivity of between 0.4-1.2 mlday [Otte, et al.,

1974]. Both fields have slopes of 0-3%.

Each field has system of drains composed of one main drain fed by a set of

lateral drains spaced 12.2 m apart, all of 10.16 cm (4 in) diameter perforated plastic

pipe (Figure 2). There are 13 lateral drains each 79.3 m in length in Field 1 and 11

lateral drains each 68.6 m in length in Field 2. The drains were installed in 1990 at a

depth of approximately 1.2 m with a slope of 0.001 mlm. Both these systems are

cormected to a larger drainage system underlying a total area of approximately 9.5 ha.

The drain outlet empties into a small natural channel that feeds a stream approximately

150 m distant and 15 m below the fields.
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Field work consisted of collecting soil samples for laboratory analysis,

monitoring water table levels, measuring the discharge from the drains, and measuring

rainfall intensity. Undisturbed soil cores were taken in each field to characterize the

distribution of k and water retention. Two samples were collected at depths of 0.3,

0.6, 0.9 and 1.2 m at 10 locations in, or very near, the fields for a total of 80 samples

(40 for k and 40 for water retention) (see Figure 2).

Water table height in Field 2 was observed in 5 piezometers located in a

transect perpendicular to the lateral drains. In total, 20 piezometers spaced 1.52 m

apart and inserted to a depth of 2 m were installed in the fields in August, 2001, but

because of pressure logger failures and some non-responding piezometers, mostwere

not analyzed. Pressure transducers with data loggers (In-Situ "MiniTroll", Laramie,

WY) placed at the bottom of the piezometers recorded depth of water in one-hour

intervals during two sampling periods in 2002: Jan. 29 - Feb. 13 and Mar. 27 - Apr.

30.

In each of Fields 1 and 2, a turbine flow meter (Seametrics TX1O1) measured

flow in the drain and a data logger recorded discharge at 5-minute intervals. Each

flow meter was installed in a 6.35 cm (2.5 in) diameter PVC pipe of approximately 1

m in length that replaced the section of drain. Using a pair of elbows connected in an

S-shape to each end of the PVC pipe, the pipe rested at least one drain diameter below

the drain itself, keeping the PVC pipe full at all times as required for flow

measurements. The diameter constriction from to 10.16 to 6.35 cm also increased the

flow velocity, which allowed for measurements of lower discharges than would

otherwise have been achievable with the flow meter. The flow meter is designed to

operate properly at velocities between ft06 and 9.2 mIs (equivalent to 17 and 2500

m3/d in the 6.35 cm diameter PVC pipe). The location of each flow meter is shown in

Figure 2. The drained area measured by the flow meters in Fields 1 and 2 is

approximately L35 and 1.00 ha, respectively. A tipping-bucket rain gauge (0.2 mm

resolution) and data logger recorded rainfall at the site.



A

Soil sample site

B

Field I

-50m

Flow meters

II
Field 2

I

Rain gage

Figure 2. Drainage system in Fields 1 and 2 with instrumentation and soil sample
sites. Locations are approximate.

3. Methodology

Soil cores 0.054 m in diameter and 0.060 m in height were analyzed for k in

the laboratory using a constant or falling head permeameter, depending on the

permeability [Kiute and Dirksen, 1986]. Water retention measurements were made on

cores 0.054 m in diameter and 0.030 m in height using a pressure bomb following the

procedure described in Kiute [1986]. For each sample, volumetric water content was

measured at five to eight pressures between -3.3 kPa to -296.4 kPa.

12

To drain outlet
and stream
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The methods described below for calculating the field-scale saturated

conductivity require values of drainable porosity . Estimates were made from both

the core-scale and field-scale data. From the water retention analysis of the soil cores,

a lower limit to was calculated as the loss in volumetric water content as the

pressure was reduced from -3.3 kPa to -10 kPa. Given the depth of the drains (on the

order of 1 m), -10 kPa was the pressure considered to be the closest to that of the soil

above the water table during recession. Others have used a pressure of-5.9 kPa (-0.6

m H20) for similar conditions [e.g., Taisma and Haskew, 1959; van Schilfgaarde,

1963], but these data were not available to us. An upper limit to 'pwas calculated as

the difference in the saturated water content and the water content at -10 kPa, under

the assumption that the water content at 0 kPa is equal to the moisture loss after oven-

drying a core previously saturated in a laboratory. However, this porosity is likely to

be greater than the field-saturated water content, resulting in an overestimate ofq'.

At the field scale, 'p was estimated by comparing the volume of drain flow

during the recession period with the corresponding drop in water table. Assuming that

the average water table drop observed in n piezometers represents the average water

table drop in the drained area A over a period t2 - tj, is calculated from

JQ(t)

A-1-[h(t1 At)--h(t2 At)]

The time lag At is included because the time of highest water table precedes the time

of peak flow. We let t1 be the time of peak flow and t2 be the latest time at which we

believed the flow meter measurements were reliable, so in practice t2 - tj was

approximately 8 hours. Vertical movement of water past the drainage system will

result in (9) underestimating q. A second method for determining p from water table

drop and drain flow during recession is presented at the end of Section 3.4.

(9)
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We calculated the saturated hydraulic conductivity of the fields using four

analytical methods which relate: 1) rate of change in discharge to discharge; 2) relative

discharge to time; 3) rate of change of water table height to height; and 4) relative

water table height to time.

3.1. Rate of Change of Discharge vs. Discharge

The rate of change in discharge was graphed against discharge for each of the

major recession events. To smooth out noise in the data, the rate of change in

discharge was approximated at each observation with

dQ iQ11-Q1
dt n_ At

j=1

and plotted vs. the corresponding mean discharge:

Q
i=1

With n = 12 and zit = 5 mm, each Q point represents a mean hourly discharge.

Following Brutsaert and Nieber [1977], we examined the curve of ln(-dQ/dt)

vs. lnQ to see where if either, or neither, of the early- and late-time solutions appeared

to be valid, ie. where the slope b appeared as 3 or 1.5, respectively. Where a line of

slope b could be reasonably fit to the data, the conductivity k was calculated from the

intercept a using either (7) or (8) as appropriate.

3.2. Relative Discharge vs. Time

Where the late-time solution appeared to hold, another estimate of k was made

from the observed discharge at t = t2 divided by a reference discharge at t ti.

Substituting Q/2L for q in (5), taking the ratio Q(t2)/Q(t1), and solving for k yields

(10)



k
coB2 [ Q(t1) Q(t2)

- 1.1 15D Lt2Q(t2 -

As it is, (12) requires knowledge of D, the height of the water table above the

midpoint between parallel drains at t = 0. However, solving (5) at t = 0, gives an

expression for D

D=I Q(0)B
1I2

1 .724Lk)

that can be substituted into (12) to yield a solution for k"2:

k
(1.724)LXq,B r Q(t1) Q(t2)

1
1

- 1.115 Lt2Qt2 _t1Q(t1)jQ(0)X

By eliminating D, we have merely introduced another unknown, Q(0), one that we

have already mentioned is particularly difficult to estimate from field data. However,

we can further eliminate Q(0) algebraically. If we again take the ratio of two

discharges Q(t)IQ(0) while substituting (13) forD into (5), we can solve for Q(t):

Q(0)Y2

1 + QQ(0)t

where, for brevity, we let Q = (1.115k '' ) /(1.724 '' çoL B ). After appropriate

substitution of(15) into (14), twice fort = t, and once fort = t2, one eventually arrives

at an equation for kindependent of Q(0):
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The consequence of (16) is that it is not necessary to know the precise moment when t

= 0, but only that t1 lies somewhere after the time at which the long-term solution

becomes valid. We can therefore define any late time in the recession curve as zero

and use the corresponding discharge at that time as the initial discharge Q(0), thus

addressing the primary objection of Brutsaert and Nieber [1977] to using discharge vs.

time data to estimate k. Testing for the validity of the late-time solution can be done,

for example, by graphing k vs. time elapsed from a reference time t1, to see where k is

constant, or by using the approach of Brutsaert and Nieber [1977].

Another way to arrive at (16) is to integrate (6) from Q(t1) to Q(t2), then solve

for k using the parameters in (8). Using the same procedure, a conesponding early-

time expression for k can be derived from the parameters in (7):

2.266 r Q(t2)2Q(t1)2k=
D3L2 [Q(ti)2 Q(t)2t2 t1)

3.3. Rate of Change of Water-Table Height vs. Height

For the late time solution (4), the time rate of change of water table height

assumes the form of a power function:

dh(x,t) = ah(x,t)"
dt

where the constants a and b are

16

1.115ka3-2 b3=2 (19)

k
l.387Lq2B3 1

2

1

Q(t1) Q(t2),
(16)

(t2 t1)2



Substituting (21) for t = t1 into (20) and solving again for k yields

17

To estimate k, we followed the same procedure as in Section 3.1, examining the curve

of ln(-dh/dt) vs. lnh to see if and where the curve had a slope b of 2. Where a line of

slope b could be reasonably fit to the data, the conductivity k was calculated from the

intercept a using (19). A series expansion was employed to approximate the inverse

of the incomplete beta function çt(x/B) [see equation 25.4.4, Abramowitz and Stegun,

1972].

Unfortunately, the early-time solution (2) does not lead to the simple form of

(18), thus an equivalent early-time analysis of water table height observations cannot

be conducted.

3.4. Relative Water-Table Height vs. Time

A fourth estimate of k was made, also at late times, from observations of the

water table height with respect to a reference water table height at the same location x.

Taking the ratio of two water table heights h(x,t2)/h(x,ti), where h(x,t) is defined by

(4), and solving for k yields

k= coB2 [ h(x,t1)h(x,t2)
1.11 5h(B4O) L h(x, t2 )t - h(x, t )t1

where D has been replaced by h(B4O). In practice, it is unlikely that we will know the

precise time at which t = 0 and hence h(B4O). However, we can eliminate h(B4O) from

(20) with some algebraic manipulation. Again taking the ratio of two water heights

h(B4O)/ h(B,t), we are at expression for h(B4O) as

h(B4O) h(B,t)

- 1l.115k
(B,t)t1 h

coB2



k= coB2 h(x,t1) 1

l.115h(B,t1) h(x,t2) (t2 -t1)

As we did with discharge in Section 3.2, we eliminated the need to know the water

table height at the time of origin. Though we don't need to know our position x, we

are required to have an initial measure at t = t1 of the water table height at x = B.

We can arrive at a similar expression by integrating (20) from h(ti) to h(t2).

Using the parameters in (21), the solution fork is

k coB2g5(x/B) rh(X,i)
1

1

l.115h(x,t1)[h(x,t2) (t2 -t1)

By equating (22) and (23), we see that ax/B) = h(x/t)/h(B,t). In the case of(23), we

no longer need an initial observation at the midpoint between parallel drains, but we

are required to know our position x.

It is of special interest to note that k is proportional to çø in (22) and (23) but

that k is proportional to q2 in (16). This allows us to determine çø independent of k by

equating (22) or (23) with (16). Let

18

-2
1

/ 1/2
Q(t1) 1 (24)c

Q(t )(t2 - t1 )2 Q(t2)1

which from (16) is constant when the late-time solution is valid. Similarly, let

1 rh(,1)
= I (25)C

2

h(B,t1)(t2 -t1) [h(x,t2)



which from (22) is also constant. Substituting (24) into (16), substituting (25) into

(22), and equating the two results yield the following expression for :

= O.697(BL)(c2/c1) (26)

4. Results

The saturated hydraulic conductivities of the soil cores showed no clear

relation with depth (Figure 3), suggesting vertical homogeneity on the field-scale. The

values ofkof the soil cores from the two fields ranged from 1.7 x 10 to 1.7 x 102

mid, though one low value from each field stands out from the rest (Figure 3). The

arithmetic means for Field 1 and 2 are 23 and 19 mid, respectively, and the geometric

means for Field 1 and 2 are 4.6 and 2.9 mid, respectively. The medians are 6.4 mid

and 3.6 mid for Fields 1 and 2, respectively. The lowest value from each field has

only a minor effect on the arithmetic and geometric means, but a large effect on the

harmonic mean. The hannonic means for Field 1 and 2 using all values are 0.003 and

0.035 m/d, respectively, while the harmonic means for Field 1 and 2 excluding the

lowest value from each field are 1.94 and 0.87 mId, respectively. The relative

cumulative frequency distributions of k for each field are shown in Figure 4.

The mean drainable porosity of the soil cores based on the difference in water

content at -3.3 kPa and -296.4 kPa was 0.016 and 0.017 for Fields 1 and 2,

respectively. Based on the oven-dried porosity and water content at -296.4 kPa, the

mean drainable porosity of the soil cores was 0.12 1 and 0.133 for Fields 1 and 2,

respectively. Using these values as lower and upper bounds to drainable porosity

leaves us with a degree of uncertainty of nearly an order of magnitude when

calculating hydraulic conductivity. Moreover, the variability among cores was very

high: the lower bound estimates ranged from 0.004 to 0.029 and the upper bound

estimates ranged from 0.032 to 0.276 for both fields combined.

19



0.0

0.2

0.4

0.6

C) 08

1.0

1.2

1.4

0.0001 0.001 0.01 0.1 1 10 100 1000

k(md1)

Figure 3. Saturated hydraulic conductivity of soil cores with depth. The number and
letter of each soil sample label refers to the field and auger-hole, respectively.

Two rainfall events occurred that produced appreciable flow in the drain in

Field 2 during the period that the water table was being monitored. These are

designated as Events 5 and 6. Figure 5 shows the discharge from the drain and the

water table depth measured at various piezometers during these two events. From (8),

q was calculated to be 0.0 15 and 0.018 from the first and second event, respectively.

In this calculation we used only the first eight hours of recession data because of the

unusual activity observed for both events in the flow meter when the discharge

dropped to approximately 50 m3/d (see Figure 5). In contrast, q as determined from

(26) using the first several hours of recession is 0.023 for each of the two events. The
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different values resulting from the two methods may be due in part to the scarcity of

piezometers, particularly near the drain where the water table drop would be least.

Other studies which have calculated q from discharge after a measured drop in water

table have reported values ranging from 0.04 to 0.07 [Taisma and Haskew, 1959;

Hoffman and Schwab, 1964; El-Moweihi and Van Schilfgaarde, 1982]. The following

results are based on = 0.023 for each field.

Figure 4. Relative cumulative frequency distribution of saturated hydraulic
conductivity. The open circles and squares are values of k from laboratory analysis of
soil cores and the closed circles and squares refer to the estimates made from drain
discharge and water table height observations. Variability in soil core-scale k is due to
spatial heterogeneity, while variability in field-scale k arises from different recession
events and different analysis methods.
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4.1. Rate of Change of Discharge vs. Discharge

Six rainfall events produced flow in Field 1 and four events produced flow in Field 2

sufficient for an analysis of k using the method described in Section 3.1. In every

recession there stands out a portion of the dQldt vs. Q curve that appears log-log linear

with a slope of 1.5, corresponding to the late-time solution (Figure 6). In contrast,
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is no clearly definable section of any recession curve that fits the early-time solution

(Figure 6). The duration of recession that fits (6) with b = 1.5 ranges from

approximately 3 hours (Field 1) to at most 7 hours (Field 2). The flow meter exhibited

an unusual behavior consistently in Field 2 but inconsistently in Field 1: a sudden

drop in discharge beginning near 50 m3/d and lasting for 1-2 hours before rising again.

