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Edge-Disjoint Hamiltonian Cycles in De Bruijn

Graphs

1 Introduction

The d-ary de Bruijn graph B(d, n) consists of nodes corresponding to n-tuples over

a d-letter alphabet Σ. There is a directed edge from the node x1, ..., xn to the node

y1, ..., yn if and only if y1 = x2, y2 = x3, ..., yn−1 = xn, yn = α with α ∈ Σ.For example,

the following is a graph of B(2,3):
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Figure 1: The de Bruijn Graph B(2,3).
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De Bruijn graphs are often used as interconnection networks for parallel computing

clusters and multicore processors. The nodes of the de Bruijn graph represent individual

processors that communicate with each other via the edges of the graph. One

processor can send information to another processor if and only if there is a directed

edge from the sending processor to the receiving processor.

A Hamiltonian cycle is a path that starts and ends at the same node and visits

each node exactly once. Two Hamiltonian cycles are edge-disjoint if they do not use

any of the same edges. If a graph admits n disjoint Hamiltonian cycles, then there are

at least n disjoint paths in each direction between any two nodes in the graph. It is

desirable to have multiple disjoint Hamiltonian cycles in an interconnection network

because individual edges are not always available for use. For example, a processor

might not be able to receive data because it is busy with another task. In this

situation, the busy processor could be avoided by sending the desired information via

a different Hamiltonian cycle.

It has been proven that the de Bruijn Graph B(d,n) admits d-1 disjoint Hamiltonian

cycles when d is a power of 2. Chapter 3 summarizes this result. It has also been

conjectured that the de Bruijn graph B(d,n) always admits d-1 disjoint Hamiltonian

cycles. This conjecture, which is explained in more detail in chapter 4, involves

applying a function to one Hamiltonian cycle to obtain d-2 additional Hamiltonian

cycles.

The purpose of my work has been to use the method of linear recurring sequences

to learn more about the number of disjoint Hamiltonian cycles in de Bruijn graphs.

Linear recurring sequences are explained in chapter 2. So far I have shown for several

specific de Bruijn graphs that Hamiltonian cycles obtained using linear recurring

sequences are not effective candidates for the method of finding disjoint Hamiltonian

cycles described in chapter 4. This finding is explained in chapter 5.
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2 Linear Recurring Sequences

The following information about linear recurring sequences comes from the book

Finite Fields, by Lidl and Niederreiter.

A kth-order linear recurring sequence is a sequence (xi) for which

xn+k = ak−1xn+k−1 + ak−2xn+k−2 + ...+ a0xn

where k is a positive integer, x0, · · · , xk−1 are fixed and the ai are given elements of

a finite field GF(d). The function

f(x) = xk − ak−1xk−1 − ak−2xk−2 − ...− a0

is called the characteristic polynomial of the linear recurring sequence given above.

The matrix

A =



0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2
...

...
...

. . .
...

...

0 0 0 · · · 1 ak−1


is called the companion matrix of the characteristic polynomial. Let Xn denote the

state vector [xnxn+1 · · ·xn+k−1]. Notice that XnA = Xn+1 and that X0A
n = Xn. If

a0 6= 0 then the determinant of A is nonzero and A is an element of the group GL(k,

GF(d)), the group of invertible kxk matrices with entries in GF(d) under matrix

multiplication. Let e be the order A in GL(k, GF(d)). Since Ae = Ik, X0A
e = X0

and therefore X0 = Xe. Since the sequence (xi) satisfies a kth-order linear recurrence,

the preceding fact implies that xi is perodic with period e. In fact, it can be shown

that if X0 = [0, 0, · · · , 1] then e is the least period of (xi) .
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Let r be the least period of (xi). Then for any state vector Xm, Xm = Xm+r and

therefore Xm = XmA
r. Note that {X0, X1, · · ·Xk} forms a basis for a k-dimensional

vector space over GF(d) when X0 = [0, 0, · · · , 1] because each Xi, 0 ≤ i ≤ k will have

zero for the first k− i entries and a 1 for the k− i+ 1 entry. It follows that Ar = Ik,

so the order of A in GL(k, GF(d)) is less than or equal to r. We conclude that the

least period of (xi) is the order of A in GL(k, GF(d)).

Let the circular sequence [x0, ..., xr−n] denote a closed path with length (r-n) in

B(d,n) for which the node (xi, xi+1, ..., xi+n−1) is connected to the node (xi+1, xi+2, ..., xi+n).