It is for this reason that no data in Figure 6 are graphed below 50 m3/d. Based on the

log-log linear sections of the each curve, k calculated from (8) varied from 3 to 7 m/d

for the six events in Field 1 and 2 to 5 mId for the four events in Field 2 (see Table 1).

(Due to the uncertainty in ço, drain depth, and other parameters such as B and L, we

report only one significant figure.)

Table 1. Saturated Hydraulic Conductivity Calculated from Drain Discharge
and Water Table Measurements

The method designation refers to the section numbers in the text

k (m/d)
Field Event Date Method 3.1 Method 3.2 Method 3.3 Method 3.4

dQ/dl vs. Q Q/Q0 vs. I dh/dt vs. h h/h0 vs. I
1 22-Nov-01 4 4
2 29-Nov-01 4 3
3 16-Dec-01 3 3
4 25-Jan-02 3 3
5 07-Feb-02 7 7
6 11-Mar-02 5 5

Mean 4 4
2 3 16-Dec-01 4 4

4 25-Jan-02 2 2
5 07-Feb-02 5 4 4 4
6 11-Mar-02 5 4 5 5

7 19-Mar-02 5 6
Mean 4 4 5 5
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4.2. Relative Discharge vs. Time

For each recession curve, the reference value of discharge Q0 was selected that,

through trial and error, resulted in k being the most constant for the longest period of

time. In all cases during the recession period k is seen to remain relatively constant

for a period ranging from as little as 1.5 hours to as long as 7 hours (Figure 7). This

was often followed by an increase in k over time, which is a result of the discharge

decreasing at a faster rate than predicted by (5) (Figure 7a). Light rainfall occurring

during the recession on a few occasions resulted in an apparently excellent fit by

maintaining a slightly elevated discharge (for example, see Figure 7c). Values of k

determined from (16) ranged from 3 to 7 mId for Field 1 and 2 to 4 mId for Field 2.

These numbers are consistent with values calculated with (8) (see Table 1).

4.3. Rate of Change of Water Table Height vs. Height

In all piezometers during Events 5 and 6, the dhldt vs. h curve appears log-log

linear with a slope of 2 between roughly h = 0.6 and 0.1 m, suggesting that the late-

time solution is valid over this range of heights and over this time span of

approximately 48 hours (see Figures 8a through d). During Event 6, the sharp drop in

dhldt at near h = 0.15 m is due to rain during this period maintaining a relatively

constant water table height. Below h = 0.1 m and dhldt = 0.1, noise makes analysis of

the data difficult, thus the appropriateness of fitting a curve to the data in Event 7 is

dubious (Figures 8e and f). Based on the log-log linear sections of the each curve, k

calculated from (19) ranged from 2 to 6 mId for the five piezometers in Event 5, and k

ranged from 4 to 6 mId for three piezometers in Event 6 (the piezometer closest to the

drain was not used because it showed very little change in height). Despite the

uncertainty of the data, we estimated k to range from 2 to 8 mId for Event 7. The

mean values of k per event are given in Table 1.



1.0

0.8

o 0.6a
0.4

0.2

0.0 0

1.0

0.8

o 0.6a
0.4

0.2

0.0

(a) Field 1

0 0.1 0.2 0.3 0.4 05
t(d)

(c) Field 2

Event6
- - Modeled

o Calculated k- Constant k

Event 5
- - Modeled

o Calculated k
- Constantk

c-.

0 0.1 0.2 0,3 0.4 05
t (d)

20

0.6
10

0.4

0.2

o Event 1
a Event 2
o Event 3

Event4
x EventS

Event6
- - Modeled

0

(b) Field 1

Event 3
a Event4
o EventS

Event6
- - - - Modeled

26

i

2 3 4 5 6

1/2t'40 (d m112)

Figure 7. Relative observed (points) and modeled (dashed line) discharge vs. time in
Field 1 (a and b) and Field 2 (c and d). The figures on the left show k vs. time for one
piezometer calculated from (18) (open circles). The figures on the right show all
major recession events with time normalized by the square root of the reference
discharge.

0 2 3 4 5 6

t Q0112 (d m112)

(d) Field 2

15
0.8



E

E

10

0.01

'? 0.1

0.01

10

0.01

.. .
0.1 .

$41

.

Piezometer 1
Slope=2

(c) Ent6

Piezometer4
Slope =2

Piezometer5
Slope = 2

. ..
.

10

0.1

Piezometer 1
Piezometer 2

o Piezometer3
Piezometer4

Slope =2

.

0.01

o Piezometer4
Piezometer5
Piezometer7

Slope = 2

(d) Ent 6

o Piezometer4
Piezometer5
Piezometer 7

Slope = 2.
. .

0
a

AA c0.. _.. . 0
. .

0

27

(a) Eent 5 (b) Eent5

01 01

h (m) h (m)

01 01

h (m) h (m)

(e) Ent7 (f) Ent 7

0.01 0.1 0.01 0.1

h (m) h (m)

Figure 8. Time rate of change of water table height vs. water table height for
recession Events 5 (a and b), 6 (c and d), and 7 (e and 0. The figures on the left
contain observations from one sample piezometer, and the figures on the right contain
all the piezometer observations from a single water table profile.

0

.

E
0.1

.9

10

E

0.1

E

'? 0.1



28

4.4. Relative Water-Table Height vs. Time

The values of k calculated from (22) remained relatively constant for all the

piezometers over the first half day of recession for Events 5 and 6, and for over a day

for Event 7 (see Figures 9a, c, and e). Rain during the first twelve hours of recession

during Event 5 maintained the water table height slightly higher than the predicted

drawdown, whereas the water table dropped quicker than what the model predicted in

Event 6 during the ten hours of recession when no rain was recorded. The relative

drawdown curves observed in the different piezometers within events are similar,

though the relative drop in water table with time was observed to be greater in the

piezometers further from the drain tile (Figures 9b, d, and e). From the piezometers

used in Event 5, where rain during the recession was a factor, k ranged from 3 to 5

mid. In Events 6 and 7, k ranged from 4 to 7 mId and from 4 to 9 mId, respectively.

The mean values of k per event are given in Table 1.
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5. Discussion and Conclusion

An analysis is presented of four analytical methods for determining the

saturated hydraulic conductivity on the field scale for a field drained by a network of

parallel drains. All methods are based on transient solutions of the Boussinesq

equation [Boussinesq, 1904; Polubarinova-Kochina, 1962]; two make use of recession

water table height and two use recession discharge. Of the two that require discharge

measures, one examines the discharge-time relationship, and the second examines the

relation of the time rate of change of discharge with discharge. The advantage of this

latter method, according to Brutsaert and Nieber [1977], is that it eliminates the need

to know the initial or reference time (t = 0), which is in practice ambiguous. However,

we show that by analyzing relative water table height vs. time or relative discharge vs.

time and by using substitution to remove initial water table height from the solutions,

we are free to choose any time as an initial time so long as it falls within the range of

times for which the solutions are valid. For the purpose of assessing the validity of

certain solutions, the methodology of Brutsaert and Nieber [1977] is very useful. We

adopt the technique of Brutsaert and Nieber [1977] for aquifer discharge and apply it

to water table observations.

Although a field drained by parallel perforated pipes buried some distance

above an impermeable layer as was investigated here does not meet all the

assumptions of the Boussinesq aquifer, the analysis methods presented appear to be

applicable. Encouraging, however, are the findings of Szilagyi [2003], who showed

that, at least for a solution of the Laplace equation, k estimation was only slightly

sensitive to errors made in defining the depth of the impermeable layer. It should be

noted that the assumption made there was that the water table drop was much less than

the initial saturated thickness, which is probably not the case here.

Notable, but not surprising, is the absence of discharge observations that fit the

early4ime solution of Polubarinova-Kochina [1962]. We can see why this is so from

the time and discharge during the transition between the early- and late-time solutions.

A rough estimate of the discharge at the time of transition can be made by equating (7)
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in (6) with (8) in (6) [Brutsaert and Lopez, 1998]. This results in Q l.3O9kD2LIB.

This equation for discharge can be substituted into (3) or (5), which, solving for time,

yields t = 0.257B2ço/kD.

Based on the previous equations, the timing and discharge of the transition

period for Event 6 in Field 2 are roughly 1 hour and 300 m3/d, respectively. Thus the

lifetime of the early-time solution is short relative to the duration of identifiable

precipitation events (typically here < 10 hours). Furthermore, at discharges of this

order, the drain would be operating under positive pressure and not acting as an open

channel, so (3) would not be applicable. An estimate of the maximum discharge of the

drain under open channel conditions can be made from Manning's equation: Q =

(1 In)A(AIP)213S"2 ,where A is the cross-sectional drain area, P is the wetted perimeter,

S is the slope and n is Maiming's coefficient [Manning, 1891]. Using a value of n

0.01 for plastic [Neale and Price, 1964], the maximum open channel Q for the drains

in Fields 1 and 2 is roughly 200 m3/d. It can be seen in Figure 6 that it is around this

value of Q when the slopes of curves become 1.5, suggesting that nearly as soon as the

drain is no longer under positive pressure the aquifer begins to behave as a Dupuit-

Boussinesq aquifer and that the late-time solution is valid. Further evidence for the

appropriateness of the Dupuit-Boussinesq aquifer is the agreement between the

piezometer observations and the theoretical water table profiles generated from (4)

(see Figure 10). The fit is quite reasonable given the uncertainty in the measured depth

of drain and the lateral position of the piezometers with respect to the drain.

After several hours of drainage without any further rainfall, the discharge

decreases faster than predicted by the late-time discharge solution. One possible

explanation is greater discharge, thus faster drainage, than predicted due to the

assumption of an impermeable layer at drain depth when in actuality the impermeable

layer is situated at some unknown depth below the drains. In other words, if the

model permitted water to enter the drain radially from below, the aquifer would drain

faster [e.g., van Schilfgaarde, 1963]. The result would be an overestimation of k using

the methods reported in this study.



(a) Event 5

(b) Event 6

Distance from drain (m)

Figure 10. Observed (points) and theoretical (curves) water table heights in Field 2 for
(a) Event 5 and (b) Event 6. The curves, like the points, represent 1 hour intervals.
The piezometers numbers are indicated in the figures. Only the approximate position
of the piezometers with respect to the drains was known. For example, piezometer 3
is shown in (b) as being exactly at the drain, but in reality it was somewhere in the
proximity of the drain tile. The numbering of the piezometers was not consistent
between the two events.
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A second explanation is deep percolation of water moving past the drainage

system. The downward movement of water becomes progressively greater in

proportion to the water leaving via the drains as the water table approaches the height

of the drainage system, thus becoming a greater factor with time. The rate of vertical

flow could be estimated from the rate at which the water table lowered once it dropped

below the drain system. However, an examination of the water table observations for

Events 6 and 7 shows that such an analysis is not straightforward (see Figure 11).

When the water table falls below the height of the drain, -dh/dt increases and stays

relatively constant at approximately 0.12 mId. This break in the recession curve

probably reflects the influence of the regional ground water table, which is known to

drain to the stream 150 m away and 15 m below the lowest point in the field, and

probably occurs when the local and regional water tables are in correspondence and

begin lowering at the same rate. However, without further analysis of the regional

flow system, it is unclear how regional pressure gradients are affecting the local water

table when it is above the height of the drain system.

Another factor affecting the drainage is the changing drainable pore volume,

which we assumed is constant but in theory is a function of the water table height

[e.g., van Schilfgaarde, 1963]. The water retention data from the soil cores do show a

decrease in water content ofjust under 0.02 m3/m3 from -0.34 m H20 to -1.02 m H20,

which is significant when compared to the assumed constant drainable porosity of

0.023. However, an increasing drainable pore volume with falling water table would

have an effect counter to what the discharge observations reveal, suggesting that this is

not a critical consideration here.

In summary, the four methods described above for calculating saturated

hydraulic conductivity k were found to be applicable to a field containing a system of

parallel drains. Calculated values of k were consistent among methods and consistent

among recession events within the same field. The advantage of the methods that do

not rely on taking derivates of the data is that noise is not introduced, which can

complicate analysis.
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Figure 11. Observed depth to water table during an 18 day period in Field 2. The
peaks on March 11 and March 19 correspond to Events 6 and 7, respectively. Listed
to the right of each piezometer number is the approximate distance from the nearest
drain.

These values of k estimated at the field scale (4 mid) were much less than the mean k

of 20 m/d calculated from 40 soil cores and much closer to their median k of 5 mId.

The near complete saturation of the soil cores during the laboratory analysis versus the

likely incomplete saturation of the soil in the field may explain part of this

discrepancy. These results do suggest, however, that non-linear scale effects, which

we would expect to result in higher conductivities at the field scale than at the core

scale, do not play a significant role in the drainage of these fields during the wet

winter season.
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Abstract

The plotting of the time rate of change in discharge dQldt versus discharge Q has

become a widely-used tool for analyzing recession data since Brutsaert and Nieber

[1977] proposed the method. Typically the time increment At over which the

recession slope dQldt is approximated is held constant. It is shown here this that leads

to upper and lower envelopes in graphs of log(-dQldt) versus log(Q) that have been

observed in previous studies but are artifacts. The use of constant time increments

also limits accurate representation of the recession relationship to the portion of the

hydrograph for which°the chosen time increment is appropriate. Where dQldt varies

by orders of magnitude during recession, this may exclude much of the hydrograph

from analysis. In response, a new method is proposed in which At for each

observation in time is properly scaled to the observed drop in discharge AQ. It is

shown, with examples, how the new method can succeed in exposing the underlying

relationship between dQldt and Q where the standard method fails.
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1. Introduction

For investigating base flow, Brutsaert and Nieber [1977] suggested analyzing

the slope of the recession curve as a function of discharge Q rather than the recession

time series, thus eliminating the need of a time reference. This is advantageous

because of the practical impossibility of determining the precise beginning of a base

flow recession event from real stream flow data. Brutsaert and Nieber [1977] also

provided a procedure to interpret these diagrams in terms of physically meaningful

parameters. Recession slope analysis has been applied widely since for determining

aquifer parameters [Zecharias and Brutsaert, 1988b; Troch, et al., 1993; Brutsaert

and Lopez, 1998; Parlange, et al., 2001; Mendoza, et al., 2003; Rupp, et al., 2004;

Malvicini, et al., 2005] and base flow separation [Szilagyi and Parlange, 1998].

Operationally, the instantaneous slope of the recession curve dQldt is not

measured directly but is approximated numerically from a drop in discharge "AQ"

occuning over a time increment At. In the aforementioned studies, At was held

constant.

The optimal choice of the time increment At follows from consideration of the

process under investigation, the precision of the data, and the degree of noise

[Tallaksen, 1995]. In other words, At must be at least large enough to detect the signal

being sought, but not so large as to overwhelm it. A difficulty arises in real data

because -dQ/dt may drop by one or even several orders of magnitude during recession.