For example in the De Bruijn Graph B(2,3), the circular sequence [0, 1, 1, 0] would

denote the the cycle

(011)→ (110)→ (100)→ (001)→ (011).

It turns out that if the characteristic polynomial of (Xi) is a primitive polynomia

of degree n over GF(d)l, defined below, then the least period of (Xi) will be dn − 1.

The minimal polynomial of α is defined as the product

m(x) =
∏

σ∈conj(α)

(x− σ)

where σ is in conj(α) if and only if σ = αd
k

for some k. The elements of conj(α) are

called the conjugates of α. Notice that the roots of m(x) are exactly the conjugates

of α. A primitive element of GF(d) is an element α for which
{

0, 1, α, α2, ..., αk−2
}

is

the entire field. The minimal polynomial of a primitive element of the field GF (dn)

is called a primitive polynomial of degree n over GF(d). If α is primitive, then the

order of a conjugate σ = αd
k

is equal to

(d− 1)

gcd(dk, d− 1)
= d− 1
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because dk and d-1 are relatively prime. Therefore, if α is primitive, so are its

conjugates. We can conclude that all roots of a primitive polynomial are primitive

elements. y For example, let’s find a primitive polynomial of degree 2 over GF(2).

First we need to find a primitive element of GF (22) = GF (4). GF(4) is given by

Z2[y]/(y2 + y + 1), or the equivalency classes of the polynomials with coefficients in

Z2, modulo (y2 + y + 1). The elements of GF(4) are 0, 1, y, and (y+1). Note that

y2 = y + 1 and y3 = y2 + y = 1, so GF (4) = {0, y2, y3} . Therefore y is a primitive

element of GF(4). Now we need to find the minimal polynomial of y with respect

to GF(4). We see that conj(y) = {y, y + 1} because y2 = y + 1 and y4 = y. The

minimal polynomial of y is thus

(x− y)(x− y − 1) = x2 − 2xy + y2 + y − x.

Since 2xy = 0 modulo 2, and y2− y = 1 modulo (y2 + y+ 1), the minimal polynomial

of y is given by

x2 + x+ 1.

This is a primitive polynomial over GF(2).

Theorem 1. (from Lidl and Niederreiter) If the characteristic polynomial of the

linear recurring sequence (xi) is a primitive polynomial of degree n over GF(d), then

the least period of (xi) is dn − 1, and the cycle [x0, x1, ·, xr−n] visits every nonzero

node of B(d,n).

Proof. If A is the companion matrix of the charateristic polynomial f(x), then f(A)=0.

Every root of a primitive polynomial is a primitive element in the fieldGF (dn).Therefore

if f(x) is a primitive polynomial then A has order dn− 1. We conclude that the linear

recurring sequence (xi)with characteristic polynomial f(x) has least period dn − 1 if

X0 = [0, 0, · · · , 1], and the cycle [x0, x1, ·, xr−n] visits every node of B(d,n) except for

one. It is clear that the node excluded from the cycle has to be the zero node, because
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the linear recurrence would map the zero node to itself, leading to a least period of

1. Notice that snce the cycle visits every nonzero node of B(d,n), it is not necessary

for the sequene to start at [0, 0, · · · , 1].

A cycle obtained using a primitive polynomial can be made Hamiltonian by

inserting a 0 into the inear recurring sequence following a string of (n-1) 0s. This

is equivalent to replacing one edge that bypasses the zero node with two edges: one

that enters the zero node, and one that exits the zero node.
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3 Proving that B(d,n) has d-1 Disjoint Hamiltonian

Cycles When d is a Power of 2

In their paper ”On the Number of Disjoint Hamiltonian Circuits in the De Bruijn

Graph,” Rowley and Bose show that the de Bruijn Graph B(d, n) admits d-1 disjoint

Hamiltonian cycles when d is a power of 2. Notice that each node in a de Bruijn

graph has indegree and outdegree d, and n-tuples of the form (σ , ..., σ) have loops. A

cycle containing a loop cannot be Hamiltonian because it visits the same node twice,

so the presence of these loops guarantees that B(d, n) can admit at most d-1 disjoint

Hamiltonian cycles.

Rowley and Bose start by using a linear recurring sequence to find a cycle C of

length dn − 1 in the de Bruijn graph B(d,n) that visits every nonzero node of the

graph. Notice thatthe polynomial

f(x) = x3 − x− 1

is primitive over GF(2) because it is the minimal polynomial of the primitive element

x with respect to Z2[y]/(y3 − y − 1). Therefore we can generate a cycle containing

every nonzero node of B(2,3) using the recurrence ci+3 = ci+1 + ci. To do this, we

start with any nonzero node of B(2,3). That is, any node other that (0, 0, 0). let’s

choose (0, 0, 1). Then c1 = 0, c2 = 0, c3 = 1 becomes the beginning of our sequence

and we use our recurrence to find that c4 = 0, c5 = 1, c6 = 1, c7 = 1. After this point,

the sequence repeats and we are left with the circular sequence C = [0, 0, 1, 0, 1, 1, 1]

which denotes the cycle (0, 0, 1) → (0, 1, 0) → (1, 0, 1) → (0, 1, 1) → (1, 1, 1) →

(1, 1, 0)→ (1, 0, 0)→ (0, 0, 1). C visits every nonzero node of B(2,3) and satisfies the

linear recurrence ci = ci−2 + ci−3.
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Let C = [c0, ..., ck−1] be a circuit satisfying the conditions above and let

s+ C = [s+ c0, ..., s+ ck−1]

where s is an element of GF(d). Then s + C is a new cycle of length k = dn− 1. The

following lemmas show that the cycles of (s+ C : s ∈ GF (d)) are mutually disjoint.

Lemma 1. (from Rowley and Bose) The circuit

s+ C = [y0, ..., yk−1], s ∈ GF (d),

satisfies

yi = L(yi−n, ..., yi−1) + s(1− L(1n)),

where (1n) denotes the n-tuple (1, ... , 1).

Proof. Since

ci = L(ci−n, ..., ci−1)

and

xj = yj − s

for all j, it follows that

yj − s = L((yi−n − s), ..., (yi−1 − s)).

By adding s to both sides and using the linearity of L to separate it into two functions,

we see that

yi = L(yi−n, ..., yi−1)− L(sn) + s,
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and factoring an s out of the last two terms we can conclude that

yi = L(yi−n, ..., yi−1) + s(1− L(1n)).

Lemma 2. (from Rowley and Bose) The circuits of (s+C : s ∈ GF (d)) are mutually

disjoint.

Proof. Assume that s + C and t + C have a common edge and s 6= t. Then by

Lemma 1,

L(X) + s(1− L(1n)) = L(X) + t(1− L(1n))

for some n-tuple X. Subtracting L(X) from both sides we find

s(1− L(1n)) = t(1− L(1n)).

Since s 6= t and GF(d) is a field (and therefore has no zero divisors), it follows that

(1− L(1n)) = 0.

Therefore

L(1n) = 1

and L maps (1, ..., 1)→ (1, ..., 1). This contradicts the assumption that C visits every

nonzero node exactly once. We conclude that s and t do not have a common edge

and the circuits of (s+ C : s ∈ GF (q) are mutually disjoint.

Now we have constructed d cycles that are nearly Hamiltonian and our goal is

to extend them to create d-1 edge-disjoint Hamiltonian cycles. Since the cycle C

contains every node of B(d, n) except for 0n, each cycle s+C will contain every node

except for sn.
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Node sn can be inserted into s+C by replacing any (n+1)-tuple of the form αsn−1β

by the (n+2)-tuple αsnβ. This is equivalent to replacing the arc (α, s, ..., s) with two

arcs (α, s, ..., s) → (s, ..., s) → (s, ..., β). Rowley and Bose show that the edges used

to extend the cycles {s+ C : s ∈ GF (d), s 6= 0} can be selected so that they all come

from the original cycle C. This ensures that the other d-1 Hamiltonian cycles will be

edge-disjoint.

Notice that the number of non-loop edges in the graph B(d,n) is

dn+1 − d = d(dn − 1).

Since each of the d arc-disjoint cycles that we have constructed contain dn− 1 edges,

none of which are loops, these cycles partition the nonloop edges of B(d,n). Therefore

the edges αsn and snβ that we used to extend the cycle s + C to a Hamiltonian cycle

must lie in circuits (s+k)+C and (s+k’)+C for some nonzero k and k’.