What is an appropriate At at early times when -dQ/dt is high may be too short at later

times as AQ approaches the magnitude of the data noise. Conversely, what is an

appropriate At at later times may be much too large to resolve the early part of the

recession curve. The extent to which the standard numerical approximation to dQ/dt

versus Q can affect data analysis has not been well-documented.

It is shown here that the use of a constant At leads to previously observed

upper [Mendoza, et al., 2003] and lower [Brutsaert and Lopez, 1998] boundaries to
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real data graphed as log(-dQ/dt) versus log(Q). These are purely numerical artifacts,

and can potentially lead to a misinterpretation of the recession data.

We present and apply a variation on the Brutsaert and Nieber [1977] method

that explicitly takes into consideration data precision. We choose a time increment At

that is shown to be properly scaled to the observed drop in discharge AQ. By using

high temporal resolution data with the "scaled-At" method, the early part of the

recession curve is preserved when the hydrograph is dropping most rapidly. Yet, by

allowing At to increase as the recession progresses, the curve can be resolved for later

times beyond the point at which precision effects or noise would cause the constant-At

method to fail.

2. Analysis method with constant Lit

Brutsaert and Nieber [1977] proposed analyzing the time rate of change in

discharge as a function of discharge:

dQ/dt=f(Q) (1)

Operationally the data is analyzed using the approximation:

Qi+1 Q =1Q1+i;Q1
At

where the subscript i refers to any time t and I + 1 to the time t + At and where At is a

suitable time increment [Brutsaert and Nieber, 1977]. Brutsaert and Nieber [1977]

suggest fitting an analytical model of base flow generation to the data defined by the

lower envelope of the data plotted as log(-dQ/dt) against log(Q) on the basis that data

at the lower envelope are specifically those without contributions from overland flow,

interfiow, or channel storage. From this perspective understanding of any anomalies

that might affect this lower envelope is important. We will show that the choice of At

(2)



alone defines an upper envelope, and that along with the precision of the discharge

measurements, At also defines a lower envelope for the same graph.

2.1. Upper envelope to -dQ/dl vs. Q

An upper envelope is defined by the maximum possible observable rate of

decline in discharge. Let Ymax be the bound on the decline dQ/dt estimable from (2),

computed as a drop to zero flow in a single time step, and let Xbe the corresponding

estimate of discharge Q:

41

Y OQ<Q±1_Q (3)maX
At - At

x=02' Qj±i+Qj (4)
2 2

Combining (3) and (4), the equality in (2), or Ymax J(X), becomes

OQ, 2 (O+Q
(5)

(6)

At At

or simply

max =-2-x
At

2

Taking the logarithm of (6) yields

log( Yniax) = log X + log
NAt,

(7)



42

Thus, for constant At on a log-log graph of - (Q1 - Q)/At versus (Q1 + Q.)/2, (7)

appears as a line of slope = 1 with y-intercept log(2/At). This would appear to explain

the upper 1:1 envelope first reported by Mendoza et al. [2003] as appearing in many

studies [Brutsaert and Nieber, 1977; Troch, etal., 1993; Brutsaert and Lopez, 1998;

Parlange, etal., 2001; Ma!vicini, etal., 2005].

2.2. Lower envelope to -dQ/dt vs. Q

The lower envelope is a function of the precision of the discharge

measurements and of At. We consider two types of precision in the discharge

measurements. One is the precision at which Q is recorded (for example, to the

nearest 0.01 m3s'), denoted as a. However, discharge is rarely measured directly,

but is usually determined as a function of stage height H. To stage height we assign

another precision, s.

In the case when Q is measured directly and the precision co is constant for all

a minimum estimable non-zero rate of decline dQ/dt, denoted as Y, is found when

successive measurements differ by the precision:

Y 11 Qj __??
At At

When graphed as log(-Y) against log(X), with At constant, this will plot as a line of

slope = 0 andy-intercept log(co/At). Eq. (8) corresponds to the lower boundary in the

graph of log[(Q11 - Q,)/ At] versus log[(Q11 + Q.)/ 2]. However, successive

measurements can also differ by integer multiplies of the precision, i.e. 2w, 3w, etc.

Therefore, graphed points may also appear along horizontal lines with intercepts of

log(2 w /At), log(3 co/At), etc., producing an apparent discretization of the data at low

values of log(-dQ/dt) [Brutsaert and Nieber, 1977; Brutsaert and Lopez, 1998;

Par!ange, etal., 2001; Mendoza, etal., 2003J.

(8)
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The effect of the second type of precision, that of uncertainty in stage height H,

is less obvious. In the case when Q = Q(I1) and stage precision e is constant for all H,

a minimum estimable non-zero rate of decline dQldt, denoted as Y, may be calculated

from (2) for any point X as

Eq. (12) shows how a lower envelope is defined by the stage height precision, the

stage-discharge equation, and the time interval. However, (8) and (11) together form

the effective lowest envelope.

In practice, this error-based lower envelope may be simplest to calculate

numerically. Let Ymin be the minimum non-zero rate of decline dQldt estimable from

(2) due to both e and a:

Q(H)Q(H+e) (Q(H)+Q(H+e)
(9)-

2

The left side of (9) can be written as

Q(H)Q(H+e) 2 rQ(H)+Q(H+e)
(10)

= AtL 2
Q(H+e)]

or

y =---[xQ(H+e)18 (11)
At

Taking the logarithm of(1 1) yields

log( Y) = log[Q(H + e) - x]+ log- (12)



- + 1)']
min,j

At

(j) + + 1)i]

2

(13b)

where refers to the stage-discharge function with discharge reported to a precision

o, and the subscriptj is an integer greater than zero. Other curves parallel to but

higher than the lower envelope defined by (13) may be appear in graphed data for

integer multiples of as successive measurements differ by greater increments of the

measurement precision.

Though stage height precision is considered as a constant above, there may be

cases where precision changes over the range of measurements. In such cases, t(R) or

j) would replace

3. New recession analysis method

Because recession analyses that rely on the time derivative of Q amplify noise

and inaccuracies in discharge data, it is important to select a time interval At suited to

the quality of the data [Tallaksen, 1995J. Ideally, At would be chosen so that the data

points lie well clear of the upper and lower envelopes described above. One approach,

which we present here, is to choose a time increment At that is properly scaled to the

observed drop in discharge AQ.

The time rate of change in discharge and the corresponding discharge are

calculated, respectively, by
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and



and

dQ -
dt

i2,3,...,N; O<j<i (14a)
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(f±1)J (1 4b)

where i represents data points taken at discrete time increments (e.g., every 5 minutes),

andj is the number of time increments over which dQldt is calculated. In previous

studies,j would have been constant. Eq. (14b) is less biased than the approximation to

Q given in the right-side of (2) whenj> 1.

Here we let the time interval t, - t be a value such that the corresponding

difference - Q1 exceeds some threshold value that is a function of the

measurement precision £ Operationally, we step backwards in time from the ith

observation a number of stepsj until

Q,-Q, C[Q(H1+E)-QI (15)

where C is a constant 1.

4. Data analysis

It is illuminating to see how the procedure described above can give widely

different results than the use of a constant At when error is present in discharge data.

Here we present two examples. The first is an analysis of a hypothetical recession

curve derived from an analytical solution for aquifer discharge. The second is an

analysis of two stream flow records of varying data quality.
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4.1. Theoretical recession curve

The analysis of a synthetic recession curve permits us to see how the numerical

approximations (2) and (14) differ from the "truth" when error is introduced into the

data. For this example, recession data were generated from the analytical

approximation to the Boussinesq equation derived by Parlange et al. [2001] (see

Appendix A) with parameter values given for Basin 69013, Washita, Oklahoma, in

Brutsaert and Lopez [1998]. The daily synthetic discharge was converted to a stage

height H by inverting the stage-discharge relation, Q = 6 .72H25, with units of meters

and seconds. The stage-discharge relation was derived by a fitting a power-law

function to a portion of the discharge versus stage height data for Basin 69013

(Agricultural Research Service Water Database website, USDA). The actual stage-

discharge equation appears to have changed many times during the lifetime of the

station, but the one given here fits the later data very well. Measurement errors were

introduced by rounding the values ofHto the nearest 0.305 centimeter (0.01 fi), which

is the precision of the data set for Basin 69013. Discharge Q was then recalculated

from the same stage-discharge relation, reporting Q to the nearest 0.000283 m3 s

(0.01 ft3 1), again as in the reported data. Lastly, we estimated dQ/dt versus Q using

(14-15) with C = 5 and using (2) with a constant At of one day.

The use of a constant time increment generates an obvious discretization

pattern in a plot of log(-dQ/dt) against log(Q) (Figure 1), which is similar to that seen

in the recession curves of Brutsaert and Lopez [1998]. In contrast, the scaled-At

method shows no strong discretization. The scaled-At method also retains the shape of

the theoretical curve. This is not true for the constant-At method. Whereas the

theoretical curve shows a transition in slope from 3 to 1.5, the constant-At curve

begins with a slope of 3 that transitions to an entirely anomalous value of

approximately 0.6. This value, not coincidently, is the same as the slope of the lower

envelope in Figure 1 of Brutsaert and Lopez [1998], which is clearly less than the

theoretical predictions [Michel, 1999]. This lower envelope is an artifact of the

estimation procedure and does not represent groundwater characteristics.
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Figure 1. Effect of precision of stage height and discharge (Q) values and of time
interval At on the estimation of dQldt. The heavy solid line, or true curve, is an
analytical solution to the non-linear Boussinesq equation (see Al -A5). The symbols
represent numerical approximations to dQldt. The open circles are obtained using a
constant At over which dQldt is calculated (2), whereas the crosses are calculated with
At that is scaled to the observed decrease in Q (14-15). Shown also are an upper
envelope (7) with a slope = 1 and a lower envelope (12) with a slope 0.6 that arise
when using a constant At of one day. Parameter values for the Boussinesq equation
are for Basin 69013, Washita, Oklahoma [Brutsaert and Lopez, 1998].
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It is clear from Figure 1 how stage height precision and use of a constant time

increment bound the region that data can occupy. Interpreting data visually must be

done with care as these upper and lower envelopes can attract the eye. Precaution

should be taken even when regressing a line to data that fills this area, as the slope will

reflect to some degree the lower and upper envelopes.

4.2. Observed recession curves

Two recession hydrographs of different quality, one from each of two gauging

stations, were analyzed using both the constant-& and scaled-& methods. The

stations are located on the leeward side of the coastal range of the 8th Region of Chile.

The first station, Buenos Aires, gauges an area of 0.67 km2. Water level was recorded

inside a culvert every 5 minutes by a Troll 4000 pressure transducer (In-Situ, Inc.) that

measures pressure relative to atmospheric through a vented cable. The instrument

precision and reported factory error was 1 mm H20, and we found the high-frequency

measurement noise to be about 2 mm H20. Discharge was calculated from stage

height from Manning's equation [Chow, 1959]. The second station, San José, gauges

an area of 7.25 km2. Water level was recorded in a super-critical flume [Smith, Ct al.,

1981] every 5 minutes. Here a Diver pressure transducer (Van Essen Instruments)

recorded absolute pressure at the flume, which was corrected for atmospheric pressure

by second instrument located nearby. The Diver at the flume recorded to the nearest 5

mm H20 and the Diver used to measure atmospheric pressure recorded to the nearest 1

mm H20. We observed a high-frequency noise in water level measurements of 10 to

15 mm. There was also a daily fluctuation of 20 mm to 25 mm that could be a

response of the instruments to temperature, as these fluctuations were seen to be

purely anomalous based on manual reading at the gauging stations.

The two recession events analyzed have noise to signal ratios that differ by

nearly a factor of 25. The total change in stage height for the Buenos Aires event was

560 mm over about 6 days. The noise divided by range is about 0.004 for the event.

For the 17-day San José event, the total change in stage height was 220 mm, which

equates to a noise-to-range ratio of about 0.1.
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For both recession hydrographs, the scaled-At method proved to be the better

of the two procedures for resolving dQ/dt =1(Q). For a constant At of 15 mm, the

Buenos Aires event is resolvable down to dQ/dt 3xlO6 m3 2 before the signal is

lost (Fig. 2a). Using a constant At of 12 hr extends the curve down to 8xlO8 m3 2,

but an accurate depiction of the early-part of the curve is lost above 3xlO6 m3 2

(Fig. 2b). However, use of the scaled-At method allows both early and late-time

resolution of the curve (Fig. 2c).

In comparison, the San José event is essentially not resolvable using a constant

At of 15 mm (Fig 2d). Increasing At to a constant value of 12 hr produces only minor

improvement (Fig 2e). Remarkably, however, the scaled-At method revealed not only

the general trend of the curve but also an apparent break in slope (Fig. 20.

With the scaled-At method, as -dQldt decreases in time, the time over which

-dQ/dt is calculated, or t, - t, tends to increase (Fig. 3). For the Buenos Aires event,

for example, we achieved a good reduction in scatter yet were still able to extend the

recession curve to low values of -dQ/dt and Q by selecting a value for C such that,

overall, t1 - t /4 (Fig 3a). Though increasing the value of C would further reduce

scatter, it is desirable that C be large enough to resolve the signal but not so large as to

overwhelm it. In the extreme case (very large C), for example, where t, - t
approaches t, orj - i - 1, the apparent slope break in the Buenos Aires curve is no

longer visible (Fig. 4). In the case of San José, the large amount of noise relative to

signal required that At on average encompass a much larger portion of the total

recession curve (Fig 3b). The effect of the noise is evident in Fig. 3b as At varies

greatly between successive values of t1.
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Figure 3. Time interval t,- t, used to approximate -dQ/dt plotted against time since
the begirming of the recession period t, for the events shown in Fig. 2c (a) and 2f(b).
The time intervals were selected using (15). For (a), s = 0.001 m, C = 25, andj 3.

For (b), s = 0.01 m, C = 7, andj 3. The observation frequency is 5 mm.
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Figure 4. Example of effect of parameter C from (15) on the calculation of-dQldt
versus Q for the Buenos Aires event. The curves are offset vertically by a factor of 10
to distinguish between them.

Though the scaled-At method can improve the analysis of recession data, it is

still necessary that discharge data be taken at a sufficient resolution to meet to goals of

the experiment. While a relationship between dQldt and Q seems apparent, for

example, in Fig. 2f, there would still remain a large degree of uncertainty in fitting a

curve through the data. It is clear for the basins of this size that millimeter precision is

required for water level measurements.



5. Summary

A new method is presented for calculating dQ/dt as a function of Q for the

recession limb of a hydro graph. The method differs from that of previous studies in

that the time increment At over which dQldt is estimated is not held constant over the

entire recession curve. Instead, At for each observation in time is properly scaled to

the observed drop in discharge AQ. This avoids artifacts in data presented as log(-

dQ/dt) versus log(Q) when using constant At that can lead to misinterpretations of the

underlying relationships in the data. It also permits the analysis of data that may

otherwise have been considered too noisy to interpret.
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Appendix A. Time rate of change of discharge from Parlange et aL
120011.

The dimensionless discharge rate Q* vs. dimensionless time t derived from

the cumulative discharge Eq. 23 of Parlange et al. [2001], is

erfc
1

= ii(1 eh/t*))t +1 - 2t' +
[ J

]e't* 2

(A.1)

where erfc is the complementary error function, u = 'fi, o = 5/4, a2 = -1/4, and ti

(o + u o-)/ . Dimensional discharge Q and time t are, respectively,
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and

Q=
2kDL

B

coB2 *
kD

where B is aquifer length from stream to basin divide, D is initial saturated thickness

of the aquifer, L is length of stream network, k is saturated hydraulic conductivity, and

q is drainable porosity. The derivative of(A.1) with respect to time is:

* /2dQ* =3(l_e(_h/t*))t -3/

dt* 2

[: 2 + 3a2P(f 1

J2J ]

- [

a - 2 + a2P(f 1 ehht*)

ra2P(/J_1)fc
1 t *-

L

From (A.2) and (A.3), the dimensional rate of change of discharge in terms of the

dimensionless rate of change is

2k2D3L dQ*

dt coB3 dt*
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Abstract

Solutions to the Boussinesq equation describing drainage into a fully-penetrating

channel have been used for aquifer characterization. Two analytical solutions exist for

early- and late-time drainage from a saturated, homogeneous, and horizontal aquifer

following instantaneous drawdown. The solutions for discharge Q can be expressed as

dQ/dt = aQb, where a is constant and b takes on the value 3 and 3/2 for early and late

time, respectively. Though many factors can contribute to departures from the two

predictions, we explore the effect of having permeability decrease with depth, as it is

known that many natural soils exhibit this characteristic. We derive a new set of

analytical solutions to the Boussinesq equation for k c zz, where k is the saturated

hydraulic conductivity, Z is the height above an impermeable base, and n is a constant.

The solutions reveal that in early time, b retains the value of 3 regardless of the value

of n, while in late time, b ranges from 3/2 to 2 as n varies from 0 to cx. Similar to

discharge, water table height h in late time can be expressed as dh/dt = chd, where d =

2 for constant k and d - as n - In theory, inclusion of a power-law k profile

does not complicate aquifer parameter estimation because n can be solved for when

fitting b to the late-time data, whereas previously b was assumed to be 3/2. However,

if either early- or late-time data are missing, there is an additional unknown. Under

appropriate conditions, water table height measurements can be used to solve for an

unknown parameter.
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1. Introduction

There are few tools available for deriving aquifer characteristics at the field or

watershed scale. An important one which has received renewed attention, probably

due to its apparent simplicity, is the method of recession analysis proposed by

Brutsaert and Nieber [1977]. In the method, stream flow recession data, or discharge

Q, is related to the time rate of change in discharge dQ/dt in order to eliminate time as

the reference. Brutsaert and Nieber [1977] noted that several models for aquifer

discharge can be expressed as

dt

where a and b are constants. A similar relationship may exist for the height of the

water table h [e.g., Rupp, etal., 2004]:

dt
= (ib)

where c and d are also constants.

The model used most often for interpreting the parameters in (la) and (ib) is

the Boussinesq equation for an unconfined, horizontal aquifer draining into a fully-

penetrating channel (Figure 1) [Brutsaert and Nieber, 1977; Brutsaert and Lopez,

1998; Par!ange, etal., 2001; Rupp, et a!,, 2004]. The Boussinesq equation is derived

from Darcy's law and the Dupuit-Forcitheimer assumption, and by neglecting

capillarity above the water table. Given these assumptions, the flux q [L2 T'] per unit

aquifer width at any horizontal position x in an aquifer is
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(1 a)

q = kh(ah/ax) (2)



Charmel

Impermeable base

Figure 1. Diagram of the right-hand side of a symmetrical unconfined aquifer fuiiy-
incised by a channel. Water table profiles at t1 and t2 correspond to early and late
times during sudden drawdown of an initially-saturated aquifer. The channel
discharge Q is the sum of the discharge from both sides of the aquifer, or 2qL. The
vertical axis is exaggerated with respect to the horizontal axis, but in reality B >> D.

where k is hydraulic conductivity and h = h(x, t) is the water table height. Applying

the continuity equation in the presence of a recharge rate N leads to

ah a( ahc'=i kh I+N
t a ax)

where ç is the drainable porosity or specific yield. Typically, k is moved outside of

the derivative as it is assumed spatially constant in the down-slope direction and the

result is referred to as the Boussinesq equation.

x=O x=B
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Polubarinova-Kochina [1962, p. 507] presented an analytical solution for (3)

given constant k following instantaneous drawdown of an initially-saturated aquifer

where h(0, t) = 0. For this solution, b = 3 in (la), and it is applicable in "early time"

when the no-flux boundary at x = B is not yet affecting drainage at x =0. The solution

was arrived at by using the Boltzmann transformation and further substitutions to

express the Boussinesq equation in the form of the Blasius equation, for which there

are known analytical solutions [see also Heaslet and Alksne, 1961; Hogarth and

Parlange, 1999]. Lockington [1997] derived a similar early-time solution using a

weighted residual method for the more general case where h(0, t) and is constant.

For this latter solution, recast as (la), b = 3 also.

For "late time", when the no-flux boundary affects flow, an analytical solution

can also be derived for the boundary condition h(0, t) = 0 by noting that the solution

h(x, t) is separable into the product of a function of x and a function oft [Boussinesq,

1904; Polubarinova-Kochina, 1962, p.Sl6-Sl'7]. In this case, b 3/2 in(la). In the

corresponding expression for water-table decline (ib), d = 2.

Parlange et al. [2001] provided an approximate analytical solution for

discharge that unites the early- and late-time regimes.

In natural basins and aquifers, there are many factors that can lead to

departures from the predictions of outflow by analytical solutions derived for the

instantaneous drawdown of the idealized "lumped" aquifer depicted in Figure 1 [e.g.,

Hall, 1968; Singh, 1968]. Recent investigations have begun to quantify the effects of

some of these factors by relaxing some of the previously-mentioned assumptions.

Szilagyi et al. [1998] examined the robustness of the two analytical solutions discussed

above by including horizontal heterogeneity in saturated hydraulic conductivity,

complexity in watershed shape, and mild slope in a numerical model. Others have

compared solutions of the one-dimensional Boussinesq equation to the more general

two-dimensional Laplace equation for a horizontal aquifer. In particular, the

assumptions of initial saturation and instantaneous drawdown [van de Giesen, et al.,

2005], full and partial penetration [van de Giesen, et al., 1994; Szi!agyi, 2003; van de

Giesen, et al., 2005], and no unsaturated flow [Szi!agyi, 2003, 2004] were addressed.
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One aspect that has not been well-studied within the context of the Boussinesq

equation is the effect of saturated hydraulic conductivity that varies with depth.

Vertically decreasing k has been observed in many soil types [e.g., Beven, 1984],

particularly in forests [e.g., Harr, 1977; Bonell, et al., 1981]. Beven [1982a] observed

that the power-law function k = ktz' fit well to existing data from five previous

studies. Where z is the height above a relatively impermeable base and where k* and n

are fitting parameters, n ranged from 1.2 to 7.9, with correlation coefficients r between

0.85 and 0.97. In response, Beven [1982b] introduced a vertical kprofile that is a

power-law of h into the Boussinesq equation for a sloping aquifer [Boussinesq, 1877],

but eliminated the second-order diffusive term to arrive at a linear kinematic wave

equation.

We introduce a similar power-law conductivity profile into (3) and derive

early- and late-time analytical transient solutions for an initially-saturated aquifer

following instantaneous drawdown. We also present an analytical steady-state

solution under constant recharge. For verification, the analytical solutions are

compared to numerical solutions of the Boussinesq equation. Lastly, we discuss how

k decreasing with depth may affect the derivation of aquifer characteristics using the

recession slope analysis method of Brutsaert and Nieber [1977], or, in other words,

how the power-law k profile affects the parameters in (1 a) and (1 b).

2. Analytical Solutions

Let the saturated hydraulic conductivity k at an elevation z above the

impermeable base be described by

k(z)=(kD _k0)J +k0 (4)

where D is the thickness of the aquifer, k(D) = kD and k(0) = k0 are the constant

values of k at the upper and lower contacts, respectively, and n 0. The average
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horizontal hydraulic conductivity corresponding to the entire saturated thickness of the

aquifer h, or k(h), is the vertical average of k(z):

1 hkk
k(h)_hJ D'

or

k(h)=k*h7 +k0

where

k*= kD-kO
(n+1)D

2.1. Steady-State Case

We derive a steady-state solution to (3) given (6) because it serves both as a

test here of the numerical model and as a plausible condition when considering

extended wet periods. The steady-state solution of (3) requires that (2) be equal to a

constant in time. Given a constant recharge rateN applied uniformly across the water

table, the conservation of mass requires that the steady-state flux at x is equal to the

recharge contributed up-gradient of x, or

q=N(Bx) (8)

where B is the distance from the channel to the no flow boundary (Figure 1).

Substituting (6) and (8) into (2) gives



N(B - x) = (k*h + k0)h(ih/ix) (9)

Integrating the left side of (9) from x = 0 to x = x and the right side from h(0) h0 to

h(x) = h yields an exact implicit solution in x:

N(2Bxx2)=
2k*

h2 +k0h2
(2k*

n+2

n+2 +2ho +k0h02

where h0 is the constant water level in the channel.

In the following sections, two transient solutions to the Boussinesq equation

will be derived for the special case where h0 = 0 and k0 = 0. Given these two boundary

conditions, the steady-state solution can be expressed for h explicitly:

_r(n+2)N(2BXX2)
-L 2k*

2.2. Early-Time Transient Case

To arrive at analytical solutions for instantaneous drawdown and without

recharge, we let k0 = 0, SO = kD /[(l + n)DFz] and (2) and (3) become, respectively

q = _k*h(h/àv) (12)

and
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A weighted residual method [Lockington, 1997] is used to solve (13) for early-

time where the drawdown of the water table is not yet subject to the influence of the

no-flux boundary at x = B (see Figure 1, curve "t1"). The aquifer can then be treated

as being "semiinfinite" and the initial and boundary conditions are

h0 t>O (14)

h=D xO t0 (15)

hD x-oo t>O (16)

The substitutions b xl H h ID, and = k t 1p reduce (13) to the two-

variable problem

çbdH =D' d

2dçb dçb dçb

with boundary conditions

H=O b=O (18)

H1 çb-oo

Integrating (17) with respect to b yields

2D1H1 = JdH d

dH

because dHIdçb vanishes at H= 1. H is a dummy variable of integration.

The following approximate function f used by Lockington [1997] for a

homogeneous aquifer is proposed for b:

(17)



=[(1_H-)_1] (21)

where ) and 1u are constants with the same sign. As f is not an exact solution to (20),

a residual function a(I1) is defined as

e = 2D1H1
H dH

(22)

The residual is weighted with 1 and (1-fir [Lockington, 1997] and integrated over the

range of H to solve for ) and )u:

fedH =0

f(1_H)medH =0

From (23)

(1u)(1-2)u) D'
n+2

and from (24)

2D1B(n+2,m+1)=
(1+ m - ji)(1 + m - 2ji)

where B(n + 2, m +1) denotes the beta function evaluated for n + 2 and m + 1.

Substituting (25) into (26) gives
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(26)



It can be shown by rearrangement that (27) is a quadratic equation. The useful root p

is that with real values of H (and thus h)

The value m = 1.251 has been suggested for constant k [Lockington, 1997]. However,

if m = 1, the effect of which is discussed later, (29) becomes

4_3A_,iA2 2A+4
4-2A

m=1 (33)

(29)

(30)

fl2 4ay
2a

with

a=4-2A

fl=3A(m+1)-2m-6 (31)

y 2+mA(m-i-1)2 (32)
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A= (1-2p)(2+m-2p)
(27)

(1+ m - ,u)(1 + m - 2,u)

where

A=2(n+2)B(n+2,m+1) (28)



Finally, substituting (25) into (21) and solving for H, and making the

substitutions H h / D and q = xl Jk*t / q , yield the approximate water table profile

h(x,t) = D
/

x (n+2)(n+1)p I1 1+,L1
(1 )(1 - 2ji)kDD J
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(34)

The outflow from the aquifer is the flux at x = 0. Evaluating (12) at qi = 0, or

q = _k*rI2Dn+2H+J(dH/dcbo (35)

gives, from (22),

:;; $cb(H)dH
0

Substituting (21) and (25) into (36) and solving the integral yields the early-time

outflow

1/2(1-2u)q(t)= I2L(1_n+2xn+1D1 t112

2.3. Late-Time Transient Case

A separation of variables is used to solve (13) for the late-time case where the

drawdown of the water table is subject to the effect of the no-flux boundary at x = B

[Boussinesq, 1904; Polubarinova-Kochina, 1962] (see Figure 1, curve "t2"). The

boundary conditions are

q
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h0 x=0 t>0 (38)

dhldx0 x=B t0 (39)

hD xB tz=0 (40)

We seek a solution for the free water surface h which is the product of two variables,

one dependent solely on time and the other solely on the position:

h = X(x)T(t) (41)

Substituting (41) into (13) and separating the variables yields

T2 dt Xdx2Ln+2Jc
1 dT k* d2 (Xn+2

(42)

where C is a constant. The boundary conditions are

X0 x0 t>0 (43)

X=D xB t0 (44)

T=1 t=0 (45)

Integrating the left and right sides of (42) gives, respectively

T [i + (n + 1)Ct]''

and

dx
k*(n+3) X'dX

2C



The integral in (48) is an incomplete beta function. A series expansion, for example,

can be used to approximate the inverse of the incomplete beta function [see, e.g.,

equation 26.5.4, Abramowitz and Stegun, 1972].

The constant C subject to the boundary conditions is

k*DnC= B
2(n + 3)qB2

From (41), (46), and (48), the water table height is

Dc
h(x,t) =

1 /(n+1)

r1+
B kDDt

L 2(n+3)qB2

(51)

where Q(x I B) = XI D. Examples of water table profiles for various values of n at t =

0 are shown in Figure 2.
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Integrating (47) again yields

By
(1 v)"2 dv = (xiD)3 (48)X

= B nO

where B is a beta function

Bn =BI1H2,1
n+3 2

(49)
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Figure 2. Dimensionless late-time transient water table profiles h(x, 0)ID in an
unconfined aquifer with a fully-penetrating channel at x = 0 (left figure). The water
table heights shown are calculated from the late-time solution (51) for t = 0 and four
vertical profiles of saturated hydraulic conductivity k corresponding to n = 0, 1/4, 1,
and 4. Dimensionless hydraulic conductivity k(z)/kD versus dimensionless height zID
above the impermeable base is shown at right.