Recall from Lemma 1 that yi = L(yi−n, ...yi−1) + s(1 − L(1n)). So, since αsn−1β

is an edge in s+C, we have

β = L(αsn−1) + s(1− L(1n)). (1)

And since αsn is an edge in (s+k)+C, we have

s = L(αsn−1) + (s+ k)(1− L(1n)). (2)

Finally, since snβ is an edge in (s+k’)+C, we have

β = L(sn) + (s+ k′)(1− L(1n)). (3)
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Subtracting (1) from (2), we see that

s = β + k(1− L(1n)), (4)

and simplifyng (3) we see that

β = s+ k′(1− L(1n)). (5)

Substituting the (4) into (5) we derive that k = -k’. Therefore if αsn−1β is an

edge in s+C, and αsn is an edge in (s+k)+C, then snβ will be an edge in (s-k)+C.

Since every cycle we have created besides s+C will contain the edge snβ for some

β, and the cycle s+C contains the node sn−1β for every β 6= s, we can choose β such

that snβ will be an edge in (s-s)+C. That is, we can choose k = s. Then αsn will be

an edge in (s+s)+C. So the edges used to extend s+C will lie in C and 2s+C.

If d is a power of 2, then we are working in a field of characteristic 2, and 2s=0.

Therefore, we can extend all of our cycles of the form s+C, s 6= 0, using edges in C.

The edges that we use to extend distinct cycles will not be the same because if s 6= t

then αsn 6= αtn, and snβ 6= tnβ. Therefore we can use the d-1 disjoint cycles to create

d-1 disjoint Hamiltonian cycles.

For example, let’s use this strategy to find three disjoint Hamiltonian cycles in

B(4,2). Recall that

GF (4) = Z2[y]/(y2 + y + 1) = {0, 1, y, y + 1}

Since x2 + x+ (y+ 1) is a primitive polynomial over GF(4), we can use the linear

recurrence relation xi+2 = xi+1+(y+1)xi to find a nearly-Hamiltonian cycle in B(4,2).
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Starting with the node (0 1), we obtain the cycle:

C = [0, 1, 1, y, 1, 0, (y + 1), (y + 1), 1, (y + 1), 0, y, y, (y + 1), y].

We find three more nearly-Hamiltonian cycles by adding the field elements to C.

1 + C = [1, 0, 0, (y + 1), 0, 1, y, y, 0, y, 1, (y + 1), (y + 1), y, (y + 1)].

y + C = [y, (y + 1), (y + 1), 0, (y + 1), y, 1, 1, (y + 1), 1, y, 0, 0, 1, 0].

(y + 1) + C = [(y + 1), y, y, 1, y, (y + 1), 0, 0, y, 0, (y + 1), 1, 1, 0, 1].

We can make the cycle 1 + C Hamiltonan by replacing the edge (0, 1, y) with

the edges (0, 1, 1) and (1, 1, y). Both of these edges come from C. The resulting

Hamiltonian cycle is

[1, 0, 0, (y + 1), 0, 1, 1, y, y, 0, y, 1, (y + 1), (y + 1), y, (y + 1)].

Similarly, we can make the cycles y + C and (y+1) + C Hamiltonian by replacing the

edge ((y+1), y, 1) with the edges ((y+1), y, y) and (y, y, 1), and the edge (1, (y+1), y)

with the edges (1, (y+ 1), (y+ 1)) and ((y+ 1), (y+ 1), y). The resulting Hamiltonian

cycles are

[y, (y + 1), (y + 1), 0, (y + 1), y, y, 1, 1, (y + 1), 1, y, 0, 0, 1, 0]

and

[(y + 1), y, y, 1, y, (y + 1), 0, 0, y, 0, (y + 1), 1, 1, 0, 1, (y + 1)].

These three cycles don’t use any of the same edges, so we have found three

edge-disjoint Hamiltonian cycles in B(4,2).
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4 The Conjecture that all De Bruijn Graphs have

d-1 Dijoint Hamiltonian Cycles

In the paper On Arc-Disjoint Hamiltonian Cycles in De Bruijn Graphs, Kása presents

a conjecture that all de Bruijn Graphs B(d,n) have d-1 disjoint Hamiltonian cycles.