The outflow from the aquifer can be found from (12) evaluated at x = 0:

q = _k*T2X7(dX/dxLo (52)

Combining (47) with (52) and letting X = 0 gives



q(t)= B , kDD2
n+2

(n + 3)(n + 1)B[1
B kDD 1 n+I

2(n+3) B2

3. Discussion

For permeability that varies as a power-function with depth, both the early-

time (37) and late-time (53) solutions for discharge can be expressed in the form given

by (la). Taking the derivative of(37) with respect to time and recasting the result as a

function of discharge instead of time, the recession constants a and b for the early-time

solution are

(n+1)
kçoD3L2

b1 3

where

(1u)(n+2)
2(1 24u)

Values of1 for various values of n are given in Table 1. Note also that the discharge

Q in the channel is assumed to be the cumulative outflow from all upstream aquifers

such that Q = 2qL (see Figure 1).
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Table 1. Recession coefficients for various vertical
hydraulic conductivity profiles, k GC

Defining the width of the aquifer B as the characteristic distance from channel

to divide, the aquifer area A is given by A = 2LB. The recession parameters for the

late-time solution (53) can then be expressed as

n+1

a2 -
4kDDL2 r (n +1)A

- (n+1)A2 [4kDD2L2I

b2 =(2n+3)/(n+2) (58)

where

n+1

n+2
= 2(3)Bfl[B1

See Table I for values of b2 and 2 for various values of n.
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(57)

(59)

Early time (b = 3)

(I)i(56)(m=1)
Late time

(1)2(59) b2(58)
0 1.108 2.402 1.500
1/4 1.337 2.538 1.556
1/2 1.588 2.690 1.600
1 2.151 3.030 1.667
2 3.528 3.787 1.750
4 7.279 5.445 1.833
64 739.8 63.72 1.971

2.000



Unlike for discharge, the Boussinesq equation does not predict a power-law

relationship between dhldt and h in early time. However, the late time solution (51)

can be expressed in the form of(ib) with constants

B kD
(60)

2(n + 3)(n + 1) oDB21

d=n+2 (61)

The analytical solutions derived above were compared to output from a

numerical model of(23) using a fourth-order Runge-Kutta finite-difference method

with 250 equally-spaced nodes in the x-direction. Numerical outflow hydrographs

were generated for various values of n, kD, and D. The data were plotted as log(-

dQldt) versus log(Q), as proposed by Brutsaert and Nieber [1977] (see also Rupp and

Selker [2005b} for discussion on the numerical approximation of log(-dQldt) versus

log(Q) from discrete data). Plotted in log-log space, the analytical solutions appear as

straight lines with slope b and intercept a. Three numerically-generated recession

curves are given as examples in Figure 3.

The early-time slope b for discharge of the numerical simulations was not

perceptibly different from 3 regardless of the value of n. It was observed, however,

that the node spacing had to be decreased for large n, or else b appeared as less than 3

for very early times and gradually approached a value of 3 (data not shown).

Therefore the node spacing was reduced by a factor of 10 to obtain just the early-time

data for the largest values of n. The number of nodes was maintained at 250, as the

early-time solution is not a function of the position of the no-flux boundary at x B.

Following the sharp transition from the early- to late-time regime, the

numerically-generated data show a slope b that is equal to that predicted by the late-

time solution (58) (Figure 3). For late-time, the initial node spacing was adequate for

alln.

74



F
.556

.S

00001 1 I I I

0.001 0.01 0.1

Q (m3d)

75

Figure 3. Recession curves from three numerical simulations using saturated
hydraulic conductivities that decrease with depth from kD = 100 m d1 to k0 = 0 m d1
slowly (n = 0.25), linearly (n = 1) arid rapidly (n = 4). In each caseD = 1 m, B = 100
m, g = 0.01, and L = 1 m. The analytically derived values of b are shown for n = 0.25
and n =4.

In addition to the slope b, the analytically and numerically generated recession

curves are nearly identically positioned in log-log space for late time (i.e., the values

of the parameter a2 are equal). There is a discrepancy, however, in early time. Using

a value of m = 1.25 1 for (24) [Lockington, 1997] to calculate a1 from (54), the

numerical and analytical solutions diverge for increasing n (Figure 4). For small n

(e.g., n 1), this may not have practical consequence. However, for the example

show in Figure 4a, the difference in a1 between the solutions is about 15% for n = 4

1 10
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and 40% for n = 32. The discrepancy does not appear to be due to numerical error, as

changing the node-spacing or the time-step did not result in a convergence of

predictions. On the other hand, if we let m = 1, the analytically and numerically

derived values of a1 show a much better match, with the difference being about 1% for

all n (Figure 4).

Accurate estimates of cIi in (54) are known for n = 0, so comparisons can be

made to the value predicted by (56) for this specific case. The most accurate value of

iIi, to the fourth decimal place, is 1.1337 [see Parlange, et al., 2001]. In comparison,

for n = 0, (57) gives I = 1.1361 form = 1.251 and I = 1.1076 form = 1. Thus, the

value of m proposed by Lockington [1997] is superior to m = 1 for very small n, but

performs poorly over all n. One might apply a correction factor to (56) for m = 1 to

improve the prediction at n = 0, though this may not be justified for the purposes of

recession slope analysis in log-log space.

It is remarkable that the recession parameter b retains the value of 3 in early

time regardless of the shape of the k profile. The practical implication of this result for

aquifer characterization is that the shape of the early-time outflow hydro graph alone

gives no indication of vertical variability in k, thus adding at least one unknown

variable to the parameterization problem. However, if late-time data is also available,

the late-time value of b supplies information on the vertical variability ink (i.e., n),

thus the problem of parameterization is in theory no more complicated than for the

case of constant k with two equations and the same number of unknowns. (If,

however, the vertical k profile were defined with an extra parameter, such as in (6),

there would be another variable for which to solve).



b)

n+1
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m= 1.251
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Figure 4. Early-time recession parameter a from (la) as determined analytically
(lines) from (55) with two values of m and numerically (circles) for various vertical
profiles of saturated hydraulic conductivity. In (a), kD/D was held constant as n was
varied, with kD = 100 m d', D = 1 m, B = 100 m, q = 0.01, and L 1 m. In (b), kjjID'1
was held constant at 100 m1' d' as n was varied, with D = 2 m, and B, q, and L as
above.
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Though the early- and late-time curves can be used together to solve for an

unknown parameter by combining (54) and (57), it is likely that the predicted early-

time response will not be evident in discharge data. This is because the assumption of

sudden drawdown from an initially flat water table may be inappropriate for the data

being analyzed [van de Giesen, et al., 2005], or that observations during the early

period of recession may still be reflecting processes other than merely aquifer outflow

[Brutsaert and Nieber, 1977; Brutsaert and Lopez, 1998]. Furthermore, in the

common case when only daily data is available, the temporal resolution may be too

coarse to discern a relatively short-lived early-time regime.

From only the late-time data, estimating the characteristics of an aquifer with a

power-law k profile requires solving for 6 variables, which is 2 more than for the case

of a homogeneous aquifer (note that D falls out of (57) for b = 3/2 or n = 0). When

available, representative transient water table data can constrain the parameter space

through the combination of(57) and (60) [e.g., Rupp, et al., 2004]. Water table

observations may be especially useful for determining if there is important vertical

variability in k, given that the parameter d in (61) corresponding to the transient water

table height is much more sensitive to n than is the discharge parameter b2 in (58).

It has been shown previously that three values of b arise out of three analytical

solutions to the Boussinesq equation for a homogeneous aquifer [Brutsaert and

Nieber, 1977]. As noted above, two of these values are b = 3 for early time and b =

3/2 for late time. The parameter b also takes on a third value of 1 for a solution

resulting from a linearization in h in (3). Given that actual stream flow recession

hydrographs show a range of values for b and are thus not limited to 1, 3/2, and 3,

there is interest in finding theoretical solutions for basin discharge that give other

values of b.

We have shown above how b may take on any value between 3/2 and 2 and

may also take on a value of 3 when the saturated hydraulic conductivity decreases

with depth as a power law. It is interesting to compare our results to those of Michel

[1999], who used dimensional considerations to arrive at an expression for aquifer

discharge for any arbitrary value of b.



Michel [1999] demonstrated that the three analytical solutions for a

homogeneous aquifer can all be expressed in the form of (1 a) through a single

equation:

A2 4kD2L2]

4kDL2

[
Aa=tY(b)

b=1,3/2,or3 (63)

Though there are only three known theoretical values of the coefficient 'TI', one each

for b = 1, 3/2, and 3, Michel [1999] and Brutsaert and Lopez [1999] suggest functional

forms for 'I'(b), so that one might use (62) for any value of b. Brutsaert and Lopez

[1999], for example, give

1Y(b)=_1O.513+15.O3Obv2 3.662b (64)

However, Brutsaert and Lopez [1999] recommend using caution when interpreting the

recession parameter a through (62) and (64) for values of b different from 1, 3/2, and

3.

It is of interest to compare (62) and (64) to the new solutions for a non-

constant k profile. Noting that b - 1 = (n + 1 )/(n + 2), it is clear that (62) and the late-

time solution (57) for a power-law k profile are nearly identical in form. The late-time

coefficient '2 could also be expressed as function of b, as is 'T'. However, '2 is

functionally very distinct from 'T' (see also Table 1). In fact, '2 - as b - 2 (or as

n - 00), whereas as 'T' in (64) has no such singularity. Moreover, though (62) for b =

3 is also similar in form to the early-time solution (54) for a power-law k profile, the

early-time coefficient I is not a function of b at all. Given that our results do not

support the functional forms for the coefficient 'T'(b) proposed by Michel [19991 and

Brutsaert and Lopez [1999], it appears that the use of(62) with an "empirically-
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derived" equation such as (64) without understanding why b takes on a certain value is

not justified.

4. Conclusion

Recession hydrographs can differ in shape from those predicted by existing

analytical solutions to the Boussinesq equation. In some cases, the initial and

boundary conditions used to arrive at the analytical solutions may not be suited to the

situation under analysis [e.g., van de Giesen, et al., 2005]. In other cases, the

assumptions of the Boussinesq equation may be inappropriate. In this study, we

investigated the effect of deviating from the assumption of an aquifer with constant

saturated hydraulic conductivity k.

It was found that for a power-law vertical conductivity profile, the recession

discharge in early time can be expressed as dQ / dt c Q3, which is the same as the

case of a homogeneous aquifer. In late-time, however, the relation is dQ / dt c

where b is a function of the exponent n that defines the k profile (k c z"). The value

of b is 3/2 for a homogeneous aquifer (n = 0) and increases to 2 as n approaches

Observed values of b exceeding 3/2 thus might be an indication of important decreases

in k with depth within an aquifer.

The analytical solutions derived here for discharge allow for the derivation of

aquifer characteristics much in the same way as that proposed by Brutsaert and Nieber

[1977], with only slightly more complexity. The addition of transient water table data,

analyzed in the same manner as that of discharge, can address some of the added

complexity. It is acknowledged, however, that the analytical solutions assume that k =

0 at the base of the aquifer, thus may only be suitable for k(D) >> k(0).
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Notation

a, b general discharge recession constants.
al, b1 early-time discharge recession constants.
a2, b2 late-time discharge recession constants.
A horizontal aquifer area, equal to 2LB.
B length of impermeable base of aquifer.
c, d late-time water-table recession constants.
C constant of integration.
D aquifer thickness.
h water-table height.
h0 water-table height at channel (x = 0).
H dimensionless water-table height, equal to hID.
H dummy variable of integration.
k saturated hydraulic conductivity.
k0 saturated hydraulic conductivity at bottom of aquifer.
kD saturated hydraulic conductivity at top of aquifer.
k* coefficient, equal to (kD - k0) /[(n + l)D"].
L channel or stream length.
m exponent in weight of residual, see (24).
n exponent in expression for vertical profile of hydraulic conductivity.
N rate of aquifer recharge.
q aquifer discharge per unit width of aquifer.
Q aquifer discharge.
t time.
T arbitrary function oft only.
v transform, equal to (X / Dy'3.
x horizontal coordinate.
X arbitrary function of x only.
z elevation above aquifer base.
a, fl 2' coefficients in quadratic equation.
A function of n, equal to 2(n + l)B(n + 2,m + 1).
B(,) beta function.
B beta function evaluated for (n+l)I(n+2), 1/2.
s residual function, defined in (22).

Boltzmann transform, equal to x /
approximate function for q, defined in (21).

1i early-time discharge recession coefficient, defined in (56)
late-time discharge recession coefficient, defined in (59)

2, u coefficients in function q.
drainable porosity, or specific yield.
transformed time, equal to z- = kt / q.
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inverse of the normalized incomplete beta function, equal to XID.
'P discharge recession coefficient for homogeneous aquifer, see (62).
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Abstract

The method of recession analysis proposed by Brutsaert and Nieber [1977] remains

one of the few analytical tools for estimating aquifer hydraulic parameters at the field-

scale and greater. In the method, the recession hydrograph is examined as dQ/dt

J(Q), where Q is discharge andfis an arbitrary function. The parameters of the

observed functionf are related to analytical solutions to the 1 -D Boussinesq equation

for unconfined flow in a homogeneous, horizontal aquifer. While attractive in its

simplicity, as originally presented it is not applicable to settings where slope is an

important driver of flow and where hydraulic parameters vary greatly with depth.

There exist, however, various analytical solutions to the 1 -D Boussinesq equation for a

sloping aquifer based on simplifying assumptions. These solutions are compared to

numerical solutions of the full non-linear equation. Furthermore, an assessment is

made of the behavior of the non-linear Boussinesq equation for a heterogeneous

aquifer, where the heterogeneity is characterized by a lateral saturated hydraulic

conductivity k that varies as a power-law with height z above the impermeable layer,

i.e., k z. It was found that all of the analytical solutions differ in key aspects from

the non-linear solution when plotted as dQ/dt =J(Q), thus are inappropriate for a

Brutsaert and Nieber-type analysis. However, a new analytical solution for the

homogeneous aquifer is derived "empirically" from the numerical simulations that is

applicable during the late period of recession. Moreover, the numerical solutions for

the heterogeneous aquifer reveal that during the late period of recession, the shape of

the recession curve is determined uniquely by the power n. Specifically, the recession

curve converges to dQ/dt = aQb , where b = (2n+1)/(n+1). Therefore, while an

interpretation of the parameter a remains elusive for the heterogeneous aquifer, the

method of Brutsaert and Nieber can be used in theory to characterize the rate of

change in k with depth. This is verified through discharge data from a hillslope where

the k is known to decrease greatly with depth.
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1. Introduction

Recession flow analysis for forecasting drought flows and investigating the

ground water flow regime in basins has over a century-long history [Hall, 1968;

Tallaksen, 1995]. Brutsaert and Nieber [1977] made a landmark contribution when

they proposed plotting the observed recession slope of the drought flow hydrograph,

or dQldt, against the discharge Q, such that

_t!=f(Q) (1)

wherefdenotes an arbitrary function, and compared observations with analytical

solutions to the Boussinesq equation for 1-dimensional flow in a rectangular

horizontal aquifer. This method of analysis, referred to also hereafter as "recession

slope analysis", has been used widely since for determining aquifer parameters

[Brutsaert and Nieber, 1977; Vogel and Kroll, 1992; Troch, et al., 1993; Brutsaert and

Lopez, 1998; Szilagyi, et al., 1998; Eng and Brutsaert, 1999; Parlange, et al., 2001;

Mendoza, et al., 2003; Rupp, et al., 2004; Malvicini, et al., 2005] and for base flow

separation [Szilagyi and Parlange, 1998]. Recession curves plotted as dQldt versus

Q, or similarly in log-log space, will be referred to as "recession slope curves"

hereafter.

The primary function of presenting the recession curve as dQldt versus Q is

the elimination of time as the dependent variable, thus making it unnecessary to

determine the precise beginning of the recession event (to) [Brutsaert and Nieber,

1977]. The ambiguity of t0 in real discharge data leads to uncertainty when assigning

values to parameters in functions that describe ground water outflow.

However, what has certainly made this method of analysis alluring is that three

well-known analytical solutions to the Boussinesq equation for a unconfined

horizontal aquifer (two exact solutions [Boussinesq, 1904; Polubarinova-Kochina,
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1962] and one an approximation by linearization [Boussinesq, 1903]) can be expressed

in the form

_4_=aQb (2)

where a and b are constants [Brutsaert and Nieber, 1977]. Here geometric similarity

of a unit-width representative rectangular aquifer (such as that shown in Fig. 1)

distributed throughout a catchment is assumed, so that the total outflow Q is the

integration of all flow q per unit width of aquifer entering a stream network of length

L, i.e., Q = 2qL [Brutsaert and Nieber, 1977]. Plotted as log(dQ/dt) versus log(Q),

(2) appears as a straight line with slope b and y-intercept a. Theoretically, one can fit

a line of slope b to recession flow data graphed in this manner and determine aquifer

characteristics from the resulting value of a.

In reality not all recession slope curves from a catchment will fall along a

single curve. This is due in part to concurrent hydrological processes other than

ground water flow, such as overland flow, quick subsurface flow (e.g., macropore

flow), decline in channel or reservoir storage, and evapotranspiration [Brutsaert and

Nieber, 1977]. The sum of these processes will result in a faster rate of decline in

discharge for a given discharge than ground water flow alone. For this reason, it has

been suggested that a curve be fit to the lower envelope of the data [Brutsaert and

Nieber, 1977]. In addition to the above processes, variability in the spatial distribution

of the hydraulic free surface (or water table) at the onset of recession events will also

result in deviations in the recession slope curves.

In contrast to the number of studies cited above which compared data to the

solutions for the horizontal Boussinesq aquifer, there has been only one attempt to

interpret the parameters of basin recession slope curves based on a solution to the 1-

dimensional Boussinesq equation for a sloping rectangular aquifer or hillslope

[Zecharias and Brutsaert, 1988b], such as that shown in Fig.. 1. While it is reasonable

to assume that the drainage from a hillslope could be represented by the 1-dimensional



Boussinesq equation, it is not clear that the assumption of geometric similarity holds

for basins.

Fig. 1. Sketch of a transient water table profile h(x, t) in an inclined aquifer fully-
incised by a channel at the left-hand side boundary. The water level in the channel is
h0. There is no flux through the right-hand side and bottom boundaries.

In the case of a horizontal or very mildly sloping aquifer, Szilagyi et al. [1998]

found the assumption of a representative single rectangular aquifer to be robust, based

on numerical solutions of the 2-dimensional Boussinesq equation in a synthetic

catchment. The general shape of the recession slope curves for catchment discharge

was similar to that for discharge from a 1-dimensional rectangular aquifer, though
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with a smoother transition between the late and early time domains. Furthermore, the

basin-scale hydraulic and geometric aquifer parameters were reasonably estimated by

recession slope analysis using (2), including cases where the saturated hydraulic

conductivity varied across the catchment. A complication arises in hilly basins

because the steeper and shorter hillslopes drain more rapidly and as time progresses

the hydrograph will become dominated by the aquifer units with the shallowest slope

and/or greatest lateral extent. This may explain in part while multi-catchment

comparisons have not universally found slope to be an important factor in explaining

drought flow variability among basins [Zecharias and Brutsaert, 1 988a; Vogel and

Kroll, 1992; Lacey and Grayson, 1998]. Additionally, recession slope data in some

sites of moderate to high relief have been found to be consistent with a non-linear

horizontal Boussinesq aquifer [Brutsaert and Nieber, 1977; Mendoza, et al., 2003].

This paper is a partial assessment of the Brutsaert and Nieber method of

recession analysis for sloping aquifers. There are three main objectives. The first is to

review existing analytical solutions to the Boussinesq equation for a sloping aquifer,

under their respective simplifying assumptions, and to compare them with numerical

solutions of the full non-linear equation. In particular, we will examine how the

solutions behave when plotted as log(dQ/dt) versus log(Q).

The second objective is to examine how allowing the saturated hydraulic

conductivity k to vary with depth affects the recession slope curves predicted by the

Boussinesq equation for a sloping aquifer. This is of interest because studies have

revealed large decreases in k with depth in many soils, particularly forest soil [Harr,

1977; Bonell, etal., 1981; Beven, 1982a, 1984]. Specifically, a power-law function

describing the change in k with height z above bedrock is incorporated into the

Boussinesq equation (e.g., [Beven, 1982b; Rupp and Selker, 2005 a]).

The third objective is to evaluate the ability of the 1 -D Boussinesq equation to

predict hillslope recession discharge under field conditions. Iii doing so, we analyze

discharge data by means of the Brutsaert and Nieber method to assist in the calculation

of hillslope-scale hydraulic parameters, namely k and drainable porosity. The data



was collected from a previously-studied hilislope where k is believed to decrease

considerably with depth.

2. Review of Analytical Solutions

For flow in an unconfined aquifer overlaying an impermeable base of slope

q, Boussinesq [1877] made use of the Dupuit-Forchheimer approximation to derive

q = kh[cosq(ôh/ôx)+sinq]

where q is the flow rate per unit width of aquifer in the x direction, k is the saturated

hydraulic conductivity in the down-slope direction, and h = h(x, t) is the thickness of

the water layer perpendicular to the impermeable layer (see Fig. 1). Inserting (3) into

the continuity equation yields, in the absence of recharge or evaporation,

oh r Ohgo=Icosq kh +sinq
ox

where go is the drainable porosity, and q is assumed to be constant [see also, Childs,

1971]. Eq. (4) is often expressed for constant k, in which case k is brought outside of

the derivative.

Existing analytical solutions to (4) for a horizontal and a sloping aquifer are

reviewed below. All the solutions either take the form of (2) exactly, or when b is a

function of time, they converge to (2) as t goes to infinity and, in most cases, as t goes

to zero. The definitions of the recession parameters a and b in (2) for each solution

are listed in Tables 1 and 2. While the following information for a horizontal aquifer

is available elsewhere in the published literature, it is useful to have it compiled. More

importantly, to our knowledge this is the first time that the most of these analytical

solutions for a sloping aquifer have been presented in the form of (2).
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2.1. Horizontal Aquifer

For the case of a horizontal aquifer (çb = 0), several analytical solutions to (4)

can be presented exactly in the form given by the power law in (2) [Brutsaert and

Nieber, 1977]. Beginning with an initially saturated aquifer subjected to instantaneous

drawdown, Polubarinova-Kochina [1962] derived an exact solution to (4) for a

homogeneous and infinitely wide aquifer, which is applicable for early time when the

zero-flux boundary at x = B has no effect on the discharge rate. The parameters a and

b for this solution, when expressed in the form of (2) are given in Table 1 (see

parameter set (i)). In this case, the head h0 at the discharge boundary or channel is

assumed to be zero. Lockington [1997] arrived at a more general early-time solution

for any constant value of h0 between 0 and the initial horizontal water table height D

(see (ii) in Table 1). Most recently, Rupp and Selker [2005 a] solved (4) for the early-

time domain for an aquifer in which k increases with height z as a power law (Fig. 2),

i.e.,

k(z) = kD(z/D) (5)

where kD is the saturated hydraulic conductivity at height z = D, and n is a constant

greater than or equal to 0 (see parameter set (iii) in Table 1). Note from Table 1 that

the recession slope parameter b equals 3 for each of these three early-time solutions

regardless of the head at the aquifer outlet or the vertical distribution of k.
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0 I
k(z)Ik(D)

Fig. 2. Examples of saturated hydraulic conductivity (k) profiles in an aquifer of
thickness D where k is proportional to the height z to a power n.

For late times, defined to be when the up-slope zero-flux boundary is

influencing the discharge at the drainage boundary, Boussinesq [1904] provided an

exact solution for a homogeneous aquifer (see parameter set (iv) in Table 1). Rupp

and Selker [2005a] later generalized the solution to include the power-law k-profile in

(5) (see parameter set (v) in Table 1). For both solutions, h0 = 0. Note that the

recession slope parameter b equals 3/2 for the power n = 0 (a homogeneous aquifer)

and approaches the value of 2 as n goes to infinity (see Table 1).

Parlange et al. [2001] derived an approximate solution to (4) that unites both

the early and late-time solutions for a homogeneous aquifer with h0 = 0.

The early- (b = 3) and late-time (b 3/2) behavior predicted by the Boussinesq

equation for a homogeneous aquifer where h0 0 have been corroborated by
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laboratory tank experiments (i.e., Hele Shaw models) [Ibrahim and Brutsaert, 1965;

Hammad, et al., 1966; Ibrahim and Brutsaert, 1966; Mizumura, 2002, 2005].

An approximate solution given by Boussinesq [1903] for the homogeneous

aquifer, also limited to late times, can be obtained by linearization of(4) (see

parameter set (vi) in Table 1). In this case, the variable h outside of the brackets in (3)

is set equal to a constantpD, where 0 <p 1. Note, however, that the linearization

yields a value of 1 for b, which is inconsistent with the laboratory findings cited in the

previous paragraph. The linearization is more appropriate when the drop in head at

the outflow boundary is much less than the initial saturated thickness of the aquifer,

i.e., D - h0 <<D. This condition has been shown to yield b = I in late time (e.g.,

[Szilagyi, 2004; van de Giesen, et al., 2005]).

This method of linearization is used to arrive at many of the solutions for a

sloping aquifer reviewed in the following section. The significance of the

linearization parameter p is also discussed in the following section.

2.2. Sloping Aquifer

Numerous transient analytical solutions exist to the Boussinesq equation based

on the kinematic wave approximation [Henderson and Wooding, 1964; Beven, 1981,

1982b] and various approaches to linearization [Zecharias and Brutsaert, 1988b;

Sanford, et al., 1993; Brutsaert, 1994; Steenhuis, et al., 1999].

The kinematic wave equation arises from assuming that in (3) the hydraulic

gradient in at any point x is equal to the bed slope, or dh/dx= 0, thus q = kh sin çb.

This results in the loss of the second-order diffusive term in (4), making it applicable

only for steep slopes andlor highly conductive aquifers relative to the recharge rate

[Henderson and Wooding, 1964]. As there is no diffusion, the entire recession slope

curve is defined by the initial shape of the water table. For an initially saturated

aquifer with the power-law k profile in (7), it can be shown that the kinematic wave

equation predicts a recession discharge that is constant in time [Beven, 1982b]:

Q=2kDLsinq$/(n+1) (6)
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Thus, dQldt = 0 for all Q and the recession constants a and b both equal 0 (see (vii) in

Table 2). On the other hand, beginning with a steady-state water table profile

following a period of constant and spatially uniform recharge N, the recession constant

b equals 0 for a homogeneous aquifer and approaches 1 as n approaches infinity (see

(viii) in Table 2).

Another approach to making (4) more tractable is to use the quasi-steady state

assumption that the shape of the moving water table is the same as that calculated for

steady flow [e.g., Zecharias and Brutsaert, 1 988b1. Zecharias and Brutsaert [1 988b1

made this assumption along with the linearization discussed above to obtain a solution

for a sloping homogeneous aquifer (see parameter set (ix) in Table 2). Note that in

Table 2 the recession parameter a is expressed as the nearly equivalent value of a for a

linearized horizontal aquifer (see (vi) in Table 1) multiplied by a "slope factor" which

contains the dimensionless term i.

B
77 = tan q5

This is also done, when appropriate, for several other solutions reviewed below.

Though it does not generally result in the simplest expression for the parameter a, it

facilities the comparison of the various solutions.

The parameter i is similar to the term introduced by Brutsaert [19941: , =

BtanqY2pD, where i "represents the relative magnitude of the slope term, i.e.,

gravity, versus the diffusion term" [Brutsaert, 1994]. We write the reviewed

solutions here in terms of i instead of i because not all solutions make use of the

parameterp, though it is admitted that is the more meaningful term becausepD

represents the effective water table height (see discussion below).

Using a similar quasi-steady state approach, Sanford et al. [1993] presented

three solutions for cumulative discharge, each based on a different method for

approximated h. We refer the reader to Sanford et al. [1993] for a description of the

(7)
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three approximations used. The three solutions are presented in the form of (2) for the

case where h0 = 0 for comparison with the other solutions presented herein. The first

two solutions yield a constant value of the recession constant b (1 and 1.5,

respectively) (see (x) and (xi) in Table 2). The third solution differs in that the value

of b transitions in time from 1.5 to 1 (see (xii) and (xiii) in Table 2).

Steenhuis et al. [1999] addressed the conditions of the steep hillslope

experiments at the Coweeta Hydrological Laboratory. For their solution, h0 = D and

the initial water table is a straight line with boundaries h(O, 0) = D and h(B, 0) = 0.

The solution can be expressed as

dQ 2Q(QkDLsinb)2
dt - çokD3L2cosq

It can be shown that as t goes to infinity, (8) converges to the form of (2) with the

recession parameter b equal to 1 (see (xiv) in Table 2).

Brutsaert [1994] used a linearization in h to arrive at an infinite series

summation solution for an instantaneous drawdown to h(0, t) 0 in an initially

saturated homogeneous aquifer. It can be shown [Brutsaert and Lopez, 1998] that as t

goes to zero the early-time value of b goes to 3 (see (xv) in Table 2). For late time, the

solution can also be expressed as (2) by neglecting all but the first term in the

summation in Eq. 17 in [Brutsaert, 1994] (see (xvi) in Table 2).

Others have used the same linearization approach as Brutsaert [1994], but

included variable recharge rates and non-zero stream water levels [ Verhoest and

Troch, 2000; Pauwels, et al., 2002]. Chapman [1995] also addressed a pulse of

recharge, but rewrote (4) for h2 and used a linearization in h2 to arrive at a solution.

Though these solutions differ from Brutsaert [1994] in early time due to different

initial conditions, it can be shown that they are essentially equal in the late time

domain (b = 1 and a is a given by (xvi) in Table 2).

One can see from Table 2 that b = 1 for all but one of the late-time solutions

for a homogeneous aquifer. In experiments using an inclined Hele Shaw model,

(8)
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Mizumura [2005] observed that at late time the discharge declined exponentially with

time, which is equivalent to b = 1.

It is worth briefly discussing the parameter p that arises from the linearization

method employed by Brutsaert [1994] and others [Zecharias and Brutsaert, 1988b;

Chapman, 1995; Verhoest and Troch, 2000; Pauwels, et al., 2002]. The assumption

of the linearization is that changes in the water table height are small such that a

constant "effective" water table of height equal to pD can be assumed. Though this

method has yielded analytical solutions to the Boussinesq equation, it leads to one

more parameter for which to solve. It has been suggested that p be treated as a

calibration parameter [Brutsaert, 1994], but this not desirable if the goal is to identify

the value of other unknowns, such a k and 'p.