The paper defines a function µ on words over the alphabet {0, 1, · · · , q − 1}, considered

modulo q, as follows:

µ(0) = 0

µ(i) = i+ 1, 1 ≤ i < q − 1

µ(q − 1) = 1

For example in the de Bruijn graph B(3,2), µ([0, 1, 1, 2, 0, 2, 2, 1]) = [0, 2, 2, 1, 0, 1, 1, 2].

The conjecture further states that for every de Bruijn graph B(d,n) there exists

a Hamiltonian cycle C such that C, µ(C), µ2(C), · · ·µd−2(C) are all edge-disjoint

Hamiltonian cycles. In the paper, examples of such cycles are provided for B(3,2),

B(3,3), B(4,2), and B(5,2).

The cycles given for B(4,2) are

C = [0, 0, 1, 0, 2, 1, 1, 3, 2, 3, 0, 3, 3, 1, 2, 2, 0]

µ(C) = [0, 0, 2, 0, 3, 2, 2, 1, 3, 1, 0, 1, 1, 2, 3, 3, 0]

µ2(C) = [0, 0, 3, 0, 1, 3, 3, 2, 1, 2, 0, 2, 2, 3, 1, 1, 0].

Notice that the three Hamiltonian cycles do not have any edges (3-tuples) in common

with each other.



15

5 Applying Kása’s Function to Hamiltonian Cycles

Obtained from Linear Recurring Sequences

I’ve tried applying Kása’s function to Hamiltonian cycles obtained using linear recurring

sequences such as the ones in chapters 2 and 3. So far I have checked the cycles

obtained from every primitive polynomial of degree 2 and 3 over the fields GF(3) and

GF(4). I was not able to find d-1 disjoint Hamiltonian cycles in B(d,n) by applying µ

to any of them. For every Hamiltonian cycle C that I obtained from a linear recurring

sequence, at least one of the cycles µx(C), 1 < x ≤ d− 2 had edges in common with

the original cycle, C.

For example let’s look at the Hamiltonian cycle of B(4,2) we found in chapter 3.

C = [0, 1, 1, y, 1, 0, (y + 1), (y + 1), 1, (y + 1), 0, y, y, (y + 1), y].

Let y = 2 and (y+1) = 3 so that µ(C) is defined. Then we have

C = [0, 1, 1, 2, 1, 0, 3, 3, 1, 3, 0, 2, 2, 3, 2]

µ(C) = [0, 2, 2, 3, 2, 0, 1, 1, 2, 1, 0, 3, 3, 1, 3]

Notice that there are multiple edges in common between these two cycles, for

example the edges (2, 2, 3), and (1, 1, 2) are used in both C and µ(C).
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6 Conclusion

Identifying edge-disjoint Hamiltonian cycles in de Bruijn graphs improves the efficiency

of de Bruijn interconnection networks because each disjoint Hamiltonian cycle corresponds

to two distinct paths between any pair of nodes in the network. It is known that the

de Bruijn graph B(d,n) admits d-1 disjoint Hamiltonian cycles when d is a power of 2,

and it is conjectured that all de Bruijn graphs B(d,n) admit d-1 disjoint Hamiltonian

cycles. It is also known that for the graphs B(3,2), B(3,3), B(4,2), and B(5,2), there

exists a Hamiltonian cyce to which Kása’s function can be applied to obtan d-2

additional disjoint Hamiltonian cycles. This is believed to be true in general. I

have shown that for the graphs B(3,2), B(3,3), B(4,2), and B(4,3), applying Kása’s

function to a Hamiltonian cycle satisfying a linear recurrence relation does not yield

d-1 disjoint Hamiltonian cycles. If this is proved to be true in general, it could provide

insight into the kind of Hamiltonian cycles that actually do work for Kása’s method.

Perhaps this could lead to a proof of Kása’s conjecture and a reliable procedure for

finding the d-1 disjoint Hamiltonian cycles in the general de Bruijn graph B(d,n).
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[1] Kása, Z. On arc-disjoint Hamiltonian Cycles in De Bruijn Graphs 5th Joint

Conference on Mathematics and Computer Science June 2004: 1-5 Print.

[2] Lidl, Rudolph and Niederreiter, Harald. Finite Fields Encyclopedia of

Mathematics and its Applications 20 1997: 394-410 Print.

[3] Rowley, Robert and Bose, Bella On the Number of Arc-Disjoint Hamiltonian

Circuits in the De Bruijn Graph Parallel Processing Letters Volume 3 Number 4

1993: Print.


	abstract
	title page
	thesis