For an initially-saturated aquifer, Brutsaert [1994J points out that previous

analytical solutions for a horizontal aquifer suggest a relatively narrow range of values

forp between 1/3 and 1/2. However, an initially-saturated unconfined aquifer will

often not occur in natural conditions [van de Giesen, et al., 2005], so the determination

ofp is not straightforward. Where the aquifer is sloping, Koussis [1992] proposed the

following implicit equation forpD for the special case of a steady-state water table

profile due to a constant recharge rate N and a channel head h0 = 0:

Btanq5ksin2q5 pD ( pD
iJex

Btan
2pD N Btan5 LBtan pD

Though (9) is slightly cumbersome, explicit approximations can be derived that are

applicable for given ranges of i [Koussis, 1992].

(9)
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Table 1

Definitions of parameters a and b in - = aQb for a horizontal aquifer

Form of Boussinesq
Equationt

Time
Domain b

Parameter
Set

Source

1.133 [Polubarin ova-
Non-linear Early 3 (i) Kochina, 1962]kçoD3L2

Non-linear Early 3
fL0

(ii) [Lockington, 1997]
kço(h0 D)2(h0 +D)L2

Non-linear;

k(z) = kD(z/D)
Early 3

fRi
(iii)

[pp and Selker,
2005 a]kD coD3 L2

4.8 04k"2 L
Non-linear Late 3/2 (iv) [Boussinesq, 1904]

çoA3'2

n+1

Non-linear; 2n +3 ICDDL2
'

A [Rupp and Selker,
k(z) = kD(z/D)

Late (v) 2005a]n+2 fR2
çoA2 kD2L2)

Linearized Late 1
,r2pkDL2

(vi) [Boussinesq, 1903]
çoA2

tUnless specified, k constant.



Table 2

Definitions of parameters a and b in - = aQ for a sloping aquifer

8pkDL2

çoA2 p

8kDL2
cosØ

çoA2
(x)

6.928kv 2L
(xi)

6.928k"2L I 1+I4 1cos
øt[1+(/2)]112f (xii)

çoA3'2

Source

[Sanford, et al,,
1993]

[Sanford, etal.,
1993]

Time
Domain

b

All 0

n
All

n+1

Late 1

Late 1

Late 3/2

Early 3/2

Parametera
Set

0 (vii) [Beven, 1982b]

N (2kDLsinø
\1/(n+1)

(viii) [Beven, 1982b]
ço D

[Zecharias and
Brutsaert, 1988b]

[Sanford, etal.,
1993]

Form of Boussinesq
Equation

Kinematic wave;
initially saturated;

k(z) = kD(z/D)

Kinematic wave;
initially steady-state;

k(z) = kD(z/D)

Linearized

Linearized

Linearized

Linearized



tUnless specified, k = constant.

This article.

i=-tanq5; A=2BL

Table 2 cont.

Linearized

Linearized

Linearized

Linearized

Non-linear;

k(z) =

Non-linear

Late

Late

Early

Late

Late

Late

1

1

3

2n +1

6kDL2

2 cosø

2

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

[Sanford, etal.,
1993]

[Steenhuis, et al.,
1999]

[Brutsaert, 1994]

[Brutsaert, 1994]

çoA2
iØ

8kDL2

çoA2
17

1.133

kçoD3L2

'r2pkDL2

cosq5

i+-I7rp)]

2

cosq5
çoA2

Unknown

432kDL2

n+1

1
çoA

2
icosq5



3. Methods

3.1. Numerical Solution of the Boussinesq Equation

The subsurface flow in a sloping aquifer with a power-law k profile can be

expressed as

q
k

(h / D) [cos b(8h/8x) + sin b]

Note that k has been replaced by k(h) in (4) where

kDk(h)= (h/D)
(n +1)

The corresponding transient water table height is

öh kD rcos(hn+I öh" (h''
1 N)i+- (12)

öt q(n + 1)D' [ öx t 8x1

for a recharge rate N. Eq. (12) was solved numerically using a fourth-order Runge-

Kutta finite-difference method. A zero-flux condition was maintained on the upslope

boundary.

Three sets of model runs were done. The first two sets served to evaluate the

analytical solutions reviewed above. The first set simulated the drawdown of an

initially saturated aquifer, and the second set simulated drawdown following steady-

state recharge conditions. For the steady-state cases, a nearly steady-state water table

profile was generated by applying a constant recharge rate of N = 0.1 m d' to an

initially dry aquifer until the discharge rate reached approximately 99.99% of the

100

(10)
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recharge rate. Only the model parameters tanq5 and h0 were varied for these two set of

runs. The aquifer slope tanq5 was set at 0.005, 0.02, 0.08, and 0.32. For the initially

saturated cases, the head at the discharge boundary was set at h0 = 0, 0.5, and 1 m,

while for the steady-state cases h0 = 0 only. The remaining parameters were kept

constant as follows: n = 0, kD = 50 m d1, = 0.1, D = 1 m, andB = 50 m.

The third set of simulations was done to assess the effect of having k decrease

with depth as power law. The power n was set at 0, 0.25, 0.5, 1, 2, and 4 (see Fig. 2).

To see how slope might affect the result in conjunction with n, tanq5 was also set at

0.003, 0.03, and 0.3. The remaining parameters were kept constant as follows: kD =

lOmd', p =0.1,h0=0,D= 1 m,andB=50m.

3.2. Generation of Recession Slope Curves

Because the instantaneous slope of the recession curve at any time t is not a

measured variable, it needs to be approximated by calculating the change in discharge

over some time interval At. Typically, a constant value of At is used throughout the

recession period, though it has been shown that this can lead to artifacts in graphs of

log(dQ/dt) versus log(Q) than can hinder analysis [Rupp and Selker, 2005bJ. Here

we use a variation on an improved method of estimating dQ/dt =J(Q) proposed by

Rupp and Selker [2005bJ.

Before calculating dQ/dt, the recession time series is "smoothed" by selecting

a subset of discharge observations Q in the following manner. Beginning with the first

recession discharge measurement Q1, i = 1, we step forward in time until reaching the

first measurement Q1, i = Icy, at which the cumulative discharge volume V equals or

exceeds a constant cumulative discharge threshold Vmjn. The discharge Q associated

with this point in time is selected and placed in a new time series as Q,j = 1. The

integerj is increment by 1 and the process is repeated:

V. <V. <V. +Qk(t-t_l) (13a)mrn j mm
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cL QiQi_i
dt tjtji

Q
Q +

2
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Q = QkJ' ti = ti (13b)

where k0 = 0. This procedure will tend to retain all the data from the early part of the

recession curve while providing longer time intervals between discharge observations

during the later part of the curve. The appropriate choice of Vmin is specific to the data

set and will depend upon the precision and the degree of noise of the data.

The time rate of change in discharge and the corresponding discharge are

calculated, respectively, by

j=2,3,4... (14)

(15)

3.3. Site and Data Description

We analyzed discharge data for an instrumented hillslope near Troy, ID. The

hillslope is a 35 x 18 m plot with an average slope of 20%. The plot is lined on all

sides with plastic and sheet metal which extend downward to a fragipan layer, such

that the lining creates well-defined zero-flux vertical boundaries. The soil profile

consists of a moderately well-drained loam to silt-loam with an average depth of 0.65

m underlain by a relatively impermeable fragipan layer. A tile drain installed at the

fragipan layer at the downslope boundary intercepts subsurface flow and diverts it to

an automated tipping bucket. Three automated observations wells were also installed

at distances of 2.3, 17.8, and 34.4 m upslope from the tile drain, See Brooks, etal.

[2004] for more information on the site and the data.
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To determine the lateral hillslope-scale k(h), Brooks et al. [2004] solved (3) for

k(h) and used simultaneous measurements of q and dhldx. The hydraulic gradient

dhldx was calculated using water table heights recorded at the well located 2.3 m

upslope from the tile drain.

4. Results and Discussion

4.1. Comparison of Analytical and Numerical Solutions

The analytical solutions reviewed in Section 2.2 are not consistent among

themselves, particularly as the slope qi or as i increases. Figs. 3 and 4 show the

recession slope curves for several of the solutions given equivalent values for the

parameters B, D, k and . For mild slopes (i <1), many of the solutions are similar,

and differences can largely be accounted for by the constant in the recession parameter

a: for example, the value of 8 in (ix) versus the value of 2 in (xvi) in Table 2. An

exception is the second equation of Sanford et al. [1993] (see parameter set (xi), which

does a better job of reproducing the intermediate part of the recession slope curve as it

has the same value for b as the solution for a horizontal aquifer (i.e., b = 3/2). As the

slope qi or i increases, the analytical solutions diverge greatly (see Fig. 4). The

solution of Steenhuis et al. [1999] is also shown in Fig. 4, though it is understood that

it was derived for different boundary conditions.

A look at the numerical solutions to the non-linear Boussinesq equation for a

sloping aquifer reveals some interesting features. First, however, we review the case

of a horizontal aquifer. The solution for an initially level water table subjected to an

instantaneous drop in head at the outflow boundary can be separated into two very

distinct temporal domains separated by a sharp transition when plotted as log(dQ/dt)

versus log(Q) (e.g., [Parlange, et al., 2001]). The early-time domain corresponds to

the period during which the water table height h at the no-flux boundary at x B

remains at its initial height, i.e., h(B,t) = D. During the late-time domain, the water

table is moving downward at the no-flux boundary. For other initial water table



profiles, the early-time domain may not be so distinct and the transition to the late-

time domain may appear gradual [van de Giesen, et al., 2005].
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Fig. 3. Recession slope curves predicted by several analytical solutions to the
Boussinesq equation for a mildly sloping homogeneous aquifer. Also shown is the
numerical solution of an initially saturated aquifer subjected to an instantaneous drop
to 0 in channel head h0. For all solutions, tanq = 0.02, D = 1 m, B = 50 m, L = I m,
and k = 50 m d1. The roman numerals conespond to the recession parameters for
each curve given in Table 2.
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Fig. 4. Recession slope curves predicted by several analytical solutions to the
Boussinesq equation for a moderately sloping homogeneous aquifer. Also shown is
the numerical solution of an initially saturated aquifer subjected to an instantaneous
drop to 0 in channel head h0. For all solutions, tançb = 0.02, D 1 m, B = 50 m, L = 1
m, and k = 50 m d'. The roman numerals correspond to the recession parameters for
each curve given in Table 2.
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For the case of a sloping aquifer, the transition between the early- and late-time

domains for an initially saturated aquifer is not so brief. This is because the water

table at both the channel and the ridge line begins to drop immediately forming a

"mound" and the mound progresses downslope. In recession slope plots, this results

in three distinct temporal domains (see the numerical solutions in Figs. 3, 4, and 5a),

which are referred to here as early, intermediate, and late. During early time, the slope

b of the recession curve equals 3 initially and then increases towards infinity The

degree to which b increases depends on the slope. For steep slopes (e.g., i> 16), the

period when b reaches a maximum is when the entire body of water is essentially

sliding downslope with little change in the shape. During this period the kinematic

wave assumption holds. Following this period, b undergoes a sign reversal and the

curve enters the intermediate-time domain. In contrast, for mildly sloping aquifers the

transition from the early- to the intermediate-time domain is similar to the transition

from early to late time in a horizontal aquifer.

For steep aquifers, the intermediate-time domain is characterized by a change

in b from a large negative value to 0. This is followed by a gradual increase in slope

which converges to 1 during the late-time domain. For mild slopes, the intermediate-

time domain roughly mimics the late-time domain for a horizontal aquifer, but then

undergoes a transition where b decreases to some value less than 1 and then converges

gradually to a value of 1 in late-time. For intermediate slopes, the behavior falls

somewhere in between (Fig. 5a).

When the water table is initially at steady-state due to a constant recharge rate,

the early-time domain all but disappears (Fig. 6). For steep aquifers, b transitions

quickly from coto 0. The range of Q over which b remains 0 corresponds to the

kinematic wave behavior and falls within the intermediate-time domain. In late-time,

b converges to a value of 1. For mildly sloping aquifers, b transitions quickly from co

to near 3/2. The following intermediate period during which b remains generally

constant can range over multiple orders of magnitude in Q. Eventually, b decreases to

less than 1 and then converges to 1 at late time.
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Fig. 5. Comparison of analytical solutions (dashed lines) of the linearized Boussinesq
equation following Brutsaert [1994] and numerical solutions (solid lines) of the non-
linear Boussinesq equation. The simulations are for a homogeneous aquifer initially
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saturated to a height D subjected to an instantaneous
h0. Each graph corresponds to a different head h0 in
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Fig. 6. Comparison of analytical solutions (dashed lines) of the linearized Boussinesq
equation following Verhoest and Troch [2000] and numerical solutions (solid lines) of
the non-linear Boussinesq equation. The simulations are for a homogeneous aquifer
initially at steady state due to a constant recharge N of 0.1 m d1. Recession curves
were generated for tanq = 0.005, 0.02, 0.08, and 0.32. For all solutions, h0 = 0, D - 1
m,B=50m,L = 1 m, k=50md'.
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The linearized solution of Brutsaert [1994] was found to respond most

appropriately to changes in i, thus it was examined most closely in comparisons with

the numerical solutions. It also shows some, but not all, of the features of the non-

linear solution. The related analytical solution of Verhoest and Troch [2000] given a

water table initially at steady-state was also assessed. For the remainder of this

section, references to the "linearized solution" refer only to those solutions following

Brutsaert's technique [Brutsaert, 1994; Verhoest and Troch, 2000; Pauwels, et al.,

2002]. For comparison with the numerical solutions, the linearized solution was

solved with nearly the identical parameterization. An exception is that the linearized

solutions do not explicitly account for cases where h0 0. Interestingly, though h0 is

a parameter in the linearized equation for the transient water table height in [Pauwels,

et al., 2002], it is absent from the equation for discharge. On is left then to account for

a non-zero value of h0 through the parameter p. Because there is not yet a theory for

determining p a priori, we letp = 0.3465 [Brutsaert and Nieber, 1977] for all solutions

for an initially-saturated aquifer. For the initially-steady state cases, pD was estimated

by (9).

For steeply and moderately sloped aquifers, the linearized solution generates

the three temporal domains described previously (Figs. 5 and 6). The early time

domain in the initially saturated case is well-reproduced by the linearized solution. An

important difference, however, is that the intermediate-time domain extends over a

narrower range of discharge values, and the convergence toward a value of b = 1 is

more rapid, than in the numerical result. The significance for aquifer characterization

is that the value of parameter a is not the same for the solutions to the non-linear and

linearized equation; in some cases, the value of a differs by an order of magnitude.

For mildly sloping aquifers, the linearized solution clearly does not match the

numerical solution at intermediate and late times.

As h0ID approaches 1, the linearized solutions move closer to the numerical

solutions at late time. This is not surprising because, as mentioned earlier,

linearization is more suited to conditions where D - h0 <<D. A more appropriate

choice ofp for h0 > 0 may bring the solutions even closer together. Curiously, the
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linearized solution of the initially-saturated aquifer retains the early-time domain even

when h0 = D, in contrast with the numerical solution (Fig. 5c).

4.2. Effect of the Power-Law Conductivity Profile

The value of the power n determines the shape of the recession slope curve

(see Fig. 7). As n is increases, the intermediate time domain occupies a progressively

smaller range of discharges. At late time the curves converge to a power-law function

of the form of(2) with

b=(2n+1)I(n+1) (16)

In contrast, in the early-time domain the curves retain their general shape irrespective

of the value of n. This similarity in early time is consistent with the analytical solution

for a horizontal aquifer [Rupp and Selker, 2005a].

It is of interest to compare the late-time result (16) to the analytical solution for

drought flow derived for TOPMODEL given a power-law transmissivity profile

[Ambroise, et al., 1996; Duan and Miller, 1997; Iorg-ulescu and Musy, 1997].

Subsurface flow per unit contour length in TOPMODEL is assumed to be equal to the

local topographic gradient tanj3 multiplied by the transmissivity T, which is itself a

function of the soil moisture deficit 5 [Beven and Kirkby, 1979]. Following [Duan

and Miller, 1997], the subsurface flow given as function of the soil moisture deficit 5

taken to a power m is

q=Ttanfl=T0(tan/3)(1_5/)m
(17)

where To is the transmissivity at saturation, or at 5 = 0 [Duan and Miller, 1997].

Defining a degree of storage S, where S 1 - 8/rn, (17) can be rewritten as

q=T0(tan/3)Stm (18)
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Fig. 7. Numerically generated recession slope curves for a mildly (a; tanq5 = 0.03) and
moderately (b; tanq5 = 0.3) sloping aquifer where the saturated hydraulic conductivity
profile is a power function of the height above the impermeable base. Shown are
curves for various values of the power n. The curves are for an initially saturated
aquifer subjected to an instantaneous drop to 0 in channel head h0. For all curves, D
1 m, B 50 m, L = 1 m, and lcD = 10 m d'. The inset figures include the early time
domain.
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Note that (18) resembles the non-linear reservoir discharge equation: Q = aStm, where

a is a constant of proportionality. Given in terms of the Boussinesq aquifer discussed

in this paper, (18) becomes

q = TD tan cb(h/D) (19)

where TD = kDD/(n +1) and rn = n + 1. Eq. (19) is nearly identical to the flux term in

the kinematic wave approximation [Beven, 1 982b], except that tanq5 has replaced sinq5.

When rn and T0, or similarly n and TD, are uniformly distributed throughout a

catchment, it has been shown [Duan and Miller, 1997; lorgulescu and Musy, 1997]

that the subsurface discharge to the channel under drought conditions can be expressed

in the form of(2) with b = (2rn - 1)/rn. The lumped non-linear reservoir equation also

results in b = (2rn - 1)/rn [Brutsaert and Nieber, 1977], which is expected as it is

identical in form to (18). Expressed in terms of n, b = (2n + 1)/(n + 1), which is

equivalent to (16).

For the Boussinesq equation, obtaining a late-time definition for the parameter

a in (2) without an analytical solution is not straightforward. Dimensional

considerations [Brutsaert and Lopez, 1999; Michel, 1999; Rupp and Selker, 2005a]

hint at a function of the form

1 [ kDD'L2a = f(n,Ø,i)
[(n +1)(2LB)2

]n+i
(20)

The parameter ij has been included in the functionf(n, b, ij) after inspection of the

analytical solutions to the linearized Boussinesq equation. In particular, see the

definitions for the parameter a in (ix), (xiii), (xiv) and (xvi) in Table 2.

The functionJ(n,q,i) remains unknown and is certain to be complicated, given,

as a clue, the exact functionfR2(n) in the late-time analytical solution for the simpler

case of the horizontal aquifer [Rupp and Selker, 2005a] (see (A5)). One could begin



to arrive at approximate expressions forJ(n,qi, i) through numerous numerical

simulations. While such a extensive analysis is beyond the scope of this paper, the

numerical simulations already done here provide an opportunity to investigate the

function in (20) for the simplest case of a homogeneous aquifer with h0 = 0.

Letting n = 0, (20) reduces to

kDa f(')4B2

Using the definitions of a in Table 2 as a guide, various functions forj(q,i) were

substituted into (21). Comparisons were made between (21) and the late-time values

of a derived by fitting the power function (2) to the numerically generated recession

slope curves for the initially-saturated Boussinesq aquifer. Of the functions tested, the

best is

f(q,i) 432icos2 q (22)

Substituting (22) into (21) yields the expression for a given in Table 2 (see parameter

set (xviii). However, that expression reduces to the following simpler form:

108k
a sinqcosq

coB

Given the simplicity of (23), there is a surprisingly good 1:1 match with the

numerically derived values of a (see Fig. 8).

It is worth noting that D, the depth of the aquifer, is absent from (23). Of the

analytical solutions reviewed above, the final solution of Sanford et al. [1993] most

resembles (23) (see parameter set (xviii) in Table 2), though (23) has an extra "cosqY'

term and the constant multiplier of "108" is much larger than that in the Sanford et al.

[1993] equation.

(23)
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(21)



This is a useful result with regards to hydraulic parameter estimation as it

eliminates the problem of uncertainty in knowing D in the field.
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Fig. 8. Late-time recession parameter a determined from numerically-derived
recession slope curves versus 2ksinçkosqVD, where k is the saturated hydraulic
conductivity, q5 is the aquifer slope, çp is the drainable porosity, and D is the depth of
the initially saturated aquifer. Each point corresponds to a drainage simulation of a
homogeneous aquifer with varying values of q5, k, q, B and D. Also shown is the 1:1
line.



Fig. 9. Composite recession slope plot of the 5 largest and longest recession events
from Jan - May 2003 at the Troy, ID, hillslope. The line drawn through the data
points has a slope of 1.6.
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4.3. Recession Slope Analysis of Field Data

The five recession events covering the greatest range in discharge at the Troy

hillslope from the winter of 2002 - 03 were selected for analysis. They are the events

beginning on 31 Jan., 16 Mar., 22 Mar., 26 Mar., and 27 Apr. The composite

recession slope plot for the six events with discharge given as outflow per unit length

of drainage channel (q) is given in Fig. 9. The data appear linear in a log-log space,

and clearly show a slope b greater than 1. By visual inspection a line with a slope of

1.6 fits reasonably well. From (16), this corresponds to a power-law k profile with n

1.5.
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Though Brooks et al. [2004] fit a double exponential function fit through the

data of k(h) versus h, one could arguably fit the single power law in (11) through their

data for all but the uppermost 10 - 15 cm of soil (see Fig. 8 in Brooks et al. [2004]).

The recession slope analysis along with the calculations in Brooks et al. [2004]

suggest that the data can be modeled by (11) with kD = 5 m d', D = 0.65 m, and n

1.5, at least for 0 <h <0.55.

As a test of the ability of the 1 -D Boussinesq equation to reproduce the

observed hillslope discharge, the entire hydrograph for the rainfall event beginning on

21 Mar. 2003 was simulated numerically using the parameterization above. An hourly

net recharge rate was calculated as the sum of the observed rainfall rate and modeled

snowmelt and evapotranspiration rate [Brooks, et al., 2004]. The initial water table

profile h(x,0) was generated by linear interpolation of the observed water table height

at the 3 observation wells and by assuming h = 0 at the tile drain. The only remaining

unknown parameter was the drainable porosity q, which was varied by trial and error

until the peak discharges for the observed and simulated hydrographs were similar,

which occurred at approximately 0.023.

The simulated recession curve fits well to the observed data, though there is a

large time lag (Fig. 10). The initial rise in the simulated hydrograph also lags behind

the observations. The simulated rising limb could certainly be improved by not

assuming an initially dry aquifer. The rapid decrease in observed discharge during the

early part of the falling limb of the hydrograph is more problematic. The model may

require adjustments to adequately account for this behavior. The model, for example,

does not incorporate the sharp change in k in the upper 10 - 15 cm of soil, nor does it

include macropore flow, both of which would cause the aquifer to drain more quickly

during the first portion of the recession phase.
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Fig. 10. Simulated and measured hydrographs for the rainfall event beginning on 21
Mar. 2003, at the Troy, ID, hillslope. The simulated hydrograph was generated
numerically from the non-linear Boussinesq equation with saturated hydraulic
conductivity varying as a power function of depth.

5. Conclusions

This study has addressed two topics in the theory of groundwater discharge to

streams from unconfined aquifers. The first topic is the affect on discharge

predictions arising from the linearization methods used to derive analytical solutions

to the 1 -D Boussinesq equation for a sloping aquifer. Particular attention was placed

on how the analytical solutions appeared when plotted as log(dQ/dt) versus log(Q).

This plotting technique has been used previously to compare recession data with

analytical solutions to the Boussinesq equation for a horizontal aquifer. Known also
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as the method of Brutseart and Nieber [1977], it may be the only analytical tool

available for estimating basin-scale hydraulic properties [Szilagyi, 2004].

It was shown by comparison with numerically-generated recession curves of

the non-linear Boussinesq equation, that the existing analytical solutions for the

sloping aquifer are generally inappropriate for this type of analysis. An exception may

be for when the water height in the stream does not differ greatly from the height of

the water table relative to the total depth of the aquifer. Even in this case however, a

better theory is needed for what the effective water table height should be in the

linearized equation, i.e., what is the value ofpD?

The second topic of this paper is on the use of the non-linear 1-D Boussinesq

equation for characterizing the subsurface of a hillslope with shallow soils. The

Boussinesq equation in its basic form assumes a homogeneous aquifer. However, soil

hydraulic properties, and particularly saturated hydraulic conductivity k, often vary

with depth. We allowed lateral k to vary continuously with height h as a power law

and solved the modified Boussinesq equation numerically. It was found that the

recession parameter b in (2) converges to (2n+1)/(n+1), where n is the power in the k

function. Discharge data from a hillslope where lateral k(h) with depth was

determined by an independent method showed similar behavior. These results back

the notion the recession slope analysis can be used to aid in characterizing the

hydraulic properties of sloping aquifers. However, appropriate analytical functions for

the parameter a in (2) are still unknown, though we hint at a functional form for a.

An important issue not addressed here is how well the Brutsaert and Nieber

method holds up under more complex terrain, in particular in catchments composed of

a variety of hillslopes in which flow may also be convergent or divergent. While a 1-

D Boussinesq equation-based model has been developed for divergent and convergent

hillslopes [Troch, et al., 2003] (including an analytical solution for a special case

[Troch, et al., 2004]), it is not yet clear if the composite discharge from various

hillslopes could be simulated by a single "representative" Boussinesq aquifer with

catchment-scale effective parameters, as required by the Brutsaert and Nieber method.
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Appendix

Table 1 lists the functions fLo,fRl, andfR2 that are part of the definitions for the

recession parameter a for three solutions to the Boussinesq equation for a horizontal

aquifer. The definitions of these three functions are given below.

For the early-time solution with a non-zero head h0 in the channel, fLo is a

rather complex function of h0 and D [Lockington, 1997]. However,fLo takes on a

narrow range of values between 1.136 and 0.785 and can be approximated by a

polynomial function. The following third-order polynomial can be used forfLo with

little loss in accuracy:

fLO = 0.4604(h0 ID)3 +L0734(h0 ID)2 O.9673(h0 /D)+1.1361 (Al)

For the early-time solution for the power-law saturated hydraulic conductivity

profile [Rupp and Selker, 2005a],fRl is

fRI
(1 p)(n + 1)(n +2)

where

and

43yJy2 2y+4
J1=

4(1-2y)
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y=2(n+2)BRI (A4)

The parameter BRI is the beta function evaluated at n + 2 and 2, i.e., B(n + 2,2).

For the late-time solution with the power-law saturated hydraulic conductivity

profile [Rupp and Selker, 2005a],fR2 is

n+l

n+2 (n+1)(n+3)
fR2 = 2(n+l)(n+3)BR2[

BR2

]n+2

Where BR2 is the beta function evaluated at (n + 2)/(n + 3) and 1/2.
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Chapter 6 - Conclusions

The general goal of this investigation has been to further the understanding of

the physics of groundwater flow. The means has been through an assessment of

existing analytical solutions, and the derivation of new analytical solutions, to the

differential equations describing flow in unconfined aquifers. These analytical

solutions were arrived at by making several restrictive assumptions to the full non-

linear equations describing single-phase flow in porous media. The primary

assumptions are that the three-dimensional flow field can be reduced to a single

dimension, that the spatial domain of the aquifer can be represented by a rectangle in

which the hydraulic parameters are uniform laterally in space, and that flow in the

unsaturated zone can be neglected.

Analytical solutions are desirable because they can permit both the theoretical

analysis of physical processes and the interpretation of real data in a relatively simple

manner. For example, estimation of field- or catchment-scale hydraulic properties can

be made from discharge data using a simple graphical method that relates properties of

the graphed data to properties of the analytical solutions to the 1-dimensional

Boussinesq equation. This method, proposed by Brutsaert and Nieber [1977], has

been the subject of much of the research presented here.

Chapter 2 provides evidence showing how well such a simplified

representation of groundwater flow can predict the recession discharge and water table

decline rate in a tile-drained field. It also shows how both the Brutsaert and Nieber

method yields an estimate of field-scale saturated hydraulic conductivity k that is near

the geometric mean of soil cores collected at various locations throughout the field and

tested in the laboratory. This runs counter to the widely-held notion that k should

increase with volume sampled.

Chapter 3 discusses a practical shortcoming of the Brutsaert and Nieber

method. Specifically, it reveals how the typical method of estimating the slope of the

recession curve can lead to artifacts in the graphical representation of the data,
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artifacts that had either been previously misinterpreted or identified but left

unexplained. An alternative method for estimating the slope of the recession curve is

proposed which does not generate the artifacts.

Chapter 4 provides new analytical solutions to the non-linear 1-dimensional

Boussinesq equation for a horizontal aquifer in which k is allowed to vary with depth

as power law. This is probably the first advance in this research direction since Beven

[1982b] arrived at an analytical solution for a power-law k profile by simplifying the

Boussinesq equation for a sloping aquifer to a linear kinematic wave equation. This is

of interest because previous analytical solutions had been limited to a homogeneous

aquifer, yet many soils are known to show reductions in k with depth.

Chapter 5 gives an assessment of the Brutsaert and Nieber method for use with

sloping aquifers. While previous studies have all made use of the analytical solutions

to the Boussinesq equation for a horizontal aquifer, various analytical solutions do

exist for the sloping case. However, these solutions, all of which are based on some

tecimique for linearizing the equation, were found to be inappropriate for a Brutsaert

and Nieber-type analysis. This conclusion was reached by comparing the analytical

solutions to numerical solutions of the non-linear equation. However, an examination

of the numerical solutions did reveal relationships between aquifer parameters and

recession slope curves. Thus, some analytical expressions linking aquifer parameters

to properties of the graphed solutions could be "empirically-derived", permitting at

least partial characterization of the aquifer.

In summary, the 1-dimensional Boussinesq equation was found to be

applicable in field and hillslope settings where the boundary conditions were relatively

well-defined and the assumption of 1-dimensional flow was valid. Consequently, the

Brutsaert and Nieber method was also useful in these settings where an analytical

relationship was available that linked the recession curve parameters to the

hydraulic/geometric properties of the aquifer. Uncertainty remains as to whether it is

valid to extend the BrutsaeEt and Nieber method to hilly basins, though it has been

done so in the past. Further investigation is required into recession discharge patterns
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resulting from a composite of divergent and convergent flows as would be expected in

a real basin.
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